Sample records for oxygenation level dependent

  1. Characterization of paramagnetic effects of molecular oxygen on blood oxygenation level-dependent-modulated hyperoxic contrast studies of the human brain.

    PubMed

    Pilkinton, David T; Gaddam, Santosh R; Reddy, Ravinder

    2011-09-01

    In hyperoxic contrast studies modulated by the blood oxygenation level-dependent effect, it is often assumed that hyperoxia is a purely intravascular, positive contrast agent in T 2*-weighted images, and the effects that are not due to blood oxygenation level-dependent contrast are small enough to be ignored. In this study, this assumption is re-evaluated and non-blood oxygenation level-dependent effects in T 2*-weighted hyperoxic contrast studies of the human brain were characterized. We observed significant negative signal changes in T 2*-weighted images in the frontal lobes; B(0) maps suggest that this effect was primarily due to increased intravoxel dephasing from increased static field inhomogeneity due to susceptibility changes from oxygen in and around the upper airway. These static field effects were shown to scale with magnetic field strength. Signal changes observed around the brain periphery and in the ventricles suggest the effect of image distortions from oxygen-induced bulk B(0) shifts, along with a possible contribution from decreased T 2* due to oxygen dissolved in the cerebrospinal fluid. Reducing the concentration of inhaled oxygen was shown to mitigate negative contrast of molecular oxygen due to these effects, while still maintaining sufficient blood oxygenation level-dependent contrast to produce accurate measurements of cerebral blood volume. Copyright © 2011 Wiley-Liss, Inc.

  2. Enzymatic glucose sensor compensation for variations in ambient oxygen concentration

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; McShane, Michael J.

    2013-02-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.

  3. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.

    PubMed

    Helbing, Cornelia; Brocka, Marta; Scherf, Thomas; Lippert, Michael T; Angenstein, Frank

    2016-12-01

    Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D 1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D 1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses. © The Author(s) 2015.

  4. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism

    PubMed Central

    Blockley, Nicholas P.; Griffeth, Valerie E. M.; Simon, Aaron B.; Buxton, Richard B.

    2013-01-01

    The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique was developed to address these issues. However, the methodology is complex and its full promise has not yet been realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of this methodology are presented. PMID:22945365

  5. MODELING ENERGY EXPENDITURE AND OXYGEN CONSUMPTION IN HUMAN EXPOSURE MODELS: ACCOUNTING FOR FATIGUE AND EPOC

    EPA Science Inventory

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  6. Blood oxygenation level-dependent MRI for assessment of renal oxygenation

    PubMed Central

    Neugarten, Joel; Golestaneh, Ladan

    2014-01-01

    Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) has recently emerged as an important noninvasive technique to assess intrarenal oxygenation under physiologic and pathophysiologic conditions. Although this tool represents a major addition to our armamentarium of methodologies to investigate the role of hypoxia in the pathogenesis of acute kidney injury and progressive chronic kidney disease, numerous technical limitations confound interpretation of data derived from this approach. BOLD MRI has been utilized to assess intrarenal oxygenation in numerous experimental models of kidney disease and in human subjects with diabetic and nondiabetic chronic kidney disease, acute kidney injury, renal allograft rejection, contrast-associated nephropathy, and obstructive uropathy. However, confidence in conclusions based on data derived from BOLD MRI measurements will require continuing advances and technical refinements in the use of this technique. PMID:25473304

  7. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    PubMed

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  8. Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology

    PubMed Central

    Vincent, K; Moore, J; Kennedy, S; Tracey, I

    2008-01-01

    Blood-oxygenation-level-dependent functional magnetic resonance imaging is a noninvasive technique that has become increasingly popular in the neurosciences. It measures the proportion of oxygenated haemoglobin in specific areas of the brain, mirroring blood flow and therefore function. Here we review how the findings from functional studies impact on areas of gynaecological practice as diverse as chronic pain, continence, and premenstrual dysphoric disorder. Finally we review some of the more novel applications of the technique, such as imaging of pelvic floor function and the effects of hypoxia on the fetus. PMID:19076956

  9. Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds.

    PubMed

    Rolletschek, Hardy; Borisjuk, Ljudmilla; Sánchez-García, Alicia; Gotor, Cecilia; Romero, Luis C; Martínez-Rivas, José M; Mancha, Manuel

    2007-01-01

    Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.

  10. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, S.; Lee, T.M.; Kay, A.R.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less

  11. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  12. Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Fremion, Amy S.; And Others

    1987-01-01

    A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…

  13. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  14. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying

    2016-05-01

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  15. CORRECTING ENERGY EXPENDITURES FOR FATIGUE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION

    EPA Science Inventory

    The EPA's human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the individual's current level of physical activity (PA), which is determined from activity diaries selected from the Conso...

  16. Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival.

    PubMed

    Sørensen, Christina; Munday, Philip L; Nilsson, Göran E

    2014-03-01

    The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here, we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e., the capacity for surviving severe hypoxia) may determine present-day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral-dwelling gobies, Gobiodon histrio, and G. erythrospilus, with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40'S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). In contrast, the more equatorial species (G. histrio) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32-33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. © 2013 John Wiley & Sons Ltd.

  17. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  18. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  19. Magnetic Resonance Imaging Measurement of Transmission of Arterial Pulsation to the Brain on Propranolol Versus Amlodipine.

    PubMed

    Webb, Alastair J S; Rothwell, Peter M

    2016-06-01

    Cerebral arterial pulsatility is associated with leukoaraiosis and depends on central arterial pulsatility and arterial stiffness. The effect of antihypertensive drugs on transmission of central arterial pulsatility to the cerebral circulation is unknown, partly because of limited methods of assessment. In a technique-development pilot study, 10 healthy volunteers were randomized to crossover treatment with amlodipine and propranolol. At baseline and on each drug, we assessed aortic (Sphygmocor) and middle cerebral artery pulsatility (TCDtranscranial ultrasound). We also performed whole-brain, 3-tesla multiband blood-oxygen level dependent magnetic resonance imaging (multiband factor 6, repetition time=0.43s), concurrent with a novel method of continuous noninvasive blood pressure monitoring. Drug effects on relationships between cardiac cycle variation in blood pressure and blood-oxygen level dependent imaging were determined (fMRI Expert Analysis Tool, fMRIB Software Library [FEAT-FSL]). Aortic pulsatility was similar on amlodipine (27.3 mm Hg) and propranolol (27.9 mm Hg, P diff=0.33), while MCA pulsatility increased nonsignificantly more from baseline on propranolol (+6%; P=0.09) than amlodipine (+1.5%; P=0.58). On magnetic resonance imaging, cardiac frequency blood pressure variations were found to be significantly more strongly associated with blood-oxygen level dependent imaging on propranolol than amlodipine. We piloted a novel method of assessment of arterial pulsatility with concurrent high-frequency blood-oxygen level dependent magnetic resonance imaging and noninvasive blood pressure monitoring. This method was able to identify greater transmission of aortic pulsation on propranolol than amlodipine, which warrants further investigation. © 2016 American Heart Association, Inc.

  20. My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water.

    PubMed

    Thulborn, Keith R

    2012-08-15

    This invited personal story, covering the period from 1979 to 2010, describes the discovery of the dependence of the transverse relaxation time of water in blood on the oxygenation state of hemoglobin in the erythrocytes. The underlying mechanism of the compartmentation of the different magnetic susceptibilities of hemoglobin in its different oxygenation states also explains the mechanism that underlies blood oxygenation level dependent contrast used in fMRI. The story begins with the initial observation of line broadening during ischemia in small rodents detected by in vivo 31P NMR spectroscopy at high field. This spectroscopic line broadening or T2* relaxation effect was demonstrated to be related to the oxygenation state of blood. The effect was quantified more accurately using T2 values measured by the Carr-Purcell-Meiboom-Gill method. The effect was dependent on the integrity of the erythrocytes to compartmentalize the different magnetic susceptibilities produced by the changing spin state of the ferrous iron of hemoglobin in its different oxygenation states between the erythrocytes and the suspending solution. The hematocrit and magnetic field dependence, the requirement for erythrocyte integrity and lack of T1 dependence confirmed that the magnetic susceptibility effect explained the oxygenation state dependence of T2* and T2. This T2/T2* effect was combined with T1 based measurements of blood flow to measure oxygen consumption in animals. This blood oxygenation assay and its underlying magnetic susceptibility gradient mechanism was published in the biochemistry literature in 1982 and largely forgotten. The observation was revived to explain evolving imaging features of cerebral hematoma as MR imaging of humans increased in field strength to 1.5 T by the mid 1980s. Although the imaging version of this assay was used to measure a global metabolic rate of cerebral oxygen consumption in humans at 1.5-T by 1991, the global measurement had little clinical value. By contrast, a decade after the spectroscopic observation, imaging experiments performed on rodents at 7 T by Ogawa and colleagues identified the extravascular T2* imaging characteristics of the blood oxygenation effect and, most importantly, associated that change with brain functional states. Ogawa appropriately branded this blood oxygenation level dependent mechanism as BOLD contrast. This mechanism was subsequently shown to be the basis of localized MR signal changes associated with local brain function. This connection led to the fMRI revolution in human brain mapping. Copyright © 2012. Published by Elsevier Inc.

  1. Primary caregivers of in-home oxygen-dependent children: predictors of stress based on characteristics, needs and social support.

    PubMed

    Wang, Kai-Wei K; Lin, Hung-Ching; Lee, Chin-Ting; Lee, Kuo-Sheng

    2016-07-01

    To identify the predictors of primary caregivers' stress in caring for in-home oxygen-dependent children by examining the association between their levels of stress, caregiver needs and social support. Increasing numbers of primary caregivers of oxygen-dependent children experience caregiving stress that warrants investigation. The study used a cross-sectional design with three psychometric scales - Modified-Parenting Stress Index, Caregiver Needs Scale and Social Support Index. The data collected during 2010-2011 were from participants who were responsible for their child's care that included oxygen therapy for ≧6 hours/day; the children's ages ranged from 3 months-16 years. Descriptive statistics and multivariable linear regression were used. A total of 104 participants (M = 34, F = 70) were recruited, with an average age of 39·7 years. The average age of the oxygen-dependent children was 6·68 years and their daily use of oxygen averaged 11·39 hours. The caregivers' overall levels of stress were scored as high and information needs were scored as the highest. The most available support from family and friends was emotional support. Informational support was mostly received from health professionals, but both instrumental and emotional support were important. Levels of stress and caregiver needs were significantly correlated. Multivariable linear regression analyses identified three risk factors predicting stress, namely, the caregiver's poor health status, the child's male gender and the caregiver's greater financial need. To support these caregivers, health professionals can maintain their health status and provide instrumental, emotional, informational and financial support. © 2016 John Wiley & Sons Ltd.

  2. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    PubMed Central

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems. PMID:23443975

  3. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  4. Minimizing ATP depletion by oxygen scavengers for single-molecule fluorescence imaging in live cells.

    PubMed

    Jung, Seung-Ryoung; Deng, Yi; Kushmerick, Christopher; Asbury, Charles L; Hille, Bertil; Koh, Duk-Su

    2018-06-19

    The stability of organic dyes against photobleaching is critical in single-molecule tracking and localization microscopy. Since oxygen accelerates photobleaching of most organic dyes, glucose oxidase is commonly used to slow dye photobleaching by depleting oxygen. As demonstrated here, pyranose-2-oxidase slows bleaching of Alexa647 dye by ∼20-fold. However, oxygen deprivation may pose severe problems for live cells by reducing mitochondrial oxidative phosphorylation and ATP production. We formulate a method to sustain intracellular ATP levels in the presence of oxygen scavengers. Supplementation with metabolic intermediates including glyceraldehyde, glutamine, and α-ketoisocaproate maintained the intracellular ATP level for at least 10 min by balancing between FADH 2 and NADH despite reduced oxygen levels. Furthermore, those metabolites supported ATP-dependent synthesis of phosphatidylinositol 4,5-bisphosphate and internalization of PAR2 receptors. Our method is potentially relevant to other circumstances that involve acute drops of oxygen levels, such as ischemic damage in the brain or heart or tissues for transplantation.

  5. Material quality frontiers of MOVPE grown AlGaAs for minority carrier devices

    NASA Astrophysics Data System (ADS)

    Heckelmann, S.; Lackner, D.; Dimroth, F.; Bett, A. W.

    2017-04-01

    In this study, secondary ion mass spectroscopy of oxygen, deep level transient spectroscopy and power dependent relative photoluminescence are compared regarding their ability to resolve differences in AlxGa1-xAs material quality. AlxGa1-xAs samples grown with two different trimethylaluminum sources showing low and high levels of oxygen contamination are compared. As tested in the growth of minority carrier devices, i.e. AlxGa1-xAs solar cells, the two precursors clearly lead to different device characteristics. It is shown that secondary ion mass spectroscopy could not resolve the difference in oxygen concentration, whereas deep level transient spectroscopy and photoluminescence based measurements indicate the influence of the precursor oxygen level on the material quality.

  6. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    PubMed

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  7. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.

  8. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits.

    PubMed

    Yu, Dao-Yi; Cringle, Stephen J; Su, Erning; Yu, Paula K; Humayun, Mark S; Dorin, Giorgio

    2005-03-01

    To make the first measurements of intraretinal oxygen distribution and consumption after laser photocoagulation of the retina and to compare the efficiency of micropulsed (MP) and continuous wave (CW) laser delivery in achieving an oxygen benefit in the treated area. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth before and after laser treatment in anesthetized, mechanically ventilated, Dutch Belted rabbits (n = 11). Laser lesions were created by using a range of power levels from an 810-nm diode laser coupled with an operating microscope delivery system. MP duty cycles of 5%, 10%, and 15% were compared with CW delivery in each eye. Sufficient power levels of both the CW and MP laser reduced outer retinal oxygen consumption and increased oxygen level within the retina. At these power levels, which correlated with funduscopically visible lesions, there was histologically visible damage to the RPE and photoreceptors. Retinal damage was energy dependent but short-duty-cycle MP delivery was more selective in terms of retinal cell damage, with a wider safety range in comparison with CW delivery. The relationship between laser power level and mode of delivery and the resultant changes in oxygen metabolism and oxygen level in the retina was determined. Only partial destruction of RPE and photoreceptors is necessary, to produce a measurable oxygen benefit in the treated area of retina.

  9. Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM.

    PubMed

    Burgman, Paul; O'Donoghue, Joseph A; Lewis, Jason S; Welch, Michael J; Humm, John L; Ling, C Clifton

    2005-08-01

    Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) [Cu-ATSM] is a potential marker for tumor hypoxia that has been under evaluation for clinical use. In this study, we examined the mechanisms underlying the uptake of (64)Cu in cells incubated with (64)Cu-ATSM. The in vitro uptake of (64)Cu was determined as a function of oxygenation conditions and incubation time with (64)Cu-ATSM using four and two tumor cell lines of human origin and rodent origin, respectively. Additionally, the rate of (64)Cu efflux and Cu-ATSM metabolism was determined. (64)Cu accumulation is rapid during the first 0.5-1 h of incubation. It is highest in anoxic cells but is also significant in normoxic cells. After this initial period, the level of intracellular (64)Cu varies depending on the cell line and the oxygenation conditions and, in some circumstances, may decrease. During the first 0.5-1 h, the ratio of (64)Cu levels between anoxic and normoxic cells is approximately 2:10 and that between hypoxic (0.5% O(2)) and normoxic cells is approximately 1:2.5, depending on the cell line. These ratios generally decrease at longer times. The (64)Cu-ATSM compound was found to be metabolized during incubation in a manner dependent on oxygenation conditions. Within 2 h under anoxic conditions, (64)Cu-ATSM could no longer be detected, although 60-90% of the amount of (64)Cu added as (64)Cu-ATSM was present in the medium. Non-ATSM (64)Cu was taken up by the cells, albeit at a much slower rate. Efflux rates of (64)Cu were found to be cell line dependent and appeared to be inversely correlated with the final (64)Cu uptake levels under anoxic conditions. The uptake and retention of (64)Cu and their relation to oxygenation conditions were found to be cell line dependent. Given the complexities in the oxygen dependence and cell line-dependent kinetics of uptake and retention of Cu following exposure to Cu-ATSM, the clinical utility of this compound may be disease site specific.

  10. Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533.

    PubMed

    Hertzberger, Rosanne Y; Pridmore, R David; Gysler, Christof; Kleerebezem, Michiel; Teixeira de Mattos, M Joost

    2013-01-01

    Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. The probiotic Lactobacillus johnsonii NCC 533 is relatively sensitive to oxidative stress; the presence of oxygen causes a lower biomass yield due to early growth stagnation. We show however that oxygen can also be beneficial to this organism as it relieves the requirement for acetate and CO2 during growth. Both on agar- and liquid-media, anaerobic growth of L. johnsonii NCC 533 requires CO2 supplementation of the gas phase. Switching off the CO2 supply induces growth arrest and cell death. The presence of molecular oxygen overcomes the CO2 dependency. Analogously, L. johnsonii NCC 533 strictly requires media with acetate to sustain anaerobic growth, although supplementation at a level that is 100-fold lower (120 microM) than the concentration in regular growth medium for lactobacilli already suffices for normal growth. Analogous to the CO2 requirement, oxygen supply relieves this acetate-dependency for growth. The L. johnsonii NCC 533 genome indicates that this organism lacks genes coding for pyruvate formate lyase (PFL) and pyruvate dehydrogenase (PDH), both CO2 and acetyl-CoA producing systems. Therefore, C1- and C2- compound production is predicted to largely depend on pyruvate oxidase activity (POX). This proposed role of POX in C2/C1-generation is corroborated by the observation that in a POX deficient mutant of L. johnsonii NCC 533, oxygen is not able to overcome acetate dependency nor does it relieve the CO2 dependency.

  11. Oxygen Relieves the CO2 and Acetate Dependency of Lactobacillus johnsonii NCC 533

    PubMed Central

    Hertzberger, Rosanne Y.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel; Teixeira de Mattos, M. Joost

    2013-01-01

    Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. The probiotic Lactobacillus johnsonii NCC 533 is relatively sensitive to oxidative stress; the presence of oxygen causes a lower biomass yield due to early growth stagnation. We show however that oxygen can also be beneficial to this organism as it relieves the requirement for acetate and CO2 during growth. Both on agar- and liquid-media, anaerobic growth of L. johnsonii NCC 533 requires CO2 supplementation of the gas phase. Switching off the CO2 supply induces growth arrest and cell death. The presence of molecular oxygen overcomes the CO2 dependency. Analogously, L. johnsonii NCC 533 strictly requires media with acetate to sustain anaerobic growth, although supplementation at a level that is 100-fold lower (120 microM) than the concentration in regular growth medium for lactobacilli already suffices for normal growth. Analogous to the CO2 requirement, oxygen supply relieves this acetate-dependency for growth. The L. johnsonii NCC 533 genome indicates that this organism lacks genes coding for pyruvate formate lyase (PFL) and pyruvate dehydrogenase (PDH), both CO2 and acetyl-CoA producing systems. Therefore, C1- and C2- compound production is predicted to largely depend on pyruvate oxidase activity (POX). This proposed role of POX in C2/C1-generation is corroborated by the observation that in a POX deficient mutant of L. johnsonii NCC 533, oxygen is not able to overcome acetate dependency nor does it relieve the CO2 dependency. PMID:23468944

  12. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    NASA Technical Reports Server (NTRS)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  13. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology

    PubMed Central

    Bentley, William J.; Li, Jingfeng M.; Snyder, Abraham Z.; Raichle, Marcus E.; Snyder, Lawrence H.

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these “task-negative” BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. PMID:25385710

  14. Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient

    NASA Astrophysics Data System (ADS)

    Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.

    2017-03-01

    ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.

  15. [Changes of vascular reactivity and reactive oxygen species in conditions of varying duration of permanent stay in the alienation zone in mice].

    PubMed

    Tkachenko, M M; Kotsiuruba, A V; Baziliuk, O V; Horot', I V; Sahach, V F

    2010-01-01

    Peculiarities of changes in the vascular reactivity and in the content of reactive forms of oxygen and stable metabolites of nitric oxide (NO) were studied in the aorta preparations of C57BL/6 and BALB/c mice of the two age groups (6 and 18 mo.), which were born and permanently kept in the Chernobyl alienation zone. The results obtained showed a disturbance of acetylcholine-induced endothelium-dependent reactions of relaxation of smooth muscles of the thoracic aorta. A lower level of NO synthesis and lower level of oxidative arginase metabolism of arginine corresponded to a higher degree of damage of endothelium-dependent reactions of relaxation of the thoracic aorta smooth muscles. A decrease of NO synthesis in conditions of permanent effects of low doses of radiation was conditioned by an increase of generation of reactive forms of oxygen, namely, superoxide and hydroxyl radicals, which might be formed in mitochondria. In conditions of permanent effects of low doses of radiation a lesser level of protein nitrosothilation, same as lesser one of generation of OH-radical, corresponded to a higher level of damage of endothelium-dependent reactions.

  16. A Low-Oxygenated Subpopulation of Pancreatic Islets Constitutes a Functional Reserve of Endocrine Cells

    PubMed Central

    Olsson, Richard; Carlsson, Per-Ola

    2011-01-01

    OBJECTIVE The blood perfusion of pancreatic islets is highly variable and tightly regulated by the blood glucose concentration. Thus, oxygen levels are considered crucial for islet metabolism and function. Although islet oxygenation has been extensively studied in vitro, little is known about it in vivo. The current study aimed to investigate the oxygenation of the endocrine pancreas in vivo. RESEARCH DESIGN AND METHODS The reductive metabolism of 2-nitroimidazoles, such as pimonidazole, has previously been extensively used in studies of oxygen metabolism both in vitro and in vivo. At tissue oxygen levels <10 mmHg, pimonidazole accumulates intracellularly and may thereafter be detected by means of immunohistochemistry. Islet oxygenation was investigated in normal, 60% partially pancreatectomized, as well as whole-pancreas–transplanted rats. Moreover, leucine-dependent protein biosynthesis was performed using autoradiography to correlate islet oxygenation with metabolic activity. RESULTS In vivo, 20–25% of all islets in normal rats showed low oxygenation (pO2 <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low-oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Moreover, oxygenation was related to metabolism, since well-oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. CONCLUSIONS The current study suggests a novel subpopulation of dormant low-oxygenated islets, which seems to constitute a functional reserve of endocrine cells. This study establishes a novel perspective on the use of the endocrine pancreas in glucose homeostasis. PMID:21788581

  17. Anatomic Location of Tumor Predicts the Accuracy of Motor Function Localization in Diffuse Lower-Grade Gliomas Involving the Hand Knob Area.

    PubMed

    Fang, S; Liang, J; Qian, T; Wang, Y; Liu, X; Fan, X; Li, S; Wang, Y; Jiang, T

    2017-10-01

    The accuracy of preoperative blood oxygen level-dependent fMRI remains controversial. This study assessed the association between the anatomic location of a tumor and the accuracy of fMRI-based motor function mapping in diffuse lower-grade gliomas. Thirty-five patients with lower-grade gliomas involving motor areas underwent preoperative blood oxygen level-dependent fMRI scans with grasping tasks and received intraoperative direct cortical stimulation. Patients were classified into an overlapping group and a nonoverlapping group, depending on the extent to which blood oxygen level-dependent fMRI and direct cortical stimulation results concurred. Tumor location was quantitatively measured, including the shortest distance from the tumor to the hand knob and the deviation distance of the midpoint of the hand knob in the lesion hemisphere relative to the midline compared with the normal contralateral hemisphere. A 4-mm shortest distance from the tumor to the hand knob value was identified as optimal for differentiating the overlapping and nonoverlapping group with the receiver operating characteristic curve (sensitivity, 84.6%; specificity, 77.8%). The shortest distances from the tumor to the hand knob of ≤4 mm were associated with inaccurate fMRI-based localizations of the hand motor cortex. The shortest distances from the tumor to the hand knob were larger ( P = .002), and the deviation distances for the midpoint of the hand knob in the lesion hemisphere were smaller ( P = .003) in the overlapping group than in the nonoverlapping group. This study suggests that the shortest distance from the tumor to the hand knob and the deviation distance for the midpoint of the hand knob on the lesion hemisphere are predictive of the accuracy of blood oxygen level-dependent fMRI results. Smaller shortest distances from the tumor to the hand knob and larger deviation distances for the midpoint of hand knob on the lesion hemisphere are associated with less accuracy of motor cortex localization with blood oxygen level-dependent fMRI. Preoperative fMRI data for surgical planning should be used cautiously when the shortest distance from the tumor to the hand knob is ≤4 mm, especially for lower-grade gliomas anterior to the central sulcus. © 2017 by American Journal of Neuroradiology.

  18. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study.

    PubMed

    Jiang, Lan; Weatherall, Paul T; McColl, Roderick W; Tripathy, Debu; Mason, Ralph P

    2013-05-01

    To determine whether a simple noninvasive method of assessing tumor oxygenation is feasible in the clinical setting and can provide useful, potentially predictive information. Tumor microcirculation and oxygenation play critical roles in tumor growth and responsiveness to cytotoxic treatment and may provide prognostic indicators for cancer therapy. Deoxyhemoglobin is paramagnetic and can serve as an endogenous contrast agent causing signal loss in echo planar magnetic resonance imaging (MRI) (blood oxygenation level-dependent [BOLD]-MRI). We used BOLD-MRI to provide early evaluation of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. MRI was performed on 11 patients with biopsy-proven malignancy. MRI exams were scheduled before, during, and after chemotherapy. The BOLD study applied a 6-minute oxygen breathing challenge. Seven patients successfully completed the exams. Before chemotherapy, BOLD contrast enhancement was observed in all tumors, but the patients, who ultimately had complete pathological response, exhibited a significantly higher BOLD response to oxygen breathing. We have successfully implemented an oxygen-breathing challenge BOLD contrast technique as part of the standard breast MRI exam in patients with locally advanced breast cancer. The preliminary observation that a large BOLD response correlated with better treatment response suggests a predictive capability for BOLD MRI. Copyright © 2012 Wiley Periodicals, Inc.

  19. Susceptibility Profiles of Amphotericin B and Posaconazole against Clinically Relevant Mucorales Species under Hypoxic Conditions

    PubMed Central

    Maurer, Elisabeth; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia

    2014-01-01

    The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. PMID:25451049

  20. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology.

    PubMed

    Bentley, William J; Li, Jingfeng M; Snyder, Abraham Z; Raichle, Marcus E; Snyder, Lawrence H

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these "task-negative" BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Anaerobic metabolism in Brassica seedlings

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Ryoul; Hasenstein, Karl H.

    Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)

  2. Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa.

    PubMed

    Schmidt, Annika; Hammerbacher, Anna Silke; Bastian, Mike; Nieken, Karen Jule; Klockgether, Jens; Merighi, Massimo; Lapouge, Karine; Poschgan, Claudia; Kölle, Julia; Acharya, K Ravi; Ulrich, Martina; Tümmler, Burkhard; Unden, Gottfried; Kaever, Volkhard; Lory, Stephen; Haas, Dieter; Schwarz, Sandra; Döring, Gerd

    2016-10-01

    Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused an alginate production defect under anaerobic conditions, whereas a PA4331 (odaI, for oxygen-dependent alginate synthesis inhibitor) deletion mutant produced alginate also in the presence of oxygen, which would normally inhibit alginate synthesis. Based on their sequence, OdaA and OdaI have predicted hydratase and dioxygenase reductase activities, respectively. Enzymatic assays using purified protein showed that unlike OdaA, which did not significantly affect DGC activity of SadC, OdaI inhibited c-di-GMP production by SadC. Our data indicate that SadC, OdaA and OdaI are components of a novel response pathway of P. aeruginosa that regulates alginate synthesis in an oxygen-dependent manner. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health

    PubMed Central

    Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378

  4. Skin blood perfusion and oxygenation colour affect perceived human health.

    PubMed

    Stephen, Ian D; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice.

  5. Comparison of 1.5 and 3 T BOLD MR to study oxygenation of kidney cortex and medulla in human renovascular disease.

    PubMed

    Gloviczki, Monika L; Glockner, James; Gomez, Sabas I; Romero, Juan C; Lerman, Lilach O; McKusick, Michael; Textor, Stephen C

    2009-09-01

    Imaging of the kidney using blood oxygen level dependent MR presents a major opportunity to examine differences in tissue oxygenation within the cortex and medulla applicable to human disease. We sought to define the differences between regions within kidneys and to optimize selection of regions of interest for study with 1.5 and 3 Tesla systems. Studies in 38 subjects were performed under baseline conditions and after administration of furosemide intravenously to examine changes in R2* as a result of suppressing oxygen consumption related to medullary tubular solute transport. These studies were carried out in patients with atherosclerotic renal artery stenosis (n = 24 kidneys) or essential hypertension or nonstenotic kidneys (n = 39). All patients but one were treated with agents to block the renin angiotensin system (ACE inhibitors or angiotensin receptor blockers). For each kidney, 3 levels (upper pole, hilum, and lower pole) were examined, including 3 individual segments (anterior, lateral, and posterior). Low basal R2* levels in kidney cortex (12.06 +/- 0.84 s(-1)) at 1.5 Tesla reflected robust blood flow and oxygenation and agreed closely with values obtained at 3.0 Tesla (13.62 +/- 0.56 s(-1), NS). Coefficients of variation ranged between 15% and 20% between segments and levels at both field strengths. By contrast, inner medullary R2* levels were higher at 3 T (31.66 +/- 0.74 s(-1)) as compared with 1.5 T (22.19 +/- 1.52 s(-1), P < 0.01). Medullary R2* values fell after furosemide administration reflecting reduced deoxyhemoglobin levels associated with blocked energy-dependent transport. The fall in medullary R2* at 3.0 Tesla (-12.61 +/- 0.97 s(-1)) was greater than observed at 1.5 T (-6.07 +/- 1.38 s(-1), P < 0.05). Cortical R2* levels remained low after furosemide and did not vary with field strength. Correlations between measurements of defined cortical and medullary regions of interest within kidneys were greater at each sampling level and segment at 3.0 T as compared to 1.5 T. For patients studied with 3.0 T, furosemide administration induced a lesser fall in R2* in poststenotic kidneys at 3.0 T (-10.61 +/- 1.61 s(-1)) versus nonstenotic kidneys (-13.21 +/- 0.72 s(-1), P < 0.05). This difference was not evident in comparisons made at 1.5 T. The magnitude of furosemide-suppressible oxygen consumption at 3.0 T (-43%) corresponded more closely with reported experimental differences observed during direct measurement with tissue electrodes (45%-50%) than changes measured at 1.5 T. These results indicate that blood oxygen level dependent MR measurements at high field strength can better distinguish discrete cortical and inner medullary regions of the kidney and approximate measured differences in oxygen tension. Maneuvers that reduce oxygen consumption related to tubular solute transport allow functional evaluation of the interstitial compartment as a function of tissue oxygenation. Impaired response to alterations in oxygen consumption can be detected at 3 T more effectively than at 1.5 T and may provide real-time tools to examine developing parenchymal injury associated with impaired oxygenation.

  6. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    PubMed

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Megalophallus as a sequela of priapism in sickle cell anemia: use of blood oxygen level-dependent magnetic resonance imaging.

    PubMed

    Kassim, A A; Umans, H; Nagel, R L; Fabry, M E

    2000-09-01

    Priapism is a common complication of sickle cell anemia. We report a little known sequela of priapism: painless megalophallus, with significant penile enlargement. The patient had had an intense episode of priapism 9 years previously and his penis remained enlarged. Blood oxygen level-dependent magnetic resonance imaging revealed enlarged, hypoxic corpora cavernosa. Megalophallus probably resulted from permanent loss of elasticity of the tunica albuginea due to severe engorgement during the episode of priapism. This sequela needs to be recognized by physicians because no intervention is necessary and sexual function seems to remain intact.

  8. Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning.

    PubMed

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-11-01

    Resting-state functional MR imaging (rsfMR imaging) measures spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal and can be used to elucidate the brain's functional organization. It is used to simultaneously assess multiple distributed resting-state networks. Unlike task-based functional MR imaging, rsfMR imaging does not require task performance. This article presents a brief introduction of rsfMR imaging processing methods followed by a detailed discussion on the use of rsfMR imaging in presurgical planning. Example cases are provided to highlight the strengths and limitations of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    PubMed

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  10. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.

    PubMed

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht

    2016-11-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.

  11. Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria

    DOE PAGES

    Yuan, Fenglin; Liu, Bin; Zhang, Yanwen; ...

    2016-03-01

    In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energymore » for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.« less

  12. Establishing the Mineral Apposition Rate of Heterotopic Ossification for Prevention of Recurrence

    DTIC Science & Technology

    2015-12-01

    oxygenation has been demonstrated to have deleterious effects on wound closure rates, latency to resumption of an unperturbed blood flow, and may delay the...techniques like near-infrared spectroscopy and blood oxygen level-dependent magnetic resonance imaging may provide noninvasive, precise, and time- effective ...Itada N, Friedenberg ZB. Cathodic oxygen consumption and electrically induced osteogenesis. Clin Orthop Relat Res. 1975;(107):277–282. 27. Ren H

  13. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue

    PubMed Central

    Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick

    2016-01-01

    Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level, and depends on convective red blood cell (RBC) flux, which is proportional in an individual capillary to the product of capillary hematocrit and red blood cell velocity. This study investigates the relative influence of these two factors on tissue oxygen partial pressure (Po2). Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity and flow on tissue oxygenation around capillaries. Predicted tissue Po2 levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue Po2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained and the discrepancies are explained. Significant dependence of mass transfer coefficients on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the Po2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing intravascular resistance to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as occur in functional hyperemia in the brain. PMID:27893186

  14. In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique

    PubMed Central

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065

  15. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  16. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.

    PubMed

    Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick

    2017-04-01

    Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO 2 . A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO 2 levels are compared with a detailed computational model. Hematocrit is shown to have a larger influence on tissue PO 2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. For a given RBC flux in a capillary, the PO 2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain. © 2016 John Wiley & Sons Ltd.

  17. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity.

    PubMed

    Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter

    2014-04-01

    Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10(4) mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D99, the homogeneous radiation dose required for a tumor control probability of 0.99. In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D99 by up to 10%. Furthermore, the D99 vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D99, necrotic fractions ranging from 0% to 97%, and a maximal D99 increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D99 strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D99. Our present analysis of necrotic formation and the impact of tumor oxygenation on D99 demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies. © 2014 American Association of Physicists in Medicine.

  18. Susceptibility profiles of amphotericin B and posaconazole against clinically relevant mucorales species under hypoxic conditions.

    PubMed

    Maurer, Elisabeth; Binder, Ulrike; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia

    2015-02-01

    The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Constitutive modeling of intrinsic and oxygen-contaminated silicon monocrystals in easy glide

    NASA Astrophysics Data System (ADS)

    Cochard, J.; Yonenaga, I.; Gouttebroze, S.; M'Hamdi, M.; Zhang, Z. L.

    2010-11-01

    We generalize in this work the constitutive model for silicon crystals of Alexander and Haasen. Strain-rate and temperature dependency of the mechanical behavior of intrinsic crystals are correctly accounted for into stage I of hardening. We show that the steady-state of deformation in stage I is very well reproduced in a wide range of temperature and strain rate. The case of extrinsic crystals containing high levels of dissolved oxygen is examined. The introduction of an effective density of mobile dislocations dependent on the unlocking stress created by oxygen atoms gathered at the dislocation cores is combined to an alteration of the dislocation multiplication rate, due to pinning of the dislocation line by oxygen atoms. This increases the upper yield stress with the bulk oxygen concentration in agreement with experimental observations. The fraction of effectively mobile dislocations is found to decay exponentially with the unlocking stress. Finally, the influence of oxygen migration back onto the dislocations from the bulk on the stress distribution in silicon bars is investigated.

  20. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.

    PubMed

    Seibel, Brad A

    2011-01-15

    The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.

  1. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. I. Studies at different levels of hypoxic hypoxia.

    PubMed

    Bakker, J C; Gortmaker, G C; Vrolijk, A C; Offerijns, F G

    1976-03-11

    Isolated rat livers were perfused with fresh and 2,3-DPG (2,3-diphosphoglycerate)-depleted human erythrocytes at different levels of hypoxia. The mean P50 values of the measured actual oxygen dissociation curves (O.D.C.) were 24.5 and 18 mm Hg. No changes in flow rate and perfusion pressure occurred under the different experimental conditons. It was shown that an advantage or disadvantage of a shift of the O.D.C. depends on the degree of hypoxia, as reflected in the venous PO2. Perfusions with fresh erythrocytes showed higher venous PO2 values during normoxia or moderate hypoxia and lower venous PO2 values at severe hypoxia. A cross-over point was found at a PO2 in the portal vein of 36 mm Hg. The disadvantage of perfusions with fresh erythrocytes at severre hypoxia was also reflected in higher cytoplasmatic and mitochondrial redox levels. Using bile flow rate as an indirect measure for the rate of hydroxylation-dependent O2 consumption a favourable effect of perfusion with fresh erythrocytes was found at a PO2 in the portal vein of 100 and 40 mm Hg.

  2. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    PubMed

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se; Kindblom, Jon; Bernhardt, Peter

    2014-04-15

    Purpose: Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Methods:more » Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10{sup 4} mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D{sub 99,} the homogeneous radiation dose required for a tumor control probability of 0.99. Results: In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D{sub 99} by up to 10%. Furthermore, the D{sub 99} vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D{sub 99}, necrotic fractions ranging from 0% to 97%, and a maximal D{sub 99} increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D{sub 99} strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D{sub 99}. Conclusions: Our present analysis of necrotic formation and the impact of tumor oxygenation on D{sub 99} demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies.« less

  4. Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration

    NASA Astrophysics Data System (ADS)

    Mills, B.; Belcher, C.; Lenton, T. M.

    2017-12-01

    During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.

  5. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  6. Hepatic Flavin-Containing Monooxygenase 3 Enzyme Suppressed by Type 1 Allergy-Produced Nitric Oxide.

    PubMed

    Tanino, Tadatoshi; Bando, Toru; Komada, Akira; Nojiri, Yukie; Okada, Yuna; Ueda, Yukari; Sakurai, Eiichi

    2017-11-01

    Flavin-containing monooxygenases (FMOs) are major mammalian non-cytochrome P450 oxidative enzymes. T helper 2 cell-activated allergic diseases produce excess levels of nitric oxide (NO) that modify the functions of proteins. However, it remains unclear whether allergy-induced NO affects the pharmacokinetics of drugs metabolized by FMOs. This study investigated alterations of hepatic microsomal FMO1 and FMO3 activities in type 1 allergic mice and further examined the interaction of FMO1 and FMO3 with allergy-induced NO. Imipramine (IMP; FMO1 substrate) N- oxidation activity was not altered in allergic mice with high serum NO and immunoglobulin E levels. At 7 days after primary sensitization (PS7) or secondary sensitization (SS7), benzydamine (BDZ; FMO1 and FMO3 substrate) N- oxygenation was significantly decreased to 70% of individual controls. The expression levels of FMO1 and FMO3 proteins were not significantly changed in the sensitized mice. Hepatic inducible NO synthase (iNOS) mRNA level increased 5-fold and 15-fold in PS7 and SS7 mice, respectively, and hepatic tumor necrosis factor- α levels were greatly enhanced. When a selective iNOS inhibitor was injected into allergic mice, serum NO levels and BDZ N- oxygenation activity returned to control levels. NO directly suppressed BDZ N- oxygenation, which was probably related to FMO3-dependent metabolism in comparison with IMP N- oxidation. In hepatic microsomes from PS7 and SS7 mice, the suppression of BDZ N- oxygenation was restored by ascorbate. Therefore, type 1 allergic mice had differentially suppressed FMO3-dependent BDZ N- oxygenation. The suppression of FMO3 metabolism related to reversible S- nitrosyl modifications of iNOS-derived NO. NO is expected to alter FMO3-metabolic capacity-limited drug pharmacokinetics in humans. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  7. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  8. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasingmore » synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.« less

  9. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling

    PubMed Central

    Morrell, Glen; Rusinek, Henry; Warner, Lizette; Vivier, Pierre-Hugues; Cheung, Alfred K.; Lerman, Lilach O.; Lee, Vivian S.

    2014-01-01

    Blood oxygen level-dependent (BOLD) MRI data of kidney, while indicative of tissue oxygenation level (Po2), is in fact influenced by multiple confounding factors, such as R2, perfusion, oxygen permeability, and hematocrit. We aim to explore the feasibility of extracting tissue Po2 from renal BOLD data. A method of two steps was proposed: first, a Monte Carlo simulation to estimate blood oxygen saturation (SHb) from BOLD signals, and second, an oxygen transit model to convert SHb to tissue Po2. The proposed method was calibrated and validated with 20 pigs (12 before and after furosemide injection) in which BOLD-derived tissue Po2 was compared with microprobe-measured values. The method was then applied to nine healthy human subjects (age: 25.7 ± 3.0 yr) in whom BOLD was performed before and after furosemide. For the 12 pigs before furosemide injection, the proposed model estimated renal tissue Po2 with errors of 2.3 ± 5.2 mmHg (5.8 ± 13.4%) in cortex and −0.1 ± 4.5 mmHg (1.7 ± 18.1%) in medulla, compared with microprobe measurements. After injection of furosemide, the estimation errors were 6.9 ± 3.9 mmHg (14.2 ± 8.4%) for cortex and 2.6 ± 4.0 mmHg (7.7 ± 11.5%) for medulla. In the human subjects, BOLD-derived medullary Po2 increased from 16.0 ± 4.9 mmHg (SHb: 31 ± 11%) at baseline to 26.2 ± 3.1 mmHg (SHb: 53 ± 6%) at 5 min after furosemide injection, while cortical Po2 did not change significantly at ∼58 mmHg (SHb: 92 ± 1%). Our proposed method, validated with a porcine model, appears promising for estimating tissue Po2 from renal BOLD MRI data in human subjects. PMID:24452640

  10. [Oxygen-dependent energy deficit as related to the problems of ontogenetic development disorders and human sociobiological adaptation (theoretical and applied aspects)].

    PubMed

    Ilyukhina, V A; Kataeva, G V; Korotkov, A D; Chernysheva, E M

    2015-01-01

    The review states and argues theoretical propositions on the pathogenetic role of pre- and perinatal hypoxic-ischemic brain damage in the formation of sustained oxygen-dependent energy deficit underlying in further ontogenesis the following neurobiological abnormalities: a) a decline in the level of health and compensatory-adaptive capacities of the organism, b) disorders of the psycho-speech development and adaptive behavior in children, c) early development of neuropsychic diseases, g) addition of other types of brain energy metabolism (including glucose metabolism) disorders in chronic polyetiologic diseases young and middle-aged individuals. We highlight and theoretically substantiate the integrated physiological parameters of the oxygen-dependent energy deficit types. We address the features of abnormalities in neuroreflectory and neurohumora regulatory mechanisms of the wakefulness level and its vegetative and hemodynamic provision in different types of energy deficit in children with DSMD, ADHD and school maladjustment. The use of the state-of-the-art neuroimaging techniques significantly increased the possibility of the disintegration of regulatory processes and cognitive functions in children with psycho-speech delays and in a wide range of chronic polyetiologic diseases.

  11. Functional connectivity arises from a slow rhythmic mechanism

    PubMed Central

    Li, Jingfeng M.; Bentley, William J.; Snyder, Lawrence H.

    2015-01-01

    The mechanism underlying temporal correlations among blood oxygen level-dependent signals is unclear. We used oxygen polarography to better characterize oxygen fluctuations and their correlation and to gain insight into the driving mechanism. The power spectrum of local oxygen fluctuations is inversely proportional to frequency raised to a power (1/f) raised to the beta, with an additional positive band-limited component centered at 0.06 Hz. In contrast, the power of the correlated oxygen signal is band limited from ∼0.01 Hz to 0.4 Hz with a peak at 0.06 Hz. These results suggest that there is a band-limited mechanism (or mechanisms) driving interregional oxygen correlation that is distinct from the mechanism(s) driving local (1/f) oxygen fluctuations. Candidates for driving interregional oxygen correlation include rhythmic or pseudo-oscillatory mechanisms. PMID:25918427

  12. Streamflow and nutrient dependence of temperature effects on dissolved oxygen in low-order forest streams

    Treesearch

    April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich

    2007-01-01

    Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....

  13. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?

    PubMed

    Jahanian, Hesamoddin; Christen, Thomas; Moseley, Michael E; Pajewski, Nicholas M; Wright, Clinton B; Tamura, Manjula K; Zaharchuk, Greg

    2017-07-01

    Measurement of the ability of blood vessels to dilate and constrict, known as vascular reactivity, is often performed with breath-holding tasks that transiently raise arterial blood carbon dioxide (P a CO 2 ) levels. However, following the proper commands for a breath-holding experiment may be difficult or impossible for many patients. In this study, we evaluated two approaches for obtaining vascular reactivity information using blood oxygenation level-dependent signal fluctuations obtained from resting-state functional magnetic resonance imaging data: physiological fluctuation regression and coefficient of variation of the resting-state functional magnetic resonance imaging signal. We studied a cohort of 28 older adults (69 ± 7 years) and found that six of them (21%) could not perform the breath-holding protocol, based on an objective comparison with an idealized respiratory waveform. In the subjects that could comply, we found a strong linear correlation between data extracted from spontaneous resting-state functional magnetic resonance imaging signal fluctuations and the blood oxygenation level-dependent percentage signal change during breath-holding challenge ( R 2  = 0.57 and 0.61 for resting-state physiological fluctuation regression and resting-state coefficient of variation methods, respectively). This technique may eliminate the need for subject cooperation, thus allowing the evaluation of vascular reactivity in a wider range of clinical and research conditions in which it may otherwise be impractical.

  14. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    PubMed

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  16. Computational model for oxygen transport and consumption in human vitreous.

    PubMed

    Filas, Benjamen A; Shui, Ying-Bo; Beebe, David C

    2013-10-15

    Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.

  17. Evaluation of Visceral Adipose Tissue Oxygenation by Blood Oxygen Level-Dependent MRI in Zucker Diabetic Fatty Rats.

    PubMed

    Shi, Hong-Jian; Li, Yan-Feng; Ji, Wen-Jie; Lin, Zhi-Chun; Cai, Wei; Chen, Tao; Yuan, Bin; Niu, Xiu-Long; Li, Han-Ying; Shu, Wen; Li, Yu-Ming; Yuan, Fei; Zhou, Xin; Zhang, Zhuoli

    2018-06-01

    This study aimed to investigate the feasibility of blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) to evaluate visceral adipose tissue (VAT) oxygenation in Zucker diabetic fatty (ZDF) rats and its associations with systemic metaflammation. Five-week-old ZDF rats and Zucker lean (ZL) rats were fed a high-fat diet (HFD) for 18 weeks. A baseline BOLD-MRI scan of perirenal adipose tissue was performed after 8 weeks of HFD feeding, and then the rats were randomized to receive pioglitazone or a vehicle for the following 10 weeks. At sacrifice, BOLD-MRI scan, Hypoxyprobe-1 injection, and circulating T helper 17 (Th17), regulatory T (Treg) cells, and monocyte subtype flow cytometry analysis were performed. HFD feeding led to a significant increase in VAT BOLD-MRI R2* signals (20.14 ± 0.23 per second vs. 21.53 ± 0.20 per second; P = 0.012), an indicator for decreased oxygenation. R2* signal was significantly correlated with VAT pimonidazole adduct-positive area, insulin resistance, Th17 and Treg cells, CD43 + and CD43+ + monocyte subtypes, and VAT macrophage infiltration. Pioglitazone treatment improved the insulin resistance and was associated with a delayed progression of VAT oxygenation. This work demonstrated the feasibility of BOLD-MRI for detecting the VAT oxygenation status in ZDF rats, and the BOLD-MRI signals were associated with insulin resistance and systemic metaflammation in ZDF rats during the development of obesity. © 2018 The Obesity Society.

  18. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    PubMed Central

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  19. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    PubMed

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  20. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T.

    PubMed

    Hallac, Rami R; Ding, Yao; Yuan, Qing; McColl, Roderick W; Lea, Jayanthi; Sims, Robert D; Weatherall, Paul T; Mason, Ralph P

    2012-12-01

    Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. Copyright © 2012 John Wiley & Sons, Ltd.

  1. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods:more » Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2} approaches normal tissue levels, the therapeutic effect is improved so that the normal tissue absorbed doses can be decreased by more than 95%, while retaining TCP, in the most favorable scenario and by up to about 80% with oxygen levels previously achieved in vivo, when the least favourable oxygenation case is used as starting point. The major difference occurs in poorly oxygenated cells. This is also where the pO{sub 2}-dependence of the oxygen enhancement ratio is maximal. Conclusions: Improved tumor oxygenation together with increased radionuclide uptake show great potential for optimising treatment strategies, leaving room for successive treatments, or lowering absorbed dose to normal tissues, due to increased tumor response. Further studies of the concomitant use of antiangiogenic drugs and radionuclide therapy therefore appear merited.« less

  2. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic we see evidence for an oxygenation event that significantly predated recent evidence for ocean ventilation in the post-glacial Ediacaran ocean. The trigger that facilitated the transition out of the oxygen-lean ';boring billion' is an area of active study. Additional evidence points to the likelihood of rising and falling oxygen levels through the later Neoproterozoic, which would have had a strong impact on early animal diversification and development of oxygen-demanding ecologies marked by large animals with complex trophic relationships. These observations now provide a context for interpreting the cause-and-effect relationships among the late Proterozoic rise in oxygen, the onset and dynamics of global-scale Neoproterozoic glaciation, metazoan diversification, and large-scale tectonic processes as surface expressions of deep-Earth processes.

  3. [Degradation of anthraquinone blue by Trametes trogii].

    PubMed

    Levin, L; Jordan, A; Forchiassin, F; Viale, A

    2001-01-01

    The ability of the white rot fungus Trametes trogii BAFC 463 (high producer of ligninolytic enzymes, especially laccase and manganese peroxidase) to degrade the dye anthraquinone blue, refractory to bacterial attack, was evaluated. Both tropho- and idiophasic T. trogii cultures in synthetic medium (glucose/asparagine) and complex medium (malt extract/glucose) were able to transform up to 88% dye in 4 hours. The activity of laccase, an oxygen-dependent phenoloxidase which was present at high levels in all the conditions assayed, might be related to the ability of the fungus to degrade the colorant. This is supported by the fact that in bioreactor experiences carried out at pH 4.5 the addition of anthraquinone blue caused a decrease in the levels of soluble oxygen. However, although high levels of laccase were produced at pH 7.5, the enzyme was not active, and neither dye transformation nor loss in the levels of soluble oxygen were quantified.

  4. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  5. Down-regulation of respiration in pear fruit depends on temperature.

    PubMed

    Ho, Quang Tri; Hertog, Maarten L A T M; Verboven, Pieter; Ambaw, Alemayehu; Rogge, Seppe; Verlinden, Bert E; Nicolaï, Bart M

    2018-04-09

    The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.

  6. On Defect Cluster Aggregation and Non-Reducibilty in Tin-Doped Indium Oxide

    NASA Astrophysics Data System (ADS)

    Warschkow, Oliver; Ellis, Donald E.; Gonzalez, Gabriela; Mason, Thomas O.

    2003-03-01

    The conductivity of tin-doped indium oxide (ITO), a transparent conductor, is critically dependent on the amount of tin-doping and oxygen partial pressure during preparation and annealing. Frank and Kostlin (Appl. Phys. A 27 (1982) 197-206) rationalized the carrier concentration dependence by postulating the formation of two types of neutral defect clusters at medium tin-doping levels: "Reducible" and "non-reducible" defect clusters; so named to indicate their ability to create carriers under reduction. According to Frank and Kostlin, both are composed of a single oxygen interstitial and two tin atoms substituting for indium, positioned in non-nearest and nearest coordination, respectively. This present work, seeking to distinguish reducible and non-reducible clusters by use of an atomistic model, finds only a weak correlation of oxygen interstitial binding energies with the relative positioning of dopants. Instead, the number of tin-dopants in the vicinity of the interstitial has a much larger effect on how strongly it is bound, a simple consequence of Coulomb interactions. We postulate that oxygen interstitials become non-reducible when clustered with three or more Sn_In. This occurs at higher doping levels as reducible clusters aggregate and share tin atoms. A simple probabilistic model, estimating the average number of clusters so aggregated, provides a qualitatively correct description of the carrier density in reduced ITO as a function of Sn doping level.

  7. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function.

    PubMed

    Safaeian, Navid; David, Tim

    2013-10-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging.

  8. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function

    PubMed Central

    Safaeian, Navid; David, Tim

    2013-01-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging. PMID:23921901

  9. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  10. Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion.

    PubMed

    Rathakrishnan, C; Tiku, K; Raghavan, A; Tiku, M L

    1992-10-01

    We previously established that normal articular chondrocytes, like macrophages, express class II major histocompatibility antigens, present antigen, and induce mixed and autologous lymphocyte stimulation. In a recent study using the trapped indicator 2',7'-dichlorofluorescein diacetate, we were able to measure levels of intracellular hydrogen peroxide within normal articular chondrocytes (J Immunol 245:690-696, 1990). In the present study, we utilized the technique of chemiluminescence and the biochemical method of quantitating hydrogen peroxide release to measure the production of reactive oxygen intermediates by articular chondrocytes. Chondrocytes, in suspension or adherent to coverslips, showed luminol-dependent chemiluminescence that was dependent on the number and viability of cells. There was a dose-dependent increase in chemiluminescence in response to soluble stimuli, such as phorbol myristate acetate (PMA), concanavalin A (ConA), and f-Met-Leu-Phe (FMLP). Azide inhibited chemiluminescence, suggesting that the light emission in chondrocytes is myeloperoxidase dependent. The antioxidant, catalase, inhibited chemiluminescence but superoxide dismutase had no effect, suggesting that luminol-dependent chemiluminescence in chondrocytes mostly measured hydrogen peroxide. Chemiluminescence was also observed in fragments of live cartilage tissue, indicating that chondrocytes that are cartilage matrix bound can generate the respiratory burst response. Using the scopoletin oxidation assay, we confirmed the release of increasing amounts of hydrogen peroxide by chondrocytes exposed to interleukin-1, rabbit interferon, and tumor necrosis factor alpha. Tumor necrosis factor alpha had both priming and enhancing effects on reactive oxygen intermediate production by chondrocytes. Reactive oxygen intermediates have been shown to play a significant role in matrix degradation. We suggest that reactive oxygen intermediates produced by chondrocytes play an important role in the degradation of matrix in arthritis.

  11. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    NASA Astrophysics Data System (ADS)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  12. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that hypoxia-induced impairment of antimicrobial activity and Salmonella virulence cooperate to allow for enhanced Salmonella replication in MΦ. © 2015 John Wiley & Sons Ltd.

  13. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  14. Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce.

    PubMed

    Stolárik, Tibor; Hedtke, Boris; Šantrůček, Jiří; Ilík, Petr; Grimm, Bernhard; Pavlovič, Andrej

    2017-05-01

    Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.

  15. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast.

    PubMed

    Schabel, M C; Roberts, V H J; Lo, J O; Platt, S; Grant, K A; Frias, A E; Kroenke, C D

    2016-11-01

    To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 10 5 cm -3 to 1.61 × 10 6 cm -3 . Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  16. Low-pressure oxidation of Cb-1Zr alloy.

    NASA Technical Reports Server (NTRS)

    Lyon, T. F.

    1971-01-01

    Resistively heated strip specimens of Cb-1Zr alloy were exposed at 927 C in a vacuum chamber at various levels of total pressure in the 1-microtorr range and at various oxygen partial pressures in the .1-microtorr range. Oxygen reaction rates (sticking probabilities) were found to depend on whether or not the specimens were annealed immediately before the test exposure. It is shown that a normally undetectable oxide film exists on the Cb-1Zr surface as a result of oxidation by ambient air, and this film reduces the sticking probability as compared with a clean metal surface. The alloy is considerably strengthened by addition of oxygen to a level of about 6000 ppm, while still maintaining reasonably good room temperature ductility.

  17. Minimizing atelectasis formation during general anaesthesia—oxygen washout is a non-essential supplement to PEEP

    PubMed Central

    Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart

    2017-01-01

    Background Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. Methods We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6–8 cmH2O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). Results The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5–2.7) (median [interquartile range]) and 1.8 (1.4–3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Conclusion Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients. PMID:28434271

  18. Minimizing atelectasis formation during general anaesthesia-oxygen washout is a non-essential supplement to PEEP.

    PubMed

    Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart

    2017-06-01

    Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6-8 cmH 2 O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5-2.7) (median [interquartile range]) and 1.8 (1.4-3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients.

  19. Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley.

    PubMed

    Khandal, Dhriti; Samol, Iga; Buhr, Frank; Pollmann, Stephan; Schmidt, Holger; Clemens, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2009-08-04

    The tigrina (tig)-d.12 mutant of barley is impaired in the negative control limiting excess protochlorophyllide (Pchlide) accumulation in the dark. Upon illumination, Pchlide operates as photosensitizer and triggers singlet oxygen production and cell death. Here, we show that both Pchlide and singlet oxygen operate as signals that control gene expression and metabolite accumulation in tig-d.12 plants. In vivo labeling, Northern blotting, polysome profiling, and protein gel blot analyses revealed a selective suppression of synthesis of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RBCSs and RBCLs), the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCB2), as well as other chlorophyll-binding proteins, in response to singlet oxygen. In part, these effects were caused by an arrest in translation initiation of photosynthetic transcripts at 80S cytoplasmic ribosomes. The observed changes in translation correlated with a decline in the phosphorylation level of ribosomal protein S6. At later stages, ribosome dissociation occurred. Together, our results identify translation as a major target of singlet oxygen-dependent growth control and cell death in higher plants.

  20. Scavenging of oxygen from SrTiO3 by metals and its implications for oxide thin film deposition

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kormondy, Kristy; Guo, Wei; Ponath, Patrick; Kremer, Jacqueline; Hadamek, Tobias; Demkov, Alexander

    SrTiO3 is a widely used substrate for the growth of other functional oxide thin films. However, SrTiO3 loses oxygen very easily during oxide thin film deposition even under relatively high oxygen pressures. In some cases, there will be an interfacial layer of oxygen-deficient SrTiO3 formed at the interface with the deposited oxide film, depending on the metals present in the film. By depositing a variety of metals layer by layer and measuring the evolution of the core level spectra of both the deposited metal and SrTiO3 using x-ray photoelectron spectroscopy, we show that there are three distinct types of behavior that occur for thin metal films on SrTiO3. We discuss the implications of these types of behavior for the growth of complex oxide thin films on SrTiO3, and which oxide thin films are expected to produce an interfacial oxygen-deficient layer depending on their elemental constituents.

  1. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  2. Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples

    NASA Astrophysics Data System (ADS)

    Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.

    2010-02-01

    A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.

  3. A mechanistic model of environmental oxygen influence on the deterministic effects to human skin from space radiations

    NASA Astrophysics Data System (ADS)

    Flores-McLaughlin, John

    During human spaceflight missions, controlled variation of atmospheric pressure and oxygen concentration from a sea-level based normal to hyperoxic levels may occur as part of operational procedure. This activity is of interest because it provides the relevant radiation exposure and dynamic oxygen concentration parameters that may lead to varying radiation sensitivity in the skin and other organs. Tumor hypoxia has been indicated as a primary factor in the decrease in efficacy of radiation therapy. These oxygen concentration effects have been largely demonstrated with low-LET radiations and to a lesser degree with high-LET primary radiations such as protons and heavy ions common in space exposure. In order to analyze the variation of oxygen concentration in human skin from spaceflight activities, a mathematical model of oxygen transport through the human cardiorespiratory system with pulmonary and cutaneous intake was implemented. Oxygen concentration was simulated at the various skin layers, from dermis to epidermis. Skin surface radiation doses and spectra from relatively high flux Solar Particle Events (SPEs) were calculated by the PHITS radiation transport code over a range of spacecraft and spacesuit thicknesses in terms of aluminum equivalence. A series of anatomical skin and shielding thicknesses were chosen to encompass the scope of radiation exposure levels as indicated by existing NASA skin phantom studies. To model the influence of oxygen with radiation exposure, microdosimetric oxygen fixation simulations were implemented using the Monte-Carlo-Damage-Simulation (MCDS) code. From these outputs, occurrence of DNA double strand breaks (DSBs) and relative biological effect (RBE) from radiation exposure with oxygen concentration dependence was established and correlated to spaceflight activities. It was determined that minimal but observable oxygen concentration transients occur in skin during environmental oxygen changes in spaceflight. The most significant transients occurred in the thickest epidermal layers with relatively high amounts of diffusion. Accordingly, these thickest epidermal layers also showed the greatest spaceflight induced transients of RBE relative to sea-level based atmosphere exposures.

  4. [Erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection].

    PubMed

    Zinchuk, V V; Shul'ga, E V; Guliaĭ, I E

    2010-01-01

    We aimed to study the erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection. Recombinant human erythropoietin-alpha was administered intraperitoneally in the dose 1000 U/kg 30 minutes before intravenous injection of 500 mkg/kg lipopolysaccharide from E. coli. After 12 hours, blood samples were collected for the assessment of oxygen transport function of blood; nitrate/nitrite levels and tissue samples were collected for measurement of conjugated dienes, malondialdehyde, alpha-tocopherol and catalase. Erythropoietin improves parameters of oxygen transport function of blood, increases hemoglobin-oxygen affinity through the NO-dependent mechanism, reduces activity of free radical processes, and increases antioxidant protection under lipopolysaccharide injection.

  5. Differential Operation of Dual Protochlorophyllide Reductases for Chlorophyll Biosynthesis in Response to Environmental Oxygen Levels in the Cyanobacterium Leptolyngbya boryana1

    PubMed Central

    Yamazaki, Shoji; Nomata, Jiro; Fujita, Yuichi

    2006-01-01

    Most oxygenic phototrophs, including cyanobacteria, have two structurally unrelated protochlorophyllide (Pchlide) reductases in the penultimate step of chlorophyll biosynthesis. One is light-dependent Pchlide reductase (LPOR) and the other is dark-operative Pchlide reductase (DPOR), a nitrogenase-like enzyme assumed to be sensitive to oxygen. Very few studies have been conducted on how oxygen-sensitive DPOR operates in oxygenic phototrophic cells. Here, we report that anaerobic conditions are required for DPOR to compensate for the loss of LPOR in cyanobacterial cells. An LPOR-lacking mutant of the cyanobacterium Leptolyngbya boryana (formerly Plectonema boryanum) failed to grow in high light conditions and this phenotype was overcome by cultivating it under anaerobic conditions (2% CO2/N2). The critical oxygen level enabling the mutant to grow in high light was determined to be 3% (v/v). Oxygen-sensitive Pchlide reduction activity was successfully detected as DPOR activity in cell-free extracts of anaerobically grown mutants, whereas activity was undetectable in the wild type. The content of two DPOR subunits, ChlL and ChlN, was significantly increased in mutant cells compared with wild type. This suggests that the increase in subunits stimulates the DPOR activity that is protected efficiently from oxygen by anaerobic environments, resulting in complementation of the loss of LPOR. These results provide important concepts for understanding how dual Pchlide reductases operate differentially in oxygenic photosynthetic cells grown under natural environments where oxygen levels undergo dynamic changes. The evolutionary implications of the coexistence of two Pchlide reductases are discussed. PMID:17028153

  6. Evolutionary Aspects and Regulation of Tetrapyrrole Biosynthesis in Cyanobacteria under Aerobic and Anaerobic Environments

    PubMed Central

    Fujita, Yuichi; Tsujimoto, Ryoma; Aoki, Rina

    2015-01-01

    Chlorophyll a (Chl) is a light-absorbing tetrapyrrole pigment that is essential for photosynthesis. The molecule is produced from glutamate via a complex biosynthetic pathway comprised of at least 15 enzymatic steps. The first half of the Chl pathway is shared with heme biosynthesis, and the latter half, called the Mg-branch, is specific to Mg-containing Chl a. Bilin pigments, such as phycocyanobilin, are additionally produced from heme, so these light-harvesting pigments also share many common biosynthetic steps with Chl biosynthesis. Some of these common steps in the biosynthetic pathways of heme, Chl and bilins require molecular oxygen for catalysis, such as oxygen-dependent coproporphyrinogen III oxidase. Cyanobacteria thrive in diverse environments in terms of oxygen levels. To cope with Chl deficiency caused by low-oxygen conditions, cyanobacteria have developed elaborate mechanisms to maintain Chl production, even under microoxic environments. The use of enzymes specialized for low-oxygen conditions, such as oxygen-independent coproporphyrinogen III oxidase, constitutes part of a mechanism adapted to low-oxygen conditions. Another mechanism adaptive to hypoxic conditions is mediated by the transcriptional regulator ChlR that senses low oxygen and subsequently activates the transcription of genes encoding enzymes that work under low-oxygen tension. In diazotrophic cyanobacteria, this multilayered regulation also contributes in Chl biosynthesis by supporting energy production for nitrogen fixation that also requires low-oxygen conditions. We will also discuss the evolutionary implications of cyanobacterial tetrapyrrole biosynthesis and regulation, because low oxygen-type enzymes also appear to be evolutionarily older than oxygen-dependent enzymes. PMID:25830590

  7. Interactions of Earth's atmospheric oxygen and fuel moisture in smouldering wildfires.

    PubMed

    Huang, Xinyan; Rein, Guillermo

    2016-12-01

    Vegetation, wildfire and atmospheric oxygen on Earth have changed throughout geological times, and are dependent on each other, determining the evolution of ecosystems, the carbon cycle, and the climate, as found in the fossil record. Previous work in the literature has only studied flaming wildfires, but smouldering is the most persistent type of fire phenomena, consuming large amounts of biomass. In this study, the dependence of smouldering fires in peatlands, the largest wildfires on Earth, with atmospheric oxygen is investigated. A physics-based computational model of reactive porous media for peat fires, which has been previously validated against experiments, is used. Simulations are conducted for wide ranges of atmospheric oxygen concentrations and fuel moisture contents to find thresholds for ignition and extinction. Results show that the predicted rate of spread increases in oxygen-rich atmospheres, while it decreases over wetter fuels. A novel nonlinear relationship between critical oxygen and critical moisture is found. More importantly, we show that compared to previous work on flaming fires, smouldering fires can be ignited and sustained at substantially higher moisture contents (up to 100% MC vs. 40% for 21% oxygen level), and lower oxygen concentrations (down to 13% vs. 16%). This defines a new atmospheric oxygen threshold for wildfires (13%), even lower than previously thought in Earth Sciences (16%). This finding should lead to reinterpretation of how the char remains observed in the fossil record constrain the lower concentration of oxygen in Earth's atmosphere in geological timescale. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A theoretical model for optical oximetry at the capillary-level by optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of RBCs in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e. measuring hemoglobin sO2) is feasible from dispersed red blood cells (RBCs) at the single-capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. Here we provide a theoretical model to calculate the backscattering spectra of single RBCs based on the first-order Born approximation, considering the orientation, size variation, and deformation of RBCs. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different deformations of RBCs, allowing the sO2 of individual RBCs in capillaries to be characterized. The theoretical model is verified by Mie theory and experiments using visible light optical coherence tomography (vis-OCT). Thus, this study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single-capillary level by backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single-capillary level. This is promising for in vivo backscattering-based optical oximetry at the single-capillary level, to measure local capillary sO2 for early diagnosis, progression monitoring, and treatment evaluation of diabetic retinopathy and cancer.

  9. Hypoxic Induced Decrease in Oxygen Consumption in Cuttlefish (Sepia officinalis) Is Associated with Minor Increases in Mantle Octopine but No Changes in Markers of Protein Turnover

    PubMed Central

    Capaz, Juan C.; Tunnah, Louise; MacCormack, Tyson J.; Lamarre, Simon G.; Sykes, Antonio V.; Driedzic, William R.

    2017-01-01

    The common cuttlefish (Sepia officinalis), a dominant species in the north-east Atlantic ocean and Mediterranean Sea, is potentially subject to hypoxic conditions due to eutrophication of coastal waters and intensive aquaculture. Here we initiate studies on the biochemical response to an anticipated level of hypoxia. Cuttlefish challenged for 1 h at an oxygen level of 50% dissolved oxygen saturation showed a decrease in oxygen consumption of 37% associated with an 85% increase in ventilation rate. Octopine levels were increased to a small but significant level in mantle, whereas there was no change in gill or heart. There were no changes in mantle free glucose or glycogen levels. Similarly, the hypoxic period did not result in changes in HSP70 or polyubiquinated protein levels in mantle, gill, or heart. As such, it appears that although there was a decrease in metabolic rate there was only a minor increase in anaerobic metabolism as evidenced by octopine accumulation and no biochemical changes that are hallmarks of alterations in protein trafficking. Experiments with isolated preparations of mantle, gill, and heart revealed that pharmacological inhibition of protein synthesis could decrease oxygen consumption by 32 to 42% or Na+/K+ ATPase activity by 24 to 54% dependent upon tissue type. We propose that the decrease in whole animal oxygen consumption was potentially the result of controlled decreases in the energy demanding processes of both protein synthesis and Na+/K+ ATPase activity. PMID:28603503

  10. [Phenolic antioxidant TS-13 regulating ARE-dependent genes induces tumor cell death by mitochondria-dependent pathway].

    PubMed

    Martinovich, G G; Martinovich, I V; Zenkov, N K; Men'shikova, E B; Kandalintseva, N V; Cherenkevich, S N

    2015-01-01

    Effects of water-soluble phenolic antioxidant sodium 3-(3'-tret-butyl-4'-hydroxyphenyl)-propyl thiosulfonate (TS-13), potassium 3,5-dimethyl-4-hydroxybenzyl thioetanoate (BEP-11-K) and potassium 3-(3',5'-ditretbutyl-4'-hydroxyphenyl)-propionate (potassium phenosan) on tumor cells proliferative activity and the role of redox-dependent and calcium-dependent signaling mechanisms in realization of tumor cell response to the antioxidant action were studied. Potassium phenosan and BEP-11-K were found to stimulate proliferation and ARE-inducing phenolic antioxidant TS-13 was found to inhibit tumor cell growth in culture. The tumor cell growth rate depended on the rate of intracellular reactive oxygen species production and was decreased by apocynin (a NADPH-oxidase inhibitor) and antimycin A (an ubiquinol-cytochrome c oxidoreductase inhibitor). TS-13 action on tumor cells was accompanied by a transient increase in intracellular reactive oxygen species production and the intracellular calcium concentration, whereas cell incubation with potassium phenosan and BEP-11-K did not influence the reactive oxygen species level and intracellular calcium ions. Cyclosporine A blocked the inhibitory effect of TS-13. Thus, it can be reasonably speculated that phenolic antioxidant TS-13 starts mitochondria-dependent apoptosis in tumor cells by the opening of permeability transition pores.

  11. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies

    PubMed Central

    Fraser, Graham M.; Goldman, Daniel; Ellis, Christopher G.

    2016-01-01

    Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices. PMID:27829071

  12. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies.

    PubMed

    Sové, Richard J; Fraser, Graham M; Goldman, Daniel; Ellis, Christopher G

    2016-01-01

    Red blood cells play a crucial role in the local regulation of oxygen supply in the microcirculation through the oxygen dependent release of ATP. Since red blood cells serve as an oxygen sensor for the circulatory system, the dynamics of ATP release determine the effectiveness of red blood cells to relate the oxygen levels to the vessels. Previous work has focused on the feasibility of developing a microfluidic system to measure the dynamics of ATP release. The objective was to determine if a steep oxygen gradient could be developed in the channel to cause a rapid decrease in hemoglobin oxygen saturation in order to measure the corresponding levels of ATP released from the red blood cells. In the present study, oxygen transport simulations were used to optimize the geometric design parameters for a similar system which is easier to fabricate. The system is composed of a microfluidic device stacked on top of a large, gas impermeable flow channel with a hole to allow gas exchange. The microfluidic device is fabricated using soft lithography in polydimethyl-siloxane, an oxygen permeable material. Our objective is twofold: (1) optimize the parameters of our system and (2) develop a method to assess the oxygen distribution in complex 3D microfluidic device geometries. 3D simulations of oxygen transport were performed to simulate oxygen distribution throughout the device. The simulations demonstrate that microfluidic device geometry plays a critical role in molecule exchange, for instance, changing the orientation of the short wide microfluidic channel results in a 97.17% increase in oxygen exchange. Since microfluidic devices have become a more prominent tool in biological studies, understanding the transport of oxygen and other biological molecules in microfluidic devices is critical for maintaining a physiologically relevant environment. We have also demonstrated a method to assess oxygen levels in geometrically complex microfluidic devices.

  13. Concentrations and behavior of oxygen and oxide ion in melts of composition CaO.MgO.xSiO2

    NASA Technical Reports Server (NTRS)

    Semkow, K. W.; Haskin, L. A.

    1985-01-01

    The behavior of oxygen and oxide ion in silicate melts was investigated through their electrochemical reactions at a platinum electrode. Values are given for the diffusion coefficient for molecular oxygen in diopside melt and the activation energy of diffusion. It is shown that molecular oxygen dissociates prior to undergoing reduction and that oxide ion reacts quickly with silicate polymers when it is produced. The concentration of oxide ion is kept low by a buffering effect of the silicate, the exact level being dependent on the silicate composition. Data on the kinetics of reaction of the dissociation of molecular oxygen and on the buffering reactions are provided. It is demonstrated that the data on oxygen in these silicate melts are consistent with those for solid buffers.

  14. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level.

    PubMed

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2.

  15. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level

    PubMed Central

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  16. Differential Expression of NADPH Oxidases Depends on Skeletal Muscle Fiber Type in Rats.

    PubMed

    Loureiro, Adriano César Carneiro; do Rêgo-Monteiro, Igor Coutinho; Louzada, Ruy A; Ortenzi, Victor Hugo; de Aguiar, Angélica Ponte; de Abreu, Ewerton Sousa; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Hecht, Fabio; de Oliveira, Ariclécio Cunha; Ceccatto, Vânia Marilande; Fortunato, Rodrigo S; Carvalho, Denise P

    2016-01-01

    NADPH oxidases (NOX) are important sources of reactive oxygen species (ROS) in skeletal muscle, being involved in excitation-contraction coupling. Thus, we aimed to investigate if NOX activity and expression in skeletal muscle are fiber type specific and the possible contribution of this difference to cellular oxidative stress. Oxygen consumption rate, NOX activity and mRNA levels, and the activity of catalase (CAT), glutathione peroxidase (GPX), and superoxide dismutase (SOD), as well as the reactive protein thiol levels, were measured in the soleus (SOL), red gastrocnemius (RG), and white gastrocnemius (WG) muscles of rats. RG showed higher oxygen consumption flow than SOL and WG, while SOL had higher oxygen consumption than WG. SOL showed higher NOX activity, as well as NOX2 and NOX4 mRNA levels, antioxidant enzymatic activities, and reactive protein thiol contents when compared to WG and RG. NOX activity and NOX4 mRNA levels as well as antioxidant enzymatic activities were higher in RG than in WG. Physical exercise increased NOX activity in SOL and RG, specifically NOX2 mRNA levels in RG and NOX4 mRNA levels in SOL. In conclusion, we demonstrated that NOX activity and expression differ according to the skeletal muscle fiber type, as well as antioxidant defense.

  17. Need for Supplemental Oxygen at Discharge in Infants with Bronchopulmonary Dysplasia Is Not Associated with Worse Neurodevelopmental Outcomes at 3 Years Corrected Age

    PubMed Central

    Lodha, Abhay; Sauvé, Reg; Bhandari, Vineet; Tang, Selphee; Christianson, Heather; Bhandari, Anita; Amin, Harish; Singhal, Nalini

    2014-01-01

    Objectives To determine if chronic oxygen dependency (discharge home on supplemental oxygen) in children with bronchopulmonary dysplasia (BPD; defined as requirement for supplemental O2 at 36 weeks postmenstrual age) predicts neurodevelopmental disability rates and growth outcomes at 36 months corrected age (CA). Study Design Longitudinal cohort study. Setting Southern Alberta regional center located at high altitude. Participants Preterm infants weighing ≤1250 grams with no BPD, BPD, and BPD with chronic oxygen dependency. Main outcome measures Neurodevelopmental and growth outcomes. Results Of 1563 preterm infants admitted from 1995–2007, 1212 survived. Complete follow-up data were available for 1030 (85%) children. Children in BPD and BPD with chronic oxygen dependency groups had significantly lower birth weights, gestational ages, prolonged mechanical ventilation and oxygen supplementation and received more postnatal steroids, compared to those without BPD. Children with BPD and BPD with chronic oxygen dependency were more likely to be below the 5th centile in weight and height compared to those without BPD but there was little difference between the BPD and BPD with chronic oxygen dependency groups. After controlling for confounding variables, children who had BPD and BPD with chronic oxygen dependency had higher odds of neurodevelopmental disability compared to those without BPD [OR (odds ratio) 1.9 (95%CI 1.1 to 3.5) and OR 1.8 (1.1 to 2.9), respectively], with no significant difference between BPD and BPD with chronic oxygen dependency [OR 0.9 (95% CI 0.6 to 1.5)]. Conclusions BPD and BPD with chronic oxygen dependency in children predicts abnormal neurodevelopmental outcomes at 36 months CA. However, the neurodevelopmental disability rates were not significantly higher in BPD with chronic oxygen dependency children compared to children with BPD only. Compared to those without BPD, growth is impaired in children with BPD and BPD with chronic oxygen dependency, but no difference between the latter two groups. PMID:24646665

  18. Variation in levels of reactive oxygen species is explained by maternal identity, sex and body-size-corrected clutch size in a lizard

    NASA Astrophysics Data System (ADS)

    Olsson, Mats; Wilson, Mark; Uller, Tobias; Mott, Beth; Isaksson, Caroline

    2009-01-01

    Many organisms show differences between males and females in growth rate and crucial life history parameters, such as longevity. Considering this, we may expect levels of toxic metabolic by-products of the respiratory chain, such as reactive oxygen species (ROS), to vary with age and sex. Here, we analyse ROS levels in female Australian painted dragon lizards ( Ctenophorus pictus) and their offspring using fluorescent probes and flow cytometry. Basal level of four ROS species (singlet oxygen, peroxynitrite, superoxide and H2O2) measured with a combined marker, and superoxide measured specifically, varied significantly among families but not between the sexes. When blood cells from offspring were chemically encouraged to accelerate the electron transport chain by mitochondrial uncoupling, net superoxide levels were three times higher in daughters than sons (resulting in levels outside of the normal ROS range) and varied among mothers depending on offspring sex (significant interaction between maternal identity and offspring sex). In offspring, there were depressive effects on ROS of size-controlled relative clutch size, which relies directly on circulating levels of vitellogenin, a confirmed antioxidant in some species. Thus, levels of reactive oxygen species varies among females, offspring and in relation to reproductive investment in a manner that makes its regulatory processes likely targets of selection.

  19. Oxygen-dependent acetylation and dimerization of the corepressor CtBP2 in neural stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karaca, Esra; Lewicki, Jakub; Hermanson, Ola, E-mail: Ola.Hermanson@ki.se

    2015-03-01

    The transcriptional corepressor CtBP2 is essential for proper development of the nervous system. The factor exerts its repression by interacting in complexes with chromatin-modifying factors such as histone deacetylases (HDAC) 1/2 and the histone demethylase LSD1/KDM1. Notably, the histone acetyl transferase p300 acetylates CtBP2 and this is an important regulatory event of the activity and subcellular localization of the protein. We recently demonstrated an essential role for CtBPs as sensors of microenvironmental oxygen levels influencing the differentiation potential of neural stem cells (NSCs), but it is not known whether oxygen levels influence the acetylation levels of CtBP factors. Here wemore » show by using proximity ligation assay (PLA) that CtBP2 acetylation levels increased significantly in undifferentiated, proliferating NSCs under hypoxic conditions. CtBP2 interacted with the class III HDAC Sirt1 but this interaction was unaltered in hypoxic conditions, and treatment with the Sirt1 inhibitor Ex527 did not result in any significant change in total CtBP2 acetylation levels. Instead, we revealed a significant decrease in PLA signal representing CtBP2 dimerization in NSCs under hypoxic conditions, negatively correlating with the acetylation levels. Our results suggest that microenvironmental oxygen levels influence the dimerization and acetylation levels, and thereby the activity, of CtBP2 in proliferating NSCs.« less

  20. Cerebral Metabolic Rate of Oxygen (CMRO2 ) Mapping by Combining Quantitative Susceptibility Mapping (QSM) and Quantitative Blood Oxygenation Level-Dependent Imaging (qBOLD).

    PubMed

    Cho, Junghun; Kee, Youngwook; Spincemaille, Pascal; Nguyen, Thanh D; Zhang, Jingwei; Gupta, Ajay; Zhang, Shun; Wang, Yi

    2018-03-07

    To map the cerebral metabolic rate of oxygen (CMRO 2 ) by estimating the oxygen extraction fraction (OEF) from gradient echo imaging (GRE) using phase and magnitude of the GRE data. 3D multi-echo gradient echo imaging and perfusion imaging with arterial spin labeling were performed in 11 healthy subjects. CMRO 2 and OEF maps were reconstructed by joint quantitative susceptibility mapping (QSM) to process GRE phases and quantitative blood oxygen level-dependent (qBOLD) modeling to process GRE magnitudes. Comparisons with QSM and qBOLD alone were performed using ROI analysis, paired t-tests, and Bland-Altman plot. The average CMRO 2 value in cortical gray matter across subjects were 140.4 ± 14.9, 134.1 ± 12.5, and 184.6 ± 17.9 μmol/100 g/min, with corresponding OEFs of 30.9 ± 3.4%, 30.0 ± 1.8%, and 40.9 ± 2.4% for methods based on QSM, qBOLD, and QSM+qBOLD, respectively. QSM+qBOLD provided the highest CMRO 2 contrast between gray and white matter, more uniform OEF than QSM, and less noisy OEF than qBOLD. Quantitative CMRO 2 mapping that fits the entire complex GRE data is feasible by combining QSM analysis of phase and qBOLD analysis of magnitude. © 2018 International Society for Magnetic Resonance in Medicine.

  1. Iron and oxygen sensing: a tale of 2 interacting elements?

    PubMed

    Simpson, Robert J; McKie, Andrew T

    2015-02-01

    Iron and oxygen metabolism are intimately linked with one another. A change in the level of either metabolite results in activation of common pathways. At the heart of these responses lies a group of iron and oxygen dependent enzymes called prolyl hydroxylases. Prolyl hydroxylases (PHDs) require both iron and oxygen for optimal activity and their biological activity is to carry out the critical post-translational modification of the addition of a hydroxyl group to specific proline residues within Hypoxia Inducible Factor (HIFs)-well known transcription factors originally thought to regulate responses to hypoxia but which are now known to regulate key iron metabolism proteins too. The addition of the hydroxyl group ultimately leads to the unbiquitylation and destruction of HIFs, thus PHDs control appropriate HIF transcriptional responses depending on cellular oxygen or iron levels. There are two major HIFs; HIF1α and HIF2α. In terms of responses to iron HIF2α is of major importance in key tissues such as the intestine where several iron transporters (Ferroportin, Dcytb) contain HREs within their promoters which bind HIF2α. Furthermore the recent discovery that HIF2α contains a 5' iron responsive element (IRE) has underlined the importance of HIF2α as a major player in iron metabolism. This review brings together recent findings with regard to the HIF2α/IRP network as well as other aspects of iron sensing in cells and tissues.

  2. Lucigenin-dependent chemiluminescence in articular chondrocytes.

    PubMed

    Rathakrishnan, C; Tiku, M L

    1993-08-01

    We were recently able to measure intracellular levels of hydrogen peroxide within normal articular chondrocytes using the trapped indicator 2',7'-dichlorofluorescein diacetate. Further studies have shown that stimulated chondrocytes produce luminol-dependent chemiluminescence, suggesting that these cells produce hydrogen peroxide and singlet oxygen. In the present study, we have investigated the lucigenin-dependent chemiluminescence response in normal articular chondrocytes. Chondrocytes either in suspension or adhered to cover slips showed lucigenin-dependent chemiluminescence. There was a dose-dependent increase in chemiluminescence response when chondrocytes were incubated with soluble stimuli like phorbol-myristate-acetate, concanavalin A, and f-met-leu-phe. Catalase and the metabolic inhibitor, sodium azide, which inhibits the enzyme myeloperoxidase, had no inhibitory effect on lucigenin-dependent chemiluminescence production. Only the antioxidant, superoxide dismutase, prevented lucigenin-dependent chemiluminescence, indicating that this assay measures the production of superoxide anions by chondrocytes. We confirmed that chondrocytes release superoxide radicals using the biochemical assay of ferricytochrome c reduction. Since cartilage tissue is semi-transparent, we were able to measure chemiluminescence response in live cartilage tissue, showing that chondrocytes which are embedded within the matrix can also generate superoxide anion radicals. Reactive oxygen intermediates have been shown to play a significant role in the degradation of matrix in arthritis. Our previous and present studies suggest that oxygen radicals produced by chondrocytes may be an important mechanism by which chondrocytes induce cartilage matrix degradation.

  3. [Role of hemoglobin affinity to oxygen in adaptation to hypoxemia].

    PubMed

    Kwasiborski, Przemysław Jerzy; Kowalczyk, Paweł; Zieliński, Jakub; Przybylski, Jacek; Cwetsch, Andrzej

    2010-04-01

    One of the basic mechanisms of adapting to hypoxemia is a decrease in the affinity of hemoglobin for oxygen. This process occurs mainly due to the increased synthesis of 2,3-diphosphoglycerate (2,3-DPG) in the erythrocytes, as well as through the Bohr effect. Hemoglobin with decreased affinity for oxygen increases the oxygenation of tissues, because it gives up oxygen more easily during microcirculation. In foetal circulation, however, at a partial oxygen pressure (pO2) of 25 mmHg in the umbilical vein, the oxygen carrier is type F hemoglobin which has a high oxygen affinity. The commonly accepted role for hemoglobin F is limited to facilitating diffusion through the placenta. Is fetal life the only moment when haemoglobin F is useful? THE AIM OF STUDY was to create a mathematical model, which would answer the question at what conditions an increase, rather than a decrease, in haemoglobin oxygen affinity is of benefit to the body. Using the kinetics of dissociation of oxygen from hemoglobin described by the Hill equation as the basis for further discussion, we created a mathematical model describing the pO2 value in the microcirculatory system and its dependence on arterial blood pO2. The calculations were performed for hemoglobin with low oxygen affinity (adult type) and high-affinity hemoglobin (fetal type). The modelling took into account both physiological and pathological ranges of acid-base equilibrium and tissue oxygen extraction parameters. It was shown that for the physiological range of acid-base equilibrium and the resting level of tissue oxygen extraction parameters, with an arterial blood pO2 of 26.8 mmHg, the higher-affinity hemoglobin becomes the more effective oxygen carrier. It was also demonstrated that the arterial blood pO2, below which the high-affinity hemoglobin becomes the more effective carrier, is dependent on blood pH and the difference between the arterial and venous oxygen saturation levels. Simulations performed for the pathological states showed that acidosis and increased tissue oxygen demand lead to a broadened arterial blood pO2 range, in which the high-affinity hemoglobin is more efficient. Contrary to the widely held view that the only response to hypoxemia is a decrease in haemoglobin oxygen affinity, it was shown that under extreme hypoxemic conditions, an increased haemoglobin oxygen affinity improves the oxygenation of tissues. It was also shown that the dominance of hemoglobin with a high oxygen affinity rapidly exceeds hemoglobin with low oxygen affinity in the case of acidosis with its accompanying high tissue oxygen extraction. In cases of extreme disruptions of the acid-base equilibrium, the dominance of high-oxygen-affinity hemoglobin spans over the entire possible range of pO2 in arterial blood.

  4. High resolution photoemission investigation: The oxidation of W

    NASA Astrophysics Data System (ADS)

    Morar, J. F.; Himpsel, F. J.; Hughes, G. J.; Jordan, J. L.; McFeely, F. R.; Hollinge, G.

    High resolution photoemission measurements of surface oxide layers on tungsten has revealed a set of well resolved core level shifts characteristic of individual metal oxidation states. Measurement and analysis of this type of data can provide specific and quantitative chemical information about surface oxides. The formation of bonds between transition metals and strongly electronegative elements such as oxygen and fluorine results in charge transfer with the effect of shifting the metal core electron binding energies. The magnitude of such shifts depends primarily on two factors; the amount of charge transfer and the screening ability of the metals electrons. The size of core-level shifts tend to increase with additional charge transfer and be decreased by screening. In the case of tungsten the amount of screening should be a function of oxygen content since the oxygen ties up free electrons which are effective at screening. A continuous change in the tungsten core level shifts is observed with increasing oxygen content, i.e., as the screening changes from that characteristic of a metal screened to that characteristic of an insulator unscreened.

  5. Brain Functional Connectivity in MS: An EEG-NIRS Study

    DTIC Science & Technology

    2015-10-01

    electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling

  6. Lung development and the host response to influenza A virus are altered by different doses of neonatal oxygen in mice

    PubMed Central

    Buczynski, Bradley W.; Yee, Min; Paige Lawrence, B.

    2012-01-01

    Oxygen exposure in preterm infants has been associated with altered lung development and increased risk for respiratory viral infections later in life. Although the dose of oxygen sufficient to exert these changes in humans remains unknown, adult mice exposed to 100% oxygen between postnatal days 1–4 exhibit alveolar simplification and increased sensitivity to influenza virus infection. Additionally, two nonlinear thresholds of neonatal oxygen exposures were previously identified that promote modest (between 40% and 60% oxygen) and severe (between 80% and 100% oxygen) changes in lung development. Here, we investigate whether these two thresholds correlate with the severity of lung disease following respiratory viral infection. Adult mice exposed to 100% oxygen at birth, and to a lesser extent 80% oxygen, demonstrated enhanced body weight loss, persistent inflammation, and fibrosis following infection compared with infected siblings exposed to room air at birth. In contrast, the host response to infection was indistinguishable between mice exposed to room air and 40% or 60% oxygen. Interestingly, levels of monocyte chemoattractant protein (MCP)-1 were equivalently elevated in infected mice that had been exposed to 80% or 100% oxygen as neonates. However, reducing levels of MCP-1 using heterozygous Mcp-1 mice did not affect oxygen-dependent changes in the response to infection. Thus lung development and the host response to respiratory viral infection are disrupted by different doses of oxygen. Our findings suggest that measuring lung function alone may not be sufficient to identify individuals born prematurely who have increased risk for respiratory viral infection. PMID:22408042

  7. Oxygen dependence of upper thermal limits in fishes.

    PubMed

    Ern, Rasmus; Norin, Tommy; Gamperl, A Kurt; Esbaugh, Andrew J

    2016-11-01

    Temperature-induced limitations on the capacity of the cardiorespiratory system to transport oxygen from the environment to the tissues, manifested as a reduced aerobic scope (maximum minus standard metabolic rate), have been proposed as the principal determinant of the upper thermal limits of fishes and other water-breathing ectotherms. Consequently, the upper thermal niche boundaries of these animals are expected to be highly sensitive to aquatic hypoxia and other environmental stressors that constrain their cardiorespiratory performance. However, the generality of this dogma has recently been questioned, as some species have been shown to maintain aerobic scope at thermal extremes. Here, we experimentally tested whether reduced oxygen availability due to aquatic hypoxia would decrease the upper thermal limits (i.e. the critical thermal maximum, CT max ) of the estuarine red drum (Sciaenops ocellatus) and the marine lumpfish (Cyclopterus lumpus). In both species, CT max was independent of oxygen availability over a wide range of oxygen levels despite substantial (>72%) reductions in aerobic scope. These data show that the upper thermal limits of water-breathing ectotherms are not always linked to the capacity for oxygen transport. Consequently, we propose a novel metric for classifying the oxygen dependence of thermal tolerance; the oxygen limit for thermal tolerance (P CT max ), which is the water oxygen tension (Pw O 2 ) where an organism's CT max starts to decline. We suggest that this metric can be used for assessing the oxygen sensitivity of upper thermal limits in water-breathing ectotherms, and the susceptibility of their upper thermal niche boundaries to environmental hypoxia. © 2016. Published by The Company of Biologists Ltd.

  8. Oxygen tension in embryo culture: does a shift to 2% O2 in extended culture represent the most physiologic system?

    PubMed

    Morin, Scott J

    2017-03-01

    There has been much debate regarding the optimal oxygen tension in clinical embryo culture. The majority of the literature to date has compared 5% oxygen to atmospheric levels (20-21%). While the majority of modern IVF labs have accepted the superiority of 5% oxygen tension, a new debate has emerged regarding whether a further reduction after day 3 of development represents the most physiologic system. This new avenue of research is based on the premise that oxygen tension is in fact lower in the uterus than in the oviduct and that the embryo crosses the uterotubal junction sometime on day 3. While data are currently limited, recent experience with ultra-low oxygen (2%) after day 3 of development suggests that the optimal oxygen tension in embryo culture may depend on the stage of development. This review article will consider the current state of the literature and discuss ongoing efforts at studying ultra-low oxygen tension in extended culture.

  9. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity.

    PubMed

    Chaillou, Thomas; Lanner, Johanna T

    2016-12-01

    Reduced oxygen (O 2 ) levels (hypoxia) are present during embryogenesis and exposure to altitude and in pathologic conditions. During embryogenesis, myogenic progenitor cells reside in a hypoxic microenvironment, which may regulate their activity. Satellite cells are myogenic progenitor cells localized in a local environment, suggesting that the O 2 level could affect their activity during muscle regeneration. In this review, we present the idea that O 2 levels regulate myogenesis and muscle regeneration, we elucidate the molecular mechanisms underlying myogenesis and muscle regeneration in hypoxia and depict therapeutic strategies using changes in O 2 levels to promote muscle regeneration. Severe hypoxia (≤1% O 2 ) appears detrimental for myogenic differentiation in vitro, whereas a 3-6% O 2 level could promote myogenesis. Hypoxia impairs the regenerative capacity of injured muscles. Although it remains to be explored, hypoxia may contribute to the muscle damage observed in patients with pathologies associated with hypoxia (chronic obstructive pulmonary disease, and peripheral arterial disease). Hypoxia affects satellite cell activity and myogenesis through mechanisms dependent and independent of hypoxia-inducible factor-1α. Finally, hyperbaric oxygen therapy and transplantation of hypoxia-conditioned myoblasts are beneficial procedures to enhance muscle regeneration in animals. These therapies may be clinically relevant to treatment of patients with severe muscle damage.-Chaillou, T. Lanner, J. T. Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity. © FASEB.

  10. Dispersible oxygen microsensors map oxygen gradients in three-dimensional cell cultures.

    PubMed

    Lesher-Pérez, Sasha Cai; Kim, Ge-Ah; Kuo, Chuan-Hsien; Leung, Brendan M; Mong, Sanda; Kojima, Taisuke; Moraes, Christopher; Thouless, M D; Luker, Gary D; Takayama, Shuichi

    2017-09-26

    Phase fluorimetry, unlike the more commonly used intensity-based measurement, is not affected by differences in light paths from culture vessels or by optical attenuation through dense 3D cell cultures and hydrogels thereby minimizing dependence on signal intensity for accurate measurements. This work describes the use of phase fluorimetry on oxygen-sensor microbeads to perform oxygen measurements in different microtissue culture environments. In one example, cell spheroids were observed to deplete oxygen from the cell-culture medium filling the bottom of conventional microwells within minutes, whereas oxygen concentrations remained close to ambient levels for several days in hanging-drop cultures. By dispersing multiple oxygen microsensors in cell-laden hydrogels, we also mapped cell-generated oxygen gradients. The spatial oxygen mapping was sufficiently precise to enable the use of computational models of oxygen diffusion and uptake to give estimates of the cellular oxygen uptake rate and the half-saturation constant. The results show the importance of integrated design and analysis of 3D cell cultures from both biomaterial and oxygen supply aspects. While this paper specifically tests spheroids and cell-laden gel cultures, the described methods should be useful for measuring pericellular oxygen concentrations in a variety of biomaterials and culture formats.

  11. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner.

    PubMed

    Ramos-Gomez, Minerva; Olivares-Marin, Ivanna Karina; Canizal-García, Melina; González-Hernández, Juan Carlos; Nava, Gerardo M; Madrigal-Perez, Luis Alberto

    2017-06-01

    A broad range of health benefits have been attributed to resveratrol (RSV) supplementation in mammalian systems, including the increases in longevity. Nonetheless, despite the growing number of studies performed with RSV, the molecular mechanism by which it acts still remains unknown. Recently, it has been proposed that inhibition of the oxidative phosphorylation activity is the principal mechanism of RSV action. This mechanism suggests that RSV might induce mitochondrial dysfunction resulting in oxidative damage to cells with a concomitant decrease of cell viability and cellular life span. To prove this hypothesis, the chronological life span (CLS) of Saccharomyces cerevisiae was studied as it is accepted as an important model of oxidative damage and aging. In addition, oxygen consumption, mitochondrial membrane potential, and hydrogen peroxide (H 2 O 2 ) release were measured in order to determine the extent of mitochondrial dysfunction. The results demonstrated that the supplementation of S. cerevisiae cultures with 100 μM RSV decreased CLS in a glucose-dependent manner. At high-level glucose, RSV supplementation increased oxygen consumption during the exponential phase yeast cultures, but inhibited it in chronologically aged yeast cultures. However, at low-level glucose, oxygen consumption was inhibited in yeast cultures in the exponential phase as well as in chronologically aged cultures. Furthermore, RSV supplementation promoted the polarization of the mitochondrial membrane in both cultures. Finally, RSV decreased the release of H 2 O 2 with high-level glucose and increased it at low-level glucose. Altogether, this data supports the hypothesis that RSV supplementation decreases CLS as a result of mitochondrial dysfunction and this phenotype occurs in a glucose-dependent manner.

  12. Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley

    PubMed Central

    Khandal, Dhriti; Samol, Iga; Buhr, Frank; Pollmann, Stephan; Schmidt, Holger; Clemens, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2009-01-01

    The tigrina (tig)-d.12 mutant of barley is impaired in the negative control limiting excess protochlorophyllide (Pchlide) accumulation in the dark. Upon illumination, Pchlide operates as photosensitizer and triggers singlet oxygen production and cell death. Here, we show that both Pchlide and singlet oxygen operate as signals that control gene expression and metabolite accumulation in tig-d.12 plants. In vivo labeling, Northern blotting, polysome profiling, and protein gel blot analyses revealed a selective suppression of synthesis of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RBCSs and RBCLs), the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCB2), as well as other chlorophyll-binding proteins, in response to singlet oxygen. In part, these effects were caused by an arrest in translation initiation of photosynthetic transcripts at 80S cytoplasmic ribosomes. The observed changes in translation correlated with a decline in the phosphorylation level of ribosomal protein S6. At later stages, ribosome dissociation occurred. Together, our results identify translation as a major target of singlet oxygen-dependent growth control and cell death in higher plants. PMID:19620736

  13. Spectroscopic Study of Deep Level Emissions from Acceptor Defects in ZnO Thin Films with Oxygen Rich Stoichiometry

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.

    2013-10-01

    This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.

  14. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury

    PubMed Central

    Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

    2011-01-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

  15. Effects of ambient oxygen and size-selective mortality on growth and maturation in guppies

    PubMed Central

    Diaz Pauli, Beatriz; Kolding, Jeppe; Jeyakanth, Geetha

    2017-01-01

    Abstract Growth, onset of maturity and investment in reproduction are key traits for understanding variation in life-history strategies. Many environmental factors affect variation in these traits, but for fish, hypoxia and size-dependent mortality have become increasingly important because of human activities, such as increased nutrient enrichment (eutrophication), climate warming and selective fishing. Here, we study experimentally the effect of oxygen availability on maturation and growth in guppies (Poecilia reticulata) from two different selected lines, one subjected to positive and the other negative size-dependent fishing. This is the first study to assess the effects of both reduced ambient oxygen and size-dependent mortality in fish. We show that reduced ambient oxygen led to stunting, early maturation and high reproductive investment. Likewise, lineages that had been exposed to high mortality of larger-sized individuals displayed earlier maturation at smaller size, greater investment in reproduction and faster growth. These life-history changes were particularly evident for males. The widely reported trends towards earlier maturation in wild fish populations are often interpreted as resulting from size-selective fishing. Our results highlight that reduced ambient oxygen, which has received little experimental investigation to date, can lead to similar phenotypic changes. Thus, changes in ambient oxygen levels can be a confounding factor that occurs in parallel with fishing, complicating the causal interpretation of changes in life-history traits. We believe that better disentangling of the effects of these two extrinsic factors, which increasingly affect many freshwater and marine ecosystems, is important for making more informed management decisions. PMID:28361001

  16. Impact of physiological noise correction on detecting blood oxygenation level-dependent contrast in the breast

    NASA Astrophysics Data System (ADS)

    Wallace, Tess E.; Manavaki, Roido; Graves, Martin J.; Patterson, Andrew J.; Gilbert, Fiona J.

    2017-01-01

    Physiological fluctuations are expected to be a dominant source of noise in blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) experiments to assess tumour oxygenation and angiogenesis. This work investigates the impact of various physiological noise regressors: retrospective image correction (RETROICOR), heart rate (HR) and respiratory volume per unit time (RVT), on signal variance and the detection of BOLD contrast in the breast in response to a modulated respiratory stimulus. BOLD MRI was performed at 3 T in ten volunteers at rest and during cycles of oxygen and carbogen gas breathing. RETROICOR was optimized using F-tests to determine which cardiac and respiratory phase terms accounted for a significant amount of signal variance. A nested regression analysis was performed to assess the effect of RETROICOR, HR and RVT on the model fit residuals, temporal signal-to-noise ratio, and BOLD activation parameters. The optimized RETROICOR model accounted for the largest amount of signal variance ( Δ R\\text{adj}2   =  3.3  ±  2.1%) and improved the detection of BOLD activation (P  =  0.002). Inclusion of HR and RVT regressors explained additional signal variance, but had a negative impact on activation parameter estimation (P  <  0.001). Fluctuations in HR and RVT appeared to be correlated with the stimulus and may contribute to apparent BOLD signal reactivity.

  17. Mono-(2-Ethylhexyl) Phthalate Induces Injury in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Huang, Qi; Li, Bin-Feng; Chen, Chen; Zhang, Hua-Chuan; Xu, Shun-Qing

    2014-01-01

    Mono-(2-ethylhexyl) phthalate (MEHP), the active metabolite of di-(2-ethylhexyl) phthalate (DEHP), is a widespread environmental contaminant and has been proved to have potential adverse effects on the reproductive system, carcinogenicity, liver, kidney and developmental toxicities. However, the effect of MEHP on vascular system remains unclear. The main purpose of this study was to evaluate the cytotoxic effects of MEHP on human umbilical endothelial cells (HUVEC) and its possible molecular mechanism. HUVEC cells were treated with MEHP (0, 6.25, 12.5, 25,50 and 100 µM), and the cellular apoptosis and mitochondrial membrane potential as well as intracellular reactive oxygen species were determined. In present study, MEHP induced a dose-dependent cell injury in HUVEC cell via an apoptosis pathway as characterized by increased percentage of sub-G1, activation of caspase-3, -8and -9, and increased ratio of Bax/bcl-2 mRNA and protein expression as well as cytochrome C releasing. In addition, there was obvious oxidative stress, represented by decreased glutathione level, increased malondialdehyde level and superoxide dismutase activity. N-Acetylcysteine, as an antioxidant that is a direct reactive oxygen species scavenger, could effectively block MEHP-induced reactive oxygen species generation, mitochondrial membrane potential loss and cell apoptosis. These data indicated that MEHP induced apoptosis in HUVEC cells through a reactive oxygen species-mediated mitochondria-dependent pathway. PMID:24836450

  18. Oxygen and differentiation status modulate the effect of X-ray irradiation on physiology and mitochondrial proteome of human neuroblastoma cells.

    PubMed

    Džinić, Tamara; Hartwig, Sonja; Lehr, Stefan; Dencher, Norbert A

    2016-12-01

    Cytotoxic effects, including oxidative stress, of low linear energy transfer (LET)-ionizing radiation are often underestimated and studies of their mechanisms using cell culture models are widely conducted with cells cultivated at atmospheric oxygen that does not match its physiological levels in body tissues. Also, cell differentiation status plays a role in the outcome of experiments. We compared effects of 2 Gy X-ray irradiation on the physiology and mitochondrial proteome of nondifferentiated and human neuroblastoma (SH-SY5Y) cells treated with retinoic acid cultivated at 21% and 5% O 2 . Irradiation did not affect the amount of subunits of OxPhos complexes and other non-OxPhos mitochondrial proteins, except for heat shock protein 70, which was increased depending on oxygen level and differentiation status. These two factors were proven to modulate mitochondrial membrane potential and the bioenergetic status of cells. We suggest, moreover, that oxygen plays a role in the differentiation of human SH-SY5Y cells.

  19. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity.

    PubMed

    Gladwin, M T; Schechter, A N; Shelhamer, J H; Pannell, L K; Conway, D A; Hrinczenko, B W; Nichols, J S; Pease-Fye, M E; Noguchi, C T; Rodgers, G P; Ognibene, F P

    1999-10-01

    Nitric oxide (NO) inhalation has been reported to increase the oxygen affinity of sickle cell erythrocytes. Also, proposed allosteric mechanisms for hemoglobin, based on S-nitrosation of beta-chain cysteine 93, raise the possibility of altering the pathophysiology of sickle cell disease by inhibiting polymerization or by increasing NO delivery to the tissue. We studied the effects of a 2-hour treatment, using varying concentrations of inhaled NO. Oxygen affinity, as measured by P(50), did not respond to inhaled NO, either in controls or in individuals with sickle cell disease. At baseline, the arterial and venous levels of nitrosylated hemoglobin were not significantly different, but NO inhalation led to a dose-dependent increase in mean nitrosylated hemoglobin, and at the highest dosage, a significant arterial-venous difference emerged. The levels of nitrosylated hemoglobin are too low to affect overall hemoglobin oxygen affinity, but augmented NO transport to the microvasculature seems a promising strategy for improving microvascular perfusion.

  20. Influence of sucrose ingestion on brainstem and hypothalamic intrinsic oscillations in lean and obese women.

    PubMed

    Kilpatrick, Lisa A; Coveleskie, Kristen; Connolly, Lynn; Labus, Jennifer S; Ebrat, Bahar; Stains, Jean; Jiang, Zhiguo; Suyenobu, Brandall Y; Raybould, Helen E; Tillisch, Kirsten; Mayer, Emeran A

    2014-05-01

    The study of intrinsic fluctuations in the blood oxygen level-dependent signal of functional magnetic resonance imaging can provide insight into the effect of physiologic states on brain processes. In an effort to better understand the brain-gut communication induced by the absorption and metabolism of nutrients in healthy lean and obese individuals, we investigated whether ingestion of nutritive and non-nutritive sweetened beverages differentially engages the hypothalamus and brainstem vagal pathways in lean and obese women. In a 2-day, double-blind crossover study, 11 lean and 11 obese healthy women underwent functional magnetic resonance imaging scans after ingestion of 2 beverages of different sucrose content, but identical sweetness. During scans, subjects rested with eyes closed. Blood oxygen level-dependent fluctuations demonstrated significantly greater power in the highest frequency band (slow-3: 0.073-0.198 Hz) after ingestion of high-sucrose compared with low-sucrose beverages in the nucleus tractus solitarius for both groups. Obese women had greater connectivity between the right lateral hypothalamus and a reward-related brain region and weaker connectivity with homeostasis and gustatory-related brain regions than lean women. In a functional magnetic resonance imaging study, we observed sucrose-related changes in oscillatory dynamics of blood oxygen level-dependent fluctuations in brainstem and hypothalamus in lean and obese women. The observed frequency changes are consistent with a rapid vagally mediated mechanism due to nutrient absorption, rather than sweet taste receptor activation. These findings provide support for altered interaction between homeostatic and reward networks in obese individuals. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  1. The significance of oxygen during contact lens wear.

    PubMed

    Papas, Eric B

    2014-12-01

    In order to establish the relevance of oxygen to contemporary contact lens practice, a review of the literature was conducted. The results indicate that there are a number of processes occurring in the normal healthy eye where oxygen is required and which are potentially affected by the presence of a contact lens. These activities appear to take place at all corneal levels, as well as at the limbus. Evidence from laboratory, clinical and modelling studies indicates that what constitutes normal oxygenation (normoxia) depends on, among other things, the physiological system under consideration, corneal location and the state of eye closure. This diversity is reflected in the wide range of minimum lens oxygen transmissibility (Dk/t) requirements that are present in a literature. Copyright © 2014 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  2. The complex evaluation of tumor oxygen state and vasculature during preoperative chemotherapy in patients with breast cancer

    NASA Astrophysics Data System (ADS)

    Pavlov, M. V.; Subochev, P. V.; Kalganova, T. I.; Golubyatnikov, G. Yu.; Plekhanov, V. I.; Ilyinskaya, O. E.; Orlova, A. G.; Shakhova, N. M.; Maslennikova, A. V.

    2017-02-01

    Effective breast cancer treatment requires the assessment of metabolic changes of tumor tissue during chemo- and hormonotherapy for prediction tumor response. Evaluation of the dynamics of tumor oxygen state (by diffuse optical spectroscopy imaging) and tumor vasculature (by ultrasound investigation in power Doppler mode) was performed before treatment beginning and before the second cycle of chemotherapy in 16 patients who received preoperative chemotherapy. Changes of these indicators were compared then with tumor pathologic response. Breast tumors demonstrated different dynamics of tumor oxygenation depending on the changes of tumor tissue. The increase of the tumor oxygenation after the first cycle of chemotherapy was observed in five of six patients with grade 4 and 5 of pathologic tumor response. Decrease of the oxygenation level was revealed in one patient with the 4th degree of tumor response. Variable changes of the oxygenation level were mentioned in the patients with moderate (the 3d degree) tumor response. Tumor oxygenation decreased or was unchanged in case of 1 or 2 degree of tumor response in five of six cases. The study of the tumor blood vessels didn't reveal any correlation between vasculature changes and tumor response under the performed treatment. The trend of tumor oxygenation in early time after treatment beginning might be a predictive criterion of tumor sensitivity to chemotherapy.

  3. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    PubMed

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  4. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation

    PubMed Central

    Licata, Stephanie C.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2011-01-01

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABAA receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 minutes after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20 mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem’s modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABAA receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. PMID:21640782

  5. Dynamic Determination of Oxygenation and Lung Compliance in Murine Pneumonectomy

    PubMed Central

    Gibney, Barry; Lee, Grace S.; Houdek, Jan; Lin, Miao; Miele, Lino; Chamoto, Kenji; Konerding, Moritz A.; Tsuda, Akira; Mentzer, Steven J.

    2012-01-01

    Thoracic surgical procedures in mice have been applied to a wide range of investigations, but little is known about the murine physiologic response to pulmonary surgery. Using continuous arterial oximetry monitoring and the FlexiVent murine ventilator, we investigated the effect of anesthesia and pneumonectomy on mouse oxygen saturation and lung mechanics. Sedation resulted in a dose-dependent decline of oxygen saturation that ranged from 55–82%. Oxygen saturation was restored by mechanical ventilation with increased rate and tidal volumes. In the mouse strain studied, optimal ventilatory rates were a rate of 200/minute and a tidal volume of 10ml/kg. Sustained inflation pressures, referred to as a "recruitment maneuver," improved lung volumes, lung compliance and arterial oxygenation. In contrast, positive end expiratory pressure (PEEP) had a detrimental effect on oxygenation; an effect that was ameliorated after pneumonectomy. Our results confirm that lung volumes in the mouse are dynamically determined and suggest a threshold level of mechanical ventilation to maintain perioperative oxygen saturation. PMID:21574875

  6. Effects of Hermetic Storage on Adult Sitophilus oryzae L. (Coleoptera: Curculionidae) Acoustic Activity Patterns and Mortality

    PubMed Central

    Njoroge, A W; Smith, B W; Baributsa, D

    2017-01-01

    Abstract Hermetic storage is of interest to farmers and warehouse managers as a method to control insect pests in small storage facilities. To develop improved understanding of effects of hermetic storage on insect pest activity and mortality over time, oxygen levels, acoustic signals, and observations of visual movement were recorded from replicates of 25, 50, and 100 adult Sitophilus oryzae (L.) (Coleoptera: Curculionidae) hermetically sealed in 500- and 1,000-ml glass jars. Recordings were done for 28 d; twice daily for the first 6 d and twice weekly thereafter. Insect sounds were analyzed as short bursts (trains) of impulses with spectra that matched average spectra (profiles) of previously verified insect sound impulses. Oxygen consumption was highest in treatments of 100 insects/500-ml jar and lowest in 25/1000-ml jars. The rates of bursts per insect, number of impulses per burst, and rates of burst impulses per insect decreased as the residual oxygen levels decreased in each treatment. Activity rates <0.02 bursts s−1, the acoustic detection threshold, typically occurred as oxygen fell below 5%. Mortality was observed at 2% levels. The time to obtain these levels of insect activity and oxygen depletion ranged from 3–14 d depending on initial infestation levels. Acoustic detection made it possible to estimate the duration required for reduction of insect activity to levels resulting in negligible damage to the stored product under hermetic conditions. Such information is of value to farmers and warehouse managers attempting to reduce pest damage in stored crops. PMID:29045682

  7. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  8. Lung vital capacity and oxygen saturation in adults with cerebral palsy

    PubMed Central

    Lampe, Renée; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2014-01-01

    Background Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction. Methods The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined. Results A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen saturation, and between chest expansion and oxygen saturation was found. The scoliotic deformities of the spine were associated with an additional decrease in the vital capacity, but this did not affect blood oxygen supply. Conclusion Despite the decreased chest expansion and the significantly reduced lung volume in adults with cerebral palsy, sufficient oxygen supply was registered. PMID:25525345

  9. Blood Oxygen Level-Dependent Activation of the Primary Visual Cortex Predicts Size Adaptation Illusion

    PubMed Central

    Pooresmaeili, Arezoo; Arrighi, Roberto; Biagi, Laura; Morrone, Maria Concetta

    2016-01-01

    In natural scenes, objects rarely occur in isolation but appear within a spatiotemporal context. Here, we show that the perceived size of a stimulus is significantly affected by the context of the scene: brief previous presentation of larger or smaller adapting stimuli at the same region of space changes the perceived size of a test stimulus, with larger adapting stimuli causing the test to appear smaller than veridical and vice versa. In a human fMRI study, we measured the blood oxygen level-dependent activation (BOLD) responses of the primary visual cortex (V1) to the contours of large-diameter stimuli and found that activation closely matched the perceptual rather than the retinal stimulus size: the activated area of V1 increased or decreased, depending on the size of the preceding stimulus. A model based on local inhibitory V1 mechanisms simulated the inward or outward shifts of the stimulus contours and hence the perceptual effects. Our findings suggest that area V1 is actively involved in reshaping our perception to match the short-term statistics of the visual scene. PMID:24089504

  10. SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE

    EPA Science Inventory

    Respiratory morbidity and mortality associated with increases in ambient levels of particulate matter (PM) may be dependent on particle elemental composition. Particle-associated metals such as copper may catalyze formation of reactive oxygen species leading to inflammation and l...

  11. Prediction of oxygen distribution in aortic valve leaflet considering diffusion and convection.

    PubMed

    Wang, Ling; Korossis, Sotirios; Fisher, John; Ingham, Eileen; Jin, Zhongmin

    2011-07-01

    Oxygen supply and transport is an important consideration in the development of tissue engineered constructs. Previous studies from our group have focused on the effect of tissue thickness on the oxygen diffusion within a three-dimensional aortic valve leaflet model, and highlighted the necessity for additional transport mechanisms such as oxygen convection. The aims of this study were to investigate the effect of interstitial fluid flow within the aortic valve leaflet, induced by the cyclic loading of the leaflet, on oxygen transport. Indentation testing and finite element modelings were employed to derive the biphasic properties of the leaflet tissue. The biphasic properties were subsequently used in the computational modeling of oxygen convection in the leaflet, which was based on the effective interstitial fluid velocity and the tissue deformation. Subsequently, the oxygen profile was predicted within the valve leaflet model by solving the diffusion and convection equation simultaneously utilizing the finite difference method. The compression modulus (E) and hydraulic permeability were determined by adapting a finite element model to the experimental indentation test on valvular tissue, E = 0.05MPa, and k =2.0 mm4/Ns. Finite element model of oxygen convection in valvular tissue incorporating the predicted biphasic properties was developed and the interstitial fluid flow rate was calculated falling in range of 0.025-0.25 mm/s depending on the tissue depth. Oxygen distribution within valvular tissue was predicted using one-dimensional oxygen diffusion model taking into consider the interstitial fluid effect. It was found that convection did enhance the oxygen transport in valvular tissue by up to 68% increase in the minimum oxygen tension within the tissue, depending on the strain level of the tissue as reaction of the magnitude and frequencies of the cardiac loading. The effective interstitial fluid velocity was found to play an important role in enhancing the oxygen transport within the valve leaflet. Such an understanding is important in the development of valvular tissue engineered constructs.

  12. Development of oxygen meters for the use in lead-bismuth

    NASA Astrophysics Data System (ADS)

    Konys, J.; Muscher, H.; Voß, Z.; Wedemeyer, O.

    2001-07-01

    Liquid lead and the eutectic lead-bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes. It is known that both, pure lead and PbBi, exhibit a high corrosivity against austenitic and ferritic steels, because of the high solubility of nickel and iron in PbBi. One way of reducing the strong corrosion is the in situ formation of stable oxide scales on the steel surfaces. Thermodynamic calculations and experimental results have confirmed, that the control of oxygen in lead or PbBi within a defined activity range can lead to acceptable corrosion rates. To control the level of oxygen dissolved in lead or PbBi, a sensor for measuring the oxygen activity is required. Within the sodium fast breeder reactor development, an adequate technique was established for estimating oxygen in liquid sodium. This knowledge can be used for other metal/oxygen systems like oxygen in PbBi. For measuring the oxygen activity and calculating its concentration, the relevant thermodynamic and solubility data have to be considered. Two reference electrode systems: Pt/air and In/In 2O 3 (both based on yttria-stabilized zirconia as solid electrolyte) are investigated to evaluate their electromotive force (EMF)-temperature dependency in saturated and unsaturated oxygen solutions. Results with both types of oxygen meters in PbBi at different oxygen levels were compared with theoretical calculations. The experimental data indicate that the design, construction and integration of an oxygen control unit in a large scale PbBi-loop seems to be very feasible.

  13. Nitrite transport into pig erythrocytes and its potential biological role.

    PubMed

    Jensen, F B

    2005-07-01

    To study nitrite transport and its oxygenation dependency in pig erythrocytes, as this is fundamental to the possible participation of nitrite in blood flow regulation via its reduction to nitric oxide by deoxygenated haemoglobin (Hb). Pig red blood cells (RBCs) were tonometer-equilibrated to physiological pCO2 in oxygenated and deoxygenated states. Nitrite was added and the kinetics of NO2- influx and methaemoglobin (metHb) formation were assessed at variable temperature and haematocrit. Nitrite quickly permeated and equilibrated across the membrane, and then continued to enter RBCs as a consequence of its intracellular removal (via reactions with Hb to form nitrate and metHb in oxygenated cells, and NO and metHb in deoxygenated cells). The membrane permeation as such showed little oxygenation dependency, but as metHb formation was significantly higher in oxygenated than deoxygenated RBCs, nitrite transport tended to be largest into oxygenated RBCs. This contrasts with a preferential permeation of deoxygenated RBCs in some fish species. Nitrite transport showed low temperature sensitivity but was speeded up at low haematocrit via more rapid intracellular nitrite removal (metHb formation). Nitrite influx was not affected by inhibitors of facilitated diffusion (DIDS, phloretin and PCMB) and may occur via conductive transport. Extracellular pH was stable during nitrite transport. Nitrite extensively permeates both oxygenated and deoxygenated pig RBCs, which may enable a dual function of nitrite entry: viz. conversion to NO at low pO2 to promote blood flow and detoxification to non-toxic nitrate at inappropriate high nitrite levels.

  14. Modeling Variable Phanerozoic Oxygen Effects on Physiology and Evolution.

    PubMed

    Graham, Jeffrey B; Jew, Corey J; Wegner, Nicholas C

    2016-01-01

    Geochemical approximation of Earth's atmospheric O2 level over geologic time prompts hypotheses linking hyper- and hypoxic atmospheres to transformative events in the evolutionary history of the biosphere. Such correlations, however, remain problematic due to the relative imprecision of the timing and scope of oxygen change and the looseness of its overlay on the chronology of key biotic events such as radiations, evolutionary innovation, and extinctions. There are nevertheless general attributions of atmospheric oxygen concentration to key evolutionary changes among groups having a primary dependence upon oxygen diffusion for respiration. These include the occurrence of Devonian hypoxia and the accentuation of air-breathing dependence leading to the origin of vertebrate terrestriality, the occurrence of Carboniferous-Permian hyperoxia and the major radiation of early tetrapods and the origins of insect flight and gigantism, and the Mid-Late Permian oxygen decline accompanying the Permian extinction. However, because of variability between and error within different atmospheric models, there is little basis for postulating correlations outside the Late Paleozoic. Other problems arising in the correlation of paleo-oxygen with significant biological events include tendencies to ignore the role of blood pigment affinity modulation in maintaining homeostasis, the slow rates of O2 change that would have allowed for adaptation, and significant respiratory and circulatory modifications that can and do occur without changes in atmospheric oxygen. The purpose of this paper is thus to refocus thinking about basic questions central to the biological and physiological implications of O2 change over geological time.

  15. Hypoxia and hypoxia-inducible factors in neuroblastoma.

    PubMed

    Påhlman, Sven; Mohlin, Sofie

    2018-05-01

    Hypoxia (i.e., low oxygen levels) is a known feature of aggressive tumors. Cells, including tumor cells, respond to conditions of insufficient oxygen by activating a transcriptional program mainly driven by hypoxia-inducible factors (HIF)-1 and HIF-2. Both HIF-1α and HIF-2α expression levels have been shown to correlate to patient outcome in various tumor forms and in neuroblastoma, a solid childhood tumor of the sympathetic nervous system, in particular, HIF-2α marks a subpopulation of immature neural crest-like perivascularly located cells and associates with aggressive disease and distant metastasis. It has for long been recognized that the HIF-α subunits are oxygen-dependently regulated at the post-translational level, via ubiquitination and proteasomal degradation. Evidence of oxygen-independent mechanisms of regulation, transcriptional control of EPAS1/HIF2A and possible cytoplasmic activities of HIF-2α has also emerged during recent years. In this review, we discuss these non-conventional actions of HIF-2α, its putative role as a therapeutic target and the constraints it carries, as well as the importance of HIF-2 activity in a vascularized setting, the so-called pseudo-hypoxic state.

  16. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    PubMed

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  17. The effects of exercise under hypoxia on cognitive function.

    PubMed

    Ando, Soichi; Hatamoto, Yoichi; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2013-01-01

    Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15). Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time) and response accuracy. We monitored pulse oximetric saturation (SpO2) and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.

  18. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors.

    PubMed

    Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark

    2012-11-15

    The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.

  19. Clinical practices in neonatal oxygenation: where have we failed? What can we do?

    PubMed

    Sola, A; Saldeño, Y P; Favareto, V

    2008-05-01

    Oxygen is among the most frequently used therapies in neonates worldwide. Nevertheless, many times it is used unnecessarily. Neonatal practices have changed over the last several years; treatments originally believed to be beneficial have been discarded. Oxygen utilized 'just in case' or 'prophylactically' can lead to great damage previously ignored and/or unseen by healthcare providers. It is imperative to improve education on neonatal oxygenation and saturation monitoring. It is also important not to depend on old assumptions, which were not based on evidences. The potential for unseen damage at the cellular and tissue levels cannot be ignored. Therapies that prove to be outdated or even dangerous must be eliminated while further research and confirmation of the best practices are determined. Freedom to choose can come at a price.

  20. Increased sensitivity to apoptosis induced by methotrexate is mediated by Jun N-terminal kinase

    PubMed Central

    Spurlock, Charles F.; Aune, Zachary T.; Tossberg, John T.; Collins, Patrick L.; Aune, Jessica P.; Huston, Joseph W.; Crooke, Philip S.; Olsen, Nancy J.; Aune, Thomas M.

    2011-01-01

    Objective Low-dose methotrexate [MTX] is an effective therapy for rheumatoid arthritis yet its mechanism of action is incompletely understood. Here, we explored induction of apoptosis by MTX. Methods We employed flow cytometry to assess changes in levels of intracellular proteins, reactive oxygen species [ROS], and apoptosis.Quantitative polymerase chain reaction was usedtoassess changes in transcript levels of select target genes in response to MTX. Results MTX does not directly induce apoptosis but rather ‘primes’ cells for markedly increased sensitivity to apoptosis via either mitochondrial or death receptor pathways by a Jun N-terminal kinase [JNK]-dependent mechanism. Increased sensitivity to apoptosis is mediated, at least in part, by MTX-dependent production of reactive oxygen species, JNK activation and JNK-dependent induction of genes whose protein products promote apoptosis. Supplementation with tetrahydrobiopterin blocks these methotrexate-induced effects. Subjects with rheumatoid arthritis on low-dose MTX therapy express elevated levels of the JNK-target gene, JUN. Conclusions Our results support a model whereby methotrexate inhibits reduction of dihydrobiopterin to tetrahydrobiopterin resulting in increased production of ROS, increased JNK activity and increased sensitivity to apoptosis. The finding of increased JUN levels in subjects with RA taking low-dose MTX supports the notion that this pathway is activated by MTX, in vivo, and may contribute to efficacy of MTX in inflammatory disease. PMID:21618198

  1. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    PubMed Central

    Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo

    2012-01-01

    Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527

  2. [The level of superoxide dismutase expression in primary and metastatic colorectal cancer cells in hypoxia and tissue normoxia].

    PubMed

    Skrzycki, Michał; Czeczot, Hanna; Chrzanowska, Alicja; Otto-Ślusarczyk, Dagmara

    2015-11-01

    Superoxide oxidase (SOD) is a key antioxidant enzyme protecting cells against oxidative stress, which might induce cancerogenesis. In tumor cells SOD influences the level of the reactive oxygen species (ROS) allowing for survival and proliferation. High rate of cells proliferation in tumor leads to their temporary hypoxia due to lower rate of angiogenesis. Therefore during tumor development, cancer cells function in conditions of hypoxia or tissue normoxia. The aim of study was to evaluate of SOD isoenzymes (SOD1 and SOD2) expression level in cell lines of primary (SW 480) and metastatic (SW 620) colorectal cancer, cultured in hypoxia (1% oxygen), tissue normoxia (10% oxygen), and atmospheric normoxia (21% oxygen). Cells were cultured in MEM medium in different oxygen concentrations (1%, 10%, 21%) in hypoxic chamber with oxygenation regulator. The number of living cells in lines SW 480 and 620 was determined by trypan blue method. Expression of SOD1 and SOD2 at the mRNA level was determined by RT-PCR and PCR. In both studied cell lines (SW 480 and SW 620), the number of living cells (viability) was increased in hypoxia and atmospheric normoxia. The expression level of SOD1 and SOD2 in studied cell lines was different. The lowest level of expression of both SOD isoenzymes was observed in hypoxia. In conditions of atmospheric normoxia the expression level of SOD1 in SW480 cell line was increased, and similar in SW620 cell line comparing to tissue normoxia. Whereas the SOD2 expression level in atmospheric normoxia conditions in both cell lines was significantly increased. Observed differences were statistically significant (p ≤ 0,05). The profile of expression of SOD1 and SOD2 in cell lines SW480 and SW620 indicates differentiated response of tumor cells depending on access to oxygen. Low level of SOD isoenzymes expression in SW480 and SW620 cells in hypoxia indicates decreased production of ROS. Differences of SOD isoenzymes expression level in tissue normoxia indicate their compensatory action, allowing to maintain the balance between O₂- removal and H₂O₂production in studied tumor cells. In atmospheric normoxia conditions increased expression level of SOD1 and SOD2 observed in studied cell lines points to oxidative stress. © 2015 MEDPRESS.

  3. Hypoxic Response of Tumor Tissues in a Microfluidic Environment

    NASA Astrophysics Data System (ADS)

    Morshed, Adnan; Dutta, Prashanta

    2017-11-01

    Inside a tumor tissue, cells growing further away from the blood vessel often suffer from low oxygen levels known as hypoxia. Cancer cells have shown prolonged survival in hostile hypoxic conditions by sharply changing the cellular metabolism. In this work, different stages of growth of the tumor tissue and the oxygen transport across the tissue are investigated. The tissue was modeled as a contiguous block of cells inside a microfluidic environment with nutrient transport through advection and diffusion. While oxygen uptake inside the tissue is through diffusion, ascorbate transport from the extracellular medium is addressed by a concentration dependent uptake model. By varying the experimentally observed oxygen consumption rate, different types of cancer cells and their normoxic and hypoxic stages were studied. Even when the oxygen supply in the channel is maintained at normoxic levels, our results show the onset of hypoxia within minutes inside the cellblock. Interestingly, modeled cell blocks with and without a structured basal layer showed less than 5% variation in hypoxic response in chronic hypoxia. Results also indicate that the balance of cell survival and growth are affected by the flow rate of nutrients and the oxygen consumption rate. This work was supported in part by the National Science Foundation under Grant No. DMS 1317671.

  4. Running, swimming and diving modifies neuroprotecting globins in the mammalian brain

    PubMed Central

    Williams, Terrie M; Zavanelli, Mary; Miller, Melissa A; Goldbeck, Robert A; Morledge, Michael; Casper, Dave; Pabst, D. Ann; McLellan, William; Cantin, Lucas P; Kliger, David S

    2007-01-01

    The vulnerability of the human brain to injury following just a few minutes of oxygen deprivation with submergence contrasts markedly with diving mammals, such as Weddell seals (Leptonychotes weddellii), which can remain underwater for more than 90 min while exhibiting no neurological or behavioural impairment. This response occurs despite exposure to blood oxygen levels concomitant with human unconsciousness. To determine whether such aquatic lifestyles result in unique adaptations for avoiding ischaemic–hypoxic neural damage, we measured the presence of circulating (haemoglobin) and resident (neuroglobin and cytoglobin) oxygen-carrying globins in the cerebral cortex of 16 mammalian species considered terrestrial, swimming or diving specialists. Here we report a striking difference in globin levels depending on activity lifestyle. A nearly 9.5-fold range in haemoglobin concentration (0.17–1.62 g Hb 100 g brain wet wt−1) occurred between terrestrial and deep-diving mammals; a threefold range in resident globins was evident between terrestrial and swimming specialists. Together, these two globin groups provide complementary mechanisms for facilitating oxygen transfer into neural tissues and the potential for protection against reactive oxygen and nitrogen groups. This enables marine mammals to maintain sensory and locomotor neural functions during prolonged submergence, and suggests new avenues for averting oxygen-mediated neural injury in the mammalian brain. PMID:18089537

  5. Cerebral oxygenation and desaturations in preterm infants - a longitudinal data analysis.

    PubMed

    Mayer, Benjamin; Pohl, Moritz; Hummler, Helmut D; Schmid, Manuel B

    2017-01-01

    Hypoxemic episodes commonly occur in very preterm infants and may be associated with several adverse effects. Cerebral tissue oxygen saturation (StO2) as measured by near infrared spectroscopy (NIRS) may be a useful measure to assess brain oxygenation. However, knowledge on variability of StO2 is limited in preterm infants at this time, so StO2 dependency on arterial oxygenation (SpO2) and heart rate (HR) was assessed in preterm infants using statistical methods of time series analysis. StO2, SpO2, and HR were recorded from 15 preterm infants every 2 seconds for six hours. Statistical methods of time series and longitudinal data analysis were applied to the data. The mean StO2 level was found as 72% (95% confidence interval (CI) 55.5% -85.5%) based on a moving average process with a 5 minute order. Accordingly, longitudinal SpO2 measurements showed a mean level of 91% (95% CI 69% -98%). Generally, compensation strategies to cope with both StO2 and SpO2 desaturations were observed in the studied patients. SpO2 had a significant effect on cerebral oxygenation (p < 0.001), but HR did not, which led to inconclusive results considering different time intervals. In infants with intermittent hypoxemia and bradycardia, we found a mean StO2 level of 72% and a strong correlation with SpO2. We observed large differences between individuals in the ability to maintain StO2 at a stable level.

  6. Genetic Diversity of Coastal Bottlenose Dolphins Revealed by Structurally and Functionally Diverse Hemoglobins

    PubMed Central

    Remington, Nicole; Stevens, Robert D.; Wells, Randall S.; Hohn, Aleta; Dhungana, Suraj; Taboy, Celine H.; Crumbliss, Alvin L.; Henkens, Robert; Bonaventura, Celia

    2007-01-01

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhance oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their α and β globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community. PMID:17604574

  7. Genetic diversity of coastal bottlenose dolphins revealed by structurally and functionally diverse hemoglobins.

    PubMed

    Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia

    2007-08-15

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.

  8. Hypoxia Responsive Drug Delivery Systems in Tumor Therapy.

    PubMed

    Alimoradi, Houman; Matikonda, Siddharth S; Gamble, Allan B; Giles, Gregory I; Greish, Khaled

    2016-01-01

    Hypoxia is a common characteristic of solid tumors. It is mainly determined by low levels of oxygen resulting from imperfect vascular networks supplying most tumors. In an attempt to improve the present chemotherapeutic treatment and reduce associated side effects, several prodrug strategies have been introduced to achieve hypoxia-specific delivery of cytotoxic anticancer agents. With the advances in nanotechnology, novel delivery systems activated by the consequent outcomes of hypoxia have been developed. However, developing hypoxia responsive drug delivery systems (which only depend on low oxygen levels) is currently naïve. This review discusses four main hypoxia responsive delivery systems: polymeric based drug delivery systems, oxygen delivery systems combined with radiotherapy and chemotherapy, anaerobic bacteria which are used for delivery of genes to express anticancer proteins such as tumor necrosis alpha (TNF-α) and hypoxia-inducible transcription factors 1 alpha (HIF1α) responsive gene delivery systems.

  9. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    PubMed

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  10. Sustained Radiosensitization of Hypoxic Glioma Cells after Oxygen Pretreatment in an Animal Model of Glioblastoma and In Vitro Models of Tumor Hypoxia

    PubMed Central

    Clarke, Ryon H.; Moosa, Shayan; Anzivino, Matthew; Wang, Yi; Floyd, Desiree Hunt; Purow, Benjamin W.; Lee, Kevin S.

    2014-01-01

    Glioblastoma multiforme (GBM) is the most common and lethal form of brain cancer and these tumors are highly resistant to chemo- and radiotherapy. Radioresistance is thought to result from a paucity of molecular oxygen in hypoxic tumor regions, resulting in reduced DNA damage and enhanced cellular defense mechanisms. Efforts to counteract tumor hypoxia during radiotherapy are limited by an attendant increase in the sensitivity of healthy brain tissue to radiation. However, the presence of heightened levels of molecular oxygen during radiotherapy, while conventionally deemed critical for adjuvant oxygen therapy to sensitize hypoxic tumor tissue, might not actually be necessary. We evaluated the concept that pre-treating tumor tissue by transiently elevating tissue oxygenation prior to radiation exposure could increase the efficacy of radiotherapy, even when radiotherapy is administered after the return of tumor tissue oxygen to hypoxic baseline levels. Using nude mice bearing intracranial U87-luciferase xenografts, and in vitro models of tumor hypoxia, the efficacy of oxygen pretreatment for producing radiosensitization was tested. Oxygen-induced radiosensitization of tumor tissue was observed in GBM xenografts, as seen by suppression of tumor growth and increased survival. Additionally, rodent and human glioma cells, and human glioma stem cells, exhibited prolonged enhanced vulnerability to radiation after oxygen pretreatment in vitro, even when radiation was delivered under hypoxic conditions. Over-expression of HIF-1α reduced this radiosensitization, indicating that this effect is mediated, in part, via a change in HIF-1-dependent mechanisms. Importantly, an identical duration of transient hyperoxic exposure does not sensitize normal human astrocytes to radiation in vitro. Taken together, these results indicate that briefly pre-treating tumors with elevated levels of oxygen prior to radiotherapy may represent a means for selectively targeting radiation-resistant hypoxic cancer cells, and could serve as a safe and effective adjuvant to radiation therapy for patients with GBM. PMID:25350400

  11. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit)

    PubMed Central

    Rogers, Nicholas J; Urbina, Mauricio A; Reardon, Erin E; McKenzie, David J; Wilson, Rod W

    2016-01-01

    Abstract Hypoxia is a common occurrence in aquatic habitats, and it is becoming an increasingly frequent and widespread environmental perturbation, primarily as the result of anthropogenic nutrient enrichment and climate change. An in-depth understanding of the hypoxia tolerance of fishes, and how this varies among individuals and species, is required to make accurate predictions of future ecological impacts and to provide better information for conservation and fisheries management. The critical oxygen level (Pcrit) has been widely used as a quantifiable trait of hypoxia tolerance. It is defined as the oxygen level below which the animal can no longer maintain a stable rate of oxygen uptake (oxyregulate) and uptake becomes dependent on ambient oxygen availability (the animal transitions to oxyconforming). A comprehensive database of Pcrit values, comprising 331 measurements from 96 published studies, covering 151 fish species from 58 families, provides the most extensive and up-to-date analysis of hypoxia tolerance in teleosts. Methodologies for determining Pcrit are critically examined to evaluate its usefulness as an indicator of hypoxia tolerance in fishes. Various abiotic and biotic factors that interact with hypoxia are analysed for their effect on Pcrit, including temperature, CO2, acidification, toxic metals and feeding. Salinity, temperature, body mass and routine metabolic rate were strongly correlated with Pcrit; 20% of variation in the Pcrit data set was explained by these four variables. An important methodological issue not previously considered is the inconsistent increase in partial pressure of CO2 within a closed respirometer during the measurement of Pcrit. Modelling suggests that the final partial pressure of CO2 reached can vary from 650 to 3500 µatm depending on the ambient pH and salinity, with potentially major effects on blood acid–base balance and Pcrit itself. This database will form part of a widely accessible repository of physiological trait data that will serve as a resource to facilitate future studies of fish ecology, conservation and management. PMID:27293760

  12. Evaluating dynamic contrast-enhanced and photoacoustic CT to assess intra-tumor heterogeneity in xenograft mouse models

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Dzemidzic, Mario; Liang, Yun; Kruger, Robert

    2006-03-01

    Purpose: To evaluate photoacoustic CT spectroscopy (PCT-S) and dynamic contrast-enhanced CT (DCE-CT) ability to measure parameters - oxygen saturation and vascular physiology - associated with the intra-tumor oxygenation status. Material and Methods: Breast (VEGF165 enhance MCF-7) and ovarian (SKOV3x) cancer cells were implanted into the fat pads and flanks of immune deficient mice and allowed to grow to a diameter of 8-15 mm. CT was used to determine physiological parameters by acquiring a sequence of scans over a 10 minute period after an i.v. injection of a radio-opaque contrast agent (Isovue). These time-dependent contrast-enhanced curves were fit to a two-compartmental model determining tumor perfusion, fractional plasma volume, permeability-surface area produce, and fractional interstitial volume on a voxel-by-voxel basis. After which, the tumors were imaged using photoacoustic CT (Optosonics, Inc., Indianapolis, IN 46202). The near infrared spectra (700-910 nm) within the vasculature was fit to linear combination of measured oxy- and deoxy-hemoglobin blood samples to obtain oxygen saturation levels (SaO II). Results: The PCT-S scanner was first calibrated using different samples of oxygenated blood, from which a statistical error ranging from 2.5-6.5% was measured and a plot of the hemoglobin dissociation curve was consistent with empirical formula. In vivo determination of tumor vasculature SaO II levels were measurably tracked, and spatially correlated to the periphery of the tumor. Tumor depend variations in SaO II - 0.32 (ovarian) and 0.60 (breast) - and in vascular physiology - perfusion, 1.03 and 0.063 mL/min/mL, and fractional plasma volume, 0.20 and 0.07 - were observed. Conclusion: Combined, PCT-S and CED-CT has the potential to measure intra-tumor levels of tumor oxygen saturation and vascular physiology, key parameters associated with hypoxia.

  13. Inhaled nitric oxide, oxygen, and alkalosis: dose-response interactions in a lamb model of pulmonary hypertension.

    PubMed

    Heidersbach, R S; Johengen, M J; Bekker, J M; Fineman, J R

    1999-07-01

    Inhaled nitric oxide (NO) is currently used as an adjuvant therapy for a variety of pulmonary hypertensive disorders. In both animal and human studies, inhaled NO induces selective, dose-dependent pulmonary vasodilation. However, its potential interactions with other simultaneously used pulmonary vasodilator therapies have not been studied. Therefore, the objective of this study was to determine the potential dose-response interactions of inhaled NO, oxygen, and alkalosis therapies. Fourteen newborn lambs (age 1-6 days) were instrumented to measure vascular pressures and left pulmonary artery blood flow. After recovery, the lambs were sedated and mechanically ventilated. During steady-state pulmonary hypertension induced by U46619 (a thromboxane A2 mimic), the lambs were exposed to the following conditions: Protocol A, inhaled NO (0, 5, 40, and 80 ppm) and inspired oxygen concentrations (FiO2) of 0.21, 0.50, and 1.00; and Protocol B, inhaled NO (0, 5, 40, and 80 ppm) and arterial pH levels of 7.30, 7.40, 7.50, and 7.60. Each condition (in randomly chosen order) was maintained for 10 min, and all variables were allowed to return to baseline between conditions. Inhaled NO, oxygen, and alkalosis produced dose-dependent decreases in mean pulmonary arterial pressures (P < 0.05). Systemic arterial pressure remained unchanged. At 5 ppm of inhaled NO, alkalosis and oxygen induced further dose-dependent decreases in mean pulmonary arterial pressures (P < 0.05). At inhaled NO doses > 5 ppm, alkalosis induced further dose-independent decreases in mean pulmonary arterial pressure, while oxygen did not. We conclude that in this animal model, oxygen, alkalosis, and inhaled NO induced selective, dose-dependent pulmonary vasodilation. However, when combined, a systemic arterial pH > 7.40 augmented inhaled NO-induced pulmonary vasodilation, while an FiO2 > 0.5 did not. Therefore, weaning high FiO2 during inhaled NO therapy should be considered, since it may not diminish the pulmonary vasodilating effects. Further studies are warranted to guide the clinical weaning strategies of these pulmonary vasodilator therapies.

  14. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    PubMed

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spychalla, J.P.; Desborough, S.L.

    Activated oxygen or oxygen free radical mediated damage to plants has been established or implicated in many plant stress situations. The extent of activated oxygen damage to potato (Solanum tuberosum L.) tubers during low temperature storage and long-term storage is not known. Quantitation of oxygen free radical mediated damage in plant tissues is difficult. However, it is comparatively easy to quantitate endogenous antioxidants, which detoxify potentially damaging forms of activated oxygen. Three tuber antioxidants, superoxide dismutase, catalase, and {alpha}-tocopherol were assayed from four potato cultivars stored at 3{degree}C and 9{degree}C for 40 weeks. Tubers stored at 3{degree}C demonstrated increased superoxidemore » dismutase activities (up to 72%) compared to tubers stored at 9{degree}C. Time dependent increases in the levels of superoxide dismutase, catalase, and {alpha}-tocopherol occurred during the course of the 40 week storage. The possible relationship between these increases in antioxidants and the rate of activated oxygen production in the tubers is discussed.« less

  16. Pretreatment Differences in BOLD Response to Emotional Faces Correlate with Antidepressant Response to Scopolamine.

    PubMed

    Furey, Maura L; Drevets, Wayne C; Szczepanik, Joanna; Khanna, Ashish; Nugent, Allison; Zarate, Carlos A

    2015-03-28

    Faster acting antidepressants and biomarkers that predict treatment response are needed to facilitate the development of more effective treatments for patients with major depressive disorders. Here, we evaluate implicitly and explicitly processed emotional faces using neuroimaging to identify potential biomarkers of treatment response to the antimuscarinic, scopolamine. Healthy participants (n=15) and unmedicated-depressed major depressive disorder patients (n=16) participated in a double-blind, placebo-controlled crossover infusion study using scopolamine (4 μg/kg). Before and following scopolamine, blood oxygen-level dependent signal was measured using functional MRI during a selective attention task. Two stimuli comprised of superimposed pictures of faces and houses were presented. Participants attended to one stimulus component and performed a matching task. Face emotion was modulated (happy/sad) creating implicit (attend-houses) and explicit (attend-faces) emotion processing conditions. The pretreatment difference in blood oxygen-level dependent response to happy and sad faces under implicit and explicit conditions (emotion processing biases) within a-priori regions of interest was correlated with subsequent treatment response in major depressive disorder. Correlations were observed exclusively during implicit emotion processing in the regions of interest, which included the subgenual anterior cingulate (P<.02) and middle occipital cortices (P<.02). The magnitude and direction of differential blood oxygen-level- dependent response to implicitly processed emotional faces prior to treatment reflect the potential to respond to scopolamine. These findings replicate earlier results, highlighting the potential for pretreatment neural activity in the middle occipital cortices and subgenual anterior cingulate to inform us about the potential to respond clinically to scopolamine. Published by Oxford University Press on behalf of CINP 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. Oxygenation as a driver of the Great Ordovician Biodiversification Event

    NASA Astrophysics Data System (ADS)

    Edwards, Cole T.; Saltzman, Matthew R.; Royer, Dana L.; Fike, David A.

    2017-12-01

    The largest radiation of Phanerozoic marine animal life quadrupled genus-level diversity towards the end of the Ordovician Period about 450 million years ago. A leading hypothesis for this Great Ordovician Biodiversification Event is that cooling of the Ordovician climate lowered sea surface temperatures into the thermal tolerance window of many animal groups, such as corals. A complementary role for oxygenation of subsurface environments has been inferred based on the increasing abundance of skeletal carbonate, but direct constraints on atmospheric O2 levels remain elusive. Here, we use high-resolution paired bulk carbonate and organic carbon isotope records to determine the changes in isotopic fractionation between these phases throughout the Ordovician radiation. These results can be used to reconstruct atmospheric O2 levels based on the O2-dependent fractionation of carbon isotopes by photosynthesis. We find a strong temporal link between the Great Ordovician Biodiversification Event and rising O2 concentrations, a pattern that is corroborated by O2 models that use traditional carbon-sulfur mass balance. We conclude that that oxygen levels probably played an important role in regulating early Palaeozoic biodiversity levels, even after the Cambrian Explosion.

  18. Effects of methyltestosterone on immunity against Salmonella Pullorum in dwarf chicks.

    PubMed

    Li, H; Zhang, Y; Zuo, S F; Lian, Z X; Li, N

    2009-12-01

    This study was conducted to determine effects of methyltestosterone on innate immunity and adaptive immunity against Salmonella Pullorum in dwarf chicks. In vivo experiment, comparisons of pathological sections, viable counts of bacteria, specific antibody levels, and subsets of T lymphocytes were set forth between chicks with or without 10(-7) M methyltestosterone treatment (2 d of age through 21 d of age) and challenged with 5 x 10(8) virulent Salmonella Pullorum (7 d of age), and in vitro experiment, phagocytic and killing abilities, reactive oxygen intermediate production, and reactive nitrogen intermediate production of monocytes-macrophages treated with high (10(-8) M/10(6) cell) or physiological (10(-14) M/10(6) cell) concentration of methyltestosterone were examined after Salmonella Pullorum infection. The results showed that (1) in vivo, administration of methyltestosterone enhanced susceptibility to Salmonella Pullorum infection and depressed cellular immunity against Salmonella Pullorum, whereas it had no effect on humoral immunity in dwarf chicks; (2) in vitro, at high concentration, methyltestosterone reduced (P < 0.05) monocytes-macrophages mediated reactive oxygen intermediate-dependent killing of Salmonella Pullorum, whereas low concentration of methyltestosterone enhanced (P < 0.05) reactive oxygen intermediate-dependent killing of Salmonella Pullorum in male dwarf chicks but not in females; and (3) although challenged with Salmonella Pullorum, phagocytic ability and monocytes-macrophages mediated reactive nitrogen intermediate-dependent killing were not affected by methyltestosterone in vitro. The results indicated that methyltestosterone affected the immune response to Salmonella Pullorum in dwarf chicks by changing monocytes-macrophages mediated reactive oxygen intermediate-dependent killing and cellular immunity, and the effects were dose-dependent; furthermore, the former 2 pathways played important roles in preventing Salmonella Pullorum infection in dwarf chicks, although the mechanism needs further study.

  19. Neutrophils in chronic and aggressive periodontitis in interaction with Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans.

    PubMed

    Guentsch, A; Puklo, M; Preshaw, P M; Glockmann, E; Pfister, W; Potempa, J; Eick, S

    2009-06-01

    This study analyzed the interaction of Porphyromonas gingivalis ATCC 33277 and Aggregatibacter actinomycetemcomitans Y4 with peripheral blood polymorphonuclear neutrophils taken from patients with aggressive periodontitis and chronic periodontitis. Peripheral blood polymorphonuclear neutrophils obtained from 12 patients with chronic periodontitis, six patients with aggressive periodontitis and 12 healthy controls were exposed to P. gingivalis and A. actinomycetemcomitans following opsonization of the bacteria using the patient's own serum. Serum immunoglobulin G (IgG) levels against both periodontopathogens were measured. Phagocytosis and killing of the bacteria, as well as the extracellular human neutrophil elastase activity, were quantified. The total amount and the extracellular release of reactive oxygen species were measured using luminol-dependent and isoluminol-dependent chemiluminescence. Polymorphonuclear neutrophils from patients with chronic (62.16 +/- 19.39%) and aggressive (43.26 +/- 26.63%) periodontitis phagocytosed more P. gingivalis than the healthy controls (24.43 +/- 19.87%) at the 30-min time point after exposure to the bacteria (p < 0.05). High serum IgG levels against P. gingivalis and A. actinomycetemcomitans were detected in subjects with periodontitis. Polymorphonuclear neutrophils from subjects with chronic and aggressive periodontitis released significantly more reactive oxygen species and demonstrated greater human neutrophil elastase activity in the absence of any stimulus than polymorphonuclear neutrophils from healthy controls (p < 0.05). Polymorphonuclear neutrophils in chronic periodontitis released significantly more reactive oxygen species when exposed to P. gingivalis and A. actinomycetemcomitans than polymorphonuclear neutrophils in aggressive periodontitis. High serum IgG levels against P. gingivalis and A. actinomycetemcomitans promote phagocytosis in periodontitis. The extracellular release of reactive oxygen species and neutrophil elastase by polymorphonuclear neutrophils may also contribute to damage of the surrounding periodontal tissues.

  20. Differential HIF and NOS responses to acute anemia: defining organ-specific hemoglobin thresholds for tissue hypoxia.

    PubMed

    Tsui, Albert K Y; Marsden, Philip A; Mazer, C David; Sled, John G; Lee, Keith M; Henkelman, R Mark; Cahill, Lindsay S; Zhou, Yu-Qing; Chan, Neville; Liu, Elaine; Hare, Gregory M T

    2014-07-01

    Tissue hypoxia likely contributes to anemia-induced organ injury and mortality. Severe anemia activates hypoxia-inducible factor (HIF) signaling by hypoxic- and neuronal nitric oxide (NO) synthase- (nNOS) dependent mechanisms. However, organ-specific hemoglobin (Hb) thresholds for increased HIF expression have not been defined. To assess organ-specific Hb thresholds for tissue hypoxia, HIF-α (oxygen-dependent degradation domain, ODD) luciferase mice were hemodiluted to mild, moderate, or severe anemia corresponding to Hb levels of 90, 70, and 50 g/l, respectively. HIF luciferase reporter activity, HIF protein, and HIF-dependent RNA levels were assessed. In the brain, HIF-1α was paradoxically decreased at mild anemia, returned to baseline at moderate anemia, and then increased at severe anemia. Brain HIF-2α remained unchanged at all Hb levels. Both kidney HIF-1α and HIF-2α increased earlier (Hb ∼70-90 g/l) in response to anemia. Liver also exhibited an early HIF-α response. Carotid blood flow was increased early (Hb ∼70, g/l), but renal blood flow remained relatively constant, only increased at Hb of 50 g/l. Anemia increased nNOS (brain and kidney) and endothelia NOS (eNOS) (kidney) levels. Whereas anemia-induced increases in brain HIFα were nNOS-dependent, our current data demonstrate that increased renal HIFα was nNOS independent. HIF-dependent RNA levels increased linearly (∼10-fold) in the brain. However, renal HIF-RNA responses (MCT4, EPO) increased exponentially (∼100-fold). Plasma EPO levels increased near Hb threshold of 90 g/l, suggesting that the EPO response is sensitive. Collectively, these observations suggest that each organ expresses a different threshold for cellular HIF/NOS hypoxia responses. This knowledge may help define the mechanism(s) by which the brain and kidney maintain oxygen homeostasis during anemia. Copyright © 2014 the American Physiological Society.

  1. Cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser.

    PubMed

    Alexsandra da Silva Neto Trajano, Larissa; da Silva, Camila Luna; de Carvalho, Simone Nunes; Cortez, Erika; Mencalha, André Luiz; de Souza da Fonseca, Adenilson; Stumbo, Ana Carolina

    2016-07-01

    Low-level infrared laser is considered safe and effective for treatment of muscle injuries. However, the mechanism involved on beneficial effects of laser therapy are not understood. The aim was to evaluate cell viability, reactive oxygen species, apoptosis, and necrosis in myoblast cultures exposed to low-level infrared laser at therapeutic fluences. C2C12 myoblast cultures at different (2 and 10 %) fetal bovine serum (FBS) concentrations were exposed to low-level infrared laser (808 nm, 100 mW) at different fluences (10, 35, and 70 J/cm(2)) and evaluated after 24, 48, and 72 h. Cell viability was evaluated by WST-1 assay; reactive oxygen species (ROS), apoptosis, and necrosis were evaluated by flow cytometry. Cell viability was decreased atthe lowest FBS concentration. Laser exposure increased the cell viability in myoblast cultures at 2 % FBS after 48 and 72 h, but no significant increase in ROS was observed. Apoptosis was decreased at the higher fluence and necrosis was increased at lower fluence in myoblast cultures after 24 h of laser exposure at 2 % FBS. No laser-induced alterations were obtained at 10 % FBS. Results show that level of reactive oxygen species is not altered, at least to those evaluated in this study, but low-level infrared laser exposure affects cell viability, apoptosis, and necrosis in myoblast cultures depending on laser fluence and physiologic conditions of cells.

  2. Glucose concentration alters dissolved oxygen levels in liquid cultures of Beauveria bassiana and affects formation and bioefficacy of blastospores.

    PubMed

    Mascarin, Gabriel Moura; Jackson, Mark A; Kobori, Nilce Naomi; Behle, Robert W; Dunlap, Christopher A; Delalibera Júnior, Ítalo

    2015-08-01

    The filamentous fungus Beauveria bassiana is an economically important pathogen of numerous arthropod pests and is able to grow in submerged culture as filaments (mycelia) or as budding yeast-like blastospores. In this study, we evaluated the effect of dissolved oxygen and high glucose concentrations on blastospore production by submerged cultures of two isolates of B. bassiana, ESALQ1432 and GHA. Results showed that maintaining adequate dissolved oxygen levels coupled with high glucose concentrations enhanced blastospore yields by both isolates. High glucose concentrations increased the osmotic pressure of the media and coincided with higher dissolved oxygen levels and increased production of significantly smaller blastospores compared with blastospores produced in media with lower concentrations of glucose. The desiccation tolerance of blastospores dried to less than 2.6 % moisture was not affected by the glucose concentration of the medium but was isolate dependent. Blastospores of isolate ESALQ1432 produced in media containing 140 g glucose L(-1) showed greater virulence toward whitefly nymphs (Bemisia tabaci) as compared with blastospores produced in media containing 40 g glucose L(-1). These results suggest a synergistic effect between glucose concentration and oxygen availability on changing morphology and enhancing the yield and efficacy of blastospores of B. bassiana, thereby facilitating the development of a cost-effective production method for this blastospore-based bioinsecticide.

  3. [Methemoglobinemia due to ingestion of isobutyl nitrite ('poppers')].

    PubMed

    Pruijm, M T C; de Meijer, P H E M

    2002-12-07

    Two male students, aged 20 and 21 years, developed central cyanosis shortly after drinking 5 ml of 'poppers' (isobutyl nitrite). They presented with methaemoglobinaemia and were hospitalised. After treatment with oxygen and intravenous fluids they could be discharged in good health the following day. Poppers are alkyl nitrites with vasdilative and oxidizing properties. They are used as party drugs (i.e. inhaled) because of their short-lived euphoric effect. Overdose can result in methaemoglobinaemia: the presence of oxidized haemoglobin which is unable to transport oxygen. Depending on the serum level of methaemoglobin this may result in central cyanosis, unconsciousness, coma and even death. Patients with high methaemoglobin levels should be treated with i.v. methylene blue.

  4. Oxygen-Dependent Cell-to-Cell Variability in the Output of the Escherichia coli Tor Phosphorelay.

    PubMed

    Roggiani, Manuela; Goulian, Mark

    2015-06-15

    Escherichia coli senses and responds to trimethylamine-N-oxide (TMAO) in the environment through the TorT-TorS-TorR signal transduction system. The periplasmic protein TorT binds TMAO and stimulates the hybrid kinase TorS to phosphorylate the response regulator TorR through a phosphorelay. Phosphorylated TorR, in turn, activates transcription of the torCAD operon, which encodes the proteins required for anaerobic respiration via reduction of TMAO to trimethylamine. Interestingly, E. coli respires TMAO in both the presence and absence of oxygen, a behavior that is markedly different from the utilization of other alternative electron acceptors by this bacterium. Here we describe an unusual form of regulation by oxygen for this system. While the average level of torCAD transcription is the same for aerobic and anaerobic cultures containing TMAO, the behavior across the population of cells is strikingly different under the two growth conditions. Cellular levels of torCAD transcription in aerobic cultures are highly heterogeneous, in contrast to the relatively homogeneous distribution in anaerobic cultures. Thus, oxygen regulates the variance of the output but not the mean for the Tor system. We further show that this oxygen-dependent variability stems from the phosphorelay. Trimethylamine-N-oxide (TMAO) is utilized by numerous bacteria as an electron acceptor for anaerobic respiration. In E. coli, expression of the proteins required for TMAO respiration is tightly regulated by a signal transduction system that is activated by TMAO. Curiously, although oxygen is the energetically preferred electron acceptor, TMAO is respired even in the presence of oxygen. Here we describe an interesting and unexpected form of regulation for this system in which oxygen produces highly variable expression of the TMAO utilization proteins across a population of cells without affecting the mean expression of these proteins. To our knowledge, this is the first reported example of a stimulus regulating the variance but not the mean output of a signaling system. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Cytotoxic effects of psychotropic benzofuran derivatives, N-methyl-5-(2-aminopropyl)benzofuran and its N-demethylated derivative, on isolated rat hepatocytes.

    PubMed

    Nakagawa, Yoshio; Suzuki, Toshinari; Tada, Yukie; Inomata, Akiko

    2017-03-01

    The novel psychoactive compounds derived from amphetamine have been illegally abused as recreational drugs, some of which are known to be hepatotoxic in humans and experimental animals. The cytotoxic effects and mechanisms of 5-(2-aminopropyl)benzofuran (5-APB) and N-methyl-5-(2-aminopropyl)benzofuran (5-MAPB), both of which are benzofuran analogues of amphetamine, and 3,4-methylenedioxy-N-methamphetamine (MDMA) were studied in freshly isolated rat hepatocytes. 5-MAPB caused not only concentration-dependent (0-4.0 mm) and time-dependent (0-3 h) cell death accompanied by the depletion of cellular ATP and reduced glutathione and protein thiol levels, but also accumulation of oxidized glutathione. Of the other analogues examined at a concentration of 4 mm, 5-MAPB/5-APB-induced cytotoxicity with the production of reactive oxygen species and loss of mitochondrial membrane potential was greater than that induced by MDMA. In isolated rat liver mitochondria, the benzofurans resulted in a greater increase in the rate of state 4 oxygen consumption than did MDMA, with a decrease in the rate of state 3 oxygen consumption. Furthermore, the benzofurans caused more of a rapid mitochondrial swelling dependent on the mitochondrial permeability transition than MDMA. 5-MAPB at a weakly toxic level (1 mm) was metabolized slowly: levels of 5-MAPB and 5-APB were approximately 0.9 mm and 50 μm, respectively, after 3 h incubation. Taken collectively, these results indicate that mitochondria are target organelles for the benzofuran analogues and MDMA, which elicit cytotoxicity through mitochondrial failure, and the onset of cytotoxicity may depend on the initial and/or residual concentrations of 5-MAPB rather than on those of its metabolite 5-APB. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  7. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  8. Quantifying the correlation between spatially defined oxygen gradients and cell fate in an engineered three-dimensional culture model.

    PubMed

    Ardakani, Amir G; Cheema, Umber; Brown, Robert A; Shipley, Rebecca J

    2014-09-06

    A challenge in three-dimensional tissue culture remains the lack of quantitative information linking nutrient delivery and cellular distribution. Both in vivo and in vitro, oxygen is delivered by diffusion from its source (blood vessel or the construct margins). The oxygen level at a defined distance from its source depends critically on the balance of diffusion and cellular metabolism. Cells may respond to this oxygen environment through proliferation, death and chemotaxis, resulting in spatially resolved gradients in cellular density. This study extracts novel spatially resolved and simultaneous data on tissue oxygenation, cellular proliferation, viability and chemotaxis in three-dimensional spiralled, cellular collagen constructs. Oxygen concentration gradients drove preferential cellular proliferation rates and viability in the higher oxygen zones and induced chemotaxis along the spiral of the collagen construct; an oxygen gradient of 1.03 mmHg mm(-1) in the spiral direction induced a mean migratory speed of 1015 μm day(-1). Although this movement was modest, it was effective in balancing the system to a stable cell density distribution, and provided insights into the natural cell mechanism for adapting cell number and activity to a prevailing oxygen regime.

  9. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. © 2015 American Institute of Chemical Engineers.

  10. Pericellular oxygen concentration of cultured primary human trophoblasts

    PubMed Central

    Chen, Baosheng; Longtine, Mark S.; Nelson, D. Michael

    2012-01-01

    Introduction Oxygen is pivotal in placental development and function. In vitro culture of human trophoblasts provides a useful model to study this phenomenon, but a hotly debated issue is whether or not the oxygen tension of the culture conditions mimics in vivo conditions. We tested the hypothesis that ambient oxygen tensions in culture reflect the pericellular oxygen levels. Methods We used a microelectrode oxygen sensor to measure the concentration of dissolved oxygen in the culture medium equilibrated with 21%, 8% or <0.5% oxygen. Results The concentration of oxygen in medium without cells resembled that in the ambient atmosphere. The oxygen concentration present in medium bathing trophoblasts was remarkably dependent on the depth within the medium where sampling occurred, and the oxygen concentration within the overlying atmosphere was not reflected in medium immediately adjacent to the cells. Indeed, the pericellular oxygen concentration was in a range that most would consider severe hypoxia, at ≤ 0.6% oxygen or about 4.6 mm Hg, when the overlying atmosphere was 21% oxygen. Conclusions We conclude that culture conditions of 21% oxygen are unable to replicate the pO2 of 40–60 mm Hg commonly attributed to the maternal blood in the intervillous space in the second and third trimesters of pregnancy. We further surmise that oxygen atmospheres in culture conditions between 0.5% and 21% provide different oxygen fluxes in the immediate pericellular environment yet can still yield insights into the responses of human trophoblast to different oxygen conditions. PMID:23211472

  11. Neonatal oxidative stress depends on oxygen blood pressure in umbilical artery.

    PubMed

    Proietti, F; De Bernardo, G; Longini, M; Sordino, D; Scaramuzzini, G; Tataranno, M L; Belvisi, E; Bazzini, F; Perrone, S; Buonocore, G

    2016-01-01

    With advancing gestation, partial pressure of oxygen (pO2) and pH fall significantly. Hypoxia is a main factor inducing free radical generation and thereby oxidative stress (OS). Placental and fetal tissue response when oxygen becomes restricted is complex and partially known. We tested the hypothesis that changes in umbilical artery and vein blood gas concentrations modulate OS occurrence in the newborn. Seventy umbilical artery and vein plasma samples were collected from healthy term newborns immediately after delivery. F2 Isoprostanes (F2-Isop) were measured in all samples as reliable markers of lipid peroxidation. Significantly lower pCO2 and higher pO2 and pH were found in umbilical vein than in artery, as expected. A positive correlation was detected between pH and pO2 only in umbilical artery (p=0.019). F2-Isop levels were no different between artery and vein in cord blood. Significant correlations were found between F2-Isop and pCO2 (p=0.025) as well as between F2-Isop and pH in umbilical vein (p=0.027). F2-Isop correlated with pCO2 (p=0.007) as well as with pO2 values (p=0.005) in umbilical artery blood. Oxidative stress (OS) in newborns depends on oxygen concentrations in umbilical artery. OS biomarkers significantly correlate with pO2 and in umbilical artery but not in umbilical vein. In normoxic conditions fetal-maternal gas exchanges occurring in placenta re-establish normal higher oxygen levels in umbilical vein than artery, with a normal production of free radicals without any deleterious effects.

  12. Module for Oxygenating Water without Generating Bubbles

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia; Sidik, Reyimjan; Kim, Jinseong

    2004-01-01

    A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gas-treatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase. The present oxygenation module (see Figure 1) is a modified version of a commercial module that contains >100 hollow polypropylene fibers with a nominal pore size of 0.05 m and a total surface area of 0.5 m2. The module was originally designed for oxygenation in a bioreactor, with no water flowing around or inside the tubes. The modification, made to enable the use of the module to oxygenate flowing water, consisted mainly in the encapsulation of the fibers in a tube of Tygon polyvinyl chloride (PVC) with an inside diameter of 1 in. (approx.=25 mm). In operation, water is pumped along the insides of the hollow fibers and oxygen gas is supplied to the space outside the hollow tubes inside the PVC tube. In tests, the pressure drops of water and oxygen in the module were found to be close to zero at water-flow rates ranging up to 320 mL/min and oxygen-flow rates up to 27 mL/min. Under all test conditions, no bubbles were observed at the water outlet. In some tests, flow rates were chosen to obtain dissolved-oxygen concentrations between 25 and 31 parts per million (ppm) . approaching the saturation level of approx.=35 ppm at a temperature of 20 C and pressure of 1 atm (approx.=0.1 MPa). As one would expect, it was observed that the time needed to bring a flow of water from an initial low dissolved-oxygen concentration (e.g., 5 ppm) to a steady high dissolved-oxygen concentration at or near the saturation level depends on the rates of flow of both oxygen and water, among other things. Figure 2 shows the results of an experiment in which a greater flow of oxygen was used during the first few tens of minutes to bring the concentration up to approx.=25 ppm, then a lesser flow was used to maintain the concentration.

  13. Nitric oxide-mediated suppression of 2,3-bisphosphoglycerate synthesis: therapeutic relevance for environmental hypoxia and sickle cell disease.

    PubMed

    Bertrand, R

    2012-09-01

    Though hemoglobin (Hb) is best known for transporting oxygen and metabolic wastes throughout the circulatory system, this erythrocyte protein also acts as a hypoxic sensor, its oxygen saturation dependent on the oxygen partial pressure (pO(2)) which varies throughout the vasculature. The production and transport of the endogenous vasodilator nitric oxide (NO) by Hb is dependent on Hb's oxygen saturation, thereby allowing the protein to auto-regulate blood flow efficiency to meet the relative demands of respiring tissues. Erythrocyte concentrations of 2,3-bisphosphoglycerate (BPG), an enhancer of oxygen off-loading from Hb, is very sensitive to changes in glycolytic rates because its synthesis by BPG synthase is dependent on the availability of the glycolytic intermediate 1,3-bisphosphoglycerate. BPG synthase, as well as some glycolytic enzymes, are also very sensitive to pH changes, and variations in BPG levels have direct consequences on the oxygen off-loading function of Hb. I hypothesize that NO may suppress BPG production by (1) inhibiting glyceraldehyde-3-phosphate dehydrogenase (G3PDH), the most critical glycolytic enzyme for the bioavailability of 1,3-bisphosphoglycerate; and to a lesser extent by (2) associated pH changes in the deoxy-Hb-catalyzed depletion of nitrite, a metabolic reservoir of NO. Both mechanisms are favored in low pO(2) environments where BPG is most needed to maximize oxygen off-loading, indicating that the auto-regulatory link between NO and Hb may have inadvertently linked Hb and BPG synthesis in an unfavorable manner. However, for reasons discussed, NO-mediated suppression of BPG may be advantageous in some circumstances; namely, for individuals living at high altitudes and those with the blood disorder sickle cell anemia. This hypothesis is thus relevant to respiratory health under both normative conditions as well as under hypoxic stress. The potential relevance of the hypothesis to comparative animal physiology and evolutionary biology is also briefly described. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Oxygen dependence of endothelium-dependent vasodilation: importance in chronic obstructive pulmonary disease.

    PubMed

    Keymel, Stefanie; Schueller, Benedikt; Sansone, Roberto; Wagstaff, Rabea; Steiner, Stephan; Kelm, Malte; Heiss, Christian

    2018-03-01

    Epidemiological studies have shown increased morbidity and mortality in patients with coronary artery disease (CAD) and chronic obstructive pulmonary disease (COPD). We aimed to characterize the oxygen dependence of endothelial function in patients with CAD and coexisting COPD. In CAD patients with and without COPD ( n = 33), we non-invasively measured flow-mediated dilation (FMD) and intima-media thickness (IMT) of the brachial artery (BA), forearm blood flow (FBF), and perfusion of the cutaneous microcirculation with laser Doppler perfusion imaging (LDPI). In an experimental setup, vascular function was assessed in healthy volunteers ( n = 5) breathing 12% oxygen or 100% oxygen in comparison to room air. COPD was associated with impaired FMD (3.4 ±0.5 vs. 4.2 ±0.6%; p < 0.001) and increased IMT (0.49 ±0.04 vs. 0.44 ±0.04 mm; p <0.01), indicating functional and structural alterations of the BA in COPD. Forearm blood flow and LDPI were comparable between the groups. Flow-mediated dilation correlated with capillary oxygen pressure (pO 2 , r = 0.608). Subgroup analysis in COPD patients with pO 2 > 65 mm Hg and pO 2 ≤ 65 mm Hg revealed even lower FMD in patients with lower pO 2 (3.0 ±0.5 vs. 3.7 ±0.4%; p < 0.01). Multivariate analysis showed that pO 2 was a predictor of FMD independent of the forced expiratory volume and pack years. Exposure to hypoxic air led to an acute decrease in FMD, whereby exposure to 100% oxygen did not change vascular function. Our data suggest that in CAD patients with COPD, decreased systemic oxygen levels lead to endothelial dysfunction, underlining the relevance of cardiopulmonary interaction and the potential importance of pulmonary treatment in secondary prevention of vascular disease.

  15. Simulating biodegradation of toluene in sand column experiments at the macroscopic and pore-level scale for aerobic and denitrifying conditions

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-su; Jaffé, Peter R.; Young, Lily Y.

    2004-04-01

    Heterotropic bacteria can degrade organic substrates utilizing different terminal electron acceptors. The sequence of electron acceptor utilization depends on the energy yield of the individual reaction pathway, which decreases as the redox potential decreases. Due to these differences in energy yield, and an inhibiting activity of oxygen on some enzymatic processes, the simultaneous utilization of oxygen and nitrate as terminal electron acceptors may not occur for many degradation processes, unless the oxygen concentration falls below a given threshold level (about 0.2 mg/l). Two sand column experiments were conducted, with toluene as the carbon source, and showed an apparent simultaneous utilization of oxygen and nitrate as electron acceptors in regions where the oxygen concentration was significantly higher (⩾1.1 mg/l) than the above mentioned threshold concentration. Results from aerobic and anaerobic plate-count analyses showed growth of both aerobes and denitrifiers in the zone of the column where simultaneous utilization of oxygen and nitrate was observed. From these observations, it was postulated that the porous media contained oxygen-free microlocations where the denitrifiers were able to degrade the toluene. To simulate the observed dynamics, a dual biofilm model was implemented. This model formulation assumes that the biofilm is composed of two distinct layers, where the outer layer is colonized by aerobic bacteria and the inner layer by denitrifying bacteria. The thickness of the aerobic layer is such that oxygen is depleted at the boundary of these two layers, resulting in oxygen-free microlocations that allows denitrification to proceed, even though oxygen is still present in the bulk fluid phase. The model simulations compared well to the experimental profiles. Model analyses indicated that changes in physical, chemical, and hydrologic parameters could change the length and location of the zone where at the macroscopic level, oxygen and nitrate are utilized simultaneously. Comparisons of the proposed model to macroscopic modeling approaches showed that a dual biofilm model is able to describe the simultaneous utilization of oxygen and nitrate more accurately.

  16. Electrical and structural properties of TiO2-δ thin film with oxygen vacancies prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Kawamura, Kinya; Suzuki, Naoya; Tsuchiya, Takashi; Shimazu, Yuichi; Minohara, Makoto; Kobayashi, Masaki; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    Anatase TiO2-δ thin film was prepared by RF magnetron sputtering using oxygen radical and Ti-metal target. Degrees of the TiO2-δ crystal orientation in the thin film depends of the oxygen gas pressure (P\\text{O2}) in the radical gun. The (004)- and (112)-oriented TiO2-δ thin films crystallized without postannealing have the mixed valence Ti4+/Ti3+ state. The electrical conductivities, which corresponds to n-type oxide semiconductor, is higher in the case of (004)-oriented TiO2-δ thin film containing with high concentration of oxygen vacancy. The donor band of TiO2-δ thin film is observed at ˜1.0 eV from the Fermi level (E F). The density-of-state at E F is higher in (004)-oriented TiO2-δ thin film. The above results indicate that the oxygen vacancies can control by changing the P\\text{O2} of the oxygen radical.

  17. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    PubMed

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  18. Hypoxic pulmonary vasoconstriction requires connexin 40–mediated endothelial signal conduction

    PubMed Central

    Wang, Liming; Yin, Jun; Nickles, Hannah T.; Ranke, Hannes; Tabuchi, Arata; Hoffmann, Julia; Tabeling, Christoph; Barbosa-Sicard, Eduardo; Chanson, Marc; Kwak, Brenda R.; Shin, Hee-Sup; Wu, Songwei; Isakson, Brant E.; Witzenrath, Martin; de Wit, Cor; Fleming, Ingrid; Kuppe, Hermann; Kuebler, Wolfgang M.

    2012-01-01

    Hypoxic pulmonary vasoconstriction (HPV) is a physiological mechanism by which pulmonary arteries constrict in hypoxic lung areas in order to redirect blood flow to areas with greater oxygen supply. Both oxygen sensing and the contractile response are thought to be intrinsic to pulmonary arterial smooth muscle cells. Here we speculated that the ideal site for oxygen sensing might instead be at the alveolocapillary level, with subsequent retrograde propagation to upstream arterioles via connexin 40 (Cx40) endothelial gap junctions. HPV was largely attenuated by Cx40-specific and nonspecific gap junction uncouplers in the lungs of wild-type mice and in lungs from mice lacking Cx40 (Cx40–/–). In vivo, hypoxemia was more severe in Cx40–/– mice than in wild-type mice. Real-time fluorescence imaging revealed that hypoxia caused endothelial membrane depolarization in alveolar capillaries that propagated to upstream arterioles in wild-type, but not Cx40–/–, mice. Transformation of endothelial depolarization into vasoconstriction involved endothelial voltage-dependent α1G subtype Ca2+ channels, cytosolic phospholipase A2, and epoxyeicosatrienoic acids. Based on these data, we propose that HPV originates at the alveolocapillary level, from which the hypoxic signal is propagated as endothelial membrane depolarization to upstream arterioles in a Cx40-dependent manner. PMID:23093775

  19. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation.

    PubMed

    Licata, Stephanie C; Lowen, Steven B; Trksak, George H; Maclean, Robert R; Lukas, Scott E

    2011-08-15

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABA(A) receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 min after acute oral administration of zolpidem (0, 5, 10, or 20mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem's modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABA(A) receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Synthetic Generation of Myocardial Blood-Oxygen-Level-Dependent MRI Time Series via Structural Sparse Decomposition Modeling

    PubMed Central

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A.

    2014-01-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for Cardiac Phase-resolved Blood-Oxygen-Level-Dependent (CP–BOLD) MRI. CP–BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by (a) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and (b) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease. PMID:24691119

  1. Synthetic generation of myocardial blood-oxygen-level-dependent MRI time series via structural sparse decomposition modeling.

    PubMed

    Rusu, Cristian; Morisi, Rita; Boschetto, Davide; Dharmakumar, Rohan; Tsaftaris, Sotirios A

    2014-07-01

    This paper aims to identify approaches that generate appropriate synthetic data (computer generated) for cardiac phase-resolved blood-oxygen-level-dependent (CP-BOLD) MRI. CP-BOLD MRI is a new contrast agent- and stress-free approach for examining changes in myocardial oxygenation in response to coronary artery disease. However, since signal intensity changes are subtle, rapid visualization is not possible with the naked eye. Quantifying and visualizing the extent of disease relies on myocardial segmentation and registration to isolate the myocardium and establish temporal correspondences and ischemia detection algorithms to identify temporal differences in BOLD signal intensity patterns. If transmurality of the defect is of interest pixel-level analysis is necessary and thus a higher precision in registration is required. Such precision is currently not available affecting the design and performance of the ischemia detection algorithms. In this work, to enable algorithmic developments of ischemia detection irrespective to registration accuracy, we propose an approach that generates synthetic pixel-level myocardial time series. We do this by 1) modeling the temporal changes in BOLD signal intensity based on sparse multi-component dictionary learning, whereby segmentally derived myocardial time series are extracted from canine experimental data to learn the model; and 2) demonstrating the resemblance between real and synthetic time series for validation purposes. We envision that the proposed approach has the capacity to accelerate development of tools for ischemia detection while markedly reducing experimental costs so that cardiac BOLD MRI can be rapidly translated into the clinical arena for the noninvasive assessment of ischemic heart disease.

  2. Contrasting neural effects of aging on proactive and reactive response inhibition.

    PubMed

    Bloemendaal, Mirjam; Zandbelt, Bram; Wegman, Joost; van de Rest, Ondine; Cools, Roshan; Aarts, Esther

    2016-10-01

    Two distinct forms of response inhibition may underlie observed deficits in response inhibition in aging. We assessed whether age-related neurocognitive impairments in response inhibition reflect deficient reactive inhibition (outright stopping) or also deficient proactive inhibition (anticipatory response slowing), which might be particularly evident with high information load. We used functional magnetic resonance imaging in young (n = 25, age range 18-32) and older adults (n = 23, 61-74) with a stop-signal task. Relative to young adults, older adults exhibited impaired reactive inhibition (i.e., longer stop-signal reaction time) and increased blood oxygen level-dependent (BOLD) signal for successful versus unsuccessful inhibition in the left frontal cortex and cerebellum. Furthermore, older adults also exhibited impaired proactive slowing, but only as a function of information load. This load-dependent behavioral deficit was accompanied by a failure to increase blood oxygen level-dependent (BOLD) signal under high information load in lateral frontal cortex, presupplementary motor area and striatum. Our findings suggest that inhibitory deficits in older adults are caused both by reduced stopping abilities and by diminished preparation capacity during information overload. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells.

    PubMed

    Zhao, Xinyuan; Xing, Fengjun; Cong, Yewen; Zhuang, Yin; Han, Muxi; Wu, Zhiqiang; Yu, Shali; Wei, Haiyan; Wang, Xiaoke; Chen, Gang

    2017-12-01

    Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. WE-FG-BRA-03: Oxygen Interplay in Hypofractionated Radiotherapy: A Hidden Opportunity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kissick, M; Campos, D; Desai, V

    2016-06-15

    Purpose: Local oxygen during a radiotherapy fraction has been shown to change over a full range of the oxygen enhancement ratio (OER) during the same time scale as the treatment fraction. Interplay with local oxygen is then likely a concern, especially for hypofractionation. Our experiments that show a strong role for metabolic dynamics suggesting one could manipulate this interplay for more efficacious treatments. Methods: Two published experiments are presented with the same human head and neck cancer cell line (UM-SCC-22B). One is a cell-specific in vitro prompt response to a 10 Gy dose of orthovotage radiation using fluorescence lifetime imagingmore » (FLIM), benchmarked with a Seahorse assay. The other in vivo study uses autocorrelation analysis with blood oxygen level dependent magnetic resonance imaging (MRI-BOLD) on xenografts. In vivo results are verified with diffuse optics using spectra fitting and photoacoustic measurements. All these measurements are at high time resolution: sampling is one per minute. Results: Interplay happens when the radiosensitivity modulates at the same time scale as the radiation. These results show dynamics at these time scales. 1. The dominant time scale of the acute hypoxia in cell line xenografts is shown to be on the order of minutes to tens of minutes: similar to a metabolic oscillation known as the ‘glycolytic oscillator.’ 2. The radiation dose itself alters metabolism within minutes to tens of minutes also. Conclusion: These results vary with cell type. There is a possibility that special timing and dose levels could be used for radiation. Gating could be used for maximal oxygen during treatment. There is an analogy to the interplay discussions with tumor motion, except that an oxygen interplay could more likely be patient-specific at a more fundamental level.« less

  5. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  6. Ursodeoxycholic acid inhibits overexpression of P-glycoprotein induced by doxorubicin in HepG2 cells.

    PubMed

    Komori, Yuki; Arisawa, Sakiko; Takai, Miho; Yokoyama, Kunihiro; Honda, Minako; Hayashi, Kazuhiko; Ishigami, Masatoshi; Katano, Yoshiaki; Goto, Hidemi; Ueyama, Jun; Ishikawa, Tetsuya; Wakusawa, Shinya

    2014-02-05

    The hepatoprotective action of ursodeoxycholic acid (UDCA) was previously suggested to be partially dependent on its antioxidative effect. Doxorubicin (DOX) and reactive oxygen species have also been implicated in the overexpression of P-glycoprotein (P-gp), which is encoded by the MDR1 gene and causes antitumor multidrug resistance. In the present study, we assessed the effects of UDCA on the expression of MDR1 mRNA, P-gp, and intracellular reactive oxygen species levels in DOX-treated HepG2 cells and compared them to those of other bile acids. DOX-induced increases in reactive oxygen species levels and the expression of MDR1 mRNA were inhibited by N-acetylcysteine, an antioxidant, and the DOX-induced increase in reactive oxygen species levels and DOX-induced overexpression of MDR1 mRNA and P-gp were inhibited by UDCA. Cells treated with UDCA showed improved rhodamine 123 uptake, which was decreased in cells treated with DOX alone. Moreover, cells exposed to DOX for 24h combined with UDCA accumulated more DOX than that of cells treated with DOX alone. Thus, UDCA may have inhibited the overexpression of P-gp by suppressing DOX-induced reactive oxygen species production. Chenodeoxycholic acid (CDCA) also exhibited these effects, whereas deoxycholic acid and litocholic acid were ineffective. In conclusion, UDCA and CDCA had an inhibitory effect on the induction of P-gp expression and reactive oxygen species by DOX in HepG2 cells. The administration of UDCA may be beneficial due to its ability to prevent the overexpression of reactive oxygen species and acquisition of multidrug resistance in hepatocellular carcinoma cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Sediment Sulfur Isotopes Reflect Seawater Oxygen Rise in Neoarchean

    NASA Astrophysics Data System (ADS)

    Fakhraee, M.; Crowe, S.; Katsev, S.

    2017-12-01

    The oxygenation of the ocean-atmosphere system is recorded in S isotopes preserved in sedimentary pyrites. Disappearance of mass independent fractionation of S (S-MIF) around 2.45 Ga signals the first large-scale oxygenation of the atmosphere (the GOE), while a narrow range of pyritic δ34S during the Archean eon suggests limited oxidative cycling of S. Both δ34S and S-MIF ranges, however, undergo a clear and unexplained expansion in the Neoarchean between 2.7 and 2.45 Ga, indicating a change in global S-cycling. By analyzing the preservation patterns of isotopic signals with a 1D reaction-transport model, we show that the rock record points to the rise of oxygen in shallow marine environments around 2.7 billion years ago. The model tracks d34S and Δ33S isotopic transformations during early diagenesis in a reaction-transport framework. The results indicate that δ34S and MIF signatures in >2.7Ga sulfides require deposition from anoxic or minimally oxygenated seawater, whereas the 2.7-2.4 Ga expansion in both δ34S and D33S ranges points to at least localized accumulation oxygen to low μM levels, accompanied by a moderate rise in sulfate from low μM concentrations to up to 200 μM. In contrast to the role of oxygen in the atmosphere where it suppresses the production of MIF, oxygen in seawater at levels below 25 μM does not necessarily suppress the MIF preservation, which instead depends on the availability of reactive organic matter, sulfate, and electron acceptors for sulfide re-oxidation. The S-isotopes in Neoarchean sulfides thus paint a picture of gradual oxygenation of shallow marine environments under a nearly anoxic atmosphere where the atmospherically produced S isotopic signals are overprinted by increasingly oxidative diagenesis, rising sulfate levels, and increasing organic sedimentation.

  8. Effects of oxygen limitation on sugar metabolism in yeasts: a continuous-culture study of the Kluyver effect.

    PubMed

    Weusthuis, R A; Visser, W; Pronk, J T; Scheffers, W A; van Dijken, J P

    1994-04-01

    Growth and metabolite formation were studied in oxygen-limited chemostat cultures of Saccharomyces cerevisiae CBS 8066 and Candida utilis CBS 621 growing on glucose or maltose at a dilution rate of 0.1 h-1. With either glucose or maltose S. cerevisiae could be grown under dual limitation of oxygen and sugar. Respiration and alcoholic fermentation occurred simultaneously and the catabolite fluxes through these processes were dependent on the magnitude of the oxygen feed. C. utilis could also be grown under dual limitation of glucose and oxygen. However, at very low oxygen feed rates (i.e. below 4 mmol l-1 h-1) growth was limited by oxygen only, as indicated by the high residual glucose concentration in the culture. In contrast to S. cerevisiae, C. utilis could not be grown anaerobically at a dilution rate of 0.1 h-1. With C. utilis absence of oxygen resulted in wash-out, despite the presence of ergosterol and Tween-80 in the growth medium. The behaviour of C. utilis with respect to maltose utilization in oxygen-limited cultures was remarkable: alcoholic fermentation did not occur and the amount of maltose metabolized was dependent on the oxygen supply. Oxygen-limited cultures of C. utilis growing on maltose always contained high residual sugar concentrations. These observations throw new light on the so-called Kluyver effect. Apparently, maltose is a non-fermentable sugar for C. utilis CBS 621, despite the fact that it can serve as a substrate for growth of this facultatively fermentative yeast. This is not due to the absence of key enzymes of alcoholic fermentation. Pyruvate decarboxylase and alcohol dehydrogenase were present at high levels in maltose-utilizing cells of C. utilis grown under oxygen limitation. It is concluded that the Kluyver effect, in C. utilis growing on maltose, results from a regulatory mechanism that prevents the sugar from being fermented. Oxygen is not a key factor in this phenomenon since under oxygen limitation alcoholic fermentation of maltose was not triggered.

  9. Oxygen--a limiting factor for brain recovery.

    PubMed

    Hadanny, Amir; Efrati, Shai

    2015-09-01

    Effective brain metabolism is highly dependent on a narrow therapeutic window of oxygen. In major insults to the brain (e.g., intracerebral hemorrhage), a slight decrease in oxygen supply, as occurs in a hypobaric environment at high altitude, has devastating effects on the injured brain tissue. Conversely, increasing brain oxygenation, by the use of hyperbaric oxygen therapy, can improve brain metabolism and its dependent regenerative processes.

  10. Flipper stroke rate and venous oxygen levels in free-ranging California sea lions.

    PubMed

    Tift, Michael S; Hückstädt, Luis A; McDonald, Birgitte I; Thorson, Philip H; Ponganis, Paul J

    2017-04-15

    The depletion rate of the blood oxygen store, development of hypoxemia and dive capacity are dependent on the distribution and rate of blood oxygen delivery to tissues while diving. Although blood oxygen extraction by working muscle would increase the blood oxygen depletion rate in a swimming animal, there is little information on the relationship between muscle workload and blood oxygen depletion during dives. Therefore, we examined flipper stroke rate, a proxy of muscle workload, and posterior vena cava oxygen profiles in four adult female California sea lions ( Zalophus californianus ) during foraging trips at sea. Flipper stroke rate analysis revealed that sea lions minimized muscle metabolism with a stroke-glide strategy when diving, and exhibited prolonged glides during the descent of deeper dives (>100 m). During the descent phase of these deep dives, 55±21% of descent was spent gliding, with the longest glides lasting over 160 s and covering a vertical distance of 340 m. Animals also consistently glided to the surface from 15 to 25 m depth during these deeper dives. Venous hemoglobin saturation ( S O 2 ) profiles were highly variable throughout dives, with values occasionally increasing during shallow dives. The relationship between S O 2 and flipper stroke rate was weak during deeper dives, while this relationship was stronger during shallow dives. We conclude that (1) the depletion of oxygen in the posterior vena cava in deep-diving sea lions is not dependent on stroke effort, and (2) stroke-glide patterns during dives contribute to a reduction of muscle metabolic rate. © 2017. Published by The Company of Biologists Ltd.

  11. Symmetry of the oxygen hole states in Bi 2Sr 2CaCu 2O 8 investigated by XAS

    NASA Astrophysics Data System (ADS)

    Kuiper, P.; Grioni, M.; Sawatzky, G. A.; Mitzi, D. B.; Kapitulnik, A.; Santaniello, A.; de Padova, P.; Thiry, P.

    1989-02-01

    We have observed strong polarization dependence in the X-ray absorption near the oxygen K edge in a single crystal of Bi 2Sr 2CaCu 2O 8 ( Tc=85 K). The results show that O-derived holes near the Fermi-level have p x, y (perpendicular to the c-axis) symmetry. Some consequences for models of superconductivity are discussed. The concentration of holes is estimated to be about equal to that in YBa 2Cu 3O 7.

  12. The Effects of Oxygen Concentration on Benthic Foraminiferal Growth and Size

    NASA Astrophysics Data System (ADS)

    Ng, B.; Keating-Bitonti, C.; Payne, J.

    2015-12-01

    Many organisms use oxygen through cellular respiration in order to gain energy. For this reason, oxygen has a significant influence on organism size and growth. The amount of oxygen an organism needs depends on its metabolic demand, which is partially a function organism size (i.e., mass). The Santa Monica Basin (SMB) is an oxygen minimum zone located off the southern coast of California that maintains a steep oxygen gradient and is thus an ideal location for conducting research on how oxygen influences organism size. Here we use benthic foraminifera, widespread single-celled protists that produce shells (tests), to study the controls of oxygen on organism size. Because cell mass and cell volume are correlated, we study trends in the log test volume of four abundant species from SMB: Uvigerina peregrina, Bolivina spissa, B. argentea, Loxostomum pseudobeyrichi. These foraminifera make multi-chambered tests, thus we also count the number of chambers per specimen in order to further assess their growth under varying oxygen concentrations. We analyzed the data using quantile regressions to determine trends in not only median values of the log test volume and number of chambers as a function of oxygen concentrations, but also in the 10th, 25th, 75th, and 90th percentiles because oxygen availability often constrains the maximum and minimum size of organisms. Our results show a positive correlation between oxygen concentration and the maximum log test volumes of L. pseudobeyrichi and B. argentea, supporting our hypothesis. However, we observed a negative correlation between oxygen concentration and the maximum percentiles of log test volume in U. peregrina. Nevertheless, U. peregrina still displays a positive correlation between chamber number and oxygen concentrations in line with our hypothesis. The preponderance of trends supporting a direct correlation between log test volume or chamber number and oxygen concentration suggest that oxygen limits the maximum obtainable size of benthic foraminifera through its effects on test volume or chamber growth. This study is important because it holds a glimpse into how changes in oxygen levels can affect organisms given current fluctuations in oxygen level around the world due to man-made climate change.

  13. In Vitro Monitoring of Total Choline Levels in a Bioartificial Pancreas: 1H NMR Spectroscopic Studies of the Effects of Oxygen Level

    NASA Astrophysics Data System (ADS)

    Long, Robert C.; Papas, Klearchos K.; Sambanis, Athanassios; Constantinidis, Ioannis

    2000-09-01

    This investigation implements specifically designed solvent-suppressed adiabatic pulses whose properties make possible the long-term monitoring of 1H NMR detectable metabolites from alginate/poly-l-lysine/alginate (APA)-encapsulated βTC3 cells. Our encapsulated preparations were maintained in a perfusion bioreactor for periods exceeding 30 days. During this prolonged cultivation period, the cells were exposed to repetitive hypoxic episodes of 4 and 24 h. The ratio of the total choline signal (3.20 ppm) to the reference signal (observed at 0.94 ppm assigned to isoleucine, leucine, and valine) decreased by 8-10% for the 4-h and by 20-32% for the 24-h episodes and returned to its prehypoxic level upon reoxygenation. The decrease in the mean value of total choline to reference signal ratio for three 4-h and two 24-h episodes in two different cultures was highly significant (P < 0.01). The rate of recovery by this ratio was slower than the rates of recovery by oxygen consumption, lactate production, or glucose consumption. A step-up in oxygen level led to a new, higher value for the total choline to reference ratio. From spectra of extracts at 400 MHz, it was determined that 63.6% of the total choline signal is due to intracellular phosphorylcholine. Therefore, it is inferred that the observed changes in total choline signal are linked to an oxygen level dependence of the intracellular phosphorylcholine. Several possible mechanisms in which oxygen may influence phosphorylcholine metabolism are suggested. In addition, the implications of these findings to the development of a noninvasive monitoring method for tissue-engineered constructs composed of encapsulated cells are discussed.

  14. GaN as an interfacial passivation layer: tuning band offset and removing fermi level pinning for III-V MOS devices.

    PubMed

    Zhang, Zhaofu; Cao, Ruyue; Wang, Changhong; Li, Hao-Bo; Dong, Hong; Wang, Wei-Hua; Lu, Feng; Cheng, Yahui; Xie, Xinjian; Liu, Hui; Cho, Kyeongjae; Wallace, Robert; Wang, Weichao

    2015-03-11

    The use of an interfacial passivation layer is one important strategy for achieving a high quality interface between high-k and III-V materials integrated into high-mobility metal-oxide-semiconductor field-effect transistor (MOSFET) devices. Here, we propose gallium nitride (GaN) as the interfacial layer between III-V materials and hafnium oxide (HfO2). Utilizing first-principles calculations, we explore the structural and electronic properties of the GaN/HfO2 interface with respect to the interfacial oxygen contents. In the O-rich condition, an O8 interface (eight oxygen atoms at the interface, corresponding to 100% oxygen concentration) displays the most stability. By reducing the interfacial O concentration from 100 to 25%, we find that the interface formation energy increases; when sublayer oxygen vacancies exist, the interface becomes even less stable compared with O8. The band offset is also observed to be highly dependent on the interfacial oxygen concentration. Further analysis of the electronic structure shows that no interface states are present at the O8 interface. These findings indicate that the O8 interface serves as a promising candidate for high quality III-V MOS devices. Moreover, interfacial states are present when such interfacial oxygen is partially removed. The interface states, leading to Fermi level pinning, originate from unsaturated interfacial Ga atoms.

  15. Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea

    NASA Astrophysics Data System (ADS)

    Ahlgren, Joakim; Grimvall, Anders; Omstedt, Anders; Rolff, Carl; Wikner, Johan

    2017-06-01

    Hypoxia and oxygen deficient zones are expanding worldwide. To properly manage this deterioration of the marine environment, it is important to identify the causes of oxygen declines and the influence of anthropogenic activities. Here, we provide a study aiming to explain the declining oxygen levels in the deep waters of the Bothnian Sea over the past 20 years by investigating data from environmental monitoring programmes. The observed decline in oxygen concentrations in deep waters was found to be primarily a consequence of water temperature increase and partly caused by an increase in dissolved organic carbon (DOC) in the seawater (R2Adj. = 0.83) as well as inflow from the adjacent sea basin. As none of the tested eutrophication-related predictors were significant according to a stepwise multiple regression, a regional increase in nutrient inputs to the area is unlikely to explain a significant portion of the oxygen decline. Based on the findings of this study, preventing the development of anoxia in the deep water of the Bothnian Sea is dependent on the large-scale measures taken to reduce climate change. In addition, the reduction of the nutrient load to the Baltic Proper is required to counteract the development of hypoxic and phosphate-rich water in the Baltic Proper, which can form deep water in the Bothnian Sea. The relative importance of these sources to oxygen consumption is difficult to determine from the available data, but the results clearly demonstrate the importance of climate related factors such as temperature, DOC and inflow from adjacent basins for the oxygen status of the sea.

  16. Low oxygen levels contribute to improve photohydrogen production in mixotrophic non-stressed Chlamydomonas cultures.

    PubMed

    Jurado-Oller, Jose Luis; Dubini, Alexandra; Galván, Aurora; Fernández, Emilio; González-Ballester, David

    2015-01-01

    Currently, hydrogen fuel is derived mainly from fossil fuels, but there is an increasing interest in clean and sustainable technologies for hydrogen production. In this context, the ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen is a promising alternative for renewable, clean-energy production. Among a diverse array of photosynthetic microorganisms able to produce hydrogen, the green algae Chlamydomonas reinhardtii is the model organism widely used to study hydrogen production. Despite the well-known fact that acetate-containing medium enhances hydrogen production in this algae, little is known about the precise role of acetate during this process. We have examined several physiological aspects related to acetate assimilation in the context of hydrogen production metabolism. Measurements of oxygen and CO2 levels, acetate uptake, and cell growth were performed under different light conditions, and oxygenic regimes. We show that oxygen and light intensity levels control acetate assimilation and modulate hydrogen production. We also demonstrate that the determination of the contribution of the PSII-dependent hydrogen production pathway in mixotrophic cultures, using the photosynthetic inhibitor DCMU, can lead to dissimilar results when used under various oxygenic regimes. The level of inhibition of DCMU in hydrogen production under low light seems to be linked to the acetate uptake rates. Moreover, we highlight the importance of releasing the hydrogen partial pressure to avoid an inherent inhibitory factor on the hydrogen production. Low levels of oxygen allow for low acetate uptake rates, and paradoxically, lead to efficient and sustained production of hydrogen. Our data suggest that acetate plays an important role in the hydrogen production process, during non-stressed conditions, other than establishing anaerobiosis, and independent of starch accumulation. Potential metabolic pathways involved in hydrogen production in mixotrophic cultures are discussed. Mixotrophic nutrient-replete cultures under low light are shown to be an alternative for the simultaneous production of hydrogen and biomass.

  17. Potential role of the glycolytic oscillator in acute hypoxia in tumors

    NASA Astrophysics Data System (ADS)

    Che Fru, Leonard; Adamson, Erin B.; Campos, David D.; Fain, Sean B.; Jacques, Steven L.; van der Kogel, Albert J.; Nickel, Kwang P.; Song, Chihwa; Kimple, Randall J.; Kissick, Michael W.

    2015-12-01

    Tumor acute hypoxia has a dynamic component that is also, at least partially, coherent. Using blood oxygen level dependent magnetic resonance imaging, we observed coherent oscillations in hemoglobin saturation dynamics in cell line xenograft models of head and neck squamous cell carcinoma. We posit a well-established biochemical nonlinear oscillatory mechanism called the glycolytic oscillator as a potential cause of the coherent oscillations in tumors. These data suggest that metabolic changes within individual tumor cells may affect the local tumor microenvironment including oxygen availability and therefore radiosensitivity. These individual cells can synchronize the oscillations in patches of similar intermediate glucose levels. These alterations have potentially important implications for radiation therapy and are a potential target for optimizing the cancer response to radiation.

  18. Lateralized Spatial and Object Memory Encoding in Entorhinal and Perirhinal Cortices

    ERIC Educational Resources Information Center

    Bellgowan, Patrick S. F.; Buffalo, Elizabeth A.; Bodurka, Jerzy; Martin, Alex

    2009-01-01

    The perirhinal and entorhinal cortices are critical components of the medial temporal lobe (MTL) declarative memory system. Study of their specific functions using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI), however, has suffered from severe magnetic susceptibility signal dropout resulting in poor…

  19. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  20. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE PAGES

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav; ...

    2017-07-03

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  1. Balance of oxygen throughout the conversion of a high-level waste melter feed to glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, SeungMin; Hrma, Pavel; Kloužek, Jaroslav

    Gases evolve from nuclear waste melter feed during conversion to glass in response to heating. This article is focused on oxygen mass balance based on the stoichiometry of feed melting reactions and evolved-gas analysis data. Whereas O 2-producing and -consuming batch-melting reactions are complete in the reacting and primary-foam layers of the cold cap, O 2 from redox reactions continues to evolve as long as melt temperature increases, and thus generates secondary foam. Also, we discuss the relationship between the oxygen mass balance and the temperature-dependent iron redox ratio and the O 2 partial pressure, as they evolve during themore » feed-to-glass conversion.« less

  2. Photodynamic therapy: computer modeling of diffusion and reaction phenomena

    NASA Astrophysics Data System (ADS)

    Hampton, James A.; Mahama, Patricia A.; Fournier, Ronald L.; Henning, Jeffery P.

    1996-04-01

    We have developed a transient, one-dimensional mathematical model for the reaction and diffusion phenomena that occurs during photodynamic therapy (PDT). This model is referred to as the PDTmodem program. The model is solved by the Crank-Nicholson finite difference technique and can be used to predict the fates of important molecular species within the intercapillary tissue undergoing PDT. The following factors govern molecular oxygen consumption and singlet oxygen generation within a tumor: (1) photosensitizer concentration; (2) fluence rate; and (3) intercapillary spacing. In an effort to maximize direct tumor cell killing, the model allows educated decisions to be made to insure the uniform generation and exposure of singlet oxygen to tumor cells across the intercapillary space. Based on predictions made by the model, we have determined that the singlet oxygen concentration profile within the intercapillary space is controlled by the product of the drug concentration, and light fluence rate. The model predicts that at high levels of this product, within seconds singlet oxygen generation is limited to a small core of cells immediately surrounding the capillary. The remainder of the tumor tissue in the intercapillary space is anoxic and protected from the generation and toxic effects of singlet oxygen. However, at lower values of this product, the PDT-induced anoxic regions are not observed. An important finding is that an optimal value of this product can be defined that maintains the singlet oxygen concentration throughout the intercapillary space at a near constant level. Direct tumor cell killing is therefore postulated to depend on the singlet oxygen exposure, defined as the product of the uniform singlet oxygen concentration and the time of exposure, and not on the total light dose.

  3. [Oxidative power and intracellular distribution of mitochondria control cell oxygen regime when arterial hypoxemia occurs].

    PubMed

    Liabakh, E G; Lissov, P N

    2012-01-01

    The regulatory impact of the mitochondria spatial distribution and enlargement in their oxidative power qO2 on the tissue oxygenation of skeletal muscle during hypoxia were studied. Investigations were performed by the mathematical modeling of 3D O2 diffusion-reaction in muscle fiber. The oxygen consumption rate VO2 and tissue pO2 were analyzed in response to a decrease in arterial blood oxygen concentration from 19.5 to 10 vol. % at a moderate load (3.5 ml/min per 100 g). The cells with evenly (case 1) and unevenly (case 2) distributed mitochondria were considered. According to calculations due to a rise in mitochondria oxidative power from 3.5 to 6.5 ml/min. per 100 g of tissue it is possible to maintain muscle oxygen V(O2) at constant level of 3.5 ml/min per 100 g despite a decrease in O2 delivery. Minimum value of tissue pO2 was about 0 and an area of hypoxia appeared inside the cell in case 1. But hypoxia disappeared and minimum value of pO2 increased from 0 to 4 mm Hg if mitochondria were distributed unevenly (case 2). It is shown that the possibilities of such regulation were limited and depended on the ratio of "the degree of hypoxemia--the level of oxygen delivery." It was assumed that an increase in mitochondria enzyme activity and mitochondria migration to the places of the greatest oxygen consumption rate can improve oxygen regime in the cells in terms of their adaptation to hypoxia. It is possible that changes in mitochondrial oxidative power and their intracellular redistribution may be considered as a new dimension in regulation of cell oxygen regime.

  4. Effect of calcination routes on phase formation of BaTiO3 and their electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.

    2018-05-01

    We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.

  5. Participation of reactive oxygen species in diabetes-induced endothelial dysfunction.

    PubMed

    Zúrová-Nedelcevová, Jana; Navarová, Jana; Drábiková, Katarína; Jancinová, Viera; Petríková, Margita; Bernátová, Iveta; Kristová, Viera; Snirc, Vladimír; Nosál'ová, Viera; Sotníková, Ruzena

    2006-12-01

    In the present study, the relationship between diabetes-induced hyperglycemia, reactive oxygen species production and endothelium-mediated arterial function was examined. The effect of antioxidant on the reactive oxygen species induced damage was tested. Diabetes was induced by streptozotocin (STZ), 3 x 30 mg/kg i.p., administered on three consecutive days. After 10 weeks of diabetes, the functional state of the endothelium of the aorta was tested, endothelemia evaluation was performed and systolic blood pressure was measured. Reactive oxygen species (ROS) formation in blood and the aorta was measured using luminol-enhanced chemiluminescence (CL). Levels of reduced glutathione (GSH) were determined in the aorta, kidney, and plasma. To study the involvement of hyperglycemia in functional impairment of the endothelium, aortal rings incubated in solution with high glucose concentration were tested in in vitro experiments. After 10 weeks of diabetes, endothelial injury was observed, exhibited by diminished endothelium-dependent relaxation of the aorta, increased endothelemia and by elevated systolic blood pressure. Using luminol-enhanced CL, a significant increase of ROS production was found in arterial tissue and blood. GSH levels were significantly increased in the kidney, while there were no GSH changes in plasma and the aorta. Incubation of aortic rings in solution with high glucose concentration led to impairment of endothelium-dependent relaxation. The synthetic antioxidant SMe1EC2 was able to restore reduced endothelium-mediated relaxation. Our results suggest an important role of hyperglycemia-induced ROS production in mediating endothelial dysfunction in experimental diabetes, confirmed by CL and the protective effect of the antioxidant SMe1EC2.

  6. The Not-So-Global Blood Oxygen Level-Dependent Signal.

    PubMed

    Billings, Jacob; Keilholz, Shella

    2018-04-01

    Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.

  7. Tryptophan depletion under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through reactive oxygen species-dependent and independent pathways.

    PubMed

    Eleftheriadis, Theodoros; Pissas, Georgios; Sounidaki, Maria; Antoniadi, Georgia; Rountas, Christos; Liakopoulos, Vassilios; Stefanidis, Loannis

    2017-04-01

    In atherosclerosis-associated pathologic entities characterized by malnutrition and inflammation, L-tryptophan (TRP) levels are low. Insulin resistance is an independent cardiovascular risk factor and induces endothelial dysfunction by increasing fatty acid oxidation. It is also associated with inflammation and low TRP levels. Low TRP levels have been related to worse cardiovascular outcome. This study evaluated the effect of TRP depletion on endothelial dysfunction under conditions that imitate insulin resistance. Fatty acid oxidation, harmful pathways due to increased fatty acid oxidation, and endothelial dysfunction were assessed in primary human aortic endothelial cells cultured under normal glucose, low insulin conditions in the presence or absence of TRP. TRP depletion activated general control non-derepressible 2 kinase and inhibited aryl hydrocarbon receptor. It increased fatty acid oxidation by increasing expression and activity of carnitine palmitoyltransferase 1. Elevated fatty acid oxidation increased the formation of reactive oxygen species (ROS) triggering the polyol and hexosamine pathways, and enhancing protein kinase C activity and methylglyoxal production. TRP absence inhibited nitric oxide synthase activity in a ROS-dependent way, whereas it increased the expression of ICAM-1 and VCAM-1 in a ROS independent and possibly p53-dependent manner. Thus, TRP depletion, an amino acid whose low levels have been related to worse cardiovascular outcome and to inflammatory atherosclerosis-associated pathologic entities, under conditions that imitate insulin resistance enhances fatty acid oxidation and induces endothelial dysfunction through ROS-dependent and independent pathways. These findings may offer new insights at the molecular mechanisms involved in accelerated atherosclerosis that frequently accompanies malnutrition and inflammation.

  8. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    PubMed Central

    Müller, Jonas; Schmidt, Dominik

    2016-01-01

    Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896

  9. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions.

    PubMed

    Schneider, Volker; Müller, Jonas; Schmidt, Dominik

    2016-12-01

    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.

  10. Enhanced Biological Attenuation of Aircraft Deicing Fluid Runoff Using Constructed Wetlands

    DTIC Science & Technology

    2004-09-01

    treatment wetlands have variable water column oxygen levels depending on several factors. Atmospheric diffusion, wind action, algae, and macrophytes ...visible to the unassisted eye are called macrophytes and include the vascular, herbaceous, and woody species common to wetland environments. Microbes are...of pH in treatment wetlands shows that typical operational pH levels range from 6.5 to 7.5 13. Rooted wetland macrophytes also actively transport

  11. Sickling of red blood cells through rapid oxygen exchange in microfluidic drops.

    PubMed

    Abbyad, Paul; Tharaux, Pierre-Louis; Martin, Jean-Louis; Baroud, Charles N; Alexandrou, Antigoni

    2010-10-07

    We have developed a microfluidic approach to study the sickling of red blood cells associated with sickle cell anemia by rapidly varying the oxygen partial pressure within flowing microdroplets. By using the perfluorinated carrier oil as a sink or source of oxygen, the oxygen level within the water droplets quickly equilibrates through exchange with the surrounding oil. This provides control over the oxygen partial pressure within an aqueous drop ranging from 1 kPa to ambient partial pressure, i.e. 21 kPa. The dynamics of the oxygen exchange is characterized through fluorescence lifetime measurements of a ruthenium compound dissolved in the aqueous phase. The gas exchange is shown to occur primarily during and directly after droplet formation, in 0.1 to 0.5 s depending on the droplet diameter and speed. The controlled deoxygenation is used to trigger the polymerization of hemoglobin within sickle red blood cells, encapsulated in drops. This process is observed using polarization microscopy, which yields a robust criterion to detect polymerization based on transmitted light intensity through crossed polarizers.

  12. Macroinvertebrate short-term responses to flow variation and oxygen depletion: A mesocosm approach.

    PubMed

    Calapez, Ana R; Branco, Paulo; Santos, José M; Ferreira, Teresa; Hein, Thomas; Brito, António G; Feio, Maria João

    2017-12-01

    In Mediterranean rivers, water scarcity is a key stressor with direct and indirect effects on other stressors, such as water quality decline and inherent oxygen depletion associated with pollutants inputs. Yet, predicting the responses of macroinvertebrates to these stressors combination is quite challenging due to the reduced available information, especially if biotic and abiotic seasonal variations are taken under consideration. This study focused on the response of macroinvertebrates by drift to single and combined effects of water scarcity and dissolved oxygen (DO) depletion over two seasons (winter and spring). A factorial design of two flow velocity levels - regular and low (vL) - with three levels of oxygen depletion - normoxia, medium depletion (dM) and higher depletion (dH) - was carried out in a 5-artificial channels system, in short-term experiments. Results showed that both stressors individually and together had a significant effect on macroinvertebrate drift ratio for both seasons. Single stressor effects showed that macroinvertebrate drift decreased with flow velocity reduction and increased with DO depletion, in both winter and spring experiments. Despite single stressors opposing effects in drift ratio, combined stressors interaction (vL×dM and vL×dH) induced a positive synergistic drift effect for both seasons, but only in winter the drift ratio was different between the levels of DO depletion. Stressors interaction in winter seemed to intensify drift response when reached lower oxygen saturation. Also, drift patterns were different between seasons for all treatments, which may depend on individual's life stage and seasonal behaviour. Water scarcity seems to exacerbate the oxygen depletion conditions resulting into a greater drifting of invertebrates. The potential effects of oxygen depletion should be evaluated when addressing the impacts of water scarcity on river ecosystems, since flow reductions will likely contribute to a higher oxygen deficit, particularly in Mediterranean rivers. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The cumulative influence of hyperoxia and hypercapnia on blood oxygenation and R2*

    PubMed Central

    Faraco, Carlos C; Strother, Megan K; Siero, Jeroen CW; Arteaga, Daniel F; Scott, Allison O; Jordan, Lori C; Donahue, Manus J

    2015-01-01

    Cerebrovascular reactivity (CVR)-weighted blood-oxygenation-level-dependent magnetic resonance imaging (BOLD-MRI) experiments are frequently used in conjunction with hyperoxia. Owing to complex interactions between hyperoxia and hypercapnia, quantitative effects of these gas mixtures on BOLD responses, blood and tissue R2*, and blood oxygenation are incompletely understood. Here we performed BOLD imaging (3 T; TE/TR=35/2,000 ms; spatial resolution=3 × 3 × 3.5 mm3) in healthy volunteers (n=12; age=29±4.1 years) breathing (i) room air (RA), (ii) normocapnic–hyperoxia (95% O2/5% N2, HO), (iii) hypercapnic–normoxia (5% CO2/21% O2/74% N2, HC-NO), and (iv) hypercapnic–hyperoxia (5% CO2/95% O2, HC-HO). For HC-HO, experiments were performed with separate RA and HO baselines to control for changes in O2. T2-relaxation-under-spin-tagging MRI was used to calculate basal venous oxygenation. Signal changes were quantified and established hemodynamic models were applied to quantify vasoactive blood oxygenation, blood–water R2*, and tissue–water R2*. In the cortex, fractional BOLD changes (stimulus/baseline) were HO/RA=0.011±0.007; HC-NO/RA=0.014±0.004; HC-HO/HO=0.020±0.008; and HC-HO/RA=0.035±0.010; for the measured basal venous oxygenation level of 0.632, this led to venous blood oxygenation levels of 0.660 (HO), 0.665 (HC-NO), and 0.712 (HC-HO). Interleaving a HC-HO stimulus with HO baseline provided a smaller but significantly elevated BOLD response compared with a HC-NO stimulus. Results provide an outline for how blood oxygenation differs for several gas stimuli and provides quantitative information on how hypercapnic BOLD CVR and R2* are altered during hyperoxia. PMID:26174329

  14. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2).

    PubMed

    Ortiz-Prado, E; Natah, Siraj; Srinivasan, Sathyanarayanan; Dunn, Jeff F

    2010-11-30

    The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Effect of temperature acclimation on red blood cell oxygen affinity in Pacific bluefin tuna (Thunnus orientalis) and yellowfin tuna (Thunnus albacares).

    PubMed

    Lilly, Laura E; Bonaventura, Joseph; Lipnick, Michael S; Block, Barbara A

    2015-03-01

    Hemoglobin-oxygen (Hb-O2) binding properties are central to aerobic physiology, and must be optimized for an animal's aerobic requirements and environmental conditions, both of which can vary widely with seasonal changes or acutely with diving. In the case of tunas, the matter is further complicated by large regional temperature differences between tissues within the same animal. This study investigates the effects of thermal acclimation on red blood cell Hb-O2 binding in Pacific bluefin tuna (T. orientalis) and yellowfin tuna (T. albacares) maintained in captive tanks at acclimation temperatures of 17°, 20° and 24 °C. Oxygen binding properties of acclimated tuna isolated red blood cells were examined under varying experimental temperatures (15°-35 °C) and CO2 levels (0%, 0.5% and 1.5%). Results for Pacific bluefin tuna produced temperature-independence at 17 °C- and 20 °C-acclimation temperatures and significant reverse temperature-dependence at 24 °C-acclimation in the absence of CO2, with instances of reverse temperature-dependence in 17 °C- and 24 °C-acclimations at 0.5% and 1.5% CO2. In contrast, yellowfin tuna produced normal temperature-dependence at each acclimation temperature at 0% CO2, temperature-independence at 0.5% and 1.5% CO2, and significant reverse temperature-dependence at 17 °C-acclimation and 0.5% CO2. Thermal acclimation of Pacific bluefin tuna increased O2 binding affinity of the 17 °C-acclimation group, and produced a significantly steeper oxygen equilibrium curve slope (nH) at 24 °C-acclimation compared to the other acclimation temperatures. We discuss the potential implications of these findings below. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Thermochemical and Kinetics of Hydrazine Dehydrogenation by an Oxygen Atom in Hydrazine-Rich Systems: A Dimer Model.

    PubMed

    Spada, Rene F K; Ferrão, Luiz F A; Roberto-Neto, Orlando; Lischka, Hans; Machado, Francisco B C

    2015-12-24

    The kinetics of the reaction of N2H4 with oxygen depends sensitively on the initial conditions used. In oxygen-rich systems, the rate constant shows a conventional positive temperature dependence, while in hydrazine-rich setups the dependence is negative in certain temperature ranges. In this study, a theoretical model is presented that adequately reproduces the experimental results trend and values for hydrazine-rich environment, consisting of the hydrogen abstraction from the hydrazine (N2H4) dimer by an oxygen atom. The thermochemical properties of the reaction were computed using two quantum chemical approaches, the coupled cluster theory with single, double, and noniterative triple excitations (CCSD(T)) and the M06-2X DFT approach with the aug-cc-pVTZ and the maug-cc-pVTZ basis sets, respectively. The kinetic data were calculated with the improved canonical variational theory (ICVT) using a dual-level methodology to build the reaction path. The tunneling effects were considered by means of the small curvature tunneling (SCT) approximation. Potential wells on both sides of the reaction ((N2H4)2 + O → N2H4···N2H3 + OH) were determined. A reaction path with a negative activation energy was found leading, in the temperature range of 250-423 K, to a negative dependence of the rate constant on the temperature, which is in good agreement with the experimental measurements. Therefore, the consideration of the hydrazine dimer model provides significantly improved agreement with the experimental data and should be included in the mechanism of the global N2H4 combustion process, as it can be particularly important in hydrazine-rich systems.

  17. Unexpected hypoxia-dependent erythropoietin secretion during experimental conditions not affecting tissue oxygen supply/demand ratio.

    PubMed

    Bozzini, C E; Barceló, A C; Conti, M I; Martínez, M P; Lezón, C E; Bozzini, C; Alippi, R M

    1997-02-01

    Although a great deal of evidence supports the hypothesis that plasma erythropoietin (EPO) levels of mammals are related to the oxygen supply to the tissues relative to their oxygen needs, several observation millitate against its inherent simplicity. This study presents our results obtained from in vivo experiments that suggest that hypoxia-dependent EPO production can be altered by conditions which apparently do not modify the tissue oxygen supply/demand ratio. Hypoxia-dependent EPO production rate (EPO-PR), derived from plasma EPO titers and plasma EPO half-lives, were estimated in both transfused-polycythemic and normocythemic mouse models subjected to different treatments. From calculations of the O2 carrying capacity of blood and body O2 consumption, it was assumed that the tissue supply/demand ratios were similar in both experimental and control mice of the same model at the time of induction of EPO production. The following observations were worth noting: (1) EPO-PRs in transfused polycythemic mice whose erythropoietic rates were stimulated by intermittent exposure to hypobaria (0.5 atm, 18 hr/day x 3 weeks), phenylhydrazine administration (40 mg/kg at weekly intervals x 3 weeks) or repeated rh-EPO injections (1500 U/kg 3 times a week x 3 weeks) before transfusion were more than five times high than in comparabily polycythemic mice whose erythropoietic rates were not stimulated previously; and (2) EPO-PR in response to hypobaric hypoxia was 2.08 times normal in normocythemic mice with cyclophosphamide (100 mg/kg) induced depression of erythropoiesis, and 0.33 times normal in normocythemic mice with rh-EPO (400 U/kg x 2) induced enhancement of erythropoiesis. Although the results obtained in polycythemic mice are difficult to explain, those from normocythemic mice suggest the existence of a feedback mechanism between EPO-responsive cells and EPO-producing cells. Both demonstrate the existence of experimental conditions in which modulation of the hypoxia-dependent expression of the EPO gene appears to occur. This modulation would be dependent on factors other than oxygen.

  18. In-situ time-of-flight neutron diffraction study of the structure evolution of electrode materials in a commercial battery with LiNi0.8Co0.15Al0.05O2 cathode

    NASA Astrophysics Data System (ADS)

    Bobrikov, I. A.; Samoylova, N. Yu.; Sumnikov, S. V.; Ivanshina, O. Yu.; Vasin, R. N.; Beskrovnyi, A. I.; Balagurov, A. M.

    2017-12-01

    A commercial lithium-ion battery with LiNi0.8Co0.15Al0.05O2 (NCA) cathode has been studied in situ using high-intensity and high-resolution neutron diffraction. Structure and phase composition of the battery electrodes have been probed during charge-discharge in different cycling modes. The dependence of the anode composition on the charge rate has been determined quantitatively. Different kinetics of Li (de)intercalation in the graphite anode during charge/discharge process have been observed. Phase separation of the cathode material has not been detected in whole voltage range. Non-linear dependencies of the unit cell parameters, atomic and layer spacing on the lithium content in the cathode have been observed. Measured dependencies of interatomic spacing and interlayer spacing, and unit cell parameters of the cathode structure on the lithium content could be qualitatively explained by several factors, such as variations of oxidation state of cation in oxygen octahedra, Coulomb repulsion of oxygen layers, changes of average effective charge of oxygen layers and van der Waals interactions between MeO2-layers at high level of the NCA delithiation.

  19. Oxygen vacancy induced structural evolution of SrFeO3 -x epitaxial thin film from brownmillerite to perovskite

    NASA Astrophysics Data System (ADS)

    Roh, Seulki; Lee, Seokbae; Lee, Myounghoon; Seo, Yu-Seong; Khare, Amit; Yoo, Taesup; Woo, Sungmin; Choi, Woo Seok; Hwang, Jungseek; Glamazda, A.; Choi, K.-Y.

    2018-02-01

    We investigated SrFeO3 -x thin films on a SrTiO3 (001) substrate prepared via pulsed laser epitaxy using an optical spectroscopy technique. The oxygen vacancy level (x ) was controlled by post-annealing processes at different oxygen partial pressures. We achieved a brownmillerite (BM) structure at x =0.5 and observed the evolution of the crystal structure from BM into perovskite (PV) as the oxygen concentration increased. We observed the evolution of infrared-active phonons with respect to the oxygen concentration, which was closely related to the structural evolution observed via x-ray diffraction. We identified the phonons using the shell-model calculation. Furthermore, we studied temperature-dependent behaviors of the phonon modes of three representative samples: PV and two BMs (BMoop and BMip) with different orientations of the oxygen vacancy channel. In the BMoop sample, we observed a phonon mode, which exhibited an unusual redshift with decreasing temperature; this behavior may have been due to the apical oxygen instability in the FeO6 octahedron. Our results provide important information regarding the ionic conduction mechanism in SrFeO3 -x material systems.

  20. Influence of heat and moisture exchanger respiratory load on transcutaneous oxygenation in laryngectomized individuals: a randomized crossover study.

    PubMed

    Zuur, J Karel; Muller, Sara H; Sinaasappel, Michiel; Hart, Guus A M; van Zandwijk, Nico; Hilgers, Frans J M

    2007-12-01

    High-resistance heat and moisture exchangers (HMEs) have been reported to increase transcutaneous oxygenation (tcpO(2)) values in laryngectomized individuals and to negatively influence patient compliance. The goal of the present study was to validate earlier published results on short-term transcutaneous oxygenation changes by high-resistance HMEs. We conducted a randomized crossover study, monitoring the influence of an HME on tcpO(2) over a 2-hour time interval in 20 subjects. No evidence of an immediate HME effect (95% CI: -14.9-13.3 mm Hg, p = .91), or a time-dependent HME effect (95% CI: -.121 - .172 mm Hg/minute, p = .74), on tcpO(2) was found. After fitting the statistical model without time dependency, again no evidence of HME presence was seen (95% CI: -.5 mm Hg - 3.6 mm Hg, p = .15). In contrast to earlier suggestions, there is no evidence of increased tcpO(2) levels by high-resistance HMEs in laryngectomized individuals. Thus, using such HMEs has no added clinical value in this respect.

  1. Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning-Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor-Dependent Hippocampal Neurogenesis.

    PubMed

    Liu, Wen-Chung; Yang, San-Nan; Wu, Chih-Wei J; Chen, Lee-Wei; Chan, Julie Y H

    2016-01-01

    To test the hypothesis that hyperbaric oxygen therapy ameliorates delayed cognitive impairment after acute carbon monoxide poisoning by promoting neurogenesis through upregulating the brain-derived neurotrophic factor in the hippocampus. Laboratory animal experiments. University/Medical center research laboratory. Adult, male Sprague-Dawley rats. Rats were divided into five groups: (1) non-carbon monoxide-treated control, (2) acute carbon monoxide poisoning, (3) acute carbon monoxide poisoning followed by 7-day hyperbaric oxygen treatment, (4) carbon monoxide + hyperbaric oxygen with additional intracerebroventricular infusion of Fc fragment of tyrosine kinase receptor B protein (TrkB-Fc) chimera, and (5) acute carbon monoxide poisoning followed by intracerebroventricular infusion of brain-derived neurotrophic factor. Acute carbon monoxide poisoning was achieved by exposing the rats to carbon monoxide at 2,500 ppm for 40 minutes, followed by 3,000 ppm for 20 minutes. Hyperbaric oxygen therapy (at 2.5 atmospheres absolute with 100% oxygen for 60 min) was conducted during the first 7 days after carbon monoxide poisoning. Recombinant human TrkB-Fc chimera or brain-derived neurotrophic factor was infused into the lateral ventricle via the implanted osmotic minipump. For labeling of mitotic cells in the hippocampus, bromodeoxyuridine was injected into the peritoneal cavity. Distribution of bromodeoxyuridine and two additional adult neurogenesis markers, Ki-67 and doublecortin, in the hippocampus was evaluated by immunohistochemistry or immunofluorescence staining. Tissue level of brain-derived neurotrophic factor was assessed by enzyme-linked immunosorbent assay. Cognitive behavior was evaluated by the use of eight-arm radial maze. Acute carbon monoxide poisoning significantly suppressed adult hippocampal neurogenesis evident by the reduction in number of bromodeoxyuridine-positive, Ki-67⁺, and doublecortin⁺ cells in the subgranular zone of the dentate gyrus. This suppression of adult neurogenesis by the carbon monoxide poisoning was appreciably alleviated by early treatment of hyperbaric oxygen. The hyperbaric oxygen treatment also promoted a sustained increase in hippocampal brain-derived neurotrophic factor level. Blockade of hippocampal brain-derived neurotrophic factor signaling with intracerebroventricular infusion of recombinant human TrkB-Fc chimera significantly blunted the protection by the hyperbaric oxygen on hippocampal neurogenesis; whereas intracerebroventricular infusion of brain-derived neurotrophic factor mimicked the action of hyperbaric oxygen and preserved hippocampal neurogenesis after acute carbon monoxide poisoning. Furthermore, acute carbon monoxide poisoning resulted in a delayed impairment of cognitive function. The hyperbaric oxygen treatment notably restored the cognitive impairment in a brain-derived neurotrophic factor-dependent manner. The early hyperbaric oxygen treatment may alleviate delayed memory impairment after acute carbon monoxide poisoning by preserving adult neurogenesis via an increase in hippocampal brain-derived neurotrophic factor content.

  2. Investigating the dependence of BOLD contrast on oxidative metabolism.

    PubMed

    Schwarzbauer, C; Heinke, W

    1999-03-01

    Most functional magnetic resonance imaging (fMRI) studies are based on measuring the changes in the blood oxygenation level-dependent (BOLD) contrast that arise from a complex interplay between cerebral hemodynamics and oxidative metabolism. To separate these effects, we consecutively applied two different stimuli: visual stimulation (black/white checkerboard alternating with a frequency of 8 Hz) and hypercapnia (inspiration of 5% CO2). Changes in cerebral blood flow (deltaCBF) and the effective transverse relaxation time (T2*) were measured in an interleaved manner by combining a previously described spin-labeling technique with BOLD-based fMRI. In six healthy volunteers, T2* was significantly longer during hypercapnia than during visual stimulation, whereas the corresponding deltaCBF values were the same at the given level of significance (P<0.01). This finding is explained by a significant increase in oxygen consumption under visual stimulation. The average T2* changes in the visual cortex related to cerebral hemodynamics and oxidative metabolism were 10.6+/-3.0% and -4.7+/-1.2%, respectively, resulting in a net increase of 5.9+/-2.3%. Although the hemodynamic effect is dominant, the increase in oxidative metabolism gives rise to a significant decrease in BOLD contrast. The calculated average change in the cerebral metabolic rate of oxygen (CMRO2), 4.4+/-1.1% (N = 6), is in excellent agreement with previous results obtained by positron emission tomography.

  3. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  4. Tissue oxygen monitoring by photoacoustic lifetime imaging (PALI) and its application to image-guided photodynamic therapy (PDT)

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Ashkenazi, Shai

    2015-03-01

    The oxygen partial pressure (pO2), which results from the balance between oxygen delivery and its consumption, is a key component of the physiological state of a tissue. Images of oxygen distribution can provide essential information for identifying hypoxic tissue and optimizing cancer treatment. Previously, we have reported a noninvasive in vivo imaging modality based on photoacoustic lifetime. The technique maps the excited triplet state of oxygen-sensitive dye, thus reflects the spatial and temporal distribution of tissue oxygen. We have applied PALI on tumor on small animals to identify hypoxia area. We also showed that PALI is able monitor changes of tissue oxygen, in an acute ischemia and breathing modulation model. Here we present our work on developing a treatment/imaging modality (PDT-PALI) that integrates PDT and a combined ultrasound/photoacoustic imaging system. The system provides real-time feedback of three essential parameters namely: tissue oxygen, light penetration in tumor location, and distribution of photosensitizer. Tissue oxygen imaging is performed by applying PALI, which relies on photoacoustic probing of oxygen-dependent, excitation lifetime of Methylene Blue (MB) photosensitizer. Lifetime information can also be used to generate image showing the distribution of photosensitizer. The level and penetration depth of PDT illumination can be deduced from photoacoustic imaging at the same wavelength. All images will be combined with ultrasound B-mode images for anatomical reference.

  5. Extraterrestrial platinum group nuggets in deep-sea sediments

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Bates, B. A.; Wheelock, M. M.

    1984-01-01

    A previously unrecognized property of iron cosmic spheres is reported. The most common spheres larger than 300 microns do not, in fact, contain FeNi metal cores, but instead contain a micrometer-sized nugget composed almost entirely of platinum group elements. These elements appear to have been concentrated by the oxidation of molten meteoritic metal during atmospheric entry. This process is critically dependent on the relative abundance of oxygen in the atmosphere, and the first appearance of the nuggets in the geological record may provide a marker indicating when the oxygen abundance attained half of its present level.

  6. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    PubMed

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Survival of fungal species depends on the ability of these organisms to respond to environmental stresses. Osmotic stress or high levels of reactive oxygen species (ROS) can cause stress in fungi resulting in growth inhibition. Both eukaryotic and prokaryotic cells have developed numerous mechanisms...

  8. An Introduction to Normalization and Calibration Methods in Functional MRI

    ERIC Educational Resources Information Center

    Liu, Thomas T.; Glover, Gary H.; Mueller, Bryon A.; Greve, Douglas N.; Brown, Gregory G.

    2013-01-01

    In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes…

  9. Cytosolic NADP(+)-dependent isocitrate dehydrogenase protects macrophages from LPS-induced nitric oxide and reactive oxygen species.

    PubMed

    Maeng, Oky; Kim, Yong Chan; Shin, Han-Jae; Lee, Jie-Oh; Huh, Tae-Lin; Kang, Kwang-il; Kim, Young Sang; Paik, Sang-Gi; Lee, Hayyoung

    2004-04-30

    Macrophages activated by microbial lipopolysaccharides (LPS) produce bursts of nitric oxide and reactive oxygen species (ROS). Redox protection systems are essential for the survival of the macrophages since the nitric oxide and ROS can be toxic to them as well as to pathogens. Using suppression subtractive hybridization (SSH) we found that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) is strongly upregulated by nitric oxide in macrophages. The levels of IDPc mRNA and of the corresponding enzymatic activity were markedly increased by treatment of RAW264.7 cells or peritoneal macrophages with LPS or SNAP (a nitric oxide donor). Over-expression of IDPc reduced intracellular peroxide levels and enhanced the survival of H2O2- and SNAP-treated RAW264.7 macrophages. IDPc is known to generate NADPH, a cellular reducing agent, via oxidative decarboxylation of isocitrate. The expression of enzymes implicated in redox protection, superoxide dismutase (SOD) and catalase, was relatively unaffected by LPS and SNAP. We propose that the induction of IDPc is one of the main self-protection mechanisms of macrophages against LPS-induced oxidative stress.

  10. Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer's disease.

    PubMed

    Warsi, Mohammed A; Molloy, William; Noseworthy, Michael D

    2012-10-01

    To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy ((1)H-MRS), in Alzheimer's disease (AD) and healthy age-matched normal controls (NC). High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with (1)H-MRS findings. Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = -0.45, P = 0.012). Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.

  11. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

    PubMed

    Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A

    2014-04-01

    Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.

  12. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  13. Effect of dark chocolate on renal tissue oxygenation as measured by BOLD-MRI in healthy volunteers.

    PubMed

    Pruijm, Menno; Hofmann, Lucie; Charollais-Thoenig, Julie; Forni, Valentina; Maillard, Marc; Coristine, Andrew; Stuber, Matthias; Burnier, Michel; Vogt, Bruno

    2013-09-01

    Cocoa is rich in flavonoids, has anti-oxidative properties and increases the bioavailability of nitric oxide (NO). Adequate renal tissue oxygenation is crucial for the maintenance of renal function. The goal of this study was to investigate the effect of cocoa-rich dark chocolate (DC) on renal tissue oxygenation in humans, as compared to flavonoid-poor white chocolate (WC). Ten healthy volunteers with preserved kidney function (mean age ± SD 35 ± 12 years, 70% women, BMI 21 ± 3 kg/m2) underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) before and 2 hours after the ingestion of 1 g/kg of DC (70% cocoa). Renal tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* (= 1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. Eight participants also underwent BOLD-MRI at least 1 week later, before and 2 hours after the intake of 1 g/kg WC. The mean medullary R2* was lower after DC intake compared to baseline (28.2 ± 1.3 s-1 vs. 29.6 ± 1.3 s-1, p = 0.04), whereas cortical and medullary R2* values did not change after WC intake. The change in medullary R2* correlated with the level of circulating (epi)catechines, metabolites of flavonoids (r = 0.74, p = 0.037), and was independent of plasma renin activity. This study suggests for the first time an increase of renal medullary oxygenation after intake of dark chocolate. Whether this is linked to flavonoid-induced changes in renal perfusion or oxygen consumption, and whether cocoa has potentially renoprotective properties, merits further study.

  14. Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)?

    PubMed Central

    Horváthová, Terézia; Antol, Andrzej; Czarnoleski, Marcin; Kramarz, Paulina; Bauchinger, Ulf; Labecka, Anna Maria; Kozłowski, Jan

    2015-01-01

    Abstract According to the temperature-size rule (TSR), ectotherms developing under cold conditions experience slower growth as juveniles but reach a larger size at maturity. Whether temperature alone causes this phenomenon is unknown, but oxygen limitation can play a role in the temperature-size relationship. Oxygen may become limited under warm conditions when the resulting higher metabolism creates a greater demand for oxygen, especially in larger individuals. We examined the independent effects of oxygen concentration (10% and 22% O2) and temperature (15 °C and 22 °C) on duration of ontogenic development, which takes place within the maternal brood pouch (marsupium), and juvenile growth in the terrestrial isopod common rough woodlouse (Porcellio scaber). Individuals inside the marsupium undergo the change from the aqueous to the gaseous environment. Under hypoxia, woodlice hatched from the marsupium sooner, but their subsequent growth was not affected by the level of oxygen. Marsupial development and juvenile growth were almost three times slower at low temperature, and marsupial development was longer in larger females but only in the cold treatment. These results show that temperature and oxygen are important ecological factors affecting developmental time and that the strength of the effect likely depends on the availability of oxygen in the environment. PMID:26261441

  15. Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellioscaber (Crustacea, Malacostraca)?

    PubMed

    Horváthová, Terézia; Antol, Andrzej; Czarnoleski, Marcin; Kramarz, Paulina; Bauchinger, Ulf; Labecka, Anna Maria; Kozłowski, Jan

    2015-01-01

    According to the temperature-size rule (TSR), ectotherms developing under cold conditions experience slower growth as juveniles but reach a larger size at maturity. Whether temperature alone causes this phenomenon is unknown, but oxygen limitation can play a role in the temperature-size relationship. Oxygen may become limited under warm conditions when the resulting higher metabolism creates a greater demand for oxygen, especially in larger individuals. We examined the independent effects of oxygen concentration (10% and 22% O2) and temperature (15 °C and 22 °C) on duration of ontogenic development, which takes place within the maternal brood pouch (marsupium), and juvenile growth in the terrestrial isopod common rough woodlouse (Porcellioscaber). Individuals inside the marsupium undergo the change from the aqueous to the gaseous environment. Under hypoxia, woodlice hatched from the marsupium sooner, but their subsequent growth was not affected by the level of oxygen. Marsupial development and juvenile growth were almost three times slower at low temperature, and marsupial development was longer in larger females but only in the cold treatment. These results show that temperature and oxygen are important ecological factors affecting developmental time and that the strength of the effect likely depends on the availability of oxygen in the environment.

  16. A broad-scale comparison of aerobic activity levels in vertebrates: endotherms versus ectotherms

    PubMed Central

    Gomez, Juan Pablo; Mavrodiev, Evgeny V.

    2017-01-01

    Differences in the limits and range of aerobic activity levels between endotherms and ectotherms remain poorly understood, though such differences help explain basic differences in species' lifestyles (e.g. movement patterns, feeding modes, and interaction rates). We compare the limits and range of aerobic activity in endotherms (birds and mammals) and ectotherms (fishes, reptiles, and amphibians) by evaluating the body mass-dependence of VO2 max, aerobic scope, and heart mass in a phylogenetic context based on a newly constructed vertebrate supertree. Contrary to previous work, results show no significant differences in the body mass scaling of minimum and maximum oxygen consumption rates with body mass within endotherms or ectotherms. For a given body mass, resting rates and maximum rates were 24-fold and 30-fold lower, respectively, in ectotherms than endotherms. Factorial aerobic scope ranged from five to eight in both groups, with scope in endotherms showing a modest body mass-dependence. Finally, maximum consumption rates and aerobic scope were positively correlated with residual heart mass. Together, these results quantify similarities and differences in the potential for aerobic activity among ectotherms and endotherms from diverse environments. They provide insights into the models and mechanisms that may underlie the body mass-dependence of oxygen consumption. PMID:28202808

  17. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals.

    PubMed

    Pörtner, H O

    2001-04-01

    Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.

  18. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals.

    PubMed

    Pörtner, H O

    2002-08-01

    The physiological mechanisms limiting and adjusting cold and heat tolerance have regained interest in the light of global warming and associated shifts in the geographical distribution of ectothermic animals. Recent comparative studies, largely carried out on marine ectotherms, indicate that the processes and limits of thermal tolerance are linked with the adjustment of aerobic scope and capacity of the whole animal as a crucial step in thermal adaptation on top of parallel adjustments at the molecular or membrane level. In accordance with Shelford's law of tolerance decreasing whole animal aerobic scope characterises the onset of thermal limitation at low and high pejus thresholds (pejus=getting worse). The drop in aerobic scope of an animal indicated by falling oxygen levels in the body fluids and or the progressively limited capacity of circulatory and ventilatory mechanisms. At high temperatures, excessive oxygen demand causes insufficient oxygen levels in the body fluids, whereas at low temperatures the aerobic capacity of mitochondria may become limiting for ventilation and circulation. Further cooling or warming beyond these limits leads to low or high critical threshold temperatures (T(c)) where aerobic scope disappears and transition to an anaerobic mode of mitochondrial metabolism and progressive insufficiency of cellular energy levels occurs. The adjustments of mitochondrial densities and their functional properties appear as a critical process in defining and shifting thermal tolerance windows. The finding of an oxygen limited thermal tolerance owing to loss of aerobic scope is in line with Taylor's and Weibel's concept of symmorphosis, which implies that excess capacity of any component of the oxygen delivery system is avoided. The present study suggests that the capacity of oxygen delivery is set to a level just sufficient to meet maximum oxygen demand between the average highs and lows of environmental temperatures. At more extreme temperatures only time limited passive survival is supported by anaerobic metabolism or the protection of molecular functions by heat shock proteins and antioxidative defence. As a corollary, the first line of thermal sensitivity is due to capacity limitations at a high level of organisational complexity, i.e. the integrated function of the oxygen delivery system, before individual, molecular or membrane functions become disturbed. These interpretations are in line with the more general consideration that, as a result of the high level of complexity of metazoan organisms compared with simple eukaryotes and then prokaryotes, thermal tolerance is reduced in metazoans. A similar sequence of sensitivities prevails within the metazoan organism, with the highest sensitivity at the organismic level and wider tolerance windows at lower levels of complexity. However, the situation is different in that loss in aerobic scope and progressive hypoxia at the organismic level define the onset of thermal limitation which then transfers to lower hierarchical levels and causes cellular and molecular disturbances. Oxygen limitation contributes to oxidative stress and, finally, denaturation or malfunction of molecular repair, e.g. during suspension of protein synthesis. The sequence of thermal tolerance limits turns into a hierarchy, ranging from systemic to cellular to molecular levels.

  19. The abundance of interstellar oxygen toward Orion: Evidence for recent infall?

    NASA Technical Reports Server (NTRS)

    Meyer, David M.; Jura, M.; Hawkins, Isabel; Cardelli, Jason A.

    1994-01-01

    We present high S/N (greater than 800) Goddard High-Resolution Spectrograph (GHRS) observations of the weak interstellar O I lambda 1356 absorption in the low-density sight lines toward iota Ori and kappa Ori. By comparing these data with observations toward more reddened stars, we find no evidence of density-dependent depletion from the gas phase for oxygen. The derived total oxygen abundance (gas plus grains) towards iota Ori and kappa Ori is consistent with stellar and nebular determinations in Orion at a level that is one-half the solar value. We speculate that the O/H abundance ratio is lower in Orion compared to the Sun because the local Milky Way has suffered a recent infall of metal-poor material, perhaps from the Magellanic Stream.

  20. Switching the mode of metabolism in the yeast Saccharomyces cerevisiae

    PubMed Central

    Otterstedt, Karin; Larsson, Christer; Bill, Roslyn M; Ståhlberg, Anders; Boles, Eckhard; Hohmann, Stefan; Gustafsson, Lena

    2004-01-01

    The biochemistry of most metabolic pathways is conserved from bacteria to humans, although the control mechanisms are adapted to the needs of each cell type. Oxygen depletion commonly controls the switch from respiration to fermentation. However, Saccharomyces cerevisiae also controls that switch in response to the external glucose level. We have generated an S. cerevisiae strain in which glucose uptake is dependent on a chimeric hexose transporter mediating reduced sugar uptake. This strain shows a fully respiratory metabolism also at high glucose levels as seen for aerobic organisms, and switches to fermentation only when oxygen is lacking. These observations illustrate that manipulating a single step can alter the mode of metabolism. The novel yeast strain is an excellent tool to study the mechanisms underlying glucose-induced signal transduction. PMID:15071495

  1. Effects of oxygen vacancy on the photoconductivity in BaSnO3

    NASA Astrophysics Data System (ADS)

    Park, Jisung; Char, Kookrin; Institute of Applied Physics, Department of Physics; Astronomy, Seoul National University Team

    We have found the photoconductive behavior of BaSnO3, especially their magnitude and time dependence, is very sensitive to the oxygen vacancy concentration. We made epitaxial BaSnO3 film with BaHfO3 buffer layer by pulsed laser deposition. As we had reported before, MgO substrate with its large band gap size about 7.8 eV was used to exclude any photoconductance from the substrate. BaHfO3 layer was used to reduce the threading dislocation density in BaSnO3 film. To control the oxygen vacancy concentration in the BaSnO3 film, we annealed the sample in Ar or O2 atmosphere with varying annealing conditions. After each annealing process, photoconductivity of BaSnO3 was measured during illumination of UV light. The result showed that the magnitude of photoconductivity of BaSnO3 increased after annealing at higher temperature in Ar atmosphere, while the changes in the dark current remains minimal. The result can be explained by a hole trap mechanism. Higher Fermi level due to the increased oxygen vacancy concentration can cause occupation of deep acceptor levels in dislocations of the BaSnO3 film. These occupied deep acceptor levels in turn trap photo-generated holes so that the recombination of electron-hole pair is deterred. Samsung Science and Technology Foundation.

  2. The pressure dependence of oxygen-isotope-exchange rates between solution and apical oxygens on the UO 2(OH) 4 2- ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Steven J.; Ohlin, C. Andre; Johnson, Rene L.

    2011-04-06

    The pressure dependence of isotope exchange rate was determined for apical oxygen atoms in the UO 2(OH) 4 2-(aq) ion. The results can be interpreted to indicate an associative character of the reaction.

  3. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.

    In the majority of cases, Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by little or no bacterial replication and drug tolerance. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Mtb encodes eleven serine/threonine protein kinases, a family of signaling molecules known to regulate similar replicative adaptations in other bacteria. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in hypoxia. Activity-based proteinmore » profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle - active disease, latency, and reactivation.« less

  4. Myocellular limitations of human performance and their modification through genome-dependent responses at altitude.

    PubMed

    Flueck, Martin

    2010-03-01

    Human muscle operates along a continuum of power output, which is set through bioenergetic and anatomical principles. In turn, environmental and intrinsic factors during contractile work exert pronounced control over muscle performance by instructing muscle remodelling. This phenotypic control is specifically indicated with intense exercise at altitude, when extra strain is put on energy supply and the temperature-dependent mechanical efficiency of contraction. While it is classically thought that chronic exposure to hypoxia is maladaptive, repeated short episodes of reduced oxygenation alone or in combination with intense endurance work is now understood to preserve exercise performance when atmospheric oxygen levels are low. Endurance training at moderate altitude exploits the temperature-dependent malleability of energy supply that may maximize metabolic flux at altitude. The contribution of genomic mechanisms is important to the plasticity of metabolic pathways in exercised muscle. This is highlighted by the association of distinct gene polymorphisms in master governors of mitochondrial and vascular growth with exercise phenotypes. Feedforward control of human locomoter muscle by exercise involves the transient upregulation of transcript expression for metabolic processes. The response of the mitochondrial transcriptome to intense exercise is graded with respect to mitochondrial content and deoxygenation during muscle work and reflects exercise-induced mitochondrial biogenesis. This supports the notion that genome-mediated muscle malleability is under feedback control by design constraints of the pathway of oxygen. Thus, activity-dependent and genetic mechanisms contribute to the interindividual difference in the metabolic bottlenecks in athletes performing in exceptional environmental conditions.

  5. The deep levels in InGaAlP epilayers grown by metalorganic chemical vapor deposition using tertiarybutylphosphine

    NASA Astrophysics Data System (ADS)

    Izumiya, T.; Ishikawa, H.; Mashita, M.

    1994-12-01

    InGaAlP epilayers and double-hetero structure light emitting diodes (LEDs) were grown by metalorganic chemical vapor deposition (MOCVD) using tertiarybutylphosphine (TBP). The photoluminescence (PL) intensities were low compared with the epilayer grown using PH 3, and depended markedly on the TBP synthesis lots. Deep levels, were studied and two oxygen related levels were observed in the epilayers with small PL intensities. An intimate relation between the deep levels and the photoluminescence (PL) intensity has been found. A larger TBP flow rate reduced the deep level concentrations and improved the PL intensity.

  6. Influence of closure, phenolic levels and microoxygenation on Cabernet Sauvignon wine composition after 5 years' bottle storage.

    PubMed

    Han, Guomin; Ugliano, Maurizio; Currie, Bruce; Vidal, Stéphane; Diéval, Jean-Baptiste; Waterhouse, Andrew L

    2015-01-01

    Wine aging is generally limited by the amount of oxidation, which is dependent on the amount of oxygen entering via the closure. Cabernet Sauvignon wine is well known for its high concentration of tannin, making it an ideal red wine for aging. The impact of closure type after 5 years' bottle aging has been investigated on a 2007 Cabernet Sauvignon red wine, treated with or without polyvinylpolypyrrolidone (PVPP) and micro-oxygenation (Mox). Two oxygen transfer rate (OTR) conditions (16 and 5 µg per day) into 375 mL bottles were obtained by using different synthetic stoppers. Color was evaluated by UV-visible spectrophotometry, carbonyls by 2,4-dinitrophenylhydrazine derivatization, phenolics by high-performance liquid chromatography and sulfur dioxide by the aspiration method. Closure type strongly influenced color parameters involving SO2 bleaching and some phenolics, particularly quercetin, were affected, but there was little effect on carbonyls other than acetaldehyde. PVPP treatment afforded wines with the lowest levels of phenolics and color density, but highest acetaldehyde. Few effects of Mox could be detected. Closure OTR strongly affects sulfur dioxide levels - the primary antioxidant in wine - in aged wine, but phenolic levels substantially alter the secondary reactions of oxidative aging. © 2014 Society of Chemical Industry.

  7. Strategies for manipulation of oxygen utilization by the electron transfer chain in microbes for metabolic engineering purposes.

    PubMed

    Bennett, George N; San, Ka-Yiu

    2017-05-01

    Microaerobic growth is of importance in ecological niches, pathogenic infections and industrial production of chemicals. The use of low levels of oxygen enables the cell to gain energy and grow more robustly in the presence of a carbon source that can be oxidized and provide electrons to the respiratory chain in the membrane. A considerable amount of information is available on the genes and proteins involved in respiratory growth and the regulation of genes involved in aerobic and anaerobic metabolism. The dependence of regulation on sensing systems that respond to reduced quinones (e.g. ArcB) or oxygen levels that affect labile redox components of transcription regulators (Fnr) are key in understanding the regulation. Manipulation of the amount of respiration can be difficult to control in dense cultures or inadequately mixed reactors leading to inhomogeneous cultures that may have lower than optimal performance. Efforts to control respiration through genetic means have been reported and address mutations affecting components of the electron transport chain. In a recent report completion for intermediates of the ubiquinone biosynthetic pathway was used to dial the level of respiration vs lactate formation in an aerobically grown E. coli culture.

  8. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    NASA Astrophysics Data System (ADS)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly using an increased oxygen scavenger concentration with reference to standard MAGIC-type gel formulation at high dose rate levels. The proposed gel composition with high oxygen scavenger concentration exhibits a larger linear active dose response and might be used especially in FFF-radiation applications and preclinical dosimetry at high dose rates. We propose in general to use high dose rates for calibration and evaluation as the change in relative dose sensitivity is reduced at higher dose rates in all of the investigated gel types.

  9. Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.

    PubMed

    Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I

    1997-10-01

    There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 < 10 mm Hg; PCO2 > 60 mm Hg, and pH < 6.8. We have had no complications with this device; the risks are similar to those of placing a parenchymal intracranial pressure monitor. We believe that assessment of interstitial cerebral oxygen saturation can be of great value both intraoperatively and postoperatively. In our experience, the Paratrend 7 system is an effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.

  10. Transient heat and mass transfer analysis in a porous ceria structure of a novel solar redox reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandran, RB; Bader, R; Lipinski, W

    2015-06-01

    Thermal transport processes are numerically analyzed for a porous ceria structure undergoing reduction in a novel redox reactor for solar thermochemical fuel production. The cylindrical reactor cavity is formed by an array of annular reactive elements comprising the porous ceria monolith integrated with gas inlet and outlet channels. Two configurations are considered, with the reactor cavity consisting of 10 and 20 reactive elements, respectively. Temperature dependent boundary heat fluxes are obtained on the irradiated cavity wall by solving for the surface radiative exchange using the net radiation method coupled to the heat and mass transfer model of the reactive element.more » Predicted oxygen production rates are in the range 40-60 mu mol s(-1) for the geometries considered. After an initial rise, the average temperature of the reactive element levels off at 1660 and 1680 K for the two geometries, respectively. For the chosen reduction reaction rate model, oxygen release continues after the temperature has leveled off which indicates that the oxygen release reaction is limited by chemical kinetics and/or mass transfer rather than by the heating rate. For a fixed total mass of ceria, the peak oxygen release rate is doubled for the cavity with 20 reactive elements due to lower local oxygen partial pressure. (C) 2015 Elsevier Masson SAS. All rights reserved.« less

  11. Mechanistic Studies on the Radiolytic Decomposition of Perchlorates on the Martian Surface

    NASA Astrophysics Data System (ADS)

    Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-04-01

    Perchlorates—inorganic compounds carrying the perchlorate ion ({{ClO}}4{}-)—were discovered at the north polar landing site of the Phoenix spacecraft and at the southern equatorial landing site of the Curiosity Rover within the Martian soil at levels of 0.4-0.6 wt%. This study explores in laboratory experiments the temperature-dependent decomposition mechanisms of hydrated perchlorates—namely magnesium perchlorate hexahydrate (Mg(ClO4)2·6H2O)—and provides yields of the oxygen-bearing species formed in these processes at Mars-relevant surface temperatures from 165 to 310 K in the presence of galactic cosmic-ray particles (GCRs). Our experiments reveal that the response of the perchlorates to the energetic electrons is dictated by the destruction of the perchlorate ion ({{ClO}}4{}-) and the inherent formation of chlorates ({{ClO}}3{}-) plus atomic oxygen (O). Isotopic substitution experiments reveal that the oxygen is released solely from the perchlorate ion and not from the water of hydration (H2O). As the mass spectrometer detects only molecular oxygen (O2) and no atomic oxygen (O), atomic oxygen recombines to molecular oxygen within the perchlorates, with the overall yield of molecular oxygen increasing as the temperature drops from 260 to 160 K. Absolute destruction rates and formation yields of oxygen are provided for the planetary modeling community.

  12. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides.

    PubMed

    Gomelsky, Larissa; Moskvin, Oleg V; Stenzel, Rachel A; Jones, Denise F; Donohue, Timothy J; Gomelsky, Mark

    2008-12-01

    In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.

  13. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development.

    PubMed

    Lange, Clemens A K; Luhmann, Ulrich F O; Mowat, Freya M; Georgiadis, Anastasios; West, Emma L; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B; Fruttiger, Marcus; Smith, Alexander J; Sowden, Jane C; Maxwell, Patrick H; Ali, Robin R; Bainbridge, James W B

    2012-07-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.

  14. Alcohol Attenuates Load-related Activation During a Working Memory Task: Relation to Level of Response to Alcohol

    PubMed Central

    Paulus, Martin P.; Tapert, Susan F.; Pulido, Carmen; Schuckit, Marc A.

    2008-01-01

    Background A low level of response to alcohol is a major risk factor for the development of alcohol dependence, but neural correlates of this marker are unclear. Method Ten healthy volunteers were classified by median split on level of response to alcohol and underwent 2 sessions of functional magnetic resonance imaging following ingestion of a moderate dose of alcohol and a placebo. The blood oxygen level–dependent activation to an event-related visual working memory test was examined. Results The subjects exhibited longer response latencies and more errors as a function of increasing working memory load and showed a load-dependent increase in activation in dorsolateral prefrontal cortex, posterior parietal cortex, and visual cortex. Alcohol did not affect performance (errors or response latency), but attenuated the working memory load–dependent activation in the dorsolateral prefrontal cortex. During the placebo condition, individuals with a low level of response to alcohol showed greater activation in dorsolateral prefrontal cortex and posterior parietal cortex than those with a high level of response to alcohol. During the alcohol condition, groups showed similar attenuation of load-dependent brain activation in these regions. Conclusion Low-level responders relative to high-level responders exhibited an increased working memory load–dependent activation in dorsolateral prefrontal cortex and posterior parietal cortex when not exposed to alcohol. This increase in brain response was attenuated in low-level responders after ingesting a moderate dose of alcohol. PMID:16899039

  15. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    PubMed

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  16. Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro.

    PubMed

    Ng, Shengyong; March, Sandra; Galstian, Ani; Hanson, Kirsten; Carvalho, Tânia; Mota, Maria M; Bhatia, Sangeeta N

    2014-02-01

    Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1α activator, dimethyloxalylglycine, also enhance P. berghei infection, suggesting that the effect of hypoxia on infection is mediated in part by host-dependent HIF-1α mechanisms.

  17. The Pressure Dependence of Oxygen Isotope Exchange Rates Between Solution and Apical Oxygen Atoms on the [UO2(OH)4]2- Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harley, Steven J.; Ohlin, C. André; Johnson, Rene L.

    2011-04-06

    Under pressure: The pressure dependence of isotope exchange rate was determined for apical oxygen atoms in the [UO2(OH)4]2-(aq) ion (see picture). The results can be interpreted to indicate an associative character of the reaction.

  18. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW infants may be regarded as those in which premature exposure to ambient oxygen concentrations and oxidative stress causes a premature functioning of the extra-mitochondrial oxidative phosphorylation primarily in axons and endothelium. Adenosine may become a biomarker of prematurity risk, whose implications further studies may assess. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Activated carbon oxygen content influence on water and surfactant adsorption.

    PubMed

    Pendleton, Phillip; Wu, Sophie Hua; Badalyan, Alexander

    2002-02-15

    This research investigates the adsorption properties of three activated carbons (AC) derived from coconut, coal, and wood origin. Each carbon demonstrates different levels of resistance to 2 M NaOH treatment. The coconut AC offers the greatest and wood AC the least resistance. The influence of base treatment is mapped in terms of its effects on specific surface area, micropore volume, water adsorption, and dodecanoic acid adsorption from both water and 2 M NaOH solution. A linear relationship exists between the number of water molecules adsorbed at the B-point of the water adsorption isotherm and the oxygen content determined from elemental analysis. Surfactant adsorption isotherms from water and 2 M NaOH indicate that the AC oxygen content effects a greater dependence on affinity for surfactant than specific surface area and micropore volume. We show a linear relationship between the plateau amount of surfactant adsorbed and the AC oxygen content in both water and NaOH phases. The higher the AC oxygen content, the lower the amount of surfactant adsorbed. In contrast, no obvious relationship could be drawn between the surfactant amount adsorbed and the surface area.

  20. Sediment oxygen profiles in a super-oxygenated antarctic lake

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Meyer, M. A.; McKay, C. P.; Mancinelli, R. L.; Simmons, G. M. Jr; Wharton RA, J. r. (Principal Investigator)

    1994-01-01

    Perennially ice-covered lakes are found in the McMurdo Dry Valleys of southern Victoria Land, Antarctica. In contrast to temperate lakes that have diurnal photic periods, antarctic (and arctic) lakes have a yearly photic period. An unusual feature of the antarctic lakes is the occurrence of O2 at supersaturated levels in certain portions of the water column. Here we report the first sediment O2 profiles obtained using a microelectrode from a perennially ice-covered antarctic lake. Sediment cores collected in January and October 1987 from Lake Hoare in Taylor Valley show oxygenation down to 15, and in some cases, 25 cm. The oxygenation of sediments several centimeters below the sediment-water interface is atypical for lake sediments and may be characteristic of perennially ice-covered lakes. There is a significant difference between the observed January and October sediment O2 profiles. Several explanations may account for the difference, including seasonality. A time-dependent model is presented which tests the feasibility of a seasonal cycle resulting from the long photoperiod and benthic primary production in sediments overlain by a highly oxygenated water column.

  1. Cocaine- and amphetamine-regulated transcript peptide increases mitochondrial respiratory chain complex II activity and protects against oxygen-glucose deprivation in neurons.

    PubMed

    Sha, Dujuan; Wang, Luna; Zhang, Jun; Qian, Lai; Li, Qiming; Li, Jin; Qian, Jian; Gu, Shuangshuang; Han, Ling; Xu, Peng; Xu, Yun

    2014-09-25

    The mechanisms of ischemic stroke, a main cause of disability and death, are complicated. Ischemic stroke results from the interaction of various factors including oxidative stress, a key pathological mechanism that plays an important role during the acute stage of ischemic brain injury. This study demonstrated that cocaine- and amphetamine-regulated transcript (CART) peptide, specifically CART55-102, increased the survival rate, but decreased the mortality of neurons exposed to oxygen-glucose deprivation (OGD), in a dose-dependent manner. The above-mentioned effects of CART55-102 were most significant at 0.4nM. These results indicated that CART55-102 suppressed neurotoxicity and enhanced neuronal survival after oxygen-glucose deprivation. CART55-102 (0.4nM) significantly diminished reactive oxygen species levels and markedly increased the activity of mitochondrial respiratory chain complex II in oxygen-glucose deprived neurons. In summary, CART55-102 suppressed oxidative stress in oxygen-glucose deprived neurons, possibly through elevating the activity of mitochondrial respiratory chain complex II. This result provides evidence for the development of CART55-102 as an antioxidant drug. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    PubMed

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  3. Human Cells Cultured under Physiological Oxygen Utilize Two Cap-binding Proteins to recruit Distinct mRNAs for Translation*

    PubMed Central

    Timpano, Sara; Uniacke, James

    2016-01-01

    Translation initiation is a focal point of translational control and requires the binding of eIF4E to the 5′ cap of mRNA. Under conditions of extreme oxygen depletion (hypoxia), human cells repress eIF4E and switch to an alternative cap-dependent translation mediated by a homolog of eIF4E, eIF4E2. This homolog forms a complex with the oxygen-regulated hypoxia-inducible factor 2α and can escape translation repression. This complex mediates cap-dependent translation under cell culture conditions of 1% oxygen (to mimic tumor microenvironments), whereas eIF4E mediates cap-dependent translation at 21% oxygen (ambient air). However, emerging evidence suggests that culturing cells in ambient air, or “normoxia,” is far from physiological or “normal.” In fact, oxygen in human tissues ranges from 1–11% or “physioxia.” Here we show that two distinct modes of cap-dependent translation initiation are active during physioxia and act on separate pools of mRNAs. The oxygen-dependent activities of eIF4E and eIF4E2 are elucidated by observing their polysome association and the status of mammalian target of rapamycin complex 1 (eIF4E-dependent) or hypoxia-inducible factor 2α expression (eIF4E2-dependent). We have identified oxygen conditions where eIF4E is the dominant cap-binding protein (21% normoxia or standard cell culture conditions), where eIF4E2 is the dominant cap-binding protein (1% hypoxia or ischemic diseases and cancerous tumors), and where both cap-binding proteins act simultaneously to initiate the translation of distinct mRNAs (1–11% physioxia or during development and stem cell differentiation). These data suggest that the physioxic proteome is generated by initiating translation of mRNAs via two distinct but complementary cap-binding proteins. PMID:27002144

  4. THE HEMOGLOBIN FUNCTION OF BLOOD AT 4C.

    DTIC Science & Technology

    depends on the red cell concentration of 2,3- diphosphoglycerate (2,3-DPG), this metabolic intermediate was assayed and oxygen dissociation curves...the storage period in blood stored in CPD than in ACD. If adenine was present the p50 and 2,3-DPG levels declined more rapidly. However, adenine and...inosine in CPD-stored blood allowed the p50 and 2,3-DPG to persist at near normal levels for most of the 3-week storage period. (Author)

  5. Brief Report: Anomalous Neural Deactivations and Functional Connectivity during Receptive Language in Autism Spectrum Disorder--A Functional MRI Study

    ERIC Educational Resources Information Center

    Karten, Ariel; Hirsch, Joy

    2015-01-01

    Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study,…

  6. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential

    PubMed Central

    Nguyen, Mai; Winawer, Jonathan

    2017-01-01

    The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8–13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30–80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity. PMID:28742093

  7. Mangiferin induces cell death against rhabdomyosarcoma through sustained oxidative stress.

    PubMed

    Padma, Vishwanadha Vijaya; Kalaiselvi, Palanisamy; Yuvaraj, Rangasamy; Rabeeth, M

    2015-06-01

    Embryonic rhabdomyosarcoma (RD) is the most prevalent type of cancer among children. The present study aimed to investigate cell death induced by mangiferin in RD cells. The Inhibitory concentration (IC 50 ) value of mangiferin was determined by an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Cell death induced by mangiferin against RD cells was determined through lactate dehydrogenase and nitric oxide release, intracellular calcium levels, reactive oxygen species generation, antioxidant status, mitochondrial calcium level, and mitochondrial membrane potential. Furthermore, acridine orange/ethidium bromide staining was performed to determine early/late apoptotic event. Mangiferin induced cell death in RD cells with an IC 50 value of 70 μM. The cytotoxic effect was reflected in a dose-dependent increase in lactate dehydrogenase leakage and nitric oxide release during mangiferin treatment. Mangiferin caused dose dependent increase in reactive oxygen species generation, intracellular calcium levels with subsequent decrease in antioxidant status (catalase, superoxide dismutase, glutathione-S-transferase, and glutathione) and loss of mitochondrial membrane potential in RD cells. Further data from fluorescence microscopy suggest that mangiferin caused cell shrinkage and nuclear condensation along with the occurrence of a late event of apoptosis. Results of the present study shows that mangiferin can act as a promising chemopreventive agent against RD by inducing sustained oxidative stress.

  8. Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions.

    PubMed

    Nestler, Holger; Kiesel, Bärbel; Kaschabek, Stefan R; Mau, Margit; Schlömann, Michael; Balcke, Gerd Ulrich

    2007-12-01

    Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria, adapted to oxygen limitation, were cultivated on chlorobenzene and its metabolites 2-chloro-cis,cis-muconate and acetate/succinate under hypoxic and denitrifying conditions. Highly sensitive approaches were used to maintain defined low oxygen partial pressures in an oxygen-re-supplying headspace. With low amounts of oxygen available all cultures converted chlorobenzene, though the pure strains accumulated 3-chlorocatechol and 2-chloro-cis,cis-muconate as intermediates. Under strictly anoxic conditions no chlorobenzene transformation was observed, while 2-chloro-cis,cis-muconate, the fission product of oxidative ring cleavage, was readily degraded by the investigated chlorobenzene-degrading cultures at the expense of nitrate as terminal electron acceptor. Hence, we conclude that oxygen is an obligatory reactant for initial activation of chlorobenzene and fission of the aromatic ring, but it can be partially replaced by nitrate in respiration. The tendency to denitrify in the presence of oxygen during growth on chlorobenzene appeared to depend on the oxygen availability and the efficiency to metabolize chlorobenzene under oxygen limitation, which is largely regulated by the activity of the intradiol ring fission dioxygenase. Permanent cultivation of a groundwater consortium under reduced oxygen levels resulted in enrichment of a community almost exclusively composed of members of the beta-Proteobacteria and Bacteroidetes. Thus, it is deduced that these strains can still maintain high activities of oxygen-requiring enzymes that allow for efficient CB transformation under hypoxic conditions.

  9. Oxygen sensing in intestinal mucosal inflammation.

    PubMed

    Flück, Katharina; Fandrey, Joachim

    2016-01-01

    Hypoxia is a hallmark of chronically inflamed tissue. Hypoxia develops from vascular dysfunction and increased oxygen consumption by infiltrating leukocytes. With respect to inflammatory bowel disease (IBD), hypoxia is likely to be of particular importance: Impairment of the intestinal barrier during IBD allows anoxia from the lumen of the gut to spread to formerly normoxic tissue. In addition, disturbed perfusion of inflamed tissue and a higher oxygen demand of infiltrating immune cells lead to low oxygen levels in inflamed mucosal tissue. Here, cells become hypoxic and must now adapt to this condition. The hypoxia inducible factor (HIF)-1 complex is a key transcription factor for cellular adaption to low oxygen tension. HIF-1 is a heterodimer formed by two subunits: HIF-α (either HIF-1α or HIF-2α) and HIF-1β. Under normoxic conditions, hydroxylation of the HIF-α subunit by specific oxygen-dependent prolyl hydroxylases (PHDs) leads to ubiquitin proteasome-dependent degradation. Under hypoxic conditions, however, PHD activity is inhibited; thus, HIF-α can translocate into the nucleus, dimerize with HIF-1β, and bind to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in intestinal epithelial cells and the effect of HIF stabilization by PHD inhibitors in murine models of colitis. Furthermore, the role of HIF-1α in immune cells becomes more and more important as T cells or dendritic cells for which HIF-1 is of critical importance are highly involved in the pathogenesis of IBD. This review will summarize the function of HIF-1α and the therapeutic prospects for targeting the HIF pathway in intestinal mucosal inflammation.

  10. Sevoflurane protects rat mixed cerebrocortical neuronal-glial cell cultures against transient oxygen-glucose deprivation: involvement of glutamate uptake and reactive oxygen species.

    PubMed

    Canas, Paula T; Velly, Lionel J; Labrande, Christelle N; Guillet, Benjamin A; Sautou-Miranda, Valérie; Masmejean, Frédérique M; Nieoullon, André L; Gouin, François M; Bruder, Nicolas J; Pisano, Pascale S

    2006-11-01

    The purpose of this study was to clarify the role of glutamate and reactive oxygen species in sevoflurane-mediated neuroprotection on an in vitro model of ischemia-reoxygenation. Mature mixed cerebrocortical neuronal-glial cell cultures, treated or not with increasing concentrations of sevoflurane, were exposed to 90 min combined oxygen-glucose deprivation (OGD) in an anaerobic chamber followed by reoxygenation. Cell death was quantified by lactate dehydrogenase release into the media and cell viability by reduction of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium by mitochondrial succinate dehydrogenase. Extracellular concentrations of glutamate and glutamate uptake were assessed at the end of the ischemic injury by high-performance liquid chromatography and incorporation of L-[H]glutamate into cells, respectively. Free radical generation in cells was assessed 6 h after OGD during the reoxygenation period using 2',7'-dichlorofluorescin diacetate, which reacts with intracellular radicals to be converted to its fluorescent product, 2',7'-dichlorofluorescin, in cell cytosol. Twenty-four hours after OGD, sevoflurane, in a concentration-dependent manner, significantly reduced lactate dehydrogenase release and increased cell viability. At the end of OGD, sevoflurane was able to reduce the OGD-induced decrease in glutamate uptake. This effect was impaired in the presence of threo-3-methyl glutamate, a specific inhibitor of the glial transporter GLT1. Sevoflurane counteracted the increase in extracellular level of glutamate during OGD and the generation of reactive oxygen species during reoxygenation. Sevoflurane had a neuroprotective effect in this in vitro model of ischemia-reoxygenation. This beneficial effect may be explained, at least in part, by sevoflurane-induced antiexcitotoxic properties during OGD, probably depending on GLT1, and by sevoflurane-induced decrease of reactive oxygen species generation during reoxygenation.

  11. Quantification of myocardial oxygenation in heart failure using blood-oxygen-level-dependent T2* magnetic resonance imaging: Comparison with cardiopulmonary exercise test.

    PubMed

    Nagao, Michinobu; Yamasaki, Yuzo; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Higo, Taiki; Ide, Tomomi; Takemura, Atsushi; Ishizaki, Umiko; Fukushima, Kenji; Watanabe, Yuji; Honda, Hiroshi

    2017-06-01

    Quantification of myocardial oxygenation (MO) in heart failure (HF) has been less than satisfactory. This has necessitated the use of invasive techniques to measure MO directly or to determine the oxygen demand during exercise using the cardiopulmonary exercise (CPX) test. We propose a new quantification method for MO using blood-oxygen-level-dependent (BOLD) myocardial T2* magnetic resonance imaging (M-T2* MRI), and investigate its correlation with CPX results. Thirty patients with refractory HF who underwent cardiac MRI and CPX test for heart transplantation, and 24 healthy, age-matched volunteers as controls were enrolled. M-T2* imaging was performed using a 3-Tesla and multi-echo gradient-echo sequence. M-T2* was calculated by fitting the signal intensity data for the mid-left ventricular septum to a decay curve. M-T2* was measured under room-air (T2*-air) and after inhalation of oxygen for 10min at a flow rate of 10L/min (T2*-oxy). MO was defined as the difference between the two values (ΔT2*). Changes in M-T2* at the two conditions and ΔT2* between the two groups were compared. Correlation between ΔT2* and CPX results was analyzed using the Pearson coefficient. T2*-oxy was significantly greater than T2*-air in patients with HF (29.9±7.3ms vs. 26.7±6.0ms, p<0.001), whereas no such difference was observed in controls (25.5±4.0ms vs. 25.4±4.4ms). ΔT2* was significantly greater for patients with HF than for controls (3.2±4.5ms vs. -0.1±1.3ms, p<0.001). A significant correlation between ΔT2* and CPX results (peak VO 2 , r=-0.46, p<0.05; O 2 pulse, r=-0.54, p<0.005) was observed. ΔT2* is increased T2*-oxy is greater in patients with HF, and is correlated with oxygen metabolism during exercise as measured by the CPX test. Hence, ΔT2* can be used as a surrogate marker of MO instead of CPX test. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: preliminary experience.

    PubMed

    Haque, Muhammad E; Franklin, Tammy; Bokhary, Ujala; Mathew, Liby; Hack, Bradley K; Chang, Anthony; Puri, Tipu S; Prasad, Pottumarthi V

    2014-04-01

    To evaluate longitudinal changes in renal oxygenation and diffusion measurements in a model of reversible unilateral ureteral obstruction (rUUO) which has been shown to induce chronic renal functional deficits in a strain dependent way. C57BL/6 mice show higher degree of functional deficit compared with BALB/c mice. Because hypoxia and development of fibrosis are associated with chronic kidney diseases and are responsible for progression, we hypothesized that MRI measurements would be able to monitor the longitudinal changes in this model and will show strain dependent differences in response. Here blood oxygenation level dependent (BOLD) and diffusion MRI measurements were performed at three time points over a 30 day period in mice with rUUO. The studies were performed on a 4.7T scanner with the mice anesthetized with isoflurane before UUO, 2 and 28 days postrelease of 6 days of obstruction. We found at the early time point (∼2 days after releasing the obstruction), the relative oxygenation in C57Bl/6 mice were lower compared with BALB/c. Diffusion measurements were lower at this time point and reached statistical significance in BALB/c These methods may prove valuable in better understanding the natural progression of kidney diseases and in evaluating novel interventions to limit progression. Copyright © 2013 Wiley Periodicals, Inc.

  13. Results of the examination of LDEF polyurethane thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1994-01-01

    This report summarizes the condition of polyurethane thermal control coatings subjected to 69 months of low earth orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF) mission. Specimens representing all environmental aspects obtainable by LDEF were analyzed. Widely varying changes in the thermo-optical and mechanical properties of these materials were observed, depending on atomic oxygen and ultraviolet radiation fluences. High atomic oxygen fluences, regardless of ultraviolet radiation exposure levels, resulted in near original optical properties for these coatings but with a degradation in their mechanical condition. A trend in solar absorptance increase with ultraviolet radiation fluence was observed. Contamination, though observed, exhibited minimal effects.

  14. Lipid accumulation in smooth muscle cells under LDL loading is independent of LDL receptor pathway and enhanced by hypoxic conditions.

    PubMed

    Wada, Youichiro; Sugiyama, Akira; Yamamoto, Takashi; Naito, Makoto; Noguchi, Noriko; Yokoyama, Shinji; Tsujita, Maki; Kawabe, Yoshiki; Kobayashi, Mika; Izumi, Akashi; Kohro, Takahide; Tanaka, Toshiya; Taniguchi, Hirokazu; Koyama, Hidenori; Hirano, Ken-ichi; Yamashita, Shizuya; Matsuzawa, Yuji; Niki, Etsuo; Hamakubo, Takao; Kodama, Tatsuhiko

    2002-10-01

    The effect of a variety of hypoxic conditions on lipid accumulation in smooth muscle cells (SMCs) was studied in an arterial wall coculture and monocultivation model. Low density lipoprotein (LDL) was loaded under various levels of oxygen tension. Oil red O staining of rabbit and human SMCs revealed that lipid accumulation was greater under lower oxygen tension. Cholesterol esters were shown to accumulate in an oxygen tension-dependent manner by high-performance liquid chromatographic analysis. Autoradiograms using radiolabeled LDL indicated that LDL uptake was more pronounced under hypoxia. This result holds in the case of LDL receptor-deficient rabbit SMCs. However, cholesterol biosynthesis and cellular cholesterol release were unaffected by oxygen tension. Hypoxia significantly increases LDL uptake and enhances lipid accumulation in arterial SMCs, exclusive of LDL receptor activity. Although the molecular mechanism is not clear, the model is useful for studying lipid accumulation in arterial wall cells and the difficult-to-elucidate events in the initial stage of atherogenesis.

  15. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    PubMed

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  16. Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2017-09-01

    The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.

  17. Daily and seasonal variability of pH, dissolved oxygen, temperature, and specific conductance in the Colorado River between the forebay of Glen Canyon, Dam and Lees Ferry, northeastern Arizona, 1998-99

    USGS Publications Warehouse

    Flynn, Marilyn E.; Hart, Robert J.; Marzolf, G. Richard; Bowser, Carl J.

    2001-01-01

    The productivity of the trout fishery in the tailwater reach of the Colorado River downstream from Glen Canyon Dam depends on the productivity of lower trophic levels. Photosynthesis and respiration are basic biological processes that control productivity and alter pH and oxygen concentration. During 1998?99, data were collected to aid in the documentation of short- and long-term trends in these basic ecosystem processes in the Glen Canyon reach. Dissolved-oxygen, temperature, and specific-conductance profile data were collected monthly in the forebay of Glen Canyon Dam to document the status of water chemistry in the reservoir. In addition, pH, dissolved-oxygen, temperature, and specific-conductance data were collected at five sites in the Colorado River tailwater of Glen Canyon Dam to document the daily, seasonal, and longitudinal range of variation in water chemistry that could occur annually within the Glen Canyon reach.

  18. A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression.

    PubMed

    Winkler, Andreas; Heintz, Udo; Lindner, Robert; Reinstein, Jochen; Shoeman, Robert L; Schlichting, Ilme

    2013-07-01

    The anoxygenic phototrophic bacterium Rhodobacter sphaeroides uses different energy sources, depending on environmental conditions including aerobic respiration or, in the absence of oxygen, photosynthesis. Photosynthetic genes are repressed at high oxygen tension, but at intermediate levels their partial expression prepares the bacterium for using light energy. Illumination, however, enhances repression under semiaerobic conditions. Here, we describe molecular details of two proteins mediating oxygen and light control of photosynthesis-gene expression: the light-sensing antirepressor AppA and the transcriptional repressor PpsR. Our crystal structures of both proteins and their complex and hydrogen/deuterium-exchange data show that light activation of AppA-PpsR2 affects the PpsR effector region within the complex. DNA binding studies demonstrate the formation of a light-sensitive ternary AppA-PpsR-DNA complex. We discuss implications of these results for regulation by light and oxygen, highlighting new insights into blue light-mediated signal transduction.

  19. Oxygen as a factor in eukaryote evolution - Some effects of low levels of oxygen on Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Jahnke, L.; Klein, H. P.

    1979-01-01

    A comparative study of the effects of varying levels of oxygen on some of the metabolic functions of the primitive eukaryote, Saccharomyces cerevisiae, has shown that these cells are responsive to very low levels of oxygen: the level of palmitoyl-Co A desaturase was greatly enhanced by only 0.03 vol % oxygen. Similarly, an acetyl-CoA synthetase associated predominantly with anaerobic growth was stimulated by as little as 0.1% oxygen, while an isoenzyme correlated with aerobic growth was maximally active at much higher oxygen levels (greater than 1%). Closely following this latter pattern were three mitochondrial enzymes that attained maximal activity only under atmospheric levels of oxygen.

  20. Pressure broadening and fine-structure-dependent predissociation in oxygen B 3sigma(u)-, v = 0.

    PubMed

    Hannemann, Sandro; Wu, GuoRong; van Duijn, Eric-Jan; Ubachs, Wim; Cosby, Philip C

    2005-11-01

    Both laser-induced fluorescence and cavity ring-down spectral observations were made in the Schumann-Runge band system of oxygen, using a novel-type ultranarrow deep-UV pulsed laser source. From measurements on the very weak (0,0) band pressure broadening, pressure shift, and predissociation line-broadening parameters were determined for the B 3sigma(u)-, v = 0,F(i) fine-structure components for various rotational levels in O2. The information content from these studies was combined with that of entirely independent measurements probing the much stronger (0,10), (0,19), and (0,20) Schumann-Runge bands involving preparation of vibrationally excited O2 molecules via photolysis of ozone. The investigations result in a consistent set of predissociation widths for the B 3sigma(u)-, v = 0 state of oxygen.

  1. Induction of Tca8113 tumor cell apoptosis by icotinib is associated with reactive oxygen species mediated p38-MAPK activation.

    PubMed

    Yang, Cailing; Yan, Jianguo; Yuan, Guoyan; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Cui, Weigang

    2014-08-01

    Icotinib, a selective EGFR tyrosine kinase inhibitor (EGFR-TKI), has been shown to exhibit anti-tumor activity against several tumor cell lines. However, the exact molecular mechanism of icotinib's anti-tumor effect remains unknown. This study aims to examine the zytotoxic effect of icotinib on Tca8113 cells and its potential molecular mechanism. Icotinib significantly resulted in dose-dependent cell death as determined by MTT assay, accompanied by increased levels of Bax and DNA fragmentation. Icotinib could also induce Reactive Oxygen Species (ROS) generation. Further studies confirmed that scavenging of reactive oxygen species by N-acetyl-L-cysteine (NAC), and pharmacological inhibition of MAPK reversed icotinib-induced apoptosis in Tca8113 cells. Our data provide evidence that icotinib induces apoptosis, possibly via ROS-mediated MAPK pathway in Tca8113 cells.

  2. Ventilation rates and activity levels of juvenile jumbo squid under metabolic suppression in the oxygen minimum zone.

    PubMed

    Trübenbach, Katja; Pegado, Maria R; Seibel, Brad A; Rosa, Rui

    2013-02-01

    The Humboldt (jumbo) squid, Dosidicus gigas, is a part-time resident of the permanent oxygen minimum zone (OMZ) in the Eastern Tropical Pacific and, thereby, it encounters oxygen levels below its critical oxygen partial pressure. To better understand the ventilatory mechanisms that accompany the process of metabolic suppression in these top oceanic predators, we exposed juvenile D. gigas to the oxygen levels found in the OMZ (1% O(2), 1 kPa, 10 °C) and measured metabolic rate, activity cycling patterns, swimming mode, escape jet (burst) frequency, mantle contraction frequency and strength, stroke volume and oxygen extraction efficiency. In normoxia, metabolic rate varied between 14 and 29 μmol O(2) g(-1) wet mass h(-1), depending on the level of activity. The mantle contraction frequency and strength were linearly correlated and increased significantly with activity level. Additionally, an increase in stroke volume and ventilatory volume per minute was observed, followed by a mantle hyperinflation process during high activity periods. Squid metabolic rate dropped more than 75% during exposure to hypoxia. Maximum metabolic rate was not achieved under such conditions and the metabolic scope was significantly decreased. Hypoxia changed the relationship between mantle contraction strength and frequency from linear to polynomial with increasing activity, indicating that, under hypoxic conditions, the jumbo squid primarily increases the strength of mantle contraction and does not regulate its frequency. Under hypoxia, jumbo squid also showed a larger inflation period (reduced contraction frequency) and decreased relaxed mantle diameter (shortened diffusion pathway), which optimize oxygen extraction efficiency (up to 82%/34%, without/with consideration of 60% potential skin respiration). Additionally, they breathe 'deeply', with more powerful contractions and enhanced stroke volume. This deep-breathing behavior allows them to display a stable ventilatory volume per minute, and explains the maintenance of the squid's cycling activity under such O(2) conditions. During hypoxia, the respiratory cycles were shorter in length but increased in frequency. This was accompanied by an increase in the number of escape jets during active periods and a faster switch between swimming modes. In late hypoxia (onset ~170 ± 10 min), all the ventilatory processes were significantly reduced and followed by a lethargic state, a behavior that seems closely associated with the process of metabolic suppression and enables the squid to extend its residence time in the OMZ.

  3. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers.

    PubMed

    Koehler, Raymond C; Fronticelli, Clara; Bucci, Enrico

    2008-10-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4-34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery.

  4. Pressure dependence of the oxygen reduction reaction at the platinum microelectrode/nafion interface - Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramaniam; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    The investigation of oxygen reduction kinetics at the platinum/Nafion interface is of great importance in the advancement of proton-exchange-membrane (PEM) fuel-cell technology. This study focuses on the dependence of the oxygen reduction kinetics on oxygen pressure. Conventional Tafel analysis of the data shows that the reaction order with respect to oxygen is unity at both high and low current densities. Chronoamperometric measurements of the transport parameters for oxygen in Nafion show that oxygen dissolution follows Henry's isotherm. The diffusion coefficient of oxygen is invariant with pressure; however, the diffusion coefficient for oxygen is lower when air is used as the equilibrating gas as compared to when oxygen is used for equilibration. These results are of value in understanding the influence of O2 partial pressure on the performance of PEM fuel cells and also in elucidating the mechanism of oxygen reduction at the platinum/Nafion interface.

  5. Clinical and molecular epidemiological features of tuberculosis after the 2011 Japan earthquake and tsunami.

    PubMed

    Kanamori, H; Hatakeyama, T; Uchiyama, B; Weber, D J; Takeuchi, M; Endo, S; Hirakata, Y; Kaku, M

    2016-04-01

    To investigate clinical characteristics and prognosis in tuberculosis (TB) patients and the transmission dynamics of TB after the 2011 Japan earthquake and tsunami. This was a retrospective observational cohort study. Data were analyzed among 93 pulmonary TB patients (tsunami-affected areas 25, non-tsunami areas 68) hospitalized during March 2011-March 2012 with 1-year follow-up since treatment commencement. Variable number of tandem repeats (VNTR) typing was conducted for 38 TB strains (tsunami-affected areas 21, non-tsunami areas 17). Patients from tsunami-affected areas were significantly more likely to be refugees (OR 12.8, 95%CI 2.45-67.20), receive oxygenation (OR 5.0, 95%CI 1.68-14.85), and have a unique VNTR (OR 4.6, 95%CI 1.14-18.41). Patients who died within 1 year were significantly more likely to be older (OR 9.8, 95%CI 1.85-180.26), partially dependent or dependent (OR 11.9, 95%CI 4.28-37.62), and to require oxygenation (OR 4.3, 95%CI 1.47-12.89), and had lower serum albumin levels (OR 11.1, 95%CI 2.97-72.32). Risk factors for prognosis of TB after the earthquake were associated with advanced age, low serum albumin level, functional status at admission, and oxygen requirement. The VNTR results suggest that most of the cases with pulmonary TB experienced reactivation of latent tuberculous infection, likely due to the impact of the earthquake and tsunami.

  6. Analysis of alanine aminotransferase in various organs of soybean (Glycine max) and in dependence of different nitrogen fertilisers during hypoxic stress.

    PubMed

    Rocha, Marcio; Sodek, Ladaslav; Licausi, Francesco; Hameed, Muhammad Waqar; Dornelas, Marcelo Carnier; van Dongen, Joost T

    2010-10-01

    Alanine aminotransferase (AlaAT) catalyses the reversible conversion of pyruvate and glutamate into alanine and oxoglutarate. In soybean, two subclasses were identified, each represented by two highly similar members. To investigate the role of AlaAT during hypoxic stress in soybean, changes in transcript level of both subclasses were analysed together with the enzyme activity and alanine content of the tissue. Moreover, the dependency of AlaAT activity and gene expression was investigated in relation to the source of nitrogen supplied to the plants. Using semi-quantitative PCR, GmAlaAT genes were determined to be highest expressed in roots and nodules. Under normal growth conditions, enzyme activity of AlaAT was detected in all organs tested, with lowest activity in the roots. Upon waterlogging-induced hypoxia, AlaAT activity increased strongly. Concomitantly, alanine accumulated. During re-oxygenation, AlaAT activity remained high, but the transcript level and the alanine content decreased. Our results show a role for AlaAT in the catabolism of alanine during the initial period of re-oxygenation following hypoxia. GmAlaAT also responded to nitrogen availability in the solution during waterlogging. Ammonium as nitrogen source induced both gene expression and enzyme activity of AlaAT more than when nitrate was supplied in the nutrient solution. The work presented here indicates that AlaAT might not only be important during hypoxia, but also during the recovery phase after waterlogging, when oxygen is available to the tissue again.

  7. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    PubMed Central

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  8. Correlation between the sorption of dissolved oxygen onto chitosan and its antimicrobial activity against Esherichia coli.

    PubMed

    Gylienė, Ona; Servienė, Elena; Vepštaitė, Iglė; Binkienė, Rima; Baranauskas, Mykolas; Lukša, Juliana

    2015-10-20

    The ability of chitosan to adsorb dissolved oxygen from solution depends on its physical shape and is related to the surface area. Depending on conditions chitosan is capable of adsorbing or releasing oxygen. Chitosan, modificated by the substances possessing antimicrobial activity, such as succinic acid, Pd(II) ions, metallic Pd or Ag, distinctly increases the ability to adsorb the dissolved oxygen. The additional treatment of chitosan with air oxygen or electrochemically produced oxygen also increases the uptake of dissolved oxygen by chitosan. A strong correlation between the amount of oxygen adsorbed onto chitosan and its antimicrobial activity against Esherichia coli has been observed. This finding suggests that one of the sources of antimicrobial activity of chitosan is the ability to sorb dissolved oxygen, along with other well-known factors such as physical state and chemical composition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Oxygen vacancy effect on dielectric and hysteretic properties of zigzag ferroelectric iron dioxide nanoribbon

    NASA Astrophysics Data System (ADS)

    Zriouel, S.; Taychour, B.; Yahyaoui, F. El; Drissi, L. B.

    2017-07-01

    Zigzag FeO2 nanoribbon defected by the removal of oxygen atoms is simulated using Monte Carlo simulations. All possible arrangements of positions and number of oxygen vacancy are investigated. Temperature dependence of polarization, dielectric susceptibility, internal energy, specific heat and dielectric hysteresis loops are all studied. Results show the presence of second order phase transition and Q - type behavior. Dielectric properties dependence on ribbon's edge, positions and number of oxygen vacancy are discussed in detail. Moreover, single and square hysteresis loops are observed whatever the number of oxygen vacancy in the system.

  10. A Distributed Chemosensory Circuit for Oxygen Preference in C. elegans

    PubMed Central

    Chang, Andy J; Chronis, Nikolas; Karow, David S; Marletta, Michael A; Bargmann, Cornelia I

    2006-01-01

    The nematode Caenorhabditis elegans has complex, naturally variable behavioral responses to environmental oxygen, food, and other animals. C. elegans detects oxygen through soluble guanylate cyclase homologs (sGCs) and responds to it differently depending on the activity of the neuropeptide receptor NPR-1: npr-1(lf) and naturally isolated npr-1(215F) animals avoid high oxygen and aggregate in the presence of food; npr-1(215V) animals do not. We show here that hyperoxia avoidance integrates food with npr-1 activity through neuromodulation of a distributed oxygen-sensing network. Hyperoxia avoidance is stimulated by sGC-expressing oxygen-sensing neurons, nociceptive neurons, and ADF sensory neurons. In npr-1(215V) animals, the switch from weak aerotaxis on food to strong aerotaxis in its absence requires close regulation of the neurotransmitter serotonin in the ADF neurons; high levels of ADF serotonin promote hyperoxia avoidance. In npr-1(lf) animals, food regulation is masked by increased activity of the oxygen-sensing neurons. Hyperoxia avoidance is also regulated by the neuronal TGF-β homolog DAF-7, a secreted mediator of crowding and stress responses. DAF-7 inhibits serotonin synthesis in ADF, suggesting that ADF serotonin is a convergence point for regulation of hyperoxia avoidance. Coalitions of neurons that promote and repress hyperoxia avoidance generate a subtle and flexible response to environmental oxygen. PMID:16903785

  11. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals.

    PubMed

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B

    2017-03-01

    The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Responses and recovery assessment of continuously cultured Nitrosomonas europaea under chronic ZnO nanoparticle stress: Effects of dissolved oxygen.

    PubMed

    Wu, Junkang; Chang, Yan; Gao, Huan; Liang, Geyu; Yu, Ran; Ding, Zhen

    2018-03-01

    Although the antibacterial performances of emerging nanoparticles (NPs) have been extensively explored in the nitrifying systems, the impacts of dissolved oxygen (DO) levels on their bio-toxicities to the nitrifiers and the impaired cells' recovery potentials have seldom been addressed yet. In this study, the physiological and transcriptional responses of the typical ammonia oxidizers - Nitrosomonas europaea in a chemostat to the chronic ZnO NP exposure under different DO conditions were investigated. The results indicated that the cells in steady-growth state in the chemostat were more persevering than batch cultured ones to resist ZnO NP stress despite the dose-dependent NP inhibitory effects were observed. In addition, the occurred striking over-expressions of amoA and hao genes at the initial NP exposure stage suggested the cells' self-regulation potentials at the transcriptional level. The low DO (0.5 mg/L) cultured cells displayed higher sensitivity to NP stress than the high DO (2.0 mg/L) cultured ones, probably owning to the inefficient oxygen-dependent electron transfer from ammonia oxidation for energy conversion/production. The following 12-h NP-free batch recovery assays revealed that both high and low DO cultured cells possessed the physiological and metabolic activity recovery potentials, which were in negative correlation with the NP exposure time. The duration of NP stress and the resulting NP dissolution were critical for the cells' damage levels and their performance recoverability. The membrane preservation processes and the associated metabolism regulations were expected to actively participate in the cells' self-adaption to NP stress and thus be responsible for their metabolic activities recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The air we breathe: three vital respiratory gases and the red blood cell: oxygen, nitric oxide, and carbon dioxide.

    PubMed

    Dzik, Walter H

    2011-04-01

    Three vital respiratory gases-oxygen (O(2)), nitric oxide (NO), and carbon dioxide (CO(2))-intersect at the level of the human red blood cell (RBC). In addition to hemoglobin (Hb)'s central role in O(2) transport, interaction of Hb with the Band 3 metabolon balances RBC energy flow. 2,3-Diphosphoglycerate enhances O(2) transport across the placenta and plays an important role in regulating RBC plasticity. NO is a key mediator of hypoxic vasodilation, but the precise role of RBC Hb remains controversial. In addition to established theories that depend on RBC uptake, delivery, and discharge of NO or its metabolites, an alternative hypothesis based on RBC permeability is suggested. NO depletion by free Hb may account for several clinical features seen during intravascular hemolysis or during deliberate infusion of Hb solutions used as RBC substitutes. CO(2) released by tissues triggers oxygen release through a series of well-coordinated reactions centered on the Band 3 metabolon. While RBC carbonic anhydrase and the Band 3 anion exchanger are central to this process, there is surprisingly little research on the kinetics of CO(2) clearance by transfusion. The three RBC gases are directly related to the three principal gases of Earth's atmosphere. Human fossil fuel consumption dumps 90 million metric tons of carbon into the atmosphere annually. Increasing CO(2) levels are linked to global warming, melting Arctic ice, rising sea levels, and climate instability. Just as individual cells depend on balance of the three vital gases, so too will their balance determine survival of life on Earth. © 2011 American Association of Blood Banks.

  14. ssDNA damage dependence from singlet oxygen concentration at photodynamic interaction

    NASA Astrophysics Data System (ADS)

    Klimenko, V. V.; Kaydanov, N. E.; Emelyanov, A. K.; Bogdanov, A. A.

    2017-11-01

    Single stranded DNA damage at photodynamic treatment with Radachlorin photosensitizer was investigated. Chemical trap method was used to evaluate generation of singlet oxygen in water solution. Interaction of singlet oxygen with ssDNA resulted into decrease of the replication activity of ssDNA. DNA stopped replicating during PCR at irradiation doses greater than 15 J/cm2 and concentration of photosensitizer [PS] = 3.8 μM. The dependence of replication activity of ssDNA on generated singlet oxygen concentration was identified.

  15. Impact of oxygen diffusion on superconductivity in YBa2Cu3O7 -δ thin films studied by positron annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Reiner, M.; Gigl, T.; Jany, R.; Hammerl, G.; Hugenschmidt, C.

    2018-04-01

    The oxygen deficiency δ in YBa2Cu3O7 -δ (YBCO) plays a crucial role for affecting high-temperature superconductivity. We apply (coincident) Doppler broadening spectroscopy of the electron-positron annihilation line to study in situ the temperature dependence of the oxygen concentration and its depth profile in single crystalline YBCO film grown on SrTiO3 (STO) substrates. The oxygen diffusion during tempering is found to lead to a distinct depth dependence of δ , which is not accessible using x-ray diffraction. A steady state reached within a few minutes is defined by both, the oxygen exchange at the surface and at the interface to the STO substrate. Moreover, we reveal the depth-dependent critical temperature Tc in the as prepared and tempered YBCO film.

  16. The effect of dissolved oxygen on the relaxation rates of blood plasma: Implications for hyperoxia calibrated BOLD.

    PubMed

    Ma, Yuhan; Berman, Avery J L; Pike, G Bruce

    2016-12-01

    To determine the contribution of paramagnetic dissolved oxygen in blood plasma to blood-oxygenation-level-dependent (BOLD) signal changes in hyperoxic calibrated BOLD studies. Bovine blood plasma samples were prepared with partial pressures of oxygen (pO 2 ) ranging from 110 to 600 mmHg. R 1 , R 2 , and R 2 * of the plasma with dissolved oxygen were measured using quantitative MRI sequences at 3 Tesla. Simulations were performed to predict the relative effects of dissolved oxygen and deoxyhemoglobin changes in hyperoxia calibrated BOLD. The relaxivities of dissolved oxygen in plasma were found to be r 1, O2 =1.97 ± 0.09 ×10 -4 s -1 mmHg -1 , r 2, O2 =2.3 ± 0.7 ×10 -4 s -1 mmHg -1 , and r 2, O2 * = 2.3 ± 0.7 ×10 -4 s -1 mmHg -1 . Simulations predict that neither the transverse nor longitudinal relaxation rates of dissolved oxygen contribute significantly to the BOLD signal during hyperoxia. During hyperoxia, the increases in R 2 and R 2 * of blood from dissolved oxygen in plasma are considerably less than the decreases in R 2 and R 2 * from venous deoxyhemoglobin. R 1 effects due to dissolved oxygen are also predicted to be negligible. As a result, dissolved oxygen in arteries should not contribute significantly to the hyperoxic calibrated BOLD signal. Magn Reson Med 76:1905-1911, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  17. Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast*

    PubMed Central

    Burr, Risa; Stewart, Emerson V.; Shao, Wei; Zhao, Shan; Hannibal-Bach, Hans Kristian; Ejsing, Christer S.; Espenshade, Peter J.

    2016-01-01

    Eukaryotic lipid synthesis is oxygen-dependent with cholesterol synthesis requiring 11 oxygen molecules and fatty acid desaturation requiring 1 oxygen molecule per double bond. Accordingly, organisms evaluate oxygen availability to control lipid homeostasis. The sterol regulatory element-binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis in response to changing sterol and oxygen levels. However, notably missing is an SREBP-1 analog that regulates triacylglycerol and glycerophospholipid homeostasis in response to low oxygen. Consistent with this, studies have shown that the Sre1 transcription factor regulates only a fraction of all genes up-regulated under low oxygen. To identify new regulators of low oxygen adaptation, we screened the S. pombe nonessential haploid deletion collection and identified 27 gene deletions sensitive to both low oxygen and cobalt chloride, a hypoxia mimetic. One of these genes, mga2, is a putative transcriptional activator. In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid saturation. Indeed, addition of exogenous oleic acid to mga2Δ cells rescued the observed growth defects. Together, these results establish Mga2 as a transcriptional regulator of triacylglycerol and glycerophospholipid homeostasis in S. pombe, analogous to mammalian SREBP-1. PMID:27053105

  18. Effects of temperature and oxygen on growth and differentiation of embryos of the ground skink, Scincella lateralis.

    PubMed

    Flewelling, Sarena; Parker, Scott L

    2015-08-01

    Development of reptile embryos is dependent upon adequate oxygen availability to meet embryonic metabolic demand. Metabolic rate of embryos is temperature dependent, with oxygen consumption increasing exponentially as a function of temperature. Because metabolic rate is more temperature sensitive than diffusion, developmental processes are predicted to be oxygen-limited at high temperatures. We tested the hypothesis that the amount of development lizard embryos achieve in the oviduct is dependent upon both temperature and oxygen availability. We evaluated the effect of temperature (23, 33°C) and oxygen concentration (9%, 15%, 21% O2 ) on survival and development of embryos of the oviparous skink Scincella lateralis. We predicted that incubation at 33°C under hypoxic conditions would result in higher embryo mortality due to mismatch between embryo oxygen demand and oxygen supply compared to eggs incubated at 23°C under hypoxic conditions. Embryo mortality was highest at 33°C/9% O2 (86%) compared to 23°C/9% O2 (14%), however, mortality did not differ among any other oxygen-temperature treatment combination. Both temperature and oxygen affected differentiation, but the interaction between temperature and oxygen was not significant. Embryo growth in mass and hatchling mass were affected by oxygen concentration independent of temperature treatment. Differing responses of growth and differentiation to temperature and oxygen treatments suggests that somatic growth may be more sensitive to oxygen availability than differentiation. Results indicate that embryo mortality can occur both via the direct effect of high temperature on cellular function as well as indirectly through thermally induced oxygen diffusion limitation. © 2015 Wiley Periodicals, Inc.

  19. Modeling the impact of COPD on the brain.

    PubMed

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable-COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p < or = 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities.

  20. Modeling the impact of COPD on the brain

    PubMed Central

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities. PMID:18990971

  1. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD)

    PubMed Central

    Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.

    2010-01-01

    Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional responses between HIF-α and PHD homologs from oysters and other invertebrate and vertebrate species implies the highly conserved functions of these genes throughout the evolutionary history of animals, in accordance with their critical role in oxygen sensing and homeostasis. PMID:21106446

  2. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found good correlation between MRI and micro probe measurements. However, direct conversion of tissue pO2 to blood oxygen saturation by using the Hill equation is very limited. Furthermore, adverse effects of anesthesia and trauma due to micro probe insertion are strong confounding factors and need close attention for study planning and conduction of experiments. Investigation of the correlation of perfusion and oxygenation sensitive MRI methods with micro probe measurements in pathologic tissue such as tumors is now of compelling interest. Copyright © 2014. Published by Elsevier GmbH.

  3. In vivo determination of cerebral hemodynamics and bioenergetics using spin-echo magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Oja, Joni Marcus Eric

    1999-08-01

    It is well known that the transverse relaxation time, T 2, is dependent on the oxygenation state of blood. Two biophysical mechanisms have been proposed to explain this interdependency. In the diffusion model, oxygenation effects are accounted for by water diffusion through field gradients inside and outside, of the erythrocytes, whereas in the exchange model, the oxygenation effect is thought to be due to the exchange of water between erythrocytes and plasma. Careful in vitro studies with blood have shown that the exchange model fits best to the obtained data in preference to the diffusion model. During brain activation, local increases in blood flow exceed the oxygen demand, resulting in less deoxygenated blood in the capillary and venous compartments. Due to this, blood is less paramagnetic in these activated brain regions, lengthening T2, which in turn increases the signal intensities of the corresponding voxels in the MR image. Thus the measured blood-oxygen-level-dependent (BOLD) image contrast is a complex function of many physiological parameters, such as tissue morphometry, blood volume, blood flow, oxygenation and oxygen metabolism. All of these parameters contribute to the tissue magnetization influencing the transverse relaxation rate. Until now, no exact equations have been available which would relate these hemodynamic variables to a single MRI observable parameter, namely T 2, in a manner in which absolute units can be used. A fundamental theory was developed to explain measured spin-echo BOLD effects, and it was tested in animals and humans. In animal studies, blood oxygenation was altered by regulating arterial oxygen or carbon dioxide tension. This resulted in changes in blood volume, flow and blood magnetization, which in turn was reflected in T2. Using analytical expressions derived from the theory, the transverse relaxation rate was related to the oxygen saturation and extraction and quantification of microvascular cerebral blood volume was achieved. Additionally, visual activation studies in humans were performed at different spatial resolutions to reveal the origin of the measured fMRI effects. The effect increased with spatial resolution indicating partial voluming with draining veins, which was correctly described by the theory. Also the relationship between oxygen demand and delivery ( OER = oxygen extraction ratio) was quantified from extraction ratio) was quantified from venous blood draining from the activated tissue. The measured OER indicated unmatched physiological alteration in oxygen consumption and blood flow, emphasizing that oxygenation effects dominate the changes seen in the measured fMRI signal changes.

  4. Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level.

    PubMed

    Yoon, Young-Zoon; Hong, Ha; Brown, Aidan; Kim, Dong Chung; Kang, Dae Joon; Lew, Virgilio L; Cicuta, Pietro

    2009-09-16

    Erythrocytes (red blood cells) play an essential role in the respiratory functions of vertebrates, carrying oxygen from lungs to tissues and CO(2) from tissues to lungs. They are mechanically very soft, enabling circulation through small capillaries. The small thermally induced displacements of the membrane provide an important tool in the investigation of the mechanics of the cell membrane. However, despite numerous studies, uncertainties in the interpretation of the data, and in the values derived for the main parameters of cell mechanics, have rendered past conclusions from the fluctuation approach somewhat controversial. Here we revisit the experimental method and theoretical analysis of fluctuations, to adapt them to the case of cell contour fluctuations, which are readily observable experimentally. This enables direct measurements of membrane tension, of bending modulus, and of the viscosity of the cell cytoplasm. Of the various factors that influence the mechanical properties of the cell, we focus here on: 1), the level of oxygenation, as monitored by Raman spectrometry; 2), cell shape; and 3), the concentration of hemoglobin. The results show that, contrary to previous reports, there is no significant difference in cell tension and bending modulus between oxygenated and deoxygenated states, in line with the softness requirement for optimal circulatory flow in both states. On the other hand, tension and bending moduli of discocyte- and spherocyte-shaped cells differ markedly, in both the oxygenated and deoxygenated states. The tension in spherocytes is much higher, consistent with recent theoretical models that describe the transitions between red blood cell shapes as a function of membrane tension. Cell cytoplasmic viscosity is strongly influenced by the hydration state. The implications of these results to circulatory flow dynamics in physiological and pathological conditions are discussed.

  5. Intra-renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Ferguson, Christopher M; Riester, Scott M; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2015-01-19

    Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH. Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without adjunct intra-renal delivery of MSC (10^6 cells), and controls. Cardiac structure, function (fast-computed tomography (CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and systemic blood levels of inflammatory markers were measured and their renal release calculated. PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative stress, inflammation, collagen deposition, and fibrosis. Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and structure after reversal of experimental RVH.

  6. Coordinate regulation of stress signaling and epigenetic events by Acss2 and HIF-2 in cancer cells

    PubMed Central

    Nagati, Jason

    2017-01-01

    Survival of cancer cells in the harsh tumor microenvironment, characterized by oxygen and glucose deprivation, requires rapid initiation of cytoprotective measures. Metabolites whose levels change during stress are ideal signaling cues, particularly if used in post-translational modifications of stress-responsive signal transducers. In cancer cells exposed to oxygen or glucose deprivation, there is an increase in cellular levels of acetate, a substrate for acetate-dependent acetyl CoA synthetase 2 (Acss2) that also stimulates translocation of Acss2 from the cytosol to the nucleus. Nuclear, but not cytosolic, Acss2 promotes acetylation of the stress-responsive Hypoxia Inducible Factor 2α (HIF-2α) subunit by the acetyltransferase/coactivator Creb binding protein (Cbp), a process that facilitates stable Cbp/HIF-2α complex formation. In addition to promoting de novo transcription, Cbp and HIF-2α act in concert to regulate local histone 3 epigenetic marks. Exogenous acetate augments Acss2/HIF-2 dependent cancer growth and metastasis in cell culture and mouse models. Thus, an acetate switch in mammals links nutrient intake and stress signaling with tumor growth and metastasis. PMID:29281714

  7. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    PubMed Central

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-01-01

    Abstract. Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation. PMID:25562608

  8. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing

    NASA Astrophysics Data System (ADS)

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R.; Berns, Michael W.

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation.

  9. Combination of low level light therapy and nitrosyl-cobinamide accelerates wound healing.

    PubMed

    Spitler, Ryan; Ho, Hsiang; Norpetlian, Frederique; Kong, Xiangduo; Jiang, Jingjing; Yokomori, Kyoko; Andersen, Bogi; Boss, Gerry R; Berns, Michael W

    2015-05-01

    Low level light therapy (LLLT) has numerous therapeutic benefits, including improving wound healing, but the precise mechanisms involved are not well established; in particular, the underlying role of cytochrome C oxidase (C-ox) as the primary photoacceptor and the associated biochemical mechanisms still require further investigation. We previously showed the nitric oxide (NO) donating drug nitrosyl-cobinamide (NO-Cbi) enhances wound healing through a cGMP/cGMP-dependent protein kinase/ERK1/2 mechanism. Here, we show that the combination of LLLT and NO-Cbi markedly improves wound healing compared to either treatment alone. LLLT-enhanced wound healing proceeded through an electron transport chain-C-ox-dependent mechanism with a reduction of reactive oxygen species and increased adenosine triphosphate production. C-ox was validated as the primary photoacceptor by three observations: increased oxygen consumption, reduced wound healing in the presence of sodium azide, and disassociation of cyanide, a known C-ox ligand, following LLLT. We conclude that LLLT and NO-Cbi accelerate wound healing through two independent mechanisms, the electron transport chain-C-ox pathway and cGMP signaling, respectively, with both resulting in ERK1/2 activation.

  10. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  11. Photosensitized generation of singlet oxygen in porous silicon studied by simultaneous measurements of luminescence of nanocrystals and oxygen molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongalsky, M. B.; Kharin, A. Yu.; Zagorodskikh, S. A.

    2011-07-01

    Photosensitization of singlet oxygen generation in porous silicon (PSi) was investigated by simultaneous measurements of the photoluminescence (PL) of silicon nanocrystals (nc-Si) and the infrared emission of the {sup 1}{Delta}-state of oxygen molecules at 1270 nm (0.98 eV) at room temperature. Photodegradation of the nc-Si PL properties was found to correlate with the efficiency of singlet oxygen generation. The quantum efficiency of singlet oxygen generation in PSi was estimated to be about 1%, while the lifetime of singlet oxygen was about fifteen ms. The kinetics of nc-Si PL intensity under cw excitation undergoes a power law dependence with the exponentmore » dependent on the photon energy of luminescence. The experimental results are explained with a model of photodegradation controlled by the diffusion of singlet oxygen molecules in a disordered structure of porous silicon.« less

  12. Effects of oolong tea on plasma antioxidative capacity in mice loaded with restraint stress assessed using the oxygen radical absorbance capacity (ORAC) assay.

    PubMed

    Kurihara, Hiroshi; Fukami, Harukazu; Asami, Sumio; Toyoda, Yoshiko; Nakai, Masaaki; Shibata, Hiroshi; Yao, Xin-Sheng

    2004-07-01

    In the present study, we investigated the antioxidative effect of oolong tea in vitro and in vivo using the oxygen radical absorbance capacity (ORAC) assay. An oolong tea extract, catechin and related compounds suppressed the oxidation of fluorescence induced by AAPH in a dose-dependent manner, that is, they prolonged the antioxidant time in vitro. Oral administration of the oolong tea extract to mice treated with restraint stress increased ORAC activity in plasma as compared with a stress control group. The extract also increased plasma vitamin C levels, and there was a good relationship between ORAC activity and the vitamin C level in plasma. The elevation of plasma ORAC and vitamin C level may have been related to the stress-relieving effect of oolong tea. These effects are probably due to the antioxidative properties of the tea. Thus, these findings suggested that oolong tea has beneficial effects on health related to its antioxidative action.

  13. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface - A microelectrode investigation

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.

  14. Fuelling the palaeoatmospheric oxygen debate: how much atmospheric oxygen is required for ignition and propagation of smouldering fires?

    NASA Astrophysics Data System (ADS)

    Belcher, Claire M.; Hadden, Rory; McElwain, Jennifer C.; Rein, Guillermo

    2010-05-01

    Fire is a natural process integral to ecosystems at a wide range of temporal and spatial scales and is a key driver of change in the Earth system. Fire has been a major influence on Earth's systems since the Carboniferous. Whilst, climate is considered the ultimate control on global vegetation, fire is now known to play a key role in determining vegetation structure and composition, such that many of the world's ecosystems can be considered fire-dependant. Products of fire include chars, soots and aromatic hydrocarbon species all of which can be traced in ancient through to modern sediments. Atmospheric oxygen has played a key role in the development of life on Earth, with the rise of oxygen in the Precambrian being closely linked to biological evolution. Variations in the concentration of atmospheric oxygen throughout the Phanerozoic are predicted from models based on geochemical cycling of carbon and sulphur. Such models predict that low atmospheric oxygen concentrations prevailed in the Mesozoic (251-65ma) and have been hypothesised to be the primary driver of at least two of the ‘big five' mass extinction events in the Phanerozoic. Here we assess the levels of atmospheric oxygen required to ignite a fire and infer the likely levels of atmospheric oxygen to support smouldering combustion. Smouldering fire dynamics and its effects on ecosystems are very different from flaming fires. Smouldering fires propagate slowly, are usually low in temperature and represent a flameless form of combustion. These fires creep through organic layers of forest ground and peat lands and are responsible for a large fraction of the total biomass consumed in wildfires globally and are also a major contributor of carbon dioxide to the atmosphere. Once ignited, they can persist for long periods of time (months, years) spreading over very extensive areas of forest and deep into soil. Smouldering fires are therefore, the oldest continuously burning fires on Earth. We have combined expertise from both the Earth science and fire engineering disciplines to develop realistic ignition mechanisms and measurements of fire propagation within different levels of atmospheric oxygen. We present data from experimental burns run in the fully controlled and realistic atmospheric environment of the UCD PÉAC facility. The burns are designed to develop our understanding of ignition of fires in the natural world. We have studied ignition and propagation of fire in peat, a natural and highly flammable substance. Peat samples of approximately 100mm by 100mm in cross section and 50mm in depth were exposed to an ignition source (~100W of electric power) for 30 minutes. Thermocouples were placed throughout the sample to measure temperature changes during the initial 30 minute ignition phase and in order to observe ignition of the peat, intensity of combustion and spread of the smouldering front within the different atmospheric oxygen settings. We show that ignition and propagation of smouldering in peat does not occur below 16% atmospheric oxygen and that smouldering combustion continues for long periods (~4 hours in the size sample used) at 18% atmospheric oxygen and above. This suggests that atmospheric levels above 16% atmospheric are required to allow ignition and propagation of smouldering fires and that frequent occurrences of wildfires might only be expected in the geological past when atmospheric levels were above 18% oxygen. Fires play an important role in Earth's biogeochemical cycles; this work suggests that fire feedbacks into the Earth system would likely have been suppressed during periods of low atmospheric oxygen.

  15. Paleosols as Archives of Environmental Change in Deep Time

    NASA Astrophysics Data System (ADS)

    Crowley, Quentin

    2015-04-01

    Paleosols develop at the geosphere-atmosphere interface and potentially provide an archive of environmental conditions at the time of their formation. Although paleosols from deep time can be difficult to recognize due to the masking of pedogenic features by metamorphism and deformation, they may record transient (i.e. time-dependent) events which are often difficult to recognize in other geological proxies. Paleosols from the Archean and Paleoproterozoic are rare and complex to study, but offer an opportunity to gain insight into what may be relatively short-scale temporal variations in the Earth's atmospheric composition. For instance, it is widely believed that atmospheric oxygen saturation rose from <10E-05 present atmospheric level (PAL) in the Archean to >10E-02 PAL at the Great Oxidation Event (GOE) at ca. 2.4 Ga. Until recently however, chemical or physical evidence from paleosols for earlier oxygenation events were generally thought to be lacking. Recent studies of paleosols from eastern India (Keonjhar Paleosol, Singhbhum Craton) and South Africa (Nsuze Paleosol, Kaapvaal Craton) have provided chemical evidence for transient Mesoarchean atmospheric oxygenation at ca. 3.0 Ga. These paleosols are considered to preserve the earliest known vestiges of terrestrial oxidative weathering, signifying a transient, early oxygen accumulation in the Earth's atmosphere. This has far-reaching implications from both atmospheric and biological evolutionary perspectives in that chemical signatures preserved in these Mesoarchean paleosols are thought to signify the presence of molecular oxygen at levels higher than those attributable to photo-dissociation of atmospheric water alone. Such elevated levels of atmospheric oxygen could only be due to the presence of a sufficiently large biomass of micro-organisms capable of oxidative photosynthesis. Although the Archean-Paleoproterozoic paleosol geological record is fragmentary and geochemical signatures are not necessarily straightforward to interpret, these paleosols provide an opportunity to study the nature and timing of atmospheric compositional changes at a crucial time in the Earth's evolutionary history.

  16. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa Dana.

    PubMed

    Elliott, David T; Pierson, James J; Roman, Michael R

    2013-01-01

    We describe a model predicting the effects of low environmental oxygen on vital rates (egg production, somatic growth, and mortality) of the coastal planktonic copepod Acartia tonsa. Hypoxic conditions can result in respiration rate being directly limited by oxygen availability. We hypothesized that A. tonsa egg production, somatic growth, and ingestion rates would all respond in a similar manner to low oxygen conditions, as a result of oxygen dependent changes in respiration rate. Rate data for A. tonsa egg production, somatic growth, and ingestion under low environmental oxygen were compiled from the literature and from supplementary experiments. The response of these rates to oxygen was compared by converting all to the analogous units in terms of oxygen utilization, which we termed analogous respiration rate. These analogous respiration rates, along with published measurements of respiration rates, were used to parameterize and evaluate the relationship between A. tonsa respiration rate and environmental oxygen. At 18 °C, our results suggest that A. tonsa experiences sub-lethal effects of hypoxia below an oxygen partial pressure of 8.1 kPa (~3.1 mg L(-1) = 2.3 mL L(-1)). The results of this study can be used to predict the effects of hypoxia on A. tonsa growth and mortality as related to environmental temperature and oxygen partial pressure. Such predictions will be useful as a way to incorporate the effects of coastal hypoxia into population, community, or ecosystem level models that include A. tonsa. This approach can also be used to characterize the effects of hypoxia on other aquatic organisms.

  17. Potential and timescales for oxygen depletion in coastal upwelling systems: A box-model analysis

    NASA Astrophysics Data System (ADS)

    Harrison, C. S.; Hales, B.; Siedlecki, S.; Samelson, R. M.

    2016-05-01

    A simple box model is used to examine oxygen depletion in an idealized ocean-margin upwelling system. Near-bottom oxygen depletion is controlled by a competition between flushing with oxygenated offshore source waters and respiration of particulate organic matter produced near the surface and retained near the bottom. Upwelling-supplied nutrients are consumed in the surface box, and some surface particles sink to the bottom where they respire, consuming oxygen. Steady states characterize the potential for hypoxic near-bottom oxygen depletion; this potential is greatest for faster sinking rates, and largely independent of production timescales except in that faster production allows faster sinking. Timescales for oxygen depletion depend on upwelling and productivity differently, however, as oxygen depletion can only be reached in meaningfully short times when productivity is rapid. Hypoxia thus requires fast production, to capture upwelled nutrients, and fast sinking, to deliver the respiration potential to model bottom waters. Combining timescales allows generalizations about tendencies toward hypoxia. If timescales of sinking are comparable to or smaller than the sum of those for respiration and flushing, the steady state will generally be hypoxic, and results indicate optimal timescales and conditions exist to generate hypoxia. For example, the timescale for approach to hypoxia lengthens with stronger upwelling, since surface particle and nutrient are shunted off-shelf, in turn reducing subsurface respiration and oxygen depletion. This suggests that if upwelling winds intensify with climate change the increased forcing could offer mitigation of coastal hypoxia, even as the oxygen levels in upwelled source waters decline.

  18. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death

    PubMed Central

    Graham, Nicholas A; Tahmasian, Martik; Kohli, Bitika; Komisopoulou, Evangelia; Zhu, Maggie; Vivanco, Igor; Teitell, Michael A; Wu, Hong; Ribas, Antoni; Lo, Roger S; Mellinghoff, Ingo K; Mischel, Paul S; Graeber, Thomas G

    2012-01-01

    The altered metabolism of cancer can render cells dependent on the availability of metabolic substrates for viability. Investigating the signaling mechanisms underlying cell death in cells dependent upon glucose for survival, we demonstrate that glucose withdrawal rapidly induces supra-physiological levels of phospho-tyrosine signaling, even in cells expressing constitutively active tyrosine kinases. Using unbiased mass spectrometry-based phospho-proteomics, we show that glucose withdrawal initiates a unique signature of phospho-tyrosine activation that is associated with focal adhesions. Building upon this observation, we demonstrate that glucose withdrawal activates a positive feedback loop involving generation of reactive oxygen species (ROS) by NADPH oxidase and mitochondria, inhibition of protein tyrosine phosphatases by oxidation, and increased tyrosine kinase signaling. In cells dependent on glucose for survival, glucose withdrawal-induced ROS generation and tyrosine kinase signaling synergize to amplify ROS levels, ultimately resulting in ROS-mediated cell death. Taken together, these findings illustrate the systems-level cross-talk between metabolism and signaling in the maintenance of cancer cell homeostasis. PMID:22735335

  19. Insensitivity of cerebral oxygen transport to oxygen affinity of hemoglobin-based oxygen carriers

    PubMed Central

    Koehler, Raymond C.; Fronticelli, Clara; Bucci, Enrico

    2008-01-01

    The cerebrovascular effects of exchange transfusion of various cell-free hemoglobins that possess different oxygen affinities are reviewed. Reducing hematocrit by transfusion of a non-oxygen-carrying solution dilates pial arterioles on the brain surface and increases cerebral blood flow to maintain a constant bulk oxygen transport to the brain. In contrast, transfusion of hemoglobins with P50 of 4–34 Torr causes constriction of pial arterioles that offsets the decrease in blood viscosity to maintain cerebral blood flow and oxygen transport. The autoregulatory constriction is dependent on synthesis of 20-HETE from arachidonic acid. This oxygen-dependent reaction is apparently enhanced by facilitated oxygen diffusion from the red cell to the endothelium arising from increased plasma oxygen solubility in the presence of low or high-affinity hemoglobin. Exchange transfusion of recombinant hemoglobin polymers with P50 of 3 and 18 Torr reduces infarct volume from experimental stroke. Cell-free hemoglobins do not require a P50 as high as red blood cell hemoglobin to facilitate oxygen delivery. PMID:18230370

  20. Simultaneous Monitoring of Vascular Oxygenation and Tissue Oxygen Tension of Breast Tumors Under Hyperbaric Oxygen Exposure

    DTIC Science & Technology

    2008-04-01

    28. Alagoz, T., R. Buller, B. Anderson, K. Terrell , R...and oxygenation Ann . New Acad. Sci. 838 29–45 Chapman J D, Stobbe C C, Arnfield M R, Santus R, Lee J and McPhee M S 1991 Oxygen dependency of tumor

  1. Phenomenological model of photoluminescence degradation and photoinduced defect formation in silicon nanocrystal ensembles under singlet oxygen generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gongalsky, Maxim B., E-mail: mgongalsky@gmail.com; Timoshenko, Victor Yu.

    2014-12-28

    We propose a phenomenological model to explain photoluminescence degradation of silicon nanocrystals under singlet oxygen generation in gaseous and liquid systems. The model considers coupled rate equations, which take into account the exciton radiative recombination in silicon nanocrystals, photosensitization of singlet oxygen generation, defect formation on the surface of silicon nanocrystals as well as quenching processes for both excitons and singlet oxygen molecules. The model describes well the experimentally observed power law dependences of the photoluminescence intensity, singlet oxygen concentration, and lifetime versus photoexcitation time. The defect concentration in silicon nanocrystals increases by power law with a fractional exponent, whichmore » depends on the singlet oxygen concentration and ambient conditions. The obtained results are discussed in a view of optimization of the photosensitized singlet oxygen generation for biomedical applications.« less

  2. Long Noncoding RNA H19 Promotes Neuroinflammation in Ischemic Stroke by Driving Histone Deacetylase 1-Dependent M1 Microglial Polarization.

    PubMed

    Wang, Jue; Zhao, Haiping; Fan, Zhibin; Li, Guangwen; Ma, Qingfeng; Tao, Zhen; Wang, Rongliang; Feng, Juan; Luo, Yumin

    2017-08-01

    Long noncoding RNA H19 is repressed after birth, but can be induced by hypoxia. We aim to investigate the impact on and underlying mechanism of H19 induction after ischemic stroke. Circulating H19 levels in stroke patients and mice subjected to middle cerebral artery occlusion were assessed using real-time polymerase chain reaction. H19 siRNA and histone deacetylase 1 (HDAC1) plasmid were used to knock down H19 and overexpress HDAC1, respectively. Microglial polarization and ischemic outcomes were assessed in middle cerebral artery occlusion mice and BV2 microglial cells subjected to oxygen-glucose deprivation. Circulating H19 levels were significantly higher in stroke patients compared with healthy controls, indicating high diagnostic sensitivity and specificity. Moreover, plasma H19 levels showed a positive correlation with National Institute of Health Stroke Scale score and tumor necrosis factor-α levels. After middle cerebral artery occlusion in mice, H19 levels increased in plasma, white blood cells, and brain. Intracerebroventricular injection of H19 siRNA reduced infarct volume and brain edema, decreased tumor necrosis factor-α and interleukin-1β levels in brain tissue and plasma, and increased plasma interleukin-10 concentrations 24 hours poststroke. Additionally, H19 knockdown attenuated brain tissue loss and neurological deficits 14 days poststroke. BV2 cell-based experiments showed that H19 knockdown blocked oxygen-glucose deprivation-driven M1 microglial polarization, decreased production of tumor necrosis factor-α and CD11b, and increased the expression of Arg-1 and CD206. Furthermore, H19 knockdown reversed oxygen-glucose deprivation-induced upregulation of HDAC1 and downregulation of acetyl-histone H3 and acetyl-histone H4. In contrast, HDAC1 overexpression negated the effects of H19 knockdown. Our findings indicate that H19 promotes neuroinflammation by driving HDAC1-dependent M1 microglial polarization, suggesting a novel H19-based diagnosis and therapy for ischemic stroke. © 2017 American Heart Association, Inc.

  3. Flow-injection assay of catalase activity.

    PubMed

    Ukeda, Hiroyuki; Adachi, Yukiko; Sawamura, Masayoshi

    2004-03-01

    A novel flow-injection assay (FIA) system with a double line for catalase activity was constructed in which an oxidase is immobilized and the substrate is continuously pumped to reduce the dissolved oxygen and to generate a given level of hydrogen peroxide. The catalase in a sample decomposed the hydrogen peroxide, and thus the increase in dissolved oxygen dependent on the activity was amperometrically monitored using a Clark-type oxygen electrode. Among the examined several oxidases, uricase was most suitable for the continuous formation of hydrogen peroxide from a consideration of the stability and the conversion efficiency. Under the optimum conditions, a linear calibration curve was obtained in the range from 21 to 210 units/mg and the reproducibility (CV) was better than 2% by 35 successive determinations of 210 units/ml catalase preparation. The sampling frequency was about 15 samples/h. The present FIA system was applicable to monitor the inactivation of catalase by glycation.

  4. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Duan, Qiaohong; Kita, Daniel; Johnson, Eric A.; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y.

    2014-01-01

    In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca2+-dependent process involving Ca2+ channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.

  5. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis.

    PubMed

    Duan, Qiaohong; Kita, Daniel; Johnson, Eric A; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y

    2014-01-01

    In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca(2+)-dependent process involving Ca(2+) channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.

  6. Peripheral circulatory responses in vivo from regional brachial biceps and lumbar muscles in healthy men and women during pushing and pulling exercise.

    PubMed

    Maikala, Rammohan V; Bhambhani, Yagesh N

    2007-06-01

    Although women have been performing increasingly more manual labor in the workplace in the past 2 decades, their physiological responses and gender-based differences in muscle microvascularity during occupational activities have not yet been extensively documented. This study assessed gender differences and tissue heterogeneity in peripheral circulatory responses from 2 muscle groups during pushing and pulling exercise until volitional exhaustion. In healthy men and women, near-infrared spectroscopy was used to determine peripheral responses, oxygenation, and blood volume simultaneously from the right biceps brachii and lumbar erector spinae. Pulmonary oxygen uptake was assessed using a metabolic measurement cart. Although the 11 men who participated in the study demonstrated greater pulmonary oxygen uptake and power output at volitional exhaustion, their peak peripheral responses for both muscles were similar to those of the 11 women participating. In both sexes, oxygenations trends decreased in both muscles with an increase in workload. However, whereas blood volume increased in the biceps, it decreased in the lumbar muscle in both sexes. At 20% to 60% levels of peak pulmonary oxygen uptake, the percent change in peripheral bicep responses was greater for men than for women (P < 0.05). In contrast, women demonstrated greater change in lumbar muscle oxygenation compared with men at 40% to 60% of peak pulmonary oxygen uptake (P < 0.05). Similar peripheral responses for biceps and lumbar muscles at the point of volitional exhaustion suggest that gender differences in pulmonary oxygen uptake are independent of oxygen extraction or delivery across the muscle groups monitored. However, at submaximal levels of exercise, the peripheral changes in each muscle were gender dependent. Although biceps and lumbar muscles are 2 discrete muscle groups, based on the heterogeneity found in the blood volume trends it is likely that oxygen supply and demand are regulated by muscle location and muscle fiber characteristics. Overall, gender-based assessment of occupational activities should incorporate both pulmonary and peripheral circulatory responses to understand each sex's performance effectiveness.

  7. Disinfection of Escherichia coli Gram negative bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism.

    PubMed

    Gomathi Devi, LakshmipathiNaik; Nagaraj, Basavalingaiah

    2014-01-01

    The antibacterial activity of silver deposited TiO2 (Ag-TiO2 ) against Gram negative Escherichia coli bacteria was investigated by varying the Ag metal content from 0.10 to 0.50% on the surface of TiO2 . Ag depositions by the photoreduction method were found to be stable. Surface silver metallization was confirmed by EDAX and XPS studies. Photoluminescence studies show that the charge carrier recombination is less for 0.1% Ag-TiO2 and this catalyst shows superior bactericidal activity under solar light irradiation compared to Sol gel TiO2 (SG-TiO2 ) due to the surface plasmon effect. The energy levels of deposited Ag are dependent on the Ag content and it varies from -4.64 eV to -1.30 eV with respect to the vacuum energy level based on atomic silver to bulk silver deposits. The ability of electron transfer from Ag deposit to O2 depends on the position of the energy levels. The 0.25% and 0.50% Ag depositions showed detrimental effect on bactericidal activity due to the mismatch of energy levels. The effect of the EROS (External generation of the Reactive Oxygen Species by 0.1% Ag-TiO2 ) and IROS (Interior generation of Reactive Oxygen Species within the bacteria) on the bactericidal inactivation is discussed in detail. © 2014 The American Society of Photobiology.

  8. Relationship between oxygen cost of walking and level of walking disability after stroke: An experimental study.

    PubMed

    Polese, Janaine C; Ada, Louise; Teixeira-Salmela, Luci F

    2018-01-01

    Since physical inactivity is the major risk factor for recurrent stroke, it is important to understand how level of disability impacts oxygen uptake by people after stroke. This study investigated the nature of the relationship between level of disability and oxygen cost in people with chronic stroke. Level of walking disability was measured as comfortable walking speed using the 10-m Walk Test reported in m/s with 55 ambulatory people 2 years after stroke. Oxygen cost was measured during 3 walking tasks: overground walking at comfortable speed, overground walking at fast speed, and stair walking at comfortable speed. Oxygen cost was calculated from oxygen uptake divided by distance covered during walking and reported in ml∙kg -1 ∙m -1 . The relationship between level of walking disability and oxygen cost was curvilinear for all 3 walking tasks. One quadratic model accounted for 81% (95% CI [74, 88]) of the variance in oxygen cost during the 3 walking tasks: [Formula: see text] DISCUSSION: The oxygen cost of walking was related the level of walking disability in people with chronic stroke, such that the more disabled the individual, the higher the oxygen cost of walking; with oxygen cost rising sharply as disability became severe. An equation that relates oxygen cost during different walking tasks according to the level of walking disability allows clinicians to determine oxygen cost indirectly without the difficulty of measuring oxygen uptake directly. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells.

    PubMed

    Longeville, Stéphane; Stingaciu, Laura-Roxana

    2017-09-05

    Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement by neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells ([Formula: see text]330 g.L -1 ) corresponds to an optimum for oxygen transport for individuals under strong activity.

  10. Evaluation of microbial globin promoters for oxygen-limited processes using Escherichia coli.

    PubMed

    Lara, Alvaro R; Jaén, Karim E; Sigala, Juan-Carlos; Regestein, Lars; Büchs, Jochen

    2017-01-01

    Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli . Globin promoters from Bacillus subtilis , Campylobacter jejuni , Deinococcus radiodurans , Streptomyces coelicolor , Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTR max ) of 7 and 11 mmol L -1  h -1 . Different FbFP fluorescence intensities were observed and the OTR max affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor , the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli .

  11. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells

    DOE PAGES

    Longeville, Stéphane; Stingaciu, Laura-Roxana

    2017-09-05

    Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less

  12. Zooplankton Responses to Low-Oxygen Condition upon a Shallow Oxygen Minimum Zone in the Upwelling Region off Chile

    NASA Astrophysics Data System (ADS)

    Hidalgo, P.; Escribano, R.

    2015-12-01

    A shallow oxygen minimum zone (OMZ) is a critical component in the coastal upwelling ecosystem off Chile. This OMZ causes oxygen-deficient water entering the photic layer and affecting plankton communities having low tolerance to hypoxia. Variable, and usually species-dependent, responses of zooplankton to hypoxia condition can be found. Most dominant species avoid hypoxia by restricting their vertical distribution, while others can temporarily enter and even spent part of their life cycle within the OMZ. Whatever the case, low-oxygen conditions appear to affect virtually all vital rates of zooplankton, such as mortality, fecundity, development and growth and metabolism, and early developmental stages seem more sensitive, with significant consequences for population and community dynamics. For most study cases, these effects are negative at individual and population levels. Observations and predictions upon increasing upwelling intensity over the last 20-30 years indicate a gradual shoaling of the OMZ, and so that an expected enhancement of these negative effects of hypoxia on the zooplankton community. Unknown processes of adaptation and community-structure adjustments are expected to take place with uncertain consequences for the food web of this highly productive eastern boundary current ecosystem.

  13. Hemoglobin diffusion and the dynamics of oxygen capture by red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longeville, Stéphane; Stingaciu, Laura-Roxana

    Translational diffusion of macromolecules in cell is generally assumed to be anomalous due high macromolecular crowding of the milieu. Red blood cells are a special case of cells filled quasi exclusively (95% of the dry weight of the cell) with an almost spherical protein: hemoglobin. Hemoglobin diffusion has since a long time been recognized as facilitating the rate of oxygen diffusion through a solution. We address in this paper the question on how hemoglobin diffusion in the red blood cells can help the oxygen capture at the cell level and hence to improve oxygen transport. We report a measurement bymore » neutron spin echo spectroscopy of the diffusion of hemoglobin in solutions with increasing protein concentration. We show that hemoglobin diffusion in solution can be described as Brownian motion up to physiological concentration and that hemoglobin diffusion in the red blood cells and in solutions at similar concentration are the same. Finally, using a simple model and the concentration dependence of the diffusion of the protein reported here, we show that hemoglobin concentration observed in human red blood cells (≃330 g.L -1) corresponds to an optimum for oxygen transport for individuals under strong activity.« less

  14. Physiological (antioxidant) responses of estuarine fishes to variability in dissolved oxygen.

    PubMed

    Ross, S W; Dalton, D A; Kramer, S; Christensen, B L

    2001-11-01

    Cycles of dissolved oxygen (DO) in estuaries can range from anoxia to various levels of supersaturation (200-300%) over short time periods. Aerobic metabolism causes formation of damaging reactive oxygen species (ROS), a process exacerbated by high or low DO. Fish can generate physiological defenses (e.g. antioxidant enzymes) against ROS, however, there are little data tying this to environmental conditions. We investigated physiological defenses generated by estuarine fishes in response to high DO and various DO cycles. We hypothesized that chemical defenses and/or oxidative damage are related to patterns of DO supersaturation. Specific activities of antioxidants in fish tissues should be positively correlated with increasing levels of DO, if high DO levels are physiologically stressful. We caged common benthic fishes (longjaw mudsucker, Gillichthys mirabilis, and staghorn sculpin, Leptocottus armatus, in CA and spot, Leiostomus xanthurus and pinfish, Lagodon rhomboides, in NC) during summer 1998 in two estuarine sites in southern North Carolina and two in central California. At each site a water quality meter measured bottom DO, salinity, temperature, depth, pH and turbidity at 30 min intervals throughout the study. These sites exhibited a wide variety of dissolved oxygen patterns. After 2 weeks in the cages, fish gills and livers were analyzed for antioxidant enzymes (glutathione peroxidase, catalase and superoxide dismutase) and the metabolite glutathione. All fish exhibited antioxidant enzyme activity. There was a significant site-dependent effect on all enzyme activities at the NC sites, with the most activity at the site with the highest DO cycling and the most DO supersaturation. There was a trend towards higher enzyme activities under high DO levels at the CA sites.

  15. Humidification of inspired oxygen is increased with pre-nasal cannula, compared to intranasal cannula.

    PubMed

    Dellweg, Dominic; Wenze, Markus; Hoehn, Ekkehard; Bourgund, Olaf; Haidl, Peter

    2013-08-01

    Oxygen therapy is usually combined with a humidification device, to prevent mucosal dryness. Depending on the cannula design, oxygen can be administered pre- or intra-nasally (administration of oxygen in front of the nasal ostia vs cannula system inside the nasal vestibulum). The impact of cannula design on intra-nasal humidity, however, has not been investigated to date. First, to develop a system, that samples air from the nasal cavity and analyzes the humidity of these samples. Second, to investigate nasal humidity during pre-nasal and intra-nasal oxygen application, with and without humidification. We first developed and validated a sampling and analysis system to measure humidity from air samples. By means of this system we measured inspiratory air samples from 12 subjects who received nasal oxygen with an intra-nasal and pre-nasal cannula at different flows, with and without humidification. The sampling and analysis system showed good correlation to a standard hygrometer within the tested humidity range (r = 0.99, P < .001). In our subjects intranasal humidity dropped significantly, from 40.3 ± 8.7% to 35.3 ± 5.8%, 32 ± 5.6%, and 29.0 ± 6.8% at flows of 1, 2, and 3 L, respectively, when oxygen was given intra-nasally without humidification (P = .001, P < .001, and P < .001, respectively). We observed no significant change in airway humidity when oxygen was given pre-nasally without humidification. With the addition of humidification we observed no significant change in humidity at any flow, and independent of pre- or intranasal oxygen administration. Pre-nasal administration of dry oxygen achieves levels of intranasal humidity similar to those achieved by intranasal administration in combination with a bubble through humidifier. Pre-nasal oxygen simplifies application and may reduce therapy cost.

  16. Modeling of Oxygen Transport Across Tumor Multicellular Layers

    PubMed Central

    Braun, Rod D.; Beatty, Alexis L.

    2007-01-01

    Purpose Tumor oxygen level plays a major role in the response of tumors to different treatments. The purpose of this study was to develop a method of determining oxygen transport properties in a recently developed 3-D model of tumor parenchyma, the multicellular layer (MCL). Methods OCM-1 human choroidal melanoma cells were grown as 3-D MCL on collagen-coated culture plate inserts. A recessed-cathode oxygen microelectrode was used to measure oxygen tension (PO2) profiles across 8 different MCL from the free surface to the insert membrane. The profiles were fitted to four different one-dimensional diffusion models: 1-, 2-, and 3-region models with uniform oxygen consumption (q) in each region and a modified 3-region model with a central region where q=0 and PO2=0. Results Depending upon the presence of a central region of anoxia, the PO2 profiles were fitted best by either the two-region model or the modified 3-region model. Consumption of tumor cells near the insert membrane was higher than that of cells close to the free surface (33.1 ± 13.6 x 10−4 vs. 11.8 ± 6.7 x 10−4 mm Hg/μm2, respectively). Conclusions The model is useful for determining oxygenation and consumption in MCL, especially for cell lines that cannot be grown as spheroids. In the future, this model will permit the study of parameters important in tumor oxygenation in vitro. PMID:17196225

  17. Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland.

    PubMed

    O'Boyle, Shane; McDermott, Georgina; Silke, Joe; Cusack, Caroline

    2016-03-01

    In the summer of 2005 an exceptional bloom of the dinoflagellate Karenia mikimotoi occurred along Ireland's Atlantic seaboard and was associated with the mass mortality of both benthic and pelagic marine life. Oxygen depletion, cellular toxicity and physical smothering, are considered to be the main factors involved in mortality. In this paper we use a theoretical approach based on stoichiometry (the Anderson ratio) and an average K. mikimotoi cellular carbon content of 329pgCcell -1 (n=20) to calculate the carbonaceous and nitrogenous oxygen demand following bloom collapse. The method was validated against measurements of biochemical oxygen demand and K. mikimotoi cell concentration. The estimated potential oxygen utilisation (POU) was in good agreement with field observations across a range of cell concentrations. The magnitude of POU following bloom collapse, with the exception of three coastal areas, was considered insufficient to cause harm to most marine organisms. This indicates that the widespread occurrence of mortality was primarily due to other factors such as cellular toxicity and/or mucilage production, and not oxygen depletion or related phenomena. In Donegal Bay, Kilkieran Bay and inner Dingle Bay, where cell densities were in the order of 10 6 cellsL -1 , estimated POU was sufficient to cause hypoxia. Of the three areas, Donegal Bay is considered to be the most vulnerable due to its hydrographic characteristics (seasonally stratified, weak residual flow) and hypoxic conditions (2.2mgL -1 O 2 ) were directly observed in the Bay post bloom collapse. Here, depending on the time of bloom collapse, depressed DO levels could persist for weeks and continue to have a potentially chronic impact on the Bay. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. How plasma induced oxidation, oxygenation, and de-oxygenation influences viability of skin cells

    NASA Astrophysics Data System (ADS)

    Oh, Jun-Seok; Strudwick, Xanthe; Short, Robert D.; Ogawa, Kotaro; Hatta, Akimitsu; Furuta, Hiroshi; Gaur, Nishtha; Hong, Sung-Ha; Cowin, Allison J.; Fukuhara, Hideo; Inoue, Keiji; Ito, Masafumi; Charles, Christine; Boswell, Roderick W.; Bradley, James W.; Graves, David B.; Szili, Endre J.

    2016-11-01

    The effect of oxidation, oxygenation, and de-oxygenation arising from He gas jet and He plasma jet treatments on the viability of skin cells cultured in vitro has been investigated. He gas jet treatment de-oxygenated cell culture medium in a process referred to as "sparging." He plasma jet treatments oxidized, as well as oxygenated or de-oxygenated cell culture medium depending on the dissolved oxygen concentration at the time of treatment. He gas and plasma jets were shown to have beneficial or deleterious effects on skin cells depending on the concentration of dissolved oxygen and other oxidative molecules at the time of treatment. Different combinations of treatments with He gas and plasma jets can be used to modulate the concentrations of dissolved oxygen and other oxidative molecules to influence cell viability. This study highlights the importance of a priori knowledge of the concentration of dissolved oxygen at the time of plasma jet treatment, given the potential for significant impact on the biological or medical outcome. Monitoring and controlling the dynamic changes in dissolved oxygen is essential in order to develop effective strategies for the use of cold atmospheric plasma jets in biology and medicine.

  19. Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts 1

    PubMed Central

    Heber, Ulrich; Andrews, T. John; Boardman, N. Keith

    1976-01-01

    Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction. PMID:16659466

  20. Extending Molecular Signatures of Climatic and Environmental Change to the Mesozoic

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.

    2007-12-01

    The distributions, abundances and isotopic compositions of molecular constituents in sediments depend on their source organisms and the combination of environmental and climatic parameters that constrain or control their biosynthesis. Many such relationships are well documented and understood, thereby providing proxies of proven utility in paleoclimatic reconstructions. Thus, the temperature dependence in the extent of unsaturation in alkenones derived from prymnesiophyte algae, and in the proportion of ring structures in glycerol dibiphytanyl glycerol tetraethers (GDGTs) synthesized by crenarchaeota enables determination of sea surface paleotemperatures from sedimentary records. This molecular approach presumes temporal uniformity in the controlling factors on biosynthesis of these lipids, and their survival in the geological record, notwithstanding the challenge of establishing ancient calibrations for such proxies. Thus, alkenone records from marine sediments document cooling at the Eocene/Oligocene boundary but cannot assess changes in ocean temperatures during the Cretaceous, unlike GDGTs, which record fluctuations in ocean temperatures during the Early Cretaceous, and even survive in Jurassic strata. Other molecular measures offer less precise, yet informative, indications of climate. For example, the occurrence of sterol ethers in Valanginian sediments from the mid-Pacific suggests some cooling at that time, since these compounds are only known to occur elsewhere in cold waters or upwelling systems. Molecular compositions can also attest to levels of oxygenation in marine systems. In particular, the occurrence of 13C-depleted isorenieratane indicates the presence of photosynthetic green sulfur bacteria, and therefore anoxic conditions, albeit perhaps short-lived. Intermittent occurrences of isorenieratane often alternate with the appearance of 2-methylhopanoids, which provide separate distinct evidence for variations in oxygenation, linked to circumstances where low d15N values confirm an important role for N2-fixing cyanobacteria. In warm marine environments filamentous non-heterocystous cyanobacteria are the dominant N2-fixing organisms, and heterocystous species are excluded. Yet unicellular cyanobacteria within this latter group, wherein biosynthesis of 2-methylhopanoids is prevalent, are favored by low oxygenation levels. Thus, variations in the proportions of isorenieratane and 2-methylhopanoids observed within Cretaceous oceanic anoxic events suggest that bacterial populations varied in response to oxygenation levels during these episodes of carbon cycle perturbation.

  1. High salt intake shifts the mechanisms of flow-induced dilation in the middle cerebral arteries of Sprague-Dawley rats.

    PubMed

    Matic, Anita; Jukic, Ivana; Stupin, Ana; Baric, Lidija; Mihaljevic, Zrinka; Unfirer, Sanela; Tartaro Bujak, Ivana; Mihaljevic, Branka; Lombard, Julian H; Drenjancevic, Ines

    2018-06-15

    The goal of this study was to examine the effect of 1-week of high salt (HS) intake and the role of oxidative stress in changing the mechanisms of flow-induced dilation (FID) in isolated pressurized middle cerebral arteries (MCA) of male Sprague-Dawley rats (N=15-16/per group). Reduced FID in the HS group was restored by intake of the superoxide scavenger TEMPOL (HS+TEMPOL in vivo group). Nitric oxide synthases (NOS) inhibitor N ω -nitro-L-arginine methyl ester (L-NAME), COX inhibitor indomethacin (INDO) and selective inhibitor of microsomal CYP450 epoxidase activity N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH) significantly reduced FID in the LS group, while FID in the HS group was mediated by NO only. COX-2 mRNA (but not protein) expression was decreased in the HS and HS+TEMPOL in vivo groups. HIF-1α and VEGF protein levels were increased in the HS group but decreased in the HS+TEMPOL in vivo group. Assessment by direct fluorescence of MCA under flow revealed significantly reduced vascular NO levels and increased superoxide/reactive oxygen species levels in the HS group. These results suggest that HS intake impairs FID and changes FID mechanisms to entirely NO-dependent, in contrast to the LS group where FID is NO, prostanoid and epoxyeicosatrienoic acids (EET's) dependent. Those changes were accompanied by increased lipid peroxidation products in the plasma of HS-fed rats, increased vascular superoxide/reactive oxygen species levels and decreased NO levels; together with increased expression of HIF-1α and VEGF.

  2. Magnetic Resonance Imaging-Derived Renal Oxygenation and Perfusion During Continuous, Steady-State Angiotensin-II Infusion in Healthy Humans.

    PubMed

    van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul

    2016-03-28

    The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, P<0.001). Glomerular filtration rate decreased from 121±23 to 110±18 mL/min per 1.73 m(2) (F[1.8, 2.4]=6.4, P=0.013). Cortical transverse relaxation rate (R2*; increases in R2* represent decreases in oxygenation) increased by 7.2±3.8% (F[3, 21]=7.37, P=0.001); medullar R2* did not change. Cortical R2* related to filtration fraction (R(2) 0.46, P<0.001). By direct comparison between "gold standard" kidney function measurements and BOLD MRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  3. The influence of excitation radiation parameters on photosensitized generation of singlet oxygen in water

    NASA Astrophysics Data System (ADS)

    Il'ina, A. D.; Glazov, A. L.; Semenova, I. V.; Vasyutinskii, O. S.

    2016-06-01

    Photosensitized generation of singlet oxygen with the aid of Radahlorin® photosensitizer has been investigated. The dependences of the intensity of singlet oxygen phosphorescence and photosensitizer fluorescence on the excitation radiation wavelength in the range of 350-440 nm and on the irradiation dose have been obtained. The dependence of the ratio of the sensitizer fluorescence intensity at about 670 nm to the singlet oxygen phosphorescence intensity at a wavelength of 1270 nm on the excitation radiation wavelength is found to be nonmonotonic and have a minimum near the center of the absorption band on its red wing. The results obtained can be used to monitor the singlet oxygen concentration in solutions.

  4. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    PubMed

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous and evergreen oaks constitute two clearly differentiated functional groups in terms of their carbon and water economies, despite co-existing in a wide range of environments. In contrast, deciduous oaks form a rather homogeneous group in terms of climate sensitivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Blood oxygen level dependent magnetic resonance imaging for detecting pathological patterns in lupus nephritis patients: a preliminary study using a decision tree model.

    PubMed

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-02-09

    Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.

  6. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture.

    PubMed

    Maddalena, Lucas A; Selim, Shehab M; Fonseca, Joao; Messner, Holt; McGowan, Shannon; Stuart, Jeffrey A

    2017-11-04

    Although oxygen levels in the extracellular space of most mammalian tissues are just a few percent, under standard cell culture conditions they are not regulated and are often substantially higher. Some cellular sources of reactive oxygen species, like NADPH oxidase 4, are sensitive to oxygen levels in the range between 'normal' physiological (typically 1-5%) and standard cell culture (up to 18%). Hydrogen peroxide in particular participates in signal transduction pathways via protein redox modifications, so the potential increase in its production under standard cell culture conditions is important to understand. We measured the rates of cellular hydrogen peroxide production in some common cell lines, including C2C12, PC-3, HeLa, SH-SY5Y, MCF-7, and mouse embryonic fibroblasts (MEFs) maintained at 18% or 5% oxygen. In all instances the rate of hydrogen peroxide production by these cells was significantly greater at 18% oxygen than at 5%. The increase in hydrogen peroxide production at higher oxygen levels was either abolished or substantially reduced by treatment with GKT 137831, a selective inhibitor of NADPH oxidase subunits 1 and 4. These data indicate that oxygen levels experienced by cells in culture influence hydrogen peroxide production via NADPH oxidase 1/4, highlighting the importance of regulating oxygen levels in culture near physiological values. However, we measured pericellular oxygen levels adjacent to cell monolayers under a variety of conditions and with different cell lines and found that, particularly when growing at 5% incubator oxygen levels, pericellular oxygen was often lower and variable. Together, these observations indicate the importance, and difficulty, of regulating oxygen levels experienced by cells in culture. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Is the foot elevation the optimal position for wound healing of a diabetic foot?

    PubMed

    Park, D J; Han, S K; Kim, W K

    2010-03-01

    In managing diabetic foot ulcers, foot elevation has generally been recommended to reduce oedema and prevent other sequential problems. However, foot elevation may decrease tissue oxygenation of the foot more than the dependent position since the dependent position is known to increase blood flow within the arterial system. In addition, diabetic foot ulcers, which have peripheral vascular insufficiency, generally have less oedema than other wounds. Therefore, we argue that foot elevation may not be helpful for healing of vascularly compromised diabetic foot ulcers since adequate tissue oxygenation is an essential factor in diabetic wound healing. The purpose of this study was to evaluate the influence of foot height on tissue oxygenation and to determine the optimal foot position to accelerate wound healing of diabetic foot ulcers. This study included 122 cases (73 males and 47 females; two males had bilateral disease) of diabetic foot ulcer patients aged 40-93 years. Trans-cutaneous partial oxygen tension (TcpO(2)) values of diabetic feet were measured before and after foot elevation (n=21). Elevation was achieved by placing a foot over four cushions. We also measured foot TcpO(2) values before and after lowering the feet (n=122). Feet were lowered to the patient's tibial height, approximately 30-35 cm, beside a bed handrail. Due to the large number of lowering measurements, we divided them into five sub-groups according to initial TcpO(2.) Tissue oxygenation values were compared. Foot-elevation-lowered TcpO(2) values before and after elevation were 32.5+/-22.2 and 23.8+/-23.1 mmHg (p<0.01), respectively. Foot-lowering-augmented TcpO(2) values before and after lowering were 44.6+/-23.8 and 58.0+/-25.9 mmHg (p<0.01), respectively. The lower the initial TcpO(2) level, the more the TcpO(2) level increased. The foot lowering, rather than elevation, significantly augments TcpO(2) and may stimulate healing of diabetic foot ulcers. (c) 2008 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Induction of apoptosis by N-(4-hydroxyphenyl)retinamide and its association with reactive oxygen species, nuclear retinoic acid receptors, and apoptosis-related genes in human prostate carcinoma cells.

    PubMed

    Sun, S Y; Yue, P; Lotan, R

    1999-03-01

    The synthetic retinoid N-(4-hydroxyphenyl)retinamide (4HPR) has been shown to induce apoptosis in various malignant cells including human prostate carcinoma cells (HPC). We examined several possible mechanisms by which 4HPR could induce apoptosis in HPC cells. 4HPR exhibited concentration- and time-dependent decrease in cell number both in androgen-dependent (LNCaP) and -independent (DU145 and PC-3) cells. The 4HPR concentrations causing 50% decrease in cell number in LNCaP, DU145, and PC-3 cultures were 0.9 +/- 0.16, 4.4 +/- 0.45, and 3.0 +/- 1.0 microM, respectively, indicating that LNCaP cells were more sensitive to 4HPR than the other cells. 4HPR-induced apoptosis in all three cell lines was evidenced by increased enzymatic labeling of DNA breaks and formation of a DNA ladder. 4HPR increased the level of reactive oxygen species, especially in LNCaP cells. 4HPR-induced apoptosis could be suppressed in LNCaP cells by antioxidant and in DU145 cells by a nuclear retinoic acid receptor-specific antagonist, suggesting the involvement of reactive oxygen species or retinoic acid receptors in mediating apoptosis induced by 4HPR in the different HPC cells. Furthermore, 4HPR modulated the expression levels of some apoptosis-related gene (p21, c-myc, and c-jun), which may also contribute to the induction of apoptosis by 4HPR in HPC cells.

  9. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography

    PubMed Central

    Merkle, Conrad W.; Srinivasan, Vivek J.

    2015-01-01

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. PMID:26477654

  10. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

    PubMed

    Merkle, Conrad W; Srinivasan, Vivek J

    2016-01-15

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

    PubMed

    Liu, Xiaopeng; Xiao, Huajun; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Chen, Jianzhang

    2015-01-01

    Positive pressure breathing (PPB) can cause circulatory dysfunction due to peripheral pooling of blood. This study explored a better way at ground level to simulate pure oxygen PPB at 59,055 ft (18,000 m) by comparing the physiological changes during PPB with pure oxygen and low oxygen at ground level. Six subjects were exposed to 3 min of 69-mmHg PPB and 3 min of 59-mmHg PPB with pure oxygen and low oxygen while wearing the thoracic counterpressure jerkin inflated to 1× breathing pressure and G-suit inflated to 3 and 4× breathing pressure. Stroke volume (SV), cardiac output (CO), heart rate (HR), and peripheral oxygen saturation (Spo2) were measured. Subjects completed a simulating flying task (SFT) during 3-min PPB and scores were recorded. HR and SV responses differed significantly between breathing pure oxygen and low oxygen. CO response was not significantly different for pure oxygen and low oxygen, the two levels of PPB, and the two levels of G-suit pressure. Spo2 declined as a linear function of time during low-oxygen PPB and there was a significant difference in Spo2 response for the two levels of PPB. The average score of SFT during pure oxygen PPB was 3970.5 ± 1050.4, which was significantly higher than 2708.0 ± 702.7 with low oxygen PPB. Hypoxia and PPB have a synergistic negative effect on both the cardiovascular system and SFT performance. PPB with low oxygen was more appropriate at ground level to investigate physiological responses during PPB and evaluate the protective performance of garments. Liu X, Xiao H, Shi W, Wen D, Yu L, Chen J. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

  12. Temperature and oxygen-concentration dependence of singlet oxygen production by RuPhen as induced by quasi-continuous excitation.

    PubMed

    Varchola, Jaroslav; Huntosova, Veronika; Jancura, Daniel; Wagnières, Georges; Miskovsky, Pavol; Bánó, Gregor

    2014-12-01

    Assessment of partial pressure of oxygen (pO2) by luminescence lifetime measurements of ruthenium coordination complexes has been studied intensively during the last few decades. RuPhen (dichlorotris(1,10-phenanthroline) ruthenium(ii) hydrate) is a water soluble molecule that has been tested previously for in vivo pO2 detection. In this work we intended to shed light on the production of singlet oxygen by RuPhen. The quantum yield of singlet oxygen production by RuPhen dissolved in 0.9% aqueous NaCl solution (pH = 6) was measured at physiological temperatures (285-310 K) and various concentrations of molecular oxygen. In order to minimize the bleaching of RuPhen, the samples were excited with low power (<2 mW) laser pulses (20 μs long), created by pulsing a cw laser beam with an acousto-optical modulator. We show that, whereas the RuPhen phosphorescence lifetime decreases rapidly with an increase of temperature (keeping the oxygenation level constant), the quantum yield of singlet oxygen production by RuPhen is almost identical in the temperature range of 285-310 K. For air-saturated conditions at 310 K the measured quantum yield is about 0.25. The depopulation rate constants of the RuPhen (3)MLCT (metal-to-ligand charge-transfer) state are determined in the absence and in the presence of oxygen. We determined that the excitation energy for the RuPhen (3)MLCT→d-d transition is 49 kJ mol(-1) in the 0.9% NaCl solution (pH = 6).

  13. Electronic and Structural Parameters of Phosphorus-Oxygen Bonds in Inorganic Phosphate Crystals

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V.

    Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Δ(O 1s - P 2p) and Δ (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P-O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Δ (O 1s - P 2p) (eV) = 375.54 + 0.146 · L(P-O) (pm) and Δ (O 1s - P 2s) (eV) = 320.77 + 0.129 · L(P-O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.

  14. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; ...

    2016-05-18

    Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of themore » IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.« less

  15. Effect of dissolved oxygen on redox potential and milk acidification by lactic acid bacteria isolated from a DL-starter culture.

    PubMed

    Larsen, Nadja; Werner, Birgit Brøsted; Vogensen, Finn Kvist; Jespersen, Lene

    2015-03-01

    Milk acidification by DL-starter cultures [cultures containing Lactococcus lactis diacetylactis (D) and Leuconostoc (L) species] depends on the oxidation-reduction (redox) potential in milk; however, the mechanisms behind this effect are not completely clear. The objective of this study was to investigate the effect of dissolved oxygen on acidification kinetics and redox potential during milk fermentation by lactic acid bacteria (LAB). Fermentations were conducted by single strains isolated from mixed DL-starter culture, including Lactococcus lactis ssp. lactis, Lactococcus lactis ssp. cremoris, and Leuconostoc mesenteroides ssp. cremoris, by the DL-starter culture, and by the type strains. High and low levels of oxygen were produced by flushing milk with oxygen or nitrogen, respectively. The kinetics of milk acidification was characterized by the maximum rate and time of acidification (Vamax and Tamax), the maximum rate and time of reduction (Vrmax and Trmax), the minimum redox potential (Eh7 final), and time of reaching Eh7 final (Trfinal). Variations in kinetic parameters were observed at both the species and strain levels. Two of the Lc. lactis ssp. lactis strains were not able to lower redox potential to negative values. Kinetic parameters of the DL-starter culture were comparable with the best acidifying and reducing strains, indicating their additive effects. Acidification curves were mostly diauxic at all oxygen levels, displaying 2 maxima of acidification rate: before (aerobic maximum) and after (anaerobic maximum) oxygen depletion. The redox potential decreased concurrently with oxygen consumption and continued to decrease at slower rate until reaching the final values, indicating involvement of both oxygen and microbiological activity in the redox state of milk. Oxygen flushing had a negative effect on reduction and acidification capacity of tested LAB. Reduction was significantly delayed at high initial oxygen, exhibiting longer Trmax, Trfinal, or both. Concurrently, anaerobic acidification rate maximum Vamax was decreased and Tamax was extended. Fermentation kinetics in nitrogen-flushed milk was not statistically different from that in untreated milk except for Lc. lactis ssp. lactis CHCC D2, which showed faster reduction time after nitrogen flushing. This study clarifies the relationship between the redox state in milk and acidification kinetics of the predominant subspecies in DL-starter cultures. This knowledge is important for dairies to ensure optimized, fast, and controlled milk fermentations, leading to greater standardization of dairy products. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Production of nitric oxide using a microwave plasma torch and its application to fungal cell differentiation

    NASA Astrophysics Data System (ADS)

    Na, Young Ho; Kumar, Naresh; Kang, Min-Ho; Cho, Guang Sup; Choi, Eun Ha; Park, Gyungsoon; Uhm, Han Sup

    2015-03-01

    The generation of nitric oxide by a microwave plasma torch is proposed for its application to cell differentiation. A microwave plasma torch was developed based on basic kinetic theory. The analytical theory indicates that nitric oxide density is nearly proportional to oxygen molecular density and that the high-temperature flame is an effective means of generating nitric oxide. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimeters per minute. The apparent length of the torch flame increases as the oxygen input increases. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the mole fraction of oxygen gas, and the microwave power. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to a model microbial cell (Neurospora crassa: non-pathogenic fungus). Germination and hyphal differentiation of fungal cells were not dramatically changed but there was a significant increase in spore formation after treatment with nitric oxide. In addition, the expression level of a sporulation related gene acon-3 was significantly elevated after 24 h upon nitric oxide treatment. Increase in the level of nitric oxide, nitrite and nitrate in water after nitric oxide treatment seems to be responsible for activation of fungal sporulation. Our results suggest that nitric oxide generated by plasma can be used as a possible activator of cell differentiation and development.

  17. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.

    PubMed

    Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-12-05

    The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Activin A prevents neuron-like PC12 cell apoptosis after oxygen-glucose deprivation☆

    PubMed Central

    Xu, Guihua; He, Jinting; Guo, Hongliang; Mei, Chunli; Wang, Jiaoqi; Li, Zhongshu; Chen, Han; Mang, Jing; Yang, Hong; Xu, Zhongxin

    2013-01-01

    In this study, PC12 cells were induced to differentiate into neuron-like cells using nerve growth factor, and were subjected to oxygen-glucose deprivation. Cells were treated with 0, 10, 20, 30, 50, 100 ng/mL exogenous Activin A. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and Hoechst 33324 staining showed that the survival percentage of PC12 cells significantly decreased and the rate of apoptosis significantly increased after oxygen-glucose deprivation. Exogenous Activin A significantly increased the survival percentage of PC12 cells in a dose-dependent manner. Reverse transcription-PCR results revealed a significant increase in Activin receptor IIA, Smad3 and Smad4 mRNA levels, which are key sites in the Activin A/Smads signaling pathway, in neuron-like cells subjected to oxygen-glucose deprivation, while mRNA expression of the apoptosis-regulation gene caspase-3 decreased. Our experimental findings indicate that exogenous Activin A plays an anti-apoptotic role and protects neurons by means of activating the Activin A/Smads signaling pathway. PMID:25206395

  19. Metal-insulator transition of valence-controlled VO2 thin film prepared by RF magnetron sputtering using oxygen radical

    NASA Astrophysics Data System (ADS)

    Suetsugu, Takaaki; Shimazu, Yuichi; Tsuchiya, Takashi; Kobayashi, Masaki; Minohara, Makoto; Sakai, Enju; Horiba, Koji; Kumigashira, Hiroshi; Higuchi, Tohru

    2016-06-01

    We have prepared b-axis-oriented VO2 thin films by RF magnetron sputtering using oxygen radicals as the reactive gas. The VO2 thin films consist of a mixed-valence V3+/V4+ state formed by oxygen vacancies. The V3+ ratio strongly depends on the film thickness and the oxygen partial pressure of the radical gun during deposition. The lattice constant of the b-axis increases and the metal-insulator transition (MIT) temperature decreases with decreasing V3+ ratio, although the VO2 thin films with a high V3+ ratio of 42% do not exhibit MIT. The bandwidths and spectral weights of V 3d a1g and \\text{e}\\text{g}σ bands at around the Fermi level, which correspond to the insulating phase at 300 K, are smaller in the VO2 thin films with a low V3+ ratio. These results indicate that the control of the mixed-valence V3+/V4+ state is important for the MIT of b-axis-oriented VO2 thin films.

  20. Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis*

    PubMed Central

    LaRocca, Timothy J.; Sosunov, Sergey A.; Shakerley, Nicole L.; Ten, Vadim S.; Ratner, Adam J.

    2016-01-01

    Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. PMID:27129772

  1. Modelling Ecosystem Dynamics of the Oxygen Minimum Zones in the Angola Gyre and the Northern Benguela Upwelling System.

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; Eggert, A.

    2016-02-01

    The Angola Gyre and the Northern Benguela Upwelling System are two major oxygen minimum zones (OMZ) of different kind connected by the system of African Eastern Boundary Currents. We discuss results from a 3-dimensional coupled biogeochemical model covering both oxygen-deficient systems. The biogeochemical model component comprises trophic levels up to zooplankton. Physiological properties of organisms are parameterized from field data gained mainly in the course of the project "Geochemistry and Ecology of the Namibian Upwelling System" (GENUS). The challenge of the modelling effort is the different nature of both systems. The Angola Gyre, located in a "shadow zone" of the tropical Atlantic, has a low productivity and little ventilation, hence a long residence time of water masses. In the northern Benguela Upwelling System, trade winds drive an intermittent, but permanent nutrient supply into the euphotic zone which fuels a high coastal productivity, large particle export and high oxygen consumption from dissimilatory processes. In addition to the local processes, oxygen-deficient water formed in the Angola Gyre is one of the source water masses of the poleward undercurrent, which feeds oxygen depleted water into the Benguela system. In order to simulate the oxygen distribution in the Benguela system, both physical transport as well as local biological processes need to be carefully adjusted in the model. The focus of the analysis is on the time scale and the relative contribution of the different oxygen related processes to the oxygen budgets in both the oxygen minimum zones. Although these are very different in both the OMZ, the model is found as suitable to produce oxygen minimum zones comparable with observations in the Benguela and the Angola Gyre as well. Variability of the oxygen concentration in the Angola Gyre depends strongly on organismic oxygen consumption, whereas the variability of the oxygen concentration on the Namibian shelf is governed mostly by pole-ward advection of tropical water masses.

  2. Monitoring Intracellular Oxygen Concentration: Implications for Hypoxia Studies and Real-Time Oxygen Monitoring.

    PubMed

    Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J

    2016-01-01

    The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.

  3. ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen

    PubMed Central

    Tiedt, Oliver; Mergelsberg, Mario; Boll, Kerstin; Müller, Michael; Adrian, Lorenz; Jehmlich, Nico; von Bergen, Martin

    2016-01-01

    ABSTRACT Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA) to benzoyl-coenzyme A (BzCoA) and HF, catalyzed by class I BzCoA reductase (BCR). Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA. PMID:27507824

  4. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System.

    PubMed

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-07-21

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system.

  5. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System

    PubMed Central

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-01-01

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system. PMID:27455333

  6. Mechanisms of lectin and antibody-dependent polymorphonuclear leukocyte-mediated cytolysis.

    PubMed

    Tsunawaki, S; Ikenami, M; Mizuno, D; Yamazaki, M

    1983-04-01

    The mechanisms of tumor lysis by polymorphonuclear leukocytes (PMNs) were investigated. In antibody-dependent PMN-mediated cytolysis (ADPC), sensitized tumor cells were specifically lysed via Fc receptors on PMNs. On the other hand, lectin-dependent PMN-mediated cytolysis (LDPC) caused nonspecific lysis of several murine tumors after recognition of carbohydrate moieties on the cell membrane of both PMNs and tumor cells. Both ADPC and LDPC depended on glycolysis, and cytotoxicity was mediated by reactive oxygen species; LDPC was dependent on superoxide and ADPC on the myeloperoxidase system. The participation of reactive oxygen species in PMN cytotoxicity was also demonstrated by pharmacological triggering with phorbol myristate acetate. These results indicate that reactive oxygen species have an important role In tumor killing by PMNs and that ADPC and LDPC have partly different cytolytic processes as well as different recognition steps.

  7. Atomic Oxygen Erosion Yield Dependence Upon Texture Development in Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Loftus, Ryan J.; Miller, Sharon K.

    2016-01-01

    The atomic oxygen erosion yield (volume of a polymer that is lost due to oxidation per incident atom) of polymers is typically assumed to be reasonably constant with increasing fluence. However polymers containing ash or inorganic pigments, tend to have erosion yields that decrease with fluence due to an increasing presence of protective particles on the polymer surface. This paper investigates two additional possible causes for erosion yields of polymers that are dependent upon atomic oxygen. These are the development of surface texture which can cause the erosion yield to change with fluence due to changes in the aspect ratio of the surface texture that develops and polymer specific atomic oxygen interaction parameters. The surface texture development under directed hyperthermal attack produces higher aspect ratio surface texture than isotropic thermal energy atomic oxygen attack. The fluence dependence of erosion yields is documented for low Kapton H (DuPont, Wilmington, DE) effective fluences for a variety of polymers under directed hyperthermal and isotropic thermal energy attack.

  8. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. III. Studies at different levels of anaemic hypoxia.

    PubMed

    Bakker, J C; Gortmaker, G C; de Vries-van Rossen, A; Offerijns, F G

    1977-03-11

    The influence of a 2,3-diphosphoglycerate (2,3-DPG)-induced displacement of the oxygen dissociation curve (O.D.C.) on the isolated perfused rat liver was studied at different levels of anaemic hypoxia. Rat livers were perfused either with fresh or with 2,3-DPG-depleted human erythrocytes at different haematocrit values (from 30% to 2.5%) at constant Po2 of the inflowing perfusate and at constant blood flow rate. The 2,3-DPG-induced difference in oxygen affinity of the red cells did not cause a significant difference in perfusion pressure during the perfusion experiments. Therefore, there is no evidence that 2,3-DPG did alter the vascular resistance of the liver, since blood flow rate could be adusted at equal values. The decrease in oxygen supply brought about by decrease of haematocrit caused a decrease of O2 consumption, of bile flow rate and of venous Po2 and an increase of lactate/pyruvate (L/P) ratio and of beta-hydroxybutyrate/acetoacetate (betaOH/Acac) ratio. There was no influence of a difference in 2,3-DPG content of the erythrocytes on the above-metioned parameters during severe anaemic hypoxia. At moderate anaemic hypoxia the venous Po2 was higher during perfusion with fresh erythrocytes than during perfusion with 2,3-DPG-depleted erythrocytes. Thus, although 2,3-DPG may play a compensatory role during conditions of mild anaemia, no such effects can be observed during conditions of severe hypoxia.

  9. Predicting the Effects of Coastal Hypoxia on Vital Rates of the Planktonic Copepod Acartia tonsa Dana

    PubMed Central

    Elliott, David T.; Pierson, James J.; Roman, Michael R.

    2013-01-01

    We describe a model predicting the effects of low environmental oxygen on vital rates (egg production, somatic growth, and mortality) of the coastal planktonic copepod Acartia tonsa. Hypoxic conditions can result in respiration rate being directly limited by oxygen availability. We hypothesized that A. tonsa egg production, somatic growth, and ingestion rates would all respond in a similar manner to low oxygen conditions, as a result of oxygen dependent changes in respiration rate. Rate data for A. tonsa egg production, somatic growth, and ingestion under low environmental oxygen were compiled from the literature and from supplementary experiments. The response of these rates to oxygen was compared by converting all to the analogous units in terms of oxygen utilization, which we termed analogous respiration rate. These analogous respiration rates, along with published measurements of respiration rates, were used to parameterize and evaluate the relationship between A. tonsa respiration rate and environmental oxygen. At 18°C, our results suggest that A. tonsa experiences sub-lethal effects of hypoxia below an oxygen partial pressure of 8.1 kPa (∼3.1 mg L−1 = 2.3 mL L−1). The results of this study can be used to predict the effects of hypoxia on A. tonsa growth and mortality as related to environmental temperature and oxygen partial pressure. Such predictions will be useful as a way to incorporate the effects of coastal hypoxia into population, community, or ecosystem level models that include A. tonsa. This approach can also be used to characterize the effects of hypoxia on other aquatic organisms. PMID:23691134

  10. Icariin attenuates angiotensin II-induced hypertrophy and apoptosis in H9c2 cardiomyocytes by inhibiting reactive oxygen species-dependent JNK and p38 pathways

    PubMed Central

    ZHOU, HENG; YUAN, YUAN; LIU, YUAN; DENG, WEI; ZONG, JING; BIAN, ZHOU-YAN; DAI, JIA; TANG, QI-ZHU

    2014-01-01

    Icariin, the major active component isolated from plants of the Epimedium family, has been reported to have potential protective effects on the cardiovascular system. However, it is not known whether icariin has a direct effect on angiotensin II (Ang II)-induced cardiomyocyte enlargement and apoptosis. In the present study, embryonic rat heart-derived H9c2 cells were stimulated by Ang II, with or without icariin administration. Icariin treatment was found to attenuate the Ang II-induced increase in mRNA expression levels of hypertrophic markers, including atrial natriuretic peptide and B-type natriuretic peptide, in a concentration-dependent manner. The cell surface area of Ang II-treated H9c2 cells also decreased with icariin administration. Furthermore, icariin repressed Ang II-induced cell apoptosis and protein expression levels of Bax and cleaved-caspase 3, while the expression of Bcl-2 was increased by icariin. In addition, 2′,7′-dichlorofluorescein diacetate incubation revealed that icariin inhibited the production of intracellular reactive oxygen species (ROS), which were stimulated by Ang II. Phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in Ang II-treated H9c2 cells was blocked by icariin. Therefore, the results of the present study indicated that icariin protected H9c2 cardiomyocytes from Ang II-induced hypertrophy and apoptosis by inhibiting the ROS-dependent JNK and p38 pathways. PMID:24940396

  11. Temporal information entropy of the Blood-Oxygenation Level-Dependent signals increases in the activated human primary visual cortex

    NASA Astrophysics Data System (ADS)

    DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico

    2017-02-01

    Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.

  12. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  13. Large but uneven reduction in fish size across species in relation to changing sea temperatures.

    PubMed

    van Rijn, Itai; Buba, Yehezkel; DeLong, John; Kiflawi, Moshe; Belmaker, Jonathan

    2017-09-01

    Ectotherms often attain smaller body sizes when they develop at higher temperatures. This phenomenon, known as the temperature-size rule, has important consequences for global fisheries, whereby ocean warming is predicted to result in smaller fish and reduced biomass. However, the generality of this phenomenon and the mechanisms that drive it in natural populations remain unresolved. In this study, we document the maximal size of 74 fish species along a steep temperature gradient in the Mediterranean Sea and find strong support for the temperature-size rule. Importantly, we additionally find that size reduction in active fish species is dramatically larger than for more sedentary species. As the temperature dependence of oxygen consumption depends on activity levels, these findings are consistent with the hypothesis that oxygen is a limiting factor shaping the temperature-size rule in fishes. These results suggest that ocean warming will result in a sharp, but uneven, reduction in fish size that will cause major shifts in size-dependent interactions. Moreover, warming will have major implications for fisheries as the main species targeted for harvesting will show the most substantial declines in biomass. © 2017 John Wiley & Sons Ltd.

  14. Effects of reduced oxygen availability on the vascular response and oxygen consumption of the activated human visual cortex.

    PubMed

    Rodrigues Barreto, Felipe; Mangia, Silvia; Garrido Salmon, Carlos Ernesto

    2017-07-01

    To identify the impact of reduced oxygen availability on the evoked vascular response upon visual stimulation in the healthy human brain by magnetic resonance imaging (MRI). Functional MRI techniques based on arterial spin labeling (ASL), blood oxygenation level-dependent (BOLD), and vascular space occupancy (VASO)-dependent contrasts were utilized to quantify the BOLD signal, cerebral blood flow (CBF), and volume (CBV) from nine subjects at 3T (7M/2F, 27.3 ± 3.6 years old) during normoxia and mild hypoxia. Changes in visual stimulus-induced oxygen consumption rates were also estimated with mathematical modeling. Significant reductions in the extension of activated areas during mild hypoxia were observed in all three imaging contrasts: by 42.7 ± 25.2% for BOLD (n = 9, P = 0.002), 33.1 ± 24.0% for ASL (n = 9, P = 0.01), and 31.9 ± 15.6% for VASO images (n = 7, P = 0.02). Activated areas during mild hypoxia showed responses with similar amplitude for CBF (58.4 ± 18.7% hypoxia vs. 61.7 ± 16.1% normoxia, P = 0.61) and CBV (33.5 ± 17.5% vs. 25.2 ± 13.0%, P = 0.27), but not for BOLD (2.5 ± 0.8% vs. 4.1 ± 0.6%, P = 0.009). The estimated stimulus-induced increases of oxygen consumption were smaller during mild hypoxia as compared to normoxia (3.1 ± 5.0% vs. 15.5 ± 15.1%, P = 0.04). Our results demonstrate an altered vascular and metabolic response during mild hypoxia upon visual stimulation. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:142-149. © 2016 International Society for Magnetic Resonance in Medicine.

  15. Neonatal response to control of noise inside the incubator.

    PubMed

    Johnson, A N

    2001-01-01

    The purpose of this study was to test the effect of acoustical foam on the level of noise inside the incubator and examine neonatal response behaviors to changes in environmental noise. The study used a repeated measure, within subject, comparative design. Data on 65 premature neonates were collected over a 14-month period at a large teaching hospital in Delaware. Sound levels, oxygen saturation, and infant states were measured and recorded during three study conditions: pre-study neonate in incubator, neonate in incubator with 5 x 5 x 1 inch acoustical foam pieces placed in each of four corners, and post-study recovery of neonate in incubator with foam removed. All state assessments were measured with oxygen saturation and sound level measurements every 2 minutes of the study for a total 40 minutes. The findings demonstrate a significant treatment effect of acoustical foam on decreasing environmental noise measurements inside the incubator (p = 0.006). Findings also demonstrate significantly changed neonatal state response behaviors with decreasing environmental noise measurements inside the incubator (p = 0.00). The results of this study support the use of acoustical foam as one method of environmental noise management in the intensive care nursery. Because there was a significant correlation between higher noise levels and oxygen support therapy, the findings suggest that special nursing considerations should be taken when caring for ventilator-dependent infants. Noise control protocols should focus on essential environmental interventions for care of these infants.

  16. Autophagy modulators sensitize prostate epithelial cancer cell lines to TNF-alpha-dependent apoptosis.

    PubMed

    Giampietri, Claudia; Petrungaro, Simonetta; Padula, Fabrizio; D'Alessio, Alessio; Marini, Elettra Sara; Facchiano, Antonio; Filippini, Antonio; Ziparo, Elio

    2012-11-01

    TNF-alpha levels in prostate cancer correlate with the extent of disease and are significantly elevated in the metastatic stage. TNF receptor superfamily controls two distinct signalling cascades, leading to opposite effects, i.e. apoptosis and survival; in prostate cancer TNF-alpha-mediated signalling induces cell survival and resistance to therapy. The apoptosis of prostate epithelial cancer cells LNCaP and PC3 was investigated upon treatment with the autophagy inhibitor 3-methyladenine and the autophagy inducer rapamycin, in combination with TNF-alpha. Cells were exposed to these molecules for 18, 24 and 48 h. Autophagy was assessed via LC3 Western blot analysis; propidium iodide and TUNEL stainings followed by flow cytometry or caspase-8 and caspase-3 activation assays were performed to evaluate apoptosis. TNF-alpha-induced apoptosis was potentiated by 3-methyladenine in the androgen-responsive LNCaP cells, whereas no effect was observed in the androgen-insensitive PC3 cells. Interestingly such pro-apoptosis effect in LNCaP cells was associated with reduced c-Flip levels through proteasomal degradation via increased reactive oxygen species production and p38 activation; such c-Flip reduction was reversed in the presence of either the proteasome inhibitor MG132 or the reactive oxygen species scavenger N-acetyl-cysteine. Conversely in PC3 but not in LNCaP cells, rapamycin stimulated TNF-alpha-dependent apoptosis; such effect was associated with reduced c-Flip promoter activity and FoxO3a activation. We conclude that TNF-alpha-induced apoptosis may be potentiated, in prostate cancer epithelial cells, through autophagy modulators. Increased sensitivity to TNF-alpha-dependent apoptosis correlates with reduced c-Flip levels which are consequent to a post-transcriptional and a transcriptional mechanism in LNCaP and PC3 cells respectively.

  17. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    PubMed Central

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  18. Novel phosphorylation and ubiquitination sites regulate reactive oxygen species-dependent degradation of anti-apoptotic c-FLIP protein.

    PubMed

    Wilkie-Grantham, Rachel P; Matsuzawa, Shu-Ichi; Reed, John C

    2013-05-03

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIP(L)) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIP(L) protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIP(L) important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL.

  19. The formation of diethyl ether via the reaction of iodoethane with atomic oxygen on the Ag(110) surface

    NASA Astrophysics Data System (ADS)

    Jones, G. Scott; Barteau, Mark A.; Vohs, John M.

    1999-01-01

    The reactions of iodoethane (ICH 2CH 3) on clean and oxygen-covered Ag(110) surfaces were investigated using temperature-programmed desorption (TPD) and high-resolution electron energy-loss spectroscopy (HREELS). Iodoethane adsorbs dissociatively at 150 K to produce surface ethyl groups on both clean and oxygen-covered Ag(110) surfaces. The ethyl species couple to form butane on both surfaces, with the desorption peak maximum located between 218 and 238 K, depending on the ethyl coverage. In addition to butane, a number of oxidation products including diethyl ether, ethanol, acetaldehyde, surface acetate, ethylene, carbon dioxide and water were formed on the oxygen-dosed Ag(110) surface. Diethyl ether was the major oxygenate produced at all ethyl:oxygen ratios, and the peak temperature for ether evolution varied from 220 to 266 K depending on the relative coverages of these reactants. The total combustion products, CO 2 and H 2O, were primarily formed at low ethyl coverages in the presence of excess oxygen. The formation of ethylene near 240 K probably involves an oxygen-assisted dehydrogenation pathway since ethylene is not formed from ethyl groups on the clean surface. Acetaldehyde and ethanol evolve coincidentally with a peak centered at 270-280 K, and are attributed to the reactions of surface ethoxide species. The surface acetate which decomposes near 620 K is formed from subsequent reactions of acetaldehyde with oxygen atoms. The addition of ethyl to oxygen to form surface ethoxides was verified by HREELS results. The yields of all products exhibited a strong dependence on the relative coverages of ethyl and oxygen.

  20. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs.

    PubMed

    Yamazaki, Miho; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2014-07-15

    Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)μM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Prospects for Quantitative fMRI: Investigating the Effects of Caffeine on Baseline Oxygen Metabolism and the Response to a Visual Stimulus in Humans

    PubMed Central

    Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.

    2011-01-01

    Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328

  2. Automatic calibration and control system for a combined oxygen and combustibles analyzer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolbert, G.D.; Jewett, S.Y.; Robertson, J.W. Jr.

    1989-08-01

    This patent describes an automatic, periodically calibrating system for continuous output of calibrated signals from a combined oxygen and combustibles analyzer. It comprises: a combined oxygen and combustibles analyzer for sensing a level of oxygen and a level of combustibles in a volatile atmosphere and for producing a first sample signal indicative of the oxygen level and a second sample signal indicative of the combustibles level; means for introducing zero and span calibration test gases into the analyzer; means for periodically calibrating the analyzer. This including: a data control unit; a timer unit; a mechanical unit, means for calculating zeromore » and span values for oxygen and combustibles, means for comparing the calculated zero and span values for oxygen and combustibles to the preset alarm limits for oxygen and combustibles, means for activating an operator alarm, means for calculating oxygen and combustibles drift adjustments, a memory unit; and means for applying the oxygen and combustibles drift adjustments concurrently to the first and second sample signals, according to predetermined mathematical relationship, to obtain calibrated output signals indicative of the oxygen and combustibles level in the volatile atmosphere.« less

  3. Angular dependent XPS study of surface band bending on Ga-polar n-GaN

    NASA Astrophysics Data System (ADS)

    Huang, Rong; Liu, Tong; Zhao, Yanfei; Zhu, Yafeng; Huang, Zengli; Li, Fangsen; Liu, Jianping; Zhang, Liqun; Zhang, Shuming; Dingsun, An; Yang, Hui

    2018-05-01

    Surface band bending and composition of Ga-polar n-GaN with different surface treatments were characterized by using angular dependent X-ray photoelectron spectroscopy. Upward surface band bending of varying degree was observed distinctly upon to the treatment methods. Besides the nitrogen vacancies, we found that surface states of oxygen-containing absorbates (O-H component) also contribute to the surface band bending, which lead the Fermi level pined at a level further closer to the conduction band edge on n-GaN surface. The n-GaN surface with lower surface band bending exhibits better linear electrical properties for Ti/GaN Ohmic contacts. Moreover, the density of positively charged surface states could be derived from the values of surface band bending.

  4. Scopolamine provocation-based pharmacological MRI model for testing procognitive agents.

    PubMed

    Hegedűs, Nikolett; Laszy, Judit; Gyertyán, István; Kocsis, Pál; Gajári, Dávid; Dávid, Szabolcs; Deli, Levente; Pozsgay, Zsófia; Tihanyi, Károly

    2015-04-01

    There is a huge unmet need to understand and treat pathological cognitive impairment. The development of disease modifying cognitive enhancers is hindered by the lack of correct pathomechanism and suitable animal models. Most animal models to study cognition and pathology do not fulfil either the predictive validity, face validity or construct validity criteria, and also outcome measures greatly differ from those of human trials. Fortunately, some pharmacological agents such as scopolamine evoke similar effects on cognition and cerebral circulation in rodents and humans and functional MRI enables us to compare cognitive agents directly in different species. In this paper we report the validation of a scopolamine based rodent pharmacological MRI provocation model. The effects of deemed procognitive agents (donepezil, vinpocetine, piracetam, alpha 7 selective cholinergic compounds EVP-6124, PNU-120596) were compared on the blood-oxygen-level dependent responses and also linked to rodent cognitive models. These drugs revealed significant effect on scopolamine induced blood-oxygen-level dependent change except for piracetam. In the water labyrinth test only PNU-120596 did not show a significant effect. This provocational model is suitable for testing procognitive compounds. These functional MR imaging experiments can be paralleled with human studies, which may help reduce the number of false cognitive clinical trials. © The Author(s) 2015.

  5. Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex

    PubMed Central

    Bartolo, M J; Gieselmann, M A; Vuksanovic, V; Hunter, D; Sun, L; Chen, X; Delicato, L S; Thiele, A

    2011-01-01

    The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network. PMID:22081989

  6. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    PubMed

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  7. Application of Oxygen-Enriched Aeration in the Production of Bacitracin by Bacillus licheniformis

    PubMed Central

    Flickinger, M. C.; Perlman, D.

    1979-01-01

    The physiological effects of controlling the dissolved oxygen tension at 0.01, 0.02, and 0.05 atm by the use of oxygen-enriched aeration were investigated during growth and bacitracin production by Bacillus licheniformis ATCC 10716. Up to a 2.35-fold increase in the final antibiotic yield and a 4-fold increase in the rate of bacitracin synthesis were observed in response to O2-enriched aeration. The increase in antibiotic production was accompanied by increased respiratory activity and an increase in the specific productivity of the culture from 1.3 to 3.6 g of antibiotic per g of cell mass produced. Oxygen enrichment of the aeration decreased medium carbohydrate uptake and the maximum specific growth rate of B. licheniformis from 0.6 h−1 to as low as 0.15 h−1, depending upon the level of enrichment and the conditions of oxygen transfer rate (impeller speed). The response of this culture to O2 enrichment suggests that this method of controlling the dissolved oxygen tension for antibiotic-producing cultures may simulate conditions that would occur if the carbon source were fed slowly, as is often employed to optimize antibiotic production. Analysis of the biologically active bacitracins produced by B. licheniformis ATCC 10716 suggested that the ratio of biologically active peptides was not changed by O2 enrichment, nor were any new biologically active compounds formed. Images PMID:34361

  8. Human circulatory responses to prolonged hyperbaric hyperoxia in Predictive Studies V

    NASA Technical Reports Server (NTRS)

    Pisarello, J. B.; Clark, J. M.; Lambertsen, C. J.; Gelfand, R.

    1987-01-01

    Selected results of cardiocirculatory measurements in healthy volunteers who breathed 100 percent O2 continuously at 3.0 ATA for up to 3.5 hr, at 2.5 ATA for up to 6.0 hr, at 2.0 ATA for up to 11.9 hr, and at 1.5 ATA for up to 19.0 hr are reported. The results indicate that resting hemodynamic responses to prolonged hyperbaric oxygen breathing in man usually consist of small deviations from normal sea-level responses. Rapid onset of bradycardia occurred at all four oxygen pressures investigated. This effect was accompanied by a rate-dependent reduction in cardiac output and a degree of systematic vasoconstriction which were small in magnitude and appeared to be functionally unimportant.

  9. Silicon chemistry in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Langer, William D.; Glassgold, A. E.

    1989-01-01

    Interstellar SiO was discovered shortly after CO but it has been detected mainly in high density and high temperature regions associated with outflow sources. A new model of interstellar silicon chemistry that explains the lack of SiO detections in cold clouds is presented which contains an exponential temperature dependence for the SiO abundance. A key aspect of the model is the sensitivity of SiO production by neutral silicon reactions to density and temperature, which arises from the dependence of the rate coefficients on the population of the excited fine structure levels of the silicon atom. This effect was originally pointed out in the context of neutral reactions of carbon and oxygen by Graff, who noted that the leading term in neutral atom-molecule interactions involves the quadrupole moment of the atom. Similar to the case of carbon, the requirement that Si has a quadrupole moment requires population of the J = 1 level, which lies 111K above the J = 0 ground state and has a critical density n(cr) equal to or greater than 10(6)/cu cm. The SiO abundance then has a temperature dependence proportional to exp(-111/T) and a quadratic density dependence for n less than n(cr). As part of the explanation of the lack of SiO detections at low temperatures and densities, this model also emphasizes the small efficiencies of the production routes and the correspondingly long times needed to reach equilibrium. Measurements of the abundance of SiO, in conjunction with theory, can provide information on the physical properties of interstellar clouds such as the abundances of oxygen bearing molecules and the depletion of interstellar silicon.

  10. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  11. HIF Oxygen Sensing Pathways in Lung Biology.

    PubMed

    Urrutia, Andrés A; Aragonés, Julián

    2018-06-06

    Cellular responses to oxygen fluctuations are largely mediated by hypoxia-inducible factors (HIFs). Upon inhalation, the first organ inspired oxygen comes into contact with is the lungs, but the understanding of the pulmonary HIF oxygen-sensing pathway is still limited. In this review we will focus on the role of HIF1α and HIF2α isoforms in lung responses to oxygen insufficiency. In particular, we will discuss novel findings regarding their role in the biology of smooth muscle cells and endothelial cells in the context of hypoxia-induced pulmonary vasoconstriction. Moreover, we will also discuss recent studies into HIF-dependent responses in the airway epithelium, which have been even less studied than the HIF-dependent vascular responses in the lungs. In summary, we will review the biological functions executed by HIF1 or HIF2 in the pulmonary vessels and epithelium to control lung responses to oxygen fluctuations as well as their pathological consequences in the hypoxic lung.

  12. Optical conductivity of partially oxidized graphene from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasehnia, F., E-mail: f.nasehnia@gmail.com; Seifi, M., E-mail: Seifi@guilan.ac.ir

    2015-07-07

    We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is notmore » significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.« less

  13. A defect model for UO2+x based on electrical conductivity and deviation from stoichiometry measurements

    NASA Astrophysics Data System (ADS)

    Garcia, Philippe; Pizzi, Elisabetta; Dorado, Boris; Andersson, David; Crocombette, Jean-Paul; Martial, Chantal; Baldinozzi, Guido; Siméone, David; Maillard, Serge; Martin, Guillaume

    2017-10-01

    Electrical conductivity of UO2+x shows a strong dependence upon oxygen partial pressure and temperature which may be interpreted in terms of prevailing point defects. A simulation of this property along with deviation from stoichiometry is carried out based on a model that takes into account the presence of impurities, oxygen interstitials, oxygen vacancies, holes, electrons and clusters of oxygen atoms. The equilibrium constants for each defect reaction are determined to reproduce the experimental data. An estimate of defect concentrations and their dependence upon oxygen partial pressure can then be determined. The simulations carried out for 8 different temperatures (973-1673 K) over a wide range of oxygen partial pressures are discussed and resulting defect equilibrium constants are plotted in an Arrhenius diagram. This provides an estimate of defect formation energies which may further be compared to other experimental data or ab-initio and empirical potential calculations.

  14. Effect of molecular side groups and local nanoenvironment on photodegradation and its reversibility

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Li, Mark; Tollefsen, Ryan; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2018-02-01

    Degradation of organic semiconductors in the presence of oxygen is one of the bottlenecks preventing their wide-spread use in optoelectronic devices. The first step towards such degradation in functionalized pentacene (Pn) derivatives is formation of endoperoxide (EPO), which can either revert back to the parent molecule or proceed to molecule decomposition. We present the study of reversibility of EPO formation through probing the photophysical properties of functionalized fluorinated pentacene (Pn-R-F8) derivatives. Experiments are done in solutions and in films both at the single molecule level and in the bulk. In solutions, degradation of optical absorption and its partial recovery after thermolysis were quantified for various derivatives depending on the solvent. At the single molecule level, low concentrations of each type of molecules were imaged in a variety of polymer matrices at 633 nm excitation at room temperature in air using wide-field fluorescence microscopy. Fluorescence time trajectories were collected and statistically analyzed to quantify blinking due to reversible EPO formation depending on the host matrix. To understand the physical changes of the molecular system, a Monte Carlo method was used to create a multi-level simulation, which enabled us to relate the change in the molecular transition rates to the experimentally measured parameters. At the bulk level, photoluminescence decay due to photobleaching and recovery due to EPO reconversion were measured for the same derivatives incorporated into various matrices. These studies provide insight into the synergistic effect of the local nanoenvironment and molecular side groups on the oxygen-related degradation and subsequent recovery which is important for development of organic electronic devices.

  15. Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation

    PubMed Central

    Schütt, Tanja; Kurz, Christopher; Eckert, Schamim H.; Schiller, Carola; Occhipinti, Angelo; Mai, Sören; Jendrach, Marina; Eckert, Gunter P.; Kruse, Shane E.; Palmiter, Richard D.; Brandt, Ulrich; Dröse, Stephan; Wittig, Ilka; Willem, Michael; Haass, Christian; Reichert, Andreas S.; Müller, Walter E.

    2012-01-01

    Abstract Aims: Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. Results: Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. Innovation: We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. Conclusion: Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD. Antioxid. Redox Signal. 16, 1421–1433. PMID:22229260

  16. Programmed death-1 controls T cell survival by regulating oxidative metabolism1

    PubMed Central

    Tkachev, Victor; Goodell, Stefanie; Opipari, Anthony W.; Hao, Ling-Yang; Franchi, Luigi; Glick, Gary D.; Ferrara, James L.M.; Byersdorfer, Craig A.

    2015-01-01

    The co-inhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly up-regulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation. This PD-1HiROSHi phenotype was specific to alloreactive T cells and was not observed in syngeneic T cells during homeostatic proliferation. Blockade of PD-1 signaling decreased both mitochondrial H2O2 and total cellular ROS levels and PD-1 driven increases in ROS were dependent upon the oxidation of fatty acids, as treatment with etomoxir nullified changes in ROS levels following PD-1 blockade. Downstream of PD-1, elevated ROS levels impaired T cell survival in a process reversed by anti-oxidants. Furthermore, PD-1 driven changes in ROS were fundamental to establishing a cell’s susceptibility to subsequent metabolic inhibition, as blockade of PD-1 decreased the efficacy of later F1F0-ATP synthase modulation. These data indicate that PD-1 facilitates apoptosis in alloreactive T cells by increasing reactive oxygen species in a process dependent upon the oxidation of fat. In addition, blockade of PD-1 undermines the potential for subsequent metabolic inhibition, an important consideration given the increasing use of anti-PD-1 therapies in the clinic. PMID:25972478

  17. Hypothalamus, sexual arousal and psychosexual identity in human males: a functional magnetic resonance imaging study.

    PubMed

    Brunetti, M; Babiloni, C; Ferretti, A; Del Gratta, C; Merla, A; Olivetti Belardinelli, M; Romani, G L

    2008-06-01

    In a recent functional magnetic resonance imaging study, a complex neural circuit was shown to be involved in human males during sexual arousal [A. Ferretti et al. (2005) Neuroimage, 26, 1086]. At group level, there was a specific correlation between penile erection and activations in anterior cingulate, insula, amygdala, hypothalamus and secondary somatosensory regions. However, it is well known that there are remarkable inter-individual differences in the psychological view and attitude to sex of human males. Therefore, a crucial issue is the relationship among cerebral responses, sexual arousal and psychosexual identity at individual level. To address this issue, 18 healthy male subjects were recruited. Their deep sexual identity (DSI) was assessed following the construct revalidation by M. Olivetti Belardinelli [(1994) Sci. Contrib. Gen. Psychol., 11, 131] of the Franck drawing completion test, a projective test providing, according to this revalidation, quantitative scores on 'accordance/non-accordance' between self-reported and psychological sexual identity. Cerebral activity was evaluated by means of functional magnetic resonance imaging during hard-core erotic movies and sport movies. Results showed a statistically significant positive correlation between the blood oxygen level-dependent signal in bilateral hypothalamus and the Franck drawing completion test score during erotic movies. The higher the blood oxygen level-dependent activation in bilateral hypothalamus, the higher the male DSI profile. These results suggest that, in male subjects, inter-individual differences in the DSI are strongly correlated with blood flow to the bilateral hypothalamus, a dimorphic brain region deeply implicated in instinctual drives including reproduction.

  18. Diffusion of oxygen through cork stopper: is it a Knudsen or a Fickian mechanism?

    PubMed

    Lagorce-Tachon, Aurélie; Karbowiak, Thomas; Simon, Jean-Marc; Gougeon, Régis; Bellat, Jean-Pierre

    2014-09-17

    The aim of this work is to identify which law governs oxygen transfer through cork: Knudsen or Fickian mechanism. This is important to better understand wine oxidation during post-bottling aging. Oxygen transfer through cork wafers is measured at 298 K using a manometric permeation technique. Depending on the mechanism, we can extract the transport coefficients. Increasing the initial pressure of oxygen from 50 to 800 hPa leads to a change in the values of the transport coefficients. This implies that oxygen transport through cork does not obey the Knudsen law. From these results, we conclude that the limiting step of oxygen transport through cork occurs in the cell wall following Fickian law. From the diffusion dependence's coefficients with pressure, we also extract by applying transition state theory an apparent activation volume of 45 ± 4 nm(3). This high value indicates that oxygen molecules also diffuse from one site to another by passing through a gas phase.

  19. Manipulation of Microenvironment with a Built-in Electrochemical Actuator in Proximity of a Dissolved Oxygen Microsensor

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.

    2004-01-01

    Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.

  20. Leucine reduces reactive oxygen species levels via an energy metabolism switch by activation of the mTOR-HIF-1α pathway in porcine intestinal epithelial cells.

    PubMed

    Hu, Jun; Nie, Yangfan; Chen, Shifeng; Xie, Chunlin; Fan, Qiwen; Wang, Zhichang; Long, Baisheng; Yan, Guokai; Zhong, Qing; Yan, Xianghua

    2017-08-01

    Leucine serves not only as a substrate for protein synthesis, but also as a signal molecule involved in protein metabolism. However, whether the levels of cellular reactive oxygen species (ROS), which have damaging effects on cellular DNA, proteins, and lipids, are regulated by leucine is still unclear. Here, we report that leucine supplementation reduces ROS levels in intestinal epithelial cells of weaned piglets. A proteomics analysis revealed that leucine supplementation induces an energy metabolism switch from oxidative phosphorylation (OXPHOS) towards glycolysis. The leucine-induced ROS reduction and the energy metabolism switch were further validated in cultured cells. Mechanistically, our data revealed that leucine-induced ROS reduction actually depends on the energy metabolism switch from OXPHOS towards glycolysis through the mechanistic target of rapamycin (mTOR)- hypoxia-inducible factor-1alpha (HIF-1α) pathway. These findings reveal a vital regulatory role of leucine as the signal molecule involved in an energy metabolism switch in mammals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS)

    PubMed Central

    Ristow, Michael; Schmeisser, Kathrin

    2014-01-01

    Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful. PMID:24910588

  2. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells].

    PubMed

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan

    2016-02-01

    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  3. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations

    NASA Astrophysics Data System (ADS)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.

    2016-12-01

    In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.

  4. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.

  5. Optimal levels of oxygen deficiency in the visible light photocatalyst TiO2-x and long-term stability of catalytic performance

    NASA Astrophysics Data System (ADS)

    Nakano, Takuma; Ito, Ryosuke; Kogoshi, Sumio; Katayama, Noboru

    2016-11-01

    The dependence of the visible light-responsive photocatalytic activity of oxygen deficient TiO2 (TiO2-x) prepared by Ar/H2 plasma surface treatment on the degree of oxygen deficiency (x) was assessed to determine the deficiency region associated with highest performance. The highest activity was obtained at x=0.06 (TiO1.94). The maximum visible light activity for this material, estimated from the formaldehyde (HCHO) removal rate, was three times higher than that exhibited by nitrogen-doped TiO2 (TiO2-xNx). The catalytic ability was found to decrease over the first week after fabrication of the material, after which it became stable, and the performance of TiO2-x at this point was found to be nearly equal to that of TiO2-xNx. The results of ab initio calculations of density of states for TiO2-x suggest that new oxygen deficiency states emerge at almost the exact center between the valence and conduction bands when x>0.06, which increases the recombination rate between electrons and holes. Therefore the declining performance of TiO2-x at larger x values is attributed to the emergence of new oxygen deficient states.

  6. Blunted Myocardial Oxygenation Response During Vasodilator Stress in Patients With Hypertrophic Cardiomyopathy

    PubMed Central

    Karamitsos, Theodoros D.; Dass, Sairia; Suttie, Joseph; Sever, Emily; Birks, Jacqueline; Holloway, Cameron J.; Robson, Matthew D.; Jerosch-Herold, Michael; Watkins, Hugh; Neubauer, Stefan

    2013-01-01

    Objectives This study sought to assess myocardial perfusion and tissue oxygenation during vasodilator stress in patients with overt hypertrophic cardiomyopathy (HCM), as well as in HCM mutation carriers without left ventricular (LV) hypertrophy, and to compare findings to those in athletes with comparable hypertrophy and normal controls. Background Myocardial perfusion under vasodilator stress is impaired in patients with HCM. Whether this is associated with impaired myocardial oxygenation and tissue ischemia is unknown. Furthermore, it is not known whether perfusion and oxygenation are impaired in HCM mutation carriers without left ventricular hypertrophy (LVH). Methods A total of 27 patients with overt HCM, 10 HCM mutation carriers without LVH, 11 athletes, and 20 healthy controls underwent cardiovascular magnetic resonance (CMR) scanning at 3-T. Myocardial function, perfusion (perfusion reserve index [MPRI]), and oxygenation (blood-oxygen level dependent signal intensity [SI] change) under adenosine stress were assessed. Results MPRI was significantly reduced in HCM (1.3 ± 0.1) compared to controls (1.8 ± 0.1, p < 0.001) and athletes (2.0 ± 0.1, p < 0.001), but remained normal in HCM mutation carriers without LVH (1.7 ± 0.1; p = 0.61 vs. controls, p = 0.02 vs. overt HCM). Oxygenation response was attenuated in overt HCM (SI change 6.9 ± 1.4%) compared to controls (18.9 ± 1.4%, p < 0.0001) and athletes (18.7 ± 2.0%, p < 0.001). Interestingly, HCM mutation carriers without LVH also showed an impaired oxygenation response to adenosine (10.4 ± 2.0%; p = 0.001 vs. controls, p = 0.16 vs. overt HCM, p = 0.003 vs. athletes). Conclusions In overt HCM, both perfusion and oxygenation are impaired during vasodilator stress. However, in HCM mutation carriers without LVH, only oxygenation is impaired. In athletes, stress perfusion and oxygenation are normal. CMR assessment of myocardial oxygenation has the potential to become a novel risk factor in HCM. PMID:23498131

  7. The NASA atomic oxygen effects test program

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Brady, Joyce A.

    1988-01-01

    The NASA Atomic Oxygen Effects Test Program was established to compare the low earth orbital simulation characteristics of existing atomic oxygen test facilities and utilize the collective data from a multitude of simulation facilities to promote understanding of mechanisms and erosion yield dependence upon energy, flux, metastables, charge, and environmental species. Four materials chosen for this evaluation include Kapton HN polyimide, FEP Teflon, polyethylene, and graphite single crystals. The conditions and results of atomic oxygen exposure of these materials is reported by the participating organizations and then assembled to identify degrees of dependency of erosion yields that may not be observable from any single atomic oxygen low earth orbital simulation facility. To date, the program includes 30 test facilities. Characteristics of the participating test facilities and results to date are reported.

  8. Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation.

    PubMed

    Castro-Prego, Raquel; Lamas-Maceiras, Mónica; Soengas, Pilar; Carneiro, Isabel; González-Siso, Isabel; Cerdán, M Esperanza

    2009-12-14

    Ixr1p from Saccharomyces cerevisiae has been previously studied because it binds to DNA containing intrastrand cross-links formed by the anticancer drug cisplatin. Ixr1p is also a transcriptional regulator of anaerobic/hypoxic genes, such as SRP1/TIR1, which encodes a stress-response cell wall manoprotein, and COX5B, which encodes the Vb subunit of the mitochondrial complex cytochrome c oxidase. However, factors controlling IXR1 expression remained unexplored. In the present study we show that IXR1 mRNA levels are controlled by oxygen availability and increase during hypoxia. In aerobiosis, low levels of IXR1 expression are maintained by Rox1p repression through the general co-repressor complex Tup1-Ssn6. Ixr1p itself is necessary for full IXR1 expression under hypoxic conditions. Deletion analyses have identified the region in the IXR1 promoter responsible for this positive auto-control (nucleotides -557 to -376). EMSA (electrophoretic mobility-shift assay) and ChIP (chromatin immunoprecipitation) assays show that Ixr1p binds to the IXR1 promoter both in vitro and in vivo. Ixr1p is also required for hypoxic repression of ROX1 and binds to its promoter. UPC2 deletion has opposite effects on IXR1 and ROX1 transcription during hypoxia. Ixr1p is also necessary for resistance to oxidative stress generated by H2O2. IXR1 expression is moderately activated by H2O2 and this induction is Yap1p-dependent. A model of IXR1 regulation as a relay for sensing different signals related to change in oxygen availability is proposed. In this model, transcriptional adaptation from aerobiosis to hypoxia depends on ROX1 and IXR1 cross-regulation.

  9. Antihyperglycemic drug Gymnema sylvestre also shows anticancer potentials in human melanoma A375 cells via reactive oxygen species generation and mitochondria-dependent caspase pathway.

    PubMed

    Chakraborty, Debrup; Ghosh, Samrat; Bishayee, Kausik; Mukherjee, Avinaba; Sikdar, Sourav; Khuda-Bukhsh, Anisur Rahman

    2013-09-01

    Ethanolic extract of Gymnema sylvestre (GS) leaves is used as a potent antidiabetic drug in various systems of alternative medicine, including homeopathy. The present study was aimed at examining if GS also had anticancer potentials, and if it had, to elucidate its possible mechanism of action. We initially tested possible anticancer potential of GS on A375 cells (human skin melanoma) through MTT assay and determined cytotoxicity levels in A375 and normal liver cells; we then thoroughly studied its apoptotic effects on A375 cells through protocols such as Hoechst 33258, H2DCFDA, and rhodamine 123 staining and conducted ELISA for cytochrome c, caspase 3, and PARP activity levels; we determined the mRNA level expression of cytochrome c, caspase 3, Bcl2, Bax, PARP, ICAD, and EGFR signaling genes through semiquantitative reverse transcriptase polymerase chain reaction and conducted Western blot analysis of caspase 3 and PARP. We also analyzed cell cycle events, determined reactive oxygen species accumulation, measured annexin V-FITC/PI and rhodamine 123 intensity by flow cytometry. Compared with both normal liver cells and drug-untreated A375, the mortality of GS-treated A375 cells increased in a dose-dependent manner. Additionally, GS induced nuclear DNA fragmentation and showed an increased level of mRNA expression of apoptotic signal related genes cytochrome c, caspase 3, PARP, Bax, and reduced expression level of ICAD, EGFR, and the anti-apoptotic gene Bcl2. Overall results indicate GS to have significant anticancer effect on A375 cells apart from its reported antidiabetic effect, indicating possibility of its palliative use in patients with symptoms of both the diseases.

  10. Blood-Brain Barrier Disruption Caused by Ultrasound Bursts Combined with Microbubbles Depends on Anesthesia

    NASA Astrophysics Data System (ADS)

    McDannold, Nathan; Zhang, Yongzhi; Vykhodtseva, Natalia

    2011-09-01

    Prior works on BBB disruption via inter-arterial infusions of osmotic agents have shown a strong dependence on anesthesia. Here, we investigated whether different anesthesia agents can affect ultrasound-induced BBB disruption. A piston transducer fired through a rubber aperture (frequency: 532 kHz, diameter: 4 cm, aperture diameter: 16 mm) was used to generate the ultrasound fields, and sonications combined with an ultrasound contrast agent were performed at 5 power levels. BBB disruption was quantified by measuring the MRI contrast enhancement in T1-weighted MRI, and erythrocyte extravasation characterized in light microscopy. For each exposure level tested, experiments performed with ketamine/xylazine resulted in significantly greater (P<0.05) enhancement than with isoflurane/oxygen. The onset of severe red blood cell extravasation occurred at lower power levels with ketamine/xylazine. These results suggest ultrasound-induced BBB disruption can depend on anesthesia agent, possibly due effects on the vasculature. These results suggest that care is needed in comparing experiments with different anesthesia agents and physiological factors need to be considered with ultrasound-induced BBB disruption.

  11. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  12. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells

    PubMed Central

    Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.

    2017-01-01

    Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844

  13. BCI induces apoptosis via generation of reactive oxygen species and activation of intrinsic mitochondrial pathway in H1299 lung cancer cells.

    PubMed

    Shin, Jong-Woon; Kwon, Sae-Bom; Bak, Yesol; Lee, Sang-Ku; Yoon, Do-Young

    2018-03-28

    The compound (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as an inhibitor of dual specific phosphatase 1/6 and mitogen-activated protein kinase. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on the viability of non-small cell lung cancer cell lines NCI-H1299, A549, and NCI-H460 were evaluated. We confirmed that BCI significantly inhibited the viability of p53(-) NCI-H1299 cells as compared to NCI-H460 and A549 cells, which express wild-type p53. Furthermore, BCI treatment increased the level of cellular reactive oxygen species and pre-treatment of cells with N-acetylcysteine markedly attenuated BCI-mediated apoptosis of NCI-H1299 cells. BCI induced cellular morphological changes, inhibited viability, and produced reactive oxygen species in NCI-H1299 cells in a dose-dependent manner. BCI induced processing of caspase-9, caspase-3, and poly ADP-ribose polymerase as well as the release of cytochrome c from the mitochondria into the cytosol. In addition, BCI downregulated Bcl-2 expression and enhanced Bax expression in a dose-dependent manner in NCI-H1299 cells. However, BCI failed to modulate the expression of the death receptor and extrinsic factor caspase-8 and Bid, a linker between the intrinsic and extrinsic apoptotic pathways in NCI-H1299 cells. Thus, BCI induces apoptosis via generation of reactive oxygen species and activation of the intrinsic pathway in NCI-H1299 cells.

  14. Cerebral oxygen saturation during the first 72h after birth in infants diagnosed prenatally with congenital heart disease.

    PubMed

    Mebius, Mirthe J; van der Laan, Michelle E; Verhagen, Elise A; Roofthooft, Marcus Tr; Bos, Arend F; Kooi, Elisabeth Mw

    2016-12-01

    Evidence suggests that hypoxic-ischemic brain injury in infants with congenital heart disease already occurs during early life. The aim of our study was, therefore, to assess the course of regional cerebral oxygen saturation (r c SO 2 ) and fractional tissue oxygen extraction (FTOE) during the first 72h after birth in infants with prenatally diagnosed duct-dependent congenital heart disease. In addition, we identified clinical parameters that were associated with r c SO 2 . We included 56 infants with duct-dependent congenital heart disease. We measured arterial oxygen saturation (SpO 2 ) and r c SO 2 during the first 72h after birth. Simultaneously, we calculated FTOE. We observed median r c SO 2 values of approximately 60%, a decreasing FTOE from 0.34 on day 1 to 0.28 on day 3 and stable preductal SpO 2 values around 90%. Several clinical variables were associated with r c SO 2 . In a multiple linear regression model only type of CHD and preductal SpO 2 were significant predictors of r c SO 2 during the first three days after birth. Infants with a duct-dependent pulmonary circulation had up to 12% lower r c SO 2 values than infants with a duct-dependent systemic circulation. We demonstrated that, during the first three days after birth, cerebral oxygen saturation is low in infants with duct-dependent congenital heart disease. Furthermore, this study provides preoperative reference values of r c SO 2 and FTOE in infants with duct-dependent CHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform.

    PubMed

    Jerome, Neil P; Boult, Jessica K R; Orton, Matthew R; d'Arcy, James; Collins, David J; Leach, Martin O; Koh, Dow-Mu; Robinson, Simon P

    2016-10-03

    To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform. Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T 2 *, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min. Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T 2 * measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T 2 *, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T 2 *. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T 2 * established. Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.

  16. Evidence for the bias-driven migration of oxygen vacancies in amorphous non-stoichiometric gallium oxide

    NASA Astrophysics Data System (ADS)

    Guo, D. Y.; Qian, Y. P.; Su, Y. L.; Shi, H. Z.; Li, P. G.; Wu, J. T.; Wang, S. L.; Cui, C.; Tang, W. H.

    2017-06-01

    The conductivity of gallium oxide thin films is strongly dependent on the growth temperature when they deposited by pulsed laser deposition under vacuum environment, exhibiting an insulative-to-metallic transition with the decrease of the temperature. The high conductive gallium oxide films deposited at low temperature are amorphous, non-stoichiometric, and rich in oxygen vacancy. Large changes in electrical resistance are observed in these non-stoichiometric thin films. The wide variety of hysteretic shapes in the I-V curves depend on the voltage-sweep rate, evidencing that the time-dependent redistribution of oxygen vacancy driven by bias is the controlling parameter for the resistance of gallium oxide.

  17. Micronucleus induction in Vicia faba roots. Part 1. Absence of dose-rate, fractionation, and oxygen effect at low doses of low LET radiations.

    PubMed

    Marshall, I; Bianchi, M

    1983-08-01

    Micronucleus indication in Vicia faba roots has been evaluated after irradiation with 60Co gamma-rays. The dependence of the damage on dose, dose rate, fractionation, and oxygen has been studied. The best fit to the experimental data in the dose region between 7 and 190 cGy is represented, for single-dose exposures, by a linear + quadratic relationship. In the low-dose region, between 7 and 20 cGy, where the linear dose dependence is dominant, no dose-rate, fractionation, or oxygen effect could be observed. These effects were, however, present in the high-dose region, where the quadratic dependence is dominant.

  18. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and higher partial pressure due to higher temperatures might slightly overcompensate for oxygen concentration decreases due to decreases in solubility.

  19. Hyperglycemic Conditions Prime Cells for RIP1-dependent Necroptosis.

    PubMed

    LaRocca, Timothy J; Sosunov, Sergey A; Shakerley, Nicole L; Ten, Vadim S; Ratner, Adam J

    2016-06-24

    Necroptosis is a RIP1-dependent programmed cell death (PCD) pathway that is distinct from apoptosis. Downstream effector pathways of necroptosis include formation of advanced glycation end products (AGEs) and reactive oxygen species (ROS), both of which depend on glycolysis. This suggests that increased cellular glucose may prime necroptosis. Here we show that exposure to hyperglycemic levels of glucose enhances necroptosis in primary red blood cells (RBCs), Jurkat T cells, and U937 monocytes. Pharmacologic or siRNA inhibition of RIP1 prevented the enhanced death, confirming it as RIP1-dependent necroptosis. Hyperglycemic enhancement of necroptosis depends upon glycolysis with AGEs and ROS playing a role. Total levels of RIP1, RIP3, and mixed lineage kinase domain-like (MLKL) proteins were increased following treatment with high levels of glucose in Jurkat and U937 cells and was not due to transcriptional regulation. The observed increase in RIP1, RIP3, and MLKL protein levels suggests a potential positive feedback mechanism in nucleated cell types. Enhanced PCD due to hyperglycemia was specific to necroptosis as extrinsic apoptosis was inhibited by exposure to high levels of glucose. Hyperglycemia resulted in increased infarct size in a mouse model of brain hypoxia-ischemia injury. The increased infarct size was prevented by treatment with nec-1s, strongly suggesting that increased necroptosis accounts for exacerbation of this injury in conditions of hyperglycemia. This work reveals that hyperglycemia represents a condition in which cells are extraordinarily susceptible to necroptosis, that local glucose levels alter the balance of PCD pathways, and that clinically relevant outcomes may depend on glucose-mediated effects on PCD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Cellular homeostasis in fungi: impact on the aging process.

    PubMed

    Scheckhuber, Christian Q; Hamann, Andrea; Brust, Diana; Osiewacz, Heinz D

    2012-01-01

    Cellular quality control pathways are needed for maintaining the biological function of organisms. If these pathways become compromised, the results are usually highly detrimental. Functional impairments of cell components can lead to diseases and in extreme cases to organismal death. Dysfunction of cells can be induced by a number of toxic by-products that are formed during metabolic activity, like reactive oxygen and nitrogen species, for example. A key source of reactive oxygen species (ROS) are the organelles of oxidative phosphorylation, mitochondria. Therefore mitochondrial function is also directly affected by ROS, especially if there is a compromised ROS-scavenging capacity. Biological systems therefore depend on several lines of defence to counteract the toxic effects of ROS and other damaging agents. The first level is active at the molecular level and consists of various proteases that bind and degrade abnormally modified and / or aggregated mitochondrial proteins. The second level is concerned with maintaining the quality of whole mitochondria. Among the pathways of this level are mitochondrial dynamics and autophagy (mitophagy). Mitochondrial dynamics describes the time-dependent fusion and fission of mitochondria. It is argued that this kind of organellar dynamics has the power to restore the function of impaired organelles by content mixing with intact organelles. If the first and second lines of defence against damage fail and mitochondria become damaged too severely, there is the option to remove affected cells before they can elicit more damage to their surrounding environment by apoptosis. This form of programmed cell death is strictly regulated by a complex network of interacting components and can be divided into mitochondria-dependent and mitochondria-independent modes of action. In this review we give an overview on various biological quality control systems in fungi (yeasts and filamentous fungi) with an emphasis on autophagy (mitophagy) and apoptosis and how these pathways allow fungal organisms to maintain a balanced cellular homeostasis.

  1. Nondestructive and continuous monitoring of oxygen levels in modified atmosphere packaged ready-to-eat mixed salad products using optical oxygen sensors, and its effects on sensory and microbiological counts during storage.

    PubMed

    Hempel, A; O'Sullivan, M G; Papkovsky, D B; Kerry, J P

    2013-07-01

    The objective of this study was to determine the percentage oxygen consumption of fresh, respiring ready-to-eat (RTE) mixed leaf salad products (Iceberg salad leaf, Caesar salad leaf, and Italian salad leaf). These were held under different modified atmosphere packaging (MAP) conditions (5% O2 , 5% CO2 , 90% N2 (MAPC-commercial control), 21% O2 , 5% CO2 , 74% N2 (MAP 1), 45% O2 , 5% CO2 , 50% N2 (MAP 2), and 60% O2 , 5% CO2 , 35% N2 (MAP 3)) and 4 °C for up to 10 d. The quality and shelf-life stability of all packaged salad products were evaluated using sensory, physiochemical, and microbial assessment. Oxygen levels in all MAP packs were measured on each day of analysis using optical oxygen sensors allowing for nondestructive assessment of packs. Analysis showed that with the exception of control packs, oxygen levels for all MAP treatments decreased by approximately 10% after 7 d of storage. Oxygen levels in control packs were depleted after 7 d of storage. This appears to have had no detrimental effect on either the sensory quality or shelf-life stability of any of the salad products investigated. Additionally, the presence of higher levels of oxygen in modified atmosphere packs did not significantly improve product quality or shelf-life stability; however, these additional levels of oxygen were freely available to fresh respiring produce if required. This study shows that the application of optical sensors in MAP packs was successful in nondestructively monitoring oxygen level, or changes in oxygen level, during refrigerated storage of RTE salad products. © 2013 Institute of Food Technologists®

  2. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry.

    PubMed

    Holloway, Paul H; Pritchard, David G

    2017-08-01

    The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. © The Author 2017. Published by Oxford University Press on behalf of Poultry Science Association.

  3. Effects of ambient temperature and water vapor on chamber pressure and oxygen level during low atmospheric pressure stunning of poultry

    PubMed Central

    Holloway, Paul H.; Pritchard, David G.

    2017-01-01

    Abstract The characteristics of the vacuum used in a low atmospheric pressure stunning system to stun (render unconscious) poultry prior to slaughter are described. A vacuum chamber is pumped by a wet screw compressor. The vacuum pressure is reduced from ambient atmospheric pressure to an absolute vacuum pressure of ∼250 Torr (∼33 kPa) in ∼67 sec with the vacuum gate valve fully open. At ∼250 Torr, the sliding gate valve is partially closed to reduce effective pumping speed, resulting in a slower rate of decreasing pressure. Ambient temperature affects air density and water vapor pressure and thereby oxygen levels and the time at the minimum total pressure of ∼160 Torr (∼21 kPa) is varied from ∼120 to ∼220 sec to ensure an effective stun within the 280 seconds of each cycle. The reduction in total pressure results in a gradual reduction of oxygen partial pressure that was measured by a solid-state electrochemical oxygen sensor. The reduced oxygen pressure leads to hypoxia, which is recognized as a humane method of stunning poultry. The system maintains an oxygen concentration of <5% for at least 2 minutes, which ensures that birds are irreversibly stunned. Calculated pump down (pressure versus time) data match experimental data very closely because the programmable logic controller and the human machine interface enable precise and accurate control. The vacuum system operates in the turbulent viscous flow regime, and is best characterized by absolute vacuum pressure rather than gauge pressure. Neither the presence of broiler chickens nor different fore-line pipe designs of four parallel commercial systems affected the pressure-time data. Water in wet air always reduces the oxygen concentrations to a value lower than in dry air. The partial pressure of water and oxygen were found to depend on the pump down parameters due to the formation of fog in the chamber and desorption of water from the birds and the walls of the vacuum chamber. PMID:28521045

  4. MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation.

    PubMed

    Mandeville, J B; Marota, J J; Ayata, C; Moskowitz, M A; Weisskoff, R M; Rosen, B R

    1999-11-01

    This study reports the first measurement of the relative cerebral metabolic rate of oxygen utilization (rCMRO(2)) during functional brain activation with sufficient temporal resolution to address the dynamics of blood oxygen level-dependent (BOLD) MRI signal. During rat forepaw stimulation, rCMRO(2) was determined in somatosensory cortex at 3-sec intervals, using a model of BOLD signal and measurements of the change in BOLD transverse relaxation rate, the resting state BOLD transverse relaxation rate, relative cerebral blood flow (rCBF), and relative cerebral blood volume (rCBV). Average percentage changes from 10 to 30 sec after onset of forepaw stimulation for rCBF, rCBV, rCMRO(2), and BOLD relaxation rate were 62 +/- 16, 17 +/- 2, 19 +/- 17, and -26 +/- 12, respectively. A poststimulus undershoot in BOLD signal was quantitatively attributed to the temporal mismatch between changes in blood flow and volume, and not to the role of oxygen metabolism. Magn Reson Med 42:944-951, 1999. Copyright 1999 Wiley-Liss, Inc.

  5. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    PubMed

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Acclimatization and tolerance to extreme altitude

    NASA Technical Reports Server (NTRS)

    West, J. B.

    1993-01-01

    During the last ten years, two major experiments have elucidated the factors determining acclimatization and tolerance to extreme altitude (over 7000 m). These were the American Medical Research Expedition to Everest, and the low pressure chamber simulation, Operation Everest II. Extreme hyperventilation is one of the most important responses to extreme altitude. Its chief value is that it allows the climber to maintain an alveolar PO2 which keeps the arterial PO2 above dangerously low levels. Even so, there is evidence of residual impairment of central nervous system function after ascents to extreme altitude, and maximal oxygen consumption falls precipitously above 7000 m. The term 'acclimatization' is probably not appropriate for altitudes above 8000 m, because the body steadily deteriorates at these altitudes. Tolerance to extreme altitude is critically dependent on barometric pressure, and even seasonal changes in pressure probably affect climbing performance near the summit of Mt Everest. Supplementary oxygen always improves exercise tolerance at extreme altitudes, and rescue oxygen should be available on climbing expeditions to 8000 m peaks.

  7. Molecular Basis of the Bohr Effect in Arthropod Hemocyanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, S.; Kawahara, T; Beltramini, M

    2008-01-01

    Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observedmore » for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s ? 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.« less

  8. Direct measurements of the light dependence of gross photosynthesis and oxygen consumption in the ocean

    NASA Astrophysics Data System (ADS)

    Bailleul, B.; Park, J.; Brown, C. M.; Bidle, K. D.; Lee, S.; Falkowski, P. G.

    2016-02-01

    For decades, a lack of understanding of how respiration is influenced by light has been stymying our ability to quantitatively analyze how phytoplankton allocate carbon in situ and the biological mechanisms that participate to the fate of blooms. Using membrane inlet mass spectrometry (MIMS), the light dependencies of gross photosynthesis and oxygen uptake rates were measured during the bloom demises of two prymnesiophytes, in two open ocean regions. In the North Atlantic, dominated by Emiliania huxleyi, respiration was independent of irradiance and was higher than the gross photosynthetic rate at all irradiances. In the Amundsen Sea (Antarctica), dominated by Phaeocystis antarctica, the situation was very different. Dark respiration was one order of magnitude lower than the maximal gross photosynthetic rate. ut the oxygen uptake rate increased by 10 fold at surface irradiances, where it becomes higher than gross photosynthesis. Our results suggest that the light dependence of oxygen uptake in P. antarctica has two sources: one is independent of photosynthesis, and is possibly associated with the photo-reduction of O2 mediated by dissolved organic matter; the second reflects the activity of an oxidase fueled in the light with photosynthetic electron flow. Interestingly, these dramatic light-dependent changes in oxygen uptake were not reproduced in nutrient-replete P. antarctica cultures, in the laboratory. Our measurements highlight the importance of improving our understanding of oxygen consuming reactions in the euphotic zone, which is critical to investigating the physiology of phytoplankton and tracing the fate of phytoplankton blooms.

  9. Quantifying Trust, Distrust, and Suspicion in Human-System Interactions

    DTIC Science & Technology

    2015-10-26

    devices which require subjects to lie in restricted positions ( fMRI ), or to drink hazardous materials (PET), EEG and fNIRS can non-invasively measure... fMRI . Since fNIRS and fMRI both measure elements of the Blood Oxygen Level Dependent (BOLD) signal. Researchers have recently explored the...response inhibition load, verbal working memory load, and spatial working memory load [1, 7]. We have also successfully localized brain regions such as

  10. Susceptibility weighted imaging of stroke brain in response to normobaric oxygen (NBO) therapy

    NASA Astrophysics Data System (ADS)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    The neuroprotective effect of oxygen leads to recent interest in normobaric oxygen (NBO) therapy after acute ischemic stroke. However, the mechanism remains unclear and inconsistent outcomes were reported in human studies. Because NBO aims to improve brain tissue oxygenation by enhancing oxygen delivery to ischemic tissue, monitoring the oxygenation level changes in response to NBO becomes necessary to elucidate the mechanism and to assess the efficacy. Susceptibility weighted imaging (SWI) which provides a new MRI contrast by combining the magnitude and phase images is fit for purpose. SWI is sensitive to deoxyhemoglobin level changes and thus can be used to evaluate the cerebral metabolic rate of oxygen. In this study, SWI was used for in vivo monitoring of oxygenation changes in a rat model of permanent middle cerebral artery occlusion (MCAO) before, during and after 30 min of NBO treatment. Regions of interest in ischemic core, penumbra and contralateral normal area were generated based on diffusionweighted imaging and perfusion imaging. Significant differences in SWI indicating different oxygenation levels were generally found: contralateral normal > penumbra > ischemic core. Ischemic core showed insignificant increase in oxygenation during NBO and returned to pre-treatment level after termination of NBO. Meanwhile, the oxygenation levels slightly increased in contralateral normal and penumbra regions during NBO and significantly decreased to a level lower than pre-treatment after termination of NBO, indicating secondary metabolic disruption upon the termination of transient metabolic support from oxygen. Further investigation of NBO effect combined with reperfusion is necessary while SWI can be used to detect hemorrhagic transformation after reperfusion.

  11. Comparisons of Molecular Sieve Oxygen Concentrators for potential medical use aboard commercial aircraft.

    DOT National Transportation Integrated Search

    1992-06-01

    Medically-impaired air travelers requiring supplemental oxygen must depend on airlines to provide oxygen cylinders. Performance, space, and cost are considerations in providing this service. Tests were conducted in an altitude chamber to assess the v...

  12. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.

    PubMed

    Lavie, Julie; De Belvalet, Harmony; Sonon, Sessinou; Ion, Ana Madalina; Dumon, Elodie; Melser, Su; Lacombe, Didier; Dupuy, Jean-William; Lalou, Claude; Bénard, Giovanni

    2018-06-05

    The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Comparison of the OxyMask and Venturi mask in the delivery of supplemental oxygen: Pilot study in oxygen-dependent patients

    PubMed Central

    Beecroft, Jaime M; Hanly, Patrick J

    2006-01-01

    BACKGROUND: The OxyMask (Southmedic Inc, Canada) is a new face mask for oxygen delivery that uses a small ‘diffuser’ to concentrate and direct oxygen toward the mouth and nose. The authors hypothesized that this unique design would enable the OxyMask to deliver oxygen more efficiently than a Venturi mask (Hudson RCI, USA) in patients with chronic hypoxemia. METHODS: Oxygen-dependent patients with chronic, stable respiratory disease were recruited to compare the OxyMask and Venturi mask in a randomized, single-blind, cross-over design. Baseline blood oxygen saturation (SaO2) was established breathing room air, followed in a random order by supplemental oxygen through the OxyMask or Venturi mask. Oxygen delivery was titrated to maintain SaO2 4% to 5% and 8% to 9% above baseline for two separate 30 min periods of stable breathing. Oxygen flow rate, partial pressure of inspired and expired oxygen (PO2) and carbon dioxide (PCO2), minute ventilation, heart rate, nasal and oral breathing, SaO2 and transcutaneous PCO2 were collected continuously. The study was repeated following alterations to the OxyMask design, which improved clearance of carbon dioxide. RESULTS: Thirteen patients, aged 28 to 79 years, were studied initially using the original OxyMask. Oxygen flow rate was lower, inspired PO2 was higher and expired PO2 was lower while using the OxyMask. Minute ventilation and inspired and expired PCO2 were significantly higher while using the OxyMask, whereas transcutaneous PCO2, heart rate and the ratio of nasal to oral breathing did not change significantly throughout the study. Following modification of the OxyMask, 13 additional patients, aged 18 to 79 years, were studied using the same protocol. The modified OxyMask provided a higher inspired PO2 at a lower flow rate, without evidence of carbon dioxide retention. CONCLUSIONS: Oxygen is delivered safely and more efficiently by the OxyMask than by the Venturi mask in stable oxygen-dependent patients. PMID:16896425

  14. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  15. Ethanol extract of Dalbergia odorifera protects skin keratinocytes against ultraviolet B-induced photoaging by suppressing production of reactive oxygen species.

    PubMed

    Ham, Sun Ah; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Lim, Hyun Ho; Lee, Won Jin; Paek, Kyung Shin; Seo, Han Geuk

    2015-01-01

    Dalbergia odorifera T. Chen (Leguminosae), an indigenous medicinal herb, has been widely used in northern and eastern Asia to treat diverse diseases. Here, we investigated the anti-senescent effects of ethanolic extracts of Dalbergia odorifera (EEDO) in ultraviolet (UV) B-irradiated skin cells. EEDO significantly inhibited UVB-induced senescence of human keratinocytes in a concentration-dependent manner, concomitant with inhibition of reactive oxygen species (ROS) generation. UVB-induced increases in the levels of p53 and p21, biomarkers of cellular senescence, were almost completely abolished in the presence of EEDO. Sativanone, a major constituent of EEDO, also attenuated UVB-induced senescence and ROS generation in keratinocytes, indicating that sativanone is an indexing (marker) molecule for the anti-senescence properties of EEDO. Finally, treatment of EEDO to mice exposed to UVB significantly reduced ROS levels and the number of senescent cells in the skin. Thus, EEDO confers resistance to UVB-induced cellular senescence by inhibiting ROS generation in skin cells.

  16. Modeling of the oxygen reduction reaction for dense LSM thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Tao; Liu, Jian; Yu, Yang

    In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less

  17. Modeling of the oxygen reduction reaction for dense LSM thin films

    DOE PAGES

    Yang, Tao; Liu, Jian; Yu, Yang; ...

    2017-10-17

    In this study, the oxygen reduction reaction mechanism is investigated using numerical methods on a dense thin (La 1-xSr x) yMnO 3±δ film deposited on a YSZ substrate. This 1-D continuum model consists of defect chemistry and elementary oxygen reduction reaction steps coupled via reaction rates. The defect chemistry model contains eight species including cation vacancies on the A- and B-sites. The oxygen vacancy is calculated by solving species transportation equations in multiphysics simulations. Due to the simple geometry of a dense thin film, the oxygen reduction reaction was reduced to three elementary steps: surface adsorption and dissociation, incorporation onmore » the surface, and charge transfer across the LSM/YSZ interface. The numerical simulations allow for calculation of the temperature- and oxygen partial pressure-dependent properties of LSM. The parameters of the model are calibrated with experimental impedance data for various oxygen partial pressures at different temperatures. The results indicate that surface adsorption and dissociation is the rate-determining step in the ORR of LSM thin films. With the fine-tuned parameters, further quantitative analysis is performed. The activation energy of the oxygen exchange reaction and the dependence of oxygen non-stoichiometry on oxygen partial pressure are also calculated and verified using the literature results.« less

  18. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    PubMed Central

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  19. Influence of euthanasia method on blood and gill variables in normoxic and hypoxic Gulf killifish Fundulus grandis.

    PubMed

    Larter, K F; Rees, B B

    2017-06-01

    In many experiments, euthanasia, or humane killing, of animals is necessary. Some methods of euthanasia cause death through cessation of respiratory or cardiovascular systems, causing oxygen levels of blood and tissues to drop. For experiments where the goal is to measure the effects of environmental low oxygen (hypoxia), the choice of euthanasia technique, therefore, may confound the results. This study examined the effects of four euthanasia methods commonly used in fish biology (overdose of MS-222, overdose of clove oil, rapid cooling and blunt trauma to the head) on variables known to be altered during hypoxia (haematocrit, plasma cortisol, blood lactate and blood glucose) or reflecting gill damage (trypan blue exclusion) and energetic status (ATP, ADP and ATP:ADP) in Gulf killifish Fundulus grandis after 24 h exposure to well-aerated conditions (normoxia, 7·93 mg O 2  l -1 , c. 150 mm Hg or c. 20 kPa) or reduced oxygen levels (0·86 mg O 2  l -1 , c. 17 mm Hg or c. 2·2 kPa). Regardless of oxygen treatment, fish euthanized by an overdose of MS-222 had higher haematocrit and lower gill ATP:ADP than fish euthanized by other methods. The effects of 24 h hypoxic exposure on these and other variables, however, were equivalent among methods of euthanasia (i.e. there were no significant interactions between euthanasia method and oxygen treatment). The choice of an appropriate euthanasia method, therefore, will depend upon the magnitude of the treatment effects (e.g. hypoxia) relative to potential artefacts caused by euthanasia on the variables of interest. © 2017 The Fisheries Society of the British Isles.

  20. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    PubMed

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  1. Effect of humidity on fretting wear of several pure metals

    NASA Technical Reports Server (NTRS)

    Goto, H.; Buckley, D. H.

    1984-01-01

    Fretting wear experiments with several pure metals were conducted in air at various relative humidity levels. The materials used were iron, aluminum, copper, silver, chromium, titanium, and nickel. Each pure metal had a maximum fretting wear volume at a specific humidity level RH sub max that was not dependent on mechanical factors such as contact load, fretting amplitude, and frequency in the ranges studied. The weight loss due to fretting wear at RH sub max for each pure metal decreased with increasing heat of oxygen adsorption on the metal, indicating that adhesive wear dominated at RH sub max.

  2. Oxygen-induced frequency shifts in hyperoxia: a significant component of BOLD signal.

    PubMed

    Song, Youngkyu; Cho, Gyunggoo; Chun, Song-I; Baek, Jin Hee; Cho, HyungJoon; Kim, Young Ro; Park, Sung Bin; Kim, Jeong Kon

    2014-07-01

    In comparison to the well-documented significance of intravascular deoxyhemoglobin (deoxyHgb), the effects of dissolved oxygen on the blood-oxygen-level-dependent (BOLD) signal have not been widely reported. Based on the fact that the prolonged inspiration of high oxygen fraction gas can result in up to a sixfold increase of the baseline tissue oxygenation, the current study focused on the influence of dissolved oxygen on the BOLD signal during hyperoxia. As results, our in vitro study revealed that the r1 and r2 (relaxivities) of the oxygen-treated serum were 0.22 mM(-1) · s(-1) and 0.19 mM(-1) · s(-1) , respectively. In an in vivo experiment, hyperoxic respiration induced negative BOLD contrast (i.e. signal decrease) in 18-42% of measured brain regions, voxels with accompanying significant decreases in both the T(*)2 (-12.1% to -19.4%) and T1 (-5.8% to -3.3%) relaxation times. In contrast, the T(*)2 relaxation time significantly increased (11.2% to 14.0%) for the voxels displaying positive BOLD contrast (in 41-50% of the measured brain), which reflected a hyperoxygenation-induced reduction in tissue deoxyHgb concentration. These data imply that hyperoxia-driven BOLD signal changes are primarily determined by the counteracting effects of extravascular oxygen and intravascular deoxyHgb. Oxygen-induced magnetic susceptibility was further demonstrated by the study of 1 min hypoxia, which induced BOLD signal changes opposite to those under hyperoxia. Vasoconstriction was more common in voxels with negative BOLD contrast than in voxels with positive contrast (% change of blood volume, -9.8% to -12.8% versus 2.0% to 2.2%), which further suggests that negative BOLD contrast is mainly evoked by an increase in extravascular oxygen concentration. Conclusively, frequency shifts, which are induced by the accumulation of oxygen molecules and associated magnetic field inhomogeneity, are a significant source of the negative BOLD contrast during hyperoxia. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Differential physiologic effects of perfusion of scala tympani versus scala vestibuli in the ischemic cochlea.

    PubMed

    Kobayashi, T; Rokugo, M; Takasaka, T; Thalmann, R

    1993-07-01

    The effectiveness of perilymphatic perfusion with oxygenated artificial media upon the endocochlear potential (EP) was measured during systemic ischemia in the guinea pig. Differences in the effects of perfusion of the two perilymphatic scalae were determined. Perfusion of scala vestibuli with oxygenated artificial perilymph at a high flow rate resulted in complete recovery of the EP to the pre-ischemic level, whereas perfusion of scala tympani with the same medium was unable to effect complete recovery. The recovery obtained by perfusion of scala tympani was about half that obtained of scala vestibuli. The pO2 in scala media was measured during perfusion by means of oxygen-sensitive microelectrodes. perfusion of scala vestibuli led to an approximately two-fold higher pO2 in scala media than perfusion of scala tympani. During perfusion, the pO2 in scala media varied dependent upon depth of electrode insertion, with a gradient decreasing toward the stria vascularis, a direction opposite to that seen under normal metabolic conditions. These findings suggest that, in the ischemic cochlea, oxygen enters scala media more easily from scala vestibuli across Reissner's membrane than from scala tympani via the basilar membrane/organ of Corti complex.

  4. Ultrasound-aided Multi-parametric Photoacoustic Microscopy of the Mouse Brain.

    PubMed

    Ning, Bo; Sun, Naidi; Cao, Rui; Chen, Ruimin; Kirk Shung, K; Hossack, John A; Lee, Jin-Moo; Zhou, Qifa; Hu, Song

    2015-12-21

    High-resolution quantitative imaging of cerebral oxygen metabolism in mice is crucial for understanding brain functions and formulating new strategies to treat neurological disorders, but remains a challenge. Here, we report on our newly developed ultrasound-aided multi-parametric photoacoustic microscopy (PAM), which enables simultaneous quantification of the total concentration of hemoglobin (CHb), the oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF) at the microscopic level and through the intact mouse skull. The three-dimensional skull and vascular anatomies delineated by the dual-contrast (i.e., ultrasonic and photoacoustic) system provide important guidance for dynamically focused contour scan and vessel orientation-dependent correction of CBF, respectively. Moreover, bi-directional raster scan allows determining the direction of blood flow in individual vessels. Capable of imaging all three hemodynamic parameters at the same spatiotemporal scale, our ultrasound-aided PAM fills a critical gap in preclinical neuroimaging and lays the foundation for high-resolution mapping of the cerebral metabolic rate of oxygen (CMRO2)-a quantitative index of cerebral oxygen metabolism. This technical innovation is expected to shed new light on the mechanism and treatment of a broad spectrum of neurological disorders, including Alzheimer's disease and ischemic stroke.

  5. Effects of hydrocarbon contamination on ozone generation with dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Lopez, Jose L.; Vezzu, Guido; Freilich, Alfred; Paolini, Bernhard

    2013-08-01

    The increasing usage of the feed gases of lower grade liquid oxygen (LOX) containing higher levels of trace hydrocarbon impurities in dielectric barrier discharge (DBD) for ozone generation requires a better understanding of the kinetics of the by-product formation resulting from reactions involving these hydrocarbon impurities. As a case study of hydrocarbon impurities, the kinetics of CH4 conversion in DBDs and the subsequent HNO3 formation were investigated by means of gas-phase plasma diagnostics, supported by detailed process modeling, and extensive in-situ and ex-situ by-product analysis. The by-products formation in the plasma with the presence of CH4, were found to differ significantly in oxygen-fed generators as compared to generators fed with oxygen/nitrogen mixtures. The amount of HNO3 formed depends on the concentration of NOx formed in the plasma and the amount of CH4 that is converted, but not on the O3 concentration. In the present work we have investigated CH4 concentrations of up to 1.95 wt% of the feed gas. The rate of deterioration of the overall ozone generator performance was found to be affected by the concentration of nitrogen in the oxygen/nitrogen mixture.

  6. Multispectral fundus imaging for early detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Beach, James M.; Tiedeman, James S.; Hopkins, Mark F.; Sabharwal, Yashvinder S.

    1999-04-01

    Functional imaging of the retina and associated structures may provide information for early assessment of risks of developing retinopathy in diabetic patients. Here we show results of retinal oximetry performed using multi-spectral reflectance imaging techniques to assess hemoglobin (Hb) oxygen saturation (OS) in blood vessels of the inner retina and oxygen utilization at the optic nerve in diabetic patients without retinopathy and early disease during experimental hyperglycemia. Retinal images were obtained through a fundus camera and simultaneously recorded at up to four wavelengths using image-splitting modules coupled to a digital camera. Changes in OS in large retinal vessels, in average OS in disk tissue, and in the reduced state of cytochrome oxidase (CO) at the disk were determined from changes in reflectance associated with the oxidation/reduction states of Hb and CO. Step to high sugar lowered venous oxygen saturation to a degree dependent on disease duration. Moderate increase in sugar produced higher levels of reduced CO in both the disk and surrounding tissue without a detectable change in average tissue OS. Results suggest that regulation of retinal blood supply and oxygen consumption are altered by hyperglycemia and that such functional changes are present before clinical signs of retinopathy.

  7. Hexavalent chromium induces reactive oxygen species and impairs the antioxidant power of human erythrocytes and lymphocytes: Decreased metal reducing and free radical quenching ability of the cells.

    PubMed

    Husain, Nazim; Mahmood, Riaz

    2017-08-01

    The toxicity of hexavalent chromium [Cr(VI)] in biological systems is thought to be closely associated with the generation of free radicals and reactive oxygen species. These species are produced when Cr(VI) is reduced to its trivalent form in the cell. This process results in oxidative stress due to an imbalance between the detoxifying ability of the cell and the production of free radicals. We have studied the effect of potassium dichromate (K 2 Cr 2 O 7 ), a [Cr(VI)] compound, on the antioxidant power of human erythrocytes and lymphocytes under in vitro conditions. Incubation of erythrocytes and lymphocytes with different concentrations of K 2 Cr 2 O 7 resulted in a marked dose-dependent decrease in reduced glutathione and an increase in oxidized glutathione and reactive oxygen species levels. The antioxidant power of the cells was decreased, as determined by metal reducing and free radical quenching assays. These results show that [Cr(VI)] upregulates the generation of reactive oxygen species and, as a consequence, the cellular antioxidant defences are compromised. The resulting oxidative stress may contribute to Cr(VI)-induced cellular damage.

  8. Hybrid TiO2 -Ruthenium Nano-photosensitizer Synergistically Produces Reactive Oxygen Species in both Hypoxic and Normoxic Conditions.

    PubMed

    Gilson, Rebecca C; Black, Kvar C L; Lane, Daniel D; Achilefu, Samuel

    2017-08-28

    Photodynamic therapy (PDT) is widely used to treat diverse diseases, but its dependence on oxygen to produce cytotoxic reactive oxygen species (ROS) diminishes the therapeutic effect in a hypoxic environment, such as solid tumors. Herein, we developed a ROS-producing hybrid nanoparticle-based photosensitizer capable of maintaining high levels of ROS under both normoxic and hypoxic conditions. Conjugation of a ruthenium complex (N3) to a TiO 2 nanoparticle afforded TiO 2 -N3. Upon exposure of TiO 2 -N3 to light, the N3 injected electrons into TiO 2 to produce three- and four-fold more hydroxyl radicals and hydrogen peroxide, respectively, than TiO 2 at 160 mmHg. TiO 2 -N3 maintained three-fold higher hydroxyl radicals than TiO 2 under hypoxic conditions via N3-facilitated electron-hole reduction of adsorbed water molecules. The incorporation of N3 transformed TiO 2 from a dual type I and II PDT agent to a predominantly type I photosensitizer, irrespective of the oxygen content. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Fuel cell serves as oxygen level detector

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Monitoring the oxygen level in the air is accomplished by a fuel cell detector whose voltage output is proportional to the partial pressure of oxygen in the sampled gas. The relationship between output voltage and partial pressure of oxygen can be calibrated.

  10. Oxygen Levels Regulate the Development of Human Cortical Radial Glia Cells.

    PubMed

    Ortega, J Alberto; Sirois, Carissa L; Memi, Fani; Glidden, Nicole; Zecevic, Nada

    2017-07-01

    The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation. Physiological hypoxia (3% O2) promoted neurogenesis, whereas anoxia (<1% O2) and severe hypoxia (1% O2) arrested the differentiation of human RGCs, mainly by altering the generation of glutamatergic neurons. The in vitro activation of Wnt-β-catenin signaling rescued the proliferation and neuronal differentiation of RGCs subjected to anoxia. Pathologic hypoxia (≤1% O2) also exerted negative effects on gliogenesis, by decreasing the number of O4+ preoligodendrocytes and increasing the number of reactive astrocytes derived from cortical RGCs. O2-dependent alterations in glutamatergic neurogenesis and oligodendrogenesis can lead to significant changes in cortical circuitry formation. A better understanding of the cellular effects caused by changes in O2 levels during human cortical development is essential to elucidating the etiology of numerous neurodevelopmental disorders. Published by Oxford University Press 2016.

  11. Reaction of oxygen with the respiratory chain in cells and tissues.

    PubMed

    Chance, B

    1965-09-01

    This paper considers the way in which the oxygen reaction described by Dr. Nicholls and the ADP control reactions described by Dr. Racker could cooperate to establish a purposeful metabolic control phenomenon in vivo. This has required an examination of the kinetic properties of the respiratory chain with particular reference to methods for determinations of oxygen affinity (K(m)). The constant parameter for tissue respiration is k(1), the velocity constant for the reaction of oxygen with cytochrome oxidase. Not only is this quantity a constant for a particular tissue or mitochondria; it appears to vary little over a wide range of biological material, and for practical purposes a value of 5 x 10(7) at 25 degrees close to our original value (20) is found to apply with adequate accuracy for calculation of K(m) for mammalia. The quantity which will depend upon the tissue and its metabolic state is the value of K(m) itself, and K(m) may be as large as 0.5 microM and may fall to 0.05 microM or less in resting, controlled, or inhibited states. The control characteristic for ADP may depend upon the electron flux due to the cytochrome chain (40); less ADP is required to activate the slower electron transport at lower temperatures than at higher temperatures. The affinity constants for ADP control appear to be less dependent upon substrate supplied to the system. The balance of ADP and oxygen control in vivo is amply demonstrated experimentally and is dependent on the oxygen concentration as follows. In the presence of excess oxygen, control may be due to the ADP or phosphate (or substrate), and the kinetics of oxygen utilization will be independent of the oxygen concentration. As the oxygen concentration is diminished, hemoglobin becomes disoxygenated, deep gradients of oxygen concentration develop in the tissue, and eventually cytochrome oxidase becomes partially and then completely reduced. DPN at this point will become reduced and the electron flow diminished. The rate of ATP production falls and energy conservation previously under the control of the ADP concentration will now be controlled by the diffusion of oxygen to the respiratory enzymes in the mitochondria. Under these conditions the rate of reaction of cytochrome oxidase with oxygen and the reaction of cytochromes with one another become of key importance. The rise of ADP and the depletion of energy reserves evoke glycolytic activity, and failure of biological function may result.

  12. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    PubMed

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-05-10

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation.

  13. GreenLight Model 960.

    PubMed

    Fernandes, Richard; Carey, Conn; Hynes, James; Papkovsky, Dmitri

    2013-01-01

    The importance of food safety has resulted in a demand for a more rapid, high-throughput method for total viable count (TVC). The industry standard for TVC determination (ISO 4833:2003) is widely used but presents users with some drawbacks. The method is materials- and labor-intensive, requiring multiple agar plates per sample. More importantly, the method is slow, with 72 h typically required for a definitive result. Luxcel Biosciences has developed the GreenLight Model 960, a microtiter plate-based assay providing a rapid high-throughput method of aerobic bacterial load assessment through analysis of microbial oxygen consumption. Results are generated in 1-12 h, depending on microbial load. The mix and measure procedure allows rapid detection of microbial oxygen consumption and equates oxygen consumption to microbial load (CFU/g), providing a simple, sensitive means of assessing the microbial contamination levels in foods (1). As bacteria in the test sample grow and respire, they deplete O2, which is detected as an increase in the GreenLight probe signal above the baseline level (2). The time required to reach this increase in signal can be used to calculate the CFU/g of the original sample, based on a predetermined calibration. The higher the initial microbial load, the earlier this threshold is reached (1).

  14. Ethylene--and oxygen signalling--drive plant survival during flooding.

    PubMed

    Voesenek, L A C J; Sasidharan, R

    2013-05-01

    Flooding is a widely occurring environmental stress both for natural and cultivated plant species. The primary problems associated with flooding arise due to restricted gas diffusion underwater. This hampers gas exchange needed for the critical processes of photosynthesis and respiration. Plant acclimation to flooding includes the adaptation of a suite of traits that helps alleviate or avoid these stressful conditions and improves or restores exchange of O2 and CO2 . The manifestation of these traits is, however, reliant on the timely perception of signals that convey the underwater status. Flooding-associated reduced gas diffusion imposes a drastic change in the internal gas composition within submerged plant organs. One of the earliest changes is an increase in the levels of the gaseous plant hormone ethylene. Depending on the species, organ, flooding conditions and time of the day, plants will also subsequently experience a reduction in oxygen levels. This review provides a comprehensive overview on the roles of ethylene and oxygen as critical signals of flooding stress. It includes a discussion of the dynamics of these gases in plants when underwater, their interaction, current knowledge of their perception mechanisms and the resulting downstream changes that mediate important acclimative processes that allow endurance and survival under flooded conditions. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Origin and roles of oxygen impurities in hexagonal boron nitride epilayers

    NASA Astrophysics Data System (ADS)

    Grenadier, S. J.; Maity, A.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-04-01

    Photoluminescence emission spectroscopy and electrical transport measurements have been employed to study the origin and roles of oxygen impurities in hexagonal boron nitride (h-BN) epilayers grown on sapphire substrates. The temperature dependence of the electrical resistivity revealed the presence of a previously unnoticed impurity level of about 0.6 eV in h-BN epilayers grown at high temperatures. The results suggested that in addition to the common nitrogen vacancy (VN) shallow donors in h-BN, oxygen impurities diffused from sapphire substrates during high temperature growth also act as substitutional donors (ON). The presence of ON gives rise to an additional emission peak in the photoluminescence spectrum, corresponding to a donor-acceptor pair recombination involving the ON donor and the CN (carbon occupying nitrogen site) deep level acceptor. Moreover, due to the presence of ON donors, the majority charge carrier type changed to electrons in epilayers grown at high temperatures, in contrast to typical h-BN epilayers which naturally exhibit "p-type" character. The results provided a more coherent picture for common impurities/defects in h-BN as well as a better understanding of the growth mediated impurities in h-BN epilayers, which will be helpful for finding possible ways to further improve the quality and purity of this emerging material.

  16. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast

    PubMed Central

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at −150, −100 and −50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  17. Hypoxia-inducible vascular endothelial growth factor gene therapy using the oxygen-dependent degradation domain in myocardial ischemia.

    PubMed

    Kim, Hyun Ah; Lim, Soyeon; Moon, Hyung-Ho; Kim, Sung Wan; Hwang, Ki-Chul; Lee, Minhyung; Kim, Sun Hwa; Choi, Donghoon

    2010-10-01

    A hypoxia-inducible VEGF expression system with the oxygen-dependent degradation (ODD) domain was constructed and tested to be used in gene therapy for ischemic myocardial disease. Luciferase and VEGF expression vector systems were constructed with or without the ODD domain: pEpo-SV-Luc (or pEpo-SV-VEGF) and pEpo-SV-Luc-ODD (or pEpo-SV-VEGF-ODD). In vitro gene expression efficiency of each vector type was evaluated in HEK 293 cells under both hypoxic and normoxic conditions. The amount of VEGF protein was estimated by ELISA. The VEGF expression vectors with or without the ODD domain were injected into ischemic rat myocardium. Fibrosis, neovascularization, and cardiomyocyte apoptosis were assessed using Masson's trichrome staining, α-smooth muscle actin (α-SMA) immunostaining, and the TUNEL assay, respectively. The plasmid vectors containing ODD significantly improved the expression level of VEGF protein in hypoxic conditions. The enhancement of VEGF protein production was attributed to increased protein stability due to oxygen deficiency. In a rat model of myocardial ischemia, the pEpo-SV-VEGF-ODD group exhibited less myocardial fibrosis, higher microvessel density, and less cardiomyocyte apoptosis compared to the control groups (saline and pEpo-SV-VEGF treatments). An ODD-mediated VEGF expression system that facilitates VEGF-production under hypoxia may be useful in the treatment of ischemic heart disease.

  18. cis-Stilbene and (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)benzene as mechanistic probes in the Mn(III)(salen)-catalyzed epoxidation: influence of the oxygen source and the counterion on the diastereoselectivity of the competitive concerted and radical-type oxygen transfer.

    PubMed

    Adam, Waldemar; Roschmann, Konrad J; Saha-Möller, Chantu R; Seebach, Dieter

    2002-05-08

    cis-Stilbene (1) has been epoxidized by a set of diverse oxygen donors [OxD], catalyzed by the Mn(III)(salen)X complexes 3 (X = Cl, PF(6)), to afford a mixture of cis- and trans-epoxides 2. The cis/trans ratios range from 29:71 (extensive isomerization) to 92:8, which depends both on the oxygen source [OxD] and on the counterion X of the catalyst. When (1 alpha,2 beta,3 alpha)-(2-ethenyl-3-methoxycyclopropyl)-benzene (4) is used as substrate, a mechanistic probe which differentiates between radical and cationic intermediates, no cationic ring-opening products are found in this epoxidation reaction; thus, isomerized epoxide product arises from intermediary radicals. The dependence of the diastereoselectivity on the oxygen source is rationalized in terms of a bifurcation step in the catalytic cycle, in which concerted Lewis-acid-activated oxygen transfer competes with stepwise epoxidation by the established Mn(V)(oxo) species. The experimental counterion effect is attributed to the computationally assessed ligand-dependent reaction profiles and stereoselectivities of the singlet, triplet, and quintet spin states available to the manganese species.

  19. Propofol Attenuates Airway Inflammation in a Mast Cell-Dependent Mouse Model of Allergic Asthma by Inhibiting the Toll-like Receptor 4/Reactive Oxygen Species/Nuclear Factor κB Signaling Pathway.

    PubMed

    Li, Hong-Yi; Meng, Jing-Xia; Liu, Zhen; Liu, Xiao-Wen; Huang, Yu-Guang; Zhao, Jing

    2018-06-01

    Propofol, an intravenous anesthetic agent widely used in clinical practice, is the preferred anesthetic for asthmatic patients. This study was designed to determine the protective effect and underlying mechanisms of propofol on airway inflammation in a mast cell-dependent mouse model of allergic asthma. Mice were sensitized by ovalbumin (OVA) without alum and challenged with OVA three times. Propofol was given intraperitoneally 0.5 h prior to OVA challenge. The inflammatory cell count and production of cytokines in the bronchoalveolar lavage fluid (BALF) were detected. The changes of lung histology and key molecules of the toll-like receptor 4 (TLR4)/reactive oxygen species (ROS)/NF-κB signaling pathway were also measured. The results showed that propofol significantly decreased the number of eosinophils and the levels of IL-4, IL-5, IL-6, IL-13, and TNF-α in BALF. Furthermore, propofol significantly attenuated airway inflammation, as characterized by fewer infiltrating inflammatory cells and decreased mucus production and goblet cell hyperplasia. Meanwhile, the expression of TLR4, and its downstream signaling adaptor molecules--myeloid differentiation factor 88 (MyD88) and NF-κB, were inhibited by propofol. The hydrogen peroxide and methane dicarboxylic aldehyde levels were decreased by propofol, and the superoxide dismutase activity was increased in propofol treatment group. These findings indicate that propofol may attenuate airway inflammation by inhibiting the TLR4/MyD88/ROS/NF-κB signaling pathway in a mast cell-dependent mouse model of allergic asthma.

  20. Structurally integrated organic light emitting device-based sensors for gas phase and dissolved oxygen.

    PubMed

    Shinar, Ruth; Zhou, Zhaoqun; Choudhury, Bhaskar; Shinar, Joseph

    2006-05-24

    A compact photoluminescence (PL)-based O2 sensor utilizing an organic light emitting device (OLED) as the light source is described. The sensor device is structurally integrated. That is, the sensing element and the light source, both typically thin films that are fabricated on separate glass substrates, are attached back-to-back. The sensing elements are based on the oxygen-sensitive dyes Pt- or Pd-octaethylporphyrin (PtOEP or PdOEP, respectively), which are embedded in a polystyrene (PS) matrix, or dissolved in solution. Their performance is compared to that of a sensing element based on tris(4,7-diphenyl-l,10-phenanthroline) Ru II (Ru(dpp)) embedded in a sol-gel film. A green OLED light source, based on tris(8-hydroxy quinoline Al (Alq3), was used to excite the porphyrin dyes; a blue OLED, based on 4,4'-bis(2,2'-diphenylviny1)-1,1'-biphenyl, was used to excite the Ru(dpp)-based sensing element. The O2 level was monitored in the gas phase and in water, ethanol, and toluene solutions by measuring changes in the PL lifetime tau of the O2-sensitive dyes. The sensor performance was evaluated in terms of the detection sensitivity, dynamic range, gas flow rate, and temperature effect, including the temperature dependence of tau in pure Ar and O2 atmospheres. The dependence of the sensitivity on the preparation procedure of the sensing film and on the PS and dye concentrations in the sensing element, whether a solid matrix or solution, were also evaluated. Typical values of the detection sensitivity in the gas phase, S(g) identical with tau(0% O2)/tau(100% O2), at 23 degrees C, were approximately 35 to approximately 50 for the [Alq3 OLED[/[PtOEP dye] pair; S(g) exceeded 200 for the Alq3/PdOEP sensor. For dissolved oxygen (DO) in water and ethanol, S(DO) (defined as the ratio of tau in de-oxygenated and oxygen-saturated solutions) was approximately 9.5 and approximately 11, respectively, using the PtOEP-based film sensor. The oxygen level in toluene was measured with PtOEP dissolved directly in the solution. That sensor exhibited a high sensitivity, but a limited dynamic range. Effects of aggregation of dye molecules, sensing film porosity, and the use of the OLED-based sensor arrays for O2 and multianalyte detection are also discussed.

  1. Medical oxygen and air travel.

    PubMed

    Lyznicki, J M; Williams, M A; Deitchman, S D; Howe, J P

    2000-08-01

    This report responds to a resolution that asked the American Medical Association (AMA) to take action to improve airport and airline accommodations for passengers requiring medical oxygen. Information for the report was derived from a search of the MEDLINE database and references listed in pertinent articles, as well as through communications with experts in aerospace and emergency medicine. Based on this information, the AMA Council on Scientific Affairs determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion, which may cause some passengers to experience significant symptoms and medical complications during flight. Medical guidelines are available to help physicians evaluate and counsel potential passengers who are at increased risk of inflight hypoxemia. Supplemental oxygen may be needed for some passengers to maintain adequate tissue oxygenation and prevent hypoxemic complications. For safety and security reasons, federal regulations prohibit travelers from using their own portable oxygen system onboard commercial aircraft. Many U.S. airlines supply medical oxygen for use during flight but policies and procedures vary. Oxygen-dependent passengers must make additional arrangements for the use of supplemental oxygen in airports. Uniform standards are needed to specify procedures and equipment for the use of medical oxygen in airports and aboard commercial aircraft. Revision of federal regulations should be considered to accommodate oxygen-dependent passengers and permit them to have an uninterrupted source of oxygen from departure to destination.

  2. Effect of oxygen concentration on viability and metabolism in a fluidized-bed bioartificial liver using ³¹P and ¹³C NMR spectroscopy.

    PubMed

    Jeffries, Rex E; Gamcsik, Michael P; Keshari, Kayvan R; Pediaditakis, Peter; Tikunov, Andrey P; Young, Gregory B; Lee, Haakil; Watkins, Paul B; Macdonald, Jeffrey M

    2013-02-01

    Many oxygen mass-transfer modeling studies have been performed for various bioartificial liver (BAL) encapsulation types; yet, to our knowledge, there is no experimental study that directly and noninvasively measures viability and metabolism as a function of time and oxygen concentration. We report the effect of oxygen concentration on viability and metabolism in a fluidized-bed NMR-compatible BAL using in vivo ³¹P and ¹³C NMR spectroscopy, respectively, by monitoring nucleotide triphosphate (NTP) and ¹³C-labeled nutrient metabolites, respectively. Fluidized-bed bioreactors eliminate the potential channeling that occurs with packed-bed bioreactors and serve as an ideal experimental model for homogeneous oxygen distribution. Hepatocytes were electrostatically encapsulated in alginate (avg. diameter, 500 μm; 3.5×10⁷ cells/mL) and perfused at 3 mL/min in a 9-cm (inner diameter) cylindrical glass NMR tube. Four oxygen treatments were tested and validated by an in-line oxygen electrode: (1) 95:5 oxygen:carbon dioxide (carbogen), (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 nitrogen:oxygen:carbon dioxide, and (4) 45:50:5 nitrogen:oxygen:carbon dioxide. With 20% oxygen, β-NTP steadily decreased until it was no longer detected at 11 h. The 35%, 50%, and 95% oxygen treatments resulted in steady β-NTP levels throughout the 28-h experimental period. For the 50% and 95% oxygen treatment, a ¹³C NMR time course (∼5 h) revealed 2-¹³C-glycine and 2-¹³C-glucose to be incorporated into [2-¹³C-glycyl]glutathione (GSH) and 2-¹³C-lactate, respectively, with 95% having a lower rate of lactate formation. ³¹P and ¹³C NMR spectroscopy is a noninvasive method for determining viability and metabolic rates. Modifying tissue-engineered devices to be NMR compatible is a relatively easy and inexpensive process depending on the bioreactor shape.

  3. Electrical conductivity of cobalt doped La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ

    NASA Astrophysics Data System (ADS)

    Wang, Shizhong; Wu, Lingli; Liang, Ying

    La 0.8Sr 0.2Ga 0.8Mg 0.2O 3- δ (LSGM8282), La 0.8Sr 0.2Ga 0.8Mg 0.15Co 0.05O 3- δ (LSGMC5) and La 0.8Sr 0.2Ga 0.8Mg 0.115Co 0.085O 3- δ (LSGMC8.5) were prepared using a conventional solid-state reaction. Electrical conductivities and electronic conductivities of the samples were measured using four-probe impedance spectrometry, four-probe dc polarization and Hebb-Wagner polarization within the temperature range of 973-1173 K. The electrical conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high (>10 -5 atm) and low oxygen partial pressure regions (<10 -15 atm). However, the electrical conductivity in LSGM8282 had no dependency on the oxygen partial pressure. At temperatures higher than 1073 K, PO2 dependencies of the free electron conductivities in LSGM8282, LSGMC5 and LSGMC8.5 were about -1/4, and PO2 dependencies of the electron hole conductivities were about 0.25, 0.12 and 0.07, respectively. Oxygen ion conductivities in LSGMC5 and LSGMC8.5 increased with decreasing oxygen partial pressures especially in the high and low oxygen partial pressure regions, which was due to the increase in the concentration of oxygen vacancies. The change in the concentration of oxygen vacancies and the valence of cobalt with oxygen partial pressure were determined using a thermo-gravimetric technique. Both the electronic conductivity and oxygen ion conductivity in cobalt doped lanthanum gallate samples increased with increasing concentration of cobalt, suggesting that the concentration of cobalt should be optimized carefully to maintain a high electrical conductivity and close to 1 oxygen ion transference number.

  4. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes

    DOE PAGES

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole; ...

    2015-09-22

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  5. Adaptive Myogenesis under Hypoxia

    PubMed Central

    Yun, Zhong; Lin, Qun; Giaccia, Amato J.

    2005-01-01

    Previous studies have indicated that myoblasts can differentiate and repair muscle injury after an ischemic insult. However, it is unclear how hypoxia or glucose deprivation in the ischemic microenvironment affects myoblast differentiation. We have found that myogenesis can adapt to hypoxic conditions. This adaptive mechanism is accompanied by initial inhibition of the myoD, E2A, and myogenin genes followed by resumption of their expression in an oxygen-dependent manner. The regulation of myoD transcription by hypoxia is correlated with transient deacetylation of histones associated with the myoD promoter. It is noteworthy that, unlike the differentiation of other cell types such as preadipocytes or chondroblasts, the effect of hypoxia on myogenesis is independent of HIF-1, a ubiquitous regulator of transcription under hypoxia. While myogenesis can also adapt to glucose deprivation, the combination of severe hypoxia and glucose deprivation found in an ischemic environment results in pronounced loss of myoblasts. Our studies indicate that the ischemic muscle can be repaired via the adaptive differentiation of myogenic precursors, which depends on the levels of oxygen and glucose in the ischemic microenvironment. PMID:15798192

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McWilliams-Koeppen, Helen P.; Foster, James S.; Hackenbrack, Nicole

    Light chain (AL) amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(P)H-dependent oxidoreductase, without causing significant cell death. The presencemore » of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. Ultimately, these data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.« less

  7. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study.

    PubMed

    Brechmann, André; Baumgart, Frank; Scheich, Henning

    2002-01-01

    Recognition of sound patterns must be largely independent of level and of masking or jamming background sounds. Auditory patterns of relevance in numerous environmental sounds, species-specific vocalizations and speech are frequency modulations (FM). Level-dependent activation of the human auditory cortex (AC) in response to a large set of upward and downward FM tones was studied with low-noise (48 dB) functional magnetic resonance imaging at 3 Tesla. Separate analysis in four territories of AC was performed in each individual brain using a combination of anatomical landmarks and spatial activation criteria for their distinction. Activation of territory T1b (including primary AC) showed the most robust level dependence over the large range of 48-102 dB in terms of activated volume and blood oxygen level dependent contrast (BOLD) signal intensity. The left nonprimary territory T2 also showed a good correlation of level with activated volume but, in contrast to T1b, not with BOLD signal intensity. These findings are compatible with level coding mechanisms observed in animal AC. A systematic increase of activation with level was not observed for T1a (anterior of Heschl's gyrus) and T3 (on the planum temporale). Thus these areas might not be specifically involved in processing of the overall intensity of FM. The rostral territory T1a of the left hemisphere exhibited highest activation when the FM sound level fell 12 dB below scanner noise. This supports the previously suggested special involvement of this territory in foreground-background decomposition tasks. Overall, AC of the left hemisphere showed a stronger level-dependence of signal intensity and activated volume than the right hemisphere. But any side differences of signal intensity at given levels were lateralized to right AC. This might point to an involvement of the right hemisphere in more specific aspects of FM processing than level coding.

  8. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.

    PubMed

    Mailloux, Ryan J; McBride, Skye L; Harper, Mary-Ellen

    2013-12-01

    During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can 'spin off' during fuel oxidation and electron transport to univalently reduce O2, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione. Here, we review mitochondrial ROS homeostatic systems, including emerging knowledge about roles of glutathione in redox balance and the control of protein function by post-translational modification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dissolution of Oxygen Precipitate Nuclei in n-Type CZ-Si Wafers to Improve Their Material Quality: Experimental Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, Bhushan; Basnyat, Prakash; Devayajanam, Srinivas

    2017-01-01

    We present experimental results which show that oxygen-related precipitate nuclei (OPN) present in p-doped, n-type, Czochralski wafers can be dissolved using a flash-annealing process, yielding very high quality wafers for high-efficiency solar cells. Flash annealing consists of heating a wafer in an optical furnace to temperature between 1150 and 1250 degrees C for a short time. This process produces a large increase in the minority carrier lifetime (MCLT) and homogenizes each wafer. We have tested wafers from different axial locations of two ingots. All wafers reach nearly the same high value of MCLT. The OPN dissolution is confirmed by oxygenmore » analysis using Fourier transform infrared spectra and injection-level dependence of MCLT.« less

  10. Observation of an energy dependence of the radiation damage on standard and oxygenated silicon diodes by 16, 21, and 27 MeV protons

    NASA Astrophysics Data System (ADS)

    Wyss, J.; Bisello, D.; Candelori, A.; Kaminsky, A.; Pantano, D.

    2001-01-01

    First measurement of the energy dependence of the radiation damage induced by low-energy protons on standard and oxygen enriched diodes is presented. The current damage constant α is always insensitive to the oxygen content and increases for lower energy protons, whereas the acceptor creation rate β for both types of diodes slowly decreases for lower proton energies, this effect being amplified when the fluences are normalized to their 1 MeV neutron equivalent values. The dependence from the proton energy of the normalized β values is in open disagreement with the currently accepted NIEL hypothesis. Irradiations and measurements have been performed at the INFN Laboratorio Nazionale di Legnaro.

  11. Pre-clinical evaluation of OxyChip for long-term EPR oximetry.

    PubMed

    Hou, Huagang; Khan, Nadeem; Gohain, Sangeeta; Kuppusamy, M Lakshmi; Kuppusamy, Periannan

    2018-03-16

    Tissue oxygenation is a critical parameter in various pathophysiological situations including cardiovascular disease and cancer. Hypoxia can significantly influence the prognosis of solid malignancies and the efficacy of their treatment by radiation or chemotherapy. Electron paramagnetic resonance (EPR) oximetry is a reliable method for repeatedly assessing and monitoring oxygen levels in tissues. Lithium octa-n-butoxynaphthalocyanine (LiNc-BuO) has been developed as a probe for biological EPR oximetry, especially for clinical use. However, clinical applicability of LiNc-BuO crystals is hampered by potential limitations associated with biocompatibility, biodegradation, or migration of individual bare crystals in tissue. To overcome these limitations, we have embedded LiNc-BuO crystals in polydimethylsiloxane (PDMS), an oxygen-permeable biocompatible polymer and developed an implantable/retrievable form of chip, called OxyChip. The chip was optimized for maximum spin density (40% w/w of LiNc-BuO in PDMS) and fabricated in a form suitable for implantation using an 18-G syringe needle. In vitro evaluation of the OxyChip showed that it is robust and highly oxygen sensitive. The dependence of its EPR linewidth to oxygen was linear and highly reproducible. In vivo efficacy of the OxyChip was evaluated by implanting it in rat femoris muscle and following its response to tissue oxygenation for up to 12 months. The results revealed preservation of the integrity (size and shape) and calibration (oxygen sensitivity) of the OxyChip throughout the implantation period. Further, no inflammatory or adverse reaction around the implantation area was observed thereby establishing its biocompatibility and safety. Overall, the results demonstrated that the newly-fabricated high-sensitive OxyChip is capable of providing long-term measurements of oxygen concentration in a reliable and repeated manner under clinical conditions.

  12. Effect of different concentrations of oxygen on expression of sigma 1 receptor and superoxide dismutases in human colon adenocarcinoma cell lines.

    PubMed

    Skrzycki, Michał; Czeczot, Hanna; Mielczarek-Puta, Magdalena; Otto-Ślusarczyk, Dagmara; Graboń, Wojciech

    2017-06-01

    Tumor cells due to distance from capillary vessels exist in different oxygenation conditions (anoxia, hypoxia, normoxia). Changes in cell oxygenation lead to reactive oxygen species production and oxidative stress. Sigma 1 receptor (Sig1R) is postulated to be stress responding agent and superoxide dismutases (SOD1 and SOD2) are key antioxidant enzymes. It is possible that they participate in tumor cells adaptation to different concentrations of oxygen. Evaluation of Sig1R, SOD1, and SOD2 expression in different concentrations of oxygen (1%, 10%, 21%) in colon adenocarcinoma cell lines. SW480 (primary adenocarcinoma) and SW620 (metastatic) cell lines were cultured in standard conditions in Dulbecco's modified Eagle's medium for 5 days, and next cultured in Hypoxic Chamber in 1% O 2 , 10% O 2 , 21% O 2 . Number of living cells was determined by trypan blue assay. Level of mRNA for Sig1R, SOD1, and SOD2 was determined by standard PCR method. Statistical analysis was conducted using Statistica 10.1 software. We observed significant changes in expression of Sig1R, SOD1, SOD2 due to different oxygen concentrations. ANOVA analysis revealed significant interactions between studied parameters mainly in hypoxia conditions in SW480 cells and between Sig1R and SOD2 in SW620 cells. It also showed that changes in expression of studied proteins depend significantly on type of the cell line. Changes of Sig1R and SOD2 expression point to mitochondria as main organelle responsible for survival of tumor cells exposed to hypoxia or oxidative stress. Studied proteins are involved in intracellular response to stress related with different concentrations of oxygen.

  13. Quantification of Regional Myocardial Oxygenation by Magnetic Resonance Imaging: Validation with Positron Emission Tomography

    PubMed Central

    McCommis, Kyle S.; Goldstein, Thomas A.; Abendschein, Dana R.; Herrero, Pilar; Misselwitz, Bernd; Gropler, Robert J.; Zheng, Jie

    2011-01-01

    Background A comprehensive evaluation of myocardial ischemia requires measures of both oxygen supply and demand. Positron emission tomography (PET) is currently the gold standard for such evaluations, but its use is limited due to its ionizing radiation, limited availability, and high cost. A cardiac magnetic resonance imaging (MRI) method was developed for assessing myocardial oxygenation. The purpose of this study was to evaluate and validate this technique compared to PET during pharmacologic stress in a canine model of coronary artery stenosis. Methods and Results Twenty-one beagles and small mongrel dogs without coronary artery stenosis (controls), or with moderate to severe acute coronary artery stenosis underwent MRI and PET imaging at rest and during dipyridamole vasodilation or dobutamine stress to induce a wide range of changes in cardiac perfusion and oxygenation. MRI first-pass perfusion imaging was performed to quantify myocardial blood flow (MBF) and volume (MBV). The MRI blood-oxygen-level-dependent (BOLD) technique was used to determine the myocardial oxygen extraction fraction (OEF) during pharmacologic hyperemia. Myocardial oxygen consumption (MVO2) was determined by Fick’s law. In the same dogs, 15O-water and 11C-acetate were used to measure MBF and MVO2, respectively, by PET. Regional assessments were performed for both MR and PET. MRI data correlated nicely with PET values for MBF (R2 = 0.79, P < 0.001), MVO2 (R2 = 0.74, P < 0.001), and OEF (R2 = 0.66, P < 0.01). Conclusions Cardiac MRI methods may provide an alternative to radionuclide imaging in settings of myocardial ischemia. Our newly developed quantitative MRI oxygenation imaging technique may be a valuable non-invasive tool to directly evaluate myocardial energetics and efficiency. PMID:19933371

  14. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins.

    PubMed

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-12-22

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1-11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons.

  15. Measurement of OEF and absolute CMRO2: MRI-based methods using interleaved and combined hypercapnia and hyperoxia

    PubMed Central

    Wise, Richard G.; Harris, Ashley D.; Stone, Alan; Murphy, Kevin

    2014-01-01

    Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (FMRI) is most commonly used in a semi-quantitative manner to infer changes in brain activity. Despite the basis of the image contrast lying in the cerebral venous blood oxygenation level, quantification of absolute cerebral metabolic rate of oxygen consumption (CMRO2) has only recently been demonstrated. Here we examine two approaches to the calibration of FMRI signal to measure absolute CMRO2 using hypercapnic and hyperoxic respiratory challenges. The first approach is to apply hypercapnia and hyperoxia separately but interleaved in time and the second is a combined approach in which we apply hyperoxic challenges simultaneously with different levels of hypercapnia. Eleven healthy volunteers were studied at 3T using a dual gradient-echo spiral readout pulsed arterial spin labelling (ASL) imaging sequence. Respiratory challenges were conducted using an automated system of dynamic end-tidal forcing. A generalised BOLD signal model was applied, within a Bayesian estimation framework, that aims to explain the effects of modulation of CBF and arterial oxygen content to estimate venous deoxyhaemoglobin concentration ([dHb]0). Using CBF measurements combined with the estimated oxygen extraction fraction (OEF), absolute CMRO2 was calculated. The interleaved approach to hypercapnia and hyperoxia, as well as yielding estimates of CMRO2 and OEF demonstrated a significant increase in regional CBF, venous oxygen saturation (SvO2) (a decrease in OEF) and absolute CMRO2 in visual cortex in response to a continuous (20 minute) visual task, demonstrating the potential for the method in measuring long term changes in CMRO2. The combined approach to oxygen and carbon dioxide modulation, as well as taking less time to acquire data, yielded whole brain grey matter estimates of CMRO2 and OEF of 184±45 μmol/100g/min and 0.42±0.12 respectively, along with additional estimates of the vascular parameters α = 0.33±0.06, the exponent relating relative increases in CBF to CBV, and β = 1.35±0.13, the exponent relating deoxyhaemoglobin concentration to the relaxation rate R2*. Maps of cerebrovascular and cerebral metabolic parameters were also calculated. We show that combined modulation of oxygen and carbon dioxide can offer an experimentally more efficient approach to estimating OEF and absolute CMRO2 along with the additional vascular parameters that form an important part of the commonly used calibrated FMRI signal model. PMID:23769703

  16. The Calcium-Dependent Protein Kinase CPK28 Regulates Development by Inducing Growth Phase-Specific, Spatially Restricted Alterations in Jasmonic Acid Levels Independent of Defense Responses in Arabidopsis[OPEN

    PubMed Central

    Matschi, Susanne; Hake, Katharina; Herde, Marco; Hause, Bettina; Romeis, Tina

    2015-01-01

    Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses. PMID:25736059

  17. Photoexcited ZnO nanoparticles with controlled defects as a highly sensitive oxygen sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Taku; Ito, Tsuyohito, E-mail: tsuyohito@ppl.eng.osaka-u.ac.jp; Shimizu, Yoshiki

    Conductance of photoexcited ZnO nanoparticles with various defects has been investigated in oxygen. ZnO nanoparticles, which show strong photoluminescence peaks originating from interstitial zinc atom (Zn{sub i}) and singly charged oxygen vacancy (V{sub O}{sup +}), show oxygen-pressure-dependent conductance changes caused by photoexcitation. Herein, a model is proposed to simulate the conductance changes.

  18. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  19. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  20. Reduced CMRO₂ and cerebrovascular reserve in patients with severe intracranial arterial stenosis: a combined multiparametric qBOLD oxygenation and BOLD fMRI study.

    PubMed

    Bouvier, Julien; Detante, Olivier; Tahon, Florence; Attye, Arnaud; Perret, Thomas; Chechin, David; Barbieux, Marianne; Boubagra, Kamel; Garambois, Katia; Tropres, Irène; Grand, Sylvie; Barbier, Emmanuel L; Krainik, Alexandre

    2015-02-01

    Multiparametric quantitative blood oxygenation level dependent (mqBOLD) magnetic resonance Imaging (MRI) approach allows mapping tissular oxygen saturation (StO2 ) and cerebral metabolic rate of oxygen (CMRO2 ). To identify hemodynamic alteration related to severe intracranial arterial stenosis (SIAS), functional MRI of cerebrovascular reserve (CVR BOLD fMRI) to hypercapnia has been proposed. Diffusion imaging suggests chronic low grade ischemia in patients with impaired CVR. The aim of the present study was to evaluate how oxygen parameters (StO2 and CMRO2 ), assessed with mqBOLD approach, correlate with CVR in patients (n = 12) with SIAS and without arterial occlusion. The perfusion (dynamic susceptibility contrast), oxygenation, and CVR were compared. The MRI protocol conducted at 3T lasted approximately 1 h. Regions of interest measures on maps were delineated on segmented gray matter (GM) of middle cerebral artery territories. We have shown that decreased CVR is spatially associated with decreased CMRO2 in GM of patients with SIAS. Further, the degree of ipsilateral CVR reduction was well-correlated with the amplitude of the CMRO2 deficit. The altered CMRO2 suggests the presence of a moderate ischemia explained by both a decrease in perfusion and in CVR. CVR and mqBOLD method may be helpful in the selection of patients with SIAS to advocate for medical therapy or percutaneous transluminal angioplasty-stenting. © 2014 Wiley Periodicals, Inc.

Top