Sample records for oxygenation level-dependent functional

  1. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.

    PubMed

    Helbing, Cornelia; Brocka, Marta; Scherf, Thomas; Lippert, Michael T; Angenstein, Frank

    2016-12-01

    Several human functional magnetic resonance imaging studies point to an activation of the mesolimbic dopamine system during reward, addiction and learning. We previously found activation of the mesolimbic system in response to continuous but not to discontinuous perforant pathway stimulation in an experimental model that we now used to investigate the role of dopamine release for the formation of functional magnetic resonance imaging responses. The two stimulation protocols elicited blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Inhibition of dopamine D 1/5 receptors abolished the formation of functional magnetic resonance imaging responses in the medial prefrontal/anterior cingulate cortex during continuous but not during discontinuous pulse stimulations, i.e. only when the mesolimbic system was activated. Direct electrical or optogenetic stimulation of the ventral tegmental area caused strong dopamine release but only electrical stimulation triggered significant blood-oxygen level-dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. These functional magnetic resonance imaging responses were not affected by the D 1/5 receptor antagonist SCH23390 but reduced by the N-methyl-D-aspartate receptor antagonist MK801. Therefore, glutamatergic ventral tegmental area neurons are already sufficient to trigger blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex and nucleus accumbens. Although dopamine release alone does not affect blood-oxygen-level dependent responses it can act as a switch, permitting the formation of blood-oxygen-level dependent responses. © The Author(s) 2015.

  2. Blood oxygenation level dependent functional magnetic resonance imaging: current and potential uses in obstetrics and gynaecology

    PubMed Central

    Vincent, K; Moore, J; Kennedy, S; Tracey, I

    2008-01-01

    Blood-oxygenation-level-dependent functional magnetic resonance imaging is a noninvasive technique that has become increasingly popular in the neurosciences. It measures the proportion of oxygenated haemoglobin in specific areas of the brain, mirroring blood flow and therefore function. Here we review how the findings from functional studies impact on areas of gynaecological practice as diverse as chronic pain, continence, and premenstrual dysphoric disorder. Finally we review some of the more novel applications of the technique, such as imaging of pelvic floor function and the effects of hypoxia on the fetus. PMID:19076956

  3. Resting-state blood oxygen level-dependent functional magnetic resonance imaging for presurgical planning.

    PubMed

    Kamran, Mudassar; Hacker, Carl D; Allen, Monica G; Mitchell, Timothy J; Leuthardt, Eric C; Snyder, Abraham Z; Shimony, Joshua S

    2014-11-01

    Resting-state functional MR imaging (rsfMR imaging) measures spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal and can be used to elucidate the brain's functional organization. It is used to simultaneously assess multiple distributed resting-state networks. Unlike task-based functional MR imaging, rsfMR imaging does not require task performance. This article presents a brief introduction of rsfMR imaging processing methods followed by a detailed discussion on the use of rsfMR imaging in presurgical planning. Example cases are provided to highlight the strengths and limitations of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Enzymatic glucose sensor compensation for variations in ambient oxygen concentration

    NASA Astrophysics Data System (ADS)

    Collier, Bradley B.; McShane, Michael J.

    2013-02-01

    Due to the increasing prevalence of diabetes, research toward painless glucose sensing continues. Oxygen sensitive phosphors with glucose oxidase (GOx) can be used to determine glucose levels indirectly by monitoring oxygen consumption. This is an attractive combination because of its speed and specificity. Packaging these molecules together in "smart materials" for implantation will enable non-invasive glucose monitoring. As glucose levels increase, oxygen levels decrease; consequently, the luminescence intensity and lifetime of the phosphor increase. Although the response of the sensor is dependent on glucose concentration, the ambient oxygen concentration also plays a key role. This could lead to inaccurate glucose readings and increase the risk of hyper- or hypoglycemia. To mitigate this risk, the dependence of hydrogel glucose sensor response on oxygen levels was investigated and compensation methods explored. Sensors were calibrated at different oxygen concentrations using a single generic logistic equation, such that trends in oxygen-dependence were determined as varying parameters in the equation. Each parameter was found to be a function of oxygen concentration, such that the correct glucose calibration equation can be calculated if the oxygen level is known. Accuracy of compensation will be determined by developing an overall calibration, using both glucose and oxygen sensors in parallel, correcting for oxygen fluctuations in real time by intentionally varying oxygen, and calculating the error in actual and predicted glucose levels. While this method was developed for compensation of enzymatic glucose sensors, in principle it can also be implemented with other kinds of sensors utilizing oxidases.

  5. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury

    PubMed Central

    Bardin, Jonathan C.; Fins, Joseph J.; Katz, Douglas I.; Hersh, Jennifer; Heier, Linda A.; Tabelow, Karsten; Dyke, Jonathan P.; Ballon, Douglas J.; Schiff, Nicholas D.

    2011-01-01

    Functional neuroimaging methods hold promise for the identification of cognitive function and communication capacity in some severely brain-injured patients who may not retain sufficient motor function to demonstrate their abilities. We studied seven severely brain-injured patients and a control group of 14 subjects using a novel hierarchical functional magnetic resonance imaging assessment utilizing mental imagery responses. Whereas the control group showed consistent and accurate (for communication) blood-oxygen-level-dependent responses without exception, the brain-injured subjects showed a wide variation in the correlation of blood-oxygen-level-dependent responses and overt behavioural responses. Specifically, the brain-injured subjects dissociated bedside and functional magnetic resonance imaging-based command following and communication capabilities. These observations reveal significant challenges in developing validated functional magnetic resonance imaging-based methods for clinical use and raise interesting questions about underlying brain function assayed using these methods in brain-injured subjects. PMID:21354974

  6. A Low-Oxygenated Subpopulation of Pancreatic Islets Constitutes a Functional Reserve of Endocrine Cells

    PubMed Central

    Olsson, Richard; Carlsson, Per-Ola

    2011-01-01

    OBJECTIVE The blood perfusion of pancreatic islets is highly variable and tightly regulated by the blood glucose concentration. Thus, oxygen levels are considered crucial for islet metabolism and function. Although islet oxygenation has been extensively studied in vitro, little is known about it in vivo. The current study aimed to investigate the oxygenation of the endocrine pancreas in vivo. RESEARCH DESIGN AND METHODS The reductive metabolism of 2-nitroimidazoles, such as pimonidazole, has previously been extensively used in studies of oxygen metabolism both in vitro and in vivo. At tissue oxygen levels <10 mmHg, pimonidazole accumulates intracellularly and may thereafter be detected by means of immunohistochemistry. Islet oxygenation was investigated in normal, 60% partially pancreatectomized, as well as whole-pancreas–transplanted rats. Moreover, leucine-dependent protein biosynthesis was performed using autoradiography to correlate islet oxygenation with metabolic activity. RESULTS In vivo, 20–25% of all islets in normal rats showed low oxygenation (pO2 <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low-oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Moreover, oxygenation was related to metabolism, since well-oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. CONCLUSIONS The current study suggests a novel subpopulation of dormant low-oxygenated islets, which seems to constitute a functional reserve of endocrine cells. This study establishes a novel perspective on the use of the endocrine pancreas in glucose homeostasis. PMID:21788581

  7. [Erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection].

    PubMed

    Zinchuk, V V; Shul'ga, E V; Guliaĭ, I E

    2010-01-01

    We aimed to study the erythropoietin influence on oxygen transport function of blood and prooxidant/antioxidant balance in rabbits under lipopolysaccharide injection. Recombinant human erythropoietin-alpha was administered intraperitoneally in the dose 1000 U/kg 30 minutes before intravenous injection of 500 mkg/kg lipopolysaccharide from E. coli. After 12 hours, blood samples were collected for the assessment of oxygen transport function of blood; nitrate/nitrite levels and tissue samples were collected for measurement of conjugated dienes, malondialdehyde, alpha-tocopherol and catalase. Erythropoietin improves parameters of oxygen transport function of blood, increases hemoglobin-oxygen affinity through the NO-dependent mechanism, reduces activity of free radical processes, and increases antioxidant protection under lipopolysaccharide injection.

  8. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.

    PubMed

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht

    2016-11-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.

  9. The effects of exercise under hypoxia on cognitive function.

    PubMed

    Ando, Soichi; Hatamoto, Yoichi; Sudo, Mizuki; Kiyonaga, Akira; Tanaka, Hiroaki; Higaki, Yasuki

    2013-01-01

    Increasing evidence suggests that cognitive function improves during a single bout of moderate exercise. In contrast, exercise under hypoxia may compromise the availability of oxygen. Given that brain function and tissue integrity are dependent on a continuous and sufficient oxygen supply, exercise under hypoxia may impair cognitive function. However, it remains unclear how exercise under hypoxia affects cognitive function. The purpose of this study was to examine the effects of exercise under different levels of hypoxia on cognitive function. Twelve participants performed a cognitive task at rest and during exercise at various fractions of inspired oxygen (FIO2: 0.209, 0.18, and 0.15). Exercise intensity corresponded to 60% of peak oxygen uptake under normoxia. The participants performed a Go/No-Go task requiring executive control. Cognitive function was evaluated using the speed of response (reaction time) and response accuracy. We monitored pulse oximetric saturation (SpO2) and cerebral oxygenation to assess oxygen availability. SpO2 and cerebral oxygenation progressively decreased during exercise as the FIO2 level decreased. Nevertheless, the reaction time in the Go-trial significantly decreased during moderate exercise. Hypoxia did not affect reaction time. Neither exercise nor difference in FIO2 level affected response accuracy. An additional experiment indicated that cognitive function was not altered without exercise. These results suggest that the improvement in cognitive function is attributable to exercise, and that hypoxia has no effects on cognitive function at least under the present experimental condition. Exercise-cognition interaction should be further investigated under various environmental and exercise conditions.

  10. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task

    NASA Astrophysics Data System (ADS)

    Qin, Yulin; Sohn, Myeong-Ho; Anderson, John R.; Stenger, V. Andrew; Fissell, Kate; Goode, Adam; Carter, Cameron S.

    2003-04-01

    Based on adaptive control of thought-rational (ACT-R), a cognitive architecture for cognitive modeling, researchers have developed an information-processing model to predict the blood oxygenation level-dependent (BOLD) response of functional MRI in symbol manipulation tasks. As an extension of this research, the current event-related functional MRI study investigates the effect of relatively extensive practice on the activation patterns of related brain regions. The task involved performing transformations on equations in an artificial algebra system. This paper shows that the base-level activation learning in the ACT-R theory can predict the change of the BOLD response in practice in a left prefrontal region reflecting retrieval of information. In contrast, practice has relatively little effect on the form of BOLD response in the parietal region reflecting imagined transformations to the equation or the motor region reflecting manual programming.

  11. Effects of the oxygenation level on formation of different reactive oxygen species during photodynamic therapy.

    PubMed

    Price, Michael; Heilbrun, Lance; Kessel, David

    2013-01-01

    We examined the effect of the oxygenation level on efficacy of two photosensitizing agents, both of which target lysosomes for photodamage, but via different photochemical pathways. Upon irradiation, the chlorin termed NPe6 forms singlet oxygen in high yield while the bacteriopheophorbide WST11 forms only oxygen radicals (in an aqueous environment). Photokilling efficacy by WST11 in cell culture was impaired when the atmospheric oxygen concentration was reduced from 20% to 1%, while photokilling by NPe6 was unaffected. Studies in a cell-free system revealed that the rates of photobleaching of these agents, as a function of the oxygenation level, were correlated with results described above. Moreover, the rate of formation of oxygen radicals by either agent was more sensitive to the level of oxygenation than was singlet oxygen formation by NPe6. These data indicate that the photochemical process that leads to oxygen radical formation is more dependent on the oxygenation level than is the pathway leading to formation of singlet oxygen. © 2013 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2013 The American Society of Photobiology.

  12. Stoichiometric and Oxygen-Deficient VO2 as Versatile Hole Injection Electrode for Organic Semiconductors.

    PubMed

    Fu, Keke; Wang, Rongbin; Katase, Takayoshi; Ohta, Hiromichi; Koch, Norbert; Duhm, Steffen

    2018-03-28

    Using photoemission spectroscopy, we show that the surface electronic structure of VO 2 is determined by the temperature-dependent metal-insulator phase transition and the density of oxygen vacancies, which depends on the temperature and ultrahigh vacuum (UHV) conditions. The atomically clean and stoichiometric VO 2 surface is insulating at room temperature and features an ultrahigh work function of up to 6.7 eV. Heating in UHV just above the phase transition temperature induces the expected metallic phase, which goes in hand with the formation of oxygen defects (up to 6% in this study), but a high work function >6 eV is maintained. To demonstrate the suitability of VO 2 as hole injection contact for organic semiconductors, we investigated the energy-level alignment with the prototypical organic hole transport material N, N'-di(1-naphthyl)- N, N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (NPB). Evidence for strong Fermi-level pinning and the associated energy-level bending in NPB is found, rendering an Ohmic contact for holes.

  13. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function.

    PubMed

    Safaeian, Navid; David, Tim

    2013-10-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging.

  14. A computational model of oxygen transport in the cerebrocapillary levels for normal and pathologic brain function

    PubMed Central

    Safaeian, Navid; David, Tim

    2013-01-01

    The oxygen exchange and correlation between the cerebral blood flow (CBF) and cerebral metabolic rate of oxygen consumption (CMRO2) in the cortical capillary levels for normal and pathologic brain functions remain the subject of debate. A 3D realistic mesoscale model of the cortical capillary network (non-tree like) is constructed using a random Voronoi tessellation in which each edge represents a capillary segment. The hemodynamics and oxygen transport are numerically simulated in the model, which involves rheological laws in the capillaries, oxygen diffusion, and non-linear binding of oxygen to hemoglobin, respectively. The findings show that the cerebral hypoxia due to a significant decreased perfusion (as can occur in stroke) can be avoided by a moderate reduction in oxygen demand. Oxygen extraction fraction (OEF) can be an important indicator for the brain oxygen metabolism under normal perfusion and misery-perfusion syndrome (leading to ischemia). The results demonstrated that a disproportionately large increase in blood supply is required for a small increase in the oxygen demand, which, in turn, is strongly dependent on the resting OEF. The predicted flow-metabolism coupling in the model supports the experimental studies of spatiotemporal stimulations in humans by positron emission tomography and functional magnetic resonance imaging. PMID:23921901

  15. Measuring vascular reactivity with resting-state blood oxygenation level-dependent (BOLD) signal fluctuations: A potential alternative to the breath-holding challenge?

    PubMed

    Jahanian, Hesamoddin; Christen, Thomas; Moseley, Michael E; Pajewski, Nicholas M; Wright, Clinton B; Tamura, Manjula K; Zaharchuk, Greg

    2017-07-01

    Measurement of the ability of blood vessels to dilate and constrict, known as vascular reactivity, is often performed with breath-holding tasks that transiently raise arterial blood carbon dioxide (P a CO 2 ) levels. However, following the proper commands for a breath-holding experiment may be difficult or impossible for many patients. In this study, we evaluated two approaches for obtaining vascular reactivity information using blood oxygenation level-dependent signal fluctuations obtained from resting-state functional magnetic resonance imaging data: physiological fluctuation regression and coefficient of variation of the resting-state functional magnetic resonance imaging signal. We studied a cohort of 28 older adults (69 ± 7 years) and found that six of them (21%) could not perform the breath-holding protocol, based on an objective comparison with an idealized respiratory waveform. In the subjects that could comply, we found a strong linear correlation between data extracted from spontaneous resting-state functional magnetic resonance imaging signal fluctuations and the blood oxygenation level-dependent percentage signal change during breath-holding challenge ( R 2  = 0.57 and 0.61 for resting-state physiological fluctuation regression and resting-state coefficient of variation methods, respectively). This technique may eliminate the need for subject cooperation, thus allowing the evaluation of vascular reactivity in a wider range of clinical and research conditions in which it may otherwise be impractical.

  16. My starting point: the discovery of an NMR method for measuring blood oxygenation using the transverse relaxation time of blood water.

    PubMed

    Thulborn, Keith R

    2012-08-15

    This invited personal story, covering the period from 1979 to 2010, describes the discovery of the dependence of the transverse relaxation time of water in blood on the oxygenation state of hemoglobin in the erythrocytes. The underlying mechanism of the compartmentation of the different magnetic susceptibilities of hemoglobin in its different oxygenation states also explains the mechanism that underlies blood oxygenation level dependent contrast used in fMRI. The story begins with the initial observation of line broadening during ischemia in small rodents detected by in vivo 31P NMR spectroscopy at high field. This spectroscopic line broadening or T2* relaxation effect was demonstrated to be related to the oxygenation state of blood. The effect was quantified more accurately using T2 values measured by the Carr-Purcell-Meiboom-Gill method. The effect was dependent on the integrity of the erythrocytes to compartmentalize the different magnetic susceptibilities produced by the changing spin state of the ferrous iron of hemoglobin in its different oxygenation states between the erythrocytes and the suspending solution. The hematocrit and magnetic field dependence, the requirement for erythrocyte integrity and lack of T1 dependence confirmed that the magnetic susceptibility effect explained the oxygenation state dependence of T2* and T2. This T2/T2* effect was combined with T1 based measurements of blood flow to measure oxygen consumption in animals. This blood oxygenation assay and its underlying magnetic susceptibility gradient mechanism was published in the biochemistry literature in 1982 and largely forgotten. The observation was revived to explain evolving imaging features of cerebral hematoma as MR imaging of humans increased in field strength to 1.5 T by the mid 1980s. Although the imaging version of this assay was used to measure a global metabolic rate of cerebral oxygen consumption in humans at 1.5-T by 1991, the global measurement had little clinical value. By contrast, a decade after the spectroscopic observation, imaging experiments performed on rodents at 7 T by Ogawa and colleagues identified the extravascular T2* imaging characteristics of the blood oxygenation effect and, most importantly, associated that change with brain functional states. Ogawa appropriately branded this blood oxygenation level dependent mechanism as BOLD contrast. This mechanism was subsequently shown to be the basis of localized MR signal changes associated with local brain function. This connection led to the fMRI revolution in human brain mapping. Copyright © 2012. Published by Elsevier Inc.

  17. Lung vital capacity and oxygen saturation in adults with cerebral palsy

    PubMed Central

    Lampe, Renée; Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana

    2014-01-01

    Background Individuals with infantile cerebral palsy have multiple disabilities. The most conspicuous syndrome being investigated from many aspects is motor movement disorder with a spastic gait pattern. The lung function of adults with spasticity attracts less attention in the literature. This is surprising because decreased thoracic mobility and longstanding scoliosis should have an impact on lung function. With increasing age and the level of disability, individuals become susceptible to lung infections and reflux illness, and these are accompanied by increased aspiration risk. This study examined, with different methods, to what extent adults with congenital cerebral palsy and acquired spastic paresis – following traumatic brain injury – showed restriction of lung function. It also assessed the contribution of disability level on this restriction. Methods The oxygen saturation of 46 adults with a diagnosis of cerebral palsy was measured with an oximeter. Lung vital capacity was measured with a mobile spirometer and excursion of the thorax was clinically registered. The gross motor function levels and the presence or absence of scoliosis were determined. Results A significantly positive correlation between lung vital capacity and chest expansion was established. Both the lung vital capacity and the thorax excursion decreased with increases in gross motor function level. Oxygen saturation remained within the normal range in all persons, in spite of reduced values of the measured lung parameters. No statistically significant dependency between lung vital capacity and oxygen saturation, and between chest expansion and oxygen saturation was found. The scoliotic deformities of the spine were associated with an additional decrease in the vital capacity, but this did not affect blood oxygen supply. Conclusion Despite the decreased chest expansion and the significantly reduced lung volume in adults with cerebral palsy, sufficient oxygen supply was registered. PMID:25525345

  18. Genetic Diversity of Coastal Bottlenose Dolphins Revealed by Structurally and Functionally Diverse Hemoglobins

    PubMed Central

    Remington, Nicole; Stevens, Robert D.; Wells, Randall S.; Hohn, Aleta; Dhungana, Suraj; Taboy, Celine H.; Crumbliss, Alvin L.; Henkens, Robert; Bonaventura, Celia

    2007-01-01

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhance oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their α and β globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community. PMID:17604574

  19. Genetic diversity of coastal bottlenose dolphins revealed by structurally and functionally diverse hemoglobins.

    PubMed

    Remington, Nicole; Stevens, Robert D; Wells, Randall S; Holn, Aleta; Dhungana, Suraj; Taboy, Celine H; Crumbliss, Alvin L; Henkens, Robert; Bonaventura, Celia

    2007-08-15

    Studies of structure-function relationships in the respiratory proteins of marine mammals revealed unexpected variations in the number and types of hemoglobins (Hbs) present in coastal bottlenose dolphins, Tursiops truncatus. We obtained blood samples from free-ranging coastal bottlenose dolphins as a component of capture-release studies. We found that the oxygen-binding functions of bottlenose dolphin blood are poised between effector-saturated and unsaturated levels, enabling exercise-dependent shifts in oxygen transfer functions. Isolated bottlenose dolphin Hbs showed elevated pH sensitivities (Bohr effects) and appreciably lower oxygen affinities than adult human Hb in the absence of allosteric effectors. These properties may be an adaptive modification that enhances oxygen delivery during diving episodes when oxygen tensions and effector levels are low. The Hbs of individual dolphins showed similar oxygen affinities, responses to effectors, and expression of heme-heme interaction in oxygen binding, but differed in their redox potentials and rates of autoxidation. The heterogeneity suggested by these functional variations in Hbs of individual dolphins was born out by variations in the molecular weights and numbers of their alpha and beta globin chains. Although coastal bottlenose dolphins were expected to have a single type of Hb, the mass differences observed revealed considerable genetic diversity. There were multiple Hb forms in some individuals and differences in Hb patterns among individuals within the same community.

  20. Megalophallus as a sequela of priapism in sickle cell anemia: use of blood oxygen level-dependent magnetic resonance imaging.

    PubMed

    Kassim, A A; Umans, H; Nagel, R L; Fabry, M E

    2000-09-01

    Priapism is a common complication of sickle cell anemia. We report a little known sequela of priapism: painless megalophallus, with significant penile enlargement. The patient had had an intense episode of priapism 9 years previously and his penis remained enlarged. Blood oxygen level-dependent magnetic resonance imaging revealed enlarged, hypoxic corpora cavernosa. Megalophallus probably resulted from permanent loss of elasticity of the tunica albuginea due to severe engorgement during the episode of priapism. This sequela needs to be recognized by physicians because no intervention is necessary and sexual function seems to remain intact.

  1. Anatomic Location of Tumor Predicts the Accuracy of Motor Function Localization in Diffuse Lower-Grade Gliomas Involving the Hand Knob Area.

    PubMed

    Fang, S; Liang, J; Qian, T; Wang, Y; Liu, X; Fan, X; Li, S; Wang, Y; Jiang, T

    2017-10-01

    The accuracy of preoperative blood oxygen level-dependent fMRI remains controversial. This study assessed the association between the anatomic location of a tumor and the accuracy of fMRI-based motor function mapping in diffuse lower-grade gliomas. Thirty-five patients with lower-grade gliomas involving motor areas underwent preoperative blood oxygen level-dependent fMRI scans with grasping tasks and received intraoperative direct cortical stimulation. Patients were classified into an overlapping group and a nonoverlapping group, depending on the extent to which blood oxygen level-dependent fMRI and direct cortical stimulation results concurred. Tumor location was quantitatively measured, including the shortest distance from the tumor to the hand knob and the deviation distance of the midpoint of the hand knob in the lesion hemisphere relative to the midline compared with the normal contralateral hemisphere. A 4-mm shortest distance from the tumor to the hand knob value was identified as optimal for differentiating the overlapping and nonoverlapping group with the receiver operating characteristic curve (sensitivity, 84.6%; specificity, 77.8%). The shortest distances from the tumor to the hand knob of ≤4 mm were associated with inaccurate fMRI-based localizations of the hand motor cortex. The shortest distances from the tumor to the hand knob were larger ( P = .002), and the deviation distances for the midpoint of the hand knob in the lesion hemisphere were smaller ( P = .003) in the overlapping group than in the nonoverlapping group. This study suggests that the shortest distance from the tumor to the hand knob and the deviation distance for the midpoint of the hand knob on the lesion hemisphere are predictive of the accuracy of blood oxygen level-dependent fMRI results. Smaller shortest distances from the tumor to the hand knob and larger deviation distances for the midpoint of hand knob on the lesion hemisphere are associated with less accuracy of motor cortex localization with blood oxygen level-dependent fMRI. Preoperative fMRI data for surgical planning should be used cautiously when the shortest distance from the tumor to the hand knob is ≤4 mm, especially for lower-grade gliomas anterior to the central sulcus. © 2017 by American Journal of Neuroradiology.

  2. From blood oxygenation level dependent (BOLD) signals to brain temperature maps.

    PubMed

    Sotero, Roberto C; Iturria-Medina, Yasser

    2011-11-01

    A theoretical framework is presented for converting Blood Oxygenation Level Dependent (BOLD) images to brain temperature maps, based on the idea that disproportional local changes in cerebral blood flow (CBF) as compared with cerebral metabolic rate of oxygen consumption (CMRO₂) during functional brain activity, lead to both brain temperature changes and the BOLD effect. Using an oxygen limitation model and a BOLD signal model, we obtain a transcendental equation relating CBF and CMRO₂ changes with the corresponding BOLD signal, which is solved in terms of the Lambert W function. Inserting this result in the dynamic bioheat equation describing the rate of temperature changes in the brain, we obtain a nonautonomous ordinary differential equation that depends on the BOLD response, which is solved numerically for each brain voxel. Temperature maps obtained from a real BOLD dataset registered in an attention to visual motion experiment were calculated, obtaining temperature variations in the range: (-0.15, 0.1) which is consistent with experimental results. The statistical analysis revealed that significant temperature activations have a similar distribution pattern than BOLD activations. An interesting difference was the activation of the precuneus in temperature maps, a region involved in visuospatial processing, an effect that was not observed on BOLD maps. Furthermore, temperature maps were more localized to gray matter regions than the original BOLD maps, showing less activated voxels in white matter and cerebrospinal fluid.

  3. Lateralized Spatial and Object Memory Encoding in Entorhinal and Perirhinal Cortices

    ERIC Educational Resources Information Center

    Bellgowan, Patrick S. F.; Buffalo, Elizabeth A.; Bodurka, Jerzy; Martin, Alex

    2009-01-01

    The perirhinal and entorhinal cortices are critical components of the medial temporal lobe (MTL) declarative memory system. Study of their specific functions using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI), however, has suffered from severe magnetic susceptibility signal dropout resulting in poor…

  4. Tuning of electronic properties and dynamical stability of graphene oxide with different functional groups

    NASA Astrophysics Data System (ADS)

    Dabhi, Shweta D.; Jha, Prafulla K.

    2017-09-01

    The structural, electronic and vibrational properties of graphene oxide (GO) with varying proportion of epoxy and hydroxyl functional groups have been studied using density functional theory. The functional groups and oxygen density have an obvious influence on the electronic and vibrational properties. The dependence of band gap on associated functional groups and oxygen density shows a possibility of tuning the band gap of graphene by varying the functional groups as well as oxidation level. The absorption of high oxygen content in graphene leads to the gap opening and resulting in a transition from semimetal to semiconductor. Phonon dispersion curves show no imaginary frequency or no softening of any phonon mode throughout the Brillouin zone which confirms the dynamical stability of all considered GO models. Different groups and different oxygen density result into the varying characteristics of phonon modes. The computed results show good agreement with the experimental observations. Our results present interesting possibilities for engineering the electronic properties of graphene and GO and impact the fabrication of new electronics.

  5. Characterization of paramagnetic effects of molecular oxygen on blood oxygenation level-dependent-modulated hyperoxic contrast studies of the human brain.

    PubMed

    Pilkinton, David T; Gaddam, Santosh R; Reddy, Ravinder

    2011-09-01

    In hyperoxic contrast studies modulated by the blood oxygenation level-dependent effect, it is often assumed that hyperoxia is a purely intravascular, positive contrast agent in T 2*-weighted images, and the effects that are not due to blood oxygenation level-dependent contrast are small enough to be ignored. In this study, this assumption is re-evaluated and non-blood oxygenation level-dependent effects in T 2*-weighted hyperoxic contrast studies of the human brain were characterized. We observed significant negative signal changes in T 2*-weighted images in the frontal lobes; B(0) maps suggest that this effect was primarily due to increased intravoxel dephasing from increased static field inhomogeneity due to susceptibility changes from oxygen in and around the upper airway. These static field effects were shown to scale with magnetic field strength. Signal changes observed around the brain periphery and in the ventricles suggest the effect of image distortions from oxygen-induced bulk B(0) shifts, along with a possible contribution from decreased T 2* due to oxygen dissolved in the cerebrospinal fluid. Reducing the concentration of inhaled oxygen was shown to mitigate negative contrast of molecular oxygen due to these effects, while still maintaining sufficient blood oxygenation level-dependent contrast to produce accurate measurements of cerebral blood volume. Copyright © 2011 Wiley-Liss, Inc.

  6. Theoretical model for optical oximetry at the capillary level: exploring hemoglobin oxygen saturation through backscattering of single red blood cells

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of red blood cells (RBCs) in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e., measuring hemoglobin sO2) is feasible from dispersed RBCs at the single capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. We present a numerical study of backscattering spectra from single RBCs based on the first-order Born approximation, considering practical factors: RBC orientations, size variation, and deformations. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different mean cellular hemoglobin content and different deformations of RBCs. This study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single capillary level using backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single capillary level.

  7. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits.

    PubMed

    Yu, Dao-Yi; Cringle, Stephen J; Su, Erning; Yu, Paula K; Humayun, Mark S; Dorin, Giorgio

    2005-03-01

    To make the first measurements of intraretinal oxygen distribution and consumption after laser photocoagulation of the retina and to compare the efficiency of micropulsed (MP) and continuous wave (CW) laser delivery in achieving an oxygen benefit in the treated area. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth before and after laser treatment in anesthetized, mechanically ventilated, Dutch Belted rabbits (n = 11). Laser lesions were created by using a range of power levels from an 810-nm diode laser coupled with an operating microscope delivery system. MP duty cycles of 5%, 10%, and 15% were compared with CW delivery in each eye. Sufficient power levels of both the CW and MP laser reduced outer retinal oxygen consumption and increased oxygen level within the retina. At these power levels, which correlated with funduscopically visible lesions, there was histologically visible damage to the RPE and photoreceptors. Retinal damage was energy dependent but short-duty-cycle MP delivery was more selective in terms of retinal cell damage, with a wider safety range in comparison with CW delivery. The relationship between laser power level and mode of delivery and the resultant changes in oxygen metabolism and oxygen level in the retina was determined. Only partial destruction of RPE and photoreceptors is necessary, to produce a measurable oxygen benefit in the treated area of retina.

  8. An Introduction to Normalization and Calibration Methods in Functional MRI

    ERIC Educational Resources Information Center

    Liu, Thomas T.; Glover, Gary H.; Mueller, Bryon A.; Greve, Douglas N.; Brown, Gregory G.

    2013-01-01

    In functional magnetic resonance imaging (fMRI), the blood oxygenation level dependent (BOLD) signal is often interpreted as a measure of neural activity. However, because the BOLD signal reflects the complex interplay of neural, vascular, and metabolic processes, such an interpretation is not always valid. There is growing evidence that changes…

  9. Influence of sucrose ingestion on brainstem and hypothalamic intrinsic oscillations in lean and obese women.

    PubMed

    Kilpatrick, Lisa A; Coveleskie, Kristen; Connolly, Lynn; Labus, Jennifer S; Ebrat, Bahar; Stains, Jean; Jiang, Zhiguo; Suyenobu, Brandall Y; Raybould, Helen E; Tillisch, Kirsten; Mayer, Emeran A

    2014-05-01

    The study of intrinsic fluctuations in the blood oxygen level-dependent signal of functional magnetic resonance imaging can provide insight into the effect of physiologic states on brain processes. In an effort to better understand the brain-gut communication induced by the absorption and metabolism of nutrients in healthy lean and obese individuals, we investigated whether ingestion of nutritive and non-nutritive sweetened beverages differentially engages the hypothalamus and brainstem vagal pathways in lean and obese women. In a 2-day, double-blind crossover study, 11 lean and 11 obese healthy women underwent functional magnetic resonance imaging scans after ingestion of 2 beverages of different sucrose content, but identical sweetness. During scans, subjects rested with eyes closed. Blood oxygen level-dependent fluctuations demonstrated significantly greater power in the highest frequency band (slow-3: 0.073-0.198 Hz) after ingestion of high-sucrose compared with low-sucrose beverages in the nucleus tractus solitarius for both groups. Obese women had greater connectivity between the right lateral hypothalamus and a reward-related brain region and weaker connectivity with homeostasis and gustatory-related brain regions than lean women. In a functional magnetic resonance imaging study, we observed sucrose-related changes in oscillatory dynamics of blood oxygen level-dependent fluctuations in brainstem and hypothalamus in lean and obese women. The observed frequency changes are consistent with a rapid vagally mediated mechanism due to nutrient absorption, rather than sweet taste receptor activation. These findings provide support for altered interaction between homeostatic and reward networks in obese individuals. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  10. Intra-renal delivery of mesenchymal stem cells attenuates myocardial injury after reversal of hypertension in porcine renovascular disease.

    PubMed

    Eirin, Alfonso; Zhu, Xiang-Yang; Ferguson, Christopher M; Riester, Scott M; van Wijnen, Andre J; Lerman, Amir; Lerman, Lilach O

    2015-01-19

    Percutaneous transluminal renal angioplasty (PTRA) fails to fully improve cardiac injury and dysfunction in patients with renovascular hypertension (RVH). Mesenchymal stem cells (MSCs) restore renal function, but their potential for attenuating cardiac injury after reversal of RVH has not been explored. We hypothesized that replenishment of MSCs during PTRA would improve cardiac function and oxygenation, and decrease myocardial injury in porcine RVH. Pigs were studied after 16 weeks of RVH, RVH treated 4 weeks earlier with PTRA with or without adjunct intra-renal delivery of MSC (10^6 cells), and controls. Cardiac structure, function (fast-computed tomography (CT)), and myocardial oxygenation (Blood-Oxygen-Level-Dependent- magnetic resonance imaging) were assessed in-vivo. Myocardial microvascular density (micro-CT) and myocardial injury were evaluated ex-vivo. Kidney venous and systemic blood levels of inflammatory markers were measured and their renal release calculated. PTRA normalized blood pressure, yet stenotic-kidney glomerular filtration rate, similarly blunted in RVH and RVH + PTRA, normalized only in PTRA + MSC-treated pigs. PTRA attenuated left ventricular remodeling, whereas myocardial oxygenation, subendocardial microvascular density, and diastolic function remained decreased in RVH + PTRA, but normalized in RVH + PTRA-MSC. Circulating isoprostane levels and renal release of inflammatory cytokines increased in RVH and RVH + PTRA, but normalized in RVH + PTRA-MSC, as did myocardial oxidative stress, inflammation, collagen deposition, and fibrosis. Intra-renal MSC delivery during PTRA preserved stenotic-kidney function, reduced systemic oxidative stress and inflammation, and thereby improved cardiac function, oxygenation, and myocardial injury four weeks after revascularization, suggesting a therapeutic potential for adjunctive MSC delivery to preserve cardiac function and structure after reversal of experimental RVH.

  11. Oxygen dependence of endothelium-dependent vasodilation: importance in chronic obstructive pulmonary disease.

    PubMed

    Keymel, Stefanie; Schueller, Benedikt; Sansone, Roberto; Wagstaff, Rabea; Steiner, Stephan; Kelm, Malte; Heiss, Christian

    2018-03-01

    Epidemiological studies have shown increased morbidity and mortality in patients with coronary artery disease (CAD) and chronic obstructive pulmonary disease (COPD). We aimed to characterize the oxygen dependence of endothelial function in patients with CAD and coexisting COPD. In CAD patients with and without COPD ( n = 33), we non-invasively measured flow-mediated dilation (FMD) and intima-media thickness (IMT) of the brachial artery (BA), forearm blood flow (FBF), and perfusion of the cutaneous microcirculation with laser Doppler perfusion imaging (LDPI). In an experimental setup, vascular function was assessed in healthy volunteers ( n = 5) breathing 12% oxygen or 100% oxygen in comparison to room air. COPD was associated with impaired FMD (3.4 ±0.5 vs. 4.2 ±0.6%; p < 0.001) and increased IMT (0.49 ±0.04 vs. 0.44 ±0.04 mm; p <0.01), indicating functional and structural alterations of the BA in COPD. Forearm blood flow and LDPI were comparable between the groups. Flow-mediated dilation correlated with capillary oxygen pressure (pO 2 , r = 0.608). Subgroup analysis in COPD patients with pO 2 > 65 mm Hg and pO 2 ≤ 65 mm Hg revealed even lower FMD in patients with lower pO 2 (3.0 ±0.5 vs. 3.7 ±0.4%; p < 0.01). Multivariate analysis showed that pO 2 was a predictor of FMD independent of the forced expiratory volume and pack years. Exposure to hypoxic air led to an acute decrease in FMD, whereby exposure to 100% oxygen did not change vascular function. Our data suggest that in CAD patients with COPD, decreased systemic oxygen levels lead to endothelial dysfunction, underlining the relevance of cardiopulmonary interaction and the potential importance of pulmonary treatment in secondary prevention of vascular disease.

  12. Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria

    DOE PAGES

    Yuan, Fenglin; Liu, Bin; Zhang, Yanwen; ...

    2016-03-01

    In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energymore » for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.« less

  13. Brief Report: Anomalous Neural Deactivations and Functional Connectivity during Receptive Language in Autism Spectrum Disorder--A Functional MRI Study

    ERIC Educational Resources Information Center

    Karten, Ariel; Hirsch, Joy

    2015-01-01

    Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study,…

  14. Brain Functional Connectivity in MS: An EEG-NIRS Study

    DTIC Science & Technology

    2015-10-01

    electrical (EEG) and blood volume and blood oxygen-based (NIRS and fMRI ) signals, and to use the results to help optimize blood oxygen level...dependent (BOLD) fMRI analyses of brain activity. Participants will be patients with MS (n=25) and healthy demographically matched controls (n=25) who will...undergo standardized evaluations and imaging using combined EEG-NIRS- fMRI . EEG-NIRS data will be used to construct maps of neurovascular coupling

  15. Functional imaging of the nonhuman primate Placenta with endogenous blood oxygen level-dependent contrast.

    PubMed

    Schabel, M C; Roberts, V H J; Lo, J O; Platt, S; Grant, K A; Frias, A E; Kroenke, C D

    2016-11-01

    To characterize spatial patterns of T2* in the placenta of the rhesus macaque (Macaca mulatta), to correlate these patterns with placental perfusion determined using dynamic contrast-enhanced MRI (DCE-MRI), and to evaluate the potential for using the blood oxygen level-dependent effect to quantify placental perfusion without the use of exogenous contrast reagent. MRI was performed on three pregnant rhesus macaques at gestational day 110. Multiecho spoiled gradient echo measurements were used to compute maps of T2*. Spatial maxima in these maps were compared with foci of early enhancement determined by DCE-MRI. Local maxima in T2* maps were strongly correlated with spiral arteries identified by DCE-MRI, with mean spatial separations ranging from 2.34 to 6.11 mm in the three animals studied. Spatial patterns of R2* ( = 1/ T2*) within individual placental lobules can be quantitatively analyzed using a simple model to estimate fetal arterial oxyhemoglobin concentration [Hbo,f] and a parameter viPS/Φ, reflecting oxygen transport to the fetus. Estimated mean values of [Hbo,f] ranged from 4.25 mM to 4.46 mM, whereas viPS/Φ ranged from 2.80 × 10 5 cm -3 to 1.61 × 10 6 cm -3 . Maternal spiral arteries show strong spatial correlation with foci of extended T2* observed in the primate placenta. A simple model of oxygen transport accurately describes the spatial dependence of R2* within placental lobules and enables assessment of placental function and oxygenation without requiring administration of an exogenous contrast reagent. Magn Reson Med 76:1551-1562, 2016. © 2015 International Society for Magnetic Resonance in Medicine. © 2015 International Society for Magnetic Resonance in Medicine.

  16. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue.

    PubMed

    Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick

    2017-04-01

    Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO 2 . A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO 2 levels are compared with a detailed computational model. Hematocrit is shown to have a larger influence on tissue PO 2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. For a given RBC flux in a capillary, the PO 2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain. © 2016 John Wiley & Sons Ltd.

  17. Comparison of 1.5 and 3 T BOLD MR to study oxygenation of kidney cortex and medulla in human renovascular disease.

    PubMed

    Gloviczki, Monika L; Glockner, James; Gomez, Sabas I; Romero, Juan C; Lerman, Lilach O; McKusick, Michael; Textor, Stephen C

    2009-09-01

    Imaging of the kidney using blood oxygen level dependent MR presents a major opportunity to examine differences in tissue oxygenation within the cortex and medulla applicable to human disease. We sought to define the differences between regions within kidneys and to optimize selection of regions of interest for study with 1.5 and 3 Tesla systems. Studies in 38 subjects were performed under baseline conditions and after administration of furosemide intravenously to examine changes in R2* as a result of suppressing oxygen consumption related to medullary tubular solute transport. These studies were carried out in patients with atherosclerotic renal artery stenosis (n = 24 kidneys) or essential hypertension or nonstenotic kidneys (n = 39). All patients but one were treated with agents to block the renin angiotensin system (ACE inhibitors or angiotensin receptor blockers). For each kidney, 3 levels (upper pole, hilum, and lower pole) were examined, including 3 individual segments (anterior, lateral, and posterior). Low basal R2* levels in kidney cortex (12.06 +/- 0.84 s(-1)) at 1.5 Tesla reflected robust blood flow and oxygenation and agreed closely with values obtained at 3.0 Tesla (13.62 +/- 0.56 s(-1), NS). Coefficients of variation ranged between 15% and 20% between segments and levels at both field strengths. By contrast, inner medullary R2* levels were higher at 3 T (31.66 +/- 0.74 s(-1)) as compared with 1.5 T (22.19 +/- 1.52 s(-1), P < 0.01). Medullary R2* values fell after furosemide administration reflecting reduced deoxyhemoglobin levels associated with blocked energy-dependent transport. The fall in medullary R2* at 3.0 Tesla (-12.61 +/- 0.97 s(-1)) was greater than observed at 1.5 T (-6.07 +/- 1.38 s(-1), P < 0.05). Cortical R2* levels remained low after furosemide and did not vary with field strength. Correlations between measurements of defined cortical and medullary regions of interest within kidneys were greater at each sampling level and segment at 3.0 T as compared to 1.5 T. For patients studied with 3.0 T, furosemide administration induced a lesser fall in R2* in poststenotic kidneys at 3.0 T (-10.61 +/- 1.61 s(-1)) versus nonstenotic kidneys (-13.21 +/- 0.72 s(-1), P < 0.05). This difference was not evident in comparisons made at 1.5 T. The magnitude of furosemide-suppressible oxygen consumption at 3.0 T (-43%) corresponded more closely with reported experimental differences observed during direct measurement with tissue electrodes (45%-50%) than changes measured at 1.5 T. These results indicate that blood oxygen level dependent MR measurements at high field strength can better distinguish discrete cortical and inner medullary regions of the kidney and approximate measured differences in oxygen tension. Maneuvers that reduce oxygen consumption related to tubular solute transport allow functional evaluation of the interstitial compartment as a function of tissue oxygenation. Impaired response to alterations in oxygen consumption can be detected at 3 T more effectively than at 1.5 T and may provide real-time tools to examine developing parenchymal injury associated with impaired oxygenation.

  18. Functional connectivity arises from a slow rhythmic mechanism

    PubMed Central

    Li, Jingfeng M.; Bentley, William J.; Snyder, Lawrence H.

    2015-01-01

    The mechanism underlying temporal correlations among blood oxygen level-dependent signals is unclear. We used oxygen polarography to better characterize oxygen fluctuations and their correlation and to gain insight into the driving mechanism. The power spectrum of local oxygen fluctuations is inversely proportional to frequency raised to a power (1/f) raised to the beta, with an additional positive band-limited component centered at 0.06 Hz. In contrast, the power of the correlated oxygen signal is band limited from ∼0.01 Hz to 0.4 Hz with a peak at 0.06 Hz. These results suggest that there is a band-limited mechanism (or mechanisms) driving interregional oxygen correlation that is distinct from the mechanism(s) driving local (1/f) oxygen fluctuations. Candidates for driving interregional oxygen correlation include rhythmic or pseudo-oscillatory mechanisms. PMID:25918427

  19. The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue

    PubMed Central

    Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick

    2016-01-01

    Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level, and depends on convective red blood cell (RBC) flux, which is proportional in an individual capillary to the product of capillary hematocrit and red blood cell velocity. This study investigates the relative influence of these two factors on tissue oxygen partial pressure (Po2). Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity and flow on tissue oxygenation around capillaries. Predicted tissue Po2 levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue Po2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained and the discrepancies are explained. Significant dependence of mass transfer coefficients on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the Po2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing intravascular resistance to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as occur in functional hyperemia in the brain. PMID:27893186

  20. In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique

    PubMed Central

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065

  1. Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM.

    PubMed

    Burgman, Paul; O'Donoghue, Joseph A; Lewis, Jason S; Welch, Michael J; Humm, John L; Ling, C Clifton

    2005-08-01

    Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) [Cu-ATSM] is a potential marker for tumor hypoxia that has been under evaluation for clinical use. In this study, we examined the mechanisms underlying the uptake of (64)Cu in cells incubated with (64)Cu-ATSM. The in vitro uptake of (64)Cu was determined as a function of oxygenation conditions and incubation time with (64)Cu-ATSM using four and two tumor cell lines of human origin and rodent origin, respectively. Additionally, the rate of (64)Cu efflux and Cu-ATSM metabolism was determined. (64)Cu accumulation is rapid during the first 0.5-1 h of incubation. It is highest in anoxic cells but is also significant in normoxic cells. After this initial period, the level of intracellular (64)Cu varies depending on the cell line and the oxygenation conditions and, in some circumstances, may decrease. During the first 0.5-1 h, the ratio of (64)Cu levels between anoxic and normoxic cells is approximately 2:10 and that between hypoxic (0.5% O(2)) and normoxic cells is approximately 1:2.5, depending on the cell line. These ratios generally decrease at longer times. The (64)Cu-ATSM compound was found to be metabolized during incubation in a manner dependent on oxygenation conditions. Within 2 h under anoxic conditions, (64)Cu-ATSM could no longer be detected, although 60-90% of the amount of (64)Cu added as (64)Cu-ATSM was present in the medium. Non-ATSM (64)Cu was taken up by the cells, albeit at a much slower rate. Efflux rates of (64)Cu were found to be cell line dependent and appeared to be inversely correlated with the final (64)Cu uptake levels under anoxic conditions. The uptake and retention of (64)Cu and their relation to oxygenation conditions were found to be cell line dependent. Given the complexities in the oxygen dependence and cell line-dependent kinetics of uptake and retention of Cu following exposure to Cu-ATSM, the clinical utility of this compound may be disease site specific.

  2. Participation of reactive oxygen species in diabetes-induced endothelial dysfunction.

    PubMed

    Zúrová-Nedelcevová, Jana; Navarová, Jana; Drábiková, Katarína; Jancinová, Viera; Petríková, Margita; Bernátová, Iveta; Kristová, Viera; Snirc, Vladimír; Nosál'ová, Viera; Sotníková, Ruzena

    2006-12-01

    In the present study, the relationship between diabetes-induced hyperglycemia, reactive oxygen species production and endothelium-mediated arterial function was examined. The effect of antioxidant on the reactive oxygen species induced damage was tested. Diabetes was induced by streptozotocin (STZ), 3 x 30 mg/kg i.p., administered on three consecutive days. After 10 weeks of diabetes, the functional state of the endothelium of the aorta was tested, endothelemia evaluation was performed and systolic blood pressure was measured. Reactive oxygen species (ROS) formation in blood and the aorta was measured using luminol-enhanced chemiluminescence (CL). Levels of reduced glutathione (GSH) were determined in the aorta, kidney, and plasma. To study the involvement of hyperglycemia in functional impairment of the endothelium, aortal rings incubated in solution with high glucose concentration were tested in in vitro experiments. After 10 weeks of diabetes, endothelial injury was observed, exhibited by diminished endothelium-dependent relaxation of the aorta, increased endothelemia and by elevated systolic blood pressure. Using luminol-enhanced CL, a significant increase of ROS production was found in arterial tissue and blood. GSH levels were significantly increased in the kidney, while there were no GSH changes in plasma and the aorta. Incubation of aortic rings in solution with high glucose concentration led to impairment of endothelium-dependent relaxation. The synthetic antioxidant SMe1EC2 was able to restore reduced endothelium-mediated relaxation. Our results suggest an important role of hyperglycemia-induced ROS production in mediating endothelial dysfunction in experimental diabetes, confirmed by CL and the protective effect of the antioxidant SMe1EC2.

  3. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. I. Studies at different levels of hypoxic hypoxia.

    PubMed

    Bakker, J C; Gortmaker, G C; Vrolijk, A C; Offerijns, F G

    1976-03-11

    Isolated rat livers were perfused with fresh and 2,3-DPG (2,3-diphosphoglycerate)-depleted human erythrocytes at different levels of hypoxia. The mean P50 values of the measured actual oxygen dissociation curves (O.D.C.) were 24.5 and 18 mm Hg. No changes in flow rate and perfusion pressure occurred under the different experimental conditons. It was shown that an advantage or disadvantage of a shift of the O.D.C. depends on the degree of hypoxia, as reflected in the venous PO2. Perfusions with fresh erythrocytes showed higher venous PO2 values during normoxia or moderate hypoxia and lower venous PO2 values at severe hypoxia. A cross-over point was found at a PO2 in the portal vein of 36 mm Hg. The disadvantage of perfusions with fresh erythrocytes at severre hypoxia was also reflected in higher cytoplasmatic and mitochondrial redox levels. Using bile flow rate as an indirect measure for the rate of hydroxylation-dependent O2 consumption a favourable effect of perfusion with fresh erythrocytes was found at a PO2 in the portal vein of 100 and 40 mm Hg.

  4. Molecular characterization and mRNA expression of two key enzymes of hypoxia-sensing pathways in eastern oysters Crassostrea virginica (Gmelin): Hypoxia-inducible factor α (HIF-α) and HIF-prolyl hydroxylase (PHD)

    PubMed Central

    Piontkivska, Helen; Chung, J. Sook; Ivanina, Anna V.; Sokolov, Eugene P.; Techa, Sirinart; Sokolova, Inna M.

    2010-01-01

    Oxygen homeostasis is crucial for development, survival and normal function of all metazoans. A family of transcription factors called hypoxia-inducible factors (HIF) is critical in mediating the adaptive responses to reduced oxygen availability. The HIF transcription factor consists of a constitutively expressed β subunit and an oxygen-dependent α subunit; the abundance of the latter determines the activity of HIF and is regulated by a family of O2- and Fe2+-dependent enzymes prolyl hydroxylases (PHDs). Currently very little is known about the function of this important pathway and the molecular structure of its key players in hypoxia-tolerant intertidal mollusks including oysters, which are among the animal champions of anoxic and hypoxic tolerance and thus can serve as excellent models to study the role of HIF cascade in adaptations to oxygen deficiency. We have isolated transcripts of two key components of the oxygen sensing pathway - the oxygen-regulated HIF-α subunit and PHD - from an intertidal mollusk, the eastern oyster Crassostrea virginica, and determined the transcriptional responses of these two genes to anoxia, hypoxia and cadmium (Cd) stress. HIF-α and PHD homologs from eastern oysters C. virginica show significant sequence similarity and share key functional domains with the earlier described isoforms from vertebrates and invertebrates. Phylogenetic analysis shows that genetic diversification of HIF and PHD isoforms occurred within the vertebrate lineage indicating functional diversification and specialization of the oxygen-sensing pathways in this group, which parallels situation observed for many other important genes. HIF-α and PHD homologs are broadly expressed at the mRNA level in different oyster tissues and show transcriptional responses to prolonged hypoxia in the gills consistent with their putative role in oxygen sensing and the adaptive response to hypoxia. Similarity in amino acid sequence, domain structure and transcriptional responses between HIF-α and PHD homologs from oysters and other invertebrate and vertebrate species implies the highly conserved functions of these genes throughout the evolutionary history of animals, in accordance with their critical role in oxygen sensing and homeostasis. PMID:21106446

  5. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals.

    PubMed

    Kim, Seong-Gi; Ogawa, Seiji

    2012-07-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O(2) utilization (CMRO(2)), (5) dynamic responses of BOLD, CBF, CMRO(2), and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means.

  6. Biophysical and physiological origins of blood oxygenation level-dependent fMRI signals

    PubMed Central

    Kim, Seong-Gi; Ogawa, Seiji

    2012-01-01

    After its discovery in 1990, blood oxygenation level-dependent (BOLD) contrast in functional magnetic resonance imaging (fMRI) has been widely used to map brain activation in humans and animals. Since fMRI relies on signal changes induced by neural activity, its signal source can be complex and is also dependent on imaging parameters and techniques. In this review, we identify and describe the origins of BOLD fMRI signals, including the topics of (1) effects of spin density, volume fraction, inflow, perfusion, and susceptibility as potential contributors to BOLD fMRI, (2) intravascular and extravascular contributions to conventional gradient-echo and spin-echo BOLD fMRI, (3) spatial specificity of hemodynamic-based fMRI related to vascular architecture and intrinsic hemodynamic responses, (4) BOLD signal contributions from functional changes in cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 utilization (CMRO2), (5) dynamic responses of BOLD, CBF, CMRO2, and arterial and venous CBV, (6) potential sources of initial BOLD dips, poststimulus BOLD undershoots, and prolonged negative BOLD fMRI signals, (7) dependence of stimulus-evoked BOLD signals on baseline physiology, and (8) basis of resting-state BOLD fluctuations. These discussions are highly relevant to interpreting BOLD fMRI signals as physiological means. PMID:22395207

  7. Contrasting neural effects of aging on proactive and reactive response inhibition.

    PubMed

    Bloemendaal, Mirjam; Zandbelt, Bram; Wegman, Joost; van de Rest, Ondine; Cools, Roshan; Aarts, Esther

    2016-10-01

    Two distinct forms of response inhibition may underlie observed deficits in response inhibition in aging. We assessed whether age-related neurocognitive impairments in response inhibition reflect deficient reactive inhibition (outright stopping) or also deficient proactive inhibition (anticipatory response slowing), which might be particularly evident with high information load. We used functional magnetic resonance imaging in young (n = 25, age range 18-32) and older adults (n = 23, 61-74) with a stop-signal task. Relative to young adults, older adults exhibited impaired reactive inhibition (i.e., longer stop-signal reaction time) and increased blood oxygen level-dependent (BOLD) signal for successful versus unsuccessful inhibition in the left frontal cortex and cerebellum. Furthermore, older adults also exhibited impaired proactive slowing, but only as a function of information load. This load-dependent behavioral deficit was accompanied by a failure to increase blood oxygen level-dependent (BOLD) signal under high information load in lateral frontal cortex, presupplementary motor area and striatum. Our findings suggest that inhibitory deficits in older adults are caused both by reduced stopping abilities and by diminished preparation capacity during information overload. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. [Oxygen-dependent energy deficit as related to the problems of ontogenetic development disorders and human sociobiological adaptation (theoretical and applied aspects)].

    PubMed

    Ilyukhina, V A; Kataeva, G V; Korotkov, A D; Chernysheva, E M

    2015-01-01

    The review states and argues theoretical propositions on the pathogenetic role of pre- and perinatal hypoxic-ischemic brain damage in the formation of sustained oxygen-dependent energy deficit underlying in further ontogenesis the following neurobiological abnormalities: a) a decline in the level of health and compensatory-adaptive capacities of the organism, b) disorders of the psycho-speech development and adaptive behavior in children, c) early development of neuropsychic diseases, g) addition of other types of brain energy metabolism (including glucose metabolism) disorders in chronic polyetiologic diseases young and middle-aged individuals. We highlight and theoretically substantiate the integrated physiological parameters of the oxygen-dependent energy deficit types. We address the features of abnormalities in neuroreflectory and neurohumora regulatory mechanisms of the wakefulness level and its vegetative and hemodynamic provision in different types of energy deficit in children with DSMD, ADHD and school maladjustment. The use of the state-of-the-art neuroimaging techniques significantly increased the possibility of the disintegration of regulatory processes and cognitive functions in children with psycho-speech delays and in a wide range of chronic polyetiologic diseases.

  9. FRONTO-STRIATAL FUNCTIONAL CONNECTIVITY DURING RESPONSE INHIBITION IN ALCOHOL DEPENDENCE

    PubMed Central

    Courtney, Kelly E.; Ghahremani, Dara G.; Ray, Lara A.

    2013-01-01

    Poor response inhibition has been implicated in the development of alcohol dependence, yet little is known about how neural pathways underlying cognitive control are affected in this disorder. Moreover, endogenous opioid levels may impact the functionality of inhibitory control pathways. This study investigated the relationship between alcohol dependence severity and functional connectivity of fronto-striatal networks during response inhibition in an alcohol dependent sample. A secondary aim of this study was to test the moderating effect of a functional polymorphism (A118G) of the µ-opioid receptor (OPRM1) gene. Twenty individuals with alcohol dependence (6 females; 90% Caucasian; mean age = 29.4) who were prospectively genotyped on the OPRM1 gene underwent blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) while performing a Stop Signal Task (SST). The relationship between alcohol dependence severity and functional connectivity within fronto-striatal networks important for response inhibition was assessed using psychophysiological interaction (PPI) analyses. Analyses revealed greater alcohol dependence severity associated with weaker functional connectivity between the putamen and prefrontal regions (e.g., the anterior insula, anterior cingulate, and medial prefrontal cortex) during response inhibition. Further, the OPRM1 genotype was associated with differential response inhibition-related functional connectivity. This study demonstrates that individuals with more severe alcohol dependence exhibit less frontal connectivity with the striatum, a component of cognitive control networks important for response inhibition. These findings suggest that the fronto-striatal pathway underlying response inhibition is weakened as alcoholism progresses. PMID:23240858

  10. Scavenging of oxygen from SrTiO3 by metals and its implications for oxide thin film deposition

    NASA Astrophysics Data System (ADS)

    Posadas, Agham; Kormondy, Kristy; Guo, Wei; Ponath, Patrick; Kremer, Jacqueline; Hadamek, Tobias; Demkov, Alexander

    SrTiO3 is a widely used substrate for the growth of other functional oxide thin films. However, SrTiO3 loses oxygen very easily during oxide thin film deposition even under relatively high oxygen pressures. In some cases, there will be an interfacial layer of oxygen-deficient SrTiO3 formed at the interface with the deposited oxide film, depending on the metals present in the film. By depositing a variety of metals layer by layer and measuring the evolution of the core level spectra of both the deposited metal and SrTiO3 using x-ray photoelectron spectroscopy, we show that there are three distinct types of behavior that occur for thin metal films on SrTiO3. We discuss the implications of these types of behavior for the growth of complex oxide thin films on SrTiO3, and which oxide thin films are expected to produce an interfacial oxygen-deficient layer depending on their elemental constituents.

  11. A review of calibrated blood oxygenation level-dependent (BOLD) methods for the measurement of task-induced changes in brain oxygen metabolism

    PubMed Central

    Blockley, Nicholas P.; Griffeth, Valerie E. M.; Simon, Aaron B.; Buxton, Richard B.

    2013-01-01

    The dynamics of the blood oxygenation level-dependent (BOLD) response are dependent on changes in cerebral blood flow, cerebral blood volume and the cerebral metabolic rate of oxygen consumption. Furthermore, the amplitude of the response is dependent on the baseline physiological state, defined by the haematocrit, oxygen extraction fraction and cerebral blood volume. As a result of this complex dependence, the accurate interpretation of BOLD data and robust intersubject comparisons when the baseline physiology is varied are difficult. The calibrated BOLD technique was developed to address these issues. However, the methodology is complex and its full promise has not yet been realised. In this review, the theoretical underpinnings of calibrated BOLD, and issues regarding this theory that are still to be resolved, are discussed. Important aspects of practical implementation are reviewed and reported applications of this methodology are presented. PMID:22945365

  12. Effect of oxygen vacancies on the electronic and optical properties of tungsten oxide from first principles calculations

    NASA Astrophysics Data System (ADS)

    Mehmood, Faisal; Pachter, Ruth; Murphy, Neil R.; Johnson, Walter E.; Ramana, Chintalapalle V.

    2016-12-01

    In this work, we investigated theoretically the role of oxygen vacancies on the electronic and optical properties of cubic, γ-monoclinic, and tetragonal phases of tungsten oxide (WO3) thin films. Following the examination of structural properties and stability of the bulk tungsten oxide polymorphs, we analyzed band structures and optical properties, applying density functional theory (DFT) and GW (Green's (G) function approximation with screened Coulomb interaction (W)) methods. Careful benchmarking of calculated band gaps demonstrated the importance of using a range-separated functional, where results for the pristine room temperature γ-monoclinic structure indicated agreement with experiment. Further, modulation of the band gap for WO3 structures with oxygen vacancies was quantified. Dielectric functions for cubic WO3, calculated at both the single-particle, essentially time-dependent DFT, as well as many-body GW-Bethe-Salpeter equation levels, indicated agreement with experimental data for pristine WO3. Interestingly, we found that introducing oxygen vacancies caused appearance of lower energy absorptions. A smaller refractive index was indicated in the defective WO3 structures. These predictions could lead to further experiments aimed at tuning the optical properties of WO3 by introducing oxygen vacancies, particularly for the lower energy spectral region.

  13. Root Zone Respiration on Hydroponically Grown Wheat Plant Systems

    NASA Technical Reports Server (NTRS)

    Soler-Crespo, R. A.; Monje, O. A.

    2010-01-01

    Root respiration is a biological phenomenon that controls plant growth and physiological development during a plant's lifespan. This process is dependent on the availability of oxygen in the system where the plant is located. In hydroponic systems, where plants are submerged in a solution containing vital nutrients but no type of soil, the availability of oxygen arises from the dissolved oxygen concentration in the solution. This oxygen concentration is dependent on the , gas-liquid interface formed on the upper surface of the liquid, as given by Henry's Law, depending on pressure and temperature conditions. Respiration rates of the plants rise as biomass and root zone increase with age. The respiration rate of Apogee wheat plants (Triticum aestivum) was measured as a function of light intensity (catalytic for photosynthesis) and CO2 concentration to determine their effect on respiration rates. To determine their effects on respiration rate and plant growth microbial communities were introduced into the system, by Innoculum. Surfactants were introduced, simulating gray-water usage in space, as another factor to determine their effect on chemical oxygen demand of microbials and on respiration rates of the plants. It is expected to see small effects from changes in CO2 concentration or light levels, and to see root respiration decrease in an exponential manner with plant age and microbial activity.

  14. Differential signal pathway activation and 5-HT function: the role of gut enterochromaffin cells as oxygen sensors.

    PubMed

    Haugen, Martin; Dammen, Rikard; Svejda, Bernhard; Gustafsson, Bjorn I; Pfragner, Roswitha; Modlin, Irvin; Kidd, Mark

    2012-11-15

    The chemomechanosensory function of the gut enterochromaffin (EC) cell enables it to respond to dietary agents and mechanical stretch. We hypothesized that the EC cell, which also sensed alterations in luminal or mucosal oxygen level, was physiologically sensitive to fluctuations in O(2). Given that low oxygen levels induce 5-HT production and secretion through a hypoxia inducible factor 1α (HIF-1α)-dependent pathway, we also hypothesized that increasing O(2) would reduce 5-HT production and secretion. Isolated normal EC cells as well as the well-characterized EC cell model KRJ-I were used to examine HIF signaling (luciferase-assays), hypoxia transcriptional response element (HRE)-mediated transcription (PCR), signaling pathways (Western blot), and 5-HT release (ELISA) during exposure to different oxygen levels. Normal EC cells and KRJ-I cells express HIF-1α, and transient transfection with Renilla luciferase under HRE control identified a hypoxia-mediated pathway in these cells. PCR confirmed activation of HIF-downstream targets, GLUT1, IGF2, and VEGF under reduced O(2) levels (0.5%). Reducing O(2) also elevated 5-HT secretion (2-3.2-fold) as well as protein levels of HIF-1α (1.7-3-fold). Increasing O(2) to 100% inhibited HRE-mediated signaling, transcription, reduced 5-HT secretion, and significantly lowered HIF-1α levels (∼75% of control). NF-κB signaling was also elevated during hypoxia (1.2-1.6-fold), but no significant changes were noted in PKA/cAMP. We concluded that gut EC cells are oxygen responsive, and alterations in O(2) levels differentially activate HIF-1α and tryptophan hydroxylase 1, as well as NF-κB signaling. This results in alterations in 5-HT production and secretion and identifies that the chemomechanosensory role of EC cells extends to oxygen sensing.

  15. On Defect Cluster Aggregation and Non-Reducibilty in Tin-Doped Indium Oxide

    NASA Astrophysics Data System (ADS)

    Warschkow, Oliver; Ellis, Donald E.; Gonzalez, Gabriela; Mason, Thomas O.

    2003-03-01

    The conductivity of tin-doped indium oxide (ITO), a transparent conductor, is critically dependent on the amount of tin-doping and oxygen partial pressure during preparation and annealing. Frank and Kostlin (Appl. Phys. A 27 (1982) 197-206) rationalized the carrier concentration dependence by postulating the formation of two types of neutral defect clusters at medium tin-doping levels: "Reducible" and "non-reducible" defect clusters; so named to indicate their ability to create carriers under reduction. According to Frank and Kostlin, both are composed of a single oxygen interstitial and two tin atoms substituting for indium, positioned in non-nearest and nearest coordination, respectively. This present work, seeking to distinguish reducible and non-reducible clusters by use of an atomistic model, finds only a weak correlation of oxygen interstitial binding energies with the relative positioning of dopants. Instead, the number of tin-dopants in the vicinity of the interstitial has a much larger effect on how strongly it is bound, a simple consequence of Coulomb interactions. We postulate that oxygen interstitials become non-reducible when clustered with three or more Sn_In. This occurs at higher doping levels as reducible clusters aggregate and share tin atoms. A simple probabilistic model, estimating the average number of clusters so aggregated, provides a qualitatively correct description of the carrier density in reduced ITO as a function of Sn doping level.

  16. A comparison of blood nitric oxide metabolites and hemoglobin functional properties among diving mammals.

    PubMed

    Fago, Angela; Parraga, Daniel Garcia; Petersen, Elin E; Kristensen, Niels; Giouri, Lea; Jensen, Frank B

    2017-03-01

    The ability of marine mammals to hunt prey at depth is known to rely on enhanced oxygen stores and on selective distribution of blood flow, but the molecular mechanisms regulating blood flow and oxygen transport remain unresolved. To investigate the molecular mechanisms that may be important in regulating blood flow, we measured concentration of nitrite and S-nitrosothiols (SNO), two metabolites of the vasodilator nitric oxide (NO), in the blood of 5 species of marine mammals differing in their dive duration: bottlenose dolphin, South American sea lion, harbor seal, walrus and beluga whale. We also examined oxygen affinity, sensitivity to 2,3-diphosphoglycerate (DPG) and nitrite reductase activity of the hemoglobin (Hb) to search for possible adaptive variations in these functional properties. We found levels of plasma and red blood cells nitrite similar to those reported for terrestrial mammals, but unusually high concentrations of red blood cell SNO in bottlenose dolphin, walrus and beluga whale, suggesting enhanced SNO-dependent signaling in these species. Purified Hbs showed similar functional properties in terms of oxygen affinity and sensitivity to DPG, indicating that reported large variations in blood oxygen affinity among diving mammals likely derive from phenotypic variations in red blood cell DPG levels. The nitrite reductase activities of the Hbs were overall slightly higher than that of human Hb, with the Hb of beluga whale, capable of longest dives, having the highest activity. Taken together, these results underscore adaptive variations in circulatory NO metabolism in diving mammals but not in the oxygenation properties of the Hb. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Manipulation of Microenvironment with a Built-in Electrochemical Actuator in Proximity of a Dissolved Oxygen Microsensor

    NASA Technical Reports Server (NTRS)

    Kim, Chang-Soo; Lee, Cae-Hyang; Fiering, Jason O.; Ufer, Stefan; Scarantino, Charles W.; Nagle, H. Troy; Fiering, Jason O.; Ufer, Stefan; Nagle, H. Troy; Scarantino, Charles W.

    2004-01-01

    Abstract - Biochemical sensors for continuous monitoring require dependable periodic self- diagnosis with acceptable simplicity to check its functionality during operation. An in situ self- diagnostic technique for a dissolved oxygen microsensor is proposed in an effort to devise an intelligent microsensor system with an integrated electrochemical actuation electrode. With a built- in platinum microelectrode that surrounds the microsensor, two kinds of microenvironments, called the oxygen-saturated or oxygen-depleted phases, can be created by water electrolysis depending on the polarity. The functionality of the microsensor can be checked during these microenvironment phases. The polarographic oxygen microsensor is fabricated on a flexible polyimide substrate (Kapton) and the feasibility of the proposed concept is demonstrated in a physiological solution. The sensor responds properly during the oxygen-generating and oxygen- depleting phases. The use of these microenvironments for in situ self-calibration is discussed to achieve functional integration as well as structural integration of the microsensor system.

  18. Transition metal substituted SrTiO3 perovskite oxides as promising functional materials for oxygen sensor

    NASA Astrophysics Data System (ADS)

    Misra, Sunasira

    2012-07-01

    Modern industries employ several gases as process fluids. Leakage of these gases in the operating area could lead to undesirable consequences. Even in chemical industries, which use large quantities of inert gases in confined areas, accidental leakage of these process gases would result in the reduction of oxygen partial pressure in atmospheric air. For instance, large amounts of gaseous nitrogen and argon are used in pharmaceutical industries, gas filling/bottling plants, operating area of Fast Breeder reactors, etc. Fall of concentration of oxygen in air below 17% could lead to life risk (Asphyxiation) of the working personnel that has to be checked well in advance. Further, when the leaking gas is of explosive nature, its damage potential would be very high if its concentration level in air increases beyond its lower explosive limit. Surveillance of the ambient within these industries at the critical areas and also in the environment around them for oxygen therefore becomes highly essential. Sensitive and selective gas sensors made of advanced materials are required to meet this demand of monitoring environmental pollution. The perovskite class of oxides (ABO3) is chemically stable even at high temperatures and can tolerate large levels of dopants without phase transformations. The electronic properties of this parent functional material can be tailored by adding appropriate dopants that exhibit different valence states. Aliovalent transition metal substituted SrTiO3 perovskites are good mixed ionic and electronic conductors and potential candidates for sensing oxygen at percentage level exploiting their oxygen pressure dependent electrical conductivity. This paper presents the preparation, study of electrical conductivity and oxygen-sensing characteristics of iron and cobalt substituted SrTiO3.

  19. Oxygen dynamics in photosynthetic membranes.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Kihara, Shigeharu

    2008-03-01

    Production of oxygen by oxygenic photosynthetic organisms is expected to raise oxygen concentration within their photosynthetic membranes above normal aerobic values. These raised levels of oxygen may affect function of many proteins within photosynthetic cells. However, experiments on proteins in vitro are usually performed in aerobic (or anaerobic) conditions since the oxygen content of a membrane is not known. Using theory of diffusion and measured oxygen production rates we estimated the excess levels of oxygen in functioning photosynthetic cells. We show that for an individual photosynthetic cell suspended in water oxygen level is essentially the same as that for a non-photosynthetic sell. These data suggest that oxygen protection mechanisms may have evolved after the development of oxygenic photosynthesis in primitive bacteria and was driven by the overall rise of oxygen concentration in the atmosphere. Substantially higher levels of oxygen are estimated to occur in closely packed colonies of photosynthetic bacteria and in green leafs.

  20. High resolution photoemission investigation: The oxidation of W

    NASA Astrophysics Data System (ADS)

    Morar, J. F.; Himpsel, F. J.; Hughes, G. J.; Jordan, J. L.; McFeely, F. R.; Hollinge, G.

    High resolution photoemission measurements of surface oxide layers on tungsten has revealed a set of well resolved core level shifts characteristic of individual metal oxidation states. Measurement and analysis of this type of data can provide specific and quantitative chemical information about surface oxides. The formation of bonds between transition metals and strongly electronegative elements such as oxygen and fluorine results in charge transfer with the effect of shifting the metal core electron binding energies. The magnitude of such shifts depends primarily on two factors; the amount of charge transfer and the screening ability of the metals electrons. The size of core-level shifts tend to increase with additional charge transfer and be decreased by screening. In the case of tungsten the amount of screening should be a function of oxygen content since the oxygen ties up free electrons which are effective at screening. A continuous change in the tungsten core level shifts is observed with increasing oxygen content, i.e., as the screening changes from that characteristic of a metal screened to that characteristic of an insulator unscreened.

  1. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals.

    PubMed

    Pörtner, H O

    2002-08-01

    The physiological mechanisms limiting and adjusting cold and heat tolerance have regained interest in the light of global warming and associated shifts in the geographical distribution of ectothermic animals. Recent comparative studies, largely carried out on marine ectotherms, indicate that the processes and limits of thermal tolerance are linked with the adjustment of aerobic scope and capacity of the whole animal as a crucial step in thermal adaptation on top of parallel adjustments at the molecular or membrane level. In accordance with Shelford's law of tolerance decreasing whole animal aerobic scope characterises the onset of thermal limitation at low and high pejus thresholds (pejus=getting worse). The drop in aerobic scope of an animal indicated by falling oxygen levels in the body fluids and or the progressively limited capacity of circulatory and ventilatory mechanisms. At high temperatures, excessive oxygen demand causes insufficient oxygen levels in the body fluids, whereas at low temperatures the aerobic capacity of mitochondria may become limiting for ventilation and circulation. Further cooling or warming beyond these limits leads to low or high critical threshold temperatures (T(c)) where aerobic scope disappears and transition to an anaerobic mode of mitochondrial metabolism and progressive insufficiency of cellular energy levels occurs. The adjustments of mitochondrial densities and their functional properties appear as a critical process in defining and shifting thermal tolerance windows. The finding of an oxygen limited thermal tolerance owing to loss of aerobic scope is in line with Taylor's and Weibel's concept of symmorphosis, which implies that excess capacity of any component of the oxygen delivery system is avoided. The present study suggests that the capacity of oxygen delivery is set to a level just sufficient to meet maximum oxygen demand between the average highs and lows of environmental temperatures. At more extreme temperatures only time limited passive survival is supported by anaerobic metabolism or the protection of molecular functions by heat shock proteins and antioxidative defence. As a corollary, the first line of thermal sensitivity is due to capacity limitations at a high level of organisational complexity, i.e. the integrated function of the oxygen delivery system, before individual, molecular or membrane functions become disturbed. These interpretations are in line with the more general consideration that, as a result of the high level of complexity of metazoan organisms compared with simple eukaryotes and then prokaryotes, thermal tolerance is reduced in metazoans. A similar sequence of sensitivities prevails within the metazoan organism, with the highest sensitivity at the organismic level and wider tolerance windows at lower levels of complexity. However, the situation is different in that loss in aerobic scope and progressive hypoxia at the organismic level define the onset of thermal limitation which then transfers to lower hierarchical levels and causes cellular and molecular disturbances. Oxygen limitation contributes to oxidative stress and, finally, denaturation or malfunction of molecular repair, e.g. during suspension of protein synthesis. The sequence of thermal tolerance limits turns into a hierarchy, ranging from systemic to cellular to molecular levels.

  2. Hepatic Flavin-Containing Monooxygenase 3 Enzyme Suppressed by Type 1 Allergy-Produced Nitric Oxide.

    PubMed

    Tanino, Tadatoshi; Bando, Toru; Komada, Akira; Nojiri, Yukie; Okada, Yuna; Ueda, Yukari; Sakurai, Eiichi

    2017-11-01

    Flavin-containing monooxygenases (FMOs) are major mammalian non-cytochrome P450 oxidative enzymes. T helper 2 cell-activated allergic diseases produce excess levels of nitric oxide (NO) that modify the functions of proteins. However, it remains unclear whether allergy-induced NO affects the pharmacokinetics of drugs metabolized by FMOs. This study investigated alterations of hepatic microsomal FMO1 and FMO3 activities in type 1 allergic mice and further examined the interaction of FMO1 and FMO3 with allergy-induced NO. Imipramine (IMP; FMO1 substrate) N- oxidation activity was not altered in allergic mice with high serum NO and immunoglobulin E levels. At 7 days after primary sensitization (PS7) or secondary sensitization (SS7), benzydamine (BDZ; FMO1 and FMO3 substrate) N- oxygenation was significantly decreased to 70% of individual controls. The expression levels of FMO1 and FMO3 proteins were not significantly changed in the sensitized mice. Hepatic inducible NO synthase (iNOS) mRNA level increased 5-fold and 15-fold in PS7 and SS7 mice, respectively, and hepatic tumor necrosis factor- α levels were greatly enhanced. When a selective iNOS inhibitor was injected into allergic mice, serum NO levels and BDZ N- oxygenation activity returned to control levels. NO directly suppressed BDZ N- oxygenation, which was probably related to FMO3-dependent metabolism in comparison with IMP N- oxidation. In hepatic microsomes from PS7 and SS7 mice, the suppression of BDZ N- oxygenation was restored by ascorbate. Therefore, type 1 allergic mice had differentially suppressed FMO3-dependent BDZ N- oxygenation. The suppression of FMO3 metabolism related to reversible S- nitrosyl modifications of iNOS-derived NO. NO is expected to alter FMO3-metabolic capacity-limited drug pharmacokinetics in humans. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Transcriptional and post-translational control of chlorophyll biosynthesis by dark-operative protochlorophyllide oxidoreductase in Norway spruce.

    PubMed

    Stolárik, Tibor; Hedtke, Boris; Šantrůček, Jiří; Ilík, Petr; Grimm, Bernhard; Pavlovič, Andrej

    2017-05-01

    Unlike angiosperms, gymnosperms use two different enzymes for the reduction of protochlorophyllide to chlorophyllide: the light-dependent protochlorophyllide oxidoreductase (LPOR) and the dark-operative protochlorophyllide oxidoreductase (DPOR). In this study, we examined the specific role of both enzymes for chlorophyll synthesis in response to different light/dark and temperature conditions at different developmental stages (cotyledons and needles) of Norway spruce (Picea abies Karst.). The accumulation of chlorophyll and chlorophyll-binding proteins strongly decreased during dark growth in secondary needles at room temperature as well as in cotyledons at low temperature (7 °C) indicating suppression of DPOR activity. The levels of the three DPOR subunits ChlL, ChlN, and ChlB and the transcripts of their encoding genes were diminished in dark-grown secondary needles. The low temperature had minor effects on the transcription and translation of these genes in cotyledons, which is suggestive for post-translational control in chlorophyll biosynthesis. Taking into account the higher solubility of oxygen at low temperature and oxygen sensitivity of DPOR, we mimicked low-temperature condition by the exposure of seedlings to higher oxygen content (33%). The treatment resulted in an etiolated phenotype of dark-grown seedlings, confirming an oxygen-dependent control of DPOR activity in spruce cotyledons. Moreover, light-dependent suppression of mRNA and protein level of DPOR subunits indicates that more efficiently operating LPOR takes over the DPOR function under light conditions, especially in secondary needles.

  4. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  5. MRI to assess renal structure and function.

    PubMed

    Artunc, Ferruh; Rossi, Cristina; Boss, Andreas

    2011-11-01

    In addition to excellent anatomical depiction, MRI techniques have expanded to study functional aspects of renal physiology, such as renal perfusion, glomerular filtration rate (GFR) or tissue oxygenation. This review will focus on current developments with an emphasis on clinical applicability. The method of GFR determination is largely heterogeneous and still has weaknesses. However, the technique of employing liver disappearance curves has been shown to be accurate in healthy persons and patients with chronic kidney disease. In potential kidney donors, complete evaluation of kidney anatomy and function can be accomplished in a single-stop investigation. Techniques without contrast media can be utilized to measure renal tissue oxygenation (blood oxygen level-dependent MRI) or perfusion (arterial spin labeling) and could aid in the diagnosis and treatment of ischemic renal diseases, such as renal artery stenosis. Diffusion imaging techniques may provide information on spatially restricted water diffusion and tumor cellularity. Functional MRI opens new horizons in studying renal physiology and pathophysiology in vivo. Although extensively utilized in research, labor-intensive postprocessing and lack of standardization currently limit the clinical applicability of functional MRI. Further studies are necessary to evaluate the clinical value of functional magnetic resonance techniques for early discovery and characterization of kidney disease.

  6. Structural architecture supports functional organization in the human aging brain at a regionwise and network level.

    PubMed

    Zimmermann, Joelle; Ritter, Petra; Shen, Kelly; Rothmeier, Simon; Schirner, Michael; McIntosh, Anthony R

    2016-07-01

    Functional interactions in the brain are constrained by the underlying anatomical architecture, and structural and functional networks share network features such as modularity. Accordingly, age-related changes of structural connectivity (SC) may be paralleled by changes in functional connectivity (FC). We provide a detailed qualitative and quantitative characterization of the SC-FC coupling in human aging as inferred from resting-state blood oxygen-level dependent functional magnetic resonance imaging and diffusion-weighted imaging in a sample of 47 adults with an age range of 18-82. We revealed that SC and FC decrease with age across most parts of the brain and there is a distinct age-dependency of regionwise SC-FC coupling and network-level SC-FC relations. A specific pattern of SC-FC coupling predicts age more reliably than does regionwise SC or FC alone (r = 0.73, 95% CI = [0.7093, 0.8522]). Hence, our data propose that regionwise SC-FC coupling can be used to characterize brain changes in aging. Hum Brain Mapp 37:2645-2661, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Blood oxygen-level dependent functional assessment of cerebrovascular reactivity: Feasibility for intraoperative 3 Tesla MRI.

    PubMed

    Fierstra, Jorn; Burkhardt, Jan-Karl; van Niftrik, Christiaan Hendrik Bas; Piccirelli, Marco; Pangalu, Athina; Kocian, Roman; Neidert, Marian Christoph; Valavanis, Antonios; Regli, Luca; Bozinov, Oliver

    2017-02-01

    To assess the feasibility of functional blood oxygen-level dependent (BOLD) MRI to evaluate intraoperative cerebrovascular reactivity (CVR) at 3 Tesla field strength. Ten consecutive neurosurgical subjects scheduled for a clinical intraoperative MRI examination were enrolled in this study. In addition to the clinical protocol a BOLD sequence was implemented with three cycles of 44 s apnea to calculate CVR values on a voxel-by-voxel basis throughout the brain. The CVR range was then color-coded and superimposed on an anatomical volume to create high spatial resolution CVR maps. Ten subjects (mean age 34.8 ± 13.4; 2 females) uneventfully underwent the intraoperative BOLD protocol, with no complications occurring. Whole-brain CVR for all subjects was (mean ± SD) 0.69 ± 0.42, whereas CVR was markedly higher for tumor subjects as compared to vascular subjects, 0.81 ± 0.44 versus 0.33 ± 0.10, respectively. Furthermore, color-coded functional maps could be robustly interpreted for a whole-brain assessment of CVR. We demonstrate that intraoperative BOLD MRI is feasible in creating functional maps to assess cerebrovascular reactivity throughout the brain in subjects undergoing a neurosurgical procedure. Magn Reson Med 77:806-813, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Neuroimaging, Pain Sensitivity, and Neuropsychological Functioning in School-Age Neonatal Extracorporeal Membrane Oxygenation Survivors Exposed to Opioids and Sedatives.

    PubMed

    van den Bosch, Gerbrich E; IJsselstijn, Hanneke; van der Lugt, Aad; Tibboel, Dick; van Dijk, Monique; White, Tonya

    2015-09-01

    Animal studies found negative long-term effects of exposure to sedatives and opioids in early life, especially when administered in the absence of pain. Around the world, children who require extracorporeal membrane oxygenation receive opioids and sedatives for extended periods, generally in the absence of major pain as extracorporeal membrane oxygenation cannulation is considered minor surgery. Therefore, our objective was to determine the long-term effects of extracorporeal membrane oxygenation treatment with respect to pain sensitivity, brain functioning during pain, brain morphology, and neuropsychological functioning in humans. Prospective follow-up study. Level III university hospital. Thirty-six extracorporeal membrane oxygenation survivors (8.1-15.5 yr) and 64 healthy controls (8.2-15.3 yr). We measured detection and pain thresholds, brain activity during pain (functional MRI), brain morphology (high-resolution structural MRI), and neuropsychological functioning and collected information regarding the subject's experience of chronic pain. We found a significant difference in the detection threshold for cold measured in a reaction time-dependent fashion (extracorporeal membrane oxygenation group, 29.9°C [SD, 1.4]; control group, 30.6°C [SD, 0.8]; p < 0.01), but no differences in other modalities or in pain sensitivity between groups. Furthermore, no differences in brain activation during pain, brain morphology, or in the occurrence of chronic pain were observed. However, extracorporeal membrane oxygenation survivors performed significantly worse on a verbal memory test compared with controls (p = 0.001). While the most critically ill newborns receive extracorporeal membrane oxygenation and, relatedly, large doses of opioids and sedatives for extended periods, global measures of pain sensitivity and neurobiological and neuropsychological development appear to have minor long-term consequences. Possible memory deficits in extracorporeal membrane oxygenation survivors require additional study, but neonatal extracorporeal membrane oxygenation treatment and associated exposure to opioids and sedatives seem less harmful to humans than expected from animal studies.

  9. Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury.

    PubMed

    Zepeda, Ramiro; Kuzmicic, Jovan; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Riquelme, Jaime A; Pedrozo, Zully; Chiong, Mario; Sánchez, Gina; Lavandero, Sergio

    2014-06-01

    Mitochondria are key organelles for ATP production in cardiomyocytes, which is regulated by processes of fission and fusion. We hypothesized that the mitochondria fusion protein dynamin-related protein 1 (Drp1) inhibition, attenuates ischemia-reperfusion (I/R) injury through modifications in mitochondrial metabolism. Rats were subjected to I/R through coronary artery ligation, and isolated cardiomyocytes were treated with an ischemia-mimicking solution. In vivo, cardiac function, myocardial infarction area, and mitochondrial morphology were determined, whereas in vitro, viability, mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption rate (OCR) were assessed. In both models, an adenovirus expressing Drp1 dominant-negative K38A (Drp1K38A) was used to induce Drp1 loss-of-function. Our results showed that I/R stimulated mitochondrial fission. Myocardial infarction size and cell death induced by I/R were significantly reduced, whereas cardiac function after I/R was improved in Drp1K38A-treated rats compared with controls. Drp1K38A-transduced cardiomyocytes showed lower OCR with no decrease in intracellular ATP levels, and on I/R, a larger decrease in OCR with a smaller reduction in intracellular ATP level was observed. However, proton leak-associated oxygen consumption was comparatively higher in Drp1K38A-treated cardiomyocytes, suggesting a protective mitochondrial uncoupling effect against I/R. Collectively, our results show that Drp1 inhibition triggers cardioprotection by reducing mitochondrial metabolism during I/R.

  10. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity.

    PubMed

    Lagerlöf, Jakob H; Kindblom, Jon; Bernhardt, Peter

    2014-04-01

    Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10(4) mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D99, the homogeneous radiation dose required for a tumor control probability of 0.99. In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D99 by up to 10%. Furthermore, the D99 vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D99, necrotic fractions ranging from 0% to 97%, and a maximal D99 increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D99 strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D99. Our present analysis of necrotic formation and the impact of tumor oxygenation on D99 demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies. © 2014 American Association of Physicists in Medicine.

  11. THE HEMOGLOBIN FUNCTION OF BLOOD AT 4C.

    DTIC Science & Technology

    depends on the red cell concentration of 2,3- diphosphoglycerate (2,3-DPG), this metabolic intermediate was assayed and oxygen dissociation curves...the storage period in blood stored in CPD than in ACD. If adenine was present the p50 and 2,3-DPG levels declined more rapidly. However, adenine and...inosine in CPD-stored blood allowed the p50 and 2,3-DPG to persist at near normal levels for most of the 3-week storage period. (Author)

  12. Cellular homeostasis in fungi: impact on the aging process.

    PubMed

    Scheckhuber, Christian Q; Hamann, Andrea; Brust, Diana; Osiewacz, Heinz D

    2012-01-01

    Cellular quality control pathways are needed for maintaining the biological function of organisms. If these pathways become compromised, the results are usually highly detrimental. Functional impairments of cell components can lead to diseases and in extreme cases to organismal death. Dysfunction of cells can be induced by a number of toxic by-products that are formed during metabolic activity, like reactive oxygen and nitrogen species, for example. A key source of reactive oxygen species (ROS) are the organelles of oxidative phosphorylation, mitochondria. Therefore mitochondrial function is also directly affected by ROS, especially if there is a compromised ROS-scavenging capacity. Biological systems therefore depend on several lines of defence to counteract the toxic effects of ROS and other damaging agents. The first level is active at the molecular level and consists of various proteases that bind and degrade abnormally modified and / or aggregated mitochondrial proteins. The second level is concerned with maintaining the quality of whole mitochondria. Among the pathways of this level are mitochondrial dynamics and autophagy (mitophagy). Mitochondrial dynamics describes the time-dependent fusion and fission of mitochondria. It is argued that this kind of organellar dynamics has the power to restore the function of impaired organelles by content mixing with intact organelles. If the first and second lines of defence against damage fail and mitochondria become damaged too severely, there is the option to remove affected cells before they can elicit more damage to their surrounding environment by apoptosis. This form of programmed cell death is strictly regulated by a complex network of interacting components and can be divided into mitochondria-dependent and mitochondria-independent modes of action. In this review we give an overview on various biological quality control systems in fungi (yeasts and filamentous fungi) with an emphasis on autophagy (mitophagy) and apoptosis and how these pathways allow fungal organisms to maintain a balanced cellular homeostasis.

  13. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level.

    PubMed

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation- a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system's responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2.

  14. Reproducing the Hemoglobin Saturation Profile, a Marker of the Blood Oxygenation Level Dependent (BOLD) fMRI Effect, at the Microscopic Level

    PubMed Central

    Hadjistassou, Constantinos; Moyle, Keri; Ventikos, Yiannis

    2016-01-01

    The advent of functional MRI in the mid-1990s has catalyzed progress pertaining to scientific discoveries in neuroscience. With the prospect of elucidating the physiological aspect of the Blood Oxygenation Level Dependent (BOLD) effect we present a computational capillary-tissue system capable of mapping venous hemoglobin saturation— a marker of the BOLD hemodynamic response. Free and facilitated diffusion and convection for hemoglobin and oxygen are considered in the radial and axial directions. Hemoglobin reaction kinetics are governed by the oxyhemoglobin dissociation curve. Brain activation, mimicked by dynamic transitions in cerebral blood velocity (CBv) and oxidative metabolism (CMRO2), is simulated by normalized changes in m = (ΔCBv/CBv)/(ΔCMRO2/CMRO2) of values 2, 3 and 4. Venous hemoglobin saturation profiles and peak oxygenation results, for m = 2, based upon a 50% and a 25% increase in CBv and CMRO2, respectively, lie within physiological limits exhibiting excellent correlation with the BOLD signal, for short-duration stimuli. Our analysis suggests basal CBv and CMRO2 values of 0.6 mm/s and 200 μmol/100g/min. Coupled CBv and CMRO2 responses, for m = 3 and m = 4, overestimate peak hemoglobin saturation, confirming the system’s responsiveness to changes in hematocrit, CBv and CMRO2. Finally, factoring in neurovascular effects, we show that no initial dip will be observed unless there is a time delay in the onset of increased CBv relative to CMRO2. PMID:26939128

  15. Alcohol Attenuates Load-related Activation During a Working Memory Task: Relation to Level of Response to Alcohol

    PubMed Central

    Paulus, Martin P.; Tapert, Susan F.; Pulido, Carmen; Schuckit, Marc A.

    2008-01-01

    Background A low level of response to alcohol is a major risk factor for the development of alcohol dependence, but neural correlates of this marker are unclear. Method Ten healthy volunteers were classified by median split on level of response to alcohol and underwent 2 sessions of functional magnetic resonance imaging following ingestion of a moderate dose of alcohol and a placebo. The blood oxygen level–dependent activation to an event-related visual working memory test was examined. Results The subjects exhibited longer response latencies and more errors as a function of increasing working memory load and showed a load-dependent increase in activation in dorsolateral prefrontal cortex, posterior parietal cortex, and visual cortex. Alcohol did not affect performance (errors or response latency), but attenuated the working memory load–dependent activation in the dorsolateral prefrontal cortex. During the placebo condition, individuals with a low level of response to alcohol showed greater activation in dorsolateral prefrontal cortex and posterior parietal cortex than those with a high level of response to alcohol. During the alcohol condition, groups showed similar attenuation of load-dependent brain activation in these regions. Conclusion Low-level responders relative to high-level responders exhibited an increased working memory load–dependent activation in dorsolateral prefrontal cortex and posterior parietal cortex when not exposed to alcohol. This increase in brain response was attenuated in low-level responders after ingesting a moderate dose of alcohol. PMID:16899039

  16. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting oxide electrodes.

    PubMed

    Guan, Zixuan; Chen, Di; Chueh, William C

    2017-08-30

    The oxygen incorporation reaction, which involves the transformation of an oxygen gas molecule to two lattice oxygen ions in a mixed ionic and electronic conducting solid, is a ubiquitous and fundamental reaction in solid-state electrochemistry. To understand the reaction pathway and to identify the rate-determining step, near-equilibrium measurements have been employed to quantify the exchange coefficients as a function of oxygen partial pressure and temperature. However, because the exchange coefficient contains contributions from both forward and reverse reaction rate constants and depends on both oxygen partial pressure and oxygen fugacity in the solid, unique and definitive mechanistic assessment has been challenging. In this work, we derive a current density equation as a function of both oxygen partial pressure and overpotential, and consider both near and far from equilibrium limits. Rather than considering specific reaction pathways, we generalize the multi-step oxygen incorporation reaction into the rate-determining step, preceding and following quasi-equilibrium steps, and consider the number of oxygen ions and electrons involved in each. By evaluating the dependence of current density on oxygen partial pressure and overpotential separately, one obtains the reaction orders for oxygen gas molecules and for solid-state species in the electrode. We simulated the oxygen incorporation current density-overpotential curves for praseodymium-doped ceria for various candidate rate-determining steps. This work highlights a promising method for studying the exchange kinetics far away from equilibrium.

  17. The Effects of Oxygen Concentration on Benthic Foraminiferal Growth and Size

    NASA Astrophysics Data System (ADS)

    Ng, B.; Keating-Bitonti, C.; Payne, J.

    2015-12-01

    Many organisms use oxygen through cellular respiration in order to gain energy. For this reason, oxygen has a significant influence on organism size and growth. The amount of oxygen an organism needs depends on its metabolic demand, which is partially a function organism size (i.e., mass). The Santa Monica Basin (SMB) is an oxygen minimum zone located off the southern coast of California that maintains a steep oxygen gradient and is thus an ideal location for conducting research on how oxygen influences organism size. Here we use benthic foraminifera, widespread single-celled protists that produce shells (tests), to study the controls of oxygen on organism size. Because cell mass and cell volume are correlated, we study trends in the log test volume of four abundant species from SMB: Uvigerina peregrina, Bolivina spissa, B. argentea, Loxostomum pseudobeyrichi. These foraminifera make multi-chambered tests, thus we also count the number of chambers per specimen in order to further assess their growth under varying oxygen concentrations. We analyzed the data using quantile regressions to determine trends in not only median values of the log test volume and number of chambers as a function of oxygen concentrations, but also in the 10th, 25th, 75th, and 90th percentiles because oxygen availability often constrains the maximum and minimum size of organisms. Our results show a positive correlation between oxygen concentration and the maximum log test volumes of L. pseudobeyrichi and B. argentea, supporting our hypothesis. However, we observed a negative correlation between oxygen concentration and the maximum percentiles of log test volume in U. peregrina. Nevertheless, U. peregrina still displays a positive correlation between chamber number and oxygen concentrations in line with our hypothesis. The preponderance of trends supporting a direct correlation between log test volume or chamber number and oxygen concentration suggest that oxygen limits the maximum obtainable size of benthic foraminifera through its effects on test volume or chamber growth. This study is important because it holds a glimpse into how changes in oxygen levels can affect organisms given current fluctuations in oxygen level around the world due to man-made climate change.

  18. Electronic and Structural Parameters of Phosphorus-Oxygen Bonds in Inorganic Phosphate Crystals

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Kesler, V. G.; Pervukhina, N. V.

    Wide set of experimental results on binding energy of photoelectrons emitted from P 2p, P 2s, and O 1s core levels has been observed for inorganic phosphate crystals and the parameters were compared using energy differences Δ(O 1s - P 2p) and Δ (O 1s - P 2s) as most robust characteristics. Linear dependence of the binding energy difference on mean chemical bond length L(P-O) between phosphorus and oxygen atoms has been found. The functions are of the forms: Δ (O 1s - P 2p) (eV) = 375.54 + 0.146 · L(P-O) (pm) and Δ (O 1s - P 2s) (eV) = 320.77 + 0.129 · L(P-O) (pm). The dependencies are general for inorganic phosphates and may be used in quantitative component analysis of X-ray photoemission spectra of complex oxide compounds including functional groups with different coordination of P and O atoms.

  19. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation

    PubMed Central

    Licata, Stephanie C.; Lowen, Steven B.; Trksak, George H.; MacLean, Robert R.; Lukas, Scott E.

    2011-01-01

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABAA receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 minutes after acute oral administration of zolpidem (0, 5, 10, or 20 mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20 mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem’s modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABAA receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. PMID:21640782

  20. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: preliminary experience.

    PubMed

    Haque, Muhammad E; Franklin, Tammy; Bokhary, Ujala; Mathew, Liby; Hack, Bradley K; Chang, Anthony; Puri, Tipu S; Prasad, Pottumarthi V

    2014-04-01

    To evaluate longitudinal changes in renal oxygenation and diffusion measurements in a model of reversible unilateral ureteral obstruction (rUUO) which has been shown to induce chronic renal functional deficits in a strain dependent way. C57BL/6 mice show higher degree of functional deficit compared with BALB/c mice. Because hypoxia and development of fibrosis are associated with chronic kidney diseases and are responsible for progression, we hypothesized that MRI measurements would be able to monitor the longitudinal changes in this model and will show strain dependent differences in response. Here blood oxygenation level dependent (BOLD) and diffusion MRI measurements were performed at three time points over a 30 day period in mice with rUUO. The studies were performed on a 4.7T scanner with the mice anesthetized with isoflurane before UUO, 2 and 28 days postrelease of 6 days of obstruction. We found at the early time point (∼2 days after releasing the obstruction), the relative oxygenation in C57Bl/6 mice were lower compared with BALB/c. Diffusion measurements were lower at this time point and reached statistical significance in BALB/c These methods may prove valuable in better understanding the natural progression of kidney diseases and in evaluating novel interventions to limit progression. Copyright © 2013 Wiley Periodicals, Inc.

  1. Effect of dark chocolate on renal tissue oxygenation as measured by BOLD-MRI in healthy volunteers.

    PubMed

    Pruijm, Menno; Hofmann, Lucie; Charollais-Thoenig, Julie; Forni, Valentina; Maillard, Marc; Coristine, Andrew; Stuber, Matthias; Burnier, Michel; Vogt, Bruno

    2013-09-01

    Cocoa is rich in flavonoids, has anti-oxidative properties and increases the bioavailability of nitric oxide (NO). Adequate renal tissue oxygenation is crucial for the maintenance of renal function. The goal of this study was to investigate the effect of cocoa-rich dark chocolate (DC) on renal tissue oxygenation in humans, as compared to flavonoid-poor white chocolate (WC). Ten healthy volunteers with preserved kidney function (mean age ± SD 35 ± 12 years, 70% women, BMI 21 ± 3 kg/m2) underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) before and 2 hours after the ingestion of 1 g/kg of DC (70% cocoa). Renal tissue oxygenation was determined by the measurement of R2* maps on 4 coronal slices covering both kidneys. The mean R2* (= 1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. Eight participants also underwent BOLD-MRI at least 1 week later, before and 2 hours after the intake of 1 g/kg WC. The mean medullary R2* was lower after DC intake compared to baseline (28.2 ± 1.3 s-1 vs. 29.6 ± 1.3 s-1, p = 0.04), whereas cortical and medullary R2* values did not change after WC intake. The change in medullary R2* correlated with the level of circulating (epi)catechines, metabolites of flavonoids (r = 0.74, p = 0.037), and was independent of plasma renin activity. This study suggests for the first time an increase of renal medullary oxygenation after intake of dark chocolate. Whether this is linked to flavonoid-induced changes in renal perfusion or oxygen consumption, and whether cocoa has potentially renoprotective properties, merits further study.

  2. Assessment of Renal Hemodynamics and Oxygenation by Simultaneous Magnetic Resonance Imaging (MRI) and Quantitative Invasive Physiological Measurements.

    PubMed

    Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas

    2016-01-01

    In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.

  3. A theoretical model for optical oximetry at the capillary-level by optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Rongrong; Spicer, Graham; Chen, Siyu; Zhang, Hao F.; Yi, Ji; Backman, Vadim

    2017-02-01

    Oxygen saturation (sO2) of RBCs in capillaries can indirectly assess local tissue oxygenation and metabolic function. For example, the altered retinal oxygenation in diabetic retinopathy and local hypoxia during tumor development in cancer are reflected by abnormal sO2 of local capillary networks. However, it is far from clear whether accurate label-free optical oximetry (i.e. measuring hemoglobin sO2) is feasible from dispersed red blood cells (RBCs) at the single-capillary level. The sO2-dependent hemoglobin absorption contrast present in optical scattering signal is complicated by geometry-dependent scattering from RBCs. Here we provide a theoretical model to calculate the backscattering spectra of single RBCs based on the first-order Born approximation, considering the orientation, size variation, and deformation of RBCs. We show that the oscillatory spectral behavior of RBC geometries is smoothed by variations in cell size and orientation, resulting in clear sO2-dependent spectral contrast. In addition, this spectral contrast persists with different deformations of RBCs, allowing the sO2 of individual RBCs in capillaries to be characterized. The theoretical model is verified by Mie theory and experiments using visible light optical coherence tomography (vis-OCT). Thus, this study shows for the first time the feasibility of, and provides a theoretical model for, label-free optical oximetry at the single-capillary level by backscattering-based imaging modalities, challenging the popular view that such measurements are impossible at the single-capillary level. This is promising for in vivo backscattering-based optical oximetry at the single-capillary level, to measure local capillary sO2 for early diagnosis, progression monitoring, and treatment evaluation of diabetic retinopathy and cancer.

  4. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Optical conductivity of partially oxidized graphene from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasehnia, F., E-mail: f.nasehnia@gmail.com; Seifi, M., E-mail: Seifi@guilan.ac.ir

    2015-07-07

    We investigate the geometry, electronic structure, and optical properties of partially oxidized graphene using density functional theory. Our calculations show that oxygen atoms are chemisorbed on graphene plane and distort carbon atoms vertically, with almost no change in the in-plane structure. The ground state configurations for different oxygen coverages ranging from 2% to 50% (O/C ratio) are calculated and show the strong tendency of oxygen adatoms to aggregate and form discrete islands on graphene plane. It is found that the opened band gap due to oxygen functionalization depends on the oxygen density and the adsorption configuration. The gap is notmore » significant for oxygen densities lower than 8%. The optical conductivities are calculated in the infrared, visible, and ultraviolet regions and show different characteristic features depending on the degree of oxidation. These results imply that optical measurement techniques can be employed to monitor oxidation (or reduction) process as contact-free methods.« less

  6. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy.

    PubMed

    Kulkarni, Aditi C; Kuppusamy, Periannan; Parinandi, Narasimham

    2007-10-01

    Aerobic life has evolved a dependence on molecular oxygen for its mere survival. Mitochondrial oxidative phosphorylation absolutely requires oxygen to generate the currency of energy in aerobes. The physiologic homeostasis of these organisms is strictly maintained by optimal cellular and tissue-oxygenation status through complex oxygen-sensing mechanisms, signaling cascades, and transport processes. In the event of fluctuating oxygen levels leading to either an increase (hyperoxia) or decrease (hypoxia) in cellular oxygen, the organism faces a crisis involving depletion of energy reserves, altered cell-signaling cascades, oxidative reactions/events, and cell death or tissue damage. Molecular oxygen is activated by both nonenzymatic and enzymatic mechanisms into highly reactive oxygen species (ROS). Aerobes have evolved effective antioxidant defenses to counteract the reactivity of ROS. Although the ROS are also required for many normal physiologic functions of the aerobes, overwhelming production of ROS coupled with their insufficient scavenging by endogenous antioxidants will lead to detrimental oxidative stress. Needless to say, molecular oxygen is at the center of oxygenation, oxidative phosphorylation, and oxidative stress. This review focuses on the biology and pathophysiology of oxygen, with an emphasis on transport, sensing, and activation of oxygen, oxidative phosphorylation, oxygenation, oxidative stress, and oxygen therapy.

  7. MODELING ENERGY EXPENDITURE AND OXYGEN CONSUMPTION IN HUMAN EXPOSURE MODELS: ACCOUNTING FOR FATIGUE AND EPOC

    EPA Science Inventory

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  8. Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation

    PubMed Central

    Schütt, Tanja; Kurz, Christopher; Eckert, Schamim H.; Schiller, Carola; Occhipinti, Angelo; Mai, Sören; Jendrach, Marina; Eckert, Gunter P.; Kruse, Shane E.; Palmiter, Richard D.; Brandt, Ulrich; Dröse, Stephan; Wittig, Ilka; Willem, Michael; Haass, Christian; Reichert, Andreas S.; Müller, Walter E.

    2012-01-01

    Abstract Aims: Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. Results: Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. Innovation: We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. Conclusion: Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD. Antioxid. Redox Signal. 16, 1421–1433. PMID:22229260

  9. Hypothalamus, sexual arousal and psychosexual identity in human males: a functional magnetic resonance imaging study.

    PubMed

    Brunetti, M; Babiloni, C; Ferretti, A; Del Gratta, C; Merla, A; Olivetti Belardinelli, M; Romani, G L

    2008-06-01

    In a recent functional magnetic resonance imaging study, a complex neural circuit was shown to be involved in human males during sexual arousal [A. Ferretti et al. (2005) Neuroimage, 26, 1086]. At group level, there was a specific correlation between penile erection and activations in anterior cingulate, insula, amygdala, hypothalamus and secondary somatosensory regions. However, it is well known that there are remarkable inter-individual differences in the psychological view and attitude to sex of human males. Therefore, a crucial issue is the relationship among cerebral responses, sexual arousal and psychosexual identity at individual level. To address this issue, 18 healthy male subjects were recruited. Their deep sexual identity (DSI) was assessed following the construct revalidation by M. Olivetti Belardinelli [(1994) Sci. Contrib. Gen. Psychol., 11, 131] of the Franck drawing completion test, a projective test providing, according to this revalidation, quantitative scores on 'accordance/non-accordance' between self-reported and psychological sexual identity. Cerebral activity was evaluated by means of functional magnetic resonance imaging during hard-core erotic movies and sport movies. Results showed a statistically significant positive correlation between the blood oxygen level-dependent signal in bilateral hypothalamus and the Franck drawing completion test score during erotic movies. The higher the blood oxygen level-dependent activation in bilateral hypothalamus, the higher the male DSI profile. These results suggest that, in male subjects, inter-individual differences in the DSI are strongly correlated with blood flow to the bilateral hypothalamus, a dimorphic brain region deeply implicated in instinctual drives including reproduction.

  10. Molecular Basis of the Bohr Effect in Arthropod Hemocyanin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, S.; Kawahara, T; Beltramini, M

    2008-01-01

    Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, kon, rather than changes in koff. In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observedmore » for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s ? 4pz transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs.« less

  11. Eccentricity mapping of the human visual cortex to evaluate temporal dynamics of functional T1ρ mapping.

    PubMed

    Heo, Hye-Young; Wemmie, John A; Johnson, Casey P; Thedens, Daniel R; Magnotta, Vincent A

    2015-07-01

    Recent experiments suggest that T1 relaxation in the rotating frame (T(1ρ)) is sensitive to metabolism and can detect localized activity-dependent changes in the human visual cortex. Current functional magnetic resonance imaging (fMRI) methods have poor temporal resolution due to delays in the hemodynamic response resulting from neurovascular coupling. Because T(1ρ) is sensitive to factors that can be derived from tissue metabolism, such as pH and glucose concentration via proton exchange, we hypothesized that activity-evoked T(1ρ) changes in visual cortex may occur before the hemodynamic response measured by blood oxygenation level-dependent (BOLD) and arterial spin labeling (ASL) contrast. To test this hypothesis, functional imaging was performed using T(1ρ), BOLD, and ASL in human participants viewing an expanding ring stimulus. We calculated eccentricity phase maps across the occipital cortex for each functional signal and compared the temporal dynamics of T(1ρ) versus BOLD and ASL. The results suggest that T(1ρ) changes precede changes in the two blood flow-dependent measures. These observations indicate that T(1ρ) detects a signal distinct from traditional fMRI contrast methods. In addition, these findings support previous evidence that T(1ρ) is sensitive to factors other than blood flow, volume, or oxygenation. Furthermore, they suggest that tissue metabolism may be driving activity-evoked T(1ρ) changes.

  12. Mitochondrial Respiratory Function Induces Endogenous Hypoxia

    PubMed Central

    Prior, Sara; Kim, Ara; Yoshihara, Toshitada; Tobita, Seiji; Takeuchi, Toshiyuki; Higuchi, Masahiro

    2014-01-01

    Hypoxia influences many key biological functions. In cancer, it is generally believed that hypoxic condition is generated deep inside the tumor because of the lack of oxygen supply. However, consumption of oxygen by cancer should be one of the key means of regulating oxygen concentration to induce hypoxia but has not been well studied. Here, we provide direct evidence of the mitochondrial role in the induction of intracellular hypoxia. We used Acetylacetonatobis [2-(2′-benzothienyl) pyridinato-kN, kC3’] iridium (III) (BTP), a novel oxygen sensor, to detect intracellular hypoxia in living cells via microscopy. The well-differentiated cancer cell lines, LNCaP and MCF-7, showed intracellular hypoxia without exogenous hypoxia in an open environment. This may be caused by high oxygen consumption, low oxygen diffusion in water, and low oxygen incorporation to the cells. In contrast, the poorly-differentiated cancer cell lines: PC-3 and MDAMB231 exhibited intracellular normoxia by low oxygen consumption. The specific complex I inhibitor, rotenone, and the reduction of mitochondrial DNA (mtDNA) content reduced intracellular hypoxia, indicating that intracellular oxygen concentration is regulated by the consumption of oxygen by mitochondria. HIF-1α was activated in endogenously hypoxic LNCaP and the activation was dependent on mitochondrial respiratory function. Intracellular hypoxic status is regulated by glucose by parabolic dose response. The low concentration of glucose (0.045 mg/ml) induced strongest intracellular hypoxia possibly because of the Crabtree effect. Addition of FCS to the media induced intracellular hypoxia in LNCaP, and this effect was partially mimicked by an androgen analog, R1881, and inhibited by the anti-androgen, flutamide. These results indicate that mitochondrial respiratory function determines intracellular hypoxic status and may regulate oxygen-dependent biological functions. PMID:24586439

  13. Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.

    PubMed

    Lavie, Julie; De Belvalet, Harmony; Sonon, Sessinou; Ion, Ana Madalina; Dumon, Elodie; Melser, Su; Lacombe, Didier; Dupuy, Jean-William; Lalou, Claude; Bénard, Giovanni

    2018-06-05

    The ubiquitin proteasome system (UPS) regulates many cellular functions by degrading key proteins. Notably, the role of UPS in regulating mitochondrial metabolic functions is unclear. Here, we show that ubiquitination occurs in different mitochondrial compartments, including the inner mitochondrial membrane, and that turnover of several metabolic proteins is UPS dependent. We specifically detailed mitochondrial ubiquitination and subsequent UPS-dependent degradation of succinate dehydrogenase subunit A (SDHA), which occurred when SDHA was minimally involved in mitochondrial energy metabolism. We demonstrate that SDHA ubiquitination occurs inside the organelle. In addition, we show that the specific inhibition of SDHA degradation by UPS promotes SDHA-dependent oxygen consumption and increases ATP, malate, and citrate levels. These findings suggest that the mitochondrial metabolic machinery is also regulated by the UPS. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Lung development and the host response to influenza A virus are altered by different doses of neonatal oxygen in mice

    PubMed Central

    Buczynski, Bradley W.; Yee, Min; Paige Lawrence, B.

    2012-01-01

    Oxygen exposure in preterm infants has been associated with altered lung development and increased risk for respiratory viral infections later in life. Although the dose of oxygen sufficient to exert these changes in humans remains unknown, adult mice exposed to 100% oxygen between postnatal days 1–4 exhibit alveolar simplification and increased sensitivity to influenza virus infection. Additionally, two nonlinear thresholds of neonatal oxygen exposures were previously identified that promote modest (between 40% and 60% oxygen) and severe (between 80% and 100% oxygen) changes in lung development. Here, we investigate whether these two thresholds correlate with the severity of lung disease following respiratory viral infection. Adult mice exposed to 100% oxygen at birth, and to a lesser extent 80% oxygen, demonstrated enhanced body weight loss, persistent inflammation, and fibrosis following infection compared with infected siblings exposed to room air at birth. In contrast, the host response to infection was indistinguishable between mice exposed to room air and 40% or 60% oxygen. Interestingly, levels of monocyte chemoattractant protein (MCP)-1 were equivalently elevated in infected mice that had been exposed to 80% or 100% oxygen as neonates. However, reducing levels of MCP-1 using heterozygous Mcp-1 mice did not affect oxygen-dependent changes in the response to infection. Thus lung development and the host response to respiratory viral infection are disrupted by different doses of oxygen. Our findings suggest that measuring lung function alone may not be sufficient to identify individuals born prematurely who have increased risk for respiratory viral infection. PMID:22408042

  15. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence.

    PubMed

    Jennewein, Jonas; Matuszak, Jasmin; Walter, Steffi; Felmy, Boas; Gendera, Kathrin; Schatz, Valentin; Nowottny, Monika; Liebsch, Gregor; Hensel, Michael; Hardt, Wolf-Dietrich; Gerlach, Roman G; Jantsch, Jonathan

    2015-12-01

    In Salmonella infection, the Salmonella pathogenicity island-2 (SPI-2)-encoded type three secretion system (T3SS2) is of key importance for systemic disease and survival in host cells. For instance, in the streptomycin-pretreated mouse model SPI-2-dependent Salmonella replication in lamina propria CD11c(-)CXCR1(-) monocytic phagocytes/macrophages (MΦ) is required for the development of colitis. In addition, containment of intracellular Salmonella in the gut critically depends on the antimicrobial effects of the phagocyte NADPH oxidase (PHOX), and possibly type 2 nitric oxide synthase (NOS2). For both antimicrobial enzyme complexes, oxygen is an essential substrate. However, the amount of available oxygen upon enteroinvasive Salmonella infection in the gut tissue and its impact on Salmonella-MΦ interactions was unknown. Therefore, we measured the gut tissue oxygen levels in a model of Salmonella enterocolitis using luminescence two-dimensional in vivo oxygen imaging. We found that gut tissue oxygen levels dropped from ∼78 Torr (∼11% O2) to values of ∼16 Torr (∼2% O2) during infection. Because in vivo virulence of Salmonella depends on the Salmonella survival in MΦ, Salmonella-MΦ interaction was analysed under such low oxygen values. These experiments revealed an increased intracellular replication and survival of wild-type and t3ss2 non-expressing Salmonella. These findings were paralleled by blunted nitric oxide and reactive oxygen species (ROS) production and reduced Salmonella ROS perception. In addition, hypoxia enhanced SPI-2 transcription and translocation of SPI-2-encoded virulence protein. Neither pharmacological blockade of PHOX and NOS2 nor impairment of T3SS2 virulence function alone mimicked the effect of hypoxia on Salmonella replication under normoxic conditions. However, if t3ss2 non-expressing Salmonella were used, hypoxia did not further enhance Salmonella recovery in a PHOX and NOS2-deficient situation. Hence, these data suggest that hypoxia-induced impairment of antimicrobial activity and Salmonella virulence cooperate to allow for enhanced Salmonella replication in MΦ. © 2015 John Wiley & Sons Ltd.

  16. Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature.

    PubMed

    Wang, Jong-Shyan

    2005-01-01

    This study investigated how exercise training and detraining affect the cutaneous microvascular function and the regulatory role of endothelium-dependent dilation in skin vasculature. Ten healthy sedentary subjects cycled on an ergometer at 50% of maximal oxygen uptake (VO(2max)) for 30 min daily, 5 days a week, for 8 weeks, and then detrained for 8 weeks. Plasma nitric oxide (NO) metabolites (nitrite plus nitrate) were measured by a microplate fluorometer. The cutaneous microvascular perfusion responses to six graded levels of iontophoretically applied 1% acetylcholine (ACh) and 1% sodium nitroprusside (SNP) in the forearm skin were determined by laser Doppler. After training, (1) resting heart rate and blood pressure were reduced, whereas VO(2max), skin blood flow and cutaneous vascular conductance to acute exercise were enhanced; (2) plasma NO metabolite levels and ACh-induced cutaneous perfusion were increased; (3) skin vascular responses to SNP did not change significantly. However, detraining reversed these effects on cutaneous microvascular function and plasma NO metabolite levels. The results suggest that endothelium-dependent dilation in skin vasculature is enhanced by moderate exercise training and reversed to the pretraining state with detraining.

  17. Unravelling spatiotemporal tree-ring signals in Mediterranean oaks: a variance-covariance modelling approach of carbon and oxygen isotope ratios.

    PubMed

    Shestakova, Tatiana A; Aguilera, Mònica; Ferrio, Juan Pedro; Gutiérrez, Emilia; Voltas, Jordi

    2014-08-01

    Identifying how physiological responses are structured across environmental gradients is critical to understanding in what manner ecological factors determine tree performance. Here, we investigated the spatiotemporal patterns of signal strength of carbon isotope discrimination (Δ(13)C) and oxygen isotope composition (δ(18)O) for three deciduous oaks (Quercus faginea (Lam.), Q. humilis Mill. and Q. petraea (Matt.) Liebl.) and one evergreen oak (Q. ilex L.) co-occurring in Mediterranean forests along an aridity gradient. We hypothesized that contrasting strategies in response to drought would lead to differential climate sensitivities between functional groups. Such differential sensitivities could result in a contrasting imprint on stable isotopes, depending on whether the spatial or temporal organization of tree-ring signals was analysed. To test these hypotheses, we proposed a mixed modelling framework to group isotopic records into potentially homogeneous subsets according to taxonomic or geographical criteria. To this end, carbon and oxygen isotopes were modelled through different variance-covariance structures for the variability among years (at the temporal level) or sites (at the spatial level). Signal-strength parameters were estimated from the outcome of selected models. We found striking differences between deciduous and evergreen oaks in the organization of their temporal and spatial signals. Therefore, the relationships with climate were examined independently for each functional group. While Q. ilex exhibited a large spatial dependence of isotopic signals on the temperature regime, deciduous oaks showed a greater dependence on precipitation, confirming their higher susceptibility to drought. Such contrasting responses to drought among oak types were also observed at the temporal level (interannual variability), with stronger associations with growing-season water availability in deciduous oaks. Thus, our results indicate that Mediterranean deciduous and evergreen oaks constitute two clearly differentiated functional groups in terms of their carbon and water economies, despite co-existing in a wide range of environments. In contrast, deciduous oaks form a rather homogeneous group in terms of climate sensitivity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Blood oxygen level dependent magnetic resonance imaging for detecting pathological patterns in lupus nephritis patients: a preliminary study using a decision tree model.

    PubMed

    Shi, Huilan; Jia, Junya; Li, Dong; Wei, Li; Shang, Wenya; Zheng, Zhenfeng

    2018-02-09

    Precise renal histopathological diagnosis will guide therapy strategy in patients with lupus nephritis. Blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) has been applicable noninvasive technique in renal disease. This current study was performed to explore whether BOLD MRI could contribute to diagnose renal pathological pattern. Adult patients with lupus nephritis renal pathological diagnosis were recruited for this study. Renal biopsy tissues were assessed based on the lupus nephritis ISN/RPS 2003 classification. The Blood oxygen level dependent magnetic resonance imaging (BOLD-MRI) was used to obtain functional magnetic resonance parameter, R2* values. Several functions of R2* values were calculated and used to construct algorithmic models for renal pathological patterns. In addition, the algorithmic models were compared as to their diagnostic capability. Both Histopathology and BOLD MRI were used to examine a total of twelve patients. Renal pathological patterns included five classes III (including 3 as class III + V) and seven classes IV (including 4 as class IV + V). Three algorithmic models, including decision tree, line discriminant, and logistic regression, were constructed to distinguish the renal pathological pattern of class III and class IV. The sensitivity of the decision tree model was better than that of the line discriminant model (71.87% vs 59.48%, P < 0.001) and inferior to that of the Logistic regression model (71.87% vs 78.71%, P < 0.001). The specificity of decision tree model was equivalent to that of the line discriminant model (63.87% vs 63.73%, P = 0.939) and higher than that of the logistic regression model (63.87% vs 38.0%, P < 0.001). The Area under the ROC curve (AUROCC) of the decision tree model was greater than that of the line discriminant model (0.765 vs 0.629, P < 0.001) and logistic regression model (0.765 vs 0.662, P < 0.001). BOLD MRI is a useful non-invasive imaging technique for the evaluation of lupus nephritis. Decision tree models constructed using functions of R2* values may facilitate the prediction of renal pathological patterns.

  19. Oxygen sensing in intestinal mucosal inflammation.

    PubMed

    Flück, Katharina; Fandrey, Joachim

    2016-01-01

    Hypoxia is a hallmark of chronically inflamed tissue. Hypoxia develops from vascular dysfunction and increased oxygen consumption by infiltrating leukocytes. With respect to inflammatory bowel disease (IBD), hypoxia is likely to be of particular importance: Impairment of the intestinal barrier during IBD allows anoxia from the lumen of the gut to spread to formerly normoxic tissue. In addition, disturbed perfusion of inflamed tissue and a higher oxygen demand of infiltrating immune cells lead to low oxygen levels in inflamed mucosal tissue. Here, cells become hypoxic and must now adapt to this condition. The hypoxia inducible factor (HIF)-1 complex is a key transcription factor for cellular adaption to low oxygen tension. HIF-1 is a heterodimer formed by two subunits: HIF-α (either HIF-1α or HIF-2α) and HIF-1β. Under normoxic conditions, hydroxylation of the HIF-α subunit by specific oxygen-dependent prolyl hydroxylases (PHDs) leads to ubiquitin proteasome-dependent degradation. Under hypoxic conditions, however, PHD activity is inhibited; thus, HIF-α can translocate into the nucleus, dimerize with HIF-1β, and bind to hypoxia-responsive elements of HIF-1 target genes. So far, most studies have addressed the function of HIF-1α in intestinal epithelial cells and the effect of HIF stabilization by PHD inhibitors in murine models of colitis. Furthermore, the role of HIF-1α in immune cells becomes more and more important as T cells or dendritic cells for which HIF-1 is of critical importance are highly involved in the pathogenesis of IBD. This review will summarize the function of HIF-1α and the therapeutic prospects for targeting the HIF pathway in intestinal mucosal inflammation.

  20. Evidence of cortical reorganization of language networks after stroke with subacute Broca's aphasia: a blood oxygenation level dependent-functional magnetic resonance imaging study

    PubMed Central

    Qiu, Wei-hong; Wu, Hui-xiang; Yang, Qing-lu; Kang, Zhuang; Chen, Zhao-cong; Li, Kui; Qiu, Guo-rong; Xie, Chun-qing; Wan, Gui-fang; Chen, Shao-qiong

    2017-01-01

    Aphasia is an acquired language disorder that is a common consequence of stroke. The pathogenesis of the disease is not fully understood, and as a result, current treatment options are not satisfactory. Here, we used blood oxygenation level-dependent functional magnetic resonance imaging to evaluate the activation of bilateral cortices in patients with Broca's aphasia 1 to 3 months after stroke. Our results showed that language expression was associated with multiple brain regions in which the right hemisphere participated in the generation of language. The activation areas in the left hemisphere of aphasia patients were significantly smaller compared with those in healthy adults. The activation frequency, volumes, and intensity in the regions related to language, such as the left inferior frontal gyrus (Broca's area), the left superior temporal gyrus, and the right inferior frontal gyrus (the mirror region of Broca's area), were lower in patients compared with healthy adults. In contrast, activation in the right superior temporal gyrus, the bilateral superior parietal lobule, and the left inferior temporal gyrus was stronger in patients compared with healthy controls. These results suggest that the right inferior frontal gyrus plays a role in the recovery of language function in the subacute stage of stroke-related aphasia by increasing the engagement of related brain areas. PMID:28250756

  1. Modulation of renal oxygenation and perfusion in rat kidney monitored by quantitative diffusion and blood oxygen level dependent magnetic resonance imaging on a clinical 1.5T platform.

    PubMed

    Jerome, Neil P; Boult, Jessica K R; Orton, Matthew R; d'Arcy, James; Collins, David J; Leach, Martin O; Koh, Dow-Mu; Robinson, Simon P

    2016-10-03

    To investigate the combined use of intravoxel incoherent motion (IVIM) diffusion-weighted (DW) and blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI) to assess rat renal function using a 1.5T clinical platform. Multiple b-value DW and BOLD MR images were acquired from adult rats using a parallel clinical coil arrangement, enabling quantitation of the apparent diffusion coefficient (ADC), IVIM-derived diffusion coefficient (D), pseudodiffusion coefficient (D*) and perfusion fraction (f), and the transverse relaxation time T 2 *, for whole kidney, renal cortex, and medulla. Following the acquisition of two baseline datasets to assess measurement repeatability, images were acquired following i.v. administration of hydralazine, furosemide, or angiotensin II for up to 40 min. Excellent repeatability (CoV <10 %) was observed for ADC, D, f and T 2 * measured over the whole kidney. Hydralazine induced a marked and significant (p < 0.05) reduction in whole kidney ADC, D, and T 2 *, and a significant (p < 0.05) increase in D* and f. Furosemide significantly (p < 0.05) increased whole kidney ADC, D, and T 2 *. A more variable response to angiotensin II was determined, with a significant (p < 0.05) increase in medulla D* and significant (p < 0.05) reduction in whole kidney T 2 * established. Multiparametric MRI, incorporating quantitation of IVIM DWI and BOLD biomarkers and performed on a clinical platform, can be used to monitor the acute effects of vascular and tubular modulating drugs on rat kidney function in vivo. Clinical adoption of such functional imaging biomarkers can potentially inform on treatment effects in patients with renal dysfunction.

  2. Hemoglobin Function in Stored Blood.

    DTIC Science & Technology

    1974-08-01

    States during 1973. Several advantages over ACA) are important. Blood stored in CPD maintains higher ./ levels of 2,3-DPG (2,3- diphosphoglycerate ) and a...survival and ATP levels in stored blood is explained by the several functions of ATP which are necessary for cell viability. However, ATP levels do...not correlate with oxygen affinity during storage. Levels of 2,3-DPG determine oxygen affinity and thus hemoglobin function. (12,13) When normal levels

  3. Running, swimming and diving modifies neuroprotecting globins in the mammalian brain

    PubMed Central

    Williams, Terrie M; Zavanelli, Mary; Miller, Melissa A; Goldbeck, Robert A; Morledge, Michael; Casper, Dave; Pabst, D. Ann; McLellan, William; Cantin, Lucas P; Kliger, David S

    2007-01-01

    The vulnerability of the human brain to injury following just a few minutes of oxygen deprivation with submergence contrasts markedly with diving mammals, such as Weddell seals (Leptonychotes weddellii), which can remain underwater for more than 90 min while exhibiting no neurological or behavioural impairment. This response occurs despite exposure to blood oxygen levels concomitant with human unconsciousness. To determine whether such aquatic lifestyles result in unique adaptations for avoiding ischaemic–hypoxic neural damage, we measured the presence of circulating (haemoglobin) and resident (neuroglobin and cytoglobin) oxygen-carrying globins in the cerebral cortex of 16 mammalian species considered terrestrial, swimming or diving specialists. Here we report a striking difference in globin levels depending on activity lifestyle. A nearly 9.5-fold range in haemoglobin concentration (0.17–1.62 g Hb 100 g brain wet wt−1) occurred between terrestrial and deep-diving mammals; a threefold range in resident globins was evident between terrestrial and swimming specialists. Together, these two globin groups provide complementary mechanisms for facilitating oxygen transfer into neural tissues and the potential for protection against reactive oxygen and nitrogen groups. This enables marine mammals to maintain sensory and locomotor neural functions during prolonged submergence, and suggests new avenues for averting oxygen-mediated neural injury in the mammalian brain. PMID:18089537

  4. The impact of including spatially longitudinal heterogeneities of vessel oxygen content and vascular fraction in 3D tumor oxygenation models on predicted radiation sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerlöf, Jakob H., E-mail: Jakob@radfys.gu.se; Kindblom, Jon; Bernhardt, Peter

    2014-04-15

    Purpose: Oxygen distribution models have been used to analyze the influences of oxygen tensions on tissue response after radiotherapy. These distributions are often generated assuming constant oxygen tension in the blood vessels. However, as red blood cells progress through the vessels, oxygen is continuously released into the plasma and the surrounding tissue, resulting in longitudinally varying oxygen levels in the blood vessels. In the present study, the authors investigated whether a tumor oxygenation model that incorporated longitudinally varying oxygen levels would provide different predictions of necrotic fractions and radiosensitivity compared to commonly used models with a constant oxygen pressure. Methods:more » Our models simulated oxygen diffusion based on a Green's function approach and oxygen consumption according to the Michaelis-Menten equation. The authors constructed tumor models with different vascular fractions (VFs), from which they generated depth oxygenation curves and a look-up table of oxygen pressure gradients. The authors evaluated models of spherical tumors of various sizes, from 1 to 10{sup 4} mg. The authors compared the results from a model with constant vessel oxygen (CVO) pressure to those from models with longitudinal variations in oxygen saturation and either a constant VF (CVF) or variable VF (VVF) within the tumor tissue. The authors monitored the necrotic fractions, defined as tumor regions with an oxygen pressure below 1 mmHg. Tumor radiation sensitivity was expressed as D{sub 99,} the homogeneous radiation dose required for a tumor control probability of 0.99. Results: In the CVO saturation model, no necrosis was observed, and decreasing the VF could only decrease the D{sub 99} by up to 10%. Furthermore, the D{sub 99} vs VF dependence was similar for different tumor masses. Compared to the CVO model, the extended CVF and VVF models provided clearly different results, including pronounced effects of VF and tumor size on the necrotic fraction and D{sub 99}, necrotic fractions ranging from 0% to 97%, and a maximal D{sub 99} increment of 57%. Only minor differences were observed between different vessel architectures, i.e., CVF vs VVF. In the smallest tumor with a low necrotic fraction, the D{sub 99} strictly decreased with increasing blood velocity. Increasing blood velocity also decreased the necrotic fraction in all tumor sizes. VF had the most profound influence on both the necrotic fraction and on D{sub 99}. Conclusions: Our present analysis of necrotic formation and the impact of tumor oxygenation on D{sub 99} demonstrated the importance of including longitudinal variations in vessel oxygen content in tumor models. For small tumors, radiosensitivity was particularly dependent on VF and slightly dependent on the blood velocity and vessel arrangement. These dependences decreased with increasing tumor size, because the necrotic fraction also increased, thereby decreasing the number of viable tumor cells that required sterilization. The authors anticipate that the present model will be useful for estimating tumor oxygenation and radiation response in future detailed studies.« less

  5. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    PubMed

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  6. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System.

    PubMed

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-07-21

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system.

  7. FlpS, the FNR-Like Protein of Streptococcus suis Is an Essential, Oxygen-Sensing Activator of the Arginine Deiminase System

    PubMed Central

    Willenborg, Jörg; Koczula, Anna; Fulde, Marcus; de Greeff, Astrid; Beineke, Andreas; Eisenreich, Wolfgang; Huber, Claudia; Seitz, Maren; Valentin-Weigand, Peter; Goethe, Ralph

    2016-01-01

    Streptococcus (S.) suis is a zoonotic pathogen causing septicemia and meningitis in pigs and humans. During infection S. suis must metabolically adapt to extremely diverse environments of the host. CcpA and the FNR family of bacterial transcriptional regulators are important for metabolic gene regulation in various bacteria. The role of CcpA in S. suis is well defined, but the function of the FNR-like protein of S. suis, FlpS, is yet unknown. Transcriptome analyses of wild-type S. suis and a flpS mutant strain suggested that FlpS is involved in the regulation of the central carbon, arginine degradation and nucleotide metabolism. However, isotopologue profiling revealed no substantial changes in the core carbon and amino acid de novo biosynthesis. FlpS was essential for the induction of the arcABC operon of the arginine degrading pathway under aerobic and anaerobic conditions. The arcABC-inducing activity of FlpS could be associated with the level of free oxygen in the culture medium. FlpS was necessary for arcABC-dependent intracellular bacterial survival but redundant in a mice infection model. Based on these results, we propose that the core function of S. suis FlpS is the oxygen-dependent activation of the arginine deiminase system. PMID:27455333

  8. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    PubMed

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  9. Effects of temperature and oxygen on growth and differentiation of embryos of the ground skink, Scincella lateralis.

    PubMed

    Flewelling, Sarena; Parker, Scott L

    2015-08-01

    Development of reptile embryos is dependent upon adequate oxygen availability to meet embryonic metabolic demand. Metabolic rate of embryos is temperature dependent, with oxygen consumption increasing exponentially as a function of temperature. Because metabolic rate is more temperature sensitive than diffusion, developmental processes are predicted to be oxygen-limited at high temperatures. We tested the hypothesis that the amount of development lizard embryos achieve in the oviduct is dependent upon both temperature and oxygen availability. We evaluated the effect of temperature (23, 33°C) and oxygen concentration (9%, 15%, 21% O2 ) on survival and development of embryos of the oviparous skink Scincella lateralis. We predicted that incubation at 33°C under hypoxic conditions would result in higher embryo mortality due to mismatch between embryo oxygen demand and oxygen supply compared to eggs incubated at 23°C under hypoxic conditions. Embryo mortality was highest at 33°C/9% O2 (86%) compared to 23°C/9% O2 (14%), however, mortality did not differ among any other oxygen-temperature treatment combination. Both temperature and oxygen affected differentiation, but the interaction between temperature and oxygen was not significant. Embryo growth in mass and hatchling mass were affected by oxygen concentration independent of temperature treatment. Differing responses of growth and differentiation to temperature and oxygen treatments suggests that somatic growth may be more sensitive to oxygen availability than differentiation. Results indicate that embryo mortality can occur both via the direct effect of high temperature on cellular function as well as indirectly through thermally induced oxygen diffusion limitation. © 2015 Wiley Periodicals, Inc.

  10. Imaging techniques in the management of chronic kidney disease: current developments and future perspectives.

    PubMed

    Herget-Rosenthal, Stefan

    2011-05-01

    The measurement of both renal function and structure is critical in clinical nephrology to detect, stage, and monitor chronic kidney disease (CKD). Current imaging modalities especially ultrasound (US), computed tomography, and magnetic resonance imaging (MRI) provide adequate information on structural changes but little on functional impairment in CKD. Although not yet considered first-line procedures for evaluating patients with renal disease, new US and MR imaging techniques may permit the assessment of renal function in the near future. Combined with established imaging techniques, contrast-enhanced US, dynamic contrast-enhanced MRI, blood oxygen level dependency MRI, or diffusion-weighted imaging may provide rapid, accurate, simultaneous, and noninvasive imaging of the structure of kidneys, macrovascular and microvascular renal perfusion, oxygenation, and glomerular filtration rate. Recent developments in molecular imaging indicate that pathophysiological pathways of renal diseases such as apoptosis, coagulation, fibrosis, and ischemia will be visualized at the tissue level. These major advances in imaging and developments in hardware and software could enable comprehensive imaging of renal structure and function in four dimensions (three dimensions plus time), and imaging is expected to play an increasing role in the management of CKD. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Flickering analysis of erythrocyte mechanical properties: dependence on oxygenation level, cell shape, and hydration level.

    PubMed

    Yoon, Young-Zoon; Hong, Ha; Brown, Aidan; Kim, Dong Chung; Kang, Dae Joon; Lew, Virgilio L; Cicuta, Pietro

    2009-09-16

    Erythrocytes (red blood cells) play an essential role in the respiratory functions of vertebrates, carrying oxygen from lungs to tissues and CO(2) from tissues to lungs. They are mechanically very soft, enabling circulation through small capillaries. The small thermally induced displacements of the membrane provide an important tool in the investigation of the mechanics of the cell membrane. However, despite numerous studies, uncertainties in the interpretation of the data, and in the values derived for the main parameters of cell mechanics, have rendered past conclusions from the fluctuation approach somewhat controversial. Here we revisit the experimental method and theoretical analysis of fluctuations, to adapt them to the case of cell contour fluctuations, which are readily observable experimentally. This enables direct measurements of membrane tension, of bending modulus, and of the viscosity of the cell cytoplasm. Of the various factors that influence the mechanical properties of the cell, we focus here on: 1), the level of oxygenation, as monitored by Raman spectrometry; 2), cell shape; and 3), the concentration of hemoglobin. The results show that, contrary to previous reports, there is no significant difference in cell tension and bending modulus between oxygenated and deoxygenated states, in line with the softness requirement for optimal circulatory flow in both states. On the other hand, tension and bending moduli of discocyte- and spherocyte-shaped cells differ markedly, in both the oxygenated and deoxygenated states. The tension in spherocytes is much higher, consistent with recent theoretical models that describe the transitions between red blood cell shapes as a function of membrane tension. Cell cytoplasmic viscosity is strongly influenced by the hydration state. The implications of these results to circulatory flow dynamics in physiological and pathological conditions are discussed.

  12. Oxygen as a factor in eukaryote evolution - Some effects of low levels of oxygen on Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Jahnke, L.; Klein, H. P.

    1979-01-01

    A comparative study of the effects of varying levels of oxygen on some of the metabolic functions of the primitive eukaryote, Saccharomyces cerevisiae, has shown that these cells are responsive to very low levels of oxygen: the level of palmitoyl-Co A desaturase was greatly enhanced by only 0.03 vol % oxygen. Similarly, an acetyl-CoA synthetase associated predominantly with anaerobic growth was stimulated by as little as 0.1% oxygen, while an isoenzyme correlated with aerobic growth was maximally active at much higher oxygen levels (greater than 1%). Closely following this latter pattern were three mitochondrial enzymes that attained maximal activity only under atmospheric levels of oxygen.

  13. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials.

    PubMed

    Qi, Xuejun; Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite's chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface.

  14. Density functional theory study the effects of oxygen-containing functional groups on oxygen molecules and oxygen atoms adsorbed on carbonaceous materials

    PubMed Central

    Song, Wenwu; Shi, Jianwei

    2017-01-01

    Density functional theory was used to study the effects of different types of oxygen-containing functional groups on the adsorption of oxygen molecules and single active oxygen atoms on carbonaceous materials. During gasification or combustion reactions of carbonaceous materials, oxygen-containing functional groups such as hydroxyl(-OH), carbonyl(-CO), quinone(-O), and carboxyl(-COOH) are often present on the edge of graphite and can affect graphite’s chemical properties. When oxygen-containing functional groups appear on a graphite surface, the oxygen molecules are strongly adsorbed onto the surface to form a four-member ring structure. At the same time, the O-O bond is greatly weakened and easily broken. The adsorption energy value indicates that the adsorption of oxygen molecules changes from physisorption to chemisorption for oxygen-containing functional groups on the edge of a graphite surface. In addition, our results indicate that the adsorption energy depends on the type of oxygen-containing functional group. When a single active oxygen atom is adsorbed on the bridge site of graphite, it gives rise to a stable epoxy structure. Epoxy can cause deformation of the graphite lattice due to the transition of graphite from sp2 to sp3 after the addition of an oxygen atom. For quinone group on the edge of graphite, oxygen atoms react with carbon atoms to form the precursor of CO2. Similarly, the single active oxygen atoms of carbonyl groups can interact with edge carbon atoms to form the precursor of CO2. The results show that oxygen-containing functional groups on graphite surfaces enhance the activity of graphite, which promotes adsorption on the graphite surface. PMID:28301544

  15. Nitrite transport into pig erythrocytes and its potential biological role.

    PubMed

    Jensen, F B

    2005-07-01

    To study nitrite transport and its oxygenation dependency in pig erythrocytes, as this is fundamental to the possible participation of nitrite in blood flow regulation via its reduction to nitric oxide by deoxygenated haemoglobin (Hb). Pig red blood cells (RBCs) were tonometer-equilibrated to physiological pCO2 in oxygenated and deoxygenated states. Nitrite was added and the kinetics of NO2- influx and methaemoglobin (metHb) formation were assessed at variable temperature and haematocrit. Nitrite quickly permeated and equilibrated across the membrane, and then continued to enter RBCs as a consequence of its intracellular removal (via reactions with Hb to form nitrate and metHb in oxygenated cells, and NO and metHb in deoxygenated cells). The membrane permeation as such showed little oxygenation dependency, but as metHb formation was significantly higher in oxygenated than deoxygenated RBCs, nitrite transport tended to be largest into oxygenated RBCs. This contrasts with a preferential permeation of deoxygenated RBCs in some fish species. Nitrite transport showed low temperature sensitivity but was speeded up at low haematocrit via more rapid intracellular nitrite removal (metHb formation). Nitrite influx was not affected by inhibitors of facilitated diffusion (DIDS, phloretin and PCMB) and may occur via conductive transport. Extracellular pH was stable during nitrite transport. Nitrite extensively permeates both oxygenated and deoxygenated pig RBCs, which may enable a dual function of nitrite entry: viz. conversion to NO at low pO2 to promote blood flow and detoxification to non-toxic nitrate at inappropriate high nitrite levels.

  16. Scopolamine provocation-based pharmacological MRI model for testing procognitive agents.

    PubMed

    Hegedűs, Nikolett; Laszy, Judit; Gyertyán, István; Kocsis, Pál; Gajári, Dávid; Dávid, Szabolcs; Deli, Levente; Pozsgay, Zsófia; Tihanyi, Károly

    2015-04-01

    There is a huge unmet need to understand and treat pathological cognitive impairment. The development of disease modifying cognitive enhancers is hindered by the lack of correct pathomechanism and suitable animal models. Most animal models to study cognition and pathology do not fulfil either the predictive validity, face validity or construct validity criteria, and also outcome measures greatly differ from those of human trials. Fortunately, some pharmacological agents such as scopolamine evoke similar effects on cognition and cerebral circulation in rodents and humans and functional MRI enables us to compare cognitive agents directly in different species. In this paper we report the validation of a scopolamine based rodent pharmacological MRI provocation model. The effects of deemed procognitive agents (donepezil, vinpocetine, piracetam, alpha 7 selective cholinergic compounds EVP-6124, PNU-120596) were compared on the blood-oxygen-level dependent responses and also linked to rodent cognitive models. These drugs revealed significant effect on scopolamine induced blood-oxygen-level dependent change except for piracetam. In the water labyrinth test only PNU-120596 did not show a significant effect. This provocational model is suitable for testing procognitive compounds. These functional MR imaging experiments can be paralleled with human studies, which may help reduce the number of false cognitive clinical trials. © The Author(s) 2015.

  17. Stimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex

    PubMed Central

    Bartolo, M J; Gieselmann, M A; Vuksanovic, V; Hunter, D; Sun, L; Chen, X; Delicato, L S; Thiele, A

    2011-01-01

    The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the analysis of the neural basis of the BOLD signal. We show that changes in LFP gamma power and spiking activity in the primary visual cortex (V1) of the awake primate can be dissociated by using grating and plaid pattern stimuli, which differentially engage surround suppression and cross-orientation inhibition/facilitation within and between cortical columns. Grating presentation yielded substantial V1 LFP gamma frequency oscillations and significant multi-unit activity. Plaid pattern presentation significantly reduced the LFP gamma power while increasing population multi-unit activity. The fMRI BOLD activity followed the LFP gamma power changes, not the multi-unit activity. Inference of neuronal activity from the fMRI BOLD signal thus requires detailed a priori knowledge of how different stimuli or tasks activate the cortical network. PMID:22081989

  18. Box-modeling of bone and tooth phosphate oxygen isotope compositions as a function of environmental and physiological parameters.

    PubMed

    Langlois, C; Simon, L; Lécuyer, Ch

    2003-12-01

    A time-dependent box model is developed to calculate oxygen isotope compositions of bone phosphate as a function of environmental and physiological parameters. Input and output oxygen fluxes related to body water and bone reservoirs are scaled to the body mass. The oxygen fluxes are evaluated by stoichiometric scaling to the calcium accretion and resorption rates, assuming a pure hydroxylapatite composition for the bone and tooth mineral. The model shows how the diet composition, body mass, ambient relative humidity and temperature may control the oxygen isotope composition of bone phosphate. The model also computes how bones and teeth record short-term variations in relative humidity, air temperature and delta18O of drinking water, depending on body mass. The documented diversity of oxygen isotope fractionation equations for vertebrates is accounted for by our model when for each specimen the physiological and diet parameters are adjusted in the living range of environmental conditions.

  19. Zolpidem reduces the blood oxygen level-dependent signal during visual system stimulation.

    PubMed

    Licata, Stephanie C; Lowen, Steven B; Trksak, George H; Maclean, Robert R; Lukas, Scott E

    2011-08-15

    Zolpidem is a short-acting imidazopyridine hypnotic that binds at the benzodiazepine binding site on specific GABA(A) receptors to enhance fast inhibitory neurotransmission. The behavioral and receptor pharmacology of zolpidem has been studied extensively, but little is known about its neuronal substrates in vivo. In the present within-subject, double-blind, and placebo-controlled study, blood oxygen level-dependent functional magnetic resonance imaging (BOLD fMRI) at 3 Tesla was used to assess the effects of zolpidem within the brain. Healthy participants (n=12) were scanned 60 min after acute oral administration of zolpidem (0, 5, 10, or 20mg), and changes in BOLD signal were measured in the visual cortex during presentation of a flashing checkerboard. Heart rate and oxygen saturation were monitored continuously throughout the session. Zolpidem (10 and 20mg) reduced the robust visual system activation produced by presentation of this stimulus, but had no effects on physiological activity during the fMRI scan. Zolpidem's modulation of the BOLD signal within the visual cortex is consistent with the abundant distribution of GABA(A) receptors localized in this region, as well as previous studies showing a relationship between increased GABA-mediated neuronal inhibition and a reduction in BOLD activation. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Why do premature newborn infants display elevated blood adenosine levels?

    PubMed

    Panfoli, Isabella; Cassanello, Michela; Bruschettini, Matteo; Colella, Marina; Cerone, Roberto; Ravera, Silvia; Calzia, Daniela; Candiano, Giovanni; Ramenghi, Luca

    2016-05-01

    Our preliminary data show high levels of adenosine in the blood of very low birth weight (VLBW) infants, positively correlating to their prematurity (i.e. body weight class). This prompted us to look for a mechanism promoting such impressive adenosine increase. We hypothesized a correlation with oxygen challenge. In fact, it is recognized that either oxygen lack or its excess contribute to the pathogenesis of the injuries of prematurity, such as retinopathy (ROP) and periventricular white matter lesions (PWMI). The optimal concentration of oxygen for resuscitation of VLBW infants is currently under revision. We propose that the elevated adenosine blood concentrations of VLBW infants recognizes two sources. The first could be its activity-dependent release from unmyelinated brain axons. Adenosine in this respect would be an end-product of the hypometabolic VLBW newborn unmyelinated axon intensely firing in response to the environmental stimuli consequent to premature birth. Adenosine would be eventually found in the blood due to blood-brain barrier immaturity. In fact, adenosine is the primary activity-dependent signal promoting differentiation of premyelinating oligodendrocyte progenitor cells (OPC) into myelinating cells in the Central Nervous System, while inhibiting their proliferation and inhibiting synaptic function. The second, would be the ecto-cellular ATP synthesized by the endothelial cell plasmalemma exposed to ambient oxygen concentrations due to premature breathing, especially in lung. ATP would be rapidly transformed into adenosine by the ectonucleotidase activities such as NTPDase I (CD39), and NT5E (CD73). An ectopic extra-mitochondrial aerobic ATP synthetic ability was reported in many cell plasma-membranes, among which endothelial cells. The potential implications of the cited hypotheses for the neonatology area would be great. The amount of oxygen administration for reviving of newborns would find a molecular basis for its assessment. VLBW infants may be regarded as those in which premature exposure to ambient oxygen concentrations and oxidative stress causes a premature functioning of the extra-mitochondrial oxidative phosphorylation primarily in axons and endothelium. Adenosine may become a biomarker of prematurity risk, whose implications further studies may assess. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate.

    PubMed

    Tyrakis, Petros A; Palazon, Asis; Macias, David; Lee, Kian L; Phan, Anthony T; Veliça, Pedro; You, Jia; Chia, Grace S; Sim, Jingwei; Doedens, Andrew; Abelanet, Alice; Evans, Colin E; Griffiths, John R; Poellinger, Lorenz; Goldrath, Ananda W; Johnson, Randall S

    2016-12-08

    R-2-hydroxyglutarate accumulates to millimolar levels in cancer cells with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both metabolite enantiomers, R- and S-2-hydroxyglutarate, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that 2-hydroxyglutarate accumulates in mouse CD8 + T cells in response to T-cell receptor triggering, and accumulates to millimolar levels in physiological oxygen conditions through a hypoxia-inducible factor 1-alpha (HIF-1α)-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8 + T-cell differentiation in response to this metabolite. Modulation of histone and DNA demethylation, as well as HIF-1α stability, mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8 + T cells. Thus, S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, through a metabolic-epigenetic axis, to immune fate and function.

  2. The immunometabolite S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate

    PubMed Central

    Tyrakis, Petros A.; Palazon, Asis; Macias, David; Lee, Kian. L.; Phan, Anthony. T.; Veliça, Pedro; You, Jia; Chia, Grace S.; Sim, Jingwei; Doedens, Andrew; Abelanet, Alice; Evans, Colin E.; Griffiths, John R.; Poellinger, Lorenz; Goldrath, Ananda. W.; Johnson, Randall S.

    2016-01-01

    R-2-hydroxyglutarate accumulates to millimolar levels in cancers with gain-of-function isocitrate dehydrogenase 1/2 mutations. These levels of R-2-hydroxyglutarate affect 2-oxoglutarate-dependent dioxygenases. Both R- and S-2-hydroxyglutarate, the other enantiomer of this metabolite, are detectible in healthy individuals, yet their physiological function remains elusive. Here we show that CD8+ T-lymphocytes accumulate 2-hydroxyglutarate in response to T-cell receptor triggering. This increases to millimolar levels in physiological oxygen conditions, via a hypoxia inducible factor 1 alpha-dependent mechanism. S-2-hydroxyglutarate predominates over R-2-hydroxyglutarate in activated T cells, and we demonstrate alterations in markers of CD8+ T-lymphocyte differentiation in response to this metabolite. Modulation of histone and DNA demethylation as well as hypoxia inducible factor 1 alpha stability mediate these effects. S-2-hydroxyglutarate treatment greatly enhances the in vivo proliferation, persistence and anti-tumour capacity of adoptively transferred CD8+ T-lymphocytes. Thus S-2-hydroxyglutarate acts as an immunometabolite that links environmental context, via a metabolic-epigenetic axis, to immune fate and function. PMID:27798602

  3. Blood oxygenation level-dependent MRI for assessment of renal oxygenation

    PubMed Central

    Neugarten, Joel; Golestaneh, Ladan

    2014-01-01

    Blood oxygen level-dependent magnetic resonance imaging (BOLD MRI) has recently emerged as an important noninvasive technique to assess intrarenal oxygenation under physiologic and pathophysiologic conditions. Although this tool represents a major addition to our armamentarium of methodologies to investigate the role of hypoxia in the pathogenesis of acute kidney injury and progressive chronic kidney disease, numerous technical limitations confound interpretation of data derived from this approach. BOLD MRI has been utilized to assess intrarenal oxygenation in numerous experimental models of kidney disease and in human subjects with diabetic and nondiabetic chronic kidney disease, acute kidney injury, renal allograft rejection, contrast-associated nephropathy, and obstructive uropathy. However, confidence in conclusions based on data derived from BOLD MRI measurements will require continuing advances and technical refinements in the use of this technique. PMID:25473304

  4. Dose Dependent Effects of Reactive Oxygen and Nitrogen Species on the Function of Neuronal Nitric Oxide Synthase

    PubMed Central

    Sun, Jian; Druhan, Lawrence J.; Zweier, Jay L.

    2014-01-01

    Reactive nitrogen species (RNS) and oxygen species (ROS) have been reported to modulate the function of nitric oxide synthase (NOS); however, the precise dosedependent effects of specific RNS and ROS on NOS function are unknown. Questions remain unanswered regarding whether pathophysiological levels of RNS and ROS alter NOS function, and if this alteration is reversible. We measured the effects of peroxynitrite (ONOO-), superoxide (O2.-), hydroxyl radical (.OH), and H2O2 on nNOS activity. The results showed that NO production was inhibited in a dose-dependent manner by all four oxidants, but only O2.- and ONOO- were inhibitory at pathophysiological concentrations (≤ 50 μM). Subsequent addition of tetrahydrobiopterin (BH4) fully restored activity after O2.- exposure, while BH4 partially rescued the activity decrease induced by the other three oxidants. Furthermore, treatment with either ONOO- or O2.- stimulated nNOS uncoupling with decreased NO and enhanced O2.- generation. Thus, nNOS is reversibly uncoupled by O2.- (≤ 50 μM), but irreversibly uncoupled and inactivated by ONOO-. Additionally, we observed that the mechanism by which oxidative stress alters nNOS activity involves not only BH4 oxidation, but also nNOS monomerization as well as possible degradation of the heme. PMID:18201545

  5. Mitochondrial Redox Signaling and Tumor Progression.

    PubMed

    Chen, Yuxin; Zhang, Haiqing; Zhou, Huanjiao Jenny; Ji, Weidong; Min, Wang

    2016-03-25

    Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as "tumor suppressors" or prevent excessive ROS to act as "tumor promoter". Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.

  6. Oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during Salmonella typhimurium infection.

    PubMed

    Jung, Bock-Gie; Lee, Jin-A; Lee, Bong-Joo

    2012-12-01

    It has been considered that drinking oxygenated water improves oxygen availability, which may increase vitality and improve immune functions. The present study evaluated the effects of oxygenated drinking water on immune function in pigs. Continuous drinking of oxygenated water markedly increased peripheral blood mononuclear cell proliferation, interleukin-1β expression level and the CD4(+):CD8(+) cell ratio in pigs. During Salmonella Typhimurium infection, total leukocytes and relative cytokines expression levels were significantly increased in pigs consuming oxygenated water compared with pigs consuming tap water. These findings suggest that oxygenated drinking water enhances immune activity in pigs and increases immune responses of pigs during S. Typhimurium Infection.

  7. A prospective functional MRI study for executive function in patients with systemic lupus erythematosus without neuropsychiatric symptoms.

    PubMed

    Mak, Anselm; Ren, Tao; Fu, Erin Hui-yun; Cheak, Alicia Ai-cia; Ho, Roger Chun-man

    2012-06-01

    To study the functional brain activation signals before and after sufficient disease control in patients with systemic lupus erythematosus (SLE) without clinical neuropsychiatric symptoms. Blood-oxygen-level-dependent signals during event-related functional magnetic resonance imaging brain were recorded, while 14 new-onset SLE patients and 14 demographically and intelligence quotient matched healthy controls performed the computer-based Wisconsin card sorting test for assessing executive function, which probes strategic planning and goal-directed task performance during feedback evaluation (FE) and response selection (RS), respectively. Composite beta maps were constructed by a general linear model to identify regions of cortical activation. Blood-oxygen-level-dependent functional magnetic resonance imaging signals were compared between (1) new-onset SLE patients and healthy controls and (2) SLE patients before and after sufficient control of their disease activity. During RS, SLE patients demonstrated significantly higher activation than healthy controls in both caudate bodies and Brodmann area (BA) 9 to enhance event anticipation, attention, and working memory, respectively, to compensate for the reduced activation during FE in BA6, 13, 24, and 32, which serve complex motor planning and decision-making, sensory integration, error detection, and conflict processing, respectively. Despite significant reduction of SLE activity, BA32 was activated during RS to compensate for reduced activation during FE in BA6, 9, 37, and 23/32, which serve motor planning, response inhibition and attention, color processing and word recognition, error detection, and conflict evaluation, respectively. Even without clinically overt neuropsychiatric symptoms, SLE patients recruited additional pathways to execute goal-directed tasks to compensate for their reduced strategic planning skill despite clinically sufficient disease control. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Multispectral fundus imaging for early detection of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Beach, James M.; Tiedeman, James S.; Hopkins, Mark F.; Sabharwal, Yashvinder S.

    1999-04-01

    Functional imaging of the retina and associated structures may provide information for early assessment of risks of developing retinopathy in diabetic patients. Here we show results of retinal oximetry performed using multi-spectral reflectance imaging techniques to assess hemoglobin (Hb) oxygen saturation (OS) in blood vessels of the inner retina and oxygen utilization at the optic nerve in diabetic patients without retinopathy and early disease during experimental hyperglycemia. Retinal images were obtained through a fundus camera and simultaneously recorded at up to four wavelengths using image-splitting modules coupled to a digital camera. Changes in OS in large retinal vessels, in average OS in disk tissue, and in the reduced state of cytochrome oxidase (CO) at the disk were determined from changes in reflectance associated with the oxidation/reduction states of Hb and CO. Step to high sugar lowered venous oxygen saturation to a degree dependent on disease duration. Moderate increase in sugar produced higher levels of reduced CO in both the disk and surrounding tissue without a detectable change in average tissue OS. Results suggest that regulation of retinal blood supply and oxygen consumption are altered by hyperglycemia and that such functional changes are present before clinical signs of retinopathy.

  9. The Not-So-Global Blood Oxygen Level-Dependent Signal.

    PubMed

    Billings, Jacob; Keilholz, Shella

    2018-04-01

    Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.

  10. Pericellular oxygen concentration of cultured primary human trophoblasts

    PubMed Central

    Chen, Baosheng; Longtine, Mark S.; Nelson, D. Michael

    2012-01-01

    Introduction Oxygen is pivotal in placental development and function. In vitro culture of human trophoblasts provides a useful model to study this phenomenon, but a hotly debated issue is whether or not the oxygen tension of the culture conditions mimics in vivo conditions. We tested the hypothesis that ambient oxygen tensions in culture reflect the pericellular oxygen levels. Methods We used a microelectrode oxygen sensor to measure the concentration of dissolved oxygen in the culture medium equilibrated with 21%, 8% or <0.5% oxygen. Results The concentration of oxygen in medium without cells resembled that in the ambient atmosphere. The oxygen concentration present in medium bathing trophoblasts was remarkably dependent on the depth within the medium where sampling occurred, and the oxygen concentration within the overlying atmosphere was not reflected in medium immediately adjacent to the cells. Indeed, the pericellular oxygen concentration was in a range that most would consider severe hypoxia, at ≤ 0.6% oxygen or about 4.6 mm Hg, when the overlying atmosphere was 21% oxygen. Conclusions We conclude that culture conditions of 21% oxygen are unable to replicate the pO2 of 40–60 mm Hg commonly attributed to the maternal blood in the intervillous space in the second and third trimesters of pregnancy. We further surmise that oxygen atmospheres in culture conditions between 0.5% and 21% provide different oxygen fluxes in the immediate pericellular environment yet can still yield insights into the responses of human trophoblast to different oxygen conditions. PMID:23211472

  11. MR OEF imaging in MELAS.

    PubMed

    Xie, Sheng

    2014-01-01

    Oxygen extraction fraction (OEF) is defined as the ratio of blood oxygen that a tissue takes from the blood flow to maintain function and morphological integrity. OEF reflects the efficiency of oxygen utilization by the tissue and, therefore, is a hemodynamic measure in brain ischemia. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a common mitochondrial disorder. It is characterized by neurological remissions and relapses and associated with progressive neurocognitive deficits. Because of abnormalities of mitochondrial function in MELAS, defects in the oxidative metabolic pathways of energy production decrease the cerebral oxygen utilization and lead to the reduction of OEF. Quantification of OEF can reflect the functional status of cerebral mitochondria and provide insight into the pathophysiological changes in the brain in MELAS. In light of recent advances in MRI, the discovery of the blood-oxygen level-dependent signal has allowed development of MRI methods targeted toward quantitative OEF imaging. A new MR sequence, termed the gradient-echo sampling of spin echo, was successfully developed to enable quantitative assessment of the OEF in the brain tissue. MR OEF imaging in patients with MELAS detects extensive OEF reduction in the stroke-like lesions, as well as in the normal-appearing brain regions. More severe dysfunction of the mitochondria in the stroke-like lesions was implied at the onset of the stroke-like episode. Determination of OEF throughout the episode demonstrated a chronological change in mitochondrial function in individual cases. Such neuroimaging findings might provide some clues in the investigation of the underlying mechanisms of stroke-like episodes.

  12. Temperature-dependent endogenous oxygen concentration regulates microsomal oleate desaturase in developing sunflower seeds.

    PubMed

    Rolletschek, Hardy; Borisjuk, Ljudmilla; Sánchez-García, Alicia; Gotor, Cecilia; Romero, Luis C; Martínez-Rivas, José M; Mancha, Manuel

    2007-01-01

    Oleoyl-phosphatidylcholine desaturase (FAD2) is a key enzyme involved in fatty acid desaturation in oilseeds, which is affected by environmental temperature. The results of this study show that FAD2 is regulated in vivo via temperature-dependent endogenous oxygen concentrations in developing sunflower (Helianthus annuus L.) seeds. By combining in vivo oxygen profiling, in situ hybridization of FAD2 genes, an assay of energy status, fatty acid analysis, and an in vitro FAD2 enzyme activity assay, it is shown that: (i) the oil-storing embryo is characterized by a very low oxygen level that is developmentally regulated. Oxygen supply is mainly limited by the thin seed coat. (ii) Elevations of external oxygen supply raised the energy status of seed and produced a dramatic increase of the FAD2 enzyme activity as well as the linoleic acid content. (iii) A clear negative correlation exists between temperature and internal oxygen concentration. The changes occurred almost instantly and the effect was fully reversible. The results indicate that the internal oxygen level acts as a key regulator for the activity of the FAD2 enzyme. It is concluded that a major mechanism by which temperature modifies the unsaturation degree of the sunflower oil is through its effect on dissolved oxygen levels in the developing seed.

  13. Tracking the Oxygen Status in the Cell Nucleus with a Hoechst-Tagged Phosphorescent Ruthenium Complex.

    PubMed

    Hara, Daiki; Umehara, Yui; Son, Aoi; Asahi, Wataru; Misu, Sotaro; Kurihara, Ryohsuke; Kondo, Teruyuki; Tanabe, Kazuhito

    2018-05-04

    Molecular oxygen in living cells is distributed and consumed inhomogeneously, depending on the activity of each organelle. Therefore, tractable methods that can be used to monitor the oxygen status in each organelle are needed to understand cellular function. Here we report the design of a new oxygen-sensing probe for use in the cell nucleus. We prepared "Ru-Hoechsts", each consisting of a phosphorescent ruthenium complex linked to a Hoechst 33258 moiety, and characterized their properties as oxygen sensors. The Hoechst unit shows strong DNA-binding properties in the nucleus, and the ruthenium complex shows oxygen-dependent phosphorescence. Thus, Ru-Hoechsts accumulated in the cell nucleus and showed oxygen-dependent signals that could be monitored. Of the Ru-Hoechsts prepared in this study, Ru-Hoechst b, in which the ruthenium complex and the Hoechst unit were linked through a hexyl chain, showed the most suitable properties for monitoring the oxygen status. Ru-Hoechsts are probes with high potential for visualizing oxygen fluctuations in the nucleus. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer's disease.

    PubMed

    Warsi, Mohammed A; Molloy, William; Noseworthy, Michael D

    2012-10-01

    To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy ((1)H-MRS), in Alzheimer's disease (AD) and healthy age-matched normal controls (NC). High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with (1)H-MRS findings. Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = -0.45, P = 0.012). Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.

  15. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

    PubMed

    Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A

    2014-04-01

    Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.

  16. Functional interactions of HIV-infection and methamphetamine dependence during motor programming.

    PubMed

    Archibald, Sarah L; Jacobson, Mark W; Fennema-Notestine, Christine; Ogasawara, Miki; Woods, Steven P; Letendre, Scott; Grant, Igor; Jernigan, Terry L

    2012-04-30

    Methamphetamine (METH) dependence is frequently comorbid with HIV infection and both have been linked to alterations of brain structure and function. In a previous study, we showed that the brain volume loss characteristic of HIV infection contrasts with METH-related volume increases in striatum and parietal cortex, suggesting distinct neurobiological responses to HIV and METH (Jernigan et al., 2005). Functional magnetic resonance imaging (fMRI) has the potential to reveal functional interactions between the effects of HIV and METH. In the present study, 50 participants were studied in four groups: an HIV+ group, a recently METH-dependent group, a dually affected group, and a group of unaffected community comparison subjects. An fMRI paradigm consisting of motor sequencing tasks of varying levels of complexity was administered to examine blood oxygenation level dependent (BOLD) changes. Within all groups, activity increased significantly with increasing task complexity in large clusters within sensorimotor and parietal cortex, basal ganglia, cerebellum, and cingulate. The task complexity effect was regressed on HIV status, METH status, and the HIV×METH interaction term in a simultaneous multiple regression. HIV was associated with less complexity-related activation in striatum, whereas METH was associated with less complexity-related activation in parietal regions. Significant interaction effects were observed in both cortical and subcortical regions; and, contrary to expectations, the complexity-related activation was less aberrant in dually affected than in single risk participants, in spite of comparable levels of neurocognitive impairment among the clinical groups. Thus, HIV and METH dependence, perhaps through their effects on dopaminergic systems, may have opposing functional effects on neural circuits involved in motor programming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Brain magnetic resonance imaging with contrast dependent on blood oxygenation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, S.; Lee, T.M.; Kay, A.R.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less

  18. Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation

    NASA Astrophysics Data System (ADS)

    Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.

    1990-12-01

    Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.

  19. Maximum Oxygen Uptake Determination in Insulin-Dependent Diabetes Mellitus.

    ERIC Educational Resources Information Center

    Fremion, Amy S.; And Others

    1987-01-01

    A study of 10 children with insulin-dependent diabetes mellitus performing a maximum-effort cycling test indicated blood glucose levels did not change appreciably during test, while maximal oxygen uptake was substandard for their age groups. Findings suggest patients in fair to poor metabolic control can tolerate stress testing without…

  20. Pretreatment Differences in BOLD Response to Emotional Faces Correlate with Antidepressant Response to Scopolamine.

    PubMed

    Furey, Maura L; Drevets, Wayne C; Szczepanik, Joanna; Khanna, Ashish; Nugent, Allison; Zarate, Carlos A

    2015-03-28

    Faster acting antidepressants and biomarkers that predict treatment response are needed to facilitate the development of more effective treatments for patients with major depressive disorders. Here, we evaluate implicitly and explicitly processed emotional faces using neuroimaging to identify potential biomarkers of treatment response to the antimuscarinic, scopolamine. Healthy participants (n=15) and unmedicated-depressed major depressive disorder patients (n=16) participated in a double-blind, placebo-controlled crossover infusion study using scopolamine (4 μg/kg). Before and following scopolamine, blood oxygen-level dependent signal was measured using functional MRI during a selective attention task. Two stimuli comprised of superimposed pictures of faces and houses were presented. Participants attended to one stimulus component and performed a matching task. Face emotion was modulated (happy/sad) creating implicit (attend-houses) and explicit (attend-faces) emotion processing conditions. The pretreatment difference in blood oxygen-level dependent response to happy and sad faces under implicit and explicit conditions (emotion processing biases) within a-priori regions of interest was correlated with subsequent treatment response in major depressive disorder. Correlations were observed exclusively during implicit emotion processing in the regions of interest, which included the subgenual anterior cingulate (P<.02) and middle occipital cortices (P<.02). The magnitude and direction of differential blood oxygen-level- dependent response to implicitly processed emotional faces prior to treatment reflect the potential to respond to scopolamine. These findings replicate earlier results, highlighting the potential for pretreatment neural activity in the middle occipital cortices and subgenual anterior cingulate to inform us about the potential to respond clinically to scopolamine. Published by Oxford University Press on behalf of CINP 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. [Functional magnetic resonance imaging in psychiatry and psychotherapy].

    PubMed

    Derntl, B; Habel, U; Schneider, F

    2010-01-01

    technical improvements, functional magnetic resonance imaging (fMRI) has become the most popular and versatile imaging method in psychiatric research. The scope of this manuscript is to briefly introduce the basics of MR physics, the blood oxygenation level-dependent (BOLD) contrast as well as the principles of MR study design and functional data analysis. The presentation of exemplary studies on emotion recognition and empathy in schizophrenia patients will highlight the importance of MR methods in psychiatry. Finally, we will demonstrate insights into new developments that will further boost MR techniques in clinical research and will help to gain more insight into dysfunctional neural networks underlying cognitive and emotional deficits in psychiatric patients. Moreover, some techniques such as neurofeedback seem promising for evaluation of therapy effects on a behavioral and neural level.

  2. Intermittent hypoxia promotes recovery of respiratory motor function in spinal cord-injured mice depleted of serotonin in the central nervous system.

    PubMed

    Komnenov, Dragana; Solarewicz, Julia Z; Afzal, Fareeza; Nantwi, Kwaku D; Kuhn, Donald M; Mateika, Jason H

    2016-08-01

    We examined the effect of repeated daily exposure to intermittent hypoxia (IH) on the recovery of respiratory and limb motor function in mice genetically depleted of central nervous system serotonin. Electroencephalography, diaphragm activity, ventilation, core body temperature, and limb mobility were measured in spontaneously breathing wild-type (Tph2(+/+)) and tryptophan hydroxylase 2 knockout (Tph2(-/-)) mice. Following a C2 hemisection, the mice were exposed daily to IH (i.e., twelve 4-min episodes of 10% oxygen interspersed with 4-min normoxic periods followed by a 90-min end-recovery period) or normoxia (i.e., sham protocol, 21% oxygen) for 10 consecutive days. Diaphragm activity recovered to prehemisection levels in the Tph2(+/+) and Tph2(-/-) mice following exposure to IH but not normoxia [Tph2(+/+) 1.3 ± 0.2 (SE) vs. 0.3 ± 0.2; Tph2(-/-) 1.06 ± 0.1 vs. 0.3 ± 0.1, standardized to prehemisection values, P < 0.01]. Likewise, recovery of tidal volume and breathing frequency was evident, although breathing frequency values did not return to prehemisection levels within the time frame of the protocol. Partial recovery of limb motor function was also evident 2 wk after spinal cord hemisection. However, recovery was not dependent on IH or the presence of serotonin in the central nervous system. We conclude that IH promotes recovery of respiratory function but not basic motor tasks. Moreover, we conclude that spontaneous or treatment-induced recovery of respiratory and motor limb function is not dependent on serotonin in the central nervous system in a mouse model of spinal cord injury.

  3. Effect of molecular side groups and local nanoenvironment on photodegradation and its reversibility

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Li, Mark; Tollefsen, Ryan; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2018-02-01

    Degradation of organic semiconductors in the presence of oxygen is one of the bottlenecks preventing their wide-spread use in optoelectronic devices. The first step towards such degradation in functionalized pentacene (Pn) derivatives is formation of endoperoxide (EPO), which can either revert back to the parent molecule or proceed to molecule decomposition. We present the study of reversibility of EPO formation through probing the photophysical properties of functionalized fluorinated pentacene (Pn-R-F8) derivatives. Experiments are done in solutions and in films both at the single molecule level and in the bulk. In solutions, degradation of optical absorption and its partial recovery after thermolysis were quantified for various derivatives depending on the solvent. At the single molecule level, low concentrations of each type of molecules were imaged in a variety of polymer matrices at 633 nm excitation at room temperature in air using wide-field fluorescence microscopy. Fluorescence time trajectories were collected and statistically analyzed to quantify blinking due to reversible EPO formation depending on the host matrix. To understand the physical changes of the molecular system, a Monte Carlo method was used to create a multi-level simulation, which enabled us to relate the change in the molecular transition rates to the experimentally measured parameters. At the bulk level, photoluminescence decay due to photobleaching and recovery due to EPO reconversion were measured for the same derivatives incorporated into various matrices. These studies provide insight into the synergistic effect of the local nanoenvironment and molecular side groups on the oxygen-related degradation and subsequent recovery which is important for development of organic electronic devices.

  4. The functional interplay between the HIF pathway and the ubiquitin system - more than a one-way road.

    PubMed

    Günter, Julia; Ruiz-Serrano, Amalia; Pickel, Christina; Wenger, Roland H; Scholz, Carsten C

    2017-07-15

    The hypoxia inducible factor (HIF) pathway and the ubiquitin system represent major cellular processes that are involved in the regulation of a plethora of cellular signaling pathways and tissue functions. The ubiquitin system controls the ubiquitination of proteins, which is the covalent linkage of one or several ubiquitin molecules to specific targets. This ubiquitination is catalyzed by approximately 1000 different E3 ubiquitin ligases and can lead to different effects, depending on the type of internal ubiquitin chain linkage. The best-studied function is the targeting of proteins for proteasomal degradation. The activity of E3 ligases is antagonized by proteins called deubiquitinases (or deubiquitinating enzymes), which negatively regulate ubiquitin chains. This is performed in most cases by the catalytic removal of these chains from the targeted protein. The HIF pathway is regulated in an oxygen-dependent manner by oxygen-sensing hydroxylases. Covalent modification of HIFα subunits leads to the recruitment of an E3 ligase complex via the von Hippel-Lindau (VHL) protein and the subsequent polyubiquitination and proteasomal degradation of HIFα subunits, demonstrating the regulation of the HIF pathway by the ubiquitin system. This unidirectional effect of an E3 ligase on the HIF pathway is the best-studied example for the interplay between these two important cellular processes. However, additional regulatory mechanisms of the HIF pathway through the ubiquitin system are emerging and, more recently, also the reciprocal regulation of the ubiquitin system through components of the HIF pathway. Understanding these mechanisms and their relevance for the activity of each other is of major importance for the comprehensive elucidation of the oxygen-dependent regulation of cellular processes. This review describes the current knowledge of the functional bidirectional interplay between the HIF pathway and the ubiquitin system on the protein level. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Developmental control of hypoxia during bud burst in grapevine.

    PubMed

    Meitha, Karlia; Agudelo-Romero, Patricia; Signorelli, Santiago; Gibbs, Daniel J; Considine, John A; Foyer, Christine H; Considine, Michael J

    2018-05-01

    Dormant or quiescent buds of woody perennials are often dense and in the case of grapevine (Vitis vinifera L.) have a low tissue oxygen status. The precise timing of the decision to resume growth is difficult to predict, but once committed, the increase in tissue oxygen status is rapid and developmentally regulated. Here, we show that more than a third of the grapevine homologues of widely conserved hypoxia-responsive genes and nearly a fifth of all grapevine genes possessing a plant hypoxia-responsive promoter element were differentially regulated during bud burst, in apparent harmony with resumption of meristem identity and cell-cycle gene regulation. We then investigated the molecular and biochemical properties of the grapevine ERF-VII homologues, which in other species are oxygen labile and function in transcriptional regulation of hypoxia-responsive genes. Each of the 3 VvERF-VIIs were substrates for oxygen-dependent proteolysis in vitro, as a function of the N-terminal cysteine. Collectively, these data support an important developmental function of oxygen-dependent signalling in determining the timing and effective coordination bud burst in grapevine. In addition, novel regulators, including GASA-, TCP-, MYB3R-, PLT-, and WUS-like transcription factors, were identified as hallmarks of the orderly and functional resumption of growth following quiescence in buds. © 2018 John Wiley & Sons Ltd.

  6. BOLD magnetic resonance imaging in nephrology

    PubMed Central

    Hall, Michael E; Jordan, Jennifer H; Juncos, Luis A; Hundley, W Gregory; Hall, John E

    2018-01-01

    Magnetic resonance (MR) imaging, a non-invasive modality that provides anatomic and physiologic information, is increasingly used for diagnosis of pathophysiologic conditions and for understanding renal physiology in humans. Although functional MR imaging methods were pioneered to investigate the brain, they also offer powerful techniques for investigation of other organ systems such as the kidneys. However, imaging the kidneys provides unique challenges due to potential complications from contrast agents. Therefore, development of non-contrast techniques to study kidney anatomy and physiology is important. Blood oxygen level-dependent (BOLD) MR is a non-contrast imaging technique that provides functional information related to renal tissue oxygenation in various pathophysiologic conditions. Here we discuss technical considerations, clinical uses and future directions for use of BOLD MR as well as complementary MR techniques to better understand renal pathophysiology. Our intent is to summarize kidney BOLD MR applications for the clinician rather than focusing on the complex physical challenges that functional MR imaging encompasses; however, we briefly discuss some of those issues. PMID:29559807

  7. A density functional theory study of the magnetic exchange coupling in dinuclear manganese(II) inverse crown structures.

    PubMed

    Vélez, Ederley; Alberola, Antonio; Polo, Víctor

    2009-12-17

    The magnetic exchange coupling constants between two Mn(II) centers for a set of five inverse crown structures have been investigated by means of a methodology based on broken-symmetry unrestricted density functional theory. These novel and highly unstable compounds present superexchange interactions between two Mn centers, each one with S = 5/2 through anionic "guests" such as oxygen, benzene, or hydrides or through the cationic ring formed by amide ligands and alkali metals (Na, Li). Magnetic exchange couplings calculated at B3LYP/6-31G(d,p) level yield strong antiferromagnetic couplings for compounds linked via an oxygen atom or hydride and very small antiferromagnetic couplings for those linked via a benzene molecule, deprotonated in either 1,4- or 1,3- positions. Analysis of the magnetic orbitals and spin polarization maps provide an understanding of the exchange mechanism between the Mn centers. The dependence of J with respect to 10 different density functional theory potentials employed and the basis set has been analyzed.

  8. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

    PubMed Central

    Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.

    2014-01-01

    Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499

  9. Calibrated imaging reveals altered grey matter metabolism related to white matter microstructure and symptom severity in multiple sclerosis.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe P; Ouyang, Minhui; Himes, Lyndahl; Thomas, Binu P; Hutchison, Joanna L; Faghihahmadabadi, Shawheen; Davis, Scott L; Strain, Jeremy F; Spence, Jeffrey; Krawczyk, Daniel C; Huang, Hao; Lu, Hanzhang; Hart, John; Frohman, Teresa C; Frohman, Elliot M; Okuda, Darin T; Rypma, Bart

    2017-11-01

    Multiple sclerosis (MS) involves damage to white matter microstructures. This damage has been related to grey matter function as measured by standard, physiologically-nonspecific neuroimaging indices (i.e., blood-oxygen-level dependent signal [BOLD]). Here, we used calibrated functional magnetic resonance imaging and diffusion tensor imaging to examine the extent to which specific, evoked grey matter physiological processes were associated with white matter diffusion in MS. Evoked changes in BOLD, cerebral blood flow (CBF), and oxygen metabolism (CMRO 2 ) were measured in visual cortex. Individual differences in the diffusion tensor measure, radial diffusivity, within occipital tracts were strongly associated with MS patients' BOLD and CMRO 2 . However, these relationships were in opposite directions, complicating the interpretation of the relationship between BOLD and white matter microstructural damage in MS. CMRO 2 was strongly associated with individual differences in patients' fatigue and neurological disability, suggesting that alterations to evoked oxygen metabolic processes may be taken as a marker for primary symptoms of MS. This work demonstrates the first application of calibrated and diffusion imaging together and details the first application of calibrated functional MRI in a neurological population. Results lend support for neuroenergetic hypotheses of MS pathophysiology and provide an initial demonstration of the utility of evoked oxygen metabolism signals for neurology research. Hum Brain Mapp 38:5375-5390, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. High oxygen partial pressure increases photodynamic effect on HeLa cell lines in the presence of chloraluminium phthalocyanine.

    PubMed

    Bajgar, Robert; Kolarova, Hana; Bolek, Lukas; Binder, Svatopluk; Pizova, Klara; Hanakova, Adela

    2014-08-01

    Photodynamic therapy (PDT) is linked with oxidative damage of biomolecules causing significant impairment of essential cellular functions that lead to cell death. It is the reason why photodynamic therapy has found application in treatment of different oncological, cardiovascular, skin and eye diseases. Efficacy of PDT depends on combined action of three components; sensitizer, light and oxygen. In the present study, we examined whether higher partial pressure of oxygen increases lethality in HeLa cell lines exposed to light in the presence of chloraluminium phthalocyanine disulfonate (ClAlPcS2). ClAlPcS2- sensitized HeLa cells incubated under different oxygen conditions were exposed to PDT. Production of singlet oxygen ((1)O2) and other forms of reactive oxygen species (ROS) as well as changes in mitochondrial membrane potential were determined by appropriately sensitive fluorescence probes. The effect of PDT on HeLa cell viability under different oxygen conditions was quantified using the standard methylthiazol tetrazolium (MTT) test. At the highest oxygen concentration of 28 ± 2 mg/l HeLa cells were significantly more sensitive to light-activated ClAlPcS2 (EC50=0.29 ± 0.05 μM) in comparison to cells incubated at lower oxygen concentrations of 8 ± 0.5 and 0.5 ± 0.1 mg/l, where the half maximal effective concentration was 0.42 ± 0.06 μM and 0.94 ± 0.14 μM, respectively. Moreover, we found that the higher presence of oxygen is accompanied with higher production of singlet oxygen, a higher rate of type II photodynamic reactions, and a significant drop in the mitochondrial membrane potential. These results demonstrate that the photodynamic effect in cervical cancer cells utilizing ClAlPcS2 significantly depends on oxygen level. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Hypoxia and hypoxia-inducible factor (HIF) downregulate antigen-presenting MHC class I molecules limiting tumor cell recognition by T cells

    PubMed Central

    Nguyen, Thao; Hatfield, Stephen M.; Ohta, Akio; Sitkovsky, Michail V.

    2017-01-01

    Human cancers are known to downregulate Major Histocompatibility Complex (MHC) class I expression thereby escaping recognition and rejection by anti-tumor T cells. Here we report that oxygen tension in the tumor microenvironment (TME) serves as an extrinsic cue that regulates antigen presentation by MHC class I molecules. In support of this view, hypoxia is shown to negatively regulate MHC expression in a HIF-dependent manner as evidenced by (i) lower MHC expression in the hypoxic TME in vivo and in hypoxic 3-dimensional (3D) but not 2-dimensional (2D) tumor cell cultures in vitro; (ii) decreased MHC in human renal cell carcinomas with constitutive expression of HIF due to genetic loss of von Hippel-Lindau (VHL) function as compared with isogenically paired cells with restored VHL function, and iii) increased MHC in tumor cells with siRNA-mediated knockdown of HIF. In addition, hypoxia downregulated antigen presenting proteins like TAP 1/2 and LMP7 that are known to have a dominant role in surface display of peptide-MHC complexes. Corroborating oxygen-dependent regulation of MHC antigen presentation, hyperoxia (60% oxygen) transcriptionally upregulated MHC expression and increased levels of TAP2, LMP2 and 7. In conclusion, this study reveals a novel mechanism by which intra-tumoral hypoxia and HIF can potentiate immune escape. It also suggests the use of hyperoxia to improve tumor cell-based cancer vaccines and for mining novel immune epitopes. Furthermore, this study highlights the advantage of 3D cell cultures in reproducing hypoxia-dependent changes observed in the TME. PMID:29155844

  12. Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Park, Jeen-Woo

    2003-03-01

    Singlet oxygen (1O2) is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules. Recently, we have shown that NADP+-dependent isocitrate dehydrogenase is involved in the supply of NADPH needed for GSH production against cellular oxidative damage. In this study, we investigated the role of cytosolic form of NADP+-dependent isocitrate dehydrogenase (IDPc) against singlet oxygen-induced cytotoxicity by comparing the relative degree of cellular responses in three different NIH3T3 cells with stable transfection with the cDNA for mouse IDPc in sense and antisense orientations, where IDPc activities were 2.3-fold higher and 39% lower, respectively, than that in the parental cells carrying the vector alone. Upon exposure to singlet oxygen generated from photoactivated dye, the cells with low levels of IDPc became more sensitive to cell killing. Lipid peroxidation, protein oxidation, oxidative DNA damage and intracellular peroxide generation were higher in the cell-line expressing the lower level of IDPc. However, the cells with the highly over-expressed IDPc exhibited enhanced resistance against singlet oxygen, compared to the control cells. The data indicate that IDPc plays an important role in cellular defense against singlet oxygen-induced oxidative injury.

  13. Orbital-Dependent Density Functionals for Chemical Catalysis

    DTIC Science & Technology

    2014-10-17

    noncollinear density functional theory to show that the low-spin state of Mn3 in a model of the oxygen -evolving complex of photosystem II avoids...DK, which denotes the cc-pV5Z-DK basis set for 3d metals and hydrogen and the ma-cc- pV5Z-DK basis set for oxygen ) and to nonrelativistic all...cc-pV5Z basis set for oxygen ). As compared to NCBS-DK results, all ECP calculations perform worse than def2-TZVP all-electron relativistic

  14. Size-dependent cytotoxicity of yttrium oxide nanoparticles on primary osteoblasts in vitro

    NASA Astrophysics Data System (ADS)

    Zhou, Guoqiang; Li, Yunfei; Ma, Yanyan; Liu, Zhu; Cao, Lili; Wang, Da; Liu, Sudan; Xu, Wenshi; Wang, Wenying

    2016-05-01

    Yttrium oxide nanoparticles are an excellent host material for the rare earth metals and have high luminescence efficiency providing a potential application in photodynamic therapy and biological imaging. In this study, the effects of yttrium oxide nanoparticles with four different sizes were investigated using primary osteoblasts in vitro. The results demonstrated that the cytotoxicity generated by yttrium oxide nanoparticles depended on the particle size, and smaller particles possessed higher toxicological effects. For the purpose to elucidate the relationship between reactive oxygen species generation and cell damage, cytomembrane integrity, intracellular reactive oxygen species level, mitochondrial membrane potential, cell apoptosis rate, and activity of caspase-3 in cells were then measured. Increased reactive oxygen species level was also observed in a size-dependent way. Thus, our data demonstrated that exposure to yttrium oxide nanoparticles resulted in a size-dependent cytotoxicity in cultured primary osteoblasts, and reactive oxygen species generation should be one possible damage pathway for the toxicological effects produced by yttrium oxide particles. The results may provide useful information for more rational applications of yttrium oxide nanoparticles in the future.

  15. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance.

    PubMed

    Barvitenko, Nadezhda N; Adragna, Norma C; Weber, Roy E

    2005-01-01

    Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate. Copyright 2005 S. Karger AG, Basel.

  16. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, Daniel; Pettersson, Lars G. M., E-mail: Lars.Pettersson@fysik.su.se; Wikfeldt, K. Thor

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collectivemore » character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ∼13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ∼20 K.« less

  17. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.

    Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less

  18. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    NASA Astrophysics Data System (ADS)

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; Benmore, Chris J.; Nilsson, Anders; Pettersson, Lars G. M.

    2016-08-01

    We analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates a collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ˜13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ˜20 K.

  19. The temperature dependence of intermediate range oxygen-oxygen correlations in liquid water

    DOE PAGES

    Schlesinger, Daniel; Wikfeldt, K. Thor; Skinner, Lawrie B.; ...

    2016-08-25

    Here, we analyze the recent temperature dependent oxygen-oxygen pair-distribution functions from experimental high-precision x-ray diffraction data of bulk water by Skinner et al. [J. Chem. Phys. 141, 214507 (2014)] with particular focus on the intermediate range where small, but significant, correlations are found out to 17 Å. The second peak in the pair-distribution function at 4.5 Å is connected to tetrahedral coordination and was shown by Skinner et al. to change behavior with temperature below the temperature of minimum isothermal compressibility. Here we show that this is associated also with a peak growing at 11 Å which strongly indicates amore » collective character of fluctuations leading to the enhanced compressibility at lower temperatures. We note that the peak at ~13.2 Å exhibits a temperature dependence similar to that of the density with a maximum close to 277 K or 4 °C. We analyze simulations of the TIP4P/2005 water model in the same manner and find excellent agreement between simulations and experiment albeit with a temperature shift of ~20 K.« less

  20. CORRECTING ENERGY EXPENDITURES FOR FATIGUE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION

    EPA Science Inventory

    The EPA's human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the individual's current level of physical activity (PA), which is determined from activity diaries selected from the Conso...

  1. Investigating the dependence of BOLD contrast on oxidative metabolism.

    PubMed

    Schwarzbauer, C; Heinke, W

    1999-03-01

    Most functional magnetic resonance imaging (fMRI) studies are based on measuring the changes in the blood oxygenation level-dependent (BOLD) contrast that arise from a complex interplay between cerebral hemodynamics and oxidative metabolism. To separate these effects, we consecutively applied two different stimuli: visual stimulation (black/white checkerboard alternating with a frequency of 8 Hz) and hypercapnia (inspiration of 5% CO2). Changes in cerebral blood flow (deltaCBF) and the effective transverse relaxation time (T2*) were measured in an interleaved manner by combining a previously described spin-labeling technique with BOLD-based fMRI. In six healthy volunteers, T2* was significantly longer during hypercapnia than during visual stimulation, whereas the corresponding deltaCBF values were the same at the given level of significance (P<0.01). This finding is explained by a significant increase in oxygen consumption under visual stimulation. The average T2* changes in the visual cortex related to cerebral hemodynamics and oxidative metabolism were 10.6+/-3.0% and -4.7+/-1.2%, respectively, resulting in a net increase of 5.9+/-2.3%. Although the hemodynamic effect is dominant, the increase in oxidative metabolism gives rise to a significant decrease in BOLD contrast. The calculated average change in the cerebral metabolic rate of oxygen (CMRO2), 4.4+/-1.1% (N = 6), is in excellent agreement with previous results obtained by positron emission tomography.

  2. fMRI: blood oxygen level-dependent activation during a working memory-selective attention task in children born extremely preterm.

    PubMed

    Griffiths, Silja Torvik; Gundersen, Hilde; Neto, Emanuel; Elgen, Irene; Markestad, Trond; Aukland, Stein M; Hugdahl, Kenneth

    2013-08-01

    Extremely preterm (EPT)/extremely low-birth-weight (ELBW) children attaining school age and adolescence often have problems with executive functions such as working memory and selective attention. Our aim was to investigate a hypothesized difference in blood oxygen level-dependent (BOLD) activation during a selective attention-working memory task in EPT/ELBW children as compared with term-born controls. A regional cohort of 28 EPT/ELBW children and 28 term-born controls underwent functional magnetic resonance imaging (fMRI) scanning at 11 y of age while performing a combined Stroop n-back task. Group differences in BOLD activation were analyzed with Statistical Parametric Mapping 8 analysis software package, and reaction times (RTs) and response accuracy (RA) were compared in a multifactorial ANOVA test. The BOLD activation pattern in the preterm group involved the same areas (cingulate, prefrontal, and parietal cortexes), but all areas displayed significantly less activation than those in the control group, particularly when the cognitive load was increased. The RA results corresponded with the activation data in that the preterm group had significantly fewer correct responses. No group difference was found regarding RTs. Children born EPT/ELBW displayed reduced working memory and selective attention capacity as compared with term-born controls. These impairments had neuronal correlates with reduced BOLD activation in areas responsible for online stimulus monitoring, working memory, and cognitive control.

  3. Association between glutamate/glutamine and blood oxygen level dependent signal in the left dorsolateral prefrontal region during verbal working memory.

    PubMed

    Vijayakumari, Anupa A; Thomas, Bejoy; Menon, Ramshekhar N; Kesavadas, Chandrasekharan

    2018-04-11

    Functional MRI (fMRI) has provided much insight into the changes in the neuronal activity on the basis of blood oxygen level dependent (BOLD) phenomenon. The dynamic changes in the metabolites can be detected using functional proton magnetic resonance spectroscopy (H-fMRS). The strategy of combining fMRI and H-fMRS would facilitate the understanding of the neurochemical interpretation of the BOLD signal. The dorsolateral prefrontal region is critically involved in the processing of working memory (WM), as demonstrated by the studies involving the neuroimaging, neuropsychological, and electrophysiological experiments. In this study, we tested the association between BOLD signal and changes in brain metabolites in the left dorsolateral prefrontal region using N-back verbal WM task. We used single-voxel task-based H-MRS acquired in the left dorsolateral prefrontal region and fMRI during the performance of N-back verbal WM task to investigate the association between changes in metabolites and BOLD response in 10 healthy participants. The correlation between changes in metabolites and percent signal change was examined by the Pearson correlation. The Pearson correlation analysis revealed a significant positive correlation between the BOLD signal and glutamate/glutamine in the left dorsolateral prefrontal region during the verbal WM. Our finding suggests that glutamate/glutamine cycle plays a critical role in the neuronal activation as reflected by the changes in the BOLD response.

  4. Concentration-dependent Sildenafil citrate (Viagra) effects on ROS production, energy status, and human sperm function.

    PubMed

    Sousa, Maria Inês; Amaral, Sandra; Tavares, Renata Santos; Paiva, Carla; Ramalho-Santos, João

    2014-04-01

    Literature regarding the effects of sildenafil citrate on sperm function remains controversial. In the present study, we specifically wanted to determine if mitochondrial dysfunction, namely membrane potential, reactive oxygen species production, and changes in energy content, are involved in in vitro sildenafil-induced alterations of human sperm function. Sperm samples of healthy men were incubated in the presence of 0.03, 0.3, and 3 μM sildenafil citrate in a phosphate buffered saline (PBS)-based medium for 2, 3, 12, and 24 hours. Sperm motility and viability were evaluated and mitochondrial function, i.e., mitochondrial membrane potential and mitochondrial superoxide production were assessed using flow-cytometry. Additionally, adenosine triphosphate (ATP) levels were determined by high performance liquid chromatography (HPLC) analysis. Results show a decrease in sperm motility correlated with the level of mitochondria-generated superoxide, without a visible effect on mitochondrial membrane potential or viability upon exposure to sildenafil. The effect on both motility and superoxide production was higher for the intermediate concentration of sildenafil (0.3 µM) indicating that the in vitro effects of sildenafil on human sperm do not vary linearly with drug concentration. Adenosine triphosphate levels also decreased following sildenafil exposure, but this decrease was only detected after a decrease in motility was already evident. These results suggest that along with the level of ATP and mitochondrial function other factors are involved in the early sildenafil-mediated decline in sperm motility. However, the further decrease in ATP levels and increase in mitochondria-generated reactive oxygen species after 24 hours of exposure might further contribute towards declining sperm motility.

  5. Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival.

    PubMed

    Sørensen, Christina; Munday, Philip L; Nilsson, Göran E

    2014-03-01

    The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here, we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e., the capacity for surviving severe hypoxia) may determine present-day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral-dwelling gobies, Gobiodon histrio, and G. erythrospilus, with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40'S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). In contrast, the more equatorial species (G. histrio) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32-33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. © 2013 John Wiley & Sons Ltd.

  6. Nitric oxide-mediated suppression of 2,3-bisphosphoglycerate synthesis: therapeutic relevance for environmental hypoxia and sickle cell disease.

    PubMed

    Bertrand, R

    2012-09-01

    Though hemoglobin (Hb) is best known for transporting oxygen and metabolic wastes throughout the circulatory system, this erythrocyte protein also acts as a hypoxic sensor, its oxygen saturation dependent on the oxygen partial pressure (pO(2)) which varies throughout the vasculature. The production and transport of the endogenous vasodilator nitric oxide (NO) by Hb is dependent on Hb's oxygen saturation, thereby allowing the protein to auto-regulate blood flow efficiency to meet the relative demands of respiring tissues. Erythrocyte concentrations of 2,3-bisphosphoglycerate (BPG), an enhancer of oxygen off-loading from Hb, is very sensitive to changes in glycolytic rates because its synthesis by BPG synthase is dependent on the availability of the glycolytic intermediate 1,3-bisphosphoglycerate. BPG synthase, as well as some glycolytic enzymes, are also very sensitive to pH changes, and variations in BPG levels have direct consequences on the oxygen off-loading function of Hb. I hypothesize that NO may suppress BPG production by (1) inhibiting glyceraldehyde-3-phosphate dehydrogenase (G3PDH), the most critical glycolytic enzyme for the bioavailability of 1,3-bisphosphoglycerate; and to a lesser extent by (2) associated pH changes in the deoxy-Hb-catalyzed depletion of nitrite, a metabolic reservoir of NO. Both mechanisms are favored in low pO(2) environments where BPG is most needed to maximize oxygen off-loading, indicating that the auto-regulatory link between NO and Hb may have inadvertently linked Hb and BPG synthesis in an unfavorable manner. However, for reasons discussed, NO-mediated suppression of BPG may be advantageous in some circumstances; namely, for individuals living at high altitudes and those with the blood disorder sickle cell anemia. This hypothesis is thus relevant to respiratory health under both normative conditions as well as under hypoxic stress. The potential relevance of the hypothesis to comparative animal physiology and evolutionary biology is also briefly described. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Critical soil conditions for oxygen stress to plant roots: Substituting the Feddes-function by a process-based model

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2008-10-01

    SummaryEffects of insufficient soil aeration on the functioning of plants form an important field of research. A well-known and frequently used utility to express oxygen stress experienced by plants is the Feddes-function. This function reduces root water uptake linearly between two constant pressure heads, representing threshold values for minimum and maximum oxygen deficiency. However, the correctness of this expression has never been evaluated and constant critical values for oxygen stress are likely to be inappropriate. On theoretical grounds it is expected that oxygen stress depends on various abiotic and biotic factors. In this paper, we propose a fundamentally different approach to assess oxygen stress: we built a plant physiological and soil physical process-based model to calculate the minimum gas filled porosity of the soil ( ϕgas_min) at which oxygen stress occurs. First, we calculated the minimum oxygen concentration in the gas phase of the soil needed to sustain the roots through (micro-scale) diffusion with just enough oxygen to respire. Subsequently, ϕgas_min that corresponds to this minimum oxygen concentration was calculated from diffusion from the atmosphere through the soil (macro-scale). We analyzed the validity of constant critical values to represent oxygen stress in terms of ϕgas_min, based on model simulations in which we distinguished different soil types and in which we varied temperature, organic matter content, soil depth and plant characteristics. Furthermore, in order to compare our model results with the Feddes-function, we linked root oxygen stress to root water uptake (through the sink term variable F, which is the ratio of actual and potential uptake). The simulations showed that ϕgas_min is especially sensitive to soil temperature, plant characteristics (root dry weight and maintenance respiration coefficient) and soil depth but hardly to soil organic matter content. Moreover, ϕgas_min varied considerably between soil types and was larger in sandy soils than in clayey soils. We demonstrated that F of the Feddes-function indeed decreases approximately linearly, but that actual oxygen stress already starts at drier conditions than according to the Feddes-function. How much drier is depended on the factors indicated above. Thus, the Feddes-function might cause large errors in the prediction of transpiration reduction and growth reduction through oxygen stress. We made our method easily accessible to others by implementing it in SWAP, a user-friendly soil water model that is coupled to plant growth. Since constant values for ϕgas_min in plant and hydrological modeling appeared to be inappropriate, an integrated approach, including both physiological and physical processes, should be used instead. Therefore, we advocate using our method in all situations where oxygen stress could occur.

  8. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  9. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  10. Lactate and Pyruvate Are Major Sources of Energy for Stallion Sperm with Dose Effects on Mitochondrial Function, Motility, and ROS Production.

    PubMed

    Darr, Christa R; Varner, Dickson D; Teague, Sheila; Cortopassi, Gino A; Datta, Sandipan; Meyers, Stuart A

    2016-08-01

    Stallion sperm rely primarily on oxidative phosphorylation for production of ATP used in sperm motility and metabolism. The objective of the study was to identify which substrates included in Biggers, Whitten, and Whittingham (BWW) media are key to optimal mitochondrial function through measurements of sperm motility parameters, mitochondrial oxygen consumption, and cellular reactive oxygen species (ROS) production. It was expected that mitochondrial substrates, pyruvate and lactate, would support sperm motility and mitochondrial function better than the glycolytic substrate, glucose, due to direct utilization within the mitochondria. Measurements were performed after incubation in modified BWW media with varying concentrations of lactate, pyruvate, and glucose. The effects of media and duration of incubation on sperm motility, ROS production, and oxygen consumption were determined using a linear mixed-effects model. Duplicate ejaculates from four stallions were used in three separate experiments to determine the effects of substrate availability and concentration on sperm motility and mitochondrial function and the relationship of oxygen consumption with cellular ROS production. The present results indicate that lactate and pyruvate are the most important sources of energy for stallion sperm motility and velocity, and elicit a dose-dependent response. Additionally, lactate and pyruvate are ideal for maximal mitochondrial function, as sperm in these media operate at a very high level of their bioenergetic capability due to the high rate of energy metabolism. Moreover, we found that addition of glucose to the media is not necessary for short-term storage of equine sperm, and may even result in reduction of mitochondrial function. Finally, we have confirmed that ROS production can be the result of mitochondrial dysfunction as well as intense mitochondrial activity. © 2016 by the Society for the Study of Reproduction, Inc.

  11. Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type

    PubMed Central

    Menning, Sanne; de Ruiter, Michiel B.; Veltman, Dick J.; Boogerd, Willem; Oldenburg, Hester S. A.; Reneman, Liesbeth

    2017-01-01

    Background Cognitive problems in breast cancer patients are common after systemic treatment, particularly chemotherapy. An increasing number of fMRI studies show altered brain activation in breast cancer patients after treatment, suggestive of neurotoxicity. Previous prospective fMRI studies administered a single cognitive task. The current study employed two task paradigms to evaluate whether treatment-induced changes depend on the probed cognitive domain. Methods Participants were breast cancer patients scheduled to receive systemic treatment (anthracycline-based chemotherapy +/- endocrine treatment, n = 28), or no systemic treatment (n = 24) and no-cancer controls (n = 31). Assessment took place before adjuvant treatment and six months after chemotherapy, or at similar intervals. Blood oxygen level dependent (BOLD) activation and performance were measured during an executive functioning task and an episodic memory task. Group-by-time interactions were analyzed using a flexible factorial design. Results Task performance did not differ between patient groups and did not change over time. Breast cancer patients who received systemic treatment, however, showed increased parietal activation compared to baseline with increasing executive functioning task load compared to breast cancer patients who did not receive systemic treatment. This hyperactivation was accompanied by worse physical functioning, higher levels of fatigue and more cognitive complaints. In contrast, in breast cancer patients who did not receive systemic treatment, parietal activation normalized over time compared to the other two groups. Conclusions Parietal hyperactivation after systemic treatment in the context of stable levels of executive task performance is compatible with a compensatory processing account of hyperactivation or maintain adequate performance levels. This over-recruitment of brain regions depends on the probed cognitive domain and may represent a response to decreased neural integrity after systemic treatment. Overall these results suggest different neurobehavioral trajectories in breast cancer patients depending on treatment type. PMID:28267750

  12. Changes in brain activation in breast cancer patients depend on cognitive domain and treatment type.

    PubMed

    Menning, Sanne; de Ruiter, Michiel B; Veltman, Dick J; Boogerd, Willem; Oldenburg, Hester S A; Reneman, Liesbeth; Schagen, Sanne B

    2017-01-01

    Cognitive problems in breast cancer patients are common after systemic treatment, particularly chemotherapy. An increasing number of fMRI studies show altered brain activation in breast cancer patients after treatment, suggestive of neurotoxicity. Previous prospective fMRI studies administered a single cognitive task. The current study employed two task paradigms to evaluate whether treatment-induced changes depend on the probed cognitive domain. Participants were breast cancer patients scheduled to receive systemic treatment (anthracycline-based chemotherapy +/- endocrine treatment, n = 28), or no systemic treatment (n = 24) and no-cancer controls (n = 31). Assessment took place before adjuvant treatment and six months after chemotherapy, or at similar intervals. Blood oxygen level dependent (BOLD) activation and performance were measured during an executive functioning task and an episodic memory task. Group-by-time interactions were analyzed using a flexible factorial design. Task performance did not differ between patient groups and did not change over time. Breast cancer patients who received systemic treatment, however, showed increased parietal activation compared to baseline with increasing executive functioning task load compared to breast cancer patients who did not receive systemic treatment. This hyperactivation was accompanied by worse physical functioning, higher levels of fatigue and more cognitive complaints. In contrast, in breast cancer patients who did not receive systemic treatment, parietal activation normalized over time compared to the other two groups. Parietal hyperactivation after systemic treatment in the context of stable levels of executive task performance is compatible with a compensatory processing account of hyperactivation or maintain adequate performance levels. This over-recruitment of brain regions depends on the probed cognitive domain and may represent a response to decreased neural integrity after systemic treatment. Overall these results suggest different neurobehavioral trajectories in breast cancer patients depending on treatment type.

  13. Human circulatory responses to prolonged hyperbaric hyperoxia in Predictive Studies V

    NASA Technical Reports Server (NTRS)

    Pisarello, J. B.; Clark, J. M.; Lambertsen, C. J.; Gelfand, R.

    1987-01-01

    Selected results of cardiocirculatory measurements in healthy volunteers who breathed 100 percent O2 continuously at 3.0 ATA for up to 3.5 hr, at 2.5 ATA for up to 6.0 hr, at 2.0 ATA for up to 11.9 hr, and at 1.5 ATA for up to 19.0 hr are reported. The results indicate that resting hemodynamic responses to prolonged hyperbaric oxygen breathing in man usually consist of small deviations from normal sea-level responses. Rapid onset of bradycardia occurred at all four oxygen pressures investigated. This effect was accompanied by a rate-dependent reduction in cardiac output and a degree of systematic vasoconstriction which were small in magnitude and appeared to be functionally unimportant.

  14. [The level of superoxide dismutase expression in primary and metastatic colorectal cancer cells in hypoxia and tissue normoxia].

    PubMed

    Skrzycki, Michał; Czeczot, Hanna; Chrzanowska, Alicja; Otto-Ślusarczyk, Dagmara

    2015-11-01

    Superoxide oxidase (SOD) is a key antioxidant enzyme protecting cells against oxidative stress, which might induce cancerogenesis. In tumor cells SOD influences the level of the reactive oxygen species (ROS) allowing for survival and proliferation. High rate of cells proliferation in tumor leads to their temporary hypoxia due to lower rate of angiogenesis. Therefore during tumor development, cancer cells function in conditions of hypoxia or tissue normoxia. The aim of study was to evaluate of SOD isoenzymes (SOD1 and SOD2) expression level in cell lines of primary (SW 480) and metastatic (SW 620) colorectal cancer, cultured in hypoxia (1% oxygen), tissue normoxia (10% oxygen), and atmospheric normoxia (21% oxygen). Cells were cultured in MEM medium in different oxygen concentrations (1%, 10%, 21%) in hypoxic chamber with oxygenation regulator. The number of living cells in lines SW 480 and 620 was determined by trypan blue method. Expression of SOD1 and SOD2 at the mRNA level was determined by RT-PCR and PCR. In both studied cell lines (SW 480 and SW 620), the number of living cells (viability) was increased in hypoxia and atmospheric normoxia. The expression level of SOD1 and SOD2 in studied cell lines was different. The lowest level of expression of both SOD isoenzymes was observed in hypoxia. In conditions of atmospheric normoxia the expression level of SOD1 in SW480 cell line was increased, and similar in SW620 cell line comparing to tissue normoxia. Whereas the SOD2 expression level in atmospheric normoxia conditions in both cell lines was significantly increased. Observed differences were statistically significant (p ≤ 0,05). The profile of expression of SOD1 and SOD2 in cell lines SW480 and SW620 indicates differentiated response of tumor cells depending on access to oxygen. Low level of SOD isoenzymes expression in SW480 and SW620 cells in hypoxia indicates decreased production of ROS. Differences of SOD isoenzymes expression level in tissue normoxia indicate their compensatory action, allowing to maintain the balance between O₂- removal and H₂O₂production in studied tumor cells. In atmospheric normoxia conditions increased expression level of SOD1 and SOD2 observed in studied cell lines points to oxidative stress. © 2015 MEDPRESS.

  15. Effects of glucose and oxygen on arginine metabolism by coagulase-negative staphylococci.

    PubMed

    Sánchez Mainar, María; Matheuse, Fréderick; De Vuyst, Luc; Leroy, Frédéric

    2017-08-01

    Coagulase-negative staphylococci (CNS) are not only part of the desirable microbiota of fermented meat products but also commonly inhabit skin and flesh wounds. Their proliferation depends on the versatility to use energy sources and the adaptation to fluctuating environmental parameters. In this study, the conversion of the amino acid arginine by two strains with arginine deiminase (ADI) activity (Staphylococcus carnosus 833 and S. pasteuri αs3-13) and a strain with nitric oxide synthase (NOS) activity (S. haemolyticus G110) was modelled as a function of glucose and oxygen availability. Both factors moderately inhibited the ADI-based conversion kinetics, never leading to full repression. However, for NOS-driven conversion of arginine by S. haemolyticus G110, oxygen was an absolute requirement. When changing from microaerobic conditions to aerobiosis, a switch from homolactic fermentation to a combined formation of lactic acid, acetic acid, and acetoin was found in all cases, after which lactic acid and acetic acid were used as substrates. The kinetic model proposed provided a suitable description of the data of glucose and arginine co-metabolism as a function of oxygen levels and may serve as a tool to further analyse the behaviour of staphylococci in different ecosystems or when applying specific food processing conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Magnetic Resonance Imaging Measurement of Transmission of Arterial Pulsation to the Brain on Propranolol Versus Amlodipine.

    PubMed

    Webb, Alastair J S; Rothwell, Peter M

    2016-06-01

    Cerebral arterial pulsatility is associated with leukoaraiosis and depends on central arterial pulsatility and arterial stiffness. The effect of antihypertensive drugs on transmission of central arterial pulsatility to the cerebral circulation is unknown, partly because of limited methods of assessment. In a technique-development pilot study, 10 healthy volunteers were randomized to crossover treatment with amlodipine and propranolol. At baseline and on each drug, we assessed aortic (Sphygmocor) and middle cerebral artery pulsatility (TCDtranscranial ultrasound). We also performed whole-brain, 3-tesla multiband blood-oxygen level dependent magnetic resonance imaging (multiband factor 6, repetition time=0.43s), concurrent with a novel method of continuous noninvasive blood pressure monitoring. Drug effects on relationships between cardiac cycle variation in blood pressure and blood-oxygen level dependent imaging were determined (fMRI Expert Analysis Tool, fMRIB Software Library [FEAT-FSL]). Aortic pulsatility was similar on amlodipine (27.3 mm Hg) and propranolol (27.9 mm Hg, P diff=0.33), while MCA pulsatility increased nonsignificantly more from baseline on propranolol (+6%; P=0.09) than amlodipine (+1.5%; P=0.58). On magnetic resonance imaging, cardiac frequency blood pressure variations were found to be significantly more strongly associated with blood-oxygen level dependent imaging on propranolol than amlodipine. We piloted a novel method of assessment of arterial pulsatility with concurrent high-frequency blood-oxygen level dependent magnetic resonance imaging and noninvasive blood pressure monitoring. This method was able to identify greater transmission of aortic pulsation on propranolol than amlodipine, which warrants further investigation. © 2016 American Heart Association, Inc.

  17. Aberrant function of learning and cognitive control networks underlie inefficient cognitive flexibility in anorexia nervosa: a cross-sectional fMRI study.

    PubMed

    Lao-Kaim, Nick P; Fonville, Leon; Giampietro, Vincent P; Williams, Steven C R; Simmons, Andrew; Tchanturia, Kate

    2015-01-01

    People with Anorexia Nervosa exhibit difficulties flexibly adjusting behaviour in response to environmental changes. This has previously been attributed to problematic behavioural shifting, characterised by a decrease in fronto-striatal activity. Additionally, alterations of instrumental learning, which relies on fronto-striatal networks, may contribute to the observation of inflexible behaviour. The authors sought to investigate the neural correlates of cognitive flexibility and learning in Anorexia Nervosa. Thirty-two adult females with Anorexia Nervosa and thirty-two age-matched female control participants completed the Wisconsin Card Sorting Task whilst undergoing functional magnetic resonance imaging. Event-related analysis permitted the comparison of cognitive shift trials against those requiring maintenance of rule-sets and allowed assessment of trials representing learning. Although both groups performed similarly, we found significant interactions in the left middle frontal gyrus, precuneus and superior parietal lobule whereby blood-oxygenated-level dependent response was higher in Anorexia Nervosa patients during shifting but lower when maintaining rule-sets, as compared to healthy controls. During learning, posterior cingulate cortex activity in healthy controls decreased whilst increasing in the Anorexia Nervosa group, whereas the right precuneus exhibited the opposite pattern. Furthermore, learning was associated with lower blood-oxygenated-level dependent response in the caudate body, as compared to healthy controls. People with Anorexia Nervosa display widespread changes in executive function. Whilst cognitive flexibility appears to be associated with aberrant functioning of the fronto-parietal control network that mediates between internally and externally directed cognition, fronto-striatal alterations, particularly within the caudate body, were associated with instrumental learning. Together, this shows how perseverative tendencies could be a substrate of multiple high-order processes that may contribute to the maintenance of Anorexia Nervosa.

  18. Cerebral interstitial tissue oxygen tension, pH, HCO3, CO2.

    PubMed

    Charbel, F T; Hoffman, W E; Misra, M; Hannigan, K; Ausman, J I

    1997-10-01

    There are many techniques for monitoring the injured brain following trauma, subarachnoid hemorrhage, or surgery. It is thought that the major determinants for recovery of injured cerebral tissue are oxygen, glucose delivery, and the clearance of metabolites. These factors, at optimal levels, are probably responsible for the regaining of neuronal functions. These parameters are in turn dependent on the tissue's blood flow and metabolism. We have been using a single, compact, polyethylene sensor, the Paratrend 7 for the measurement of cerebral oxygen tension, CO2, pH, and temperature. This sensor is designed for continuous blood gas analysis to aid in monitoring neurosurgical patients, both during surgery and in the intensive care unit. Using the Paratrend 7 sensor, we found the normal range of values to be: PO2 33 +/- 11 mm Hg; PCO2 48 +/- 7 mm Hg; pH 7.19 +/- 0.11. Critical measurements are considered to be tissue PO2 < 10 mm Hg; PCO2 > 60 mm Hg, and pH < 6.8. We have had no complications with this device; the risks are similar to those of placing a parenchymal intracranial pressure monitor. We believe that assessment of interstitial cerebral oxygen saturation can be of great value both intraoperatively and postoperatively. In our experience, the Paratrend 7 system is an effective method of measuring tissue cerebral oxygen tension, along with carbon dioxide levels, pH, and temperature.

  19. Neuronal synchrony and the relation between the blood-oxygen-level dependent response and the local field potential

    PubMed Central

    Nguyen, Mai; Winawer, Jonathan

    2017-01-01

    The most widespread measures of human brain activity are the blood-oxygen-level dependent (BOLD) signal and surface field potential. Prior studies report a variety of relationships between these signals. To develop an understanding of how to interpret these signals and the relationship between them, we developed a model of (a) neuronal population responses and (b) transformations from neuronal responses into the functional magnetic resonance imaging (fMRI) BOLD signal and electrocorticographic (ECoG) field potential. Rather than seeking a transformation between the two measures directly, this approach interprets each measure with respect to the underlying neuronal population responses. This model accounts for the relationship between BOLD and ECoG data from human visual cortex in V1, V2, and V3, with the model predictions and data matching in three ways: across stimuli, the BOLD amplitude and ECoG broadband power were positively correlated, the BOLD amplitude and alpha power (8–13 Hz) were negatively correlated, and the BOLD amplitude and narrowband gamma power (30–80 Hz) were uncorrelated. The two measures provide complementary information about human brain activity, and we infer that features of the field potential that are uncorrelated with BOLD arise largely from changes in synchrony, rather than level, of neuronal activity. PMID:28742093

  20. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals.

    PubMed

    Pörtner, H O

    2001-04-01

    Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.

  1. Primary caregivers of in-home oxygen-dependent children: predictors of stress based on characteristics, needs and social support.

    PubMed

    Wang, Kai-Wei K; Lin, Hung-Ching; Lee, Chin-Ting; Lee, Kuo-Sheng

    2016-07-01

    To identify the predictors of primary caregivers' stress in caring for in-home oxygen-dependent children by examining the association between their levels of stress, caregiver needs and social support. Increasing numbers of primary caregivers of oxygen-dependent children experience caregiving stress that warrants investigation. The study used a cross-sectional design with three psychometric scales - Modified-Parenting Stress Index, Caregiver Needs Scale and Social Support Index. The data collected during 2010-2011 were from participants who were responsible for their child's care that included oxygen therapy for ≧6 hours/day; the children's ages ranged from 3 months-16 years. Descriptive statistics and multivariable linear regression were used. A total of 104 participants (M = 34, F = 70) were recruited, with an average age of 39·7 years. The average age of the oxygen-dependent children was 6·68 years and their daily use of oxygen averaged 11·39 hours. The caregivers' overall levels of stress were scored as high and information needs were scored as the highest. The most available support from family and friends was emotional support. Informational support was mostly received from health professionals, but both instrumental and emotional support were important. Levels of stress and caregiver needs were significantly correlated. Multivariable linear regression analyses identified three risk factors predicting stress, namely, the caregiver's poor health status, the child's male gender and the caregiver's greater financial need. To support these caregivers, health professionals can maintain their health status and provide instrumental, emotional, informational and financial support. © 2016 John Wiley & Sons Ltd.

  2. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads

    PubMed Central

    Wang, Lin; Acosta, Miguel A.; Leach, Jennie B.; Carrier, Rebecca L.

    2013-01-01

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems. PMID:23443975

  3. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  4. Hole localization in Fe2O3 from density functional theory and wave-function-based methods

    NASA Astrophysics Data System (ADS)

    Ansari, Narjes; Ulman, Kanchan; Camellone, Matteo Farnesi; Seriani, Nicola; Gebauer, Ralph; Piccinin, Simone

    2017-08-01

    Hematite (α -Fe2O3 ) is a promising photocatalyst material for water splitting, where photoinduced holes lead to the oxidation of water and the release of molecular oxygen. In this work, we investigate the properties of holes in hematite using density functional theory (DFT) calculations with hybrid functionals. We find that holes form small polarons and, depending on the fraction of exact exchange included in the PBE0 functional, the site where the holes localize changes from Fe to O. We find this result to be independent of the size and structure of the system: small Fe2O3 clusters with tetrahedral coordination, larger clusters with octahedral coordination, Fe2O3 (001) surfaces in contact with water, and bulk Fe2O3 display a very similar behavior in terms of hole localization as a function of the fraction of exact exchange. We then use wave-function-based methods such as coupled cluster with single and double excitations and Møller-Plesset second-order perturbation theory applied on a cluster model of Fe2O3 to shed light on which of the two solutions is correct. We find that these high-level quantum chemistry methods suggest holes in hematite are localized on oxygen atoms. We also explore the use of the DFT +U approach as a computationally convenient way to overcome the known limitations of generalized gradient approximation functionals and recover a gap in line with experiments and hole localization on oxygen in agreement with quantum chemistry methods.

  5. Pulsed high oxygen induces a hypoxic-like response in human umbilical endothelial cells and in humans.

    PubMed

    Cimino, F; Balestra, C; Germonpré, P; De Bels, D; Tillmans, F; Saija, A; Speciale, A; Virgili, F

    2012-12-01

    It has been proposed that relative changes of oxygen availability, rather than steady-state hypoxic or hyperoxic conditions, play an important role in hypoxia-inducible factor (HIF) transcriptional effects. According to this hypothesis describing the "normobaric oxygen paradox", normoxia following a hyperoxic event is sensed by tissues as an oxygen shortage, upregulating HIF-1 activity. With the aim of confirming, at cellular and at functional level, that normoxia following a hyperoxic event is "interpreted" as a hypoxic event, we report a combination of experiments addressing the effects of an intermittent increase of oxygen concentration on HIF-1 levels and the activity level of specific oxygen-modulated proteins in cultured human umbilical vein endothelial cells and the effects of hemoglobin levels after intermittent breathing of normobaric high (100%) and low (15%) oxygen in vivo in humans. Our experiments confirm that, during recovery after hyperoxia, an increase of HIF expression occurs in human umbilical vein endothelial cells, associated with an increase of matrix metalloproteinases activity. These data suggest that endothelial cells "interpret" the return to normoxia after hyperoxia as a hypoxic stimulus. At functional level, our data show that breathing both 15 and 100% oxygen 30 min every other day for a period of 10 days induces an increase of hemoglobin levels in humans. This effect was enhanced after the cessation of the oxygen breathing. These results indicate that a sudden decrease in tissue oxygen tension after hyperoxia may act as a trigger for erythropoietin synthesis, thus corroborating the hypothesis that "relative" hypoxia is a potent stimulator of HIF-mediated gene expressions.

  6. Conformation-dependent chemical reaction of formic acid with an oxygen atom.

    PubMed

    Khriachtchev, Leonid; Domanskaya, Alexandra; Marushkevich, Kseniya; Räsänen, Markku; Grigorenko, Bella; Ermilov, Alexander; Andrijchenko, Natalya; Nemukhin, Alexander

    2009-07-23

    Conformation dictates many physical and chemical properties of molecules. The importance of conformation in the selectivity and function of biologically active molecules is widely accepted. However, clear examples of conformation-dependent bimolecular chemical reactions are lacking. Here we consider a case of formic acid (HCOOH) that is a valuable model system containing the -COOH carboxyl functional group, similar to many biomolecules including the standard amino acids. We have found a strong case of conformation-dependent reaction between formic acid and atomic oxygen obtained in cryogenic matrices. The reaction surprisingly leads to peroxyformic acid only from the ground-state trans conformer of formic acid, and it results in the hydrogen-bonded complex for the higher-energy cis conformer.

  7. Tuning electrocatalytic activity of Pt monolayer shell by bimetallic Ir-M (M=Fe, Co, Ni or Cu) cores for the oxygen reduction reaction

    DOE PAGES

    Kuttiyiel, Kurian A.; Choi, YongMan; Sasaki, Kotaro; ...

    2016-05-18

    Here, platinum monolayer electrocatalyst are known to exhibit excellent oxygen reduction reaction (ORR) activity depending on the type of substrate used. Here we demonstrate a relationship between the ORR electrocatalytic activity and the surface electronic structure of Pt monolayer shell induced by various IrM bimetallic cores (M=Fe, Co, Ni or Cu). The relationship is rationalized by comparing density functional theory calculations and experimental results. For an efficient Pt monolayer electrocatalyst, the core should induce sufficient contraction to the Pt shell leading to a downshift of the d-band center with respect to the Fermi level. Depending on the structure of themore » IrM, relative to that of pure Ir, this interaction not only alters the electronic and geometric structure but also induces segregation effects. Combined these effects significantly enhance the ORR activities of the Pt monolayer shell on bimetallic Ir cores electrocatalysts.« less

  8. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

    PubMed

    Woodman, Andrew G; Mah, Richard; Keddie, Danae; Noble, Ronan M N; Panahi, Sareh; Gragasin, Ferrante S; Lemieux, Hélène; Bourque, Stephane L

    2018-06-01

    Prenatal iron deficiency alters fetal developmental trajectories, which results in persistent changes in organ function. Here, we studied the effects of prenatal iron deficiency on fetal kidney and liver mitochondrial function. Pregnant Sprague-Dawley rats were fed partially or fully iron-restricted diets to induce a state of moderate or severe iron deficiency alongside iron-replete control rats. We assessed mitochondrial function via high-resolution respirometry and reactive oxygen species generation via fluorescence microscopy on gestational d 21. Hemoglobin levels were reduced in dams in the moderate (-31%) and severe groups (-54%) compared with controls, which was accompanied by 55% reductions in fetal hemoglobin levels in both moderate and severe groups versus controls. Male iron-deficient kidneys exhibited globally reduced mitochondrial content and respiration, as well as increased cytosolic superoxide and decreased NO. Female iron-deficient kidneys exhibited complex II down-regulation and increased mitochondrial oxidative stress. Male iron-deficient livers exhibited reduced complex IV respiration and increased cytosolic superoxide, whereas female liver tissues exhibited no alteration in oxidant levels or mitochondrial function. These findings indicate that prenatal iron deficiency causes changes in mitochondrial content and function as well as oxidant status in a sex- and organ-dependent manner, which may be an important mechanism that underlies the programming of cardiovascular disease.-Woodman, A. G., Mah, R., Keddie, D., Noble, R. M. N., Panahi, S., Gragasin, F. S., Lemieux, H., Bourque, S. L. Prenatal iron deficiency causes sex-dependent mitochondrial dysfunction and oxidative stress in fetal rat kidneys and liver.

  9. Detecting activity-evoked pH changes in human brain

    PubMed Central

    Magnotta, Vincent A.; Heo, Hye-Young; Dlouhy, Brian J.; Dahdaleh, Nader S.; Follmer, Robin L.; Thedens, Daniel R.; Welsh, Michael J.; Wemmie, John A.

    2012-01-01

    Localized pH changes have been suggested to occur in the brain during normal function. However, the existence of such pH changes has also been questioned. Lack of methods for noninvasively measuring pH with high spatial and temporal resolution has limited insight into this issue. Here we report that a magnetic resonance imaging (MRI) strategy, T1 relaxation in the rotating frame (T1ρ), is sufficiently sensitive to detect widespread pH changes in the mouse and human brain evoked by systemically manipulating carbon dioxide or bicarbonate. Moreover, T1ρ detected a localized acidosis in the human visual cortex induced by a flashing checkerboard. Lactate measurements and pH-sensitive 31P spectroscopy at the same site also identified a localized acidosis. Consistent with the established role for pH in blood flow recruitment, T1ρ correlated with blood oxygenation level-dependent contrast commonly used in functional MRI. However, T1ρ was not directly sensitive to blood oxygen content. These observations indicate that localized pH fluctuations occur in the human brain during normal function. Furthermore, they suggest a unique functional imaging strategy based on pH that is independent of traditional functional MRI contrast mechanisms. PMID:22566645

  10. Minimizing ATP depletion by oxygen scavengers for single-molecule fluorescence imaging in live cells.

    PubMed

    Jung, Seung-Ryoung; Deng, Yi; Kushmerick, Christopher; Asbury, Charles L; Hille, Bertil; Koh, Duk-Su

    2018-06-19

    The stability of organic dyes against photobleaching is critical in single-molecule tracking and localization microscopy. Since oxygen accelerates photobleaching of most organic dyes, glucose oxidase is commonly used to slow dye photobleaching by depleting oxygen. As demonstrated here, pyranose-2-oxidase slows bleaching of Alexa647 dye by ∼20-fold. However, oxygen deprivation may pose severe problems for live cells by reducing mitochondrial oxidative phosphorylation and ATP production. We formulate a method to sustain intracellular ATP levels in the presence of oxygen scavengers. Supplementation with metabolic intermediates including glyceraldehyde, glutamine, and α-ketoisocaproate maintained the intracellular ATP level for at least 10 min by balancing between FADH 2 and NADH despite reduced oxygen levels. Furthermore, those metabolites supported ATP-dependent synthesis of phosphatidylinositol 4,5-bisphosphate and internalization of PAR2 receptors. Our method is potentially relevant to other circumstances that involve acute drops of oxygen levels, such as ischemic damage in the brain or heart or tissues for transplantation.

  11. The physics of functional magnetic resonance imaging (fMRI)

    NASA Astrophysics Data System (ADS)

    Buxton, Richard B.

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  12. The physics of functional magnetic resonance imaging (fMRI)

    PubMed Central

    Buxton, Richard B

    2015-01-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm3 spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology. PMID:24006360

  13. The physics of functional magnetic resonance imaging (fMRI).

    PubMed

    Buxton, Richard B

    2013-09-01

    Functional magnetic resonance imaging (fMRI) is a methodology for detecting dynamic patterns of activity in the working human brain. Although the initial discoveries that led to fMRI are only about 20 years old, this new field has revolutionized the study of brain function. The ability to detect changes in brain activity has a biophysical basis in the magnetic properties of deoxyhemoglobin, and a physiological basis in the way blood flow increases more than oxygen metabolism when local neural activity increases. These effects translate to a subtle increase in the local magnetic resonance signal, the blood oxygenation level dependent (BOLD) effect, when neural activity increases. With current techniques, this pattern of activation can be measured with resolution approaching 1 mm(3) spatially and 1 s temporally. This review focuses on the physical basis of the BOLD effect, the imaging methods used to measure it, the possible origins of the physiological effects that produce a mismatch of blood flow and oxygen metabolism during neural activation, and the mathematical models that have been developed to understand the measured signals. An overarching theme is the growing field of quantitative fMRI, in which other MRI methods are combined with BOLD methods and analyzed within a theoretical modeling framework to derive quantitative estimates of oxygen metabolism and other physiological variables. That goal is the current challenge for fMRI: to move fMRI from a mapping tool to a quantitative probe of brain physiology.

  14. Electronic Structure Analysis of the Oxygen-Activation Mechanism by FeII- and α-Ketoglutarate (αKG)-Dependent Dioxygenases

    PubMed Central

    Ye, Shengfa; Riplinger, Christoph; Hansen, Andreas; Krebs, Carsten; Bollinger, J. Martin; Neese, Frank

    2014-01-01

    α-Ketoglutarate (αKG)-dependent nonheme iron enzymes utilize a high-spin (HS) ferrous center to couple the activation of oxygen to the decarboxylation of the cosubstrate αKG to yield succinate and CO2, and to generate a high-valent ferryl species that then acts as an oxidant to functionalize the target C–H bond. Herein a detailed analysis of the electronic-structure changes that occur in the oxygen activation by this enzyme was performed. The rate-limiting step, which is identical on the septet and quintet surfaces, is the nucleophilic attack of the distal O atom of the O2 adduct on the carbonyl group in αKG through a bicyclic transition state (5,7TS1). Due to the different electronic structures in 5,7TS1, the decay of 7TS1 leads to a ferric oxyl species, which undergoes a rapid intersystem crossing to form the ferryl intermediate. By contrast, a HS ferrous center ligated by a peroxosuccinate is obtained on the quintet surface following 5TS1. Thus, additional two single-electron transfer steps are required to afford the same FeIV–oxo species. However, the triplet reaction channel is catalytically irrelevant. The biological role of αKG played in the oxygen-activation reaction is dual. The αKG LUMO (C=O π*) serves as an electron acceptor for the nucleophilic attack of the superoxide monoanion. On the other hand, the αKG HOMO (C1–C2 σ) provides the second and third electrons for the further reduction of the superoxide. In addition to density functional theory, high-level ab initio calculations have been used to calculate the accurate energies of the critical points on the alternative potential-energy surfaces. Overall, the results delivered by the ab initio calculations are largely parallel to those obtained with the B3LYP density functional, thus lending credence to our conclusions. PMID:22511515

  15. Material quality frontiers of MOVPE grown AlGaAs for minority carrier devices

    NASA Astrophysics Data System (ADS)

    Heckelmann, S.; Lackner, D.; Dimroth, F.; Bett, A. W.

    2017-04-01

    In this study, secondary ion mass spectroscopy of oxygen, deep level transient spectroscopy and power dependent relative photoluminescence are compared regarding their ability to resolve differences in AlxGa1-xAs material quality. AlxGa1-xAs samples grown with two different trimethylaluminum sources showing low and high levels of oxygen contamination are compared. As tested in the growth of minority carrier devices, i.e. AlxGa1-xAs solar cells, the two precursors clearly lead to different device characteristics. It is shown that secondary ion mass spectroscopy could not resolve the difference in oxygen concentration, whereas deep level transient spectroscopy and photoluminescence based measurements indicate the influence of the precursor oxygen level on the material quality.

  16. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    PubMed

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  17. Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase.

    PubMed

    Kim, Sun Yee; Lee, Su Min; Tak, Jean Kyoung; Choi, Kyeong Sook; Kwon, Taeg Kyu; Park, Jeen-Woo

    2007-08-01

    Singlet oxygen is a highly reactive form of molecular oxygen that may harm living systems by oxidizing critical cellular macromolecules and it also promotes deleterious processes such as cell death. Recently, we demonstrated that the control of redox balance and the cellular defense against oxidative damage are the primary functions of cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) through supplying NADPH for antioxidant systems. In this report, we demonstrate that modulation of IDPc activity in HL-60 cells regulates singlet oxygen-induced apoptosis. When we examined the protective role of IDPc against singlet oxygen-induced apoptosis with HL-60 cells transfected with the cDNA for mouse IDPc in sense and antisense orientations, a clear inverse relationship was observed between the amount of IDPc expressed in target cells and their susceptibility to apoptosis. The results suggest that IDPc plays an important protective role in apoptosis of HL-60 cells induced by singlet oxygen.

  18. HIF Oxygen Sensing Pathways in Lung Biology.

    PubMed

    Urrutia, Andrés A; Aragonés, Julián

    2018-06-06

    Cellular responses to oxygen fluctuations are largely mediated by hypoxia-inducible factors (HIFs). Upon inhalation, the first organ inspired oxygen comes into contact with is the lungs, but the understanding of the pulmonary HIF oxygen-sensing pathway is still limited. In this review we will focus on the role of HIF1α and HIF2α isoforms in lung responses to oxygen insufficiency. In particular, we will discuss novel findings regarding their role in the biology of smooth muscle cells and endothelial cells in the context of hypoxia-induced pulmonary vasoconstriction. Moreover, we will also discuss recent studies into HIF-dependent responses in the airway epithelium, which have been even less studied than the HIF-dependent vascular responses in the lungs. In summary, we will review the biological functions executed by HIF1 or HIF2 in the pulmonary vessels and epithelium to control lung responses to oxygen fluctuations as well as their pathological consequences in the hypoxic lung.

  19. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth

    NASA Astrophysics Data System (ADS)

    Brewer, Peter G.; Peltzer, Edward T.

    2017-08-01

    For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol-1, leading to a Q10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example. This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'.

  20. Tissue oxygen demand in regulation of the behavior of the cells in the vasculature.

    PubMed

    Barvitenko, Nadezhda N; Aslam, Muhammad; Filosa, Jessica; Matteucci, Elena; Nikinmaa, Mikko; Pantaleo, Antonella; Saldanha, Carlota; Baskurt, Oguz K

    2013-08-01

    The control of arteriolar diameters in microvasculature has been in the focus of studies on mechanisms matching oxygen demand and supply at the tissue level. Functionally, important vascular elements include EC, VSMC, and RBC. Integration of these different cell types into functional units aimed at matching tissue oxygen supply with tissue oxygen demand is only achieved when all these cells can respond to the signals of tissue oxygen demand. Many vasoactive agents that serve as signals of tissue oxygen demand have their receptors on all these types of cells (VSMC, EC, and RBC) implying that there can be a coordinated regulation of their behavior by the tissue oxygen demand. Such functions of RBC as oxygen carrying by Hb, rheology, and release of vasoactive agents are considered. Several common extra- and intracellular signaling pathways that link tissue oxygen demand with control of VSMC contractility, EC permeability, and RBC functioning are discussed. © 2013 John Wiley & Sons Ltd.

  1. Post-conventional moral reasoning is associated with increased ventral striatal activity at rest and during task.

    PubMed

    Fang, Zhuo; Jung, Wi Hoon; Korczykowski, Marc; Luo, Lijuan; Prehn, Kristin; Xu, Sihua; Detre, John A; Kable, Joseph W; Robertson, Diana C; Rao, Hengyi

    2017-08-02

    People vary considerably in moral reasoning. According to Kohlberg's theory, individuals who reach the highest level of post-conventional moral reasoning judge moral issues based on deeper principles and shared ideals rather than self-interest or adherence to laws and rules. Recent research has suggested the involvement of the brain's frontostriatal reward system in moral judgments and prosocial behaviors. However, it remains unknown whether moral reasoning level is associated with differences in reward system function. Here, we combined arterial spin labeling perfusion and blood oxygen level-dependent functional magnetic resonance imaging and measured frontostriatal reward system activity both at rest and during a sequential risky decision making task in a sample of 64 participants at different levels of moral reasoning. Compared to individuals at the pre-conventional and conventional level of moral reasoning, post-conventional individuals showed increased resting cerebral blood flow in the ventral striatum and ventromedial prefrontal cortex. Cerebral blood flow in these brain regions correlated with the degree of post-conventional thinking across groups. Post-conventional individuals also showed greater task-induced activation in the ventral striatum during risky decision making. These findings suggest that high-level post-conventional moral reasoning is associated with increased activity in the brain's frontostriatal system, regardless of task-dependent or task-independent states.

  2. The importance of physiological oxygen concentrations in the sandwich cultures of rat hepatocytes on gas-permeable membranes.

    PubMed

    Xiao, Wenjin; Shinohara, Marie; Komori, Kikuo; Sakai, Yasuyuki; Matsui, Hitoshi; Osada, Tomoharu

    2014-01-01

    Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%-O2 (+)] or physiological oxygen concentrations [10%-O2 (+), 5%-O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas-impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS-O2 (-)]. The results indicated that the hepatocytes under 10%-O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS-O2 (-) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug-metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long-term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen-permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers.

  3. No laughing matter: intranasal oxytocin administration changes functional brain connectivity during exposure to infant laughter.

    PubMed

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-04-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent-infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter.

  4. No Laughing Matter: Intranasal Oxytocin Administration Changes Functional Brain Connectivity during Exposure to Infant Laughter

    PubMed Central

    Riem, Madelon M E; van IJzendoorn, Marinus H; Tops, Mattie; Boksem, Maarten A S; Rombouts, Serge A R B; Bakermans-Kranenburg, Marian J

    2012-01-01

    Infant laughter is a rewarding experience. It activates neural reward circuits and promotes parental proximity and care, thus facilitating parent–infant attachment. The neuropeptide oxytocin might enhance the incentive salience of infant laughter by modulating neural circuits related to the perception of infant cues. In a randomized controlled trial with functional magnetic resonance imaging we investigated the influence of intranasally administered oxytocin on functional brain connectivity in response to infant laughter. Blood oxygenation level-dependent responses to infant laughter were measured in 22 nulliparous women who were administered oxytocin and 20 nulliparous women who were administered a placebo. Elevated oxytocin levels reduced activation in the amygdala during infant laughter and enhanced functional connectivity between the amygdala and the orbitofrontal cortex, the anterior cingulate, the hippocampus, the precuneus, the supramarginal gyri, and the middle temporal gyrus. Increased functional connectivity between the amygdala and regions involved in emotion regulation may reduce negative emotional arousal while enhancing the incentive salience of the infant laughter. PMID:22189289

  5. Low oxygen level increases proliferation and metabolic changes in bovine granulosa cells.

    PubMed

    Shiratsuki, Shogo; Hara, Tomotaka; Munakata, Yasuhisa; Shirasuna, Koumei; Kuwayama, Takehito; Iwata, Hisataka

    2016-12-05

    The present study addresses molecular backgrounds underlying low oxygen induced metabolic changes and 1.2-fold change in bovine granulosa cell (GCs) proliferation. RNA-seq revealed that low oxygen (5%) upregulated genes associated with HIF-1 and glycolysis and downregulated genes associated with mitochondrial respiration than that in high oxygen level (21%). Low oxygen level induced high glycolytic activity and low mitochondrial function and biogenesis. Low oxygen level enhanced GC proliferation with high expression levels of HIF-1, VEGF, AKT, mTOR, and S6RP, whereas addition of anti-VEGF antibody decreased cellular proliferation with low phosphorylated AKT and mTOR expression levels. Low oxygen level reduced SIRT1, whereas activation of SIRT1 by resveratrol increased mitochondrial replication and decreased cellular proliferation with reduction of phosphorylated mTOR. These results suggest that low oxygen level stimulates the HIF1-VEGF-AKT-mTOR pathway and up-regulates glycolysis, which contributes to GC proliferation, and downregulation of SIRT1 contributes to hypoxia-associated reduction of mitochondria and cellular proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Metabolic pathway analysis of Scheffersomyces (Pichia) stipitis: effect of oxygen availability on ethanol synthesis and flux distributions.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2012-06-01

    Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis.

  7. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides.

    PubMed

    Gomelsky, Larissa; Moskvin, Oleg V; Stenzel, Rachel A; Jones, Denise F; Donohue, Timothy J; Gomelsky, Mark

    2008-12-01

    In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.

  8. Von Hippel-Lindau protein in the RPE is essential for normal ocular growth and vascular development.

    PubMed

    Lange, Clemens A K; Luhmann, Ulrich F O; Mowat, Freya M; Georgiadis, Anastasios; West, Emma L; Abrahams, Sabu; Sayed, Haroon; Powner, Michael B; Fruttiger, Marcus; Smith, Alexander J; Sowden, Jane C; Maxwell, Patrick H; Ali, Robin R; Bainbridge, James W B

    2012-07-01

    Molecular oxygen is essential for the development, growth and survival of multicellular organisms. Hypoxic microenvironments and oxygen gradients are generated physiologically during embryogenesis and organogenesis. In the eye, oxygen plays a crucial role in both physiological vascular development and common blinding diseases. The retinal pigment epithelium (RPE) is a monolayer of cells essential for normal ocular development and in the mature retina provides support for overlying photoreceptors and their vascular supply. Hypoxia at the level of the RPE is closely implicated in pathogenesis of age-related macular degeneration. Adaptive tissue responses to hypoxia are orchestrated by sophisticated oxygen sensing mechanisms. In particular, the von Hippel-Lindau tumour suppressor protein (pVhl) controls hypoxia-inducible transcription factor (HIF)-mediated adaptation. However, the role of Vhl/Hif1a in the RPE in the development of the eye and its vasculature is unknown. In this study we explored the function of Vhl and Hif1a in the developing RPE using a tissue-specific conditional-knockout approach. We found that deletion of Vhl in the RPE results in RPE apoptosis, aniridia and microphthalmia. Increased levels of Hif1a, Hif2a, Epo and Vegf are associated with a highly disorganised retinal vasculature, chorioretinal anastomoses and the persistence of embryonic vascular structures into adulthood. Additional inactivation of Hif1a in the RPE rescues the RPE morphology, aniridia, microphthalmia and anterior vasoproliferation, but does not rescue retinal vasoproliferation. These data demonstrate that Vhl-dependent regulation of Hif1a in the RPE is essential for normal RPE and iris development, ocular growth and vascular development in the anterior chamber, whereas Vhl-dependent regulation of other downstream pathways is crucial for normal development and maintenance of the retinal vasculature.

  9. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo.

    PubMed

    Harms, Floor A; Voorbeijtel, Wilhelmina J; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

    2013-09-01

    Progress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR). The fundamental principles behind the technology are described, together with an analysis method for retrievel of respirometry data. The feasibility and reproducibility of this clinically useful approach are demonstrated in a series of rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. P53 alters the cytotoxicity and genotoxicity for oxidized graphene in human B-lymphoblastoid cells

    NASA Astrophysics Data System (ADS)

    Petibone, Dayton Matthew

    Widespread use of oxidized graphene nanomaterials in industry, medicine, and consumer products raises concern about potential adverse impacts on human health. The p53 tumor suppressor protein is crucial to maintaining cellular and genetic stability to prevent carcinogenesis. Here, we show that oxygen functionalized graphene (f-G) absorption and p53 functional status correlate with cytotoxicity and genotoxicity in human B-lymphoblastoid cells. Trends in f-G absorption by were dose-dependent. Cells with functional p53 exposed to f-G arrested in G0/G1 phase of the cell cycle, suppressed f-G induced reactive oxygen species (ROS), and had elevated apoptosis. While compared to p53 competent cells, the p53 deficient cells exposed to f-G accumulated in S-phase of the cell cycle, had elevated ROS levels, and evaded apoptosis. The f-G genotoxicity was evident as increased loss-of-heterozygosity mutants independent of p53 status, and structural chromosome damage in p53 deficient cells. These findings have broad implications for the safety and efficacy of oxidized graphene nanomaterials in industrial, consumer products and biomedical applications.

  11. Resting-state functional magnetic resonance imaging in hepatic encephalopathy: current status and perspectives.

    PubMed

    Zhang, Long Jiang; Wu, Shengyong; Ren, Jiaqian; Lu, Guang Ming

    2014-09-01

    Hepatic encephalopathy (HE) is a neuropsychiatric syndrome which develops in patients with severe liver diseases and/or portal-systemic shunting. Minimal HE, the earliest manifestation of HE, has drawn increasing attention in the last decade. Minimal HE is associated with a series of brain functional changes, such as attention, working memory, and so on. Blood oxygen level dependent (BOLD) functional MRI (fMRI), especially resting-state fMRI has been used to explore the brain functional changes of HE, yielding important insights for understanding pathophysiological mechanisms and functional reorganization of HE. This paper briefly reviews the principles of BOLD fMRI, potential applications of resting-state fMRI with advanced post-processing algorithms such as regional homogeneity, amplitude of low frequency fluctuation, functional connectivity and future research perspective in this field.

  12. Clinical and molecular epidemiological features of tuberculosis after the 2011 Japan earthquake and tsunami.

    PubMed

    Kanamori, H; Hatakeyama, T; Uchiyama, B; Weber, D J; Takeuchi, M; Endo, S; Hirakata, Y; Kaku, M

    2016-04-01

    To investigate clinical characteristics and prognosis in tuberculosis (TB) patients and the transmission dynamics of TB after the 2011 Japan earthquake and tsunami. This was a retrospective observational cohort study. Data were analyzed among 93 pulmonary TB patients (tsunami-affected areas 25, non-tsunami areas 68) hospitalized during March 2011-March 2012 with 1-year follow-up since treatment commencement. Variable number of tandem repeats (VNTR) typing was conducted for 38 TB strains (tsunami-affected areas 21, non-tsunami areas 17). Patients from tsunami-affected areas were significantly more likely to be refugees (OR 12.8, 95%CI 2.45-67.20), receive oxygenation (OR 5.0, 95%CI 1.68-14.85), and have a unique VNTR (OR 4.6, 95%CI 1.14-18.41). Patients who died within 1 year were significantly more likely to be older (OR 9.8, 95%CI 1.85-180.26), partially dependent or dependent (OR 11.9, 95%CI 4.28-37.62), and to require oxygenation (OR 4.3, 95%CI 1.47-12.89), and had lower serum albumin levels (OR 11.1, 95%CI 2.97-72.32). Risk factors for prognosis of TB after the earthquake were associated with advanced age, low serum albumin level, functional status at admission, and oxygen requirement. The VNTR results suggest that most of the cases with pulmonary TB experienced reactivation of latent tuberculous infection, likely due to the impact of the earthquake and tsunami.

  13. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.

    PubMed

    Mailloux, Ryan J; McBride, Skye L; Harper, Mary-Ellen

    2013-12-01

    During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can 'spin off' during fuel oxidation and electron transport to univalently reduce O2, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione. Here, we review mitochondrial ROS homeostatic systems, including emerging knowledge about roles of glutathione in redox balance and the control of protein function by post-translational modification. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Module for Oxygenating Water without Generating Bubbles

    NASA Technical Reports Server (NTRS)

    Gonzalez-Martin, Anuncia; Sidik, Reyimjan; Kim, Jinseong

    2004-01-01

    A module that dissolves oxygen in water at concentrations approaching saturation, without generating bubbles of oxygen gas, has been developed as a prototype of improved oxygenators for water-disinfection and water-purification systems that utilize photocatalyzed redox reactions. Depending on the specific nature of a water-treatment system, it is desirable to prevent the formation of bubbles for one or more reasons: (1) Bubbles can remove some organic contaminants from the liquid phase to the gas phase, thereby introducing a gas-treatment problem that complicates the overall water-treatment problem; and/or (2) in some systems (e.g., those that must function in microgravity or in any orientation in normal Earth gravity), bubbles can interfere with the flow of the liquid phase. The present oxygenation module (see Figure 1) is a modified version of a commercial module that contains >100 hollow polypropylene fibers with a nominal pore size of 0.05 m and a total surface area of 0.5 m2. The module was originally designed for oxygenation in a bioreactor, with no water flowing around or inside the tubes. The modification, made to enable the use of the module to oxygenate flowing water, consisted mainly in the encapsulation of the fibers in a tube of Tygon polyvinyl chloride (PVC) with an inside diameter of 1 in. (approx.=25 mm). In operation, water is pumped along the insides of the hollow fibers and oxygen gas is supplied to the space outside the hollow tubes inside the PVC tube. In tests, the pressure drops of water and oxygen in the module were found to be close to zero at water-flow rates ranging up to 320 mL/min and oxygen-flow rates up to 27 mL/min. Under all test conditions, no bubbles were observed at the water outlet. In some tests, flow rates were chosen to obtain dissolved-oxygen concentrations between 25 and 31 parts per million (ppm) . approaching the saturation level of approx.=35 ppm at a temperature of 20 C and pressure of 1 atm (approx.=0.1 MPa). As one would expect, it was observed that the time needed to bring a flow of water from an initial low dissolved-oxygen concentration (e.g., 5 ppm) to a steady high dissolved-oxygen concentration at or near the saturation level depends on the rates of flow of both oxygen and water, among other things. Figure 2 shows the results of an experiment in which a greater flow of oxygen was used during the first few tens of minutes to bring the concentration up to approx.=25 ppm, then a lesser flow was used to maintain the concentration.

  15. Strawberry extracts efficiently counteract inflammatory stress induced by the endotoxin lipopolysaccharide in Human Dermal Fibroblast.

    PubMed

    Gasparrini, Massimiliano; Giampieri, Francesca; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Cianciosi, Danila; Reboredo-Rodriguez, Patricia; Varela-Lopez, Alfonso; Zhang, JiaoJiao; Quiles, Josè L; Mezzetti, Bruno; Bompadre, Stefano; Battino, Maurizio

    2018-04-01

    A protracted pro-inflammatory state is the common denominator in the development, progression and complication of the common chronic diseases. Dietary antioxidants represent an efficient tool to counteract this inflammatory state. The aim of the present work was to evaluate the effects of strawberry extracts on inflammation evoked by E. Coli lipopolysaccharide in Human Dermal Fibroblast, by measuring reactive oxygen species production, apoptosis rate, antioxidant enzymes activity, mitochondria functionality and also investigating the molecular pathway involved in inflammatory and antioxidant response. The results demonstrated that strawberry pre-treatment reduced intracellular reactive oxygen species levels, apoptotic rate, improved antioxidant defences and mitochondria functionality in lipopolysaccharide -treated cells. Strawberry exerted these protective activities through the inhibition of the NF-kB signalling pathway and the stimulation of the Nrf2 pathway, with a mechanism AMPK-dependent. These results confirm the health benefits of strawberry in the prevention of inflammation and oxidative stress condition in lipopolysaccharide-treated cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Levels-of-processing effect on frontotemporal function in schizophrenia during word encoding and recognition.

    PubMed

    Ragland, J Daniel; Gur, Ruben C; Valdez, Jeffrey N; Loughead, James; Elliott, Mark; Kohler, Christian; Kanes, Stephen; Siegel, Steven J; Moelter, Stephen T; Gur, Raquel E

    2005-10-01

    Patients with schizophrenia improve episodic memory accuracy when given organizational strategies through levels-of-processing paradigms. This study tested if improvement is accompanied by normalized frontotemporal function. Event-related blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) was used to measure activation during shallow (perceptual) and deep (semantic) word encoding and recognition in 14 patients with schizophrenia and 14 healthy comparison subjects. Despite slower and less accurate overall word classification, the patients showed normal levels-of-processing effects, with faster and more accurate recognition of deeply processed words. These effects were accompanied by left ventrolateral prefrontal activation during encoding in both groups, although the thalamus, hippocampus, and lingual gyrus were overactivated in the patients. During word recognition, the patients showed overactivation in the left frontal pole and had a less robust right prefrontal response. Evidence of normal levels-of-processing effects and left prefrontal activation suggests that patients with schizophrenia can form and maintain semantic representations when they are provided with organizational cues and can improve their word encoding and retrieval. Areas of overactivation suggest residual inefficiencies. Nevertheless, the effect of teaching organizational strategies on episodic memory and brain function is a worthwhile topic for future interventional studies.

  17. Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533.

    PubMed

    Hertzberger, Rosanne Y; Pridmore, R David; Gysler, Christof; Kleerebezem, Michiel; Teixeira de Mattos, M Joost

    2013-01-01

    Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. The probiotic Lactobacillus johnsonii NCC 533 is relatively sensitive to oxidative stress; the presence of oxygen causes a lower biomass yield due to early growth stagnation. We show however that oxygen can also be beneficial to this organism as it relieves the requirement for acetate and CO2 during growth. Both on agar- and liquid-media, anaerobic growth of L. johnsonii NCC 533 requires CO2 supplementation of the gas phase. Switching off the CO2 supply induces growth arrest and cell death. The presence of molecular oxygen overcomes the CO2 dependency. Analogously, L. johnsonii NCC 533 strictly requires media with acetate to sustain anaerobic growth, although supplementation at a level that is 100-fold lower (120 microM) than the concentration in regular growth medium for lactobacilli already suffices for normal growth. Analogous to the CO2 requirement, oxygen supply relieves this acetate-dependency for growth. The L. johnsonii NCC 533 genome indicates that this organism lacks genes coding for pyruvate formate lyase (PFL) and pyruvate dehydrogenase (PDH), both CO2 and acetyl-CoA producing systems. Therefore, C1- and C2- compound production is predicted to largely depend on pyruvate oxidase activity (POX). This proposed role of POX in C2/C1-generation is corroborated by the observation that in a POX deficient mutant of L. johnsonii NCC 533, oxygen is not able to overcome acetate dependency nor does it relieve the CO2 dependency.

  18. Oxygen Relieves the CO2 and Acetate Dependency of Lactobacillus johnsonii NCC 533

    PubMed Central

    Hertzberger, Rosanne Y.; Pridmore, R. David; Gysler, Christof; Kleerebezem, Michiel; Teixeira de Mattos, M. Joost

    2013-01-01

    Oxygen relieves the CO2 and acetate dependency of Lactobacillus johnsonii NCC 533. The probiotic Lactobacillus johnsonii NCC 533 is relatively sensitive to oxidative stress; the presence of oxygen causes a lower biomass yield due to early growth stagnation. We show however that oxygen can also be beneficial to this organism as it relieves the requirement for acetate and CO2 during growth. Both on agar- and liquid-media, anaerobic growth of L. johnsonii NCC 533 requires CO2 supplementation of the gas phase. Switching off the CO2 supply induces growth arrest and cell death. The presence of molecular oxygen overcomes the CO2 dependency. Analogously, L. johnsonii NCC 533 strictly requires media with acetate to sustain anaerobic growth, although supplementation at a level that is 100-fold lower (120 microM) than the concentration in regular growth medium for lactobacilli already suffices for normal growth. Analogous to the CO2 requirement, oxygen supply relieves this acetate-dependency for growth. The L. johnsonii NCC 533 genome indicates that this organism lacks genes coding for pyruvate formate lyase (PFL) and pyruvate dehydrogenase (PDH), both CO2 and acetyl-CoA producing systems. Therefore, C1- and C2- compound production is predicted to largely depend on pyruvate oxidase activity (POX). This proposed role of POX in C2/C1-generation is corroborated by the observation that in a POX deficient mutant of L. johnsonii NCC 533, oxygen is not able to overcome acetate dependency nor does it relieve the CO2 dependency. PMID:23468944

  19. Hyperpolarized (129)Xe T (1) in oxygenated and deoxygenated blood

    NASA Technical Reports Server (NTRS)

    Albert, M. S.; Balamore, D.; Kacher, D. F.; Venkatesh, A. K.; Jolesz, F. A.

    2000-01-01

    The viability of the new technique of hyperpolarized (129)Xe MRI (HypX-MRI) for imaging organs other than the lungs depends on whether the spin-lattice relaxation time, T(1), of (129)Xe is sufficiently long in the blood. In previous experiments by the authors, the T(1) was found to be strongly dependent upon the oxygenation of the blood, with T(1) increasing from about 3 s in deoxygenated samples to about 10 s in oxygenated samples. Contrarily, Tseng et al. (J. Magn. Reson. 1997; 126: 79-86) reported extremely long T(1) values deduced from an indirect experiment in which hyperpolarized (129)Xe was used to create a 'blood-foam'. They found that oxygenation decreased T(1). Pivotal to their experiment is the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles); this necessitated a complicated analysis to extract the T(1) of (129)Xe in blood. In the present study, the experimental design minimizes gas exchange after the initial bolus of hyperpolarized (129)Xe has been bubbled through the sample. This study confirms that oxygenation increases the T(1) of (129)Xe in blood, from about 4 s in freshly drawn venous blood, to about 13 s in blood oxygenated to arterial levels, and also shifts the red blood cell resonance to higher frequency. Copyright 2000 John Wiley & Sons, Ltd. Abbreviations used BOLD blood oxygen level dependent NOE nuclear overhouses effect PO(2) oxygen partial pressure RBC red blood cells RF radio frequency SNR signal-to-noise ratio.

  20. Functional MR imaging assessment of a non-responsive brain injured patient.

    PubMed

    Moritz, C H; Rowley, H A; Haughton, V M; Swartz, K R; Jones, J; Badie, B

    2001-10-01

    Functional magnetic resonance imaging (fMRI) was requested to assist in the evaluation of a comatose 38-year-old woman who had sustained multiple cerebral contusions from a motor vehicle accident. Previous electrophysiologic studies suggested absence of thalamocortical processing in response to median nerve stimulation. Whole-brain fMRI was performed utilizing visual, somatosensory, and auditory stimulation paradigms. Results demonstrated intact task-correlated sensory and cognitive blood oxygen level dependent (BOLD) hemodynamic response to stimuli. Electrodiagnostic studies were repeated and evoked potentials indicated supratentorial recovery in the cerebrum. At 3-months post trauma the patient had recovered many cognitive & sensorimotor functions, accurately reflecting the prognostic fMRI evaluation. These results indicate that fMRI examinations may provide a useful evaluation for brain function in non-responsive brain trauma patients.

  1. Clinical Applications of Resting State Functional Connectivity

    PubMed Central

    Fox, Michael D.; Greicius, Michael

    2010-01-01

    During resting conditions the brain remains functionally and metabolically active. One manifestation of this activity that has become an important research tool is spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signal of functional magnetic resonance imaging (fMRI). The identification of correlation patterns in these spontaneous fluctuations has been termed resting state functional connectivity (fcMRI) and has the potential to greatly increase the translation of fMRI into clinical care. In this article we review the advantages of the resting state signal for clinical applications including detailed discussion of signal to noise considerations. We include guidelines for performing resting state research on clinical populations, outline the different areas for clinical application, and identify important barriers to be addressed to facilitate the translation of resting state fcMRI into the clinical realm. PMID:20592951

  2. The “Task B problem” and other considerations in developmental functional neuroimaging

    PubMed Central

    Church, Jessica A.; Petersen, Steven E.; Schlaggar, Bradley L.

    2012-01-01

    Functional neuroimaging provides a remarkable tool to allow us to study cognition across the lifespan and in special populations in a safe way. However, experimenters face a number of methodological issues, and these issues are particularly pertinent when imaging children. This brief article discusses assessing task performance, strategies for dealing with group performance differences, controlling for movement, statistical power, proper atlas registration, and data analysis strategies. In addition, there will be discussion of two other topics that have important implications for interpreting fMRI data: the question of whether functional neuroanatomical differences between adults and children are the consequence of putative developmental neurovascular differences, and the issue of interpreting negative blood oxygenation-level dependent (BOLD) signal change. PMID:20496376

  3. Utilization of oxygen difluoride for syntheses of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Toy, M. S. (Inventor)

    1976-01-01

    The reaction oxygen difluoride, OF2, with ethylenically unsaturated fluorocarbon compounds is examined. Depending upon the fluorocarbon material and reaction conditions, OF2 can chain extend fluoropolyenes, convert functional perfluorovinyl groups to acyl fluoride and/or epoxide groups, and act as a monomer for an addition type copolymerization with diolefins.

  4. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology

    PubMed Central

    Bentley, William J.; Li, Jingfeng M.; Snyder, Abraham Z.; Raichle, Marcus E.; Snyder, Lawrence H.

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these “task-negative” BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. PMID:25385710

  5. Persistent photoconductivity in ZnO nanowires: Influence of oxygen and argon ambient

    NASA Astrophysics Data System (ADS)

    Madel, M.; Huber, F.; Mueller, R.; Amann, B.; Dickel, M.; Xie, Y.; Thonke, K.

    2017-03-01

    ZnO nanowires typically show persistent photoconductivity (PPC), which depends in their temporal behaviour on the ambient. We investigate ZnO nanowires in oxygen and argon ambient and analyze the PPC both on the short and on the long time scale to sort out the underlying mechanisms. Wavelength dependent excitation shows the energy barrier for the PPC to be around 150 meV below the band gap of ZnO, independent of the ambient atmosphere. In photocurrent measurements at constant wavelength, a log-logistic dependence of the conductivity on the partial oxygen pressure is observed. The experimental results are compared to a model of Bonasewicz et al. [J. Electrochem. Soc. 133, 2270 (1986)] and can be explained by oxygen adsorption processes occurring on the surface of the ZnO nanowires. From temperature dependent measurements of the decay times in oxygen and argon ambient, the related activation energies for the fast and slow decay processes are determined. Comparing our results to theoretical calculations of energy levels of intrinsic defects [Janotti and Van de Walle, Phys. Status Solidi B 248, 799 (2011)], we find oxygen vacancies to be related to the fast decay processes, whereas adsorption and desorption processes of oxygen on the ZnO nanowire surface account for the slow part.

  6. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study.

    PubMed

    Hahn, Britta; Ross, Thomas J; Wolkenberg, Frank A; Shakleya, Diaa M; Huestis, Marilyn A; Stein, Elliot A

    2009-09-01

    Attention-enhancing effects of nicotine appear to depend on the nature of the attentional function. Underlying neuroanatomical mechanisms, too, may vary depending on the function modulated. This functional magnetic resonance imaging study recorded blood oxygen level-dependent (BOLD) activity in minimally deprived smokers during tasks of simple stimulus detection, selective attention, or divided attention after single-blind application of a transdermal nicotine (21 mg) or placebo patch. Smokers' performance in the placebo condition was unimpaired as compared with matched nonsmokers. Nicotine reduced reaction time (RT) in the stimulus detection and selective attention but not divided attention condition. Across all task conditions, nicotine reduced activation in frontal, temporal, thalamic, and visual regions and enhanced deactivation in so-called "default" regions. Thalamic effects correlated with RT reduction selectively during stimulus detection. An interaction with task condition was observed in middle and superior frontal gyri, where nicotine reduced activation only during stimulus detection. A visuomotor control experiment provided evidence against nonspecific effects of nicotine. In conclusion, although prefrontal activity partly displayed differential modulation by nicotine, most BOLD effects were identical across tasks, despite differential performance effects, suggesting that common neuronal mechanisms can selectively benefit different attentional functions. Overall, the effects of nicotine may be explained by increased functional efficiency and downregulated task-independent "default" functions.

  7. [Changes of vascular reactivity and reactive oxygen species in conditions of varying duration of permanent stay in the alienation zone in mice].

    PubMed

    Tkachenko, M M; Kotsiuruba, A V; Baziliuk, O V; Horot', I V; Sahach, V F

    2010-01-01

    Peculiarities of changes in the vascular reactivity and in the content of reactive forms of oxygen and stable metabolites of nitric oxide (NO) were studied in the aorta preparations of C57BL/6 and BALB/c mice of the two age groups (6 and 18 mo.), which were born and permanently kept in the Chernobyl alienation zone. The results obtained showed a disturbance of acetylcholine-induced endothelium-dependent reactions of relaxation of smooth muscles of the thoracic aorta. A lower level of NO synthesis and lower level of oxidative arginase metabolism of arginine corresponded to a higher degree of damage of endothelium-dependent reactions of relaxation of the thoracic aorta smooth muscles. A decrease of NO synthesis in conditions of permanent effects of low doses of radiation was conditioned by an increase of generation of reactive forms of oxygen, namely, superoxide and hydroxyl radicals, which might be formed in mitochondria. In conditions of permanent effects of low doses of radiation a lesser level of protein nitrosothilation, same as lesser one of generation of OH-radical, corresponded to a higher level of damage of endothelium-dependent reactions.

  8. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M

    2014-11-15

    Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P < .001) and all with severe malaria (P < .001). Children with malaria have decreased endothelial and microvascular function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Metabolic and vascular origins of the BOLD effect: Implications for imaging pathology and resting-state brain function.

    PubMed

    Mark, Clarisse I; Mazerolle, Erin L; Chen, J Jean

    2015-08-01

    The blood oxygenation level-dependent (BOLD) phenomenon has profoundly revolutionized neuroscience, with applications ranging from normal brain development and aging, to brain disorders and diseases. While the BOLD effect represents an invaluable tool to map brain function, it does not measure neural activity directly; rather, it reflects changes in blood oxygenation resulting from the relative balance between cerebral oxygen metabolism (through neural activity) and oxygen supply (through cerebral blood flow and volume). As such, there are cases in which BOLD signals might be dissociated from neural activity, leading to misleading results. The emphasis of this review is to develop a critical perspective for interpreting BOLD results, through a comprehensive consideration of BOLD's metabolic and vascular underpinnings. We demonstrate that such an understanding is especially important under disease or resting conditions. We also describe state-of-the-art acquisition and analytical techniques to reveal physiological information on the mechanisms underlying measured BOLD signals. With these goals in mind, this review is structured to provide a fundamental understanding of: 1) the physiological and physical sources of the BOLD contrast; 2) the extraction of information regarding oxidative metabolism and cerebrovascular reactivity from the BOLD signal, critical to investigating neuropathology; and 3) the fundamental importance of metabolic and vascular mechanisms for interpreting resting-state BOLD measurements. © 2015 Wiley Periodicals, Inc.

  10. MRI measurement of the temporal evolution of relative CMRO(2) during rat forepaw stimulation.

    PubMed

    Mandeville, J B; Marota, J J; Ayata, C; Moskowitz, M A; Weisskoff, R M; Rosen, B R

    1999-11-01

    This study reports the first measurement of the relative cerebral metabolic rate of oxygen utilization (rCMRO(2)) during functional brain activation with sufficient temporal resolution to address the dynamics of blood oxygen level-dependent (BOLD) MRI signal. During rat forepaw stimulation, rCMRO(2) was determined in somatosensory cortex at 3-sec intervals, using a model of BOLD signal and measurements of the change in BOLD transverse relaxation rate, the resting state BOLD transverse relaxation rate, relative cerebral blood flow (rCBF), and relative cerebral blood volume (rCBV). Average percentage changes from 10 to 30 sec after onset of forepaw stimulation for rCBF, rCBV, rCMRO(2), and BOLD relaxation rate were 62 +/- 16, 17 +/- 2, 19 +/- 17, and -26 +/- 12, respectively. A poststimulus undershoot in BOLD signal was quantitatively attributed to the temporal mismatch between changes in blood flow and volume, and not to the role of oxygen metabolism. Magn Reson Med 42:944-951, 1999. Copyright 1999 Wiley-Liss, Inc.

  11. Acclimatization and tolerance to extreme altitude

    NASA Technical Reports Server (NTRS)

    West, J. B.

    1993-01-01

    During the last ten years, two major experiments have elucidated the factors determining acclimatization and tolerance to extreme altitude (over 7000 m). These were the American Medical Research Expedition to Everest, and the low pressure chamber simulation, Operation Everest II. Extreme hyperventilation is one of the most important responses to extreme altitude. Its chief value is that it allows the climber to maintain an alveolar PO2 which keeps the arterial PO2 above dangerously low levels. Even so, there is evidence of residual impairment of central nervous system function after ascents to extreme altitude, and maximal oxygen consumption falls precipitously above 7000 m. The term 'acclimatization' is probably not appropriate for altitudes above 8000 m, because the body steadily deteriorates at these altitudes. Tolerance to extreme altitude is critically dependent on barometric pressure, and even seasonal changes in pressure probably affect climbing performance near the summit of Mt Everest. Supplementary oxygen always improves exercise tolerance at extreme altitudes, and rescue oxygen should be available on climbing expeditions to 8000 m peaks.

  12. Modeling the impact of COPD on the brain.

    PubMed

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable-COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p < or = 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities.

  13. Modeling the impact of COPD on the brain

    PubMed Central

    Borson, Soo; Scanlan, James; Friedman, Seth; Zuhr, Elizabeth; Fields, Julie; Aylward, Elizabeth; Mahurin, Rodney; Richards, Todd; Anzai, Yoshimi; Yukawa, Michi; Yeh, Shingshing

    2008-01-01

    Previous studies have shown that COPD adversely affects distant organs and body systems, including the brain. This pilot study aims to model the relationships between respiratory insufficiency and domains related to brain function, including low mood, subtly impaired cognition, systemic inflammation, and brain structural and neurochemical abnormalities. Nine healthy controls were compared with 18 age- and education-matched medically stable COPD patients, half of whom were oxygen-dependent. Measures included depression, anxiety, cognition, health status, spirometry, oximetry at rest and during 6-minute walk, and resting plasma cytokines and soluble receptors, brain MRI, and MR spectroscopy in regions relevant to mood and cognition. ANOVA was used to compare controls with patients and with COPD subgroups (oxygen users [n = 9] and nonusers [n = 9]), and only variables showing group differences at p ≤ 0.05 were included in multiple regressions controlling for age, gender, and education to develop the final model. Controls and COPD patients differed significantly in global cognition and memory, mood, and soluble TNFR1 levels but not brain structural or neurochemical measures. Multiple regressions identified pathways linking disease severity with impaired performance on sensitive cognitive processing measures, mediated through oxygen dependence, and with systemic inflammation (TNFR1), related through poor 6-minute walk performance. Oxygen desaturation with activity was related to indicators of brain tissue damage (increased frontal choline, which in turn was associated with subcortical white matter attenuation). This empirically derived model provides a conceptual framework for future studies of clinical interventions to protect the brain in patients with COPD, such as earlier oxygen supplementation for patients with desaturation during everyday activities. PMID:18990971

  14. Hypoxia promotes liver-stage malaria infection in primary human hepatocytes in vitro.

    PubMed

    Ng, Shengyong; March, Sandra; Galstian, Ani; Hanson, Kirsten; Carvalho, Tânia; Mota, Maria M; Bhatia, Sangeeta N

    2014-02-01

    Homeostasis of mammalian cell function strictly depends on balancing oxygen exposure to maintain energy metabolism without producing excessive reactive oxygen species. In vivo, cells in different tissues are exposed to a wide range of oxygen concentrations, and yet in vitro models almost exclusively expose cultured cells to higher, atmospheric oxygen levels. Existing models of liver-stage malaria that utilize primary human hepatocytes typically exhibit low in vitro infection efficiencies, possibly due to missing microenvironmental support signals. One cue that could influence the infection capacity of cultured human hepatocytes is the dissolved oxygen concentration. We developed a microscale human liver platform comprised of precisely patterned primary human hepatocytes and nonparenchymal cells to model liver-stage malaria, but the oxygen concentrations are typically higher in the in vitro liver platform than anywhere along the hepatic sinusoid. Indeed, we observed that liver-stage Plasmodium parasite development in vivo correlates with hepatic sinusoidal oxygen gradients. Therefore, we hypothesized that in vitro liver-stage malaria infection efficiencies might improve under hypoxia. Using the infection of micropatterned co-cultures with Plasmodium berghei, Plasmodium yoelii or Plasmodium falciparum as a model, we observed that ambient hypoxia resulted in increased survival of exo-erythrocytic forms (EEFs) in hepatocytes and improved parasite development in a subset of surviving EEFs, based on EEF size. Further, the effective cell surface oxygen tensions (pO2) experienced by the hepatocytes, as predicted by a mathematical model, were systematically perturbed by varying culture parameters such as hepatocyte density and height of the medium, uncovering an optimal cell surface pO2 to maximize the number of mature EEFs. Initial mechanistic experiments revealed that treatment of primary human hepatocytes with the hypoxia mimetic, cobalt(II) chloride, as well as a HIF-1α activator, dimethyloxalylglycine, also enhance P. berghei infection, suggesting that the effect of hypoxia on infection is mediated in part by host-dependent HIF-1α mechanisms.

  15. Dissociated effects of anticipating smoking versus monetary reward in the caudate as a function of smoking abstinence.

    PubMed

    Sweitzer, Maggie M; Geier, Charles F; Joel, Danielle L; McGurrin, Patrick; Denlinger, Rachel L; Forbes, Erika E; Donny, Eric C

    2014-11-01

    Theories of addiction suggest that chronic smoking may be associated with both hypersensitivity to smoking and related cues and hyposensitivity to alternative reinforcers. However, neural responses to smoking and nonsmoking rewards are rarely evaluated within the same paradigm, leaving the extent to which both processes operate simultaneously uncertain. Behavioral evidence and theoretical models suggest that dysregulated reward processing may be more pronounced during deprivation from nicotine, but neuroimaging evidence on the effects of deprivation on reward processing is limited. The current study examined the impact of deprivation from smoking on neural processing of both smoking and monetary rewards. Two separate functional magnetic resonance imaging scans were performed in 38 daily smokers, one after smoking without restriction and one following 24 hours of abstinence. A rewarded guessing task was conducted during each scan to evaluate striatal blood oxygen level-dependent response during anticipation of both smoking and monetary rewards. A significant reward type by abstinence interaction was observed in the bilateral caudate and medial prefrontal cortex during reward anticipation. The blood oxygen level-dependent response to anticipation of smoking reward was significantly higher and anticipation of monetary rewards was significantly lower during abstinence compared with nonabstinence. Attenuation of monetary reward-related activation during abstinence was significantly correlated with abstinence-induced increases in craving and withdrawal. These results provide the first direct evidence of dissociated effects of smoking versus monetary rewards as a function of abstinence. The findings suggest an important neural pathway that may underlie the choice to smoke in lieu of alternative reinforcement during a quit attempt. © 2013 Society of Biological Psychiatry Published by Society of Biological Psychiatry All rights reserved.

  16. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS)

    PubMed Central

    Ristow, Michael; Schmeisser, Kathrin

    2014-01-01

    Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful. PMID:24910588

  17. Variable Lysozyme Transport Dynamics on Oxidatively Functionalized Polystyrene Films.

    PubMed

    Moringo, Nicholas A; Shen, Hao; Tauzin, Lawrence J; Wang, Wenxiao; Bishop, Logan D C; Landes, Christy F

    2017-10-17

    Tuning protein adsorption dynamics at polymeric interfaces is of great interest to many biomedical and material applications. Functionalization of polymer surfaces is a common method to introduce application-specific surface chemistries to a polymer interface. In this work, single-molecule fluorescence microscopy is utilized to determine the adsorption dynamics of lysozyme, a well-studied antibacterial protein, at the interface of polystyrene oxidized via UV exposure and oxygen plasma and functionalized by ligand grafting to produce varying degrees of surface hydrophilicity, surface roughness, and induced oxygen content. Single-molecule tracking indicates lysozyme loading capacities, and surface mobility at the polymer interface is hindered as a result of all functionalization techniques. Adsorption dynamics of lysozyme depend on the extent and the specificity of the oxygen functionalities introduced to the polystyrene surface. Hindered adsorption and mobility are dominated by hydrophobic effects attributed to water hydration layer formation at the functionalized polystyrene surfaces.

  18. Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy.

    PubMed

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  19. [Monitorization of the effects of spinal anaesthesia on cerebral oxygen saturation in elder patients using near-infrared spectroscopy].

    PubMed

    Kusku, Aysegul; Demir, Guray; Cukurova, Zafer; Eren, Gulay; Hergunsel, Oya

    2014-01-01

    Central blockage provided by spinal anaesthesia enables realization of many surgical procedures, whereas hemodynamic and respiratory changes influence systemic oxygen delivery leading to the potential development of series of problems such as cerebral ischemia, myocardial infarction and acute renal failure. This study was intended to detect potentially adverse effects of hemodynamic and respiratory changes on systemic oxygen delivery using cerebral oxymetric methods in patients who underwent spinal anaesthesia. Twenty-five ASA I-II Group patients aged 65-80 years scheduled for unilateral inguinal hernia repair under spinal anaesthesia were included in the study. Following standard monitorization baseline cerebral oxygen levels were measured using cerebral oximetric methods. Standardized Mini Mental Test (SMMT) was applied before and after the operation so as to determine the level of cognitive functioning of the cases. Using a standard technique and equal amounts of a local anaesthetic drug (15mg bupivacaine 5%) intratechal blockade was performed. Mean blood pressure (MBP), maximum heart rate (MHR), peripheral oxygen saturation (SpO2) and cerebral oxygen levels (rSO2) were preoperatively monitored for 60min. Pre- and postoperative haemoglobin levels were measured. The variations in data obtained and their correlations with the cerebral oxygen levels were investigated. Significant changes in pre- and postoperative measurements of haemoglobin levels and SMMT scores and intraoperative SpO2 levels were not observed. However, significant variations were observed in intraoperative MBP, MHR and rSO2 levels. Besides, a correlation between variations in rSO2, MBP and MHR was determined. Evaluation of the data obtained in the study demonstrated that post-spinal decline in blood pressure and also heart rate decreases systemic oxygen delivery and adversely effects cerebral oxygen levels. However, this downward change did not result in deterioration of cognitive functioning. Copyright © 2013 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  20. Depth perception: the need to report ocean biogeochemical rates as functions of temperature, not depth.

    PubMed

    Brewer, Peter G; Peltzer, Edward T

    2017-09-13

    For over 50 years, ocean scientists have oddly represented ocean oxygen consumption rates as a function of depth but not temperature in most biogeochemical models. This unique tradition or tactic inhibits useful discussion of climate change impacts, where specific and fundamental temperature-dependent terms are required. Tracer-based determinations of oxygen consumption rates in the deep sea are nearly universally reported as a function of depth in spite of their well-known microbial basis. In recent work, we have shown that a carefully determined profile of oxygen consumption rates in the Sargasso Sea can be well represented by a classical Arrhenius function with an activation energy of 86.5 kJ mol -1 , leading to a Q 10 of 3.63. This indicates that for 2°C warming, we will have a 29% increase in ocean oxygen consumption rates, and for 3°C warming, a 47% increase, potentially leading to large-scale ocean hypoxia should a sufficient amount of organic matter be available to microbes. Here, we show that the same principles apply to a worldwide collation of tracer-based oxygen consumption rate data and that some 95% of ocean oxygen consumption is driven by temperature, not depth, and thus will have a strong climate dependence. The Arrhenius/Eyring equations are no simple panacea and they require a non-equilibrium steady state to exist. Where transient events are in progress, this stricture is not obeyed and we show one such possible example.This article is part of the themed issue 'Ocean ventilation and deoxygenation in a warming world'. © 2017 The Author(s).

  1. Effects of nocturnal oxygen therapy on heart function in SDB patients undergoing dialysis.

    PubMed

    Nakajima, Fumitaka; Furumatsu, Yoshiyuki; Yurugi, Takatomi; Amari, Yoshifumi; Iida, Takeshi; Uehara, Mitsuru; Fukunaga, Megumu

    2015-06-01

    There is a close relationship between sleep disordered breathing (SDB) and heart failure. We performed home oxygen therapy (HOT) in patients with SAS undergoing dialysis, and investigated its effects on the heart function. The subjects were 10 SDB patients on dialysis. On retiring at night, oxygen was transnasally administered at 1.0 L/min. The human atrial natriuretic peptide (hANP), brain natriuretic peptide (BNP), total protein, Alb, cholesterol and phosphorus levels were measured before the start of oxygen therapy and after 6 weeks. The mean SpO2 increased from 93.5% [91.5, 97.0] to 96.3% [94.8, 97.4] (median [interquartile range]) (p = 0.015). The hANP (p = 0.0039), BNP (p = 0.0098) and serum Alb (p = 0.015) levels significantly improved. There were no significant changes in the cholesterol, phosphorus or total protein levels. These results suggest that nocturnal oxygen therapy improves indices of heart failure, contributing to the prevention and treatment of heart failure in dialysis patients with SDB.

  2. The Cys-Arg/N-End Rule Pathway Is a General Sensor of Abiotic Stress in Flowering Plants.

    PubMed

    Vicente, Jorge; Mendiondo, Guillermina M; Movahedi, Mahsa; Peirats-Llobet, Marta; Juan, Yu-Ting; Shen, Yu-Yen; Dambire, Charlene; Smart, Katherine; Rodriguez, Pedro L; Charng, Yee-Yung; Gray, Julie E; Holdsworth, Michael J

    2017-10-23

    Abiotic stresses impact negatively on plant growth, profoundly affecting yield and quality of crops. Although much is known about plant responses, very little is understood at the molecular level about the initial sensing of environmental stress. In plants, hypoxia (low oxygen, which occurs during flooding) is directly sensed by the Cys-Arg/N-end rule pathway of ubiquitin-mediated proteolysis, through oxygen-dependent degradation of group VII Ethylene Response Factor transcription factors (ERFVIIs) via amino-terminal (Nt-) cysteine [1, 2]. Using Arabidopsis (Arabidopsis thaliana) and barley (Hordeum vulgare), we show that the pathway regulates plant responses to multiple abiotic stresses. In Arabidopsis, genetic analyses revealed that response to these stresses is controlled by N-end rule regulation of ERFVII function. Oxygen sensing via the Cys-Arg/N-end rule in higher eukaryotes is linked through a single mechanism to nitric oxide (NO) sensing [3, 4]. In plants, the major mechanism of NO synthesis is via NITRATE REDUCTASE (NR), an enzyme of nitrogen assimilation [5]. Here, we identify a negative relationship between NR activity and NO levels and stabilization of an artificial Nt-Cys substrate and ERFVII function in response to environmental changes. Furthermore, we show that ERFVIIs enhance abiotic stress responses via physical and genetic interactions with the chromatin-remodeling ATPase BRAHMA. We propose that plants sense multiple abiotic stresses through the Cys-Arg/N-end rule pathway either directly (via oxygen sensing) or indirectly (via NO sensing downstream of NR activity). This single mechanism can therefore integrate environment and response to enhance plant survival. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Steroid Sulfates from Ophiuroids (Brittle Stars): Action on Some Factors of Innate and Adaptive Immunity.

    PubMed

    Gazha, Anna K; Ivanushko, Lyudmila A; Levina, Eleonora V; Fedorov, Sergey N; Zaporozets, Tatyana S; Stonik, Valentin A; Besednova, Nataliya N

    2016-06-01

    The action of seven polyhydroxylated sterol mono- and disulfates (1-7), isolated from ophiuroids, on innate and adaptive immunity was examined in in vitro and in vivo experiments. At least, three of them (1, 2 and 4) increased the functional activities of neutrophils, including levels of oxygen-dependent metabolism, adhesive and phagocytic properties, and induced the expression of pro-inflammatory cytokines TNF-α and IL-8. Compound 4 was the most active for enhancing the production of antibody forming cells in the mouse spleen.

  4. [Oxygen-transporting function of the blood circulation system in sevoflurane anesthesia during myocardial revascularization under extracorporeal circulation].

    PubMed

    Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V

    2009-01-01

    The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.

  5. Atmospheric Oxygen Inhibits Growth and Differentiation of Marrow-Derived Mouse Mesenchymal Stem Cells via a p53 Dependent Mechanism: Implications for Long-Term Culture Expansion

    PubMed Central

    Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.

    2013-01-01

    Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737

  6. Arousal Modulates Activity in the Medial Temporal Lobe during a Short-Term Relational Memory Task

    PubMed Central

    Thoresen, Christian; Jensen, Jimmy; Sigvartsen, Niels Petter B.; Bolstad, Ingeborg; Server, Andres; Nakstad, Per H.; Andreassen, Ole A.; Endestad, Tor

    2011-01-01

    This study investigated the effect of arousal on short-term relational memory and its underlying cortical network. Seventeen healthy participants performed a picture by location, short-term relational memory task using emotional pictures. Functional magnetic resonance imaging was used to measure the blood-oxygenation-level dependent signal relative to task. Subjects’ own ratings of the pictures were used to obtain subjective arousal ratings. Subjective arousal was found to have a dose-dependent effect on activations in the prefrontal cortex, amygdala, hippocampus, and in higher order visual areas. Serial position analyses showed that high arousal trials produced a stronger primacy and recency effect than low arousal trials. The results indicate that short-term relational memory may be facilitated by arousal and that this may be modulated by a dose–response function in arousal-driven neuronal regions. PMID:22291626

  7. Blood oxygenation level-dependent (BOLD) contrast magnetic resonance imaging (MRI) for prediction of breast cancer chemotherapy response: a pilot study.

    PubMed

    Jiang, Lan; Weatherall, Paul T; McColl, Roderick W; Tripathy, Debu; Mason, Ralph P

    2013-05-01

    To determine whether a simple noninvasive method of assessing tumor oxygenation is feasible in the clinical setting and can provide useful, potentially predictive information. Tumor microcirculation and oxygenation play critical roles in tumor growth and responsiveness to cytotoxic treatment and may provide prognostic indicators for cancer therapy. Deoxyhemoglobin is paramagnetic and can serve as an endogenous contrast agent causing signal loss in echo planar magnetic resonance imaging (MRI) (blood oxygenation level-dependent [BOLD]-MRI). We used BOLD-MRI to provide early evaluation of response to neoadjuvant chemotherapy in patients with locally advanced breast cancer. MRI was performed on 11 patients with biopsy-proven malignancy. MRI exams were scheduled before, during, and after chemotherapy. The BOLD study applied a 6-minute oxygen breathing challenge. Seven patients successfully completed the exams. Before chemotherapy, BOLD contrast enhancement was observed in all tumors, but the patients, who ultimately had complete pathological response, exhibited a significantly higher BOLD response to oxygen breathing. We have successfully implemented an oxygen-breathing challenge BOLD contrast technique as part of the standard breast MRI exam in patients with locally advanced breast cancer. The preliminary observation that a large BOLD response correlated with better treatment response suggests a predictive capability for BOLD MRI. Copyright © 2012 Wiley Periodicals, Inc.

  8. [Influence of raising oxygen content on function of platelet concentrate during preservation].

    PubMed

    Zhan, Tong; Xiao, Jian-Yu; Tao, Jing; Miao, Xi-Feng; Liu, Yan-Cun; Tang, Rong-Cai

    2006-08-01

    To explore the influence of raising oxygen (dissolved oxygen) content on function of platelet concentrate, the platelet concentrate was prepared by a CS-3000 plus blood cell separator. Experiments were divided into 2 groups: test group and control group. After raising oxygen content in platelet plasma under sterile operation, the platelet samples of two groups were preserved in oscillator with horizontal oscillation at 22 +/- 2 degrees C. The platelet count, platelet aggregation rate, lactic acid content and CD62p expression level of platelet were detected on 0, 1, 2, 3, 4, 5 days of platelet preservation. The results showed that the platelet count and platelet aggregation rate decreased with prolongation of preserved time, while the lactic acid content and CD62p expression level of platelet increased gradually. Compared with control group, there were significant differences in aggregation rate of platelet preserved for 2-3 days, and in CD62p expression level of platelet preserved for 1-3 days, while significant difference was found in lactic acid content of platelet preserved for 1-3 days. It is concluded that raising content of oxygen in platelet plasma can provide more oxygen to compensate oxygen supply deficiency for platelet metabolism and improve the efficiency of platelet oxygenic metabolism and the quality of platelet during preservation.

  9. Evidence for the Slow Reaction of Hypoxia-Inducible Factor Prolyl Hydroxylase 2 with Oxygen

    PubMed Central

    Flashman, Emily; Hoffart, Lee M.; Hamed, Refaat B.; Bollinger, J. Martin; Krebs, Carsten; Schofield, Christopher J.

    2010-01-01

    SUMMARY The response of animals to hypoxia is mediated by the hypoxia-inducible transcription factor (HIF). Human HIF is regulated by four Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases: Prolyl hydroxylase domain enzymes (PHDs or EGLNs) 1–3 catalyse hydroxylation of two prolyl-residues in HIF, triggering its degradation by the proteasome. Factor inhibiting HIF (FIH) catalyses hydroxylation of an asparagine-residue in HIF, inhibiting its transcriptional activity. Collectively, the HIF hydroxylases negatively regulate HIF in response to increasing oxygen concentration. Prolyl hydroxylase domain 2 (PHD2) is the most important oxygen sensor in human cells; however the underlying kinetic basis of the oxygen sensing function of PHD2 is unclear. We report analyses of the reaction of PHD2 with oxygen. Chemical quench/mass spectrometry experiments showed that reaction of a complex of PHD2, Fe(II), 2OG and the C-terminal oxygen-dependent degradation domain of HIF-α (CODD) with oxygen to form hydroxylated CODD and succinate is much slower (~100 fold) than for other similarly studied 2OG oxygenases. Stopped flow/UV-visible spectroscopy experiments showed that the reaction produces a relatively stable species absorbing at 320nm; Mössbauer spectroscopic experiments implied that this species is likely not a Fe(IV)=O intermediate, as observed for other 2OG oxygenases. Overall the results suggest that, at least compared to other studied 2OG oxygenases, PHD2 reacts relatively slowly with oxygen, a property that may be associated with its function as an oxygen sensor. PMID:20840591

  10. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Norris, Mary Jo

    1998-01-01

    A Monte Carlo computational model has been developed which simulates atomic oxygen attack of protected polymers at defect sites in the protective coatings. The parameters defining how atomic oxygen interacts with polymers and protective coatings as well as the scattering processes which occur have been optimized to replicate experimental results observed from protected polyimide Kapton on the Long Duration Exposure Facility (LDEF) mission. Computational prediction of atomic oxygen undercutting at defect sites in protective coatings for various arrival energies was investigated. The atomic oxygen undercutting energy dependence predictions enable one to predict mass loss that would occur in low Earth orbit, based on lower energy ground laboratory atomic oxygen beam systems. Results of computational model prediction of undercut cavity size as a function of energy and defect size will be presented to provide insight into expected in-space mass loss of protected polymers with protective coating defects based on lower energy ground laboratory testing.

  11. Redox regulation of cGMP-dependent protein kinase Iα in the cardiovascular system

    PubMed Central

    Prysyazhna, Oleksandra; Eaton, Philip

    2015-01-01

    Elevated levels of oxidants in biological systems have been historically referred to as “oxidative stress,” a choice of words that perhaps conveys an imbalanced view of reactive oxygen species in cells and tissues. The term stress suggests a harmful role, whereas a contemporary view is that oxidants are also crucial for the maintenance of homeostasis or adaptive signaling that can actually limit injury. This regulatory role for oxidants is achieved in part by them inducing oxidative post-translational modifications of proteins which may alter their function or interactions. Such mechanisms allow changes in cell oxidant levels to be coupled to regulated alterations in enzymatic function (i.e., signal transduction), which enables “redox signaling.” In this review we focus on the role of cGMP-dependent protein kinase (PKG) Ia disulfide dimerisation, an oxidative modification that is induced by oxidants that directly activates the enzyme, discussing how this impacts on the cardiovascular system. Additionally, how this oxidative activation of PKG may coordinate with or differ from classical activation of this kinase by cGMP is also considered. PMID:26236235

  12. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-06

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Oxygen Concentration Inside a Functioning Photosynthetic Cell

    PubMed Central

    Kihara, Shigeharu; Hartzler, Daniel A.; Savikhin, Sergei

    2014-01-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth’s atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  14. Susceptibility Profiles of Amphotericin B and Posaconazole against Clinically Relevant Mucorales Species under Hypoxic Conditions

    PubMed Central

    Maurer, Elisabeth; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia

    2014-01-01

    The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. PMID:25451049

  15. Evaluation of the default-mode network by quantitative 15O-PET: comparative study between cerebral blood flow and oxygen consumption.

    PubMed

    Aoe, Jo; Watabe, Tadashi; Shimosegawa, Eku; Kato, Hiroki; Kanai, Yasukazu; Naka, Sadahiro; Matsunaga, Keiko; Isohashi, Kayako; Tatsumi, Mitsuaki; Hatazawa, Jun

    2018-06-22

    Resting-state functional MRI (rs-fMRI) has revealed the existence of a default-mode network (DMN) based on spontaneous oscillations of the blood oxygenation level-dependent (BOLD) signal. The BOLD signal reflects the deoxyhemoglobin concentration, which depends on the relationship between the regional cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO 2 ). However, these two factors cannot be separated in BOLD rs-fMRI. In this study, we attempted to estimate the functional correlations in the DMN by means of quantitative 15 O-labeled gases and water PET, and to compare the contribution of the CBF and CMRO 2 to the DMN. Nine healthy volunteers (5 men and 4 women; mean age, 47.0 ± 1.2 years) were studied by means of 15 O-O 2 , 15 O-CO gases and 15 O-water PET. Quantitative CBF and CMRO 2 images were generated by an autoradiographic method and transformed into MNI standardized brain template. Regions of interest were placed on normalized PET images according to the previous rs-fMRI study. For the functional correlation analysis, the intersubject Pearson's correlation coefficients (r) were calculated for all pairs in the brain regions and correlation matrices were obtained for CBF and CMRO 2 , respectively. We defined r > 0.7 as a significant positive correlation and compared the correlation matrices of CBF and CMRO 2 . Significant positive correlations (r > 0.7) were observed in 24 pairs of brain regions for the CBF and 22 pairs of brain regions for the CMRO 2 . Among them, 12 overlapping networks were observed between CBF and CMRO 2 . Correlation analysis of CBF led to the detection of more brain networks as compared to that of CMRO 2 , indicating that the CBF can capture the state of the spontaneous activity with a higher sensitivity. We estimated the functional correlations in the DMN by means of quantitative PET using 15 O-labeled gases and water. The correlation matrix derived from the CBF revealed a larger number of brain networks as compared to that derived from the CMRO 2 , indicating that contribution to the functional correlation in the DMN is higher in the blood flow more than the oxygen consumption.

  16. Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology.

    PubMed

    Bentley, William J; Li, Jingfeng M; Snyder, Abraham Z; Raichle, Marcus E; Snyder, Lawrence H

    2016-01-01

    The human default mode network (DMN) shows decreased blood oxygen level dependent (BOLD) signals in response to a wide range of attention-demanding tasks. Our understanding of the specifics regarding the neural activity underlying these "task-negative" BOLD responses remains incomplete. We paired oxygen polarography, an electrode-based oxygen measurement technique, with standard electrophysiological recording to assess the relationship of oxygen and neural activity in task-negative posterior cingulate cortex (PCC), a hub of the DMN, and visually responsive task-positive area V3 in the awake macaque. In response to engaging visual stimulation, oxygen, LFP power, and multi-unit activity in PCC showed transient activation followed by sustained suppression. In V3, oxygen, LFP power, and multi-unit activity showed an initial phasic response to the stimulus followed by sustained activation. Oxygen responses were correlated with LFP power in both areas, although the apparent hemodynamic coupling between oxygen level and electrophysiology differed across areas. Our results suggest that oxygen responses reflect changes in LFP power and multi-unit activity and that either the coupling of neural activity to blood flow and metabolism differs between PCC and V3 or computing a linear transformation from a single LFP band to oxygen level does not capture the true physiological process. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Anaerobic metabolism in Brassica seedlings

    NASA Astrophysics Data System (ADS)

    Park, Myoung-Ryoul; Hasenstein, Karl H.

    Germination typically depends on oxidative respiration. The lack of convection under space conditions may create hypoxic or conditions during seed germination. We investigated the effect of reduced oxygen on seed germination and metabolism to understand how metabolic constraints affect seed growth and responsiveness to reorientation. Germination was completely inhibited when seeds were imbibed in the absence of oxygen; germination occurred at 5% oxygen and higher levels. Adding oxygen after 72 h resulted in immediate germination (protrusion of the radicle). Hypoxia typically activates alcohol dehydrogenase (ADH, EC 1.1.1.1) and lactate dehydrogenase (LDH, EC 1.1.1.27) which produce ethanol and/or L-lactate, respectively. We report on the expression of ADH1 and LDH1, and changes in total soluble sugars, starch, pH, and L-lactate in seedlings grown at 28°C in 0, 2.5, 5, 10% and ambient (21%) oxygen conditions as controls. The highest consumption (lowest level) of sugars was seen at 0% oxygen but the lowest level of starch occurred 24 h after imbibition under ambient condition. Expression levels of ADH1 in ambient oxygen condition increased within 24 h but increased threefold under hypoxic conditions; LDH1 increased up to 8-fold under hypoxia compared to controls but ADH1 and LDH1 were less expressed as the oxygen levels increased. The intracellular pH of seeds decreased as the content of L-lactate increased for all oxygen concentrations. These results indicate that germination of Brassica is sensitive to oxygen levels and that oxygen availability during germination is an important factor for metabolic activities. (Supported by NASA grant NNX10AP91G)

  18. Orientation dependent ionization potential of In2O3: a natural source for inhomogeneous barrier formation at electrode interfaces in organic electronics.

    PubMed

    Hohmann, Mareike V; Ágoston, Péter; Wachau, André; Bayer, Thorsten J M; Brötz, Joachim; Albe, Karsten; Klein, Andreas

    2011-08-24

    The ionization potentials of In(2)O(3) films grown epitaxially by magnetron sputtering on Y-stabilized ZrO(2) substrates with (100) and (111) surface orientation are determined using photoelectron spectroscopy. Epitaxial growth is verified using x-ray diffraction. The observed ionization potentials, which directly affect the work functions, are in good agreement with ab initio calculations using density functional theory. While the (111) surface exhibits a stable surface termination with an ionization potential of ∼ 7.0 eV, the surface termination and the ionization potential of the (100) surface depend strongly on the oxygen chemical potential. With the given deposition conditions an ionization potential of ∼ 7.7 eV is obtained, which is attributed to a surface termination stabilized by oxygen dimers. This orientation dependence also explains the lower ionization potentials observed for In(2)O(3) compared to Sn-doped In(2)O(3) (ITO) (Klein et al 2009 Thin Solid Films 518 1197-203). Due to the orientation dependent ionization potential, a polycrystalline ITO film will exhibit a laterally varying work function, which results in an inhomogeneous charge injection into organic semiconductors when used as electrode material. The variation of work function will become even more pronounced when oxygen plasma or UV-ozone treatments are performed, as an oxidation of the surface is only possible for the (100) surface. The influence of the deposition technique on the formation of stable surface terminations is also discussed. © 2011 IOP Publishing Ltd

  19. Nalmefene Reduces Reward Anticipation in Alcohol Dependence: An Experimental Functional Magnetic Resonance Imaging Study.

    PubMed

    Quelch, Darren R; Mick, Inge; McGonigle, John; Ramos, Anna C; Flechais, Remy S A; Bolstridge, Mark; Rabiner, Eugenii; Wall, Matthew B; Newbould, Rexford D; Steiniger-Brach, Björn; van den Berg, Franz; Boyce, Malcolm; Østergaard Nilausen, Dorrit; Breuning Sluth, Lasse; Meulien, Didier; von der Goltz, Christoph; Nutt, David; Lingford-Hughes, Anne

    2017-06-01

    Nalmefene is a µ and δ opioid receptor antagonist, κ opioid receptor partial agonist that has recently been approved in Europe for treating alcohol dependence. It offers a treatment approach for alcohol-dependent individuals with "high-risk drinking levels" to reduce their alcohol consumption. However, the neurobiological mechanism underpinning its effects on alcohol consumption remains to be determined. Using a randomized, double-blind, placebo-controlled, within-subject crossover design we aimed to determine the effect of a single dose of nalmefene on striatal blood oxygen level-dependent (BOLD) signal change during anticipation of monetary reward using the monetary incentive delay task following alcohol challenge. Twenty-two currently heavy-drinking, non-treatment-seeking alcohol-dependent males were recruited. The effect of single dose nalmefene (18 mg) on changes in a priori defined striatal region of interest BOLD signal change during reward anticipation compared with placebo was investigated using functional magnetic resonance imaging. Both conditions were performed under intravenous alcohol administration (6% vol/vol infusion to achieve a target level of 80 mg/dL). Datasets from 18 participants were available and showed that in the presence of the alcohol infusion, nalmefene significantly reduced the BOLD response in the striatal region of interest compared with placebo. Nalmefene did not alter brain perfusion. Nalmefene blunts BOLD response in the mesolimbic system during anticipation of monetary reward and an alcohol infusion. This is consistent with nalmefene's actions on opioid receptors, which modulate the mesolimbic dopaminergic system, and provides a neurobiological basis for its efficacy. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Bcl-2 Family Members and Functional Electron Transport Chain Regulate Oxygen Deprivation-Induced Cell Death

    PubMed Central

    McClintock, David S.; Santore, Matthew T.; Lee, Vivian Y.; Brunelle, Joslyn; Budinger, G. R. Scott; Zong, Wei-Xing; Thompson, Craig B.; Hay, Nissim; Chandel, Navdeep S.

    2002-01-01

    The mechanisms underlying cell death during oxygen deprivation are unknown. We report here a model for oxygen deprivation-induced apoptosis. The death observed during oxygen deprivation involves a decrease in the mitochondrial membrane potential, followed by the release of cytochrome c and the activation of caspase-9. Bcl-XL prevented oxygen deprivation-induced cell death by inhibiting the release of cytochrome c and caspase-9 activation. The ability of Bcl-XL to prevent cell death was dependent on allowing the import of glycolytic ATP into the mitochondria to generate an inner mitochondrial membrane potential through the F1F0-ATP synthase. In contrast, although activated Akt has been shown to inhibit apoptosis induced by a variety of apoptotic stimuli, it did not prevent cell death during oxygen deprivation. In addition to Bcl-XL, cells devoid of mitochondrial DNA (ρ° cells) that lack a functional electron transport chain were resistant to oxygen deprivation. Further, murine embryonic fibroblasts from bax−/− bak−/− mice did not die in response to oxygen deprivation. These data suggest that when subjected to oxygen deprivation, cells die as a result of an inability to maintain a mitochondrial membrane potential through the import of glycolytic ATP. Proapoptotic Bcl-2 family members and a functional electron transport chain are required to initiate cell death in response to oxygen deprivation. PMID:11739725

  1. Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa.

    PubMed

    Schmidt, Annika; Hammerbacher, Anna Silke; Bastian, Mike; Nieken, Karen Jule; Klockgether, Jens; Merighi, Massimo; Lapouge, Karine; Poschgan, Claudia; Kölle, Julia; Acharya, K Ravi; Ulrich, Martina; Tümmler, Burkhard; Unden, Gottfried; Kaever, Volkhard; Lory, Stephen; Haas, Dieter; Schwarz, Sandra; Döring, Gerd

    2016-10-01

    Pseudomonas aeruginosa produces increased levels of alginate in response to oxygen-deprived conditions. The regulatory pathway(s) that links oxygen limitation to increased synthesis of alginate has remained elusive. In the present study, using immunofluorescence microscopy, we show that anaerobiosis-induced alginate production by planktonic PAO1 requires the diguanylate cyclase (DGC) SadC, previously identified as a regulator of surface-associated lifestyles. Furthermore, we found that the gene products of PA4330 and PA4331, located in a predicted operon with sadC, have a major impact on alginate production: deletion of PA4330 (odaA, for oxygen-dependent alginate synthesis activator) caused an alginate production defect under anaerobic conditions, whereas a PA4331 (odaI, for oxygen-dependent alginate synthesis inhibitor) deletion mutant produced alginate also in the presence of oxygen, which would normally inhibit alginate synthesis. Based on their sequence, OdaA and OdaI have predicted hydratase and dioxygenase reductase activities, respectively. Enzymatic assays using purified protein showed that unlike OdaA, which did not significantly affect DGC activity of SadC, OdaI inhibited c-di-GMP production by SadC. Our data indicate that SadC, OdaA and OdaI are components of a novel response pathway of P. aeruginosa that regulates alginate synthesis in an oxygen-dependent manner. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Calibrated FMRI.

    PubMed

    Hoge, Richard D

    2012-08-15

    Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. The role of surface chemistry in the cytotoxicity profile of graphene.

    PubMed

    Majeed, Waqar; Bourdo, Shawn; Petibone, Dayton M; Saini, Viney; Vang, Kieng Bao; Nima, Zeid A; Alghazali, Karrer M; Darrigues, Emilie; Ghosh, Anindya; Watanabe, Fumiya; Casciano, Daniel; Ali, Syed F; Biris, Alexandru S

    2017-04-01

    Graphene and its derivative, because of their unique physical, electrical and chemical properties, are an important class of nanomaterials being proposed as foundational materials in nanomedicine as well as for a variety of industrial applications. A major limitation for graphene, when used in biomedical applications, is its poor solubility due to its rather hydrophobic nature. Therefore, chemical functionalities are commonly introduced to alter both its surface chemistry and biochemical activity. Here, we show that surface chemistry plays a major role in the toxicological profile of the graphene structures. To demonstrate this, we chemically increased the oxidation level of the pristine graphene and compared the corresponding toxicological effects along with those for the graphene oxide. X-ray photoelectron spectroscopy revealed that pristine graphene had the lowest amount of surface oxygen, while graphene oxide had the highest at 2.5% and 31%, respectively. Low and high oxygen functionalized graphene samples were found to have 6.6% and 24% surface oxygen, respectively. Our results showed a dose-dependent trend in the cytotoxicity profile, where pristine graphene was the most cytotoxic, with decreasing toxicity observed with increasing oxygen content. Increased surface oxygen also played a role in nanomaterial dispersion in water or cell culture medium over longer periods. It is likely that higher dispersity might result in graphene entering into cells as individual flakes ~1 nm thick rather than as more cytotoxic aggregates. In conclusion, changes in graphene's surface chemistry resulted in altered solubility and toxicity, suggesting that a generalized toxicity profile would be rather misleading. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Skin Blood Perfusion and Oxygenation Colour Affect Perceived Human Health

    PubMed Central

    Stephen, Ian D.; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I.

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice. PMID:19337378

  5. Skin blood perfusion and oxygenation colour affect perceived human health.

    PubMed

    Stephen, Ian D; Coetzee, Vinet; Law Smith, Miriam; Perrett, David I

    2009-01-01

    Skin blood perfusion and oxygenation depends upon cardiovascular, hormonal and circulatory health in humans and provides socio-sexual signals of underlying physiology, dominance and reproductive status in some primates. We allowed participants to manipulate colour calibrated facial photographs along empirically-measured oxygenated and deoxygenated blood colour axes both separately and simultaneously, to optimise healthy appearance. Participants increased skin blood colour, particularly oxygenated, above basal levels to optimise healthy appearance. We show, therefore, that skin blood perfusion and oxygenation influence perceived health in a way that may be important to mate choice.

  6. Oxygen transport by hemoglobin.

    PubMed

    Mairbäurl, Heimo; Weber, Roy E

    2012-04-01

    Hemoglobin (Hb) constitutes a vital link between ambient O2 availability and aerobic metabolism by transporting oxygen (O2) from the respiratory surfaces of the lungs or gills to the O2-consuming tissues. The amount of O2 available to tissues depends on the blood-perfusion rate, as well as the arterio-venous difference in blood O2 contents, which is determined by the respective loading and unloading O2 tensions and Hb-O2-affinity. Short-term adjustments in tissue oxygen delivery in response to decreased O2 supply or increased O2 demand (under exercise, hypoxia at high altitude, cardiovascular disease, and ischemia) are mediated by metabolically induced changes in the red cell levels of allosteric effectors such as protons (H(+)), carbon dioxide (CO2), organic phosphates, and chloride (Cl(-)) that modulate Hb-O2 affinity. The long-term, genetically coded adaptations in oxygen transport encountered in animals that permanently are subjected to low environmental O2 tensions commonly result from changes in the molecular structure of Hb, notably amino acid exchanges that alter Hb's intrinsic O2 affinity or its sensitivity to allosteric effectors. Structure-function studies of animal Hbs and human Hb mutants illustrate the different strategies for adjusting Hb-O2 affinity and optimizing tissue oxygen supply. © 2012 American Physiological Society. Compr Physiol 2:1491-1539, 2012.

  7. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography

    PubMed Central

    Merkle, Conrad W.; Srinivasan, Vivek J.

    2015-01-01

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. PMID:26477654

  8. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

    PubMed

    Merkle, Conrad W; Srinivasan, Vivek J

    2016-01-15

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Hyperbaric Oxygen Therapy Alleviates Carbon Monoxide Poisoning-Induced Delayed Memory Impairment by Preserving Brain-Derived Neurotrophic Factor-Dependent Hippocampal Neurogenesis.

    PubMed

    Liu, Wen-Chung; Yang, San-Nan; Wu, Chih-Wei J; Chen, Lee-Wei; Chan, Julie Y H

    2016-01-01

    To test the hypothesis that hyperbaric oxygen therapy ameliorates delayed cognitive impairment after acute carbon monoxide poisoning by promoting neurogenesis through upregulating the brain-derived neurotrophic factor in the hippocampus. Laboratory animal experiments. University/Medical center research laboratory. Adult, male Sprague-Dawley rats. Rats were divided into five groups: (1) non-carbon monoxide-treated control, (2) acute carbon monoxide poisoning, (3) acute carbon monoxide poisoning followed by 7-day hyperbaric oxygen treatment, (4) carbon monoxide + hyperbaric oxygen with additional intracerebroventricular infusion of Fc fragment of tyrosine kinase receptor B protein (TrkB-Fc) chimera, and (5) acute carbon monoxide poisoning followed by intracerebroventricular infusion of brain-derived neurotrophic factor. Acute carbon monoxide poisoning was achieved by exposing the rats to carbon monoxide at 2,500 ppm for 40 minutes, followed by 3,000 ppm for 20 minutes. Hyperbaric oxygen therapy (at 2.5 atmospheres absolute with 100% oxygen for 60 min) was conducted during the first 7 days after carbon monoxide poisoning. Recombinant human TrkB-Fc chimera or brain-derived neurotrophic factor was infused into the lateral ventricle via the implanted osmotic minipump. For labeling of mitotic cells in the hippocampus, bromodeoxyuridine was injected into the peritoneal cavity. Distribution of bromodeoxyuridine and two additional adult neurogenesis markers, Ki-67 and doublecortin, in the hippocampus was evaluated by immunohistochemistry or immunofluorescence staining. Tissue level of brain-derived neurotrophic factor was assessed by enzyme-linked immunosorbent assay. Cognitive behavior was evaluated by the use of eight-arm radial maze. Acute carbon monoxide poisoning significantly suppressed adult hippocampal neurogenesis evident by the reduction in number of bromodeoxyuridine-positive, Ki-67⁺, and doublecortin⁺ cells in the subgranular zone of the dentate gyrus. This suppression of adult neurogenesis by the carbon monoxide poisoning was appreciably alleviated by early treatment of hyperbaric oxygen. The hyperbaric oxygen treatment also promoted a sustained increase in hippocampal brain-derived neurotrophic factor level. Blockade of hippocampal brain-derived neurotrophic factor signaling with intracerebroventricular infusion of recombinant human TrkB-Fc chimera significantly blunted the protection by the hyperbaric oxygen on hippocampal neurogenesis; whereas intracerebroventricular infusion of brain-derived neurotrophic factor mimicked the action of hyperbaric oxygen and preserved hippocampal neurogenesis after acute carbon monoxide poisoning. Furthermore, acute carbon monoxide poisoning resulted in a delayed impairment of cognitive function. The hyperbaric oxygen treatment notably restored the cognitive impairment in a brain-derived neurotrophic factor-dependent manner. The early hyperbaric oxygen treatment may alleviate delayed memory impairment after acute carbon monoxide poisoning by preserving adult neurogenesis via an increase in hippocampal brain-derived neurotrophic factor content.

  10. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells.

    PubMed

    Yang, Eun Sun; Lee, Su-Min; Park, Jeen-Woo

    2010-07-01

    It has been shown that acute and chronic alcohol administrations increase the production of reactive oxygen species, lower cellular antioxidant levels and enhance oxidative stress in many tissues. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme by supplying NADPH to the cytosol. Upon exposure to ethanol, IDPc was susceptible to the loss of its enzyme activity in HepG2 cells. Transfection of HepG2 cells with an IDPc small interfering RNA noticeably downregulated IDPc and enhanced the cells' vulnerability to ethanol-induced cytotoxicity. Our results suggest that suppressing the expression of IDPc enhances ethanol-induced toxicity in HepG2 cells by further disruption of the cellular redox status.

  11. Temporal information entropy of the Blood-Oxygenation Level-Dependent signals increases in the activated human primary visual cortex

    NASA Astrophysics Data System (ADS)

    DiNuzzo, Mauro; Mascali, Daniele; Moraschi, Marta; Bussu, Giorgia; Maraviglia, Bruno; Mangia, Silvia; Giove, Federico

    2017-02-01

    Time-domain analysis of blood-oxygenation level-dependent (BOLD) signals allows the identification of clusters of voxels responding to photic stimulation in primary visual cortex (V1). However, the characterization of information encoding into temporal properties of the BOLD signals of an activated cluster is poorly investigated. Here, we used Shannon entropy to determine spatial and temporal information encoding in the BOLD signal within the most strongly activated area of the human visual cortex during a hemifield photic stimulation. We determined the distribution profile of BOLD signals during epochs at rest and under stimulation within small (19-121 voxels) clusters designed to include only voxels driven by the stimulus as highly and uniformly as possible. We found consistent and significant increases (2-4% on average) in temporal information entropy during activation in contralateral but not ipsilateral V1, which was mirrored by an expected loss of spatial information entropy. These opposite changes coexisted with increases in both spatial and temporal mutual information (i.e. dependence) in contralateral V1. Thus, we showed that the first cortical stage of visual processing is characterized by a specific spatiotemporal rearrangement of intracluster BOLD responses. Our results indicate that while in the space domain BOLD maps may be incapable of capturing the functional specialization of small neuronal populations due to relatively low spatial resolution, some information encoding may still be revealed in the temporal domain by an increase of temporal information entropy.

  12. CD40 dependent exacerbation of immune mediated hepatitis by hepatic CD11b+ Gr-1+ myeloid derived suppressor cells in tumor bearing mice

    PubMed Central

    Kapanadze, Tamar; Medina-Echeverz, José; Gamrekelashvili, Jaba; Weiss, Jonathan M.; Wiltrout, Robert H.; Kapoor, Veena; Hawk, Nga; Terabe, Masaki; Berzofsky, Jay A.; Manns, Michael P.; Wang, Ena; Marincola, Francesco M.; Korangy, Firouzeh; Greten, Tim F.

    2015-01-01

    Immunosuppressive CD11b+Gr-1+ myeloid-derived suppressor cells (MDSC) accumulate in the livers of tumor-bearing mice. We studied hepatic MDSC in two murine models of immune mediated hepatitis. Unexpectedly, treatment of tumor bearing mice with Concanavalin A or α-Galactosylceramide resulted in increased ALT and AST serum levels in comparison to tumor free mice. Adoptive transfer of hepatic MDSC into naïve mice exacerbated Concanavalin A induced liver damage. Hepatic CD11b+Gr-1+ cells revealed a polarized pro-inflammatory gene signature after Concanavalin A treatment. An interferon gamma- dependent up-regulation of CD40 on hepatic CD11b+Gr-1+ cells along with an up-regulation of CD80, CD86, and CD1d after Concanavalin A treatment was observed. Concanavalin A treatment resulted in a loss of suppressor function by tumor-induced CD11b+Gr-1+ MDSC as well as enhanced reactive oxygen species-mediated hepatotoxicity. CD40 knockdown in hepatic MDSC led to increased arginase activity upon Concanavalin A treatment and lower ALT/AST serum levels. Finally, blockade of arginase activity in Cd40−/− tumor-induced myeloid cells resulted in exacerbation of hepatitis and increased reactive oxygen species production in vivo. Our findings indicate that in a setting of acute hepatitis, tumor-induced hepatic MDSC act as pro-inflammatory immune effector cells capable of killing hepatocytes in a CD40-dependent manner. PMID:25616156

  13. NADPH Oxidase 5 Is a Pro-Contractile Nox Isoform and a Point of Cross-Talk for Calcium and Redox Signaling-Implications in Vascular Function.

    PubMed

    Montezano, Augusto C; De Lucca Camargo, Livia; Persson, Patrik; Rios, Francisco J; Harvey, Adam P; Anagnostopoulou, Aikaterini; Palacios, Roberto; Gandara, Ana Caroline P; Alves-Lopes, Rheure; Neves, Karla B; Dulak-Lis, Maria; Holterman, Chet E; de Oliveira, Pedro Lagerblad; Graham, Delyth; Kennedy, Christopher; Touyz, Rhian M

    2018-06-15

    NADPH Oxidase 5 (Nox5) is a calcium-sensitive superoxide-generating Nox. It is present in lower forms and higher mammals, but not in rodents. Nox5 is expressed in vascular cells, but the functional significance remains elusive. Given that contraction is controlled by calcium and reactive oxygen species, both associated with Nox5, we questioned the role of Nox5 in pro-contractile signaling and vascular function. Transgenic mice expressing human Nox5 in a vascular smooth muscle cell-specific manner (Nox5 mice) and Rhodnius prolixus , an arthropod model that expresses Nox5 endogenoulsy, were studied. Reactive oxygen species generation was increased systemically and in the vasculature and heart in Nox5 mice. In Nox5-expressing mice, agonist-induced vasoconstriction was exaggerated and endothelium-dependent vasorelaxation was impaired. Vascular structural and mechanical properties were not influenced by Nox5. Vascular contractile responses in Nox5 mice were normalized by N -acetylcysteine and inhibitors of calcium channels, calmodulin, and endoplasmic reticulum ryanodine receptors, but not by GKT137831 (Nox1/4 inhibitor). At the cellular level, vascular changes in Nox5 mice were associated with increased vascular smooth muscle cell [Ca 2+ ] i , increased reactive oxygen species and nitrotyrosine levels, and hyperphosphorylation of pro-contractile signaling molecules MLC20 (myosin light chain 20) and MYPT1 (myosin phosphatase target subunit 1). Blood pressure was similar in wild-type and Nox5 mice. Nox5 did not amplify angiotensin II effects. In R. prolixus , gastrointestinal smooth muscle contraction was blunted by Nox5 silencing, but not by VAS2870 (Nox1/2/4 inhibitor). Nox5 is a pro-contractile Nox isoform important in redox-sensitive contraction. This involves calcium-calmodulin and endoplasmic reticulum-regulated mechanisms. Our findings define a novel function for vascular Nox5, linking calcium and reactive oxygen species to the pro-contractile molecular machinery in vascular smooth muscle cells. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. Negative blood oxygen level dependent signals during speech comprehension.

    PubMed

    Rodriguez Moreno, Diana; Schiff, Nicholas D; Hirsch, Joy

    2015-05-01

    Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity.

  15. Negative Blood Oxygen Level Dependent Signals During Speech Comprehension

    PubMed Central

    Rodriguez Moreno, Diana; Schiff, Nicholas D.

    2015-01-01

    Abstract Speech comprehension studies have generally focused on the isolation and function of regions with positive blood oxygen level dependent (BOLD) signals with respect to a resting baseline. Although regions with negative BOLD signals in comparison to a resting baseline have been reported in language-related tasks, their relationship to regions of positive signals is not fully appreciated. Based on the emerging notion that the negative signals may represent an active function in language tasks, the authors test the hypothesis that negative BOLD signals during receptive language are more associated with comprehension than content-free versions of the same stimuli. Regions associated with comprehension of speech were isolated by comparing responses to passive listening to natural speech to two incomprehensible versions of the same speech: one that was digitally time reversed and one that was muffled by removal of high frequencies. The signal polarity was determined by comparing the BOLD signal during each speech condition to the BOLD signal during a resting baseline. As expected, stimulation-induced positive signals relative to resting baseline were observed in the canonical language areas with varying signal amplitudes for each condition. Negative BOLD responses relative to resting baseline were observed primarily in frontoparietal regions and were specific to the natural speech condition. However, the BOLD signal remained indistinguishable from baseline for the unintelligible speech conditions. Variations in connectivity between brain regions with positive and negative signals were also specifically related to the comprehension of natural speech. These observations of anticorrelated signals related to speech comprehension are consistent with emerging models of cooperative roles represented by BOLD signals of opposite polarity. PMID:25412406

  16. Ultrasound-aided Multi-parametric Photoacoustic Microscopy of the Mouse Brain.

    PubMed

    Ning, Bo; Sun, Naidi; Cao, Rui; Chen, Ruimin; Kirk Shung, K; Hossack, John A; Lee, Jin-Moo; Zhou, Qifa; Hu, Song

    2015-12-21

    High-resolution quantitative imaging of cerebral oxygen metabolism in mice is crucial for understanding brain functions and formulating new strategies to treat neurological disorders, but remains a challenge. Here, we report on our newly developed ultrasound-aided multi-parametric photoacoustic microscopy (PAM), which enables simultaneous quantification of the total concentration of hemoglobin (CHb), the oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF) at the microscopic level and through the intact mouse skull. The three-dimensional skull and vascular anatomies delineated by the dual-contrast (i.e., ultrasonic and photoacoustic) system provide important guidance for dynamically focused contour scan and vessel orientation-dependent correction of CBF, respectively. Moreover, bi-directional raster scan allows determining the direction of blood flow in individual vessels. Capable of imaging all three hemodynamic parameters at the same spatiotemporal scale, our ultrasound-aided PAM fills a critical gap in preclinical neuroimaging and lays the foundation for high-resolution mapping of the cerebral metabolic rate of oxygen (CMRO2)-a quantitative index of cerebral oxygen metabolism. This technical innovation is expected to shed new light on the mechanism and treatment of a broad spectrum of neurological disorders, including Alzheimer's disease and ischemic stroke.

  17. Energy-dependent effects of resveratrol in Saccharomyces cerevisiae.

    PubMed

    Madrigal-Perez, Luis Alberto; Canizal-Garcia, Melina; González-Hernández, Juan Carlos; Reynoso-Camacho, Rosalia; Nava, Gerardo M; Ramos-Gomez, Minerva

    2016-06-01

    The metabolic effects induced by resveratrol have been associated mainly with the consumption of high-calorie diets; however, its effects with standard or low-calorie diets remain unclear. To better understand the interactions between resveratrol and cellular energy levels, we used Saccharomyces cerevisiae as a model. Herein it is shown that resveratrol: (a) decreased cell viability in an energy-dependent manner; (b) lessening of cell viability occurred specifically when cells were under cellular respiration; and (c) inhibition of oxygen consumption in state 4 occurred at low and standard energy levels, whereas at high energy levels oxygen consumption was promoted. These findings indicate that the effects of resveratrol are dependent on the cellular energy status and linked to metabolic respiration. Importantly, our study also revealed that S. cerevisiae is a suitable and useful model to elucidate the molecular targets of resveratrol under different nutritional statuses. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Executive Functions and Prefrontal Cortex: A Matter of Persistence?

    PubMed Central

    Ball, Gareth; Stokes, Paul R.; Rhodes, Rebecca A.; Bose, Subrata K.; Rezek, Iead; Wink, Alle-Meije; Lord, Louis-David; Mehta, Mitul A.; Grasby, Paul M.; Turkheimer, Federico E.

    2011-01-01

    Executive function is thought to originates from the dynamics of frontal cortical networks. We examined the dynamic properties of the blood oxygen level dependent time-series measured with functional MRI (fMRI) within the prefrontal cortex (PFC) to test the hypothesis that temporally persistent neural activity underlies performance in three tasks of executive function. A numerical estimate of signal persistence, the Hurst exponent, postulated to represent the coherent firing of cortical networks, was determined and correlated with task performance. Increasing persistence in the lateral PFC was shown to correlate with improved performance during an n-back task. Conversely, we observed a correlation between persistence and increasing commission error – indicating a failure to inhibit a prepotent response – during a Go/No-Go task. We propose that persistence within the PFC reflects dynamic network formation and these findings underline the importance of frequency analysis of fMRI time-series in the study of executive functions. PMID:21286223

  19. [Sauna effect on blood oxygen transport function and proxidant/antioxidant balance in youths].

    PubMed

    Zinchuk, V V; Zhad'ko, D D

    2012-01-01

    There was investigated sauna effect on blood oxygen transport function and proxidant/antioxidant balance in 18 to 22 years old males. Subjects being tested underwent thermal exposure once per week over a period of 5 months (20 procedures). There were two exposure over the course of sauna bathing (temperature 85-90 degrees C, humidity 10-15%): the first exposure lasted for 5 minutes and the second one for 10 minutes. Dry air sauna in youth's leads to respiratory alkalosis, increases pO2, decreases haemoglobin binding capacity to venous blood oxygen thus facilitating oxygen transport into body tissues. Single sauna visit results in oxidative stress (augmentation of free radical processes and deterioration of antioxidant defence mechanisms), while its manifestations being diminished after multiple thermal exposures. Increase in nitrogen monoxide formation being observed might matter for the modification of the oxygen dependent processes of the human body.

  20. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  1. RegA Plays a Key Role in Oxygen-Dependent Establishment of Persistence and in Isocitrate Lyase Activity, a Critical Determinant of In vivo Brucella suis Pathogenicity

    PubMed Central

    Abdou, Elias; Jiménez de Bagüés, María P.; Martínez-Abadía, Ignacio; Ouahrani-Bettache, Safia; Pantesco, Véronique; Occhialini, Alessandra; Al Dahouk, Sascha; Köhler, Stephan; Jubier-Maurin, Véronique

    2017-01-01

    For aerobic human pathogens, adaptation to hypoxia is a critical factor for the establishment of persistent infections, as oxygen availability is low inside the host. The two-component system RegB/A of Brucella suis plays a central role in the control of respiratory systems adapted to oxygen deficiency, and in persistence in vivo. Using an original “in vitro model of persistence” consisting in gradual oxygen depletion, we compared transcriptomes and proteomes of wild-type and ΔregA strains to identify the RegA-regulon potentially involved in the set-up of persistence. Consecutive to oxygen consumption resulting in growth arrest, 12% of the genes in B. suis were potentially controlled directly or indirectly by RegA, among which numerous transcriptional regulators were up-regulated. In contrast, genes or proteins involved in envelope biogenesis and in cellular division were repressed, suggesting a possible role for RegA in the set-up of a non-proliferative persistence state. Importantly, the greatest number of the RegA-repressed genes and proteins, including aceA encoding the functional IsoCitrate Lyase (ICL), were involved in energy production. A potential consequence of this RegA impact may be the slowing-down of the central metabolism as B. suis progressively enters into persistence. Moreover, ICL is an essential determinant of pathogenesis and long-term interactions with the host, as demonstrated by the strict dependence of B. suis on ICL activity for multiplication and persistence during in vivo infection. RegA regulates gene or protein expression of all functional groups, which is why RegA is a key regulator of B. suis in adaptation to oxygen depletion. This function may contribute to the constraint of bacterial growth, typical of chronic infection. Oxygen-dependent activation of two-component systems that control persistence regulons, shared by several aerobic human pathogens, has not been studied in Brucella sp. before. This work therefore contributes significantly to the unraveling of persistence mechanisms in this important zoonotic pathogen. PMID:28573107

  2. Characteristics of Men Who Report Persistent Sexual Symptoms After Finasteride Use for Hair Loss.

    PubMed

    Basaria, Shehzad; Jasuja, Ravi; Huang, Grace; Wharton, Whitney; Pan, Hong; Pencina, Karol; Li, Zhuoying; Travison, Thomas G; Bhawan, Jag; Gonthier, Renaud; Labrie, Fernand; Dury, Alain Y; Serra, Carlo; Papazian, Allen; O'Leary, Michael; Amr, Sami; Storer, Thomas W; Stern, Emily; Bhasin, Shalender

    2016-12-01

    Some men who use finasteride for hair loss report persistent sexual and other symptoms after discontinuing finasteride therapy. To determine whether these persistent symptoms after discontinuation of finasteride use are due to androgen deficiency, decreased peripheral androgen action, or persistent inhibition of steroid 5α-reductase (SRD5A) enzymes. Finasteride users, who reported persistent sexual symptoms after discontinuing finasteride (group 1); age-matched finasteride users who did not report sexual symptoms (group 2); and healthy men who had never used finasteride (group 3). Sexual function, mood, affect, cognition, hormone levels, body composition, functional magnetic resonance imaging (fMRI) response to sexually and affectively valenced stimuli, nucleotide sequences of androgen receptor (AR), SRD5A1, and SRD5A2; expression levels of androgen-dependent genes in skin. Academic medical center. Symptomatic finasteride users were similar in body composition, strength, and nucleotide sequences of AR, SRD5A1, and SRD5A2 genes to asymptomatic finasteride users and nonusers. Symptomatic finasteride users had impaired sexual function, higher depression scores, a more negative affectivity balance, and more cognitive complaints than men in groups 2 and 3 but had normal objectively assessed cognitive function. Testosterone, dihydrotestosterone, 5α-androstane-3α,17β-diol-glucuronide, testosterone to dihydrotestosterone and androsterone glucuronide to etiocholanolone glucuronide ratios, and markers of peripheral androgen action and expression levels of AR-dependent genes in skin did not differ among groups. fMRI blood oxygen level-dependent responses to erotic and nonerotic stimuli revealed abnormal function in brain circuitry linked to sexual arousal and major depression. We found no evidence of androgen deficiency, decreased peripheral androgen action, or persistent peripheral inhibition of SRD5A in men with persistent sexual symptoms after finasteride use. Symptomatic finasteride users revealed depressed mood and fMRI findings consistent with those observed in depression.

  3. Characteristics of Men Who Report Persistent Sexual Symptoms After Finasteride Use for Hair Loss

    PubMed Central

    Basaria, Shehzad; Jasuja, Ravi; Huang, Grace; Wharton, Whitney; Pan, Hong; Pencina, Karol; Li, Zhuoying; Travison, Thomas G.; Bhawan, Jag; Gonthier, Renaud; Labrie, Fernand; Dury, Alain Y.; Serra, Carlo; Papazian, Allen; O'Leary, Michael; Amr, Sami; Storer, Thomas W.; Stern, Emily

    2016-01-01

    Context: Some men who use finasteride for hair loss report persistent sexual and other symptoms after discontinuing finasteride therapy. Objective: To determine whether these persistent symptoms after discontinuation of finasteride use are due to androgen deficiency, decreased peripheral androgen action, or persistent inhibition of steroid 5α-reductase (SRD5A) enzymes. Participants: Finasteride users, who reported persistent sexual symptoms after discontinuing finasteride (group 1); age-matched finasteride users who did not report sexual symptoms (group 2); and healthy men who had never used finasteride (group 3). Outcomes: Sexual function, mood, affect, cognition, hormone levels, body composition, functional magnetic resonance imaging (fMRI) response to sexually and affectively valenced stimuli, nucleotide sequences of androgen receptor (AR), SRD5A1, and SRD5A2; expression levels of androgen-dependent genes in skin. Setting: Academic medical center. Results: Symptomatic finasteride users were similar in body composition, strength, and nucleotide sequences of AR, SRD5A1, and SRD5A2 genes to asymptomatic finasteride users and nonusers. Symptomatic finasteride users had impaired sexual function, higher depression scores, a more negative affectivity balance, and more cognitive complaints than men in groups 2 and 3 but had normal objectively assessed cognitive function. Testosterone, dihydrotestosterone, 5α-androstane-3α,17β-diol-glucuronide, testosterone to dihydrotestosterone and androsterone glucuronide to etiocholanolone glucuronide ratios, and markers of peripheral androgen action and expression levels of AR-dependent genes in skin did not differ among groups. fMRI blood oxygen level-dependent responses to erotic and nonerotic stimuli revealed abnormal function in brain circuitry linked to sexual arousal and major depression. Conclusions: We found no evidence of androgen deficiency, decreased peripheral androgen action, or persistent peripheral inhibition of SRD5A in men with persistent sexual symptoms after finasteride use. Symptomatic finasteride users revealed depressed mood and fMRI findings consistent with those observed in depression. PMID:27662439

  4. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

    PubMed

    Liu, Xiaopeng; Xiao, Huajun; Shi, Weiru; Wen, Dongqing; Yu, Lihua; Chen, Jianzhang

    2015-01-01

    Positive pressure breathing (PPB) can cause circulatory dysfunction due to peripheral pooling of blood. This study explored a better way at ground level to simulate pure oxygen PPB at 59,055 ft (18,000 m) by comparing the physiological changes during PPB with pure oxygen and low oxygen at ground level. Six subjects were exposed to 3 min of 69-mmHg PPB and 3 min of 59-mmHg PPB with pure oxygen and low oxygen while wearing the thoracic counterpressure jerkin inflated to 1× breathing pressure and G-suit inflated to 3 and 4× breathing pressure. Stroke volume (SV), cardiac output (CO), heart rate (HR), and peripheral oxygen saturation (Spo2) were measured. Subjects completed a simulating flying task (SFT) during 3-min PPB and scores were recorded. HR and SV responses differed significantly between breathing pure oxygen and low oxygen. CO response was not significantly different for pure oxygen and low oxygen, the two levels of PPB, and the two levels of G-suit pressure. Spo2 declined as a linear function of time during low-oxygen PPB and there was a significant difference in Spo2 response for the two levels of PPB. The average score of SFT during pure oxygen PPB was 3970.5 ± 1050.4, which was significantly higher than 2708.0 ± 702.7 with low oxygen PPB. Hypoxia and PPB have a synergistic negative effect on both the cardiovascular system and SFT performance. PPB with low oxygen was more appropriate at ground level to investigate physiological responses during PPB and evaluate the protective performance of garments. Liu X, Xiao H, Shi W, Wen D, Yu L, Chen J. Physiological effects of positive pressure breathing with pure oxygen and a low oxygen gas mixture.

  5. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging.

    PubMed

    Niles, David J; Artz, Nathan S; Djamali, Arjang; Sadowski, Elizabeth A; Grist, Thomas M; Fain, Sean B

    2016-02-01

    The aims of this study were to assess renal function in kidney transplant recipients and their respective donors over 2 years using arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and to prospectively evaluate the effect of losartan on functional MRI measures in recipients. The study included 15 matched pairs of renal transplant donors and recipients. Arterial spin labeling and BOLD MRI of the kidneys were performed on donors before transplant surgery (baseline) and on both donors and recipients at 3 months, 1 year, and 2 years after transplant. After 3 months, 7 of the 15 recipients were prescribed 25 to 50 mg/d losartan for the remainder of the study. A linear mixed-effects model was used to evaluate perfusion, R2*, estimated glomerular filtration rate, and fractional excretion of sodium for changes across time or associated with losartan treatment. In donors, cortical perfusion in the remaining kidney decreased by 50 ± 19 mL/min per 100 g (11.8%) between baseline and 2 years (P < 0.05), while cortical R2* declined modestly by 0.7 ± 0.3 s-1 (5.6%; P < 0.05). In transplanted kidneys, cortical perfusion decreased markedly by 141 ± 21 mL/min per 100 g (34.2%) between baseline and 2 years (P < 0.001), while medullary R2* declined by 1.5 ± 0.8 s-1 (8.3%; P = 0.06). Single-kidney estimated glomerular filtration rate increased between baseline and 2 years by 17.7 ± 2.7 mL/min per 1.73 m (40.3%; P < 0.0001) in donors and to 14.6 ± 4.3 mL/min per 1.73 m (33.3%; P < 0.01) in recipients. Cortical perfusion at 1 and 2 years in recipients receiving 25 to 50 mg/d losartan was 62 ± 24 mL/min per 100 g higher than recipients not receiving the drug (P < 0.05). No significant effects of losartan were observed for any other markers of renal function. The results suggest an important role for noninvasive functional monitoring with ASL and BOLD MRI in kidney transplant recipients and donors, and they indicate a potentially beneficial effect of losartan in recipients.

  6. The influence of the position of the oxygen dissociation curve on oxygen-dependent functions of the isolated perfused rat liver. III. Studies at different levels of anaemic hypoxia.

    PubMed

    Bakker, J C; Gortmaker, G C; de Vries-van Rossen, A; Offerijns, F G

    1977-03-11

    The influence of a 2,3-diphosphoglycerate (2,3-DPG)-induced displacement of the oxygen dissociation curve (O.D.C.) on the isolated perfused rat liver was studied at different levels of anaemic hypoxia. Rat livers were perfused either with fresh or with 2,3-DPG-depleted human erythrocytes at different haematocrit values (from 30% to 2.5%) at constant Po2 of the inflowing perfusate and at constant blood flow rate. The 2,3-DPG-induced difference in oxygen affinity of the red cells did not cause a significant difference in perfusion pressure during the perfusion experiments. Therefore, there is no evidence that 2,3-DPG did alter the vascular resistance of the liver, since blood flow rate could be adusted at equal values. The decrease in oxygen supply brought about by decrease of haematocrit caused a decrease of O2 consumption, of bile flow rate and of venous Po2 and an increase of lactate/pyruvate (L/P) ratio and of beta-hydroxybutyrate/acetoacetate (betaOH/Acac) ratio. There was no influence of a difference in 2,3-DPG content of the erythrocytes on the above-metioned parameters during severe anaemic hypoxia. At moderate anaemic hypoxia the venous Po2 was higher during perfusion with fresh erythrocytes than during perfusion with 2,3-DPG-depleted erythrocytes. Thus, although 2,3-DPG may play a compensatory role during conditions of mild anaemia, no such effects can be observed during conditions of severe hypoxia.

  7. The Programming Power of the Placenta

    PubMed Central

    Sferruzzi-Perri, Amanda N.; Camm, Emily J.

    2016-01-01

    Size at birth is a critical determinant of life expectancy, and is dependent primarily on the placental supply of nutrients. However, the placenta is not just a passive organ for the materno-fetal transfer of nutrients and oxygen. Studies show that the placenta can adapt morphologically and functionally to optimize substrate supply, and thus fetal growth, under adverse intrauterine conditions. These adaptations help meet the fetal drive for growth, and their effectiveness will determine the amount and relative proportions of specific metabolic substrates supplied to the fetus at different stages of development. This flow of nutrients will ultimately program physiological systems at the gene, cell, tissue, organ, and system levels, and inadequacies can cause permanent structural and functional changes that lead to overt disease, particularly with increasing age. This review examines the environmental regulation of the placental phenotype with particular emphasis on the impact of maternal nutritional challenges and oxygen scarcity in mice, rats and guinea pigs. It also focuses on the effects of such conditions on fetal growth and the developmental programming of disease postnatally. A challenge for future research is to link placental structure and function with clinical phenotypes in the offspring. PMID:27014074

  8. Microplasma array patterning of reactive oxygen and nitrogen species onto polystyrene

    NASA Astrophysics Data System (ADS)

    Szili, Endre J.; Dedrick, James; Oh, Jun-Seok; Bradley, James W.; Boswell, Roderick W.; Charles, Christine; Short, Robert D.; Al-Bataineh, Sameer A.

    2017-02-01

    We investigate an approach for the patterning of reactive oxygen and nitrogen species (RONS) onto polystyrene using atmospheric-pressure microplasma arrays. The spectrally integrated and time-resolved optical emission from the array is characterised with respect to the applied voltage, applied-voltage frequency and pressure; and the array is used to achieve spatially resolved modification of polystyrene at three pressures: 500 Torr, 760 Torr and 1000 Torr. As determined by time-of-flight secondary ion mass spectrometry (ToF-SIMS), regions over which surface modification occurs are clearly restricted to areas that are exposed to individual microplasma cavities. Analysis of the negative-ion ToF-SIMS mass spectra from the centre of the modified microspots shows that the level of oxidation is dependent on the operating pressure, and closely correlated with the spatial distribution of the optical emission. The functional groups that are generated by the microplasma array on the polystyrene surface are shown to readily participate in an oxidative reaction in phosphate buffered saline solution (pH 7.4). Patterns of oxidised and chemically reactive functionalities could potentially be applied to the future development of biomaterial surfaces, where spatial control over biomolecule or cell function is needed.

  9. Oxygen Supplementation Improves Protein Milieu Supportive of Protein Synthesis and Antioxidant Function in the Cortex of Alzheimer's Disease Model Mice-a Quantitative Proteomic Study.

    PubMed

    Wang, Hao; Hong, Xiaoyu; Li, Shuiming; Wang, Yong

    2017-10-01

    Protein synthesis has been reported to be impaired in early-stage Alzheimer's disease (AD). Previously, we found that oxygen supplementation improved cognitive function and reduced mitochondrial damage in AD model mice. In the present study, we examined the effects of supplemental oxygen treatment on protein synthesis and oxidative damage. The synthesis of numerous proteins involved in mRNA splicing, transcription regulation, and translation was found to be significantly upregulated in cortex tissues of AD model mice given a supplemental oxygen treatment (OT group), relative to those of non-treated control AD model mice (Ctrl group), suggesting that impairment in protein synthesis may be alleviated by increased oxygen inhalation. Methionine oxidation and oxidation levels in general were similar between the OT and Ctrl groups, indicating that the oxygen supplementation treatment did not cause increases in peptide oxidation levels. On the contrary, the OT group exhibited upregulation of several proteins associated with antioxidant defense. These results support further exploration into the development of supplementary oxygen treatment as a potential therapy for AD.

  10. c-Myc and AMPK Control Cellular Energy Levels by Cooperatively Regulating Mitochondrial Structure and Function

    PubMed Central

    Edmunds, Lia R.; Sharma, Lokendra; Wang, Huabo; Kang, Audry; d’Souza, Sonia; Lu, Jie; McLaughlin, Michael; Dolezal, James M.; Gao, Xiaoli; Weintraub, Susan T.; Ding, Ying; Zeng, Xuemei; Yates, Nathan; Prochownik, Edward V.

    2015-01-01

    The c-Myc (Myc) oncoprotein and AMP-activated protein kinase (AMPK) regulate glycolysis and oxidative phosphorylation (Oxphos) although often for different purposes. Because Myc over-expression depletes ATP with the resultant activation of AMPK, we explored the potential co-dependency of and cross-talk between these proteins by comparing the consequences of acute Myc induction in ampk+/+ (WT) and ampk-/- (KO) murine embryo fibroblasts (MEFs). KO MEFs showed a higher basal rate of glycolysis than WT MEFs and an appropriate increase in response to activation of a Myc-estrogen receptor (MycER) fusion protein. However, KO MEFs had a diminished ability to increase Oxphos, mitochondrial mass and reactive oxygen species in response to MycER activation. Other differences between WT and KO MEFs, either in the basal state or following MycER induction, included abnormalities in electron transport chain function, levels of TCA cycle-related oxidoreductases and cytoplasmic and mitochondrial redox states. Transcriptional profiling of pathways pertinent to glycolysis, Oxphos and mitochondrial structure and function also uncovered significant differences between WT and KO MEFs and their response to MycER activation. Finally, an unbiased mass-spectrometry (MS)-based survey capable of quantifying ~40% of all mitochondrial proteins, showed about 15% of them to be AMPK- and/or Myc-dependent in their steady state. Significant differences in the activities of the rate-limiting enzymes pyruvate kinase and pyruvate dehydrogenase, which dictate pyruvate and acetyl coenzyme A abundance, were also differentially responsive to Myc and AMPK and could account for some of the differences in basal metabolite levels that were also detected by MS. Thus, Myc and AMPK are highly co-dependent and appear to engage in significant cross-talk across numerous pathways which support metabolic and ATP-generating functions. PMID:26230505

  11. Levels-of-Processing Effect on Frontotemporal Function in Schizophrenia During Word Encoding and Recognition

    PubMed Central

    Ragland, J. Daniel; Gur, Ruben C.; Valdez, Jeffrey N.; Loughead, James; Elliott, Mark; Kohler, Christian; Kanes, Stephen; Siegel, Steven J.; Moelter, Stephen T.; Gur, Raquel E.

    2015-01-01

    Objective Patients with schizophrenia improve episodic memory accuracy when given organizational strategies through levels-of-processing paradigms. This study tested if improvement is accompanied by normalized frontotemporal function. Method Event-related blood-oxygen-level-dependent functional magnetic resonance imaging (fMRI) was used to measure activation during shallow (perceptual) and deep (semantic) word encoding and recognition in 14 patients with schizophrenia and 14 healthy comparison subjects. Results Despite slower and less accurate overall word classification, the patients showed normal levels-of-processing effects, with faster and more accurate recognition of deeply processed words. These effects were accompanied by left ventrolateral prefrontal activation during encoding in both groups, although the thalamus, hippocampus, and lingual gyrus were overactivated in the patients. During word recognition, the patients showed overactivation in the left frontal pole and had a less robust right prefrontal response. Conclusions Evidence of normal levels-of-processing effects and left prefrontal activation suggests that patients with schizophrenia can form and maintain semantic representations when they are provided with organizational cues and can improve their word encoding and retrieval. Areas of overactivation suggest residual inefficiencies. Nevertheless, the effect of teaching organizational strategies on episodic memory and brain function is a worthwhile topic for future interventional studies. PMID:16199830

  12. Maturation of Sensori-Motor Functional Responses in the Preterm Brain.

    PubMed

    Allievi, Alessandro G; Arichi, Tomoki; Tusor, Nora; Kimpton, Jessica; Arulkumaran, Sophie; Counsell, Serena J; Edwards, A David; Burdet, Etienne

    2016-01-01

    Preterm birth engenders an increased risk of conditions like cerebral palsy and therefore this time may be crucial for the brain's developing sensori-motor system. However, little is known about how cortical sensori-motor function matures at this time, whether development is influenced by experience, and about its role in spontaneous motor behavior. We aimed to systematically characterize spatial and temporal maturation of sensori-motor functional brain activity across this period using functional MRI and a custom-made robotic stimulation device. We studied 57 infants aged from 30 + 2 to 43 + 2 weeks postmenstrual age. Following both induced and spontaneous right wrist movements, we saw consistent positive blood oxygen level-dependent functional responses in the contralateral (left) primary somatosensory and motor cortices. In addition, we saw a maturational trend toward faster, higher amplitude, and more spatially dispersed functional responses; and increasing integration of the ipsilateral hemisphere and sensori-motor associative areas. We also found that interhemispheric functional connectivity was significantly related to ex-utero exposure, suggesting the influence of experience-dependent mechanisms. At term equivalent age, we saw a decrease in both response amplitude and interhemispheric functional connectivity, and an increase in spatial specificity, culminating in the establishment of a sensori-motor functional response similar to that seen in adults. © The Author 2015. Published by Oxford University Press.

  13. Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration.

    PubMed

    Friebel, Moritz; Meinke, Martina

    2006-04-20

    The real part of the complex refractive index of oxygenated native hemoglobin solutions dependent on concentration was determined in the wavelength range 250 to 1100 nm by Fresnel reflectance measurements. The hemoglobin solution was produced by physical hemolysis of human erythrocytes followed by ultracentrifugation and filtration. A model function is presented for calculating the refractive index of hemoglobin solutions depending on concentration in the wavelength range 250 to 1100 nm.

  14. Optimization measurement of muscle oxygen saturation under isometric studies using FNIRS

    NASA Astrophysics Data System (ADS)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Development of functional near infrared spectroscopy (fNIRS) technologies has advanced quantification signal using multiple wavelength and detector to investigate hemodynamic response in human muscle. These non-invasive technologies have been widely used to solve the propagation of light inside the tissues including the absorption, scattering coefficient and to quantify the oxygenation level of haemoglobin and myoglobin in human muscle. The goal of this paper is to optimize the measurement of muscle oxygen saturation during isometric exercise using functional near infrared spectroscopy (fNIRS). The experiment was carried out on 15 sedentary healthy male volunteers. All volunteers are required to perform an isometric exercise at three assessment of muscular fatigue's level on flexor digitalis (FDS) muscle in the human forearm using fNIRS. The slopes of the signals have been highlighted to evaluate the muscle oxygen saturation of regional muscle fatigue. As a result, oxygen saturation slope from 10% exercise showed steeper than the first assessment at 30%-50% of fatigues level. The hemodynamic signal response showed significant value (p=0.04) at all three assessment of muscular fatigue's level which produce a p-value (p<0.05) measured by fNIRS. Thus, this highlighted parameter could be used to estimate fatigue's level of human and could open other possibilities to study muscle performance diagnosis.

  15. Kinetics of nitric oxide and oxygen gases on porous Y-stabilized ZrO2-based sensors.

    PubMed

    Killa, Sajin; Cui, Ling; Murray, Erica P; Mainardi, Daniela S

    2013-08-16

    Using impedance spectroscopy the electrical response of sensors with various porous Y-stabilized ZrO2 (YSZ) microstructures was measured for gas concentrations containing 0-100 ppm NO with 10.5%O2 at temperatures ranging from 600-700 °C. The impedance response increased substantially as the sensor porosity increased from 46%-50%. Activation energies calculated based on data from the impedance measurements increased in magnitude (97.4-104.9 kJ/mol for 100 ppm NO) with respect to increasing YSZ porosity. Analysis of the oxygen partial pressure dependence of the sensors suggested that dissociative adsorption was the dominant rate limiting. The PWC/DNP theory level was used to investigate the gas-phase energy barrier of the 2NO+O2 → 2NO2 reaction on a 56-atom YSZ/Au model cluster using Density Functional Theory and Linear Synchronous Transit/Quadratic Synchronous Transit calculations. The reaction path shows oxygen surface reactions that begin with NO association with adsorbed O2 on a Zr surface site, followed by O2 dissociative adsorption, atomic oxygen diffusion, and further NO2 formation. The free energy barrier was calculated to be 181.7 kJ/mol at PWC/DNP. A qualitative comparison with the extrapolated data at 62% ± 2% porosity representing the YSZ model cluster indicates that the calculated barriers are in reasonable agreement with experiments, especially when the RPBE functional is used.

  16. Establishing the Mineral Apposition Rate of Heterotopic Ossification for Prevention of Recurrence

    DTIC Science & Technology

    2015-12-01

    oxygenation has been demonstrated to have deleterious effects on wound closure rates, latency to resumption of an unperturbed blood flow, and may delay the...techniques like near-infrared spectroscopy and blood oxygen level-dependent magnetic resonance imaging may provide noninvasive, precise, and time- effective ...Itada N, Friedenberg ZB. Cathodic oxygen consumption and electrically induced osteogenesis. Clin Orthop Relat Res. 1975;(107):277–282. 27. Ren H

  17. Imaging hypoxia using 3D photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Stantz, Keith M.

    2010-02-01

    Purpose: The objective is to develop a multivariate in vivo hemodynamic model of tissue oxygenation (MiHMO2) based on 3D photoacoustic spectroscopy. Introduction: Low oxygen levels, or hypoxia, deprives cancer cells of oxygen and confers resistance to irradiation, some chemotherapeutic drugs, and oxygen-dependent therapies (phototherapy) leading to treatment failure and poor disease-free and overall survival. For example, clinical studies of patients with breast carcinomas, cervical cancer, and head and neck carcinomas (HNC) are more likely to suffer local reoccurrence and metastasis if their tumors are hypoxic. A novel method to non invasively measure tumor hypoxia, identify its type, and monitor its heterogeneity is devised by measuring tumor hemodynamics, MiHMO2. Material and Methods: Simulations are performed to compare tumor pO2 levels and hypoxia based on physiology - perfusion, fractional plasma volume, fractional cellular volume - and its hemoglobin status - oxygen saturation and hemoglobin concentration - based on in vivo measurements of breast, prostate, and ovarian tumors. Simulations of MiHMO2 are performed to assess the influence of scanner resolutions and different mathematic models of oxygen delivery. Results: Sensitivity of pO2 and hypoxic fraction to photoacoustic scanner resolution and dependencies on model complexity will be presented using hemodynamic parameters for different tumors. Conclusions: Photoacoustic CT spectroscopy provides a unique ability to monitor hemodynamic and cellular physiology in tissue, which can be used to longitudinally monitor tumor oxygenation and its response to anti-angiogenic therapies.

  18. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.

    PubMed

    Schindler, Andreas; Bartels, Andreas

    2017-05-01

    Superimposed on the visual feed-forward pathway, feedback connections convey higher level information to cortical areas lower in the hierarchy. A prominent framework for these connections is the theory of predictive coding where high-level areas send stimulus interpretations to lower level areas that compare them with sensory input. Along these lines, a growing body of neuroimaging studies shows that predictable stimuli lead to reduced blood oxygen level-dependent (BOLD) responses compared with matched nonpredictable counterparts, especially in early visual cortex (EVC) including areas V1-V3. The sources of these modulatory feedback signals are largely unknown. Here, we re-examined the robust finding of relative BOLD suppression in EVC evident during processing of coherent compared with random motion. Using functional connectivity analysis, we show an optic flow-dependent increase of functional connectivity between BOLD suppressed EVC and a network of visual motion areas including MST, V3A, V6, the cingulate sulcus visual area (CSv), and precuneus (Pc). Connectivity decreased between EVC and 2 areas known to encode heading direction: entorhinal cortex (EC) and retrosplenial cortex (RSC). Our results provide first evidence that BOLD suppression in EVC for predictable stimuli is indeed mediated by specific high-level areas, in accord with the theory of predictive coding. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Aerobic metabolism underlies complexity and capacity

    PubMed Central

    Koch, Lauren G; Britton, Steven L

    2008-01-01

    The evolution of biological complexity beyond single-celled organisms was linked temporally with the development of an oxygen atmosphere. Functionally, this linkage can be attributed to oxygen ranking high in both abundance and electronegativity amongst the stable elements of the universe. That is, reduction of oxygen provides for close to the largest possible transfer of energy for each electron transfer reaction. This suggests the general hypothesis that the steep thermodynamic gradient of an oxygen environment was permissive for the development of multicellular complexity. A corollary of this hypothesis is that aerobic metabolism underwrites complex biological function mechanistically at all levels of organization. The strong contemporary functional association of aerobic metabolism with both physical capacity and health is presumably a product of the integral role of oxygen in our evolutionary history. Here we provide arguments from thermodynamics, evolution, metabolic network analysis, clinical observations and animal models that are in accord with the centrality of oxygen in biology. PMID:17947307

  20. Relation of Mitochondrial Oxygen Consumption in Peripheral Blood Mononuclear Cells to Vascular Function in Type 2 Diabetes Mellitus

    PubMed Central

    Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.

    2014-01-01

    Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030

  1. Distinct effects of {delta}9-tetrahydrocannabinol and cannabidiol on neural activation during emotional processing.

    PubMed

    Fusar-Poli, Paolo; Crippa, José A; Bhattacharyya, Sagnik; Borgwardt, Stefan J; Allen, Paul; Martin-Santos, Rocio; Seal, Marc; Surguladze, Simon A; O'Carrol, Colin; Atakan, Zerrin; Zuardi, Antonio W; McGuire, Philip K

    2009-01-01

    Cannabis use can both increase and reduce anxiety in humans. The neurophysiological substrates of these effects are unknown. To investigate the effects of 2 main psychoactive constituents of Cannabis sativa (Delta9-tetrahydrocannabinol [Delta9-THC] and cannabidiol [CBD]) on regional brain function during emotional processing. Subjects were studied on 3 separate occasions using an event-related functional magnetic resonance imaging paradigm while viewing faces that implicitly elicited different levels of anxiety. Each scanning session was preceded by the ingestion of either 10 mg of Delta9-THC, 600 mg of CBD, or a placebo in a double-blind, randomized, placebo-controlled design. Fifteen healthy, English-native, right-handed men who had used cannabis 15 times or less in their life. Regional brain activation (blood oxygenation level-dependent response), electrodermal activity (skin conductance response [SCR]), and objective and subjective ratings of anxiety. Delta9-Tetrahydrocannabinol increased anxiety, as well as levels of intoxication, sedation, and psychotic symptoms, whereas there was a trend for a reduction in anxiety following administration of CBD. The number of SCR fluctuations during the processing of intensely fearful faces increased following administration of Delta9-THC but decreased following administration of CBD. Cannabidiol attenuated the blood oxygenation level-dependent signal in the amygdala and the anterior and posterior cingulate cortex while subjects were processing intensely fearful faces, and its suppression of the amygdalar and anterior cingulate responses was correlated with the concurrent reduction in SCR fluctuations. Delta9-Tetrahydrocannabinol mainly modulated activation in frontal and parietal areas. Delta9-Tetrahydrocannabinol and CBD had clearly distinct effects on the neural, electrodermal, and symptomatic response to fearful faces. The effects of CBD on activation in limbic and paralimbic regions may contribute to its ability to reduce autonomic arousal and subjective anxiety, whereas the anxiogenic effects of Delta9-THC may be related to effects in other brain regions.

  2. [Alveolar arterial O2 gradient in patients with cardiopulmonary pathology. Its study at rest with respiration of environmental air].

    PubMed

    Martínez Guerra, M L; Fernández Bonett, P; Lupi Herrera, E

    1979-01-01

    The arterial oxygen pressure (PAO2) and the arterial carbon dioxide pressure (PACO2) are the mirror of the whole stage in alveolar ventilation, because there is a numerical correlation between them, in the alveolar air equation. In our material no difference was found when the respiratory cocient is used to calculate the equation modifying the PACO2 value. On the other hand, the PaO depends on a great amount of variables, i.e., the rationship V/Q. Qs/Qt and the arteriovenous oxygen difference in volume percentage, which reflect the functional stage of the gaseous interchange; other variables depend essentially of technical factors as the methodology used in the obtention and management of the samples and the measurement of the PAO2 at the laboratory. Thus, the alveolo-arterial oxigen Difference delta (A-a)O2 is considered as a mirror of the fluctuations in gaseous interchange, only if the alveolar ventilation the cardiac output, the systemic arterial-vein oxygen difference and in minor importance the respiratory cocient (RP remain constant. The delta (A-a)O2 is not always correlated with other parameters far from the gaseous interchange at lung level in the critically ill patient, for this, it has not a pronostic mecaning by itself. Nevertheless, we believe that delta (A-a)O2 continues being a useful measurement to evaluate the gaseous interchange if at the same time all the factors which may have influence in it are analysed. We consider, for trying to be simple in the management of the acute respiratory failure at the bedside that the (A-a)O2 must not be linked to only one parameter of the respiratory function, i.e. the intrapulmonar veno-arterial shunt, without considering the cardiac output and the systemic arterial-vein oxygen difference.

  3. An Arabidopsis Soil-Salinity–Tolerance Mutation Confers Ethylene-Mediated Enhancement of Sodium/Potassium Homeostasis[W

    PubMed Central

    Jiang, Caifu; Belfield, Eric J.; Cao, Yi; Smith, J. Andrew C.; Harberd, Nicholas P.

    2013-01-01

    High soil Na concentrations damage plants by increasing cellular Na accumulation and K loss. Excess soil Na stimulates ethylene-induced soil-salinity tolerance, the mechanism of which we here define via characterization of an Arabidopsis thaliana mutant displaying transpiration-dependent soil-salinity tolerance. This phenotype is conferred by a loss-of-function allele of ETHYLENE OVERPRODUCER1 (ETO1; mutant alleles of which cause increased production of ethylene). We show that lack of ETO1 function confers soil-salinity tolerance through improved shoot Na/K homeostasis, effected via the ETHYLENE RESISTANT1–CONSTITUTIVE TRIPLE RESPONSE1 ethylene signaling pathway. Under transpiring conditions, lack of ETO1 function reduces root Na influx and both stelar and xylem sap Na concentrations, thereby restricting root-to-shoot delivery of Na. These effects are associated with increased accumulation of RESPIRATORY BURST OXIDASE HOMOLOG F (RBOHF)–dependent reactive oxygen species in the root stele. Additionally, lack of ETO1 function leads to significant enhancement of tissue K status by an RBOHF-independent mechanism associated with elevated HIGH-AFFINITY K+ TRANSPORTER5 transcript levels. We conclude that ethylene promotes soil-salinity tolerance via improved Na/K homeostasis mediated by RBOHF-dependent regulation of Na accumulation and RBOHF-independent regulation of K accumulation. PMID:24064768

  4. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    PubMed

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis ( Arabidopsis thaliana ) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACID INDUCTION DEFICIENT2 ( SID2 ), NON-RACE-SPECIFIC DISEASE RESISTANCE1 ( NDR1 ), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 ( NPR1 ), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2 , NDR1 , or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40 , WRKY46 , WRKY51 , WRKY60 , WRKY63 , and WRKY75 ; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.

    PubMed

    Grgac, Ksenija; Li, Wenbo; Huang, Alan; Qin, Qin; van Zijl, Peter C M

    2017-05-01

    Blood is a physiological substance with multiple water compartments, which contain water-binding proteins such as hemoglobin in erythrocytes and albumin in plasma. Knowing the water transverse (R 2 ) relaxation rates from these different blood compartments is a prerequisite for quantifying the blood oxygenation level-dependent (BOLD) effect. Here, we report the Carr-Purcell-Meiboom-Gill (CPMG) based transverse (R 2CPMG ) relaxation rates of water in bovine blood samples circulated in a perfusion system at physiological temperature in order to mimic blood perfusion in humans. R 2CPMG values of blood plasma, lysed packed erythrocytes, lysed plasma/erythrocyte mixtures, and whole blood at 3 T, 7 T, 9.4 T, 11.7 T and 16.4 T were measured as a function of hematocrit or hemoglobin concentration, oxygenation, and CPMG inter-echo spacing (τ cp ). R 2CPMG in lysed cells showed a small τ cp dependence, attributed to the water exchange rate between free and hemoglobin-bound water to be much faster than τ cp . This was contrary to the tangential dependence in whole blood, where a much slower exchange between cells and blood plasma applies. Whole blood data were fitted as a function of τ cp using a general tangential correlation time model applicable for exchange as well as diffusion contributions to R 2CPMG , and the intercept R 20blood at infinitely short τ cp was determined. The R 20blood values at different hematocrit and the R 2CPMG values of lysed erythrocyte/plasma mixtures at different hemoglobin concentration were used to determine the relaxivity of hemoglobin inside the erythrocyte (r 2Hb ) and albumin (r 2Alb ) in plasma. The r 2Hb values obtained from lysed erythrocytes and whole blood were comparable at full oxygenation. However, while r 2Hb determined from lysed cells showed a linear dependence on oxygenation, this dependence became quadratic in whole blood. This possibly suggests an additional relaxation effect inside intact cells, perhaps due to hemoglobin proximity to the erythrocyte membrane. However, we cannot exclude that this is a consequence of the simple tangential model used to remove relaxation contributions from exchange and diffusion. The extensive data set presented should be useful for future theory development for the transverse relaxation of blood. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Oxidative muscular injury and its relevance to hyperthyroidism.

    PubMed

    Asayama, K; Kato, K

    1990-01-01

    In experimental hyperthyroidism, acceleration of lipid peroxidation occurs in heart and slow-oxidative muscles, suggesting the contribution of reactive oxygen species to the muscular injury caused by thyroid hormones. This article reviews various models of oxidative muscular injury and considers the relevance of the accompanying metabolic derangements to thyrotoxic myopathy and cardiomyopathy, which are the major complications of hyperthyroidism. The muscular injury models in which reactive oxygen species are supposed to play a role are ischemia/reperfusion syndrome, exercise-induced myopathy, heart and skeletal muscle diseases related to the nutritional deficiency of selenium and vitamin E and related disorders, and genetic muscular dystrophies. These models provide evidence that mitochondrial function and the glutathione-dependent antioxidant system are important for the maintenance of the structural and functional integrity of muscular tissues. Thyroid hormones have a profound effect on mitochondrial oxidative activity, synthesis and degradation of proteins and vitamin E, the sensitivity of the tissues to catecholamine, the differentiation of muscle fibers, and the levels of antioxidant enzymes. The large volume of circumstantial evidence presented here indicates that hyperthyroid muscular tissues undergo several biochemical changes that predispose them to free radical-mediated injury.

  7. Assessing Intrarenal Non-perfusion and Vascular Leakage in Acute Kidney Injury withzz 19F MRI and Perfluorocarbon Nanoparticles

    PubMed Central

    Hu, Lingzhi; Chen, Junjie; Yang, Xiaoxia; Senpan, Angana; Allen, John S.; Yanaba, Noriko; Caruthers, Shelton D.; Lanza, Gregory M.; Hammerman, Marc R.; Wickline, Samuel A.

    2014-01-01

    Purpose We sought to develop a unique sensor-reporter approach for functional kidney imaging that employs circulating perfluorocarbon nanoparticles (PFC NPs) and 19F MRI. Methods Because the detected 19F signal intensity directly reflects local blood volume, and the 19F R1 is linearly proportional to local blood oxygen content (pO2), 19F spin density weighted and T1 weighted images were utilized to generate quantitative functional mapping in both healthy and ischemia-reperfusion (acute kidney injury, AKI) injured mouse kidneys. 1H Blood-Oxygenation-Level-Dependant (BOLD) MRI was also employed as a supplementary approach to facilitate the compressive analysis of renal circulation and its pathological changes in AKI. Results Heterogeneous blood volume distribution and intrarenal oxygenation gradient were confirmed in healthy kidneys by 19F MRI. In a mouse model of AKI, 19F MRI, in conjunction with BOLR MRI, sensitively delineated renal vascular damage and recovery. In the cortico-medullary (CM) junction region, we observed 25% lower 19F signal (p<0.05) and 70% longer 1H T2* (p<0.01) in injured kidneys compared to contralateral kidneys at 24 hours after initial ischemia-reperfusion injury. We also detected 71% higher 19F signal (p<0.01) and 40% lower 1H T2* (p<0.05) in the renal medulla region of injured kidneys compared to contralateral kidneys. Conclusion With demonstrated superior diagnostic capability, functional kidney 19F MRI using PFC NPs could serve as a new diagnostic measures for comprehensive evaluation of renal function and pathology. PMID:23929727

  8. Susceptibility profiles of amphotericin B and posaconazole against clinically relevant mucorales species under hypoxic conditions.

    PubMed

    Maurer, Elisabeth; Binder, Ulrike; Sparber, Manuela; Lackner, Michaela; Caramalho, Rita; Lass-Flörl, Cornelia

    2015-02-01

    The effect of hypoxic conditions on the in vitro efficacy of amphotericin B and posaconazole against Mucorales was evaluated by defining MICs with Etest and broth microdilution and identifying minimal fungicidal concentrations (MFCs). With Etest, oxygen-dependent changes were detected, while the MIC and the MFC determined with broth microdilution remained unaltered with reduced oxygen levels. The observed differences depended on the method used. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Constitutive modeling of intrinsic and oxygen-contaminated silicon monocrystals in easy glide

    NASA Astrophysics Data System (ADS)

    Cochard, J.; Yonenaga, I.; Gouttebroze, S.; M'Hamdi, M.; Zhang, Z. L.

    2010-11-01

    We generalize in this work the constitutive model for silicon crystals of Alexander and Haasen. Strain-rate and temperature dependency of the mechanical behavior of intrinsic crystals are correctly accounted for into stage I of hardening. We show that the steady-state of deformation in stage I is very well reproduced in a wide range of temperature and strain rate. The case of extrinsic crystals containing high levels of dissolved oxygen is examined. The introduction of an effective density of mobile dislocations dependent on the unlocking stress created by oxygen atoms gathered at the dislocation cores is combined to an alteration of the dislocation multiplication rate, due to pinning of the dislocation line by oxygen atoms. This increases the upper yield stress with the bulk oxygen concentration in agreement with experimental observations. The fraction of effectively mobile dislocations is found to decay exponentially with the unlocking stress. Finally, the influence of oxygen migration back onto the dislocations from the bulk on the stress distribution in silicon bars is investigated.

  10. Link prediction boosted psychiatry disorder classification for functional connectivity network

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Mei, Xue; Wang, Hao; Zhou, Yu; Huang, Jiashuang

    2017-02-01

    Functional connectivity network (FCN) is an effective tool in psychiatry disorders classification, and represents cross-correlation of the regional blood oxygenation level dependent signal. However, FCN is often incomplete for suffering from missing and spurious edges. To accurate classify psychiatry disorders and health control with the incomplete FCN, we first `repair' the FCN with link prediction, and then exact the clustering coefficients as features to build a weak classifier for every FCN. Finally, we apply a boosting algorithm to combine these weak classifiers for improving classification accuracy. Our method tested by three datasets of psychiatry disorder, including Alzheimer's Disease, Schizophrenia and Attention Deficit Hyperactivity Disorder. The experimental results show our method not only significantly improves the classification accuracy, but also efficiently reconstructs the incomplete FCN.

  11. Inhalation Injury.

    DTIC Science & Technology

    1994-01-01

    spontaneously or assisted ), ᝺% since the elimination half-life supplemental 100% oxygen should be (t1, 2 ) for COHb is dependent on oxygen...persistent apy point out the increased incidence of hypovolemic shock and renal failure. fires involving polyurethanes, which Chest physiotherapy to...FITZPATRICK AND W. G. CIOFFI, JR. icals, the role of deficient surfactant Also in an animal study, pentoxifylline function, prevention of tracheobron- has been

  12. Programmed death-1 controls T cell survival by regulating oxidative metabolism1

    PubMed Central

    Tkachev, Victor; Goodell, Stefanie; Opipari, Anthony W.; Hao, Ling-Yang; Franchi, Luigi; Glick, Gary D.; Ferrara, James L.M.; Byersdorfer, Craig A.

    2015-01-01

    The co-inhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly up-regulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation. This PD-1HiROSHi phenotype was specific to alloreactive T cells and was not observed in syngeneic T cells during homeostatic proliferation. Blockade of PD-1 signaling decreased both mitochondrial H2O2 and total cellular ROS levels and PD-1 driven increases in ROS were dependent upon the oxidation of fatty acids, as treatment with etomoxir nullified changes in ROS levels following PD-1 blockade. Downstream of PD-1, elevated ROS levels impaired T cell survival in a process reversed by anti-oxidants. Furthermore, PD-1 driven changes in ROS were fundamental to establishing a cell’s susceptibility to subsequent metabolic inhibition, as blockade of PD-1 decreased the efficacy of later F1F0-ATP synthase modulation. These data indicate that PD-1 facilitates apoptosis in alloreactive T cells by increasing reactive oxygen species in a process dependent upon the oxidation of fat. In addition, blockade of PD-1 undermines the potential for subsequent metabolic inhibition, an important consideration given the increasing use of anti-PD-1 therapies in the clinic. PMID:25972478

  13. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.

    PubMed

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Koziel, Agnieszka; Majerczak, Joanna; Zoladz, Jerzy A

    2015-06-01

    Mitochondrial respiratory and phosphorylation activities, mitochondrial uncoupling, and hydrogen peroxide formation were studied in isolated rat skeletal muscle mitochondria during experimentally induced hypothermia (25 °C) and hyperthermia (42 °C) compared to the physiological temperature of resting muscle (35 °C). For nonphosphorylating mitochondria, increasing the temperature from 25 to 42 °C led to a decrease in membrane potential, hydrogen peroxide production, and quinone reduction levels. For phosphorylating mitochondria, no temperature-dependent changes in these mitochondrial functions were observed. However, the efficiency of oxidative phosphorylation decreased, whereas the oxidation and phosphorylation rates and oxidative capacities of the mitochondria increased, with increasing assay temperature. An increase in proton leak, including uncoupling protein-mediated proton leak, was observed with increasing assay temperature, which could explain the reduced oxidative phosphorylation efficiency and reactive oxygen species production. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra

    The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less

  15. Theoretical Insights to Bulk Activity Towards Oxygen Evolution in Oxyhydroxides

    DOE PAGES

    Doyle, Andrew D.; Bajdich, Michal; Vojvodic, Aleksandra

    2017-04-07

    The nature of the electrochemical water splitting activity of layered pure and Fe-doped NiOOH is investigated using density functional theory calculations. We find similar thermodynamics for the oxygen evolution reaction (OER) intermediates between the layers of oxyhydroxides, that is, in the bulk of the materials as on the (001) surface. The effect of interlayer spacing on adsorption energy is affected by both the crystal structure and the level of hydrogenation of the active sites. For the Fe-doped NiOOH, we observe general weakening of binding between the different OER intermediates and the catalyst material. The calculated OER activity depends both onmore » doping and interlayer spacing, and our results are generally congruent with available experimental data. In conclusion, these results suggest that such interlayer “bulk” sites may contribute to measured OER activity for both the pure and Fe-doped NiOOH catalysts.« less

  16. A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics.

    PubMed

    Shahzad, Zaigham; Canut, Matthieu; Tournaire-Roux, Colette; Martinière, Alexandre; Boursiac, Yann; Loudet, Olivier; Maurel, Christophe

    2016-09-22

    Aerobic organisms survive low oxygen (O2) through activation of diverse molecular, metabolic, and physiological responses. In most plants, root water permeability (in other words, hydraulic conductivity, Lpr) is downregulated under O2 deficiency. Here, we used a quantitative genetics approach in Arabidopsis to clone Hydraulic Conductivity of Root 1 (HCR1), a Raf-like MAPKKK that negatively controls Lpr. HCR1 accumulates and is functional under combined O2 limitation and potassium (K(+)) sufficiency. HCR1 regulates Lpr and hypoxia responsive genes, through the control of RAP2.12, a key transcriptional regulator of the core anaerobic response. A substantial variation of HCR1 in regulating Lpr is observed at the Arabidopsis species level. Thus, by combinatorially integrating two soil signals, K(+) and O2 availability, HCR1 modulates the resilience of plants to multiple flooding scenarios. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Interpreting BOLD: towards a dialogue between cognitive and cellular neuroscience.

    PubMed

    Hall, Catherine N; Howarth, Clare; Kurth-Nelson, Zebulun; Mishra, Anusha

    2016-10-05

    Cognitive neuroscience depends on the use of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to probe brain function. Although commonly used as a surrogate measure of neuronal activity, BOLD signals actually reflect changes in brain blood oxygenation. Understanding the mechanisms linking neuronal activity to vascular perfusion is, therefore, critical in interpreting BOLD. Advances in cellular neuroscience demonstrating differences in this neurovascular relationship in different brain regions, conditions or pathologies are often not accounted for when interpreting BOLD. Meanwhile, within cognitive neuroscience, the increasing use of high magnetic field strengths and the development of model-based tasks and analyses have broadened the capability of BOLD signals to inform us about the underlying neuronal activity, but these methods are less well understood by cellular neuroscientists. In 2016, a Royal Society Theo Murphy Meeting brought scientists from the two communities together to discuss these issues. Here, we consolidate the main conclusions arising from that meeting. We discuss areas of consensus about what BOLD fMRI can tell us about underlying neuronal activity, and how advanced modelling techniques have improved our ability to use and interpret BOLD. We also highlight areas of controversy in understanding BOLD and suggest research directions required to resolve these issues.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  18. Structures, Properties and Defects of SrTiO3/GaAs Hetero-interfaces

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Öğüt, Serdar; Klie, Robert

    SrTiO3 thin film can be epitaxially grown on GaAs substrate and used as a platform for growing other oxides to create functional metal-oxide-semiconductor devices, where a high-quality SrTiO3/GaAs interface is essential. We studied the structural and electronic properties of SrTiO3/GaAs hetero-interfaces at atomic level using scanning transmission electron microscopy and first-principles calculations. Our results suggest the preferred termination of GaAs (001) is significantly dependent on the oxygen concentration in the first oxide layer. The favorable interface structure is characterized as oxygen-deficient SrO in contact with arsenic and is observed in both experiment and simulation. The electronic properties are calculated and found to be tunable by interfacial defects such as oxygen, gallium and arsenic vacancies. This work was supported by the National Science Foundation (Grant No. DMR-1408427). This work made use of instruments in the Electron Microscopy Service and the High Performance Computing Clusters at University of Illinois at Chicago.

  19. GPER Mediates Functional Endothelial Aging in Renal Arteries.

    PubMed

    Meyer, Matthias R; Rosemann, Thomas; Barton, Matthias; Prossnitz, Eric R

    2017-01-01

    Aging is associated with impaired renal artery function, which is partly characterized by arterial stiffening and a reduced vasodilatory capacity due to excessive generation of reactive oxygen species by NADPH oxidases (Nox). The abundance and activity of Nox depends on basal activity of the heptahelical transmembrane receptor GPER; however, whether GPER contributes to age-dependent functional changes in renal arteries is unknown. This study investigated the effect of aging and Nox activity on renal artery tone in wild-type and GPER-deficient (Gper-/-) mice (4 and 24 months old). In wild-type mice, aging markedly impaired endothelium-dependent, nitric oxide (NO)-mediated relaxations to acetylcholine, which were largely preserved in renal arteries of aged Gper-/- mice. The Nox inhibitor gp91ds-tat abolished this difference by greatly enhancing relaxations in wild-type mice, while having no effect in Gper-/- mice. Contractions to angiotensin II and phenylephrine in wild-type mice were partly sensitive to gp91ds-tat but unaffected by aging. Again, deletion of GPER abolished effects of Nox inhibition on contractile responses. In conclusion, basal activity of GPER is required for the age-dependent impairment of endothelium-dependent, NO-mediated relaxation in the renal artery. Restoration of relaxation by a Nox inhibitor in aged wild-type but not Gper-/- mice strongly supports a role for Nox-derived reactive oxygen species as the underlying cause. Pharmacological blockers of GPER signaling may thus be suitable to inhibit functional endothelial aging of renal arteries by reducing Nox-derived oxidative stress and, possibly, the associated age-dependent deterioration of kidney function. © 2017 S. Karger AG, Basel.

  20. Improving Motor Corticothalamic Communication After Stroke Using Real-Time fMRI Connectivity-Based Neurofeedback.

    PubMed

    Liew, Sook-Lei; Rana, Mohit; Cornelsen, Sonja; Fortunato de Barros Filho, Marcos; Birbaumer, Niels; Sitaram, Ranganatha; Cohen, Leonardo G; Soekadar, Surjo R

    2016-08-01

    Two thirds of stroke survivors experience motor impairment resulting in long-term disability. The anatomical substrate is often the disruption of cortico-subcortical pathways. It has been proposed that reestablishment of cortico-subcortical communication relates to functional recovery. In this study, we applied a novel training protocol to augment ipsilesional cortico-subcortical connectivity after stroke. Chronic stroke patients with severe motor impairment were provided online feedback of blood-oxygenation level dependent signal connectivity between cortical and subcortical regions critical for motor function using real-time functional magnetic resonance imaging neurofeedback. In this proof of principle study, 3 out of 4 patients learned to voluntarily modulate cortico-subcortical connectivity as intended. Our results document for the first time the feasibility and safety for patients with chronic stroke and severe motor impairment to self-regulate and augment ipsilesional cortico-subcortical connectivity through neurofeedback using real-time functional magnetic resonance imaging. © The Author(s) 2015.

  1. Altered resting-state connectivity in adolescent cannabis users.

    PubMed

    Orr, Catherine; Morioka, Rowen; Behan, Brendan; Datwani, Sameer; Doucet, Marika; Ivanovic, Jelena; Kelly, Clare; Weierstall, Karen; Watts, Richard; Smyth, Bobby; Garavan, Hugh

    2013-11-01

    Cannabis is the most commonly used illicit drug in adolescence. Heavy use is associated with deficits on a broad range of cognitive functions and heavy use during adolescence may impact development of gray and white matter. To examine differences in intrinsic brain activity and connectivity associated with cannabis dependence in adolescence using whole-brain voxelwise approaches. Adolescents admitted to a drug-treatment facility for cannabis dependence (n = 17) and age-matched controls (n = 18) were compared on a measure of oscillations in the low-frequency blood oxygen level-dependent signal at rest (the fractional amplitude of low-frequency fluctuations fALFF, 0.01-0.1 Hz) and interhemispheric resting-state functional connectivity (RSFC) using voxel-mirrored homotopic connectivity. The cannabis-dependent population showed increased fALFF activity compared to the control group in right hemisphere regions including the superior parietal gyrus, superior frontal gyrus, inferior frontal gyrus, inferior semilunar lobe of the cerebellum and the inferior temporal gyrus. Post-hoc analyses revealed stronger intra-hemispheric functional connectivity between these functionally defined regions of interest (ROIs) in the cannabis-dependent population than in the controls. Reduced interhemispheric connectivity was observed in the cannabis users compared to controls in the pyramis of the cerebellum and the superior frontal gyrus. Controls showed reduced interhemispheric connectivity compared to users in the supramarginal gyrus. The reduced interhemispheric RSFC in adolescent cannabis users complements previous reports of white matter deficits associated with cannabis use. The evidence of elevated connectivity within the right hemisphere may reflect a compensatory mechanism. Combined, the results suggest that altered intrinsic connectivity may be characteristic of adolescent cannabis dependence.

  2. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages.

    PubMed

    Zhao, X; Khan, N; Gan, H; Tzelepis, F; Nishimura, T; Park, S-Y; Divangahi, M; Remold, H G

    2017-11-01

    Virulent Mycobacterium tuberculosis (Mtb) triggers necrosis in host Mϕ, which is essential for successful pathogenesis in tuberculosis. Here we demonstrate that necrosis of Mtb-infected Mϕ is dependent on the action of the cytosolic Receptor Interacting Protein Kinase 3 (RIPK3) and the mitochondrial Bcl-2 family member protein B-cell lymphoma-extra large (Bcl-x L ). RIPK3-deficient Mϕ are able to better control bacterial growth in vitro and in vivo. Mechanistically, cytosolic RIPK3 translocates to the mitochondria where it promotes necrosis and blocks caspase 8-activation and apoptosis via Bcl-x L . Furthermore, necrosis is associated with stabilization of hexokinase II on the mitochondria as well as cyclophilin D-dependent mitochondrial permeability transition. Collectively, these events upregulate the level of reactive oxygen species to induce necrosis. Thus, in Mtb-infected Mϕ, mitochondria are an essential platform for induction of necrosis by activating RIPK3 function and preventing caspase 8-activation.

  3. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins.

    PubMed

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-12-22

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1-11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons.

  4. Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia.

    PubMed

    Nikinmaa, M

    2001-11-15

    The evolution of erythrocytic hypoxia responses is reviewed by comparing the cellular control of haemoglobin-oxygen affinity in agnathans, teleost fish and terrestrial vertebrates. The most ancient response to hypoxic conditions appears to be an increase in cell volume, which increases the haemoglobin-oxygen affinity in lampreys. In teleost fish, an increase of cell volume in hypoxic conditions is also evident. The volume increase is coupled to an increase in erythrocyte pH. These changes are caused by an adrenergic activation of sodium/proton exchange across the erythrocyte membrane. The mechanism is important in acute hypoxia and is followed by a decrease in cellular adenosine triphosphate (ATP) and guanosine triphosphate (GTP) concentrations in continued hypoxia. In hypoxic bird embryos, the ATP levels are also reduced. The mechanisms by which hypoxia decreases cellular ATP and GTP concentrations remains unknown, although at least in bird embryos cAMP-dependent mechanisms have been implicated. In mammals, hypoxia responses appear to occur mainly via modulation of cellular organic phosphate concentrations. In moderate hypoxia, 2,3-diphosphoglycerate levels are increased as a result of alkalosis caused by increased ventilation.

  5. Magnetic Resonance Imaging-Derived Renal Oxygenation and Perfusion During Continuous, Steady-State Angiotensin-II Infusion in Healthy Humans.

    PubMed

    van der Bel, René; Coolen, Bram F; Nederveen, Aart J; Potters, Wouter V; Verberne, Hein J; Vogt, Liffert; Stroes, Erik S G; Krediet, C T Paul

    2016-03-28

    The role of kidney hypoxia is considered pivotal in the progression of chronic kidney disease. A widely used method to assess kidney oxygenation is blood oxygen level dependent (BOLD)-magnetic resonance imaging (MRI), but its interpretation remains problematic. The BOLD-MRI signal is the result of kidney oxygen consumption (a proxy of glomerular filtration) and supply (ie, glomerular perfusion). Therefore, we hypothesized that with pharmacological modulation of kidney blood flow, renal oxygenation, as assessed by BOLD-MRI, correlates to filtration fraction (ie, glomerular filtration rate/effective renal plasma flow) in healthy humans. Eight healthy volunteers were subjected to continuous angiotensin-II infusion at 0.3, 0.9, and 3.0 ng/kg per minute. At each dose, renal oxygenation and blood flow were assessed using BOLD and phase-contrast MRI. Subsequently, "gold standard" glomerular filtration rate/effective renal plasma flow measurements were performed under the same conditions. Renal plasma flow decreased dose dependently from 660±146 to 467±103 mL/min per 1.73 m(2) (F[3, 21]=33.3, P<0.001). Glomerular filtration rate decreased from 121±23 to 110±18 mL/min per 1.73 m(2) (F[1.8, 2.4]=6.4, P=0.013). Cortical transverse relaxation rate (R2*; increases in R2* represent decreases in oxygenation) increased by 7.2±3.8% (F[3, 21]=7.37, P=0.001); medullar R2* did not change. Cortical R2* related to filtration fraction (R(2) 0.46, P<0.001). By direct comparison between "gold standard" kidney function measurements and BOLD MRI, we showed that cortical oxygenation measured by BOLD MRI relates poorly to glomerular filtration rate but is associated with filtration fraction. For future studies, there may be a need to include renal plasma flow measurements when employing renal BOLD-MRI. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  6. In vivo determination of cerebral hemodynamics and bioenergetics using spin-echo magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Oja, Joni Marcus Eric

    1999-08-01

    It is well known that the transverse relaxation time, T 2, is dependent on the oxygenation state of blood. Two biophysical mechanisms have been proposed to explain this interdependency. In the diffusion model, oxygenation effects are accounted for by water diffusion through field gradients inside and outside, of the erythrocytes, whereas in the exchange model, the oxygenation effect is thought to be due to the exchange of water between erythrocytes and plasma. Careful in vitro studies with blood have shown that the exchange model fits best to the obtained data in preference to the diffusion model. During brain activation, local increases in blood flow exceed the oxygen demand, resulting in less deoxygenated blood in the capillary and venous compartments. Due to this, blood is less paramagnetic in these activated brain regions, lengthening T2, which in turn increases the signal intensities of the corresponding voxels in the MR image. Thus the measured blood-oxygen-level-dependent (BOLD) image contrast is a complex function of many physiological parameters, such as tissue morphometry, blood volume, blood flow, oxygenation and oxygen metabolism. All of these parameters contribute to the tissue magnetization influencing the transverse relaxation rate. Until now, no exact equations have been available which would relate these hemodynamic variables to a single MRI observable parameter, namely T 2, in a manner in which absolute units can be used. A fundamental theory was developed to explain measured spin-echo BOLD effects, and it was tested in animals and humans. In animal studies, blood oxygenation was altered by regulating arterial oxygen or carbon dioxide tension. This resulted in changes in blood volume, flow and blood magnetization, which in turn was reflected in T2. Using analytical expressions derived from the theory, the transverse relaxation rate was related to the oxygen saturation and extraction and quantification of microvascular cerebral blood volume was achieved. Additionally, visual activation studies in humans were performed at different spatial resolutions to reveal the origin of the measured fMRI effects. The effect increased with spatial resolution indicating partial voluming with draining veins, which was correctly described by the theory. Also the relationship between oxygen demand and delivery ( OER = oxygen extraction ratio) was quantified from extraction ratio) was quantified from venous blood draining from the activated tissue. The measured OER indicated unmatched physiological alteration in oxygen consumption and blood flow, emphasizing that oxygenation effects dominate the changes seen in the measured fMRI signal changes.

  7. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    PubMed

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  8. Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones.

    PubMed

    Seibel, Brad A

    2011-01-15

    The survival of oceanic organisms in oxygen minimum zones (OMZs) depends on their total oxygen demand and the capacities for oxygen extraction and transport, anaerobic ATP production and metabolic suppression. Anaerobic metabolism and metabolic suppression are required for daytime forays into the most extreme OMZs. Critical oxygen partial pressures are, within a range, evolved to match the minimum oxygen level to which a species is exposed. This fact demands that low oxygen habitats be defined by the biological response to low oxygen rather than by some arbitrary oxygen concentration. A broad comparative analysis of oxygen tolerance facilitates the identification of two oxygen thresholds that may prove useful for policy makers as OMZs expand due to climate change. Between these thresholds, specific physiological adaptations to low oxygen are required of virtually all species. The lower threshold represents a limit to evolved oxygen extraction capacity. Climate change that pushes oxygen concentrations below the lower threshold (~0.8 kPa) will certainly result in a transition from an ecosystem dominated by a diverse midwater fauna to one dominated by diel migrant biota that must return to surface waters at night. Animal physiology and, in particular, the response of animals to expanding hypoxia, is a critical, but understudied, component of biogeochemical cycles and oceanic ecology. Here, I discuss the definition of hypoxia and critical oxygen levels, review adaptations of animals to OMZs and discuss the capacity for, and prevalence of, metabolic suppression as a response to temporary residence in OMZs and the possible consequences of climate change on OMZ ecology.

  9. Effects of hypoglycemia on human brain activation measured with fMRI.

    PubMed

    Anderson, Adam W; Heptulla, Rubina A; Driesen, Naomi; Flanagan, Daniel; Goldberg, Philip A; Jones, Timothy W; Rife, Fran; Sarofin, Hedy; Tamborlane, William; Sherwin, Robert; Gore, John C

    2006-07-01

    Functional magnetic resonance imaging (fMRI) was used to measure the effects of acute hypoglycemia caused by passive sensory stimulation on brain activation. Visual stimulation was used to generate blood-oxygen-level-dependent (BOLD) contrast, which was monitored during hyperinsulinemic hypoglycemic and euglycemic clamp studies. Hypoglycemia (50 +/- 1 mg glucose/dl) decreased the fMRI signal relative to euglycemia in 10 healthy human subjects: the fractional signal change was reduced by 28 +/- 12% (P < .05). These changes were reversed when euglycemia was restored. These data provide a basis of comparison for studies that quantify hypoglycemia-related changes in fMRI activity during cognitive tasks based on visual stimuli and demonstrate that variations in blood glucose levels may modulate BOLD signals in the healthy brain.

  10. Effects of reduced oxygen availability on the vascular response and oxygen consumption of the activated human visual cortex.

    PubMed

    Rodrigues Barreto, Felipe; Mangia, Silvia; Garrido Salmon, Carlos Ernesto

    2017-07-01

    To identify the impact of reduced oxygen availability on the evoked vascular response upon visual stimulation in the healthy human brain by magnetic resonance imaging (MRI). Functional MRI techniques based on arterial spin labeling (ASL), blood oxygenation level-dependent (BOLD), and vascular space occupancy (VASO)-dependent contrasts were utilized to quantify the BOLD signal, cerebral blood flow (CBF), and volume (CBV) from nine subjects at 3T (7M/2F, 27.3 ± 3.6 years old) during normoxia and mild hypoxia. Changes in visual stimulus-induced oxygen consumption rates were also estimated with mathematical modeling. Significant reductions in the extension of activated areas during mild hypoxia were observed in all three imaging contrasts: by 42.7 ± 25.2% for BOLD (n = 9, P = 0.002), 33.1 ± 24.0% for ASL (n = 9, P = 0.01), and 31.9 ± 15.6% for VASO images (n = 7, P = 0.02). Activated areas during mild hypoxia showed responses with similar amplitude for CBF (58.4 ± 18.7% hypoxia vs. 61.7 ± 16.1% normoxia, P = 0.61) and CBV (33.5 ± 17.5% vs. 25.2 ± 13.0%, P = 0.27), but not for BOLD (2.5 ± 0.8% vs. 4.1 ± 0.6%, P = 0.009). The estimated stimulus-induced increases of oxygen consumption were smaller during mild hypoxia as compared to normoxia (3.1 ± 5.0% vs. 15.5 ± 15.1%, P = 0.04). Our results demonstrate an altered vascular and metabolic response during mild hypoxia upon visual stimulation. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:142-149. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Drug oxygenation activities mediated by liver microsomal flavin-containing monooxygenases 1 and 3 in humans, monkeys, rats, and minipigs.

    PubMed

    Yamazaki, Miho; Shimizu, Makiko; Uno, Yasuhiro; Yamazaki, Hiroshi

    2014-07-15

    Liver microsomal flavin-containing monooxygenases (FMO, EC 1.14.13.8) 1 and 3 were functionally characterized in terms of expression levels and molecular catalytic capacities in human, cynomolgus monkey, rat, and minipig livers. Liver microsomal FMO3 in humans and monkeys and FMO1 and FMO3 in rats and minipigs could be determined immunochemically with commercially available anti-human FMO3 peptide antibodies or rat FMO1 peptide antibodies. With respect to FMO-dependent N-oxygenation of benzydamine and tozasertib and S-oxygenation of methimazole and sulindac sulfide activities, rat and minipig liver microsomes had high maximum velocity values (Vmax) and high catalytic efficiency (Vmax/Km, Michaelis constant) compared with those for human or monkey liver microsomes. Apparent Km values for recombinantly expressed rat FMO3-mediated N- and S-oxygenations were approximately 10-100-fold those of rat FMO1, although these enzymes had similar Vmax values. The mean catalytic efficiencies (Vmax/Km, 1.4 and 0.4 min(-1)μM(-1), respectively) of recombinant human and monkey FMO3 were higher than those of FMO1, whereas Vmax/Km values for rat and minipig FMO3 were low compared with those of FMO1. Minipig liver microsomal FMO1 efficiently catalyzed N- and S-oxygenation reactions; in addition, the minipig liver microsomal FMO1 concentration was higher than the levels in rats, humans, and monkeys. These results suggest that liver microsomal FMO1 could contribute to the relatively high FMO-mediated drug N- and S-oxygenation activities in rat and minipig liver microsomes and that lower expression of FMO1 in human and monkey livers could be a determinant factor for species differences in liver drug N- and S-oxygenation activities between experimental animals and humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Prospects for Quantitative fMRI: Investigating the Effects of Caffeine on Baseline Oxygen Metabolism and the Response to a Visual Stimulus in Humans

    PubMed Central

    Griffeth, Valerie E.M.; Perthen, Joanna E.; Buxton, Richard B.

    2011-01-01

    Functional magnetic resonance imaging (fMRI) provides an indirect reflection of neural activity change in the working brain through detection of blood oxygenation level dependent (BOLD) signal changes. Although widely used to map patterns of brain activation, fMRI has not yet met its potential for clinical and pharmacological studies due to difficulties in quantitatively interpreting the BOLD signal. This difficulty is due to the BOLD response being strongly modulated by two physiological factors in addition to the level of neural activity: the amount of deoxyhemoglobin present in the baseline state and the coupling ratio, n, of evoked changes in blood flow and oxygen metabolism. In this study, we used a quantitative fMRI approach with dual measurement of blood flow and BOLD responses to overcome these limitations and show that these two sources of modulation work in opposite directions following caffeine administration in healthy human subjects. A strong 27% reduction in baseline blood flow and a 22% increase in baseline oxygen metabolism after caffeine consumption led to a decrease in baseline blood oxygenation and was expected to increase the subsequent BOLD response to the visual stimulus. Opposing this, caffeine reduced n through a strong 61% increase in the evoked oxygen metabolism response to the visual stimulus. The combined effect was that BOLD responses pre- and post-caffeine were similar despite large underlying physiological changes, indicating that the magnitude of the BOLD response alone should not be interpreted as a direct measure of underlying neurophysiological changes. Instead, a quantitative methodology based on dual-echo measurement of blood flow and BOLD responses is a promising tool for applying fMRI to disease and drug studies in which both baseline conditions and the coupling of blood flow and oxygen metabolism responses to a stimulus may be altered. PMID:21586328

  13. Longitudinal decrease in blood oxygenation level dependent response in cerebral amyloid angiopathy.

    PubMed

    Switzer, Aaron R; McCreary, Cheryl; Batool, Saima; Stafford, Randall B; Frayne, Richard; Goodyear, Bradley G; Smith, Eric E

    2016-01-01

    Lower blood oxygenation level dependent (BOLD) signal changes in response to a visual stimulus in functional magnetic resonance imaging (fMRI) have been observed in cross-sectional studies of cerebral amyloid angiopathy (CAA), and are presumed to reflect impaired vascular reactivity. We used fMRI to detect a longitudinal change in BOLD responses to a visual stimulus in CAA, and to determine any correlations between these changes and other established biomarkers of CAA progression. Data were acquired from 22 patients diagnosed with probable CAA (using the Boston Criteria) and 16 healthy controls at baseline and one year. BOLD data were generated from the 200 most active voxels of the primary visual cortex during the fMRI visual stimulus (passively viewing an alternating checkerboard pattern). In general, BOLD amplitudes were lower at one year compared to baseline in patients with CAA (p = 0.01) but were unchanged in controls (p = 0.18). The longitudinal difference in BOLD amplitudes was significantly lower in CAA compared to controls (p < 0.001). White matter hyperintensity (WMH) volumes and number of cerebral microbleeds, both presumed to reflect CAA-mediated vascular injury, increased over time in CAA (p = 0.007 and p = 0.001, respectively). Longitudinal increases in WMH (rs = 0.04, p = 0.86) or cerebral microbleeds (rs = -0.18, p = 0.45) were not associated with the longitudinal decrease in BOLD amplitudes.

  14. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective.

    PubMed

    Massucci, Francesco A; DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Castillo, Isaac Perez; Marinari, Enzo; De Martino, Andrea

    2013-10-10

    The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange.

  15. Energy metabolism and glutamate-glutamine cycle in the brain: a stoichiometric modeling perspective

    PubMed Central

    2013-01-01

    Background The energetics of cerebral activity critically relies on the functional and metabolic interactions between neurons and astrocytes. Important open questions include the relation between neuronal versus astrocytic energy demand, glucose uptake and intercellular lactate transfer, as well as their dependence on the level of activity. Results We have developed a large-scale, constraint-based network model of the metabolic partnership between astrocytes and glutamatergic neurons that allows for a quantitative appraisal of the extent to which stoichiometry alone drives the energetics of the system. We find that the velocity of the glutamate-glutamine cycle (Vcyc) explains part of the uncoupling between glucose and oxygen utilization at increasing Vcyc levels. Thus, we are able to characterize different activation states in terms of the tissue oxygen-glucose index (OGI). Calculations show that glucose is taken up and metabolized according to cellular energy requirements, and that partitioning of the sugar between different cell types is not significantly affected by Vcyc. Furthermore, both the direction and magnitude of the lactate shuttle between neurons and astrocytes turn out to depend on the relative cell glucose uptake while being roughly independent of Vcyc. Conclusions These findings suggest that, in absence of ad hoc activity-related constraints on neuronal and astrocytic metabolism, the glutamate-glutamine cycle does not control the relative energy demand of neurons and astrocytes, and hence their glucose uptake and lactate exchange. PMID:24112710

  16. How functional connectivity between emotion regulation structures can be disrupted: preliminary evidence from adolescents with moderate to severe traumatic brain injury.

    PubMed

    Newsome, Mary R; Scheibel, Randall S; Mayer, Andrew R; Chu, Zili D; Wilde, Elisabeth A; Hanten, Gerri; Steinberg, Joel L; Lin, Xiaodi; Li, Xiaoqi; Merkley, Tricia L; Hunter, Jill V; Vasquez, Ana C; Cook, Lori; Lu, Hanzhang; Vinton, Kami; Levin, Harvey S

    2013-09-01

    Outcome of moderate to severe traumatic brain injury (TBI) includes impaired emotion regulation. Emotion regulation has been associated with amygdala and rostral anterior cingulate (rACC). However, functional connectivity between the two structures after injury has not been reported. A preliminary examination of functional connectivity of rACC and right amygdala was conducted in adolescents 2 to 3 years after moderate to severe TBI and in typically developing (TD)control adolescents, with the hypothesis that the TBI adolescents would demonstrate altered functional connectivity in the two regions. Functional connectivity was determined by correlating fluctuations in the blood oxygen level dependent(BOLD) signal of the rACC and right amygdala with that of other brain regions. In the TBI adolescents, the rACC was found to be significantly less functionally connected to medial prefrontal cortices and to right temporal regions near the amygdala (height threshold T = 2.5, cluster level p < .05, FDR corrected), while the right amygdala showed a trend in reduced functional connectivity with the rACC (height threshold T = 2.5, cluster level p = .06, FDR corrected). Data suggest disrupted functional connectivity in emotion regulation regions. Limitations include small sample sizes. Studies with larger sample sizes are necessary to characterize the persistent neural damage resulting from moderate to severe TBI during development.

  17. Isocitrate protects DJ-1 null dopaminergic cells from oxidative stress through NADP+-dependent isocitrate dehydrogenase (IDH)

    PubMed Central

    Kim, Eun Young; Kim, Hyunjin; Lee, Yoonjeong; Min, Boram; Son, Jin H.; Park, Hwan Tae; Chung, Jongkyeong

    2017-01-01

    DJ-1 is one of the causative genes for early onset familiar Parkinson’s disease (PD) and is also considered to influence the pathogenesis of sporadic PD. DJ-1 has various physiological functions which converge on controlling intracellular reactive oxygen species (ROS) levels. In RNA-sequencing analyses searching for novel anti-oxidant genes downstream of DJ-1, a gene encoding NADP+-dependent isocitrate dehydrogenase (IDH), which converts isocitrate into α-ketoglutarate, was detected. Loss of IDH induced hyper-sensitivity to oxidative stress accompanying age-dependent mitochondrial defects and dopaminergic (DA) neuron degeneration in Drosophila, indicating its critical roles in maintaining mitochondrial integrity and DA neuron survival. Further genetic analysis suggested that DJ-1 controls IDH gene expression through nuclear factor-E2-related factor2 (Nrf2). Using Drosophila and mammalian DA models, we found that IDH suppresses intracellular and mitochondrial ROS level and subsequent DA neuron loss downstream of DJ-1. Consistently, trimethyl isocitrate (TIC), a cell permeable isocitrate, protected mammalian DJ-1 null DA cells from oxidative stress in an IDH-dependent manner. These results suggest that isocitrate and its derivatives are novel treatments for PD associated with DJ-1 dysfunction. PMID:28827794

  18. Hydrogen Peroxide Modifies Human Sperm Peroxiredoxins in a Dose-Dependent Manner1

    PubMed Central

    O'Flaherty, Cristian; Rico de Souza, Angela

    2010-01-01

    Low levels of reactive oxygen species (ROS) modulate signaling pathways required for human sperm activation, but high levels impair sperm function, leading to infertility. Peroxiredoxins (PRDXs) are enzymes with a dual role as ROS scavengers and modulators of ROS-dependent signaling. The present study aimed to characterize PRDXs in human spermatozoa and possible modifications resulting from hydrogen peroxide (H2O2). We found PRDX1, PRDX4, PRDX5, and PRDX6 in both seminal plasma and spermatozoa. Using immunocytochemistry, we demonstrated that these PRDXs are differentially localized in the head, acrosome, mitochondrial sheath, and flagellum. These observations were confirmed by immunoblotting using cytosolic, Triton-soluble and -insoluble, and head and flagella sperm fractions. PRDXs are dose-dependently modified by H2O2, as seen by the formation of disulfide bridges and high-molecular-mass complexes. This first study, to our knowledge, on PRDXs in human spermatozoa indicates that PRDX1, PRDX4, PRDX5, and PRDX6 are modified when spermatozoa are challenged with H2O2. This suggests that PRDXs may protect these cells at high levels of H2O2 but could also control H2O2 levels within different cell compartments so that normal sperm activation can occur. PMID:20864641

  19. Reduced CMRO₂ and cerebrovascular reserve in patients with severe intracranial arterial stenosis: a combined multiparametric qBOLD oxygenation and BOLD fMRI study.

    PubMed

    Bouvier, Julien; Detante, Olivier; Tahon, Florence; Attye, Arnaud; Perret, Thomas; Chechin, David; Barbieux, Marianne; Boubagra, Kamel; Garambois, Katia; Tropres, Irène; Grand, Sylvie; Barbier, Emmanuel L; Krainik, Alexandre

    2015-02-01

    Multiparametric quantitative blood oxygenation level dependent (mqBOLD) magnetic resonance Imaging (MRI) approach allows mapping tissular oxygen saturation (StO2 ) and cerebral metabolic rate of oxygen (CMRO2 ). To identify hemodynamic alteration related to severe intracranial arterial stenosis (SIAS), functional MRI of cerebrovascular reserve (CVR BOLD fMRI) to hypercapnia has been proposed. Diffusion imaging suggests chronic low grade ischemia in patients with impaired CVR. The aim of the present study was to evaluate how oxygen parameters (StO2 and CMRO2 ), assessed with mqBOLD approach, correlate with CVR in patients (n = 12) with SIAS and without arterial occlusion. The perfusion (dynamic susceptibility contrast), oxygenation, and CVR were compared. The MRI protocol conducted at 3T lasted approximately 1 h. Regions of interest measures on maps were delineated on segmented gray matter (GM) of middle cerebral artery territories. We have shown that decreased CVR is spatially associated with decreased CMRO2 in GM of patients with SIAS. Further, the degree of ipsilateral CVR reduction was well-correlated with the amplitude of the CMRO2 deficit. The altered CMRO2 suggests the presence of a moderate ischemia explained by both a decrease in perfusion and in CVR. CVR and mqBOLD method may be helpful in the selection of patients with SIAS to advocate for medical therapy or percutaneous transluminal angioplasty-stenting. © 2014 Wiley Periodicals, Inc.

  20. Regulation of the Drosophila Hypoxia-Inducible Factor α Sima by CRM1-Dependent Nuclear Export ▿

    PubMed Central

    Romero, Nuria M.; Irisarri, Maximiliano; Roth, Peggy; Cauerhff, Ana; Samakovlis, Christos; Wappner, Pablo

    2008-01-01

    Hypoxia-inducible factor α (HIF-α) proteins are regulated by oxygen levels through several different mechanisms that include protein stability, transcriptional coactivator recruitment, and subcellular localization. It was previously reported that these transcription factors are mainly nuclear in hypoxia and cytoplasmic in normoxia, but so far the molecular basis of this regulation is unclear. We show here that the Drosophila melanogaster HIF-α protein Sima shuttles continuously between the nucleus and the cytoplasm. We identified the relevant nuclear localization signal and two functional nuclear export signals (NESs). These NESs are in the Sima basic helix-loop-helix (bHLH) domain and promote CRM1-dependent nuclear export. Site-directed mutagenesis of either NES provoked Sima nuclear retention and increased transcriptional activity, suggesting that nuclear export contributes to Sima regulation. The identified NESs are conserved and probably functional in the bHLH domains of several bHLH-PAS proteins. We propose that rapid nuclear export of Sima regulates the duration of cellular responses to hypoxia. PMID:18332128

  1. Graded hypoxia acts through a network of distributed peripheral oxygen chemoreceptors to produce changes in respiratory behaviour and plasticity.

    PubMed

    Janes, Tara A; Xu, Fenglian; Syed, Naweed I

    2015-07-01

    Respiratory behaviour relies critically upon sensory feedback from peripheral oxygen chemoreceptors. During environmental or systemic hypoxia, chemoreceptor input modulates respiratory central pattern generator activity to produce reflex-based increases in respiration and also shapes respiratory plasticity over longer timescales. The best-studied oxygen chemoreceptors are undoubtedly the mammalian carotid bodies; however, questions remain regarding this complex organ's role in shaping respiration in response to varying oxygen levels. Furthermore, many taxa possess distinct oxygen chemoreceptors located within the lungs, airways and cardiovasculature, but the functional advantage of multiple chemoreceptor sites is unclear. In this study, it is demonstrated that a distributed network of peripheral oxygen chemoreceptors exists in Lymnaea stagnalis and significantly modulates aerial respiration. Specifically, Lymnaea breath frequency and duration represent parameters that are shaped by interactions between hypoxic severity and its time-course. Using a combination of behaviour and electrophysiology approaches, the chemosensory pathways underlying hypoxia-induced changes in breath frequency/duration were explored. The current findings demonstrate that breath frequency is uniquely modulated by the known osphradial ganglion oxygen chemoreceptors during moderate hypoxia, while a newly discovered area of pneumostome oxygen chemoreception serves a similar function specifically during more severe hypoxia. Together, these findings suggest that multiple oxygen chemosensory sites, each with their own sensory and modulatory properties, act synergistically to form a functionally distributed network that dynamically shapes respiration in response to changing systemic or environmental oxygen levels. These distributed networks may represent an evolutionarily conserved strategy vis-à-vis respiratory adaptability and have significant implications for the understanding of fundamental respiratory control systems. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Spatial Working Memory Impairment in Patients with Non-neuropsychiatric Systemic Lupus Erythematosus: A Blood-oxygen-level Dependent Functional Magnetic Resonance Imaging Study.

    PubMed

    Zhu, Chun-Min; Ma, Ye; Xie, Lei; Huang, Jin-Zhuang; Sun, Zong-Bo; Duan, Shou-Xing; Lin, Zhi-Rong; Yin, Jing-Jing; Le, Hong-Bo; Sun, Dan-Miao; Xu, Wen-Can; Ma, Shu-Hua

    2017-02-01

    Using ethology and functional magnetic resonance imaging (fMRI) to explore mild cognitive dysfunction and spatial working memory (WM) impairment in patients with systemic lupus erythematosus (SLE) without overt neuropsychiatric symptoms (non-NPSLE) and to study whether any clinical biomarkers could serve as predictors of brain dysfunction in this disease. Eighteen non-NPSLE patients and 18 matched subjects were all tested using the Montreal cognitive assessment scale test and scanned using blood-oxygen-level dependent fMRI while performing the n-back task to investigate the activation intensity of some cognition-related areas. Ethology results showed that non-NPSLE patients had mild cognitive dysfunction and memory dysfunction (p < 0.05). The fMRI scan confirmed a neural network consisting of bilateral dorsolateral prefrontal cortex (DLPFC), premotor area, parietal lobe, and supplementary motor area (SMA)/anterior cingulate cortex (ACC) that was activated during the n-back task, with right hemisphere dominance. However, only the right SMA/ACC showed a load effect in the non-NPSLE group; the activation intensity of most WM-related brain areas for the non-NPSLE group was lower than for the control group under 3 memory loads. Further, we found that the activation intensity of some cognition-related areas, including the bilateral caudate nucleus/insula and hippocampus/parahippocampal gyrus were lower than the control group under the memory loads. An inverse correlation existed between individual activation intensity and disease duration. Non-NPSLE-related brain damage with right DLPFC-posterior parietal lobe and parahippocampal gyrus default network causes impairment of spatial WM and mild cognitive dysfunction. Patients with longer disease duration would be expected to exhibit increased central nervous system damage.

  3. Home Reading Environment and Brain Activation in Preschool Children Listening to Stories.

    PubMed

    Hutton, John S; Horowitz-Kraus, Tzipi; Mendelsohn, Alan L; DeWitt, Tom; Holland, Scott K

    2015-09-01

    Parent-child reading is widely advocated to promote cognitive development, including in recommendations from the American Academy of Pediatrics to begin this practice at birth. Although parent-child reading has been shown in behavioral studies to improve oral language and print concepts, quantifiable effects on the brain have not been previously studied. Our study used blood oxygen level-dependent functional magnetic resonance imaging to examine the relationship between home reading environment and brain activity during a story listening task in a sample of preschool-age children. We hypothesized that while listening to stories, children with greater home reading exposure would exhibit higher activation of left-sided brain regions involved with semantic processing (extraction of meaning). Nineteen 3- to 5-year-old children were selected from a longitudinal study of normal brain development. All completed blood oxygen level-dependent functional magnetic resonance imaging using an age-appropriate story listening task, where narrative alternated with tones. We performed a series of whole-brain regression analyses applying composite, subscale, and individual reading-related items from the validated StimQ-P measure of home cognitive environment as explanatory variables for neural activation. Higher reading exposure (StimQ-P Reading subscale score) was positively correlated (P < .05, corrected) with neural activation in the left-sided parietal-temporal-occipital association cortex, a "hub" region supporting semantic language processing, controlling for household income. In preschool children listening to stories, greater home reading exposure is positively associated with activation of brain areas supporting mental imagery and narrative comprehension, controlling for household income. These neural biomarkers may help inform eco-bio-developmental models of emergent literacy. Copyright © 2015 by the American Academy of Pediatrics.

  4. Link Between Increased Satiety Gut Hormones and Reduced Food Reward After Gastric Bypass Surgery for Obesity.

    PubMed

    Goldstone, Anthony P; Miras, Alexander D; Scholtz, Samantha; Jackson, Sabrina; Neff, Karl J; Pénicaud, Luc; Geoghegan, Justin; Chhina, Navpreet; Durighel, Giuliana; Bell, Jimmy D; Meillon, Sophie; le Roux, Carel W

    2016-02-01

    Roux-en-Y gastric bypass (RYGB) surgery is an effective long-term intervention for weight loss maintenance, reducing appetite, and also food reward, via unclear mechanisms. To investigate the role of elevated satiety gut hormones after RYGB, we examined food hedonic-reward responses after their acute post-prandial suppression. These were randomized, placebo-controlled, double-blind, crossover experimental medicine studies. Two groups, more than 5 months after RYGB for obesity (n = 7-11), compared with nonobese controls (n = 10), or patients after gastric banding (BAND) surgery (n = 9) participated in the studies. Studies were performed after acute administration of the somatostatin analog octreotide or saline. In one study, patients after RYGB, and nonobese controls, performed a behavioral progressive ratio task for chocolate sweets. In another study, patients after RYGB, and controls after BAND surgery, performed a functional magnetic resonance imaging food picture evaluation task. Octreotide increased both appetitive food reward (breakpoint) in the progressive ratio task (n = 9), and food appeal (n = 9) and reward system blood oxygen level-dependent signal (n = 7) in the functional magnetic resonance imaging task, in the RYGB group, but not in the control groups. Octreotide suppressed postprandial plasma peptide YY, glucagon-like peptide-1, and fibroblast growth factor-19 after RYGB. The reduction in plasma peptide YY with octreotide positively correlated with the increase in brain reward system blood oxygen level-dependent signal in RYGB/BAND subjects, with a similar trend for glucagon-like peptide-1. Enhanced satiety gut hormone responses after RYGB may be a causative mechanism by which anatomical alterations of the gut in obesity surgery modify behavioral and brain reward responses to food.

  5. Characterization of the blood-oxygen level-dependent (BOLD) response in cat auditory cortex using high-field fMRI.

    PubMed

    Brown, Trecia A; Joanisse, Marc F; Gati, Joseph S; Hughes, Sarah M; Nixon, Pam L; Menon, Ravi S; Lomber, Stephen G

    2013-01-01

    Much of what is known about the cortical organization for audition in humans draws from studies of auditory cortex in the cat. However, these data build largely on electrophysiological recordings that are both highly invasive and provide less evidence concerning macroscopic patterns of brain activation. Optical imaging, using intrinsic signals or dyes, allows visualization of surface-based activity but is also quite invasive. Functional magnetic resonance imaging (fMRI) overcomes these limitations by providing a large-scale perspective of distributed activity across the brain in a non-invasive manner. The present study used fMRI to characterize stimulus-evoked activity in auditory cortex of an anesthetized (ketamine/isoflurane) cat, focusing specifically on the blood-oxygen-level-dependent (BOLD) signal time course. Functional images were acquired for adult cats in a 7 T MRI scanner. To determine the BOLD signal time course, we presented 1s broadband noise bursts between widely spaced scan acquisitions at randomized delays (1-12 s in 1s increments) prior to each scan. Baseline trials in which no stimulus was presented were also acquired. Our results indicate that the BOLD response peaks at about 3.5s in primary auditory cortex (AI) and at about 4.5 s in non-primary areas (AII, PAF) of cat auditory cortex. The observed peak latency is within the range reported for humans and non-human primates (3-4 s). The time course of hemodynamic activity in cat auditory cortex also occurs on a comparatively shorter scale than in cat visual cortex. The results of this study will provide a foundation for future auditory fMRI studies in the cat to incorporate these hemodynamic response properties into appropriate analyses of cat auditory cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Assessment of pedophilia using hemodynamic brain response to sexual stimuli.

    PubMed

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav; Wolff, Stephan; Beier, Klaus; Neutze, Janina; Deuschl, Günther; Mehdorn, Hubertus; Siebner, Hartwig; Bosinski, Hartmut

    2012-02-01

    Accurately assessing sexual preference is important in the treatment of child sex offenders. Phallometry is the standard method to identify sexual preference; however, this measure has been criticized for its intrusiveness and limited reliability. To evaluate whether spatial response pattern to sexual stimuli as revealed by a change in the blood oxygen level-dependent signal facilitates the identification of pedophiles. During functional magnetic resonance imaging, pedophilic and nonpedophilic participants were briefly exposed to same- and opposite-sex images of nude children and adults. We calculated differences in blood oxygen level-dependent signals to child and adult sexual stimuli for each participant. The corresponding contrast images were entered into a group analysis to calculate whole-brain difference maps between groups. We calculated an expression value that corresponded to the group result for each participant. These expression values were submitted to 2 different classification algorithms: Fisher linear discriminant analysis and κ -nearest neighbor analysis. This classification procedure was cross-validated using the leave-one-out method. Section of Sexual Medicine, Medical School, Christian Albrechts University of Kiel, Kiel, Germany. We recruited 24 participants with pedophilia who were sexually attracted to either prepubescent girls (n = 11) or prepubescent boys (n = 13) and 32 healthy male controls who were sexually attracted to either adult women (n = 18) or adult men (n = 14). Sensitivity and specificity scores of the 2 classification algorithms. The highest classification accuracy was achieved by Fisher linear discriminant analysis, which showed a mean accuracy of 95% (100% specificity, 88% sensitivity). Functional brain response patterns to sexual stimuli contain sufficient information to identify pedophiles with high accuracy. The automatic classification of these patterns is a promising objective tool to clinically diagnose pedophilia.

  7. Influence of impurities on the high temperature conductivity of SrTiO3

    NASA Astrophysics Data System (ADS)

    Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.

    2018-01-01

    In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.

  8. The Effects of Acutely Administered 3,4-Methylenedioxymethamphetamine on Spontaneous Brain Function in Healthy Volunteers Measured with Arterial Spin Labeling and Blood Oxygen Level–Dependent Resting State Functional Connectivity

    PubMed Central

    Carhart-Harris, Robin L.; Murphy, Kevin; Leech, Robert; Erritzoe, David; Wall, Matthew B.; Ferguson, Bart; Williams, Luke T.J.; Roseman, Leor; Brugger, Stefan; De Meer, Ineke; Tanner, Mark; Tyacke, Robin; Wolff, Kim; Sethi, Ajun; Bloomfield, Michael A.P.; Williams, Tim M.; Bolstridge, Mark; Stewart, Lorna; Morgan, Celia; Newbould, Rexford D.; Feilding, Amanda; Curran, H. Val; Nutt, David J.

    2015-01-01

    Background The compound 3,4-methylenedioxymethamphetamine (MDMA) is a potent monoamine releaser that produces an acute euphoria in most individuals. Methods In a double-blind, placebo-controlled, balanced-order study, MDMA was orally administered to 25 physically and mentally healthy individuals. Arterial spin labeling and seed-based resting state functional connectivity (RSFC) were used to produce spatial maps displaying changes in cerebral blood flow (CBF) and RSFC after MDMA administration. Participants underwent two arterial spin labeling and two blood oxygen level–dependent scans in a 90-minute scan session; MDMA and placebo study days were separated by 1 week. Results Marked increases in positive mood were produced by MDMA. Decreased CBF only was observed after MDMA, and this was localized to the right medial temporal lobe (MTL), thalamus, inferior visual cortex, and the somatosensory cortex. Decreased CBF in the right amygdala and hippocampus correlated with ratings of the intensity of global subjective effects of MDMA. The RSFC results complemented the CBF results, with decreases in RSFC between midline cortical regions, the medial prefrontal cortex, and MTL regions, and increases between the amygdala and hippocampus. There were trend-level correlations between these effects and ratings of intense and positive subjective effects. Conclusions The MTLs appear to be specifically implicated in the mechanism of action of MDMA, but further work is required to elucidate how the drug’s characteristic subjective effects arise from its modulation of spontaneous brain activity. PMID:24495461

  9. Density-functional study on the dopant-segregation mechanism: Chemical potential dependence of dopant-defect complex at Si/SiO2 interface

    NASA Astrophysics Data System (ADS)

    Kawai, Hiroki; Nakasaki, Yasushi; Kanemura, Takahisa; Ishihara, Takamitsu

    2018-04-01

    Dopant segregation at Si/SiO2 interface has been a serious problem in silicon device technology. This paper reports a comprehensive density-functional study on the segregation mechanisms of boron, phosphorous, and arsenic at the Si/SiO2 interface. We found that three kinds of interfacial defects, namely, interstitial oxygen, oxygen vacancy, and silicon vacancy with two oxygen atoms, are stable in the possible chemical potential range. Thus, we consider these defects as trap sites for the dopants. For these defects, the dopant segregation energies, the electrical activities of the trapped dopants, and the kinetic energy barriers of the trapping/detrapping processes are calculated. As a result, trapping at the interstitial oxygen site is indicated to be the most plausible mechanism of the dopant segregation. The interstitial oxygen works as a major trap site since it has a high areal density at the Si/SiO2 interface due to the low formation energy.

  10. Borderline maintenance of erythrocyte 2,3-diphosphoglycerate concentrations in normoxic type 1 (insulin dependent) diabetic subjects.

    PubMed

    Story, C J; Roberts, A P; Ryall, R G

    1986-02-01

    Erythrocyte 2,3-diphosphoglycerate and haemoglobin A1c concentrations were measured in 26 clinically normoxic patients with type 1 (insulin dependent) diabetes mellitus. The concentration of 2,3-diphosphoglycerate theoretically required to maintain normal erythrocyte oxygen delivery function in each subject was calculated and compared with the measured concentrations. In the majority of diabetic patients 2,3-diphosphoglycerate concentrations were sufficient to keep the erythrocyte oxygen dissociation curve within the normal range under otherwise normal blood conditions. There was, however, a minority of patients in which this was not true. It is concluded that the increased erythrocyte 2,3-diphosphoglycerate concentrations in clinically normoxic diabetic subjects are generally less than compensatory for the effect of haemoglobin A1c formation on the haemoglobin-oxygen dissociation curve.

  11. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    PubMed Central

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  12. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    PubMed

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  13. Differential Effects of Nebivolol vs Metoprolol on Functional Sympatholysis in Hypertensive Humans

    PubMed Central

    Price, Angela; Raheja, Prafull; Wang, Zhongyun; Arbique, Debbie; Adams-Huet, Beverley; Mitchell, Jere H.; Victor, Ronald G.; Thomas, Gail D.; Vongpatanasin, Wanpen

    2013-01-01

    In young healthy humans, sympathetic vasoconstriction is markedly blunted during exercise to optimize blood flow to the metabolically active muscle. This phenomenon known as functional sympatholysis is impaired in hypertensive humans and rats by angiotensin II-dependent mechanisms involving oxidative stress and inactivation of nitric oxide (NO). Nebivolol is a β1−adrenergic receptor blocker that has NO-dependent vasodilatory and antioxidant properties. We therefore asked if nebivolol would restore functional sympatholysis in hypertensive humans. In 21 subjects with stage I hypertension, we measured muscle oxygenation and forearm blood flow (FBF) responses to reflex increases in sympathetic nerve activity (SNA) evoked by lower body negative pressure (LBNP) at rest and during rhythmic handgrip exercise at baseline, after 12 weeks of nebivolol (5–20 mg/day), or metoprolol (100–300 mg/day), using a double-blind crossover design. We found that nebivolol had no effect on LBNP-induced decreases in oxygenation and FBF in resting forearm (from −29±5 to −30±5% and from −29±3 to −29±3%, respectively; p=NS). However, nebivolol attenuated the LBNP-induced reduction in oxygenation and FBF in exercising forearm (from −14±4% to −1±5% and from −15 ±2% to −6±2%, respectively, both p < 0.05). This effect of nebivolol on oxygenation and FBF in exercising forearm was not observed with metoprolol in the same subjects despite a similar reduction in BP. Nebivolol had no effect on SNA at rest or during handgrip, suggesting a direct effect on vascular function. Thus, our data demonstrate that nebivolol restored functional sympatholysis in hypertensive humans by a mechanism that does not involve β1-adrenergic receptors. PMID:23547240

  14. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less

  15. Targeting the expression of glutathione- and sulfate-dependent detoxification enzymes in HepG2 cells by oxygen in minimal and amino acid enriched medium.

    PubMed

    Usarek, Ewa; Graboń, Wojciech; Kaźmierczak, Beata; Barańczyk-Kuźma, Anna

    2016-02-01

    Cancer cells exhibit specific metabolism allowing them to survive and proliferate in various oxygen conditions and nutrients' availability. Hepatocytes are highly active metabolically and thus very sensitive to hypoxia. The purpose of the study was to investigate the effect of oxygen on the expression of phase II detoxification enzymes in hepatocellular carcinoma cells (HepG2) cultured in minimal and rich media (with nonessential amino acids and GSH). The cells were cultured at 1% hypoxia, 10% tissue normoxia, and 21% atmospheric normoxia. The total cell count was determined by trypan blue exclusion dye and the expression on mRNA level by RT-PCR. The result indicated that the expression of glutathione-dependent enzymes (GSTA, M, P, and GPX2) was sensitive to oxygen and medium type. At 1% hypoxia the enzyme expression (with the exception of GSTA) was higher in minimal compared to rich medium, whereas at 10% normoxia it was higher in the rich medium. The expression was oxygen-dependent in both types of medium. Among phenol sulfotransferase SULT1A1 was not sensitive to studied factors, whereas the expression of SULT1A3 was depended on oxygen only in minimal medium. It can be concluded that in HepG2 cells, the detoxification by conjugation with glutathione and, to a lower extent with sulfate, may be affected by hypoxia and/or limited nutrients' availability. Besides, because the data obtained at 10% oxygen significantly differ from those at 21%, the comparative studies on hypoxia should be performed in relation to 10% but not 21% oxygen. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Developmental effects of aggressive behavior in male adolescents assessed with structural and functional brain imaging

    PubMed Central

    Strenziok, Maren; Krueger, Frank; Heinecke, Armin; Lenroot, Rhoshel K.; Knutson, Kristine M.; van der Meer, Elke

    2011-01-01

    Aggressive behavior is common during adolescence. Although aggression-related functional changes in the ventromedial prefrontal cortex (vmPFC) and frontopolar cortex (FPC) have been reported in adults, the neural correlates of aggressive behavior in adolescents, particularly in the context of structural neurodevelopment, are obscure. We used functional and structural magnetic resonance imaging (MRI) to measure the blood oxygenation level-depended signal and cortical thickness. In a block-designed experiment, 14–17-year old adolescents imagined aggressive and non-aggressive interactions with a peer. We show reduced vmPFC activation associated with imagined aggressive behavior as well as enhanced aggression-related activation and cortical thinning in the FPC with increasing age. Changes in FPC activation were also associated with judgments of the severity of aggressive acts. Reduced vmPFC activation was associated with greater aggression indicating its normal function is to exert inhibitory control over aggressive impulses. Concurrent FPC activation likely reflects foresight of harmful consequences that result from aggressive acts. The correlation of age-dependent activation changes and cortical thinning demonstrates ongoing maturation of the FPC during adolescence towards a refinement of social and cognitive information processing that can potentially facilitate mature social behavior in aggressive contexts. PMID:19770220

  17. [Relationship among the Oxygen Concentration, Reactive Oxygen Species and the Biological Characteristics of Mouse Bone Marrow Hematopoietic Stem Cells].

    PubMed

    Ren, Si-Hua; He, Yu-Xin; Ma, Yi-Ran; Jin, Jing-Chun; Kang, Dan

    2016-02-01

    To investigate the effects of oxygen concentration and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and to analyzed the relationship among the oxygen concentration, ROS and the biological characteristics of mouse HSC through simulation of oxygen environment experienced by PB HSC during transplantation. The detection of reactive oxygen species (ROS), in vitro amplification, directional differentiation (BFU-E, CFU-GM, CFU-Mix), homing of adhesion molecules (CXCR4, CD44, VLA4, VLA5, P-selectin), migration rate, CFU-S of NOD/SCID mice irradiated with sublethal dose were performed to study the effect of oxgen concentration and reactive oxygen species on the biological characteristics of mouse BM-HSC and the relationship among them. The oxygen concentrations lower than normal oxygen concentration (especially hypoxic oxygen environment) could reduce ROS level and amplify more Lin(-) c-kit(+) Sca-1(+) BM HSC, which was more helpful to the growth of various colonies (BFU-E, CFU-GM, CFU-Mix) and to maintain the migratory ability of HSC, thus promoting CFU-S growth significantly after the transplantation of HSC in NOD/SCID mice irradiated by a sublethal dose. BM HSC exposed to oxygen environments of normal, inconstant oxygen level and strenuously thanging of oxygen concentration could result in higher level of ROS, at the same time, the above-mentioned features and functional indicators were relatively lower. The ROS levels of BM HSC in PB HSCT are closely related to the concentrations and stability of oxygen surrounding the cells. High oxygen concentration results in an high level of ROS, which is not helpful to maintain the biological characteristics of BM HSC. Before transplantation and in vitro amplification, the application of antioxidancs and constant oxygen level environments may be beneficial for transplantation of BMMSC.

  18. The effects of capillary transit time heterogeneity (CTH) on brain oxygenation

    PubMed Central

    Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N

    2015-01-01

    We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911

  19. Seasonal variation in blood and muscle oxygen stores attributed to diving behavior, environmental temperature and pregnancy in a marine predator, the California sea lion.

    PubMed

    Villegas-Amtmann, Stella; Atkinson, Shannon; Paras-Garcia, Alberto; Costa, Daniel P

    2012-08-01

    Survival depends on an animal's ability to find and acquire prey. In diving vertebrates, this ability is directly related to their physiological capability (e.g. oxygen stores). We studied the seasonal variation in oxygen stores, body temperature and body condition in California sea lions (Zalophus californianus) (CSL) as a function of seasonal variation in temperature, primary productivity, diving behavior and reproductive stage. During summer, blood oxygen stores were significantly greater and muscle oxygen stores were significantly lower than in winter. Total oxygen stores, body condition and body temperature did not change between seasons but variations in body temperature were greater during summer. Changes in oxygen stores are partly attributed to diving behavior, temperature and pregnancy that could increase oxygen consumption. Blood and muscle oxygen stores appear to be influenced by reproductive state. Blood oxygen stores are more likely influenced by diving behavior and temperature than muscle oxygen stores. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Blunted Myocardial Oxygenation Response During Vasodilator Stress in Patients With Hypertrophic Cardiomyopathy

    PubMed Central

    Karamitsos, Theodoros D.; Dass, Sairia; Suttie, Joseph; Sever, Emily; Birks, Jacqueline; Holloway, Cameron J.; Robson, Matthew D.; Jerosch-Herold, Michael; Watkins, Hugh; Neubauer, Stefan

    2013-01-01

    Objectives This study sought to assess myocardial perfusion and tissue oxygenation during vasodilator stress in patients with overt hypertrophic cardiomyopathy (HCM), as well as in HCM mutation carriers without left ventricular (LV) hypertrophy, and to compare findings to those in athletes with comparable hypertrophy and normal controls. Background Myocardial perfusion under vasodilator stress is impaired in patients with HCM. Whether this is associated with impaired myocardial oxygenation and tissue ischemia is unknown. Furthermore, it is not known whether perfusion and oxygenation are impaired in HCM mutation carriers without left ventricular hypertrophy (LVH). Methods A total of 27 patients with overt HCM, 10 HCM mutation carriers without LVH, 11 athletes, and 20 healthy controls underwent cardiovascular magnetic resonance (CMR) scanning at 3-T. Myocardial function, perfusion (perfusion reserve index [MPRI]), and oxygenation (blood-oxygen level dependent signal intensity [SI] change) under adenosine stress were assessed. Results MPRI was significantly reduced in HCM (1.3 ± 0.1) compared to controls (1.8 ± 0.1, p < 0.001) and athletes (2.0 ± 0.1, p < 0.001), but remained normal in HCM mutation carriers without LVH (1.7 ± 0.1; p = 0.61 vs. controls, p = 0.02 vs. overt HCM). Oxygenation response was attenuated in overt HCM (SI change 6.9 ± 1.4%) compared to controls (18.9 ± 1.4%, p < 0.0001) and athletes (18.7 ± 2.0%, p < 0.001). Interestingly, HCM mutation carriers without LVH also showed an impaired oxygenation response to adenosine (10.4 ± 2.0%; p = 0.001 vs. controls, p = 0.16 vs. overt HCM, p = 0.003 vs. athletes). Conclusions In overt HCM, both perfusion and oxygenation are impaired during vasodilator stress. However, in HCM mutation carriers without LVH, only oxygenation is impaired. In athletes, stress perfusion and oxygenation are normal. CMR assessment of myocardial oxygenation has the potential to become a novel risk factor in HCM. PMID:23498131

  1. Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration

    NASA Astrophysics Data System (ADS)

    Mills, B.; Belcher, C.; Lenton, T. M.

    2017-12-01

    During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.

  2. Neuroprotection of hyperbaric oxygen therapy in sub-acute traumatic brain injury: not by immediately improving cerebral oxygen saturation and oxygen partial pressure.

    PubMed

    Zhou, Bao-Chun; Liu, Li-Jun; Liu, Bing

    2016-09-01

    Although hyperbaric oxygen (HBO) therapy can promote the recovery of neural function in patients who have suffered traumatic brain injury (TBI), the underlying mechanism is unclear. We hypothesized that hyperbaric oxygen treatment plays a neuroprotective role in TBI by increasing regional transcranial oxygen saturation (rSO 2 ) and oxygen partial pressure (PaO 2 ). To test this idea, we compared two groups: a control group with 20 healthy people and a treatment group with 40 TBI patients. The 40 patients were given 100% oxygen of HBO for 90 minutes. Changes in rSO 2 were measured. The controls were also examined for rSO 2 and PaO 2 , but received no treatment. rSO 2 levels in the patients did not differ significantly after treatment, but levels before and after treatment were significantly lower than those in the control group. PaO 2 levels were significantly decreased after the 30-minute HBO treatment. Our findings suggest that there is a disorder of oxygen metabolism in patients with sub-acute TBI. HBO does not immediately affect cerebral oxygen metabolism, and the underlying mechanism still needs to be studied in depth.

  3. [Effect of different oxygen concentrations on biological properties of bone marrow hematopoietic stem cells of mice].

    PubMed

    Ma, Yi-Ran; Ren, Si-Hua; He, Yu-Xin; Wang, Lin-Lin; Jin, Li; Hao, Yi-Wen

    2012-10-01

    This study purposed to investigate the effects of different oxygen concentrations and reactive oxygen species (ROS) on the biological characteristics of hematopoietic stem cells (HSC) and their possible mechanisms through simulating oxygen environment to which the peripheral blood HSC are subjected in peripheral blood HSCT. The proliferation ability, cell cycle, directed differentiation ability, ROS level and hematopoietic reconstitution ability of Lin(-)c-kit(+)Sca-1(+) BMHSC were detected by using in vitro amplification test, directional differentiation test, cell cycle analysis, ROS assay and transplantation of Lin(-)c-kit(+)Sca-1(+) HSC from sublethally irradiated mice respectively. The results showed that oxygen concentrations lower than normal oxygen concentration, especially in hypoxic oxygen environment, could reduce ROS generation and amplify more primitive CD34(+)AC133(+) HSC and active CD34(+) HSC, and maintain more stem cells in the G(0)/G(1) phase, which is more helpful to the growth of CFU-S and viability of mice. At the same time, BMHSC exposed to normal oxygen level or inconstant and greatly changed oxygen concentrations could produce a high level of ROS, and the above-mentioned features and functional indicators are relatively low. It is concluded that ROS levels of HSC in BMHSCT are closely related with the oxygen concentration surrounding the cells and its stability. Low oxygen concentration and antioxidant intervention are helpful to transplantation of BMHSC.

  4. A quantitative model for oxygen uptake and release in a family of hemeproteins.

    PubMed

    Bustamante, Juan P; Szretter, María E; Sued, Mariela; Martí, Marcelo A; Estrin, Darío A; Boechi, Leonardo

    2016-06-15

    Hemeproteins have many diverse functions that largely depend on the rate at which they uptake or release small ligands, like oxygen. These proteins have been extensively studied using either simulations or experiments, albeit only qualitatively and one or two proteins at a time. We present a physical-chemical model, which uses data obtained exclusively from computer simulations, to describe the uptake and release of oxygen in a family of hemeproteins, called truncated hemoglobins (trHbs). Through a rigorous statistical analysis we demonstrate that our model successfully recaptures all the reported experimental oxygen association and dissociation kinetic rate constants, thus allowing us to establish the key factors that determine the rates at which these hemeproteins uptake and release oxygen. We found that internal tunnels as well as the distal site water molecules control ligand uptake, whereas oxygen stabilization by distal site residues controls ligand release. Because these rates largely determine the functions of these hemeproteins, these approaches will also be important tools in characterizing the trHbs members with unknown functions. lboechi@ic.fcen.uba.ar Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study

    PubMed Central

    Sollott, Steven J.

    2017-01-01

    Lipids are main fuels for cellular energy and mitochondria their major oxidation site. Yet unknown is to what extent the fuel role of lipids is influenced by their uncoupling effects, and how this affects mitochondrial energetics, redox balance and the emission of reactive oxygen species (ROS). Employing a combined experimental-computational approach, we comparatively analyze β-oxidation of palmitoyl CoA (PCoA) in isolated heart mitochondria from Sham and streptozotocin (STZ)-induced type 1 diabetic (T1DM) guinea pigs (GPs). Parallel high throughput measurements of the rates of oxygen consumption (VO2) and hydrogen peroxide (H2O2) emission as a function of PCoA concentration, in the presence of L-carnitine and malate, were performed. We found that PCoA concentration < 200 nmol/mg mito protein resulted in low H2O2 emission flux, increasing thereafter in Sham and T1DM GPs under both states 4 and 3 respiration with diabetic mitochondria releasing higher amounts of ROS. Respiratory uncoupling and ROS excess occurred at PCoA > 600 nmol/mg mito prot, in both control and diabetic animals. Also, for the first time, we show that an integrated two compartment mitochondrial model of β-oxidation of long-chain fatty acids and main energy-redox processes is able to simulate the relationship between VO2 and H2O2 emission as a function of lipid concentration. Model and experimental results indicate that PCoA oxidation and its concentration-dependent uncoupling effect, together with a partial lipid-dependent decrease in the rate of superoxide generation, modulate H2O2 emission as a function of VO2. Results indicate that keeping low levels of intracellular lipid is crucial for mitochondria and cells to maintain ROS within physiological levels compatible with signaling and reliable energy supply. PMID:28598967

  6. Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study.

    PubMed

    Cortassa, Sonia; Sollott, Steven J; Aon, Miguel A

    2017-06-01

    Lipids are main fuels for cellular energy and mitochondria their major oxidation site. Yet unknown is to what extent the fuel role of lipids is influenced by their uncoupling effects, and how this affects mitochondrial energetics, redox balance and the emission of reactive oxygen species (ROS). Employing a combined experimental-computational approach, we comparatively analyze β-oxidation of palmitoyl CoA (PCoA) in isolated heart mitochondria from Sham and streptozotocin (STZ)-induced type 1 diabetic (T1DM) guinea pigs (GPs). Parallel high throughput measurements of the rates of oxygen consumption (VO2) and hydrogen peroxide (H2O2) emission as a function of PCoA concentration, in the presence of L-carnitine and malate, were performed. We found that PCoA concentration < 200 nmol/mg mito protein resulted in low H2O2 emission flux, increasing thereafter in Sham and T1DM GPs under both states 4 and 3 respiration with diabetic mitochondria releasing higher amounts of ROS. Respiratory uncoupling and ROS excess occurred at PCoA > 600 nmol/mg mito prot, in both control and diabetic animals. Also, for the first time, we show that an integrated two compartment mitochondrial model of β-oxidation of long-chain fatty acids and main energy-redox processes is able to simulate the relationship between VO2 and H2O2 emission as a function of lipid concentration. Model and experimental results indicate that PCoA oxidation and its concentration-dependent uncoupling effect, together with a partial lipid-dependent decrease in the rate of superoxide generation, modulate H2O2 emission as a function of VO2. Results indicate that keeping low levels of intracellular lipid is crucial for mitochondria and cells to maintain ROS within physiological levels compatible with signaling and reliable energy supply.

  7. Cobalt Chloride Upregulates Impaired HIF-1α Expression to Restore Sevoflurane Post-conditioning-Dependent Myocardial Protection in Diabetic Rats.

    PubMed

    Wu, Jianjiang; Yang, Long; Xie, Peng; Yu, Jin; Yu, Tian; Wang, Haiying; Maimaitili, Yiliyaer; Wang, Jiang; Ma, Haiping; Yang, Yining; Zheng, Hong

    2017-01-01

    Previous studies from our group have demonstrated that sevoflurane post-conditioning (SPC) protects against myocardial ischemia reperfusion injury via elevating the intranuclear expression of hypoxia inducible factor-1 alpha (HIF-1α). However, diabetic SPC is associated with decreased myocardial protection and disruption of the HIF-1 signaling pathway. Previous studies have demonstrated that cobalt chloride (CoCl 2 ) can upregulate HIF-1α expression under diabetic conditions, but whether myocardial protection by SPC can be restored afterward remains unclear. We established a rat model of type 2 diabetes and a Langendorff isolated heart model of ischemia-reperfusion injury. Prior to reperfusion, 2.4% sevoflurane was used as a post-conditioning treatment. The diabetic rats were treated with CoCl 2 24 h before the experiment. At the end of reperfusion, tests were performed to assess myocardial function, infarct size, mitochondrial morphology, nitric oxide (NO), Mitochondrial reactive oxygen species (ROS), mitochondrial respiratory function and enzyme activity, HIF-1α, vascular endothelial growth factor (VEGF) and endothelial NO synthase (eNOS) protein levels. In addition, myocardial protection by SPC was monitored after the blood glucose levels were lowered by insulin. The diabetic state was associated with deficient SPC protection and decreased HIF-1α expression. After treating the diabetic rats with CoCl 2 , SPC significantly upregulated the expression of HIF-1α, VEGF and eNOS, which markedly improved cardiac function, NO, mitochondrial respiratory function, and enzyme activity and decreased the infarction areas and ROS. In addition, these effects were not influenced by blood glucose levels. This study proved that CoCl 2 activates the HIF-1α signaling pathway, which restores SPC-dependent myocardial protection under diabetic conditions, and the protective effects of SPC were independent of blood glucose levels.

  8. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins

    PubMed Central

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-01-01

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1–11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons. PMID:22190005

  9. Specialization and integration of functional thalamocortical connectivity in the human infant.

    PubMed

    Toulmin, Hilary; Beckmann, Christian F; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V; Edwards, A David

    2015-05-19

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions.

  10. Specialization and integration of functional thalamocortical connectivity in the human infant

    PubMed Central

    Toulmin, Hilary; Beckmann, Christian F.; O'Muircheartaigh, Jonathan; Ball, Gareth; Nongena, Pumza; Makropoulos, Antonios; Ederies, Ashraf; Counsell, Serena J.; Kennea, Nigel; Arichi, Tomoki; Tusor, Nora; Rutherford, Mary A.; Azzopardi, Denis; Gonzalez-Cinca, Nuria; Hajnal, Joseph V.; Edwards, A. David

    2015-01-01

    Connections between the thalamus and cortex develop rapidly before birth, and aberrant cerebral maturation during this period may underlie a number of neurodevelopmental disorders. To define functional thalamocortical connectivity at the normal time of birth, we used functional MRI (fMRI) to measure blood oxygen level-dependent (BOLD) signals in 66 infants, 47 of whom were at high risk of neurocognitive impairment because of birth before 33 wk of gestation and 19 of whom were term infants. We segmented the thalamus based on correlation with functionally defined cortical components using independent component analysis (ICA) and seed-based correlations. After parcellating the cortex using ICA and segmenting the thalamus based on dominant connections with cortical parcellations, we observed a near-facsimile of the adult functional parcellation. Additional analysis revealed that BOLD signal in heteromodal association cortex typically had more widespread and overlapping thalamic representations than primary sensory cortex. Notably, more extreme prematurity was associated with increased functional connectivity between thalamus and lateral primary sensory cortex but reduced connectivity between thalamus and cortex in the prefrontal, insular and anterior cingulate regions. This work suggests that, in early infancy, functional integration through thalamocortical connections depends on significant functional overlap in the topographic organization of the thalamus and that the experience of premature extrauterine life modulates network development, altering the maturation of networks thought to support salience, executive, integrative, and cognitive functions. PMID:25941391

  11. NANOPARTICLE DELIVERED BIOSENSOR FOR REACTIVE OXYGEN SPECIES IN DIABETES

    PubMed Central

    Prow, Tarl W.; Bhutto, Imran; Grebe, Rhonda; Uno, Koichi; Merges, Carol; Mcleod, D. Scott; Lutty, Gerard A.

    2008-01-01

    The cell’s own antioxidant response element (ARE) can be used to evaluate the complications of diabetes mellitus. The hypothesis that a synthetic ARE could be used as a genetic switch, or biosensor, to turn on and off therapeutic genes is tested herein. Mitochondrial oxidative stress (MOS) has been hypothesized as one of the earliest insults in diabetes. Fluorescent probes used to monitor MOS revealed that the addition of glucose at physiological levels to cultures of endothelial cells was able to induce MOS above normal levels and in a dose dependant manner. Additional data showed that increased glucose levels activated the ARE-GFP in a dose dependant manner. These data support the hypothesis that the induction of MOS is more sensitive to hyperglycemia than the induction of the ARE. Delivery of an ARE-GFP construct with nanoparticles to the eye was successful using sub-retinal injection. This ARE-GFP/nanoparticle construct was functional and reported the activation of the ARE in diabetic rat retinal pigment epithelium (RPE). These data support the use of nanoparticle delivered biosensors for monitoring the oxidative status of tissues in vivo. PMID:18252237

  12. Nanoparticle-delivered biosensor for reactive oxygen species in diabetes.

    PubMed

    Prow, Tarl W; Bhutto, Imran; Grebe, Rhonda; Uno, Koichi; Merges, Carol; McLeod, D Scott; Lutty, Gerard A

    2008-02-01

    The cell's own antioxidant response element (ARE) can be used to evaluate the complications of diabetes mellitus. The hypothesis that a synthetic ARE could be used as a genetic switch, or biosensor, to turn on and off therapeutic genes is tested herein. Mitochondrial oxidative stress (MOS) has been hypothesized as one of the earliest insults in diabetes. Fluorescent probes used to monitor MOS revealed that the addition of glucose at physiological levels to cultures of endothelial cells was able to induce MOS above normal levels and in a dose-dependant manner. Additional data showed that increased glucose levels activated the ARE-GFP in a dose-dependant manner. These data support the hypothesis that the induction of MOS is more sensitive to hyperglycemia than the induction of the ARE. Delivery of an ARE-GFP construct with nanoparticles to the eye was successful using sub-retinal injection. This ARE-GFP/nanoparticle construct was functional and reported the activation of the ARE in diabetic rat retinal pigment epithelium (RPE). These data support the use of nanoparticle-delivered biosensors for monitoring the oxidative status of tissues in vivo.

  13. Vestibular nuclei and cerebellum put visual gravitational motion in context.

    PubMed

    Miller, William L; Maffei, Vincenzo; Bosco, Gianfranco; Iosa, Marco; Zago, Myrka; Macaluso, Emiliano; Lacquaniti, Francesco

    2008-04-01

    Animal survival in the forest, and human success on the sports field, often depend on the ability to seize a target on the fly. All bodies fall at the same rate in the gravitational field, but the corresponding retinal motion varies with apparent viewing distance. How then does the brain predict time-to-collision under gravity? A perspective context from natural or pictorial settings might afford accurate predictions of gravity's effects via the recovery of an environmental reference from the scene structure. We report that embedding motion in a pictorial scene facilitates interception of gravitational acceleration over unnatural acceleration, whereas a blank scene eliminates such bias. Functional magnetic resonance imaging (fMRI) revealed blood-oxygen-level-dependent correlates of these visual context effects on gravitational motion processing in the vestibular nuclei and posterior cerebellar vermis. Our results suggest an early stage of integration of high-level visual analysis with gravity-related motion information, which may represent the substrate for perceptual constancy of ubiquitous gravitational motion.

  14. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    PubMed Central

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  15. Studies of protein oxidation as a product quality attribute on a scale-down model for cell culture process development.

    PubMed

    Lee, Nacole D; Kondragunta, Bhargavi; Uplekar, Shaunak; Vallejos, Jose; Moreira, Antonio; Rao, Govind

    2015-01-01

    Of importance to the biological properties of proteins produced in cell culture systems are the complex post-translational modifications that are affected by variations in process conditions. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by such process variations. Dissolved oxygen is a parameter of increasing interest since studies have shown that despite the necessity of oxygen for respiration, there may also be some detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components. Variation, or changes to cell culture products, can affect function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Relative protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. Protein oxidation, oxidative modification to intracellular proteins that involves cleavage of the polypeptide chain, and modifications of the amino acid side chains can be affected by variations in dissolved oxygen levels in cell culture systems. Studies have shown that despite the necessity of oxygen for respiration, there may be detrimental effects of oxygen to the cell. Production and accumulation of reactive oxygen species can cause damage to proteins as a result of oxidation of the cell and cellular components, affecting function, clearance rate, immunogenicity, and specific activity, which translates into clinical implications. The effect of increasing dissolved oxygen on protein oxidation in immunoglobulin G3-producing mouse hybridoma cells was studied using 50 mL high-throughput mini-bioreactors that employ non-invasive optical sensor technology for monitoring and closed feedback control of pH and dissolved oxygen. Protein carbonyl concentration of proteins produced under varying levels of dissolved oxygen was measured by enzyme-linked immunosorbent assay and used as an indicator of oxidative damage. A trend of increasing protein carbonyl content in response to increasing dissolved oxygen levels under controlled conditions was observed. © PDA, Inc. 2015.

  16. Process-Parameter-Dependent Optical and Structural Properties of ZrO2MgO Mixed-Composite Films Evaporated from the solid Solution

    NASA Technical Reports Server (NTRS)

    Sahoo, N. K.; Shapiro, A. P.

    1998-01-01

    The process-parameter-dependent optical and structural properties of ZrO2MgO mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. By use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray (EDX) analysis, the surface morphology, grain size distributions, crystallographic phases, and process-dependent material composition of films have been investigated. EDX analysis made evident the correlation between the oxygen enrichment in the films prepared at a high level of oxygen pressure and the very low refractive index. Since oxygen pressure can be dynamically varied during a deposition process, coatings constructed of suitable mixed-composite thin films can benefit from continuous modulation of the index of refraction. A step modulation approach is used to develop various multilayer-equivalent thin-film devices.

  17. Environmental and functional limits to muscular exercise and body size in marine invertebrate athletes.

    PubMed

    Pörtner, Hans O

    2002-10-01

    Many similarities exist between the key characteristics of muscular metabolism in marine invertebrates and those found in vertebrate striated muscle, even though there are important phosphagens and glycolytic end products that differ between groups. Lifestyles and modes of locomotion also vary extremely among invertebrates thereby shaping the pattern of exercise metabolism. In accordance with the limited availability of integrated ecological and physiological information the present paper reports recent progress in the exercise physiology of cephalopods, which are characterized by high rates of aerobic and anaerobic energy turnover during high velocity hunts or escapes in their pelagic environment, and a sipunculid worm, which mostly uses anaerobic resources during extended marathon-like digging excursions in the hypoxic marine sediment. Particular attention is paid to how lifestyle and oxygen availability in various marine environments shapes the use and rates of aerobic and anaerobic metabolism and acidosis as they depend on activity levels and energy saving strategies. Whereas aerobic scope and, accordingly, use of ambient oxygen by blood oxygen transport and skin respiration is maximized in some squids, aerobic scope is very small in the worm and anaerobic metabolism readily used upon muscular activity. Until recently, it was widely accepted that the glycolytic end product octopine, produced in the musculature of these invertebrates, acted as a weak acid and so did not compromise acid-base balance. However, it has now been demonstrated that octopine does cause acidosis. Concomitant study of tissue energy and acid-base status allows to evaluate the contribution of glycolysis, pH and free ADP accumulation to the use of the phosphagen and to the delayed drop in the Gibb's free energy change of ATP hydrolysis. The analysis reveals species specific capacities of these mechanisms to support exercise beyond the anaerobic threshold. During high intensity anaerobic exercise observed in squid, the levels of ATP free energy change finally fall to critical minimum levels contributing to fatigue. Maintenance of sufficiently high energy levels is found at low but extended rates of anaerobic metabolism as observed in the long term digging sipunculid worm. The greatest aerobic and anaerobic performance levels are seen in squid inhabiting the open ocean and appear to be made possible by the uniform and stable physicochemical parameters (esp. high O(2) and low CO(2) levels) that characterize such an environment. It is suggested that at least some squid operate at their functional and environmental limits. In extremely different environments, both the worm and the squids display a tradeoff between oxygen availability, temperature, performance level and also, body size.

  18. Oxygen isotope fractionation in the vacuum ultraviolet photodissociation of carbon monoxide: Wavelength, pressure and temperature dependency.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Davis, Ryan; Ahmed, Musahid

    Several absorption bands exist in the VUV region of Carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. An experimental investigation of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ~13 to 11 eV) from the Advanced Light Source Synchrotron and direct measurement of the associated oxygen isotopic composition of the products are presented here. A wavelength dependency of the oxygen isotopic composition in the photodissociation product was observed. Slope values (δ'{sup 18}O/ δ'{sup 17}O) ranging from 0.76 to 1.32 were observed in oxygen three-isotope space (δ'{sup 18}O vs. δ'{sup 17}O) which correlated with increasingmore » synchrotron photon energy, and indicate a dependency of the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope separation was observed for photodissociation at the 105 and 107 nm synchrotron bands and are found to be associated with accidental predissociation of the vibrational states ({nu} = 0 and 1) of the upper electronic state E{sup 1}Π. For each synchrotron band, a large (few hundred per mil) extent of isotopic fractionation was observed and the range of fractionation is a combination of column density and exposure time. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.« less

  19. The brain's resting-state activity is shaped by synchronized cross-frequency coupling of neural oscillations

    PubMed Central

    Florin, Esther; Baillet, Sylvain

    2015-01-01

    Functional imaging of the resting brain consistently reveals broad motifs of correlated blood oxygen level dependent (BOLD) activity that engage cerebral regions from distinct functional systems. Yet, the neurophysiological processes underlying these organized, large-scale fluctuations remain to be uncovered. Using magnetoencephalography (MEG) imaging during rest in 12 healthy subjects we analyse the resting state networks and their underlying neurophysiology. We first demonstrate non-invasively that cortical occurrences of high-frequency oscillatory activity are conditioned to the phase of slower spontaneous fluctuations in neural ensembles. We further show that resting-state networks emerge from synchronized phase-amplitude coupling across the brain. Overall, these findings suggest a unified principle of local-to-global neural signaling for long-range brain communication. PMID:25680519

  20. Exploring the social brain in schizophrenia: left prefrontal underactivation during mental state attribution.

    PubMed

    Russell, T A; Rubia, K; Bullmore, E T; Soni, W; Suckling, J; Brammer, M J; Simmons, A; Williams, S C; Sharma, T

    2000-12-01

    Evidence suggests that patients with schizophrenia have a deficit in "theory of mind," i.e., interpretation of the mental state of others. The authors used functional magnetic resonance imaging (MRI) to investigate the hypothesis that patients with schizophrenia have a dysfunction in brain regions responsible for mental state attribution. Mean brain activation in five male patients with schizophrenia was compared to that in seven comparison subjects during performance of a task involving attribution of mental state. During performance of the mental state attribution task, the patients made more errors and showed less blood-oxygen-level-dependent signal in the left inferior frontal gyrus. To the authors' knowledge, this is the first functional MRI study to show a deficit in the left prefrontal cortex in schizophrenia during a socioemotional task.

  1. Skin oxygen tension is improved by immersion in oxygen-enriched water.

    PubMed

    Reading, S A; Yeomans, M; Levesque, C

    2013-12-01

    The perceived health and physiologic functioning of skin depends on adequate oxygen availability. Economical and easily used therapeutic approaches to increase skin oxygenation could improve the subjective appearance of the skin as well as support the management of some cutaneous conditions related to chronic hypoxic ischaemia (e.g. ulcerative wounds). We have tested the hypothesis that the O2 partial pressure of skin (PskO2 ) increases during immersion in water enriched with high levels of dissolved oxygen. A commercially available device was used to produce water containing 45 to 65 mg L(-1) of dissolved O2 . Young adults (YA; n = 7), older adults (OA; n = 13) and older adults with diabetes (OAD; n = 11) completed different experiments that required them to immerse their feet in tap water (<2 mg L(-1) of O2 ; control) or O2 -enriched water (O2 -H2 O; experimental) for 30 min. Transcutaneous oximetry was used to measure PskO2 for 20 min pre- and post-immersion. Pre-immersion mean (standard deviation) PskO2 on the plantar surface of the big toe was 75 (10), 67 (10) and 65 (10) mmHg in YA, OA and OAD, respectively. Post-immersion PskO2 was 244 (25), 193 (28) and 205 (28) mmHg for the same groups. We also show that post-immersion PskO2 varies by location and with advancing age. Water is an effective vehicle for transporting dissolved O2 across the skin surface and could be used as a basis for development of economical therapeutic approaches that improve skin oxygen tension to support skin health and function. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis.

    PubMed

    Niyogi, Krishna K; Truong, Thuy B

    2013-06-01

    All photosynthetic organisms need to regulate light harvesting for photoprotection. Three types of flexible non-photochemical quenching (NPQ) mechanisms have been characterized in oxygenic photosynthetic cyanobacteria, algae, and plants: OCP-, LHCSR-, and PSBS-dependent NPQ. OCP-dependent NPQ likely evolved first, to quench excess excitation in the phycobilisome (PB) antenna of cyanobacteria. During evolution of eukaryotic algae, PBs were lost in the green and secondary red plastid lineages, while three-helix light-harvesting complex (LHC) antenna proteins diversified, including LHCSR proteins that function in dissipating excess energy rather than light harvesting. PSBS, an independently evolved member of the LHC protein superfamily, seems to have appeared exclusively in the green lineage, acquired a function as a pH sensor that turns on NPQ, and eventually replaced LHCSR in vascular plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. N-acetylcysteine negatively regulates Notch3 and its malignant signaling

    PubMed Central

    Zhu, Juan-Juan; Liu, Xue-Xia; You, Hui; Gong, Mei-Ying; Zou, Ming; Cheng, Wen-Hsing; Zhu, Jian-Hong

    2016-01-01

    Notch3 receptor is expressed in a variety of cancers and the excised active intracellular domain (N3ICD) initiates its signaling cascade. N-acetylcysteine (NAC) as an antioxidant has been implicated in cancer prevention and therapy. In this study, we demonstrated a negative regulation of Notch3 by NAC in cancer cells. HeLa cells treated with NAC exhibited a time- and concentration-dependent decrease in Notch3 levels and its downstream effectors Hes1 and HRT1 in a manner independent of f-secretase or glutathione. In contrast, NAC did not affect protein levels of Notch1, the full length Notch3 precursor, or ectopically expressed N3ICD. Although SOD, catalase and NAC suppressed reactive oxygen species in HeLa cells, the first two antioxidants did not impact on Notch3 levels. While the mRNA expression of Notch3 was not altered by NAC, functional inhibition of lysosome, but not proteasome, blocked the NAC-dependent reduction of Notch3 levels. Furthermore, results from Notch3 silencing and N3ICD overexpression demonstrated that NAC prevented malignant phenotypes through down-regulation of Notch3 protein in multiple cancer cells. In summary, NAC reduces Notch3 levels through lysosome-dependent protein degradation, thereby negatively regulates Notch3 malignant signaling in cancer cells. These results implicate a novel NAC treatment in sensitizing Notch3-expressing tumors. PMID:27102435

  4. N-acetylcysteine negatively regulates Notch3 and its malignant signaling.

    PubMed

    Zhang, Xiong; Wang, Ya-Nan; Zhu, Juan-Juan; Liu, Xue-Xia; You, Hui; Gong, Mei-Ying; Zou, Ming; Cheng, Wen-Hsing; Zhu, Jian-Hong

    2016-05-24

    Notch3 receptor is expressed in a variety of cancers and the excised active intracellular domain (N3ICD) initiates its signaling cascade. N-acetylcysteine (NAC) as an antioxidant has been implicated in cancer prevention and therapy. In this study, we demonstrated a negative regulation of Notch3 by NAC in cancer cells. HeLa cells treated with NAC exhibited a time- and concentration-dependent decrease in Notch3 levels and its downstream effectors Hes1 and HRT1 in a manner independent of f-secretase or glutathione. In contrast, NAC did not affect protein levels of Notch1, the full length Notch3 precursor, or ectopically expressed N3ICD. Although SOD, catalase and NAC suppressed reactive oxygen species in HeLa cells, the first two antioxidants did not impact on Notch3 levels. While the mRNA expression of Notch3 was not altered by NAC, functional inhibition of lysosome, but not proteasome, blocked the NAC-dependent reduction of Notch3 levels. Furthermore, results from Notch3 silencing and N3ICD overexpression demonstrated that NAC prevented malignant phenotypes through down-regulation of Notch3 protein in multiple cancer cells. In summary, NAC reduces Notch3 levels through lysosome-dependent protein degradation, thereby negatively regulates Notch3 malignant signaling in cancer cells. These results implicate a novel NAC treatment in sensitizing Notch3-expressing tumors.

  5. Loss of Mitochondrial Function Impairs Lysosomes.

    PubMed

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Climate sensitivity across marine domains of life: limits to evolutionary adaptation shape species interactions.

    PubMed

    Storch, Daniela; Menzel, Lena; Frickenhaus, Stephan; Pörtner, Hans-O

    2014-10-01

    Organisms in all domains, Archaea, Bacteria, and Eukarya will respond to climate change with differential vulnerabilities resulting in shifts in species distribution, coexistence, and interactions. The identification of unifying principles of organism functioning across all domains would facilitate a cause and effect understanding of such changes and their implications for ecosystem shifts. For example, the functional specialization of all organisms in limited temperature ranges leads us to ask for unifying functional reasons. Organisms also specialize in either anoxic or various oxygen ranges, with animals and plants depending on high oxygen levels. Here, we identify thermal ranges, heat limits of growth, and critically low (hypoxic) oxygen concentrations as proxies of tolerance in a meta-analysis of data available for marine organisms, with special reference to domain-specific limits. For an explanation of the patterns and differences observed, we define and quantify a proxy for organismic complexity across species from all domains. Rising complexity causes heat (and hypoxia) tolerances to decrease from Archaea to Bacteria to uni- and then multicellular Eukarya. Within and across domains, taxon-specific tolerance limits likely reflect ultimate evolutionary limits of its species to acclimatization and adaptation. We hypothesize that rising taxon-specific complexities in structure and function constrain organisms to narrower environmental ranges. Low complexity as in Archaea and some Bacteria provide life options in extreme environments. In the warmest oceans, temperature maxima reach and will surpass the permanent limits to the existence of multicellular animals, plants and unicellular phytoplankter. Smaller, less complex unicellular Eukarya, Bacteria, and Archaea will thus benefit and predominate even more in a future, warmer, and hypoxic ocean. © 2014 John Wiley & Sons Ltd.

  7. Redox-Triggered Bonding-Induced Emission of Thiol-Functionalized Gold Nanoclusters for Luminescence Turn-On Detection of Molecular Oxygen.

    PubMed

    Ao, Hang; Feng, Hui; Zhao, Mengting; Zhao, Meizhi; Chen, Jianrong; Qian, Zhaosheng

    2017-11-22

    Most optical sensors for molecular oxygen were developed based on the quenching effect of the luminescence of oxygen-sensitive probes; however, the signal turn-off mode of these probes is undesirable to quantify and visualize molecular oxygen. Herein, we report a novel luminescence turn-on detection strategy for molecular oxygen via the specific oxygen-triggered bonding-induced emission of thiol-functionalized gold nanoclusters. Thiol-functionalized gold nanoclusters were prepared by a facile one-step synthesis, and as-prepared gold nanoclusters possess significant aggregation-induced emission (AIE) property. It is the first time to discover the oxygen-triggered bonding-induced emission (BIE) behavior of gold nanoclusters, which results in disulfide-linked covalent bonding assemblies with intensely red luminescence. This specific redox-triggered BIE is capable of quantitatively detecting dissolved oxygen in aqueous solution in a light-up manner, and trace amount of dissolved oxygen at ppb level is achieved based on this detection method. A facile and convenient test strip for oxygen detection was also developed to monitor molecular oxygen in a gas matrix. Covalent bonding-induced emission is proven to be a more efficient way to attain high brightness of AIEgens than a physical aggregation-induced emission process, and provides a more convenient and desirable detection method for molecular oxygen than the previous sensors.

  8. Retinal oxygen extraction in humans

    NASA Astrophysics Data System (ADS)

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-10-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy.

  9. Retinal oxygen extraction in humans

    PubMed Central

    Werkmeister, René M.; Schmidl, Doreen; Aschinger, Gerold; Doblhoff-Dier, Veronika; Palkovits, Stefan; Wirth, Magdalena; Garhöfer, Gerhard; Linsenmeier, Robert A.; Leitgeb, Rainer A.; Schmetterer, Leopold

    2015-01-01

    Adequate function of the retina is dependent on proper oxygen supply. In humans, the inner retina is oxygenated via the retinal circulation. We present a method to calculate total retinal oxygen extraction based on measurement of total retinal blood flow using dual-beam bidirectional Doppler optical coherence tomography and measurement of oxygen saturation by spectrophotometry. These measurements were done on 8 healthy subjects while breathing ambient room air and 100% oxygen. Total retinal blood flow was 44.3 ± 9.0 μl/min during baseline and decreased to 18.7 ± 4.2 μl/min during 100% oxygen breathing (P < 0.001) resulting in a pronounced decrease in retinal oxygen extraction from 2.33 ± 0.51 μl(O2)/min to 0.88 ± 0.14 μl(O2)/min during breathing of 100% oxygen. The method presented in this paper may have significant potential to study oxygen metabolism in hypoxic retinal diseases such as diabetic retinopathy. PMID:26503332

  10. Strain control of oxygen vacancies in epitaxial strontium cobaltite films

    DOE PAGES

    Jeen, Hyoung Jeen; Choi, Woo Seok; Reboredo, Fernando A.; ...

    2016-01-25

    In this study, the ability to manipulate oxygen anion defects rather than metal cations in complex oxides can facilitate creating new functionalities critical for emerging energy and device technologies. However, the difficulty in activating oxygen at reduced temperatures hinders the deliberate control of important defects, oxygen vacancies. Here, strontium cobaltite (SrCoO x) is used to demonstrate that epitaxial strain is a powerful tool for manipulating the oxygen vacancy concentration even under highly oxidizing environments and at annealing temperatures as low as 300 °C. By applying a small biaxial tensile strain (2%), the oxygen activation energy barrier decreases by ≈30%, resultingmore » in a tunable oxygen deficient steady-state under conditions that would normally fully oxidize unstrained cobaltite. These strain-induced changes in oxygen stoichiometry drive the cobaltite from a ferromagnetic metal towards an antiferromagnetic insulator. The ability to decouple the oxygen vacancy concentration from its typical dependence on the operational environment is useful for effectively designing oxides materials with a specific oxygen stoichiometry.« less

  11. Oxygen partial pressure dependence of thermoelectric power factor in polycrystalline n-type SrTiO3: Consequences for long term stability in thermoelectric oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Peter A.; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.

    2017-04-01

    The Seebeck coefficient and electrical conductivity have been measured as functions of oxygen partial pressure over the range of 10-22 to 10-1 atm at 1173 K for a 10% niobium-doped SrTiO3 ceramic with a grain size comparable to the oxygen diffusion length. Temperature-dependent measurements performed from 320 to 1275 K for as-prepared samples reveal metallic-like conduction and good thermoelectric properties. However, upon exposure to progressively increasing oxygen partial pressure, the thermoelectric power factor decreased over time scales of 24 h, culminating in a three order of magnitude reduction over the entire operating range. Identical measurements on single crystal samples show negligible changes in the power factor so that the instability of ceramic samples is primarily tied to the kinetics of grain boundary diffusion. This work provides a framework for understanding the stability of thermoelectric properties in oxides under different atmospheric conditions. The control of the oxygen atmosphere remains a significant challenge in oxide thermoelectrics.

  12. Thickness Dependency of Thin Film Samaria Doped Ceria for Oxygen Sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanghavi, Rahul P.; Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T

    High temperature oxygen sensors are widely used for exhaust gas monitoring in automobiles. This particular study explores the use of thin film single crystalline samaria doped ceria as the oxygen sensing material. Desired signal to noise ratio can be achieved in a material system with high conductivity. From previous studies it is established that 6 atomic percent samarium doping is the optimum concentration for thin film samaria doped ceria to achieve high ionic conductivity. In this study, the conductivity of the 6 atomic percent samaria doped ceria thin film is measured as a function of the sensing film thickness. Hysteresismore » and dynamic response of this sensing platform is tested for a range of oxygen pressures from 0.001 Torr to 100 Torr for temperatures above 673 K. An attempt has been made to understand the physics behind the thickness dependent conductivity behavior of this sensing platform by developing a hypothetical operating model and through COMSOL simulations. This study can be used to identify the parameters required to construct a fast, reliable and compact high temperature oxygen sensor.« less

  13. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling

    PubMed Central

    Morrell, Glen; Rusinek, Henry; Warner, Lizette; Vivier, Pierre-Hugues; Cheung, Alfred K.; Lerman, Lilach O.; Lee, Vivian S.

    2014-01-01

    Blood oxygen level-dependent (BOLD) MRI data of kidney, while indicative of tissue oxygenation level (Po2), is in fact influenced by multiple confounding factors, such as R2, perfusion, oxygen permeability, and hematocrit. We aim to explore the feasibility of extracting tissue Po2 from renal BOLD data. A method of two steps was proposed: first, a Monte Carlo simulation to estimate blood oxygen saturation (SHb) from BOLD signals, and second, an oxygen transit model to convert SHb to tissue Po2. The proposed method was calibrated and validated with 20 pigs (12 before and after furosemide injection) in which BOLD-derived tissue Po2 was compared with microprobe-measured values. The method was then applied to nine healthy human subjects (age: 25.7 ± 3.0 yr) in whom BOLD was performed before and after furosemide. For the 12 pigs before furosemide injection, the proposed model estimated renal tissue Po2 with errors of 2.3 ± 5.2 mmHg (5.8 ± 13.4%) in cortex and −0.1 ± 4.5 mmHg (1.7 ± 18.1%) in medulla, compared with microprobe measurements. After injection of furosemide, the estimation errors were 6.9 ± 3.9 mmHg (14.2 ± 8.4%) for cortex and 2.6 ± 4.0 mmHg (7.7 ± 11.5%) for medulla. In the human subjects, BOLD-derived medullary Po2 increased from 16.0 ± 4.9 mmHg (SHb: 31 ± 11%) at baseline to 26.2 ± 3.1 mmHg (SHb: 53 ± 6%) at 5 min after furosemide injection, while cortical Po2 did not change significantly at ∼58 mmHg (SHb: 92 ± 1%). Our proposed method, validated with a porcine model, appears promising for estimating tissue Po2 from renal BOLD MRI data in human subjects. PMID:24452640

  14. Electric transport coefficients in highly epitaxial LaBaCo{sub 2}O{sub 5 + δ} films with “p-to-n” transition induced by oxygen deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaibo, J.; Zhang, Q. Y., E-mail: qyzhang@dlut.edu.cn; Hu, H. C.

    2016-08-14

    Electric transport coefficients such as carrier type, density, and mobility are the important physical parameters in designing functional devices. In this work, we report the study on the electric transport coefficients of the highly epitaxial LaBaCo{sub 2}O{sub 5 + δ} (LBCO) films, which were discussed as a function of electric conductivity for the first time and compared with the results calculated by the theory for mixed conduction. The mobility in the LBCO films was determined to be ∼0.85 and ∼40 cm{sup 2}/V s for holes and electrons, respectively, and the density of p-type carriers strongly depends on the oxygen deficiency. Solid evidence ismore » presented to demonstrate that the oxygen deficiency cannot make LBCO materials changed from p- to n-type. The n-type conduction observed in experiment is a counterfeit phenomenon caused by the deficiency in Hall measurement, rather than a realistic transition induced by oxygen deficiency. In addition, the temperature-dependent conductivity was discussed using the differential coefficients, which might be useful in the study of the samples with magnetic transition.« less

  15. Inversion of chalcogen defect levels in silicon - An MNDO study. [modified neglect of diatomic overlap

    NASA Technical Reports Server (NTRS)

    Singh, R. K.; Sahu, S. N.; Singh, V. A.; Corbett, J. W.

    1985-01-01

    MNDO (modified neglect of diatomic overlap) calculations have been carried out for substitutional oxygen and sulfur impurities in silicon. The calculations of the gap levels reveal a reversal of trend with atomic ionization energies in agreement with self-consistent Green function results, and analysis of the MNDO charge distribution supports the view that the electronegativity difference between oxygen and sulfur gives rise to this shallower energy level.

  16. Oxidative stress and myocardial injury in the diabetic heart

    PubMed Central

    Ansley, David M.; Wang, Baohua

    2013-01-01

    Reactive oxygen or nitrogen species play an integral role in both myocardial injury and repair. This dichotomy is differentiated at the level of species type, amount, duration of free radical generated. Homeostatic mechanisms designed to prevent free radical generation in the first instance, scavenge, or enzymatically convert them to less toxic forms and water, play crucial roles in maintenance of cellular structure and function. The outcome between functional recovery and dysfunction is dependent upon the inherent ability of these homeostatic antioxidant defenses to withstand acute free radical generation, in the order of seconds to minutes. Alternatively, pre-existent antioxidant capacity (from intracellular and extracellular sources) may regulate the degree of free radical generation. This converts reactive oxygen and nitrogen species to the role of second messenger involved in cell signalling. The adaptive capacity of the cell is altered by the balance between death or survival signal converging at the level of the mitochondria, with distinct pathophysiologic consequences that extends the period of injury from hours to days and weeks. Hyperglycemia, hyperlipidemia, and insulin resistance enhance oxidative stress in diabetic myocardium that cannot adapt to ischemia reperfusion. Altered glucose flux, mitochondrial derangements and nitric oxide synthase uncoupling in the presence of decreased antioxidant defense and impaired prosurvival cell signalling may render the diabetic myocardium more vulnerable to injury, remodelling and heart failure. PMID:23011912

  17. Rescue of dopamine transporter function in hypoinsulinemic rats by a D2 receptor-ERK-dependent mechanism.

    PubMed

    Owens, W Anthony; Williams, Jason M; Saunders, Christine; Avison, Malcolm J; Galli, Aurelio; Daws, Lynette C

    2012-02-22

    The dopamine (DA) transporter (DAT) is a major target for abused drugs and a key regulator of extracellular DA. A rapidly growing literature implicates insulin as an important regulator of DAT function. We showed previously that amphetamine (AMPH)-evoked DA release is markedly impaired in rats depleted of insulin with the diabetogenic agent streptozotocin (STZ). Similarly, functional magnetic resonance imaging experiments revealed that the blood oxygenation level-dependent signal following acute AMPH administration in STZ-treated rats is reduced. Here, we report that these deficits are restored by repeated, systemic administration of AMPH (1.78 mg/kg, every other day for 8 d). AMPH stimulates DA D(2) receptors indirectly by increasing extracellular DA. Supporting a role for D(2) receptors in mediating this "rescue," the effect was completely blocked by pre-treatment of STZ-treated rats with the D(2) receptor antagonist raclopride before systemic AMPH. D(2) receptors regulate DAT cell surface expression through ERK1/2 signaling. In ex vivo striatal preparations, repeated AMPH injections increased immunoreactivity of phosphorylated ERK1/2 (p-ERK1/2) in STZ-treated but not control rats. These data suggest that repeated exposure to AMPH can rescue, by activating D(2) receptors and p-ERK signaling, deficits in DAT function that result from hypoinsulinemia. Our data confirm the idea that disorders influencing insulin levels and/or signaling, such as diabetes and anorexia, can degrade DAT function and that insulin-independent pathways are present that may be exploited as potential therapeutic targets to restore normal DAT function.

  18. [Biochemical characteristics of compensation of posthemorrhagic anemia in patients presenting with nasal bleeding].

    PubMed

    Boĭko, N V; Kolmakova, T S; Bykova, V V

    2010-01-01

    This work was designed to study the development of compensatory processes during posthemorrhagic anemia in 82 patients presenting with nasal bleeding (NB). The patients were allocated to three groups. Group 1 included patients with isolated episodes of NB, group 2 was comprised of patients in a moderately severe condition with recurring NB, group 3 was composed of patients in a severe condition with recurring NB. The general medical examination was supplemented by the evaluation of factors maintaining the oxygen-transporting function of the blood (hemoglobin affinity for oxygen, erythrocyte content of 2.3-diphosphoglyceric (2.3-DPG) acid as the principal modulator of hemoglobin affinity for oxygen) and indicators of energy (carbohydrate) metabolism in plasma and erythrocytes (glucose-6-phosphate dehydrogenase (G-6-PDH) activity, pyruvic acid (PA), lactate and lactate dehydrogenase (LDH) levels). Changes of biochemical parameters in patients presenting with incidental episodes of NB (group 1) suggested a compensatory increase in functional potential of the blood oxygen-transporting system. Patients of group 2 showed evidence of development of the modulation-type adaptive and compensatory mechanisms. Those of group 3 experienced a decrease of the 2.3-DPH level in erythrocytes and enhancement of hemoglobin affinity for oxygen which slowed down its uptake by the tissues. Tissue hypoxia and accompanying acidosis aggravated the impairment of gas-transporting function of the blood. In is concluded that patients of group 3 are at risk of uncompensated hypoxic hypoxia associated with the unfavourable changes in the oxygen-transporting function and the impairment of the functional potential of erythrocytes. Taken together, these untoward factors may be responsible for the severe clinical conditions of these patients.

  19. State-space estimation of the input stimulus function using the Kalman filter: a communication system model for fMRI experiments.

    PubMed

    Ward, B Douglas; Mazaheri, Yousef

    2006-12-15

    The blood oxygenation level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments in response to input stimuli is temporally delayed and distorted due to the blurring effect of the voxel hemodynamic impulse response function (IRF). Knowledge of the IRF, obtained during the same experiment, or as the result of a separate experiment, can be used to dynamically obtain an estimate of the input stimulus function. Reconstruction of the input stimulus function allows the fMRI experiment to be evaluated as a communication system. The input stimulus function may be considered as a "message" which is being transmitted over a noisy "channel", where the "channel" is characterized by the voxel IRF. Following reconstruction of the input stimulus function, the received message is compared with the transmitted message on a voxel-by-voxel basis to determine the transmission error rate. Reconstruction of the input stimulus function provides insight into actual brain activity during task activation with less temporal blurring, and may be considered as a first step toward estimation of the true neuronal input function.

  20. Molecular dynamics of liquid SiO2 under high pressure

    NASA Technical Reports Server (NTRS)

    Rustad, James R.; Yuen, David A.; Spera, Frank J.

    1990-01-01

    The molecular dynamics of pure SiO2 liquids was investigated up to pressures of 20 GPa at 4000 K using 252, 498, 864, and 1371 particles. The results obtained suggest that the pressure-induced maxima in the self-diffusion coefficients of both oxygen and silicon are dependent on the system size. In the case of larger systems, the maximum decreases and shifts to lower pressures. Changes in the velocity autocorrelation function with increasing pressure are described. The populations of anomalously coordinated silicon and oxygen are then discussed as a function of pressure and system size.

  1. GUN4-Protoporphyrin IX Is a Singlet Oxygen Generator with Consequences for Plastid Retrograde Signaling*

    PubMed Central

    Tarahi Tabrizi, Shabnam; Sawicki, Artur; Zhou, Shuaixiang; Luo, Meizhong; Willows, Robert D.

    2016-01-01

    The genomes uncoupled 4 (GUN4) protein is a nuclear-encoded, chloroplast-localized, porphyrin-binding protein implicated in retrograde signaling between the chloroplast and nucleus, although its exact role in this process is still unclear. Functionally, it enhances Mg-chelatase activity in the chlorophyll biosynthesis pathway. Because GUN4 is present only in organisms that carry out oxygenic photosynthesis and because it binds protoporphyrin IX (PPIX) and Mg-PPIX, it has been suggested that it prevents production of light- and PPIX- or Mg-PPIX-dependent reactive oxygen species. A chld-1/GUN4 mutant with elevated PPIX has a light-dependent up-regulation of GUN4, implicating this protein in light-dependent sensing of PPIX, with the suggestion that GUN4 reduces PPIX-generated singlet oxygen, O2(a1Δg), and subsequent oxidative damage (Brzezowski, P., Schlicke, H., Richter, A., Dent, R. M., Niyogi, K. K., and Grimm, B. (2014) Plant J. 79, 285–298). In direct contrast, our results show that purified GUN4 and oxidatively damaged ChlH increase the rate of PPIX-generated singlet oxygen production in the light, by a factor of 5 and 10, respectively, when compared with PPIX alone. Additionally, the functional GUN4-PPIX-ChlH complex and ChlH-PPIX complexes generate O2(a1Δg) at a reduced rate when compared with GUN4-PPIX. As O2(a1Δg) is a potential plastid-to-nucleus signal, possibly through second messengers, light-dependent O2(a1Δg) generation by GUN4-PPIX is proposed to be part of a signal transduction pathway from the chloroplast to the nucleus. GUN4 thus senses the availability and flux of PPIX through the chlorophyll biosynthetic pathway and also modulates Mg-chelatase activity. The light-dependent O2(a1Δg) generation from GUN4-PPIX is thus proposed as the first step in retrograde signaling from the chloroplast to the nucleus. PMID:26969164

  2. Opposite Roles for p38MAPK-Driven Responses and Reactive Oxygen Species in the Persistence and Resolution of Radiation-Induced Genomic Instability

    PubMed Central

    Werner, Erica; Wang, Huichen; Doetsch, Paul W.

    2014-01-01

    We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization. PMID:25271419

  3. Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007.

    PubMed

    Willetts, Andrew; Masters, Pamela; Steadman, Carol

    2018-05-07

    For the first time, the differential rates of synthesis of all the key monooxygenases involved in the catabolism by Pseudomonas putida NCIMB 10007 of bicyclic ( rac )-camphor to ∆ 2,5 -3,4,4-trimethylpimelyl-CoA, the first aliphatic pathway intermediate, have been determined to help establish the relevant induction profile of each of the oxygen-dependent enzymes. The efficacy of both relevant substrates and pathway metabolites as inducers has been established. Further, inhibitors with characterised functionality have been used to indicate that the pertinent regulatory controls operate at the level of transcription of the corresponding genes.

  4. Mapping Resting-State Brain Networks in Conscious Animals

    PubMed Central

    Zhang, Nanyin; Rane, Pallavi; Huang, Wei; Liang, Zhifeng; Kennedy, David; Frazier, Jean A.; King, Jean

    2010-01-01

    In the present study we mapped brain functional connectivity in the conscious rat at the “resting state” based on intrinsic blood-oxygenation-level dependent (BOLD) fluctuations. The conscious condition eliminated potential confounding effects of anesthetic agents on the connectivity between brain regions. Indeed, using correlational analysis we identified multiple cortical and subcortical regions that demonstrated temporally synchronous variation with anatomically well-defined regions that are crucial to cognitive and emotional information processing including the prefrontal cortex (PFC), thalamus and retrosplenial cortex. The functional connectivity maps created were stringently validated by controlling for false positive detection of correlation, the physiologic basis of the signal source, as well as quantitatively evaluating the reproducibility of maps. Taken together, the present study has demonstrated the feasibility of assessing functional connectivity in conscious animals using fMRI and thus provided a convenient and non-invasive tool to systematically investigate the connectional architecture of selected brain networks in multiple animal models. PMID:20382183

  5. Onsite-effects of dual-hemisphere versus conventional single-hemisphere transcranial direct current stimulation: A functional MRI study.

    PubMed

    Kwon, Yong Hyun; Jang, Sung Ho

    2012-08-25

    We performed functional MRI examinations in six right-handed healthy subjects. During functional MRI scanning, transcranial direct current stimulation was delivered with the anode over the right primary sensorimotor cortex and the cathode over the left primary sensorimotor cortex using dual-hemispheric transcranial direct current stimulation. This was compared to a cathode over the left supraorbital area using conventional single-hemispheric transcranial direct current stimulation. Voxel counts and blood oxygenation level-dependent signal intensities in the right primary sensorimotor cortex regions were estimated and compared between the two transcranial direct current stimulation conditions. Our results showed that dual-hemispheric transcranial direct current stimulation induced greater cortical activities than single-hemispheric transcranial direct current stimulation. These findings suggest that dual-hemispheric transcranial direct current stimulation may provide more effective cortical stimulation than single-hemispheric transcranial direct current stimulation.

  6. Multiple Oxygen Tension Environments Reveal Diverse Patterns of Transcriptional Regulation in Primary Astrocytes

    PubMed Central

    Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart

    2011-01-01

    The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745

  7. [Effect of Electroacupuncture Stimulation of Acupoints at the Distal Limbs on Heart Function of Volunteers with Acute Hypoxia].

    PubMed

    Dong, Ya-qin; Xiu, Chun-ying; Sa, Zhe-yan; Xu, Jin-sen

    2015-10-01

    To observe the effect of electroacupuncture (EA) stimulation of different acupoints at the distal ends of the limbs on cardiac function in volunteers with acute hypoxia, so as to determine if its actions are realized by way of segmental innervations or meridians. Twenty healthy volunteers were divided into control, Quze (PC 3), Shousanli (LI 10), Guangming (GB 37) and Zusanli (ST 36) groups (both PC 3 and LI 10 are innervated by spinal C3-C6, and both ST 36 and GB 37 innervated by L5-S1). Acute hyoxia (simulating the conditions of about 5,000 m height above the sea level) was induced by asking the volunteers to inhale low-oxygen gas mixture (10.8% O2 + 89.2% N2) for 30 min, when, the participants' cardiac output (CO), heart rate (HR), left cardiac work (LOW), left ventricular ejection time (LVET)were measured using a ICG Monitor and EA stimulation (10 Hz/20 Hz, 1-2 V) was also conducted for 20 min following inhaling low-oxygen for 10 min. Before low-oxygen inhale, the levels of CO, HR, LCW and LVET ratios (test value/basic value) of the control, PC 3, LI 10, ST 36 and GB 37 groups were comparable (P > 0.05). After inhaling low-oxygen gas mixture for 10 min, the levels of CO, HR, and LCW ratios were significantly increased, and the LVET ratios were notably decreased in the five groups (P < 0.05). Compared with the 10 min-low-oxygen inhale of the same one group, CO and HR ratios at both EA 10 min and 20 min in the PC 3 and ST 36 groups, LCW ratios at EA 10 min in both PC 3 and ST 36 groups were notably down-regulated (P < 0.05), while the LVET ratios of both PC 3 and ST 36 groups was significantly prolonged (P < 0.05). No significant changes of CO, HR, LCW and LVET ratios were found in the LI 10 and GB 37 groups after EA for 10 min and 20 min (P > 0.05). EA stimulation of Quze (PC 3) and Zusanli (ST 36), but not Shousanli (LI 10) and Guangming (GB 37) can lower CO, HR and LCW levels and increase LVET in volunteer subjects undergoing acute hypoxia, suggesting that the therapeutic effect of EA maybe not rely on the segmental innervations, but rather, depend on the meridians to which the acupoints belong.

  8. Borrelia oxidative stress response regulator, BosR: A distinctive Zn-dependent transcriptional activator

    PubMed Central

    Boylan, Julie A.; Posey, James E.; Gherardini, Frank C.

    2003-01-01

    The ability of a pathogen to cause infection depends on successful colonization of the host, which, in turn, requires adaptation to various challenges presented by that host. For example, host immune cells use a variety of mechanisms to control infection by bacterial pathogens, including the production of bactericidal reactive oxygen species. Prokaryotic and eukaryotic cells have developed ways of protecting themselves against this oxidative damage; for instance, Borrelia burgdorferi alters the expression of oxidative-stress-related proteins, such as a Dps/Dpr homolog NapA (BB0690), in response to increasing levels of oxygen and reactive oxygen species. These stress-related genes appear to be regulated by a putative metal-dependent DNA-binding protein (BB0647) that has 50.7% similarity to the peroxide-specific stress response repressor of Bacillus subtilis, PerR. We overexpressed and purified this protein from Escherichia coli and designated it Borrelia oxidative stress regulator, BosR. BosR bound to a 50-nt region 180 bp upstream of the napA transcriptional start site and required DTT and Zn2+ for optimal binding. Unlike the Bacillus subtilis PerR repressor, BosR did not require Fe2+ and Mn2+ for binding, and oxidizing agents, such as t-butyl peroxide, enhanced, not eliminated, BosR binding to the napA promoter region. Surprisingly, transcriptional fusion analysis indicated that BosR exerted a positive regulatory effect on napA that is inducible with t-butyl peroxide. On the basis of these data, we propose that, despite the similarity to PerR, BosR functions primarily as a transcriptional activator, not a repressor of oxidative stress response, in B. burgdorferi. PMID:12975527

  9. Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Santara, Batakrushna; Giri, P. K.; Imakita, Kenji; Fujii, Minoru

    2014-05-01

    We have investigated the microscopic origin of lattice expansion and contraction in undoped rutile TiO2 nanostructures by employing several structural and optical spectroscopic tools. Rutile TiO2 nanostructures with morphologies such as nanorods, nanopillars and nanoflowers, depending upon the growth conditions, are synthesized by an acid-hydrothermal process. Depending on the growth conditions and post-growth annealing, lattice contraction and expansion are observed in the nanostructures and it is found to correlate with the nature and density of intrinsic defects in rutile TiO2. The change in lattice volume correlates well with the optical bandgap energy. Irrespective of growth conditions, theTiO2 nanostructures exhibit strong near infrared (NIR) photoluminescence (PL) at 1.43 eV and a weak visible PL, which are attributed to the Ti interstitials and O vacancies, respectively, in rutile TiO2 nanostructures. Further, ESR study reveals the presence of singly ionized oxygen vacancy defects. It is observed that lattice distortion depends systematically on the relative concentration and type of defects such as oxygen vacancies and Ti interstitials. XPS analyses revealed a downshift in energy for both Ti 2p and O 1s core level spectra for various growth conditions, which is believed to arise from the lattice distortions. It is proposed that the Ti4+ interstitial and F+ oxygen vacancy defects are primarily responsible for lattice expansion, whereas the electrostatic attraction between Ti4+ interstitial and O2- interstitial defects causes the lattice contraction in the undoped TiO2 nanostructures. The control of lattice parameters through the intrinsic defects may provide new routes to achieving novel functionalities in advanced materials that can be tailored for future technological applications.

  10. p53-competent cells and p53-deficient cells display different susceptibility to oxygen functionalized graphene cytotoxicity and genotoxicity.

    PubMed

    Petibone, Dayton M; Mustafa, Thikra; Bourdo, Shawn E; Lafont, Andersen; Ding, Wei; Karmakar, Alokita; Nima, Zeid A; Watanabe, Fumiya; Casciano, Daniel; Morris, Suzanne M; Dobrovolsky, Vasily N; Biris, Alexandru S

    2017-11-01

    Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G 0 /G 1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

  11. Streamflow and nutrient dependence of temperature effects on dissolved oxygen in low-order forest streams

    Treesearch

    April Mason; Y. Jun Xu; Philip Saksa; Adrienne Viosca; Johnny M. Grace; John Beebe; Richard Stich

    2007-01-01

    Low dissolved oxygen (DO) concentrations in streams can be linked to both natural conditions and human activities. In Louisiana, natural stream conditions such as low flow, high temperature and high organic content, often result in DO levels already below current water quality criteria, making it difficult to develop standards for Best Management Practices (BMPs)....

  12. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential.

    PubMed

    Larsen, Nadja; Moslehi-Jenabian, Saloomeh; Werner, Birgit Brøsted; Jensen, Maiken Lund; Garrigues, Christel; Vogensen, Finn Kvist; Jespersen, Lene

    2016-06-02

    Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Dissociative adsorption of O2 on unreconstructed metal (100) surfaces: Pathways, energetics, and sticking kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Da-Jiang; Evans, James W.

    An accurate description of oxygen dissociation pathways and kinetics for various local adlayer environments is key for an understanding not just of the coverage dependence of oxygen sticking, but also of reactive steady states in oxidation reactions. Density functional theory analysis for M(100) surfaces with M=Pd, Rh, and Ni, where O prefers the fourfold hollow adsorption site, does not support the traditional Brundle-Behm-Barker picture of dissociative adsorption onto second-nearest-neighbor hollow sites with an additional blocking constraint. Rather adsorption via neighboring vicinal bridge sites dominates, although other pathways can be active. The same conclusion also applies for M=Pt and Ir, wheremore » oxygen prefers the bridge adsorption site. Statistical mechanical analysis is performed based on kinetic Monte Carlo simulation of a multisite lattice-gas model consistent with our revised picture of adsorption. This analysis determines the coverage and temperature dependence of sticking for a realistic treatment of the oxygen adlayer structure.« less

  14. Inducing a visceral organ to protect a peripheral capillary bed: stabilizing hepatic HIF-1α prevents oxygen-induced retinopathy.

    PubMed

    Hoppe, George; Lee, Tamara J; Yoon, Suzy; Yu, Minzhong; Peachey, Neal S; Rayborn, Mary; Zutel, M Julieta; Trichonas, George; Au, John; Sears, Jonathan E

    2014-06-01

    Activation of hypoxia-inducible factor (HIF) can prevent oxygen-induced retinopathy in rodents. Here we demonstrate that dimethyloxaloylglycine (DMOG)-induced retinovascular protection is dependent on hepatic HIF-1 because mice deficient in liver-specific HIF-1α experience hyperoxia-induced damage even with DMOG treatment, whereas DMOG-treated wild-type mice have 50% less avascular retina (P < 0.0001). Hepatic HIF stabilization protects retinal function because DMOG normalizes the b-wave on electroretinography in wild-type mice. The localization of DMOG action to the liver is further supported by evidence that i) mRNA and protein erythropoietin levels within liver and serum increased in DMOG-treated wild-type animals but are reduced by 60% in liver-specific HIF-1α knockout mice treated with DMOG, ii) triple-positive (Sca1/cKit/VEGFR2), bone-marrow-derived endothelial precursor cells increased twofold in DMOG-treated wild-type mice (P < 0.001) but are unchanged in hepatic HIF-1α knockout mice in response to DMOG, and iii) hepatic luminescence in the luciferase oxygen-dependent degradation domain mouse was induced by subcutaneous and intraperitoneal DMOG. These findings uncover a novel endocrine mechanism for retinovascular protection. Activating HIF in visceral organs such as the liver may be a simple strategy to protect capillary beds in the retina and in other peripheral tissues. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. Ethylene negatively regulates transcript abundance of ROP-GAP rheostat-encoding genes and affects apoplastic reactive oxygen species homeostasis in epicarps of cold stored apple fruits

    PubMed Central

    Zermiani, Monica; Zonin, Elisabetta; Nonis, Alberto; Begheldo, Maura; Ceccato, Luca; Vezzaro, Alice; Baldan, Barbara; Trentin, Annarita; Masi, Antonio; Pegoraro, Marco; Fadanelli, Livio; Teale, William; Palme, Klaus; Quintieri, Luigi; Ruperti, Benedetto

    2015-01-01

    Apple (Malus×domestica Borkh) fruits are stored for long periods of time at low temperatures (1 °C) leading to the occurrence of physiological disorders. ‘Superficial scald’ of Granny Smith apples, an economically important ethylene-dependent disorder, was used as a model to study relationships among ethylene action, the regulation of the ROP-GAP rheostat, and maintenance of H2O2 homeostasis in fruits during prolonged cold exposure. The ROP-GAP rheostat is a key module for adaptation to low oxygen in Arabidopsis through Respiratory Burst NADPH Oxidase Homologs (RBOH)-mediated and ROP GTPase-dependent regulation of reactive oxygen species (ROS) homeostasis. Here, it was shown that the transcriptional expression of several components of the apple ROP-GAP machinery, including genes encoding RBOHs, ROPs, and their ancillary proteins ROP-GEFs and ROP-GAPs, is coordinately and negatively regulated by ethylene in conjunction with the progressive impairment of apoplastic H2O2 homeostatic levels. RNA sequencing analyses showed that several components of the known ROP- and ROS-associated transcriptional networks are regulated along with the ROP-GAP rheostat in response to ethylene perception. These findings may extend the role of the ROP-GAP rheostat beyond hypoxic responses and suggest that it may be a functional regulatory node involved in the integration of ethylene and ROS signalling pathways in abiotic stress. PMID:26428066

  16. Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey.

    PubMed

    Tanji, Kazuyo; Leopold, David A; Ye, Frank Q; Zhu, Charles; Malloy, Megan; Saunders, Richard C; Mishkin, Mortimer

    2010-01-01

    The monkey's auditory cortex includes a core region on the supratemporal plane (STP) made up of the tonotopically organized areas A1, R, and RT, together with a surrounding belt and a lateral parabelt region. The functional studies that yielded the tonotopic maps and corroborated the anatomical division into core, belt, and parabelt typically used low-amplitude pure tones that were often restricted to threshold-level intensities. Here we used functional magnetic resonance imaging in awake rhesus monkeys to determine whether, and if so how, the tonotopic maps and the pattern of activation in core, belt, and parabelt are affected by systematic changes in sound intensity. Blood oxygenation level-dependent (BOLD) responses to groups of low- and high-frequency pure tones 3-4 octaves apart were measured at multiple sound intensity levels. The results revealed tonotopic maps in the auditory core that reversed at the putative areal boundaries between A1 and R and between R and RT. Although these reversals of the tonotopic representations were present at all intensity levels, the lateral spread of activation depended on sound amplitude, with increasing recruitment of the adjacent belt areas as the intensities increased. Tonotopic organization along the STP was also evident in frequency-specific deactivation (i.e. "negative BOLD"), an effect that was intensity-specific as well. Regions of positive and negative BOLD were spatially interleaved, possibly reflecting lateral inhibition of high-frequency areas during activation of adjacent low-frequency areas, and vice versa. These results, which demonstrate the strong influence of tonal amplitude on activation levels, identify sound intensity as an important adjunct parameter for mapping the functional architecture of auditory cortex.

  17. Scaling oxygen microprofiles at the sediment interface of deep stratified waters

    NASA Astrophysics Data System (ADS)

    Schwefel, Robert; Hondzo, Miki; Wüest, Alfred; Bouffard, Damien

    2017-02-01

    Dissolved oxygen microprofiles at the sediment-water interface of Lake Geneva were measured concurrently with velocities 0.25 to 2 m above the sediment. The measurements and scaling analyses indicate dissolved oxygen fluctuations and turbulent fluxes in exceedance of molecular diffusion in the proximity of the sediment-water interface. The measurements allowed the parameterization of the turbulent diffusion as a function of the dimensionless height above the sediment and the turbulence above the sediment-water interface. Turbulent diffusion depended strongly on the friction velocity and differed from formulations reported in the literature that are based on concepts of turbulent and developed wall-bounded flows. The dissolved oxygen microprofiles and proposed parameterization of turbulent diffusion enable a foundation for the similarity scaling of oxygen microprofiles in proximity to the sediment. The proposed scaling allows the estimation of diffusive boundary layer thickness, oxygen flux, and oxygen microprofile distribution in the near-sediment boundary layer.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    T Yeh; C Lee; L Amzel

    Fission yeast protein Sre1, the homolog of the mammalian sterol regulatory element-binding protein (SREBP), is a hypoxic transcription factor required for sterol homeostasis and low-oxygen growth. Nro1 regulates the stability of the N-terminal transcription factor domain of Sre1 (Sre1N) by inhibiting the action of the prolyl 4-hydroxylase-like Ofd1 in an oxygen-dependent manner. The crystal structure of Nro1 determined at 2.2 {angstrom} resolution shows an all-{alpha}-helical fold that can be divided into two domains: a small N-terminal domain, and a larger C-terminal HEAT-repeat domain. Follow-up studies showed that Nro1 defines a new class of nuclear import adaptor that functions both inmore » Ofd1 nuclear localization and in the oxygen-dependent inhibition of Ofd1 to control the hypoxic response.« less

  19. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  20. Computational model for oxygen transport and consumption in human vitreous.

    PubMed

    Filas, Benjamen A; Shui, Ying-Bo; Beebe, David C

    2013-10-15

    Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.

  1. Steam generator on-line efficiency monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R.K.; Kaya, A.; Keyes, M.A. IV

    1987-08-04

    This patent describes a system for automatically and continuously determining the efficiency of a combustion process in a fossil-fuel fired vapor generator for utilization by an automatic load control system that controls the distribution of a system load among a plurality of vapor generators, comprising: a first function generator, connected to an oxygen transducer for sensing the level of excess air in the flue gas, for generating a first signal indicative of the total air supplied for combustion in percent by weight; a second function generator, connected to a combustibles transducer for sensing the level of combustibles in the fluemore » gas, for generating a second signal indicative of the percent combustibles present in the flue gas; means for correcting the first signal, connected to the first and second function generators, when the oxygen transducer is of a type that operates at a temperature level sufficient to cause the unburned combustibles to react with the oxygen present in the flue gas; an ambient air temperature transducer for generating a third signal indicative of the temperature of the ambient air supplied to the vapor generator for combustion.« less

  2. Sound-level-dependent representation of frequency modulations in human auditory cortex: a low-noise fMRI study.

    PubMed

    Brechmann, André; Baumgart, Frank; Scheich, Henning

    2002-01-01

    Recognition of sound patterns must be largely independent of level and of masking or jamming background sounds. Auditory patterns of relevance in numerous environmental sounds, species-specific vocalizations and speech are frequency modulations (FM). Level-dependent activation of the human auditory cortex (AC) in response to a large set of upward and downward FM tones was studied with low-noise (48 dB) functional magnetic resonance imaging at 3 Tesla. Separate analysis in four territories of AC was performed in each individual brain using a combination of anatomical landmarks and spatial activation criteria for their distinction. Activation of territory T1b (including primary AC) showed the most robust level dependence over the large range of 48-102 dB in terms of activated volume and blood oxygen level dependent contrast (BOLD) signal intensity. The left nonprimary territory T2 also showed a good correlation of level with activated volume but, in contrast to T1b, not with BOLD signal intensity. These findings are compatible with level coding mechanisms observed in animal AC. A systematic increase of activation with level was not observed for T1a (anterior of Heschl's gyrus) and T3 (on the planum temporale). Thus these areas might not be specifically involved in processing of the overall intensity of FM. The rostral territory T1a of the left hemisphere exhibited highest activation when the FM sound level fell 12 dB below scanner noise. This supports the previously suggested special involvement of this territory in foreground-background decomposition tasks. Overall, AC of the left hemisphere showed a stronger level-dependence of signal intensity and activated volume than the right hemisphere. But any side differences of signal intensity at given levels were lateralized to right AC. This might point to an involvement of the right hemisphere in more specific aspects of FM processing than level coding.

  3. Receptor Tyrosine Kinase ErbB2 Translocates into Mitochondria and Regulates Cellular Metabolism

    PubMed Central

    Ding, Yan; Liu, Zixing; Desai, Shruti; Zhao, Yuhua; Liu, Hao; Pannell, Lewis K; Yi, Hong; Wright, Elizabeth R; Owen, Laurie B; Dean-Colomb, Windy; Fodstad, Oystein; Lu, Jianrong; LeDoux, Susan P; Wilson, Glenn L; Tan, Ming

    2012-01-01

    It is well known that ErbB2, a receptor tyrosine kinase, localizes on the plasma membrane. Here we describe a novel observation that ErbB2 also localizes in mitochondria of cancer cells and patient samples. We found that ErbB2 translocates into mitochondria through the association with mtHSP70. Additionally, mitochondrial ErbB2 (mtErbB2) negatively regulates mitochondrial respiratory functions. Oxygen consumption and activities of complexes of the mitochondrial electron transport chain were decreased in mtErbB2-overexpressing cells. Mitochondrial membrane potential and the cellular ATP level also were decreased. In contrast, mtErbB2 enhanced cellular glycolysis. The translocation of ErbB2 and its impact on mitochondrial function are kinase dependent. Interestingly, cancer cells with higher levels of mtErbB2 were more resistant to ErbB2 targeting antibody trastuzumab. Our study provides a novel perspective on the metabolic regulatory function of ErbB2 and reveals that mtErbB2 plays an important role in the regulation of cellular metabolism and cancer cell resistance to therapeutics. PMID:23232401

  4. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science

    PubMed Central

    2016-01-01

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574303

  5. The critical role of catalase in prooxidant and antioxidant function of p53

    PubMed Central

    Kang, M Y; Kim, H-B; Piao, C; Lee, K H; Hyun, J W; Chang, I-Y; You, H J

    2013-01-01

    The tumor suppressor p53 is an important regulator of intracellular reactive oxygen species (ROS) levels, although downstream mediators of p53 remain to be elucidated. Here, we show that p53 and its downstream targets, p53-inducible ribonucleotide reductase (p53R2) and p53-inducible gene 3 (PIG3), physically and functionally interact with catalase for efficient regulation of intracellular ROS, depending on stress intensity. Under physiological conditions, the antioxidant functions of p53 are mediated by p53R2, which maintains increased catalase activity and thereby protects against endogenous ROS. After genotoxic stress, high levels of p53 and PIG3 cooperate to inhibit catalase activity, leading to a shift in the oxidant/antioxidant balance toward an oxidative status, which could augment apoptotic cell death. These results highlight the essential role of catalase in p53-mediated ROS regulation and suggest that the p53/p53R2–catalase and p53/PIG3–catalase pathways are critically involved in intracellular ROS regulation under physiological conditions and during the response to DNA damage, respectively. PMID:22918438

  6. Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science.

    PubMed

    Turner, Robert

    2016-10-05

    When blood oxygenation level-dependent (BOLD) contrast functional magnetic resonance imaging (fMRI) was discovered in the early 1990s, it provoked an explosion of interest in exploring human cognition, using brain mapping techniques based on MRI. Standards for data acquisition and analysis were rapidly put in place, in order to assist comparison of results across laboratories. Recently, MRI data acquisition capabilities have improved dramatically, inviting a rethink of strategies for relating functional brain activity at the systems level with its neuronal substrates and functional connections. This paper reviews the established capabilities of BOLD contrast fMRI, the perceived weaknesses of major methods of analysis, and current results that may provide insights into improved brain modelling. These results have inspired the use of in vivo myeloarchitecture for localizing brain activity, individual subject analysis without spatial smoothing and mapping of changes in cerebral blood volume instead of BOLD activation changes. The apparent fundamental limitations of all methods based on nuclear magnetic resonance are also discussed.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Authors.

  7. Evaluation of Visceral Adipose Tissue Oxygenation by Blood Oxygen Level-Dependent MRI in Zucker Diabetic Fatty Rats.

    PubMed

    Shi, Hong-Jian; Li, Yan-Feng; Ji, Wen-Jie; Lin, Zhi-Chun; Cai, Wei; Chen, Tao; Yuan, Bin; Niu, Xiu-Long; Li, Han-Ying; Shu, Wen; Li, Yu-Ming; Yuan, Fei; Zhou, Xin; Zhang, Zhuoli

    2018-06-01

    This study aimed to investigate the feasibility of blood oxygen level-dependent magnetic resonance imaging (BOLD-MRI) to evaluate visceral adipose tissue (VAT) oxygenation in Zucker diabetic fatty (ZDF) rats and its associations with systemic metaflammation. Five-week-old ZDF rats and Zucker lean (ZL) rats were fed a high-fat diet (HFD) for 18 weeks. A baseline BOLD-MRI scan of perirenal adipose tissue was performed after 8 weeks of HFD feeding, and then the rats were randomized to receive pioglitazone or a vehicle for the following 10 weeks. At sacrifice, BOLD-MRI scan, Hypoxyprobe-1 injection, and circulating T helper 17 (Th17), regulatory T (Treg) cells, and monocyte subtype flow cytometry analysis were performed. HFD feeding led to a significant increase in VAT BOLD-MRI R2* signals (20.14 ± 0.23 per second vs. 21.53 ± 0.20 per second; P = 0.012), an indicator for decreased oxygenation. R2* signal was significantly correlated with VAT pimonidazole adduct-positive area, insulin resistance, Th17 and Treg cells, CD43 + and CD43+ + monocyte subtypes, and VAT macrophage infiltration. Pioglitazone treatment improved the insulin resistance and was associated with a delayed progression of VAT oxygenation. This work demonstrated the feasibility of BOLD-MRI for detecting the VAT oxygenation status in ZDF rats, and the BOLD-MRI signals were associated with insulin resistance and systemic metaflammation in ZDF rats during the development of obesity. © 2018 The Obesity Society.

  8. Overheated and Out of Breath: Temperature Regulation of Respiration and Oxygen Supply in Coastal Zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M.; Elliott, D. T.; Pierson, J. J.

    2016-02-01

    Increasing global coastal hypoxia occurs under a large range of temperature and salinity conditions. Temperature directly influences oxygen solubility in seawater as well as the oxygen demand of zooplankton, thus oxygen concentration alone is not sufficient to categorize the biological impact of hypoxia for pelagic organisms. To effectively assess the impacts of hypoxic stress on zooplankton habitat space and production, it is necessary to consider the effects of temperature on both oxygen availability and zooplankton metabolism. Our analysis and modeling evaluate available oxygen (partial pressure and concentration) in the context of ambient temperature conditions and zooplankton oxygen demand. We will present allometric models, accounting for both body size and temperature that predict temperature-dependent oxygen supply and demand in coastal zooplankton. Our goal is to develop generalized, functional relationships that describe and quantify the interactive effects of temperature and low oxygen on coastal zooplankton that can lead to improved size-structured models that serve to predict impacts of increasing coastal hypoxia on pelagic food webs.

  9. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane.

    PubMed

    Chang, Andy J

    2017-11-01

    Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models. Copyright © 2017 the American Physiological Society.

  10. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water

    PubMed Central

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles. PMID:28182635

  11. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water.

    PubMed

    Hamasaki, Takeki; Harada, Gakuro; Nakamichi, Noboru; Kabayama, Shigeru; Teruya, Kiichiro; Fugetsu, Bunshi; Gong, Wei; Sakata, Ichiro; Shirahata, Sanetaka

    2017-01-01

    Electrochemically reduced water (ERW) is produced near a cathode during electrolysis and exhibits an alkaline pH, contains richly dissolved hydrogen, and contains a small amount of platinum nanoparticles. ERW has reactive oxygen species (ROS)-scavenging activity and recent studies demonstrated that hydrogen-dissolved water exhibits ROS-scavenging activity. Thus, the antioxidative capacity of ERW is postulated to be dependent on the presence of hydrogen levels; however, there is no report verifying the role of dissolved hydrogen in ERW. In this report, we clarify whether the responsive factor for antioxidative activity in ERW is dissolved hydrogen. The intracellular ROS scavenging activity of ERW and hydrogen-dissolved water was tested by both fluorescent stain method and immuno spin trapping assay. We confirm that ERW possessed electrolysis intensity-dependent intracellular ROS-scavenging activity, and ERW exerts significantly superior ROS-scavenging activity in HT1080 cells than the equivalent level of hydrogen-dissolved water. ERW retained its ROS-scavenging activity after removal of dissolved hydrogen, but lost its activity when autoclaved. An oxygen radical absorbance capacity assay, the 2,2-diphenyl-1-picrylhydrazyl assay and chemiluminescence assay could not detect radical-scavenging activity in both ERW and hydrogen-dissolved water. These results indicate that ERW contains electrolysis-dependent hydrogen and an additional antioxidative factor predicted to be platinum nanoparticles.

  12. Central Cardiovascular Responses of Quadriplegic Subjects to Arm Exercise at Varying Levels of Oxygen Uptake.

    ERIC Educational Resources Information Center

    Figoni, Stephen F.

    The purpose of this study was to assess selected central cardiovascular functions of spinal cord injured, quadriplegic subjects at varying levels of oxygen uptake (VO sub 2). Subjects included 11 untrained, male college students with C5, C6, or C7 complete quadriplegia and 11 able-bodied reference subjects. Exercise was performed on a Monark cycle…

  13. Oxygenation in cervical cancer and normal uterine cervix assessed using blood oxygenation level-dependent (BOLD) MRI at 3T.

    PubMed

    Hallac, Rami R; Ding, Yao; Yuan, Qing; McColl, Roderick W; Lea, Jayanthi; Sims, Robert D; Weatherall, Paul T; Mason, Ralph P

    2012-12-01

    Hypoxia is reported to be a biomarker for poor prognosis in cervical cancer. However, a practical noninvasive method is needed for the routine clinical evaluation of tumor hypoxia. This study examined the potential use of blood oxygenation level-dependent (BOLD) contrast MRI as a noninvasive technique to assess tumor vascular oxygenation at 3T. Following Institutional Review Board-approved informed consent and in compliance with the Health Insurance Portability and Accountability Act, successful results were achieved in nine patients with locally advanced cervical cancer [International Federation of Gynecology and Obstetrics (FIGO) stage IIA to IVA] and three normal volunteers. In the first four patients, dynamic T₂*-weighted MRI was performed in the transaxial plane using a multi-shot echo planar imaging sequence whilst patients breathed room air followed by oxygen (15 dm³/min). Later, a multi-echo gradient echo examination was added to provide quantitative R₂* measurements. The baseline T₂*-weighted signal intensity was quite stable, but increased to various extents in tumors on initiation of oxygen breathing. The signal in normal uterus increased significantly, whereas that in the iliacus muscle did not change. R₂* responded significantly in healthy uterus, cervix and eight cervical tumors. This preliminary study demonstrates that BOLD MRI of cervical cancer at 3T is feasible. However, more patients must be evaluated and followed clinically before any prognostic value can be determined. Copyright © 2012 John Wiley & Sons, Ltd.

  14. 3D modeling of effects of increased oxygenation and activity concentration in tumors treated with radionuclides and antiangiogenic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagerloef, Jakob H.; Kindblom, Jon; Bernhardt, Peter

    Purpose: Formation of new blood vessels (angiogenesis) in response to hypoxia is a fundamental event in the process of tumor growth and metastatic dissemination. However, abnormalities in tumor neovasculature often induce increased interstitial pressure (IP) and further reduce oxygenation (pO{sub 2}) of tumor cells. In radiotherapy, well-oxygenated tumors favor treatment. Antiangiogenic drugs may lower IP in the tumor, improving perfusion, pO{sub 2} and drug uptake, by reducing the number of malfunctioning vessels in the tissue. This study aims to create a model for quantifying the effects of altered pO{sub 2}-distribution due to antiangiogenic treatment in combination with radionuclide therapy. Methods:more » Based on experimental data, describing the effects of antiangiogenic agents on oxygenation of GlioblastomaMultiforme (GBM), a single cell based 3D model, including 10{sup 10} tumor cells, was developed, showing how radionuclide therapy response improves as tumor oxygenation approaches normal tissue levels. The nuclides studied were {sup 90}Y, {sup 131}I, {sup 177}Lu, and {sup 211}At. The absorbed dose levels required for a tumor control probability (TCP) of 0.990 are compared for three different log-normal pO{sub 2}-distributions: {mu}{sub 1} = 2.483, {sigma}{sub 1} = 0.711; {mu}{sub 2} = 2.946, {sigma}{sub 2} = 0.689; {mu}{sub 3} = 3.689, and {sigma}{sub 3} = 0.330. The normal tissue absorbed doses will, in turn, depend on this. These distributions were chosen to represent the expected oxygen levels in an untreated hypoxic tumor, a hypoxic tumor treated with an anti-VEGF agent, and in normal, fully-oxygenated tissue, respectively. The former two are fitted to experimental data. The geometric oxygen distributions are simulated using two different patterns: one Monte Carlo based and one radially increasing, while keeping the log-normal volumetric distributions intact. Oxygen and activity are distributed, according to the same pattern. Results: As tumor pO{sub 2} approaches normal tissue levels, the therapeutic effect is improved so that the normal tissue absorbed doses can be decreased by more than 95%, while retaining TCP, in the most favorable scenario and by up to about 80% with oxygen levels previously achieved in vivo, when the least favourable oxygenation case is used as starting point. The major difference occurs in poorly oxygenated cells. This is also where the pO{sub 2}-dependence of the oxygen enhancement ratio is maximal. Conclusions: Improved tumor oxygenation together with increased radionuclide uptake show great potential for optimising treatment strategies, leaving room for successive treatments, or lowering absorbed dose to normal tissues, due to increased tumor response. Further studies of the concomitant use of antiangiogenic drugs and radionuclide therapy therefore appear merited.« less

  15. Evolving Oxygen Landscape of the Early Atmosphere and Oceans

    NASA Astrophysics Data System (ADS)

    Lyons, T. W.; Reinhard, C. T.; Planavsky, N. J.

    2013-12-01

    The past decade has witnessed remarkable advances in our understanding of oxygen on the early Earth, and a new framework, the topic of this presentation, is now in place to address the controls on spatiotemporal distributions of oxygen and their potential relationships to deep-Earth processes. Recent challenges to the Archean biomarker record have put an added burden on inorganic geochemistry to fingerprint and quantify the early production, accumulation, and variation of biospheric oxygen. Fortunately, a wide variety of techniques now point convincingly to photosynthetic oxygen production and dynamic accumulation well before the canonical Great Oxidation Event (GOE). Recent modeling of sulfur recycling over this interval allows for transient oxygen accumulation in the atmosphere without the disappearance of non-mass-dependent (NMD) sulfur isotope anomalies from the stratigraphic record and further allows for persistent accumulation in the atmosphere well before the permanent disappearance of NMD signals. This recent work suggests that the initial rise of oxygen may have occurred in fits and starts rather than a single step, and that once permanently present in the atmosphere, oxygen likely rose to high levels and then plummeted, in phase with the Paleoproterozoic Lomagundi positive carbon isotope excursion. More than a billion years of oxygen-free conditions in the deep ocean followed and set a challenging course for life, including limited abundances and diversity of eukaryotic organisms. Despite this widespread anoxia, sulfidic (euxinic) conditions were likely limited to productive ocean margins. Nevertheless, euxinia was sufficiently widespread to impact redox-dependent nutrient relationships, particularly the availability of bioessential trace metals critical in the nitrogen cycle, which spawned feedbacks that likely maintained oxygen at very low levels in the ocean and atmosphere and delayed the arrival of animals. Then, in the mid, pre-glacial Neoproterozoic we see evidence for an oxygenation event that significantly predated recent evidence for ocean ventilation in the post-glacial Ediacaran ocean. The trigger that facilitated the transition out of the oxygen-lean ';boring billion' is an area of active study. Additional evidence points to the likelihood of rising and falling oxygen levels through the later Neoproterozoic, which would have had a strong impact on early animal diversification and development of oxygen-demanding ecologies marked by large animals with complex trophic relationships. These observations now provide a context for interpreting the cause-and-effect relationships among the late Proterozoic rise in oxygen, the onset and dynamics of global-scale Neoproterozoic glaciation, metazoan diversification, and large-scale tectonic processes as surface expressions of deep-Earth processes.

  16. [Degradation of anthraquinone blue by Trametes trogii].

    PubMed

    Levin, L; Jordan, A; Forchiassin, F; Viale, A

    2001-01-01

    The ability of the white rot fungus Trametes trogii BAFC 463 (high producer of ligninolytic enzymes, especially laccase and manganese peroxidase) to degrade the dye anthraquinone blue, refractory to bacterial attack, was evaluated. Both tropho- and idiophasic T. trogii cultures in synthetic medium (glucose/asparagine) and complex medium (malt extract/glucose) were able to transform up to 88% dye in 4 hours. The activity of laccase, an oxygen-dependent phenoloxidase which was present at high levels in all the conditions assayed, might be related to the ability of the fungus to degrade the colorant. This is supported by the fact that in bioreactor experiences carried out at pH 4.5 the addition of anthraquinone blue caused a decrease in the levels of soluble oxygen. However, although high levels of laccase were produced at pH 7.5, the enzyme was not active, and neither dye transformation nor loss in the levels of soluble oxygen were quantified.

  17. Down-regulation of respiration in pear fruit depends on temperature.

    PubMed

    Ho, Quang Tri; Hertog, Maarten L A T M; Verboven, Pieter; Ambaw, Alemayehu; Rogge, Seppe; Verlinden, Bert E; Nicolaï, Bart M

    2018-04-09

    The respiration rate of plant tissues decreases when the amount of available O2 is reduced. There is, however, a debate on whether the respiration rate is controlled either by diffusion limitation of oxygen or through regulatory processes at the level of the transcriptome. We used experimental and modelling approaches to demonstrate that both diffusion limitation and metabolic regulation affect the response of respiration of bulky plant organs such as fruit to reduced O2 levels in the surrounding atmosphere. Diffusion limitation greatly affects fruit respiration at high temperature, but at low temperature respiration is reduced through a regulatory process, presumably a response to a signal generated by a plant oxygen sensor. The response of respiration to O2 is time dependent and is highly sensitive, particularly at low O2 levels in the surrounding atmosphere. Down-regulation of the respiration at low temperatures may save internal O2 and relieve hypoxic conditions in the fruit.

  18. fMRI BOLD response to the eyes task in offspring from multiplex alcohol dependence families.

    PubMed

    Hill, Shirley Y; Kostelnik, Bryan; Holmes, Brian; Goradia, Dhruman; McDermott, Michael; Diwadkar, Vaibhav; Keshavan, Matcheri

    2007-12-01

    Increased susceptibility for developing alcohol dependence (AD) may be related to structural and functional differences in brain circuits that influence social cognition and more specifically, theory of mind (ToM). Alcohol dependent individuals have a greater likelihood of having deficits in social skills and greater social alienation. These characteristics may be related to inherited differences in the neuroanatomical network that comprises the social brain. Adolescent/young adult participants from multiplex AD families and controls (n = 16) were matched for gender, age, IQ, education, and handedness and administered the Eyes Task of Baron-Cohen during functional magnetic resonance imaging (fMRI). High-risk (HR) subjects showed significantly diminished blood oxygen level dependent (BOLD) response in comparison with low-risk control young adults in the right middle temporal gyrus (RMTG) and the left inferior frontal gyrus (LIFG), areas that have previously been implicated in ToM tasks. Offspring from multiplex families for AD may manifest one aspect of their genetic susceptibility by having a diminished BOLD response in brain regions associated with performance of ToM tasks. These results suggest that those at risk for developing AD may have reduced ability to empathize with others' state of mind, possibly resulting in diminished social skill.

  19. Final Technical Report for DE-SC0001878 [Theory and Simulation of Defects in Oxide Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chelikowsky, James R.

    2014-04-14

    We explored a wide variety of oxide materials and related problems, including materials at the nanoscale and generic problems associated with oxide materials such as the development of more efficient computational tools to examine these materials. We developed and implemented methods to understand the optical and structural properties of oxides. For ground state properties, our work is predominantly based on pseudopotentials and density functional theory (DFT), including new functionals and going beyond the local density approximation (LDA): LDA+U. To study excited state properties (quasiparticle and optical excitations), we use time dependent density functional theory, the GW approach, and GW plusmore » Bethe-Salpeter equation (GW-BSE) methods based on a many-body Green function approaches. Our work focused on the structural, electronic, optical and magnetic properties of defects (such as oxygen vacancies) in hafnium oxide, titanium oxide (both bulk and clusters) and related materials. We calculated the quasiparticle defect states and charge transition levels of oxygen vacancies in monoclinic hafnia. we presented a milestone G0W0 study of two of the crystalline phases of dye-sensitized TiO{sub 2} clusters. We employed hybrid density functional theory to examine the electronic structure of sexithiophene/ZnO interfaces. To identify the possible effect of epitaxial strain on stabilization of the ferromagnetic state of LaCoO{sub 3} (LCO), we compare the total energy of the magnetic and nonmagnetic states of the strained theoretical bulk structure.« less

  20. Effect of oxygen levels on the physiology of dendritic cells: implications for adoptive cell therapy.

    PubMed

    Futalan, Diahnn; Huang, Chien-Tze; Schmidt-Wolf, Ingo G H; Larsson, Marie; Messmer, Davorka

    2011-01-01

    Dendritic cell (DC)-based adoptive tumor immunotherapy approaches have shown promising results, but the incidence of tumor regression is low and there is an evident call for identifying culture conditions that produce DCs with a more potent Th1 potential. Routinely, DCs are differentiated in CO(2) incubators under atmospheric oxygen conditions (21% O(2)), which differ from physiological oxygen levels of only 3-5% in tissue, where most DCs reside. We investigated whether differentiation and maturation of DCs under physiological oxygen levels could produce more potent T-cell stimulatory DCs for use in adoptive immunotherapy. We found that immature DCs differentiated under physiological oxygen levels showed a small but significant reduction in their endocytic capacity. The different oxygen levels did not influence their stimuli-induced upregulation of cluster of differentiation 54 (CD54), CD40, CD83, CD86, C-C chemokine receptor type 7 (CCR7), C-X-C chemokine receptor type 4 (CXCR4) and human leukocyte antigen (HLA)-DR or the secretion of interleukin (IL)-6, tumor necrosis factor (TNF)-α and IL-10 in response to lipopolysaccharide (LPS) or a cytokine cocktail. However, DCs differentiated under physiological oxygen level secreted higher levels of IL-12(p70) after exposure to LPS or CD40 ligand. Immature DCs differentiated at physiological oxygen levels caused increased T-cell proliferation, but no differences were observed for mature DCs with regard to T-cell activation. In conclusion, we show that although DCs generated under atmospheric or physiological oxygen conditions are mostly similar in function and phenotype, DCs differentiated under physiological oxygen secrete larger amounts of IL-12(p70). This result could have implications for the use of ex vivo-generated DCs for clinical studies, since DCs differentiated at physiological oxygen could induce increased Th1 responses in vivo.

  1. Volatilization of ethylene dibromide from water

    USGS Publications Warehouse

    Rathbun, R.E.; Tai, D.Y.

    1987-01-01

    Overall mass-transfer coefficients for the volatilization of ethylene dibromide from water were measured simultaneously with the oxygen absorption coefficient in a laboratory stirred tank. Coefficients were measured as a function of mixing conditions in the water for two windspeeds. The ethylene dibromide mass-transfer coefficient depended on windspeed; the ethylene dibromide liquid-film coefficient did not, in agreement with theory. A constant relation existed between the liquid-film coefficients for ethylene dibromide and oxygen.

  2. Molecular Expression and Functional Activity of Efflux and Influx Transporters in Hypoxia Induced Retinal Pigment Epithelial Cells

    PubMed Central

    Vadlapatla, Ramya; Vadlapudi, Aswani Dutt; Ponnaluri, VK Chaithanya; Pal, Dhananjay; Mukherji, Mridul; Mitra, Ashim K.

    2013-01-01

    A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs. PMID:23827654

  3. Emotion unfolded by motion: a role for parietal lobe in decoding dynamic facial expressions.

    PubMed

    Sarkheil, Pegah; Goebel, Rainer; Schneider, Frank; Mathiak, Klaus

    2013-12-01

    Facial expressions convey important emotional and social information and are frequently applied in investigations of human affective processing. Dynamic faces may provide higher ecological validity to examine perceptual and cognitive processing of facial expressions. Higher order processing of emotional faces was addressed by varying the task and virtual face models systematically. Blood oxygenation level-dependent activation was assessed using functional magnetic resonance imaging in 20 healthy volunteers while viewing and evaluating either emotion or gender intensity of dynamic face stimuli. A general linear model analysis revealed that high valence activated a network of motion-responsive areas, indicating that visual motion areas support perceptual coding for the motion-based intensity of facial expressions. The comparison of emotion with gender discrimination task revealed increased activation of inferior parietal lobule, which highlights the involvement of parietal areas in processing of high level features of faces. Dynamic emotional stimuli may help to emphasize functions of the hypothesized 'extended' over the 'core' system for face processing.

  4. FLAVODIIRON2 and FLAVODIIRON4 Proteins Mediate an Oxygen-Dependent Alternative Electron Flow in Synechocystis sp. PCC 6803 under CO2-Limited Conditions1[OPEN

    PubMed Central

    Shimakawa, Ginga; Shaku, Keiichiro; Nishi, Akiko; Hayashi, Ryosuke; Yamamoto, Hiroshi; Sakamoto, Katsuhiko; Makino, Amane; Miyake, Chikahiro

    2015-01-01

    This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available. PMID:25540330

  5. Tuning electronic properties in graphene quantum dots by chemical functionalization: Density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Hazem; Elhaes, Hanan; Ibrahim, Medhat A.

    2018-03-01

    The energy gap and dipole moment of chemically functionalized graphene quantum dots are investigated by density functional theory. The energy gap can be tuned through edge passivation by different elements or groups. Edge passivation by oxygen considerably decreases the energy gap in hexagonal nanodots. Edge states in triangular quantum dots can also be manipulated by passivation with fluorine. The dipole moment depends on: (a) shape and edge termination of the quantum dot, (b) attached group, and (c) position to which the groups are attached. Depending on the position of attached groups, the total dipole can be increased, decreased, or eliminated.

  6. Functional imaging of muscle oxygenation using a 200-channel cw NIRS system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Katsuyuki; Niwayama, Masatsugu; Kohata, Daisuke; Kudo, Nobuki; Hamaoka, Takatumi; Kime, Ryotaro; Katsumura, Toshihito

    2001-06-01

    Functional imaging of muscle oxygenation using NIRS is a promising technique for evaluation of the heterogeneity of muscle function and diagnosis of peripheral vascular disease or muscle injury. We have developed a 200-channel imaging system that can measure the changes in oxygenation and blood volume of muscles and that covers wider area than previously reported systems. Our system consisted of 40 probes, a multiplexer for switching signals to and from the probes, and a personal computer for obtaining images. In each probe, one two-wavelength LED (770 and 830 nm) and five photodiodes were mounted on a flexible substrate. In order to eliminate the influence of a subcutaneous fat layer, a correction method, which we previously developed, was also used in imaging. Thus, quantitative changes in concentrations of oxy- and deoxy-hemoglobin were obtained. Temporal resolution was 1.5 s and spatial resolution was about 20 mm, depending on probe separations. Exercise tests (isometric contraction of 50% MVC) on the thigh with and without arterial occlusion were conducted, and changes in muscle oxygenation were imaged using the developed system. Results showed that the heterogeneity of deoxygenation and reoxygenation during exercise and recovery periods, respectively, were clearly observed. These results suggest that optical imaging of dynamic change in muscle oxygenation using NIRS would be useful not only for basic physiological studies but also for clinical applications with respect to muscle functions.

  7. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations

    PubMed Central

    Simon, Aaron B.; Dubowitz, David J.; Blockley, Nicholas P.; Buxton, Richard B.

    2016-01-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2′ as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2′, we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2′-based estimate of the metabolic response to CO2 of 1.4%, and R2′- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2′-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. PMID:26790354

  8. A novel Bayesian approach to accounting for uncertainty in fMRI-derived estimates of cerebral oxygen metabolism fluctuations.

    PubMed

    Simon, Aaron B; Dubowitz, David J; Blockley, Nicholas P; Buxton, Richard B

    2016-04-01

    Calibrated blood oxygenation level dependent (BOLD) imaging is a multimodal functional MRI technique designed to estimate changes in cerebral oxygen metabolism from measured changes in cerebral blood flow and the BOLD signal. This technique addresses fundamental ambiguities associated with quantitative BOLD signal analysis; however, its dependence on biophysical modeling creates uncertainty in the resulting oxygen metabolism estimates. In this work, we developed a Bayesian approach to estimating the oxygen metabolism response to a neural stimulus and used it to examine the uncertainty that arises in calibrated BOLD estimation due to the presence of unmeasured model parameters. We applied our approach to estimate the CMRO2 response to a visual task using the traditional hypercapnia calibration experiment as well as to estimate the metabolic response to both a visual task and hypercapnia using the measurement of baseline apparent R2' as a calibration technique. Further, in order to examine the effects of cerebral spinal fluid (CSF) signal contamination on the measurement of apparent R2', we examined the effects of measuring this parameter with and without CSF-nulling. We found that the two calibration techniques provided consistent estimates of the metabolic response on average, with a median R2'-based estimate of the metabolic response to CO2 of 1.4%, and R2'- and hypercapnia-calibrated estimates of the visual response of 27% and 24%, respectively. However, these estimates were sensitive to different sources of estimation uncertainty. The R2'-calibrated estimate was highly sensitive to CSF contamination and to uncertainty in unmeasured model parameters describing flow-volume coupling, capillary bed characteristics, and the iso-susceptibility saturation of blood. The hypercapnia-calibrated estimate was relatively insensitive to these parameters but highly sensitive to the assumed metabolic response to CO2. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Oxygen and Temperature Effects on Vertically Migrating Animals in Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Seibel, B.

    2016-02-01

    Large populations of oceanic nekton and zooplankton undergo daily migrations from shallow water at night to depths greater than 200 m during the daytime. In some regions, these migrations cross extreme gradients of temperature, oxygen and carbon dioxide. Oxygen minimum zones (OMZs) are extensive and characterized by deep-water (100-800 m) oxygen partial pressures that would be lethal to most marine organisms, yet are tolerated by vertical migrators. Climate change is predicted to further deplete oxygen, and measurable reductions in oxygen have already been documented in some regions. Increases in shallow water temperature and carbon dioxide are occurring simultaneously. Oxygen levels and temperature are important drivers of biodiversity and distribution, and documented changes in community structure and function are reportedly associated with OMZ expansion and warming. Here I answer fundamental questions concerning zooplankton distributions, adaptations, and functions in oxygen minimum zones. In particular I report that metabolic suppression is a common strategy that facilitates diel occupancy of extreme hypoxia in many oceanic taxa. Anaerobic metabolic pathways play a minimal role in compensating for reduced aerobic ATP production. Numerous epigenetic mechanisms lead to reductions in energetically costly cellular processes, such as transcription and translation. Total metabolism is reduced by 50% or more during exposure to levels of hypoxia that characterize the daytime habitat for most vertically-migrating zooplankton. I further show that many migrators approach their upper thermal maximum in shallow water at night. Thus expanding OMZs and global warming may together compress the habitable depth range for many species.

  10. Cerebral Blood Flow and BOLD Responses to a Memory Encoding Task: A Comparison Between Healthy Young and Elderly Adults

    PubMed Central

    Restom, Khaled; Bangen, Katherine J.; Bondi, Mark W.; Perthen, Joanna E.; Liu, Thomas T.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) studies of the medial temporal lobe have primarily made use of the blood oxygenation level dependent (BOLD) response to neural activity. The interpretation of the BOLD signal as a measure of medial temporal lobe function can be complicated, however, by changes in the cerebrovascular system that can occur with both normal aging and age-related diseases, such as Alzheimer's disease. Quantitative measures of the functional cerebral blood flow (CBF) response offer a useful complement to BOLD measures, and have been shown to aid in the interpretation of fMRI studies. Despite these potential advantages, the application of ASL to fMRI studies of cognitive tasks and at-risk populations has been limited. In this study, we demonstrate the application of ASL fMRI to obtain measures of the CBF and BOLD responses to the encoding of natural scenes in healthy young (mean 25 years) and elderly (mean 74 years) adults. The percent CBF increase in the medial temporal lobe was significantly higher in the older adults, whereas the CBF levels during baseline and task conditions and during a separate resting-state scan were significantly lower in the older group. The older adults also showed slightly higher values for the BOLD response amplitude and the absolute change in CBF, but the age group differences were not significant. The percent CBF and BOLD responses are consistent with an age-related increase in the cerebral metabolic rate of oxygen metabolism (CMRO2) response to memory encoding. PMID:17590353

  11. Effect of oxygen concentration on viability and metabolism in a fluidized-bed bioartificial liver using ³¹P and ¹³C NMR spectroscopy.

    PubMed

    Jeffries, Rex E; Gamcsik, Michael P; Keshari, Kayvan R; Pediaditakis, Peter; Tikunov, Andrey P; Young, Gregory B; Lee, Haakil; Watkins, Paul B; Macdonald, Jeffrey M

    2013-02-01

    Many oxygen mass-transfer modeling studies have been performed for various bioartificial liver (BAL) encapsulation types; yet, to our knowledge, there is no experimental study that directly and noninvasively measures viability and metabolism as a function of time and oxygen concentration. We report the effect of oxygen concentration on viability and metabolism in a fluidized-bed NMR-compatible BAL using in vivo ³¹P and ¹³C NMR spectroscopy, respectively, by monitoring nucleotide triphosphate (NTP) and ¹³C-labeled nutrient metabolites, respectively. Fluidized-bed bioreactors eliminate the potential channeling that occurs with packed-bed bioreactors and serve as an ideal experimental model for homogeneous oxygen distribution. Hepatocytes were electrostatically encapsulated in alginate (avg. diameter, 500 μm; 3.5×10⁷ cells/mL) and perfused at 3 mL/min in a 9-cm (inner diameter) cylindrical glass NMR tube. Four oxygen treatments were tested and validated by an in-line oxygen electrode: (1) 95:5 oxygen:carbon dioxide (carbogen), (2) 75:20:5 nitrogen:oxygen:carbon dioxide, (3) 60:35:5 nitrogen:oxygen:carbon dioxide, and (4) 45:50:5 nitrogen:oxygen:carbon dioxide. With 20% oxygen, β-NTP steadily decreased until it was no longer detected at 11 h. The 35%, 50%, and 95% oxygen treatments resulted in steady β-NTP levels throughout the 28-h experimental period. For the 50% and 95% oxygen treatment, a ¹³C NMR time course (∼5 h) revealed 2-¹³C-glycine and 2-¹³C-glucose to be incorporated into [2-¹³C-glycyl]glutathione (GSH) and 2-¹³C-lactate, respectively, with 95% having a lower rate of lactate formation. ³¹P and ¹³C NMR spectroscopy is a noninvasive method for determining viability and metabolic rates. Modifying tissue-engineered devices to be NMR compatible is a relatively easy and inexpensive process depending on the bioreactor shape.

  12. The effect of simulating weight gain on the energy cost of walking in unimpaired children and children with cerebral palsy.

    PubMed

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2008-12-01

    To examine the effect of simulating weight gain on the energy cost of walking in children with cerebral palsy (CP) compared with unimpaired children. Repeated measures, matched subjects, controlled. University hospital clinical gait and movement analysis laboratory. Children (n=42) with CP and unimpaired children (n=42). Addition of 10% of body mass in weight belt. Energy cost of walking parameters consisting of walking speed, Physiological Cost Index, Total Heart Beat Index, oxygen uptake (VO2), gross oxygen cost, nondimensional net oxygen cost, and net oxygen cost with speed normalized to height were measured by using a breath-by-breath gas analysis system (K4b2) and a light beam timing gate system arranged around a figure 8 track. Two walking trials were performed in random order, with and the other without wearing a weighted belt. Children with CP and their unimpaired counterparts responded in fundamentally different ways to weight gain. The unimpaired population maintained speed and VO2 but the children with CP trended toward a drop in their speed and an increase in their VO2. The oxygen consumption of children with CP showed a greater dependence on mass than the unimpaired group (P=.043). An increase of a relatively small percentage in body mass began to significantly impact the energy cost of walking in children with CP. This result highlights the need for weight control to sustain the level of functional walking in these children.

  13. Quenching of porous silicon photoluminescence by molecular oxygen and dependence of this phenomenon on storing media and method of preparation of pSi photosensitizer

    NASA Astrophysics Data System (ADS)

    Balaguer, María; Matveeva, Eugenia

    2010-10-01

    The quenching of porous silicon photoluminescence (pSi PL) by molecular oxygen has been studied in different storing media in an attempt to clarify the mechanism of the energy transfer from the silicon photosensitizer to the oxygen acceptor. Luminescent materials have been prepared by two methods: electrochemical anodizing and chemical etching. Different structural forms were used: porous layers on silicon wafer and two kinds of differently prepared powder. Dry air and liquid water were employed as storing media; quenching behaviour was under observation until total degradation of quenching properties. Singlet oxygen molecules generation through energy transfer from photoluminescent pSi was the only photosensitizing mechanism observed under dry gas conditions. This PL quenching process was preferentially developed at 760 nm (1.63 eV) that corresponds to the formation of the 1Σ singlet oxygen state. Oxidation of the pSi photosensitizer was the main factor that led to its total deactivation in a time scale of few weeks. Regarding water medium, different photosensitizing behaviour was observed. In watery conditions, two preferred energy levels were found: the one detected in dry gas and another centred at approximately 2.2 eV (550 nm). Formation of reactive oxygen species (ROS) different from singlet oxygen, such as superoxide anion or superoxide radical, can be responsible for the second one. This second quenching process developed gradually after the initial contact of pSi photosensitizer with water and then degraded. The process lasted only several hours. Therefore, functionalization of the pSi photosensitizer is probably required to stabilize its PL and quenching properties in the watery physiological conditions required for biomedical applications.

  14. Cognitive Function in a Traumatic Brain Injury Hyperbaric Oxygen Randomized Trial

    DTIC Science & Technology

    2015-08-07

    oxygen at 2.4 atm abs. Eggum and Hunter [39] experimented with canine mesenchymal stem cells under various levels of pres- sure, oxygen, glucose...and conditioned medium. The culture system showed no cytotoxicity and was able to demonstrate that the proliferation and metabolism of mesenchymal...neurodegenerative diseases and peripheral neuropathies. He concludes that while the direct mechanisms by which transection, mechanical strain, ischemia

  15. Influence of oxygen vacancy on the electronic structure of CaCu3Ti4O12 and its deep-level vacancy trap states by first-principle calculation

    NASA Astrophysics Data System (ADS)

    Xiao, H. B.; Yang, C. P.; Huang, C.; Xu, L. F.; Shi, D. W.; Marchenkov, V. V.; Medvedeva, I. V.; Bärner, K.

    2012-03-01

    The electronic structure, formation energy, and transition energy levels of intrinsic defects have been studied using the density-functional method within the generalized gradient approximation for neutral and charged oxygen vacancy in CaCu3Ti4O12 (CCTO). It is found that oxygen vacancies with different charge states can be formed in CCTO under both oxygen-rich and poor conditions for nonequilibrium and higher-energy sintering processes; especially, a lower formation energy is obtained for poor oxygen environment. The charge transition level (0/1+) of the oxygen vacancy in CCTO is located at 0.53 eV below the conduction-band edge. The (1+/2+) transition occurs at 1.06 eV below the conduction-band edge. Oxygen vacancies of Vo1+ and Vo2+ are positive stable charge states in most gap regions and can act as a moderately deep donor for Vo1+ and a borderline deep for Vo2+, respectively. The polarization and dielectric constant are considerably enhanced by oxygen vacancy dipoles, due to the off-center Ti and Cu ions in CCTO.

  16. Single-cell measurement of red blood cell oxygen affinity.

    PubMed

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M; Schonbrun, Ethan

    2015-08-11

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen-Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2-3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability.

  17. Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model

    PubMed Central

    Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-01-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  18. The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective

    PubMed Central

    Ducluzeau, Anne-Lise; Schoepp-Cothenet, Barbara; van Lis, Robert; Baymann, Frauke; Russell, Michael J.; Nitschke, Wolfgang

    2014-01-01

    Complex life on our planet crucially depends on strong redox disequilibria afforded by the almost ubiquitous presence of highly oxidizing molecular oxygen. However, the history of O2-levels in the atmosphere is complex and prior to the Great Oxidation Event some 2.3 billion years ago, the amount of O2 in the biosphere is considered to have been extremely low as compared with present-day values. Therefore the evolutionary histories of life and of O2-levels are likely intricately intertwined. The obvious biological proxy for inferring the impact of changing O2-levels on life is the evolutionary history of the enzyme allowing organisms to tap into the redox power of molecular oxygen, i.e. the bioenergetic O2 reductases, alias the cytochrome and quinol oxidases. Consequently, molecular phylogenies reconstructed for this enzyme superfamily have been exploited over the last two decades in attempts to elucidate the interlocking between O2 levels in the environment and the evolution of respiratory bioenergetic processes. Although based on strictly identical datasets, these phylogenetic approaches have led to diametrically opposite scenarios with respect to the history of both the enzyme superfamily and molecular oxygen on the Earth. In an effort to overcome the deadlock of molecular phylogeny, we here review presently available structural, functional, palaeogeochemical and thermodynamic information pertinent to the evolution of the superfamily (which notably also encompasses the subfamily of nitric oxide reductases). The scenario which, in our eyes, most closely fits the ensemble of these non-phylogenetic data, sees the low O2-affinity SoxM- (or A-) type enzymes as the most recent evolutionary innovation and the high-affinity O2 reductases (SoxB or B and cbb3 or C) as arising independently from NO-reducing precursor enzymes. PMID:24968694

  19. Audience preferences are predicted by temporal reliability of neural processing

    PubMed Central

    Dmochowski, Jacek P.; Bezdek, Matthew A.; Abelson, Brian P.; Johnson, John S.; Schumacher, Eric H.; Parra, Lucas C.

    2014-01-01

    Naturalistic stimuli evoke highly reliable brain activity across viewers. Here we record neural activity from a group of naive individuals while viewing popular, previously-broadcast television content for which the broad audience response is characterized by social media activity and audience ratings. We find that the level of inter-subject correlation in the evoked encephalographic responses predicts the expressions of interest and preference among thousands. Surprisingly, ratings of the larger audience are predicted with greater accuracy than those of the individuals from whom the neural data is obtained. An additional functional magnetic resonance imaging study employing a separate sample of subjects shows that the level of neural reliability evoked by these stimuli covaries with the amount of blood-oxygenation-level-dependent (BOLD) activation in higher-order visual and auditory regions. Our findings suggest that stimuli which we judge favourably may be those to which our brains respond in a stereotypical manner shared by our peers. PMID:25072833

  20. Audience preferences are predicted by temporal reliability of neural processing.

    PubMed

    Dmochowski, Jacek P; Bezdek, Matthew A; Abelson, Brian P; Johnson, John S; Schumacher, Eric H; Parra, Lucas C

    2014-07-29

    Naturalistic stimuli evoke highly reliable brain activity across viewers. Here we record neural activity from a group of naive individuals while viewing popular, previously-broadcast television content for which the broad audience response is characterized by social media activity and audience ratings. We find that the level of inter-subject correlation in the evoked encephalographic responses predicts the expressions of interest and preference among thousands. Surprisingly, ratings of the larger audience are predicted with greater accuracy than those of the individuals from whom the neural data is obtained. An additional functional magnetic resonance imaging study employing a separate sample of subjects shows that the level of neural reliability evoked by these stimuli covaries with the amount of blood-oxygenation-level-dependent (BOLD) activation in higher-order visual and auditory regions. Our findings suggest that stimuli which we judge favourably may be those to which our brains respond in a stereotypical manner shared by our peers.

  1. Fasting plasma insulin and the default mode network in women at risk for Alzheimer's disease.

    PubMed

    Kenna, Heather; Hoeft, Fumiko; Kelley, Ryan; Wroolie, Tonita; DeMuth, Bevin; Reiss, Allan; Rasgon, Natalie

    2013-03-01

    Brain imaging studies in Alzheimer's disease research have demonstrated structural and functional perturbations in the hippocampus and default mode network (DMN). Additional evidence suggests risk for pathological brain aging in association with insulin resistance (IR). This study piloted investigation of associations of IR with DMN-hippocampal functional connectivity among postmenopausal women at risk for Alzheimer's disease. Twenty middle-aged women underwent resting state functional magnetic resonance imaging. Subjects were dichotomized relative to fasting plasma insulin levels (i.e., > 8 μIU/mL [n = 10] and < 8 μIU/mL [n = 10]), and functional connectivity analysis contrasted their respective blood oxygen level-dependent signal correlation between DMN and hippocampal regions. Higher-insulin women had significantly reduced positive associations between the medial prefrontal cortex and bilateral parahippocampal regions extending to the right hippocampus, and conversely, between the left and right hippocampus and medial prefrontal cortex. Neuropsychological data (all within normal ranges) also showed significant differences with respect to executive functioning and global intelligence. The results provide further evidence of deleterious effects of IR on the hippocampus and cognition. Further imaging studies of the IR-related perturbations in DMN-hippocampal functional connectivity are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Release of oxygen radicals by articular chondrocytes: a study of luminol-dependent chemiluminescence and hydrogen peroxide secretion.

    PubMed

    Rathakrishnan, C; Tiku, K; Raghavan, A; Tiku, M L

    1992-10-01

    We previously established that normal articular chondrocytes, like macrophages, express class II major histocompatibility antigens, present antigen, and induce mixed and autologous lymphocyte stimulation. In a recent study using the trapped indicator 2',7'-dichlorofluorescein diacetate, we were able to measure levels of intracellular hydrogen peroxide within normal articular chondrocytes (J Immunol 245:690-696, 1990). In the present study, we utilized the technique of chemiluminescence and the biochemical method of quantitating hydrogen peroxide release to measure the production of reactive oxygen intermediates by articular chondrocytes. Chondrocytes, in suspension or adherent to coverslips, showed luminol-dependent chemiluminescence that was dependent on the number and viability of cells. There was a dose-dependent increase in chemiluminescence in response to soluble stimuli, such as phorbol myristate acetate (PMA), concanavalin A (ConA), and f-Met-Leu-Phe (FMLP). Azide inhibited chemiluminescence, suggesting that the light emission in chondrocytes is myeloperoxidase dependent. The antioxidant, catalase, inhibited chemiluminescence but superoxide dismutase had no effect, suggesting that luminol-dependent chemiluminescence in chondrocytes mostly measured hydrogen peroxide. Chemiluminescence was also observed in fragments of live cartilage tissue, indicating that chondrocytes that are cartilage matrix bound can generate the respiratory burst response. Using the scopoletin oxidation assay, we confirmed the release of increasing amounts of hydrogen peroxide by chondrocytes exposed to interleukin-1, rabbit interferon, and tumor necrosis factor alpha. Tumor necrosis factor alpha had both priming and enhancing effects on reactive oxygen intermediate production by chondrocytes. Reactive oxygen intermediates have been shown to play a significant role in matrix degradation. We suggest that reactive oxygen intermediates produced by chondrocytes play an important role in the degradation of matrix in arthritis.

  3. Muscle intracellular oxygenation during exercise: optimization for oxygen transport, metabolism, and adaptive change.

    PubMed

    Wagner, Peter D

    2012-01-01

    Exercise is the example par excellence of the body functioning as a physiological system. Conventionally we think of the O(2) transport process as a major manifestation of that system linking and integrating pulmonary, cardiovascular, hematological and skeletal muscular contributions to the task of getting O(2) from the air to the mitochondria, and this process has been well described. However, exercise invokes system responses at levels additional to those of macroscopic O(2) transport. One such set of responses appears to center on muscle intracellular PO(2), which falls dramatically from rest to exercise. At rest, it approximates 4 kPa, but during heavy endurance exercise it falls to about 0.4-0.5 kPa, an amazingly low value for a tissue absolutely dependent on the continual supply of O(2) to meet very high energy demands. One wonders why intracellular PO(2) is allowed to fall to such levels. The proposed answer, to be presented in the review, is that a low intramyocyte PO(2) is pivotal in: (a) optimizing oxygen's own physiological transport, and (b) stimulating adaptive gene expression that, after translation, enables greater exercise capacity-all the while maintaining PO(2) at levels sufficient to allow oxidative phosphorylation to operate sufficiently fast enough to support intense muscle contraction. Thus, during exercise, reductions of intracellular PO(2) to less than 1% of that in the atmosphere enables an integrated response that fundamentally and simultaneously optimizes physiological, biochemical and molecular events that support not only the exercise as it happens but the adaptive changes to increase exercise capacity over the longer term.

  4. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  5. Functional Covariance Networks: Obtaining Resting-State Networks from Intersubject Variability

    PubMed Central

    Gohel, Suril; Di, Xin; Walter, Martin; Biswal, Bharat B.

    2012-01-01

    Abstract In this study, we investigate a new approach for examining the separation of the brain into resting-state networks (RSNs) on a group level using resting-state parameters (amplitude of low-frequency fluctuation [ALFF], fractional ALFF [fALFF], the Hurst exponent, and signal standard deviation). Spatial independent component analysis is used to reveal covariance patterns of the relevant resting-state parameters (not the time series) across subjects that are shown to be related to known, standard RSNs. As part of the analysis, nonresting state parameters are also investigated, such as mean of the blood oxygen level-dependent time series and gray matter volume from anatomical scans. We hypothesize that meaningful RSNs will primarily be elucidated by analysis of the resting-state functional connectivity (RSFC) parameters and not by non-RSFC parameters. First, this shows the presence of a common influence underlying individual RSFC networks revealed through low-frequency fluctation (LFF) parameter properties. Second, this suggests that the LFFs and RSFC networks have neurophysiological origins. Several of the components determined from resting-state parameters in this manner correlate strongly with known resting-state functional maps, and we term these “functional covariance networks”. PMID:22765879

  6. Atorvastatin affects negatively respiratory function of isolated endothelial mitochondria.

    PubMed

    Broniarek, Izabela; Jarmuszkiewicz, Wieslawa

    2018-01-01

    The purpose of this research was to elucidate the direct effects of two popular blood cholesterol-lowering drugs used to treat cardiovascular diseases, atorvastatin and pravastatin, on respiratory function, membrane potential, and reactive oxygen species formation in mitochondria isolated from human umbilical vein endothelial cells (EA.hy926 cell line). Hydrophilic pravastatin did not significantly affect endothelial mitochondria function. In contrast, hydrophobic calcium-containing atorvastatin induced a loss of outer mitochondrial membrane integrity, an increase in hydrogen peroxide formation, and reductions in maximal (phosphorylating or uncoupled) respiratory rate, membrane potential and oxidative phosphorylation efficiency. The atorvastatin-induced changes indicate an impairment of mitochondrial function at the level of ATP synthesis and at the level of the respiratory chain, likely at complex I and complex III. The atorvastatin action on endothelial mitochondria was highly dependent on calcium ions and led to a disturbance in mitochondrial calcium homeostasis. Uptake of calcium ions included in atorvastatin molecule induced mitochondrial uncoupling that enhanced the inhibition of the mitochondrial respiratory chain by atorvastatin. Our results indicate that hydrophobic calcium-containing atorvastatin, widely used as anti-atherosclerotic agent, has a direct negative action on isolated endothelial mitochondria. Copyright © 2017. Published by Elsevier Inc.

  7. Origins of intersubject variability of blood oxygenation level dependent and arterial spin labeling fMRI: implications for quantification of brain activity.

    PubMed

    Gaxiola-Valdez, Ismael; Goodyear, Bradley G

    2012-12-01

    Accurate localization of brain activity using blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has been challenged because of the large BOLD signal within distal veins. Arterial spin labeling (ASL) techniques offer greater sensitivity to the microvasculature but possess low temporal resolution and limited brain coverage. In this study, we show that the physiological origins of BOLD and ASL depend on whether percent change or statistical significance is being considered. For BOLD and ASL fMRI data collected during a simple unilateral hand movement task, we found that in the area of the contralateral motor cortex the centre of gravity (CoG) of the intersubject coefficient of variation (CV) of BOLD fMRI was near the brain surface for percent change in signal, whereas the CoG of the intersubject CV for Z-score was in close proximity of sites of brain activity for both BOLD and ASL. These findings suggest that intersubject variability of BOLD percent change is vascular in origin, whereas the origin of inter-subject variability of Z-score is neuronal for both BOLD and ASL. For longer duration tasks (12 s or greater), however, there was a significant correlation between BOLD and ASL percent change, which was not evident for short duration tasks (6 s). These findings suggest that analyses directly comparing percent change in BOLD signal between pre-defined regions of interest using short duration stimuli, as for example in event-related designs, may be heavily weighted by large-vessel responses rather than neuronal responses. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Carbon-hydrogen defects with a neighboring oxygen atom in n-type Si

    NASA Astrophysics Data System (ADS)

    Gwozdz, K.; Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2017-07-01

    We report on the electrical activation of neutral carbon-oxygen complexes in Si by wet-chemical etching at room temperature. Two deep levels, E65 and E75, are observed by deep level transient spectroscopy in n-type Czochralski Si. The activation enthalpies of E65 and E75 are obtained as EC-0.11 eV (E65) and EC-0.13 eV (E75). The electric field dependence of their emission rates relates both levels to single acceptor states. From the analysis of the depth profiles, we conclude that the levels belong to two different defects, which contain only one hydrogen atom. A configuration is proposed, where the CH1BC defect, with hydrogen in the bond-centered position between neighboring C and Si atoms, is disturbed by interstitial oxygen in the second nearest neighbor position to substitutional carbon. The significant reduction of the CH1BC concentration in samples with high oxygen concentrations limits the use of this defect for the determination of low concentrations of substitutional carbon in Si samples.

  9. Acute maneb exposure significantly alters both glycolysis and mitochondrial function in neuroblastoma cells.

    PubMed

    Anderson, Colin C; Aivazidis, Stefanos; Kuzyk, Crystal L; Jain, Abhilasha; Roede, James R

    2018-05-14

    The pesticides paraquat (PQ) and maneb (MB) have been described as environmental risk factors for Parkinson's disease (PD), with mechanisms associated with mitochondrial dysfunction and reactive oxygen species (ROS) generation. A combined exposure of PQ and MB in murine models and neuroblastoma cells has been utilized to further advance understanding of the PD phenotype. MB acts as a redox modulator through alkylation of protein thiols and has been previously characterized to inhibit complex III of the electron transport chain (ETC) and uncouple the mitochondrial proton gradient. The purpose of this study was to analyze ATP-linked respiration and glycolysis in human neuroblastoma cells utilizing the Seahorse extracellular flux (XFp) platform. Employing an acute, subtoxic exposure of MB, this investigation revealed a MB-mediated decrease in mitochondrial oxygen consumption at baseline and maximal respiration, with inhibition of ATP synthesis and coupling efficiency. Additionally, MB treated cells showed an increase in non-mitochondrial respiration and proton leak. Further investigation into mitochondrial fuel flex revealed an elimination of fuel flexibility across all three major substrates, with a decrease in pyruvate capacity as well as glutamine dependency. Analyses of glycolytic function showed a substantial decrease in glycolytic acidification caused by lactic acid export. This inhibition of glycolytic parameters was also observed after titrating the MB dose as low as 6 μM, and appears to be dependent on the dithiocarbamate functional group, with manganese possibly potentiating the effect. Further studies into cellular ATP and NAD levels revealed a drastic decrease in cells treated with MB. In summary, MB significantly impacted both aerobic and anaerobic energy production; therefore, further characterization of MB's effect on cellular energetics may provide insight into the specificity of PD to dopaminergic neurons.

  10. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems.

    PubMed

    Lee-Montiel, Felipe T; George, Subin M; Gough, Albert H; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing

    2017-10-01

    This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2'-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices.

  11. Control of oxygen tension recapitulates zone-specific functions in human liver microphysiology systems

    PubMed Central

    Lee-Montiel, Felipe T; George, Subin M; Sharma, Anup D; Wu, Juanfang; DeBiasio, Richard; Vernetti, Lawrence A; Taylor, D Lansing

    2017-01-01

    This article describes our next generation human Liver Acinus MicroPhysiology System (LAMPS). The key demonstration of this study was that Zone 1 and Zone 3 microenvironments can be established by controlling the oxygen tension in individual devices over the range of ca. 3 to 13%. The oxygen tension was computationally modeled using input on the microfluidic device dimensions, numbers of cells, oxygen consumption rates of hepatocytes, the diffusion coefficients of oxygen in different materials and the flow rate of media in the MicroPhysiology System (MPS). In addition, the oxygen tension was measured using a ratiometric imaging method with the oxygen sensitive dye, Tris(2,2′-bipyridyl) dichlororuthenium(II) hexahydrate (RTDP) and the oxygen insensitive dye, Alexa 488. The Zone 1 biased functions of oxidative phosphorylation, albumin and urea secretion and Zone 3 biased functions of glycolysis, α1AT secretion, Cyp2E1 expression and acetaminophen toxicity were demonstrated in the respective Zone 1 and Zone 3 MicroPhysiology System. Further improvements in the Liver Acinus MicroPhysiology System included improved performance of selected nonparenchymal cells, the inclusion of a porcine liver extracellular matrix to model the Space of Disse, as well as an improved media to support both hepatocytes and non-parenchymal cells. In its current form, the Liver Acinus MicroPhysiology System is most amenable to low to medium throughput, acute through chronic studies, including liver disease models, prioritizing compounds for preclinical studies, optimizing chemistry in structure activity relationship (SAR) projects, as well as in rising dose studies for initial dose ranging. Impact statement Oxygen zonation is a critical aspect of liver functions. A human microphysiology system is needed to investigate the impact of zonation on a wide range of liver functions that can be experimentally manipulated. Because oxygen zonation has such diverse physiological effects in the liver, we developed and present a method for computationally modeling and measuring oxygen that can easily be implemented in all MPS models. We have applied this method in a liver MPS in which we are then able to control oxygenation in separate devices and demonstrate that zonation-dependent hepatocyte functions in the MPS recapitulate what is known about in vivo liver physiology. We believe that this advance allows a deep experimental investigation on the role of zonation in liver metabolism and disease. In addition, modeling and measuring oxygen tension will be required as investigators migrate from PDMS to plastic and glass devices. PMID:28409533

  12. Prospective longitudinal evaluation of lung function during the first year of life after extracorporeal membrane oxygenation.

    PubMed

    Hofhuis, Ward; Hanekamp, Manon N; Ijsselstijn, Hanneke; Nieuwhof, Eveline M; Hop, Wim C J; Tibboel, Dick; de Jongste, Johan C; Merkus, Peter J F M

    2011-03-01

    To collect longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation and to evaluate relationships between lung function and perinatal factors. Longitudinal data on lung function in the first year of life after extracorporeal membrane oxygenation are lacking. Prospective longitudinal cohort study. Outpatient clinic of a tertiary level pediatric hospital. The cohort consisted of 64 infants; 33 received extracorporeal membrane oxygenation for meconium aspiration syndrome, 14 for congenital diaphragmatic hernia, four for sepsis, six for persistent pulmonary hypertension of the neonate, and seven for respiratory distress syndrome of infancy. Evaluation was at 6 mos and 12 mos; 39 infants were evaluated at both time points . None. Functional residual capacity and forced expiratory flow at functional residual capacity were measured and expressed as z score. Mean (sem) functional residual capacities in z score were 0.0 (0.2) and 0.2 (0.2) at 6 mos and 12 mos, respectively. Mean (sem) forced expiratory flow was significantly below average (z score = 0) (p < .001) at 6 mos and 12 mos: -1.1 (0.1) and -1.2 (0.1), respectively. At 12 mos, infants with diaphragmatic hernia had a functional residual capacity significantly above normal: mean (sem) z score = 1.2 (0.5). Infants treated with extracorporeal membrane oxygenation have normal lung volumes and stable forced expiratory flows within normal range, although below average, within the first year of life. There is reason to believe, therefore, that extracorporeal membrane oxygenation either ameliorates the harmful effects of mechanical ventilation or somehow preserves lung function in the very ill neonate.

  13. Task-evoked BOLD responses are normal in areas of diaschisis after stroke.

    PubMed

    Fair, Damien A; Snyder, Abraham Z; Connor, Lisa Tabor; Nardos, Binyam; Corbetta, Maurizio

    2009-01-01

    Cerebral infarction can cause diaschisis, a reduction of blood flow and metabolism in areas of the cortex distant from the site of the lesion. Although the functional magnetic resonance imaging (fMRI) blood oxygen level dependent (BOLD) signal is increasingly used to examine the neural correlates of recovery in stroke, its reliability in areas of diaschisis is uncertain. The effect of chronic diaschisis as measured by resting positron emission tomography on task-evoked BOLD responses during word-stem completion in a block design fMRI study was examined in 3 patients, 6 months after a single left hemisphere stroke involving the inferior frontal gyrus and operculum. The BOLD responses were minimally affected in areas of chronic diaschisis. Within the confines of this study, the mechanism underlying the BOLD signal, which includes a mismatch between neuronally driven increases in blood flow and a corresponding increase in oxygen use, appears to be intact in areas of chronic diaschisis.

  14. Ozone-initiated disinfection kinetics of Escherichia coli in water.

    PubMed

    Zuma, Favourite; Lin, Johnson; Jonnalagadda, Sreekanth B

    2009-01-01

    The effect of ozonation on the rate of disinfection of Escherichia coli was investigated as a function of ozone concentration, ozonation duration and flow rates. Ozone was generated in situ using Corona discharge method using compressed oxygen stream and depending on the oxygen flux the ozone concentrations ranged from 0.91-4.72 mg/L. The rate of disinfection of all the three microbes followed pseudo-first-order kinetics with respect to the microbe count and first order with respect to ozone concentration. The influence of pH and temperature the aqueous systems on the rate of ozone initiated disinfection of the microbe was investigated. The inactivation was faster at lower pH than at basic pH. Molecular ozone is found more effective in disinfection than hydroxyl radicals. Two reported mechanisms for antimicrobial activity of ozone in water systems from the literature are discussed. Based on the experimental findings a probable rate law and mechanism are proposed. Ozonation of natural waters significantly decreased the BOD levels of the control and microbe contaminated waters.

  15. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones II: Blood-oxygen binding

    NASA Astrophysics Data System (ADS)

    Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active squid that migrates across a strong oxygen and temperature gradient in the Eastern Pacific. Here we analyze the oxygen-binding properties of the squid's respiratory protein (hemocyanin, Hc) that facilitate such activity. A high Hc-oxygen affinity, strong temperature dependence, and pronounced pH sensitivity (P50=0.009T2.03, pH 7.4; Bohr coefficient=ΔlogP50/ΔpH=-1.55+0.034T) of oxygen binding facilitate night-time foraging in the upper water column, and support suppressed oxygen demand in hypoxic waters at greater depths. Expanding hypoxia may act to alter the species habitable depth range. This analysis supports the contention that ocean acidification could limit oxygen carrying capacity in squids at warmer temperature leading to reduced activity levels or altered distribution.

  16. Single-shot ADC imaging for fMRI.

    PubMed

    Song, Allen W; Guo, Hua; Truong, Trong-Kha

    2007-02-01

    It has been suggested that apparent diffusion coefficient (ADC) contrast can be sensitive to cerebral blood flow (CBF) changes during brain activation. However, current ADC imaging techniques have an inherently low temporal resolution due to the requirement of multiple acquisitions with different b-factors, as well as potential confounds from cross talk between the deoxyhemoglobin-induced background gradients and the externally applied diffusion-weighting gradients. In this report a new method is proposed and implemented that addresses these two limitations. Specifically, a single-shot pulse sequence that sequentially acquires one gradient-echo (GRE) and two diffusion-weighted spin-echo (SE) images was developed. In addition, the diffusion-weighting gradient waveform was numerically optimized to null the cross terms with the deoxyhemoglobin-induced background gradients to fully isolate the effect of diffusion weighting from that of oxygenation-level changes. The experimental results show that this new single-shot method can acquire ADC maps with sufficient signal-to-noise ratio (SNR), and establish its practical utility in functional MRI (fMRI) to complement the blood oxygenation level-dependent (BOLD) technique and provide differential sensitivity for different vasculatures to better localize neural activity originating from the small vessels. Copyright (c) 2007 Wiley-Liss, Inc.

  17. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma

    PubMed Central

    Arihara, Yohei; Takada, Kohichi; Kamihara, Yusuke; Hayasaka, Naotaka; Nakamura, Hajime; Murase, Kazuyuki; Ikeda, Hiroshi; Iyama, Satoshi; Sato, Tsutomu; Miyanishi, Koji; Kobune, Masayoshi; Kato, Junji

    2017-01-01

    Reactive oxygen species (ROS) are normal byproducts of a wide variety of cellular processes. ROS have dual functional roles in cancer cell pathophysiology. At low to moderate levels, ROS act as signaling transducers to activate cell proliferation, migration, invasion, and angiogenesis. In contrast, high levels of ROS induce cell death. In multiple myeloma (MM), ROS overproduction is the trigger for apoptosis induced by several anticancer compounds, including proteasome inhibitors. However, no drugs for which oxidative stress is the main mechanism of action are currently used for treatment of MM in clinical situations. In this study, we demonstrate that the p53-activating small molecule CP-31398 (CP) effectively inhibits the growth of MM cell lines and primary MM isolates from patients. CP also suppresses the growth of MM xenografts in mice. Mechanistically, CP was found to induce intrinsic apoptosis in MM cells via increasing ROS production. Interestingly, CP-induced apoptosis occurs regardless of the p53 status, suggesting that CP has additional mechanisms of action. Our findings thus indicate that CP could be an attractive candidate for treatment of MM patients harboring p53 abnormalities; this satisfies an unmet clinical need, as such individuals currently have a poor prognosis. PMID:29029480

  18. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma.

    PubMed

    Arihara, Yohei; Takada, Kohichi; Kamihara, Yusuke; Hayasaka, Naotaka; Nakamura, Hajime; Murase, Kazuyuki; Ikeda, Hiroshi; Iyama, Satoshi; Sato, Tsutomu; Miyanishi, Koji; Kobune, Masayoshi; Kato, Junji

    2017-09-12

    Reactive oxygen species (ROS) are normal byproducts of a wide variety of cellular processes. ROS have dual functional roles in cancer cell pathophysiology. At low to moderate levels, ROS act as signaling transducers to activate cell proliferation, migration, invasion, and angiogenesis. In contrast, high levels of ROS induce cell death. In multiple myeloma (MM), ROS overproduction is the trigger for apoptosis induced by several anticancer compounds, including proteasome inhibitors. However, no drugs for which oxidative stress is the main mechanism of action are currently used for treatment of MM in clinical situations. In this study, we demonstrate that the p53-activating small molecule CP-31398 (CP) effectively inhibits the growth of MM cell lines and primary MM isolates from patients. CP also suppresses the growth of MM xenografts in mice. Mechanistically, CP was found to induce intrinsic apoptosis in MM cells via increasing ROS production. Interestingly, CP-induced apoptosis occurs regardless of the p53 status, suggesting that CP has additional mechanisms of action. Our findings thus indicate that CP could be an attractive candidate for treatment of MM patients harboring p53 abnormalities; this satisfies an unmet clinical need, as such individuals currently have a poor prognosis.

  19. Sublethal concentrations of salicylic acid decrease the formation of reactive oxygen species but maintain an increased nitric oxide production in the root apex of the ethylene-insensitive Never ripe tomato mutants

    PubMed Central

    Poór, Péter; Gémes, Katalin

    2011-01-01

    The pattern of salicylic acid (SA)-induced production of reactive oxygen species (ROS) and nitric oxide (NO) were different in the apex of adventitious roots in wild-type and in the ethylene-insensitive Never ripe (Nr) mutants of tomato (Solanum lycopersicum L. cv Ailsa Craig). ROS were upregulated, while NO remained at the control level in apical root tissues of wildtype plants exposed to sublethal concentrations of SA. In contrast, Nr plants expressing a defective ethylene receptor displayed a reduced level of ROS and a higher NO content in the apical root cells. In wild-type plants NO production seems to be ROS(H2O2)-dependent at cell death-inducing concentrations of SA, indicating that ROS and NO may interact to trigger oxidative cell death. In the absence of significant ROS accumulation, the increased NO production caused moderate reduction in cell viability in root apex of Nr plants exposed to 10−3 M SA. This suggests that a functional ethylene signaling pathway is necessary for the control of ROS and NO production induced by SA. PMID:21847015

  20. Altered neural activation during prepotent response inhibition in breast cancer survivors treated with chemotherapy: an fMRI study.

    PubMed

    Kam, Julia W Y; Boyd, Lara A; Hsu, Chun L; Liu-Ambrose, Teresa; Handy, Todd C; Lim, Howard J; Hayden, Sherri; Campbell, Kristin L

    2016-09-01

    While impairments in executive functions have been reported in breast cancer survivors (BCS) who have undergone adjuvant chemotherapy, only a limited number of functional neuroimaging studies have associated alterations in cerebral activity with executive functions deficits in BCS. Using fMRI, the current study assessed the neural basis underlying a specific facet of executive function, namely prepotent response inhibition. 12 BCS who self-reported cognitive problems up to 3 years following cancer treatment and 12 female healthy comparisons (HC) performed the Stroop task. We compared their neural activation between the incongruent and neutral experimental conditions. Relative to the HC group, BCS showed lower blood-oxygen level dependent signal in several frontal regions, including the anterior cingulate cortex, a region critical for response inhibition. Our data indicates reduced neural activation in BCS during a prepotent response inhibition task, providing support for the prevailing notion of neural alterations observed in BCS treated with chemotherapy.

  1. Functionally distinct amygdala subregions identified using DTI and high-resolution fMRI

    PubMed Central

    Balderston, Nicholas L.; Schultz, Douglas H.; Hopkins, Lauren

    2015-01-01

    Although the amygdala is often directly linked with fear and emotion, amygdala neurons are activated by a wide variety of emotional and non-emotional stimuli. Different subregions within the amygdala may be engaged preferentially by different aspects of emotional and non-emotional tasks. To test this hypothesis, we measured and compared the effects of novelty and fear on amygdala activity. We used high-resolution blood oxygenation level-dependent (BOLD) imaging and streamline tractography to subdivide the amygdala into three distinct functional subunits. We identified a laterobasal subregion connected with the visual cortex that responds generally to visual stimuli, a non-projecting region that responds to salient visual stimuli, and a centromedial subregion connected with the diencephalon that responds only when a visual stimulus predicts an aversive outcome. We provide anatomical and functional support for a model of amygdala function where information enters through the laterobasal subregion, is processed by intrinsic circuits in the interspersed tissue, and is then passed to the centromedial subregion, where activation leads to behavioral output. PMID:25969533

  2. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines.

    PubMed

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup; Sharma, Anoop Kumar; Wallin, Håkan; Bossi, Rossana; Autrup, Herman; Mølhave, Lars; Ravanat, Jean-Luc; Briedé, Jacob Jan; de Kok, Theo Martinus; Loft, Steffen

    2011-02-18

    Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.

  3. Oxygen uptake/oxygen supply dependency: fact or fiction?

    PubMed

    Vincent, J L; De Backer, D

    1995-01-01

    More than a decade ago, observations of co-variance between VO2 and DO2 led to the identification of a condition known as pathological O2 supply dependency. This condition was subsequently observed in critically ill patients with sepsis and acute circulatory failure. More recently, other authors have challenged the existence of this condition, often citing methodologic problems or mathematical coupling to account for spurious observations in the earlier studies. Here, we review the evidence for and against pathological O2 supply dependency. We find that many of the arguments have some validity but only in specific circumstances. We conclude, therefore, that pathological O2 supply dependency is a hallmark of acute circulatory failure and that an effective therapeutic approach should be based on an evaluation of organ system function in each individual case. Parameters such as blood lactate, pHi and veno-arterial PCO2 may be useful in this respect.

  4. Caffeine reduces resting-state BOLD functional connectivity in the motor cortex.

    PubMed

    Rack-Gomer, Anna Leigh; Liau, Joy; Liu, Thomas T

    2009-05-15

    In resting-state functional magnetic resonance imaging (fMRI), correlations between spontaneous low-frequency fluctuations in the blood oxygenation level dependent (BOLD) signal are used to assess functional connectivity between different brain regions. Changes in resting-state BOLD connectivity measures are typically interpreted as changes in coherent neural activity across spatially distinct brain regions. However, this interpretation can be complicated by the complex dependence of the BOLD signal on both neural and vascular factors. For example, prior studies have shown that vasoactive agents that alter baseline cerebral blood flow, such as caffeine and carbon dioxide, can significantly alter the amplitude and dynamics of the task-related BOLD response. In this study, we examined the effect of caffeine (200 mg dose) on resting-state BOLD connectivity in the motor cortex across a sample of healthy young subjects (N=9). We found that caffeine significantly (p<0.05) reduced measures of resting-state BOLD connectivity in the motor cortex. Baseline cerebral blood flow and spectral energy in the low-frequency BOLD fluctuations were also significantly decreased by caffeine. These results suggest that caffeine usage should be carefully considered in the design and interpretation of resting-state BOLD fMRI studies.

  5. Functional connectivity of visual cortex in the blind follows retinotopic organization principles

    PubMed Central

    Ovadia-Caro, Smadar; Caramazza, Alfonso; Margulies, Daniel S.; Villringer, Arno

    2015-01-01

    Is visual input during critical periods of development crucial for the emergence of the fundamental topographical mapping of the visual cortex? And would this structure be retained throughout life-long blindness or would it fade as a result of plastic, use-based reorganization? We used functional connectivity magnetic resonance imaging based on intrinsic blood oxygen level-dependent fluctuations to investigate whether significant traces of topographical mapping of the visual scene in the form of retinotopic organization, could be found in congenitally blind adults. A group of 11 fully and congenitally blind subjects and 18 sighted controls were studied. The blind demonstrated an intact functional connectivity network structural organization of the three main retinotopic mapping axes: eccentricity (centre-periphery), laterality (left-right), and elevation (upper-lower) throughout the retinotopic cortex extending to high-level ventral and dorsal streams, including characteristic eccentricity biases in face- and house-selective areas. Functional connectivity-based topographic organization in the visual cortex was indistinguishable from the normally sighted retinotopic functional connectivity structure as indicated by clustering analysis, and was found even in participants who did not have a typical retinal development in utero (microphthalmics). While the internal structural organization of the visual cortex was strikingly similar, the blind exhibited profound differences in functional connectivity to other (non-visual) brain regions as compared to the sighted, which were specific to portions of V1. Central V1 was more connected to language areas but peripheral V1 to spatial attention and control networks. These findings suggest that current accounts of critical periods and experience-dependent development should be revisited even for primary sensory areas, in that the connectivity basis for visual cortex large-scale topographical organization can develop without any visual experience and be retained through life-long experience-dependent plasticity. Furthermore, retinotopic divisions of labour, such as that between the visual cortex regions normally representing the fovea and periphery, also form the basis for topographically-unique plastic changes in the blind. PMID:25869851

  6. Alteration in mitochondrial function and glutamate metabolism affected by 2-chloroethanol in primary cultured astrocytes.

    PubMed

    Sun, Qi; Liao, Yingjun; Wang, Tong; Wang, Gaoyang; Zhao, Fenghong; Jin, Yaping

    2016-12-01

    The aim of this study was to explore the mechanisms that contribute to 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of mitochondrial function and glutamate metabolism in primary cultured astrocytes induced by 2-chloroethanol (2-CE), a metabolite of 1,2-DCE in vivo. The cells were exposed to different levels of 2-CE in the media for 24h. Mitochondrial function was evaluated by its membrane potential and intracellular contents of ATP, lactic acid and reactive oxygen species (ROS). Glutamate metabolism was indicated by expression of glutamine synthase (GS), glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) at both protein and gene levels. Compared to the control group, exposure to 2-CE could cause a dose dependent damage in astrocytes, indicated by decreased cell viability and morphological changes, and supported by decreased levels of nonprotein sulfhydryl (NPSH) and inhibited activities of Na + /K + -ATPase and Ca 2+ -ATPase in the cells. The present study also revealed both mitochondrial function and glutamate metabolism in astrocytes were significantly disturbed by 2-CE. Of which, mitochondrial function was much vulnerable to the effects of 2-CE. In conclusion, our findings suggested that mitochondrial dysfunction and glutamate metabolism disorder could contribute to 2-CE-induced cytotoxicity in astrocytes, which might be related to 1,2-DCE-induced brain edema. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    PubMed

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. The differential effects of prolonged exercise upon executive function and cerebral oxygenation.

    PubMed

    Tempest, Gavin D; Davranche, Karen; Brisswalter, Jeanick; Perrey, Stephane; Radel, Rémi

    2017-04-01

    The acute-exercise effects upon cognitive functions are varied and dependent upon exercise duration and intensity, and the type of cognitive tasks assessed. The hypofrontality hypothesis assumes that prolonged exercise, at physiologically challenging intensities, is detrimental to executive functions due to cerebral perturbations (indicated by reduced prefrontal activity). The present study aimed to test this hypothesis by measuring oxygenation in prefrontal and motor regions using near-infrared spectroscopy during two executive tasks (flanker task and 2-back task) performed while cycling for 60min at a very low intensity and an intensity above the ventilatory threshold. Findings revealed that, compared to very low intensity, physiologically challenging exercise (i) shortened reaction time in the flanker task, (ii) impaired performance in the 2-back task, and (iii) initially increased oxygenation in prefrontal, but not motor regions, which then became stable in both regions over time. Therefore, during prolonged exercise, not only is the intensity of exercise assessed important, but also the nature of the cognitive processes involved in the task. In contrast to the hypofrontality hypothesis, no inverse pattern of oxygenation between prefrontal and motor regions was observed, and prefrontal oxygenation was maintained over time. The present results go against the hypofrontality hypothesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages

    PubMed Central

    Zhao, Xiaomin; Khan, Nargis; Gan, Huixian; Tzelepis, Fanny; Nishimura, Tomoyasu; Park, Seung-Yeol; Divangahi, Maziar; Remold, Heinz G.

    2017-01-01

    Virulent Mycobacterium tuberculosis (Mtb) triggers necrosis in host Mφ, which is essential for successful pathogenesis. Here we demonstrate that necrosis of Mtb-infected Mφ is dependent on the action of the cytosolic kinase Receptor Interacting Protein 3 (RIPK3) and the mitochondrial Bcl-2 family member protein B-cell lymphoma - extra large (Bcl-xL). RIPK3-deficient Mφ are able to better control bacterial growth in vitro and in vivo. Cytosolic RIPK3 translocates to the mitochondria where it promotes necrosis and blocks caspase 8-activation and apoptosis via Bcl-xL. Furthermore, necrosis is associated with stabilization of hexokinase II on the mitochondria as well as cyclophilin D-dependent mitochondrial permeability transition (MPT). These events up-regulate the level of reactive oxygen species (ROS) to induce necrosis. Thus, in Mtb-infected Mφ mitochondria are an essential platform for induction of necrosis by activating RIPK3 function and preventing caspase 8 - activation. PMID:28401933

  10. Development of distinct control networks through segregation and integration

    PubMed Central

    Fair, Damien A.; Dosenbach, Nico U. F.; Church, Jessica A.; Cohen, Alexander L.; Brahmbhatt, Shefali; Miezin, Francis M.; Barch, Deanna M.; Raichle, Marcus E.; Petersen, Steven E.; Schlaggar, Bradley L.

    2007-01-01

    Human attentional control is unrivaled. We recently proposed that adults depend on distinct frontoparietal and cinguloopercular networks for adaptive online task control versus more stable set control, respectively. During development, both experience-dependent evoked activity and spontaneous waves of synchronized cortical activity are thought to support the formation and maintenance of neural networks. Such mechanisms may encourage tighter “integration” of some regions into networks over time while “segregating” other sets of regions into separate networks. Here we use resting state functional connectivity MRI, which measures correlations in spontaneous blood oxygenation level-dependent signal fluctuations between brain regions to compare previously identified control networks between children and adults. We find that development of the proposed adult control networks involves both segregation (i.e., decreased short-range connections) and integration (i.e., increased long-range connections) of the brain regions that comprise them. Delay/disruption in the developmental processes of segregation and integration may play a role in disorders of control, such as autism, attention deficit hyperactivity disorder, and Tourette's syndrome. PMID:17679691

  11. Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities

    NASA Astrophysics Data System (ADS)

    Rahmani, Farzin; Nouranian, Sasan; Mahdavi, Mina; Al-Ostaz, Ahmed

    2016-11-01

    In this fundamental study, a series of molecular dynamics simulations were performed in vacuo to investigate the energetics and select geometries of 20 standard amino acids (AAs) on pristine graphene (PG) and graphene oxide (GO) surfaces as a function of graphene surface oxygen density. These interactions are of key interest to graphene/biomolecular systems. Our results indicate that aromatic AAs exhibit the strongest total interactions with the PG surfaces due to π-π stacking. Tryptophan (Trp) has the highest aromaticity due to its indole side chain and, hence, has the strongest interaction among all AAs (-16.66 kcal/mol). Aliphatic, polar, and charged AAs show various levels of affinity to the PG sheets depending on the strength of their side chain hydrophobic interactions. For example, arginine (Arg) with its guanidinium side chain exhibits the strongest interaction with the PG sheets (-13.81 kcal/mol) following aromatic AAs. Also, glycine (Gly; a polar AA) has the weakest interaction with the PG sheets (-7.29 kcal/mol). When oxygen-containing functional groups are added to the graphene sheets, the π-π stacking in aromatic AAs becomes disrupted and perfect parallelism of the aromatic rings is lost. Moreover, hydrogen bonding and/or electrostatic interactions become more pronounced. Charged AAs exhibit the strongest interactions with the GO surfaces. In general, the AA-GO interactions increase with increasing surface oxygen density, and the effect is more pronounced at higher O/C ratios. This study provides a quantitative measure of AA-graphene interactions for the design and tuning of biomolecular systems suitable for biosensing, drug delivery, and gene delivery applications.

  12. Resilience and amygdala function in older healthy and depressed adults.

    PubMed

    Leaver, Amber M; Yang, Hongyu; Siddarth, Prabha; Vlasova, Roza M; Krause, Beatrix; St Cyr, Natalie; Narr, Katherine L; Lavretsky, Helen

    2018-09-01

    Previous studies suggest that low emotional resilience may correspond with increased or over-active amygdala function. Complementary studies suggest that emotional resilience increases with age; older adults tend to have decreased attentional bias to negative stimuli compared to younger adults. Amygdala nuclei and related brain circuits have been linked to negative affect, and depressed patients have been demonstrated to have abnormal amygdala function. In the current study, we correlated psychological resilience measures with amygdala function measured with resting-state arterial spin-labelled (ASL) and blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) in older adults with and without depression. Specifically, we targeted the basolateral, centromedial, and superficial nuclei groups of the amygdala, which have different functions and brain connections. High levels of psychological resilience correlated with lower basal levels of amygdala activity measured with ASL fMRI. High resilience also correlated with decreased connectivity between amygdala nuclei and the ventral default-mode network independent of depression status. Instead, lower depression symptoms were associated with higher connectivity between the amygdalae and dorsal frontal networks. Future multi-site studies with larger sample size and improved neuroimaging technologies are needed. Longitudinal studies that target resilience to naturalistic stressors will also be a powerful contribution to the field. Our results suggest that resilience in older adults is more closely related to function in ventral amygdala networks, while late-life depression is related to reduced connectivity between the amygdala and dorsal frontal regions. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Low-pressure oxidation of Cb-1Zr alloy.

    NASA Technical Reports Server (NTRS)

    Lyon, T. F.

    1971-01-01

    Resistively heated strip specimens of Cb-1Zr alloy were exposed at 927 C in a vacuum chamber at various levels of total pressure in the 1-microtorr range and at various oxygen partial pressures in the .1-microtorr range. Oxygen reaction rates (sticking probabilities) were found to depend on whether or not the specimens were annealed immediately before the test exposure. It is shown that a normally undetectable oxide film exists on the Cb-1Zr surface as a result of oxidation by ambient air, and this film reduces the sticking probability as compared with a clean metal surface. The alloy is considerably strengthened by addition of oxygen to a level of about 6000 ppm, while still maintaining reasonably good room temperature ductility.

  14. Minimizing atelectasis formation during general anaesthesia—oxygen washout is a non-essential supplement to PEEP

    PubMed Central

    Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart

    2017-01-01

    Background Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. Methods We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6–8 cmH2O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). Results The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5–2.7) (median [interquartile range]) and 1.8 (1.4–3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Conclusion Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients. PMID:28434271

  15. Minimizing atelectasis formation during general anaesthesia-oxygen washout is a non-essential supplement to PEEP.

    PubMed

    Östberg, Erland; Auner, Udo; Enlund, Mats; Zetterström, Henrik; Edmark, Lennart

    2017-06-01

    Following preoxygenation and induction of anaesthesia, most patients develop atelectasis. We hypothesized that an immediate restoration to a low oxygen level in the alveoli would prevent atelectasis formation and improve oxygenation during the ensuing anaesthesia. We randomly assigned 24 patients to either a control group (n = 12) or an intervention group (n = 12) receiving an oxygen washout procedure directly after intubation. Both groups were, depending on body mass index, ventilated with a positive end-expiratory pressure (PEEP) of 6-8 cmH 2 O during surgery. The atelectasis area was studied by computed tomography before emergence. Oxygenation levels were evaluated by measuring blood gases and calculating estimated venous admixture (EVA). The atelectasis areas expressed as percentages of the total lung area were 2.0 (1.5-2.7) (median [interquartile range]) and 1.8 (1.4-3.3) in the intervention and control groups, respectively. The difference was non-significant, and also oxygenation was similar between the two groups. Compared to oxygenation before the start of anaesthesia, oxygenation at the end of surgery was improved in the intervention group, mean (SD) EVA from 7.6% (6.6%) to 3.9% (2.9%) (P = .019) and preserved in the control group, mean (SD) EVA from 5.0% (5.3%) to 5.6% (7.1%) (P = .59). Although the oxygen washout restored a low pulmonary oxygen level within minutes, it did not further reduce atelectasis size. Both study groups had small atelectasis and good oxygenation. These results suggest that a moderate PEEP alone is sufficient to minimize atelectasis and maintain oxygenation in healthy patients.

  16. Comparison between Alzheimer's disease and subcortical vascular dementia: attentional cortex study in functional magnetic resonance imaging.

    PubMed

    Li, C; Zheng, J; Wang, J; Gui, L

    2011-01-01

    Blood oxygen level dependent functional magnetic resonance imaging (fMRI) and the Stroop test were used to assess attentional cortex activation in patients with Alzheimer's disease, subcortical vascular dementia, and normal control subjects. Patients with Alzheimer's disease and subcortical vascular dementia demonstrated similar locations of cortical activation, including the bilateral middle and inferior frontal gyri, anterior cingulate and inferior parietal lobule in response to Stroop colour word stimuli. This activation was distinctly decreased in patients with dementia compared with normal control subjects. Different regions of the brain were activated in patients with Alzheimer's disease and subcortical vascular dementia compared with normal controls. fMRI is a useful tool for the study of dementia in humans and has some potential diagnostic value. Further studies with larger numbers of participants are required.

  17. Singlet oxygen-dependent translational control in the tigrina-d.12 mutant of barley.

    PubMed

    Khandal, Dhriti; Samol, Iga; Buhr, Frank; Pollmann, Stephan; Schmidt, Holger; Clemens, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2009-08-04

    The tigrina (tig)-d.12 mutant of barley is impaired in the negative control limiting excess protochlorophyllide (Pchlide) accumulation in the dark. Upon illumination, Pchlide operates as photosensitizer and triggers singlet oxygen production and cell death. Here, we show that both Pchlide and singlet oxygen operate as signals that control gene expression and metabolite accumulation in tig-d.12 plants. In vivo labeling, Northern blotting, polysome profiling, and protein gel blot analyses revealed a selective suppression of synthesis of the small and large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase (RBCSs and RBCLs), the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCB2), as well as other chlorophyll-binding proteins, in response to singlet oxygen. In part, these effects were caused by an arrest in translation initiation of photosynthetic transcripts at 80S cytoplasmic ribosomes. The observed changes in translation correlated with a decline in the phosphorylation level of ribosomal protein S6. At later stages, ribosome dissociation occurred. Together, our results identify translation as a major target of singlet oxygen-dependent growth control and cell death in higher plants.

  18. Mapping tissue oxygen in vivo by photoacoustic lifetime imaging

    NASA Astrophysics Data System (ADS)

    Shao, Qi; Morgounova, Ekaterina; Choi, Jeung-Hwan; Jiang, Chunlan; Bischof, John; Ashkenazi, Shai

    2013-03-01

    Oxygen plays a key role in the energy metabolism of living organisms. Any imbalance in the oxygen levels will affect the metabolic homeostasis and lead to pathophysiological diseases. Hypoxia, a status of low tissue oxygen, is a key factor in tumor biology as it is highly prominent in tumor tissues. However, clinical tools for assessing tissue oxygenation are limited. The gold standard is polarographic needle electrode which is invasive and not capable of mapping (imaging) the oxygen content in tissue. We applied the method of photoacoustic lifetime imaging (PALI) of oxygen-sensitive dye to small animal tissue hypoxia research. PALI is new technology for direct, non-invasive imaging of oxygen. The technique is based on mapping the oxygen-dependent transient optical absorption of Methylene Blue (MB) by pump-probe photoacoustic imaging. Our studies show the feasibility of imaging of dissolved oxygen distribution in phantoms. In vivo experiments demonstrate that the hypoxia region is consistent with the site of subcutaneously xenografted prostate tumor in mice with adequate spatial resolution and penetration depth.

  19. Smart oxygen cuvette for optical monitoring of dissolved oxygen in biological blood samples

    NASA Astrophysics Data System (ADS)

    Dabhi, Harish; Alla, Suresh Kumar; Shahriari, Mahmoud R.

    2010-02-01

    A smart Oxygen Cuvette is developed by coating the inner surface of a cuvette with oxygen sensitive thin film material. The coating is glass like sol-gel based sensor that has an embedded ruthenium compound in the glass film. The fluorescence of the ruthenium is quenched depending on the oxygen level. Ocean Optics phase fluorometer, NeoFox is used to measure this rate of fluorescence quenching and computes it for the amount of oxygen present. Multimode optical fibers are used for transportation of light from an LED source to cuvette and from cuvette to phase fluorometer. This new oxygen sensing system yields an inexpensive solution for monitoring the dissolved oxygen in samples for biological and medical applications. In addition to desktop fluorometers, smart oxygen cuvettes can be used with the Ocean Optics handheld Fluorometers, NeoFox Sport. The Smart Oxygen Cuvettes provide a resolution of 4PPB units, an accuracy of less than 5% of the reading, and 90% response in less than 10 seconds.

  20. Theoretical study of oxygen sorption and diffusion in the volume and on the surface of a γ-TiAl alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakulin, A. V., E-mail: bakulin@ispms.tsc.ru; Kulkova, S. E.; Hu, Q. M.

    2015-02-15

    The oxygen sorption on the low-index (001), (100), and (110) surfaces of a γ-TiAl alloy is studied by the pseudopotential method with the generalized gradient approximation for the exchange-correlation functional. The most preferred sites for oxygen sorption in the bulk and on the surface of the alloy are determined. The titanium-rich octahedral site is shown to be preferred for oxygen sorption in the bulk material. The effect of the oxygen concentration on the atomic and electronic structures of the stoichiometric TiAl(100) surface is studied. It is shown that, at the first stage of oxidation, oxygen prefers to form bonds withmore » titanium. The energy barriers for oxygen diffusion on the stoichiometric (100) surface and in the bulk of the material are calculated. The energy barriers are shown to depend substantially on the local environments of oxygen and to increase during diffusion from titanium-rich sites. The most possible mechanism of oxygen diffusion from the (100) surface to the bulk of the material is oxygen migration through tetrahedral sites.« less

Top