Science.gov

Sample records for oxysulfides

  1. Kinetics and Mechanisms of Nanosilver Oxysulfidation

    PubMed Central

    Liu, Jingyu; Pennell, Kelly G.; Hurt, Robert H.

    2011-01-01

    Among the many new engineered nanomaterials, nanosilver is one of the highest priority cases for environmental risk assessment. Recent analysis of field samples from water treatment facilities suggests that silver is converted to silver sulfide, whose very low solubility may limit the bioavailability and adverse impact of silver in the environment. The present study demonstrates that silver nanoparticles react with dissolved sulfide species (HS−, S2−) under relevant but controlled laboratory conditions to produce silver sulfide nanostructures similar to those observed in the field. The reaction is tracked by time-resolved sulfide depletion measurements to yield quantitative reaction rates and stoichiometries. The reaction requires dissolved oxygen, and it is sensitive to pH and natural organic matter. Focusedion-beam analysis of surface films reveals an irregular coarse-grained sulfide phase that allows deep (> 1 μm) conversion of silver surfaces without passivation. At high sulfide concentrations, nanosilver oxysulfidation occurs by a direct particle-fluid reaction. At low sulfide concentration, quantitative kinetic analysis suggests a mechanistic switch to an oxidative dissolution/precipitation mechanism, in which the biologically active Ag+ ion is generated as an intermediate. The environmental transformation pathways for nanosilver will vary depending on the media-specific competing rates of oxidative dissolution and direct oxysulfidation. PMID:21770469

  2. Processing and characterization of new oxysulfide glasses in the Ge-Ga-As-S-O system

    SciTech Connect

    Maurel, C.; Petit, L. Dussauze, M.; Kamitsos, E.I.; Couzi, M.; Cardinal, T.; Miller, A.C.; Jain, H.; Richardson, K.

    2008-10-15

    New oxysulfide glasses have been prepared in the Ge-Ga-As system employing a two-step melting process which involves the processing of the chalcogenide glass (ChG) and its subsequent melting with amorphous GeO{sub 2} powder. Optical characterization of the synthesized oxysulfide glasses has shown that the cut-off wavelength decreases with increasing oxygen content, and this has been correlated to results of Raman and infrared (IR) spectroscopies which show the formation of new oxysulfide structural units. X-ray photoelectron spectroscopy (XPS) analysis to probe the bonding environment of oxygen atoms in the oxysulfide glass network, has revealed the preferred formation of Ga-O and Ge-O bonds in comparison to As-O bonds. This work has demonstrated that melting a ChG glass with GeO{sub 2} leads to the formation of new oxysulfide glassy materials. - Graphical abstract: In this paper, we explain how new oxysulfide glasses are prepared in the Ge-Ga-As system employing a two-step process: (1) the processing of the chalcogenide glass (ChG) and (2) the re-melting of the ChG with GeO{sub 2} powder. Raman, infrared and XPS spectroscopies show the formation of new oxysulfide structural units.

  3. Zinc oxysulfide ternary alloy nanocrystals: A bandgap modulated photocatalyst

    SciTech Connect

    Pandey, Shiv K.; Pandey, Shipra; Pandey, Avinash C.; Mehrotra, G. K.

    2013-06-10

    Herein, we report a green economic route for the synthesis of a series of Zinc Oxysulfide (ZOS) (ZnO{sub 1-x}S{sub x}; 0 {<=} x {>=} 1; x = Sulfur) alloys nanoparticles. The crystallographic features of ZnO, ZOS, and ZnS confirmed by X-Ray Diffraction and validated by Transmission Electron Microscopy reveal the variation of lattice spacing in binary and ternary compositions with homogenous elemental distribution. The photocatalytic analysis of ZOS (0.4) is performed and compared with Degussa P25 to ascertain its photocatalytic activity against methyl orange under irradiation of 365 nm UV-Vis light. A bandgap of 2.7 eV for ZOS (0.4) aptly establishes its prospects for sunlight driven photocatalysis.

  4. Molten iron oxysulfide as a superior sulfur sorbent

    SciTech Connect

    Hepworth, M.T.

    1991-01-01

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and So{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for optimum removal of sulfur from the first stage of a coal combustor are being determined by experiment and by use of existing data. Contour plots in which the pounds Of S0{sub 2} per million Btu of calorific power are plotted on isothermal ternary phase diagrams of the iron-oxygen-sulfur system. These contour plots determine the most favorable conditions for coal combustion in the presence of added iron oxide. Lowest S0{sub 2} pressures are close to the phase boundary limit between iron saturation and the oxysulfide liquid phase. Experimental studies in which ceramic containers (99% alumina) were used to contain the liquid were hampered by the tendency for the liquid to flow up and over the walls of containing vessels presumably as a result of surface tension effects. These effects, which make equilibration measurements difficult, may be favorable with respect to producing a high degree of reactivity of the oxysulfide with coal gases and resultant rapid reaction kinetics. As result of this problem, platinum containment vessels containers appear to avoid these surface tension effects. Thermodynamic and kinetic measurements are now being explored by thermogravimetric analysis.

  5. Quantitative study on the chemical solution deposition of zinc oxysulfide

    SciTech Connect

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell. Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.

  6. Quantitative study on the chemical solution deposition of zinc oxysulfide

    DOE PAGES

    Reinisch, Michael; Perkins, Craig L.; Steirer, K. Xerxes

    2015-11-21

    Zinc Oxysulfide (ZnOS) has demonstrated potential in the last decade to replace CdS as a buffer layer material since it is a wide-band-gap semiconductor with performance advantages over CdS (Eg = 2.4 eV) in the near UV-range for solar energy conversion. However, questions remain on the growth mechanisms of chemical bath deposited ZnOS. In this study, a detailed model is employed to calculate solubility diagrams that describe simple conditions for complex speciation control using only ammonium hydroxide without additional base. For these conditions, ZnOS is deposited via aqueous solution deposition on a quartz crystal microbalance in a continuous flow cell.more » Data is used to analyze the growth rate dependence on temperature and also to elucidate the effects of dimethylsulfoxide (DMSO) when used as a co-solvent. Activation energies (EA) of ZnOS are calculated for different flow rates and solution compositions. As a result, the measured EA relationships are affected by changes in the primary growth mechanism when DMSO is included.« less

  7. Molten metal containment vessel with rare earth oxysulfide protective coating thereon and method of making same

    DOEpatents

    Krikorian, Oscar H.; Curtis, Paul G.

    1992-01-01

    An improved molten metal containment vessel is disclosed in which wetting of the vessel's inner wall surfaces by molten metal is inhibited by coating at least the inner surfaces of the containment vessel with one or more rare earth oxysulfide or rare earth sulfide compounds to inhibit wetting and or adherence by the molten metal to the surfaces of the containment vessel.

  8. Geometric magnetic frustration in RE{sub 2}O{sub 2}S oxysulfides (RE = Sm, Eu and Gd)

    SciTech Connect

    Biondo, V.; Sarvezuk, P.W.C.; Ivashita, F.F.; Silva, K.L.; Paesano, A.; Isnard, O.

    2014-06-01

    Graphical abstract: Stacked planes in the <001> direction of an oxysulfide structure, showing the triangular nets formed by rare earth cations, which moments present geometric magnetic frustration. - Highlights: • We prepared monophasic RE{sub 2}O{sub 2}S Oxysulfides (RE = Sm, Eu and Gd). • RE{sub 2}O{sub 2}S compounds were characterized regarding structural and magnetic properties. • Mössbauer spectra were obtained for Eu{sub 2}O{sub 2}S and Gd{sub 2}O{sub 2}S at different temperatures. • Oxysulfides present geometric magnetic frustration of the rare-earth sublattice. - Abstract: RE{sub 2}O{sub 2}S oxysulfides (with RE = Sm, Eu and Gd) were prepared and characterized regarding their structural and magnetic properties. The compounds crystallized in the trigonal symmetry (space group P-3m/D{sub 3}{sup 3}d), with the lattice parameter varying linearly with the ionic radius of the RE cation. All these oxysulfides are magnetically frustrated and only the gadolinium sample showed magnetic order down to 3 K. The magnetic frustration is attributed to the spatial distribution of cations over the lattice, where the RE’s magnetic moments occupy the sites forming a triangular plane lattice, perpendicular to the direction. This geometric magnetic frustration was firstly recognized for these oxysulfides.

  9. Molten iron oxysulfide as a superior sulfur sorbent. Final report, [September 1989--1993

    SciTech Connect

    Hepworth, M.T.

    1993-03-31

    The studies had as original objective the analysis of conditions for using liquid iron oxysulfide as a desulfuring agent during coal gasification. Ancillary was a comparison of iron oxysulfide with lime as sorbents under conditions where lime reacts with S-bearing gases to form Ca sulfate or sulfide. Primary thrust is to determine the thermodynamic requirements for desulfurization by iron additions (e.g., taconite concentrate) during combustion in gasifiers operating at high equivalence ratios. Thermodynamic analysis of lime-oxygen-sulfur system shows why lime is injected into burners under oxidizing conditions; reducing conditions forms CaS, requiring its removal, otherwise oxidation and release of S would occur. Iron as the oxysulfide liquid has a range of stability and can be used as a desulfurizing agent, if the burner/gasifier operates in a sufficiently reducing regime (high equivalence ratio); this operating range is given and is calculable for a coal composition, temperature, stoichiometry. High moisture or hydrogen contents of the coal yield a poorer degree of desulfurization. Kinetic tests on individual iron oxide particles on substrates or Pt cups with a TGA apparatus fail to predict reaction rates within a burner. Preliminary tests on the Dynamic Containment Burner with acetylene give some promise that this system can produce the proper conditions of coal gasification for use of added iron as a sulfur sorbent.

  10. Chemism and kinetics of the oxidation of zinc-calcium oxysulfide

    NASA Astrophysics Data System (ADS)

    Gulyaeva, R. I.; Selivanov, E. N.; Mansurova, A. N.

    2013-05-01

    The sequence of phase transformations and the kinetics of the solid-phase (heating to 1273 K) oxidation of zinc-calcium oxysulfide CaZnSO with air are determined by thermodynamic, thermogravimetric, mass spectrometric, and X-ray diffraction analyses. The oxidation process is shown to be accompanied by the formation of the CaSO4 and ZnO phases depending on the heating conditions, as well as by the formation of CaO with SO2 evolution. The two-stage oxidation of CaZnSO is interpreted by the Avrami-Erofeev kinetic equations with activation energies of 190 and 422 kJ/mol.

  11. Structure and physical properties of the polar oxysulfide CaZnOS.

    PubMed

    Sambrook, Timothy; Smura, Catherine F; Clarke, Simon J; Ok, Kang Min; Halasyamani, P Shiv

    2007-04-02

    The synthesis, structure, and electrical properties of the oxysulfide CaZnOS are reported. The white compound has a band gap of 3.7(1) eV and crystallizes in hexagonal space group P6(3)mc (No. 186) with a = 3.75726(3) A, c = 11.4013(1) A, and Z = 2. The noncentrosymmetric structure, which has few analogues, is composed of isotypic puckered hexagonal ZnS and CaO layers arranged so that ZnS3O tetrahedra are all aligned parallel, resulting in a polar structure. The compound shows type 1 non-phase-matchable second harmonic generation, determined using 1064 nm radiation, with an efficiency approximately 100 times that of alpha-SiO2 and a piezoelectric coefficient of 38 pm V-1. Although polar, CaZnOS is not ferroelectric and the pyroelectric coefficient is very small, approximately 0.0 microC m-2 K-1 between room temperature and 100 degrees C.

  12. Silicon Oxysulfide, OSiS: Rotational Spectrum, Quantum-Chemical Calculations, and Equilibrium Structure.

    PubMed

    Thorwirth, Sven; Mück, Leonie Anna; Gauss, Jürgen; Tamassia, Filippo; Lattanzi, Valerio; McCarthy, Michael C

    2011-06-02

    Silicon oxysulfide, OSiS, and seven of its minor isotopic species have been characterized for the first time in the gas phase at high spectral resolution by means of Fourier transform microwave spectroscopy. The equilibrium structure of OSiS has been determined from the experimental data using calculated vibration-rotation interaction constants. The structural parameters (rO-Si = 1.5064 Å and rSi-S = 1.9133 Å) are in very good agreement with values from high-level quantum chemical calculations using coupled-cluster techniques together with sophisticated additivity and extrapolation schemes. The bond distances in OSiS are very short in comparison with those in SiO and SiS. This unexpected finding is explained by the partial charges calculated for OSiS via a natural population analysis. The results suggest that electrostatic effects rather than multiple bonding are the key factors in determining bonding in this triatomic molecule. The data presented provide the spectroscopic information needed for radio astronomical searches for OSiS.

  13. Molten iron oxysulfide as a superior sulfur sorbent. Technical progress report, June 1, 1991--August 31, 1991

    SciTech Connect

    Hepworth, M.T.

    1991-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and So{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but under the right conditions of oxygen potential and after combination with sulfur, the reaction products of coal gases with iron oxide can act as a flux to produce a fluid phase. The thermodynamic conditions for optimum removal of sulfur from the first stage of a coal combustor are being determined by experiment and by use of existing data. Contour plots in which the pounds Of S0{sub 2} per million Btu of calorific power are plotted on isothermal ternary phase diagrams of the iron-oxygen-sulfur system. These contour plots determine the most favorable conditions for coal combustion in the presence of added iron oxide. Lowest S0{sub 2} pressures are close to the phase boundary limit between iron saturation and the oxysulfide liquid phase. Experimental studies in which ceramic containers (99% alumina) were used to contain the liquid were hampered by the tendency for the liquid to flow up and over the walls of containing vessels presumably as a result of surface tension effects. These effects, which make equilibration measurements difficult, may be favorable with respect to producing a high degree of reactivity of the oxysulfide with coal gases and resultant rapid reaction kinetics. As result of this problem, platinum containment vessels containers appear to avoid these surface tension effects. Thermodynamic and kinetic measurements are now being explored by thermogravimetric analysis.

  14. A new continuous two-step molecular precursor route to rare-earth oxysulfides Ln{sub 2}O{sub 2}S

    SciTech Connect

    De Crom, N.

    2012-07-15

    A continuous two-step molecular precursor pathway is designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu). This new route involves a first oxidation step leading to the rare-earth oxysulfate Ln{sub 2}O{sub 2}SO{sub 4} which is subsequently reduced to the rare-earth oxysulfide Ln{sub 2}O{sub 2}S by switching to a H{sub 2}-Ar atmosphere. The whole process occurs at a temperature significantly lower than usual solid state synthesis (T{<=}650 Degree-Sign C) and avoids the use of dangerous sulfur-based gases, providing a convenient route to the synthesis of the entire series of Ln{sub 2}O{sub 2}S. The molecular precursors consist in heteroleptic dithiocarbamate complexes [Ln(Et{sub 2}dtc){sub 3}(phen)] and [Ln(Et{sub 2}dtc){sub 3}(bipy)] (Et{sub 2}dtc=N,N-diethyldithiocarbamate; phen=1,10-phenanthroline; bipy=2,2 Prime -bipyridine) and were synthesized by a new high yield and high purity synthesis route. The nature of the molecular precursor determines the minimum synthesis temperature and influences therefore the purity of the final Ln{sub 2}O{sub 2}S crystalline phase. - Graphical abstract: A continuous two-step molecular precursor pathway was designed for the preparation of rare-earth oxysulfides Ln{sub 2}O{sub 2}S (Ln=Y, La, Pr, Nd, Sm-Lu), starting from heteroleptic dithiocarbamate complexes. The influence of the nature of the molecular precursor on the minimum synthesis temperature and on the purity of the final Ln{sub 2}O{sub 2}S crystalline phase is discussed. Highlights: Black-Right-Pointing-Pointer A new high yield and high purity synthesis route of rare earth dithiocarbamates is described. Black-Right-Pointing-Pointer These compounds are used as precursors in a continuous process leading to rare-earth oxysulfides. Black-Right-Pointing-Pointer The oxysulfides are obtained under much more moderate conditions than previously described.

  15. Gadolinium oxysulfide nanoparticles as multimodal imaging agents for T2-weighted MR, X-ray tomography and photoluminescence

    NASA Astrophysics Data System (ADS)

    Osseni, Sèmiyou. A.; Lechevallier, Sévérine; Verelst, Marc; Perriat, Pascal; Dexpert-Ghys, Jeannette; Neumeyer, David; Garcia, Robin; Mayer, Florian; Djanashvili, Kristina; Peters, Joop A.; Magdeleine, Eddy; Gros-Dagnac, Hélène; Celsis, Pierre; Mauricot, Robert

    2013-12-01

    We have synthesized gadolinium oxysulfide nanoparticles (NPs) doped with other lanthanides (Eu3+, Er3+, Yb3+) via a hydroxycarbonate precursor precipitation route followed by a sulfuration process under a H2S-Ar atmosphere at 750 °C in order to propose new multimodal nanoplatforms for Magnetic Resonance (MR), X-ray and photoluminescence imaging. Gd2O2S:Eu3+ NPs strongly absorb near UV (~300-400 nm) and re-emit strong red light (624 nm). They can be easily internalized by cancer cells, and imaged by epifluorescence microscopy under excitation in the NUV (365 nm). They are not cytotoxic for living cells up to 100 μg mL-1. Consequently, they are well adapted for in vitro imaging on cell cultures. Gd2O2S:Eu3+ NPs also show strong transverse relaxivity and strong X-ray absorption allowing their use as contrast agents for T2-weighted MRI and X-ray tomography. Our study shows that Gd2O2S:Eu3+ NPs are considerably better than commercial Ferumoxtran-10 NPs as negative contrast agents for MRI. Upconversion emission of Gd2O2S:Er; Yb (1; 8%) NPs under infrared excitation (λex = 980 nm) shows mainly red emission (~650-680 nm). Consequently, they are more specifically designed for in vivo deep fluorescence imaging, because both excitation and emission are located inside the ``transparency window'' of biological tissues (650-1200 nm). Magnetic relaxivity and X-ray absorption behaviors of Gd2O2S:Er; Yb NPs are almost similar to Gd2O2S:Eu3+ NPs.We have synthesized gadolinium oxysulfide nanoparticles (NPs) doped with other lanthanides (Eu3+, Er3+, Yb3+) via a hydroxycarbonate precursor precipitation route followed by a sulfuration process under a H2S-Ar atmosphere at 750 °C in order to propose new multimodal nanoplatforms for Magnetic Resonance (MR), X-ray and photoluminescence imaging. Gd2O2S:Eu3+ NPs strongly absorb near UV (~300-400 nm) and re-emit strong red light (624 nm). They can be easily internalized by cancer cells, and imaged by epifluorescence microscopy under

  16. Structural Evolution from Tin Sulfide (Selenide) Layered Structures to Novel 3- and 4-Connected Tin Oxy-sulfides

    NASA Astrophysics Data System (ADS)

    Parise, John B.; Ko, Younghee; Tan, Kemin; Nellis, David M.; Koch, Stephen

    1995-07-01

    Addition of triethylenetetramine (TETN) and tetramethylammonium (TMA+) to SnS2 and SnSe2 slurries followed by heating at 150°C under autogenous hydrothermal conditions results in novel thio and thio-oxide phases. These materials crystallize in time sequence as the added amines decompose. Initially 2-D frameworks with composition (Sn3X7)2-, X = S or Se are produced. In the case of the sulfides these are shown to transform to 2-D and 3-D oxy-sulfides frameworks which incorporate the decomposed template. The structures of two materials in this sequence have been determined from single crystal X-ray diffraction. The first, Sn3Se7 · C6N4H16CO, designated TETN-SnSe-1, crystallizes after 1 day of digestion in space group Pbca, with a = 23.553(6), b = 14.004(6), and c = 13.967(4) Å. The structure contains SnSe5 coordination polyhedra which form Sn3Se4+4 semicubes; six such semicubes are linked via Se2 bridges to form apertures in the Sn3Se2-7 sheet in (010). Similar structures occur in the TETN-SnS and TMA-SnS systems. The second material, with a framework designated SnOS-SB3, is formed after 5 days of digestion in either the TMA-SnS or TETN-SnS systems and crystallizes in C2/c, with a = 35.62(1), b = 18.468(4), c = 21.858(6) Å, and β = 115.36(1)°. The structure consists of tetrahedral clusters of composition [Sn10S20O4]8-, which are linked via single S bridges at three corners to form a 2-D framework of composition [Sn20S37O8]10-. This is one member of a theoretical structural family with composition [Sn10S20-n/2O4](8-n)-, where 0 ≤ n ≤ 4 and represents the number of connections between clusters.

  17. Effects of the Cu off-stoichiometry on transport properties of wide gap p-type semiconductor, layered oxysulfide LaCuSO

    SciTech Connect

    Goto, Yosuke Tanaki, Mai; Okusa, Yuki; Matoba, Masanori; Kamihara, Yoichi; Shibuya, Taizo; Yasuoka, Kenji

    2014-07-14

    Layered oxysulfide LaCu{sub 1−x}SO (x = 0–0.03) was prepared to elucidate the effect of Cu off-stoichiometry on their electrical and thermal transport properties. Electrical resistivity drastically decreases down from ∼10{sup 5} Ω·cm to ∼10{sup −1} Ω·cm as a result of Cu deficiency (x = 0.01) at 300 K. Thermal conductivity of the samples at 300 K, which is dominated by lattice components, is estimated to be 2.3(3) Wm{sup −1}K{sup −1}. Stoichiometric LaCuSO has an optical band gap of 3.1 eV, while broad optical absorption at photon energies of approximately 2.1 eV was observed for Cu-deficient samples. Density functional theory calculation suggests that these broad absorption structures probably originate from the in-gap states generated by the sulfur vacancies created to compensate the charge imbalance due to Cu off-stoichiometry. These results clearly demonstrate that Cu deficiency plays a crucial role in determining the electrical transport properties of Cu-based p-type transparent semiconductors.

  18. New candidates for superconductors: A series of layered oxysulfides (Cu{sub 2}S{sub 2})(Sr{sub n+1}M{sub n}O{sub 3n{minus}1})

    SciTech Connect

    Otzschi, Kenji; Ogino, Hiraku; Shimoyama, Junichi; Kishio, Kohji

    1999-11-01

    The authors have discovered three new layered transition-metal oxysulfides; (Cu{sub 2}S{sub 2})(Sr{sub 2}CuO{sub 2}), (Cu{sub 2}S{sub 2})(Sr{sub 2}NiO{sub 2}) and (Cu{sub 2}S{sub 2})(Sr{sub 3}Sc{sub 2}O{sub 5}), whose compositions are generally formulated as (Cu{sub 2}S{sub 2})(Sr{sub n+1}M{sub n}O{sub 3n{minus}1}). Their structures consist of alternate stackings of perovskite-based MO{sub 2} plane(s) and Cu{sub 2}S{sub 2} layers, showing great similarity to cuprate superconductors when the Cu{sub 2}S{sub 2} layer is considered as the blocking layer. The formation of these phases is limited by the ion size of M and elasticity of the Cu{sub 2}S{sub 2} layer. The newly found (Cu{sub 2}S{sub 2})(Sr{sub 2}CuO{sub 2}) possesses the horizontally extended tetragonal CuO{sub 2} plane, making itself a possible candidate for a new superconductor.

  19. Molten iron oxysulfide as a superior sulfur sorbent

    SciTech Connect

    Hepworth, M.T.

    1990-01-01

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions are determined for the operation of the first stage of a combustor which would have as its feed six types of coals. The calculations are made for the four phase equilibrium: FeO(wustite)/Fe/Liquid/Gas over the temperature range 950{degrees} to 1300{degrees}C. The minimum dosage of iron oxide required at equilibrium an the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of S0{sub 2} per million Btu of heat evolution calculated for complete combustion. These preliminary results indicate in the Fe-O-S system that higher temperatures give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. In the prior reporting period, a comparison is made between iron oxide and lime as a desulfurizing agent. With lime, the thermodynamic conditions were chosen: a set of conditions where the compound calcium sulfide is the product and a set of conditions where calcium sulfate is the product. The temperature limits of the sulfate forming and sulfide forming reactions were defined.

  20. Synthesis, Crystal Structure, and Photoelectric Properties of a New Layered Bismuth Oxysulfide.

    PubMed

    Meng, Sha; Zhang, Xian; Zhang, Ganghua; Wang, Yaoming; Zhang, Hui; Huang, Fuqiang

    2015-06-15

    [Bi2O2]-containing tetragonal compounds have received enormous attention due to unique functions including ferroelectricity, photocatalysis, and superconductivity. Here, a new layered compound Bi9O7.5S6 was synthesized via a facile hydrothermal route. The compound, belonging to a new structure type crystallizes in a rhombohedral system with space group R3̅m (a = 4.0685(1) Å, c = 31.029(5) Å, V = 444.8(1) Å(3), Z = 1). The overall crystal structure consists of alternatively packed unique [Bi2O2] and [BiS2] layers along [001] which are combined with each other by van der Waals interaction. The phase purity of the product is confirmed by powder X-ray diffraction. XPS analyses indicate +3 for Bi and -2 for S atoms. The temperature dependence of resistivity ρ(T) indicates that the semiconducting sample follows the mechanisms of variable range hopping (VRH) and adiabatic small polaron hopping (SPH). The direct-transition band gap, Eg = 1.27 eV derived from optical absorption spectrum, falls in the optimal region of solar absorber materials. Accordingly, the photoelectric measurement demonstrates the potential for applications for photovoltaic devices.

  1. Bulk superconductivity in bismuth oxysulfide Bi4O4S3.

    PubMed

    Singh, Shiva Kumar; Kumar, Anuj; Gahtori, Bhasker; Shruti; Sharma, Gyaneshwar; Patnaik, Satyabrata; Awana, Veer P S

    2012-10-10

    A very recent report on the observation of superconductivity in Bi(4)O(4)S(3) [Mizuguchi, Y.; http://arxiv.org/abs/1207.3145] could potentially reignite the search for superconductivity in a broad range of layered sulfides. We report here the synthesis of Bi(4)O(4)S(3) at 500 °C by a vacuum encapsulation technique and its basic characterizations. The as-synthesized Bi(4)O(4)S(3) was contaminated with small amounts of Bi(2)S(3) and Bi impurities. The majority phase was found to be tetragonal (space group I4/mmm) with lattice parameters a = 3.9697(2) Å and c = 41.3520(1) Å. Both AC and DC magnetization measurements confirmed that Bi(4)O(4)S(3) is a bulk superconductor with a superconducting transition temperature (T(c)) of 4.4 K. Isothermal magnetization (M-H) measurements indicated closed loops with clear signatures of flux pinning and irreversible behavior. The lower critical field (H(c1)) at 2 K for the new superconductor was found to be ~15 Oe. Magnetotransport measurements showed a broadening of the resistivity (ρ) and a decrease in T(c) (ρ = 0) with increasing magnetic field. The extrapolated upper critical field H(c2)(0) was ~31 kOe with a corresponding Ginzburg-Landau coherence length of ~100 Å . In the normal state, the ρ ~ T(2) dependence was not indicated. Hall resistivity data showed a nonlinear magnetic field dependence. Our magnetization and electrical transport measurements substantiate the appearance of bulk superconductivity in as-synthesized Bi(4)O(4)S(3). On the other hand, Bi heat-treated at the same temperature is not superconducting, thus excluding the possibility of impurity-driven superconductivity in the newly discovered superconductor Bi(4)O(4)S(3).

  2. Molten iron oxysulfide as a superior sulfur sorbent. Third quarter technical progress report, March 1, 1990--June 1, 1990

    SciTech Connect

    Hepworth, M.T.

    1990-12-31

    Slagging combustors with injected lime or limestone are being considered as replacements for conventional coal burners. They have advantages in that they can be staged to reduce NO{sub x} and SO{sub x} emissions. Iron oxide, as an alternative to lime or limestone may be effective not only as a desulfurizing agent, but, under the right conditions of oxygen potential, it can act as a flux to produce a glassy slag. This glassy slag should be dense and environmentally inert. In this reporting period, the thermodynamic conditions are determined for the operation of the first stage of a combustor which would have as its feed six types of coals. The calculations are made for the four phase equilibrium: FeO(wustite)/Fe/Liquid/Gas over the temperature range 950{degrees} to 1300{degrees}C. The minimum dosage of iron oxide required at equilibrium an the calculated maximum percent sulfur removal are reported. Also given are the expected pounds of S0{sub 2} per million Btu of heat evolution calculated for complete combustion. These preliminary results indicate in the Fe-O-S system that higher temperatures give better results approaching 96 percent sulfur removal from a coal containing (on a dry basis) 3.29% by weight sulfur. In the prior reporting period, a comparison is made between iron oxide and lime as a desulfurizing agent. With lime, the thermodynamic conditions were chosen: a set of conditions where the compound calcium sulfide is the product and a set of conditions where calcium sulfate is the product. The temperature limits of the sulfate forming and sulfide forming reactions were defined.

  3. Photoluminescence properties and energy levels of RE (RE = Pr, Sm, Er, Tm) in layered-CaZnOS oxysulfide

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Jun; Feng, Ang; Chen, Xiang-Yang; Zhao, Jing-Tai

    2013-12-01

    RE3+ (RE = Pr, Sm, Er, Tm)-activated CaZnOS samples were prepared by a solid-state reaction method at high temperature, and their photoluminescence properties were investigated. Doping with RE3+ (RE = Pr, Sm, Er, Tm) into layered-CaZnOS resulted in typical RE3+ (RE = Pr, Sm, Er, Tm) f-f line absorptions and emissions, as well as the charge transfer band of Sm3+ at about 3.3 eV. The energy level scheme containing the position of the 4f and 5d levels of all divalent and trivalent lanthanide ions with respect to the valence and conduction bands of CaZnOS has been constructed based on the new data presented in this work, together with the data from literature on Ce3+ and Eu2+ doping in CaZnOS. The detailed energy level scheme provides a platform for interpreting the optical spectra and could be used to comment on the valence stability of the lanthanide ions in CaZnOS.

  4. Temperature effect on zinc oxysulfide-Zn(O,S) films synthesized by atomic layer deposition for Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect

    Bugot, Cathy Schneider, Nathanaëlle; Jubault, Marie; Lincot, Daniel; Donsanti, Frédérique

    2015-01-15

    Thin films of Zn(O,S) were deposited by atomic layer deposition from diethylzinc, water (H{sub 2}O), and hydrogen sulfide (H{sub 2}S). First, a study on the influence of the H{sub 2}S/(H{sub 2}O+H{sub 2}S) pulse ratio from pure ZnO to pure ZnS was performed at deposition temperature T{sub dep}=120 and 200 °C. Zn(O,S) films had higher S content than expected, and this effect was stronger at T{sub dep}=200 °C. Then, Zn(O,S) films have been synthesized over the range of temperature 120–220 °C at the constant H{sub 2}S/(H{sub 2}O+H{sub 2}S) pulse ratio of 9%. For T{sub dep}<180 °C, high and almost constant S content has been measured in the films. The significant increase of the S/(O+S) atomic ratio for T{sub dep}>180 °C confirmed that exchange reactions occurred between the Zn(O,S) growing films and H{sub 2}S. The grazing incidence x-ray diffraction patterns showed Zn(O,S) films with hexagonal wurtzite structures and with an optimum crystallization for temperatures T{sub dep}=160–180 °C. Indeed, in this temperature range, well crystallized and large grains were obtained which was in good correlation with the film morphology determined by scanning electron microscope; and Hall effect measurements revealed low resistivities, high carrier concentrations (>10{sup 19} cm{sup −3}), and low mobilities. From these results, the authors propose the existence of a temperature range where the properties undergo significant changes while the atomic composition remains constant.

  5. High transmittance cadmium oxysulfide Cd(S,O) buffer layer grown by triton X-100 mediated chemical bath deposition for thin-film heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ballipinar, Faruk; Rastogi, A. C.

    2017-01-01

    Polycrystalline 100-190 nm Cd(S,O) n-type semiconductor thin films of high transparency in the visible range are deposited by a surfactant Triton X-100 mediated chemical bath deposition process. The crystalline structure of the films revealed by X-ray diffraction data shows a cubic-CdO phase signified by (111) and (200) planes alongside the (002), (220), and (110) planes from hexagonal-CdS. The invariance of the 2θ position of the (002) CdS diffraction is interpreted in terms of the growth of the composite film essentially by the formation of a dilute interstitial alloy of CdO and CdS. This is confirmed by Raman spectra which, besides the CdS 1LO and 2LO modes at 300 and 600 cm-1, also show Raman lines from CdO at 1098 cm-1 and 952 cm-1 assigned as overtone of 2LO phonon modes and 556 cm-1 due to band crossing between LO and TO modes of CdO. Optical spectra of Cd(S,O) films show a median transmittance of >85% compared to ˜70% for CdS films in the 550-1000 nm wavelength range. The Cd(S,O) films show optical bandgap varying from 2.34 to 2.26 eV with increasing CdO fraction but retain high sub-bandgap transmission and sharp band edge threshold. The Cd(S,O) films thus offer an alternative to the CdS buffer layer in the heterojunction solar cells, which has major shortcoming of poor stability and high sub-bandgap absorption. The photoluminescence spectra of Cd(S,O) films show three green bands, of which one is the near band edge transition at 511.5 nm, the same as in CdS, the second band at 526.0 nm that red shifted from the CdS position is due to shallow donor-acceptor defects arising from structural change due to CdO, and the third band at 543.6 nm (2.28 eV) originates from direct band transition in CdO. The growth mechanism of Cd(S,O) films is described, which invokes that the Triton X-100 molecule modifies the microenvironment around adsorbed [Cd(NH3)4]2+ species, thereby inducing two concurrent reactions, one with SH- species that cause CdS formation and the other controlled Cd(OH)2 deprotonation reaction that forms CdO.

  6. Dual Cation- and Anion-Based Redox Process in Lithium Titanium Oxysulfide Thin Film Cathodes for All-Solid-State Lithium-Ion Batteries.

    PubMed

    Dubois, Vincent; Pecquenard, Brigitte; Soulé, Samantha; Martinez, Hervé; Le Cras, Frédéric

    2017-01-25

    A dual redox process involving Ti(3+)/Ti(4+) cation species and S(2-)/(S2)(2-) anion species is highlighted in oxygenated lithium titanium sulfide thin film electrodes during lithium (de)insertion, leading to a high specific capacity. These cathodes for all-solid-state lithium-ion microbatteries are synthesized by sputtering of LiTiS2 targets prepared by different means. The limited oxygenation of the films that is induced during the sputtering process favors the occurrence of the S(2-)/(S2)(2-) redox process at the expense of the Ti(3+)/Ti(4+) one during the battery operation, and influences its voltage profile. Finally, a perfect reversibility of both electrochemical processes is observed, whatever the initial film composition. All-solid-state lithium microbatteries using these amorphous lithiated titanium disulfide thin films and operated between 1.5 and 3.0 V/Li(+)/Li deliver a greater capacity (210-270 mAh g(-1)) than LiCoO2, with a perfect capacity retention (-0.0015% cycle(-1)).

  7. Bandgap narrowing in the layered oxysulfide semiconductor Ba3Fe2O5Cu2S2: Role of FeO2 layer

    NASA Astrophysics Data System (ADS)

    Han, Zhang; Shifeng, Jin; Liwei, Guo; Shijie, Shen; Zhiping, Lin; Xiaolong, Chen

    2016-02-01

    A new layered Cu-based oxychalcogenide Ba3Fe2O5Cu2S2 has been synthesized and its magnetic and electronic properties were revealed. Ba3Fe2O5Cu2S2 is built up by alternatively stacking [Cu2S2]2- layers and iron perovskite oxide [(FeO2)(BaO)(FeO2)]2- layers along the c axis that are separated by barium ions with Fe3+ fivefold coordinated by a square-pyramidal arrangement of oxygen. From the bond valence arguments, we inferred that in layered CuCh-based (Ch = S, Se, Te) compounds the +3 cation in perovskite oxide sheet prefers a square pyramidal site, while the lower valence cation prefers the square planar sites. The studies on susceptibility, transport, and optical reflectivity indicate that Ba3Fe2O5Cu2S2 is an antiferromagnetic semiconductor with a Néel temperature of 121 K and an optical bandgap of 1.03 eV. The measurement of heat capacity from 10 K to room temperature shows no anomaly at 121 K. The Debye temperature is determined to be 113 K. Theoretical calculations indicate that the conduction band minimum is predominantly contributed by O 2p and 3d states of Fe ions that antiferromagnetically arranged in FeO2 layers. The Fe 3d states are located at lower energy and result in a narrow bandgap in comparison with that of the isostructural Sr3Sc2O5Cu2S2. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472266, 51202286, and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100) and the ICDD.

  8. High-spin cobalt(II) ions in square planar coordination: structures and magnetism of the oxysulfides Sr2CoO2Cu2S2 and Ba2CoO2Cu2S2 and their solid solution.

    PubMed

    Smura, Catherine F; Parker, Dinah R; Zbiri, Mohamed; Johnson, Mark R; Gál, Zoltán A; Clarke, Simon J

    2011-03-02

    The antiferromagnetic structures of the layered oxychalcogenides (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) (0 ≤ x ≤ 1) have been determined by powder neutron diffraction. In these compounds Co(2+) is coordinated by four oxide ions in a square plane and two sulfide ions at the apexes of an extremely tetragonally elongated octahedron; the polyhedra share oxide vertexes. The magnetic reflections present in the diffraction patterns can in all cases be indexed using a √2a × √2a × c expansion of the nuclear cell, and nearest-neighbor Co(2+) moments couple antiferromagnetically within the CoO(2) planes. The ordered magnetic moment of Co(2+) in Sr(2)CoO(2)Cu(2)S(2) (x = 0) is 3.8(1) μ(B) at 5 K, consistent with high-spin Co(2+) ions carrying three unpaired electrons and with an additional significant unquenched orbital component. Exposure of this compound to moist air is shown to result in copper deficiency and a decrease in the size of the ordered moment to about 2.5 μ(B); there is a strong correlation between the size of the long-range ordered moment and the occupancy of the Cu site. Both the tetragonal elongation of the CoO(4)S(2) polyhedron and the ordered moment in (Sr(1-x)Ba(x))(2)CoO(2)Cu(2)S(2) increase with increasing Ba content, and in Ba(2)CoO(2)Cu(2)S(2), which has Co(2+) in an environment that is close to purely square planar, the ordered moment of 4.5(1) μ(B) at 5 K is over 0.7 μ(B) larger than that in Sr(2)CoO(2)Cu(2)S(2), so the unquenched orbital component in this case is even larger than that observed in octahedral Co(2+) systems such as CoO. The experimental observations of antiferromagnetic ground states and the changes in properties resulting from replacement of Sr by Ba are supported by ab initio calculations on Sr(2)CoO(2)Cu(2)S(2) and Ba(2)CoO(2)Cu(2)S(2). The large orbital moments in these systems apparently result from spin-orbit mixing of the unequally populated d(xz), d(yz), and d(z(2)) orbitals, which are reckoned to be almost degenerate when the CoO(4)S(2) polyhedron reaches its maximum elongation. The magnitudes of the ordered moments in high-spin Co(2+) oxide, oxychalcogenide, and oxyhalide systems are shown to correlate well with the tetragonal elongation of the coordination environment. The large orbital moments lead to an apparently magnetostrictive distortion of the crystal structures below the Neél temperature, with the symmetry lowered from tetragonal I4/mmm to orthorhombic Immm and the size of the distortion correlating well with the size of the long-range ordered moment for all compositions and for temperature-dependent data gathered on Ba(2)CoO(2)Cu(2)S(2).

  9. Effects of rare-earth filters on patient exposure and image contrast

    SciTech Connect

    Mauriello, S.M.; Washburn, D.B.; Matteson, S.R.

    1987-08-01

    Minimizing patient exposure while maintaining a diagnostically acceptable radiograph is a major goal in diagnostic radiography. Rare-earth filters may be the means to achieve this goal due to their band-pass effect. The purpose of this study was to examine the image contrast effects and exposure reductions for various thicknesses of aluminum, samarium, gadolinium, gadolinium oxysulfide, and gadolinium oxysulfide added to 2.5 mm of aluminum. Trials were conducted on an intra-oral dental x-ray unit (range, 65 to 90 kVp). When compared with conventional aluminum, all of the rare-earth filters provided lower radiation exposures, with gadolinium in the metallic or oxysulfide form providing the lowest exposures. Samarium, at a thickness of 0.127 mm, yielded the highest image contrast. Gadolinium or gadolinium oxysulfide added to 2.5 mm of aluminum resulted in a slight loss of contrast when compared with conventional aluminum filtration. This loss may not be clinically significant, and when coupled with the reduced exposure afforded by these filters, they become viable as acceptable alternatives to aluminum filtration.

  10. Pressure/temperature sensitive inorganic phosphors. [La/sub 2/O/sub 2/S:Eu

    SciTech Connect

    Seals, W.O.; Offen, H.W.; Turley, W.D.

    1987-01-01

    Kistler gauges are presently used to monitor pressures generated in various types of experimental tests. When a one-gallon container of stores liquid propellant was impacted by a shaped charge, hydraulic pressures in excess of 100,000 psi were produced. This destroyed the gauges. A class of inorganic phosphors, including rare earth-doped lanthanum oxysulfide (La/sub 2/O/sub 2/S:Eu) and yittrium oxysulfide (Y/sub 2/O/sub 2/S:Eu), show spectral emission characteristics that are strongly pressure dependent. The intensity of the emission lines and fluorescence decay time if individual emission lines show pressure dependence in the range of several kbar to greater than 100 kbar. These properties suggest that these phosphors could be applied as remotely operated pressure transducers. In addition phosphors show temperature dependence. This paper discusses the potential of inorganic phosphors to measure high pressure and also examines temperature effects. 5 refs., 7 figs

  11. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-10-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  12. Proton-conducting cerate ceramics

    SciTech Connect

    Pederson, L.R.; Coffey, G.W.; Bates, J.L.; Weber, W.J.

    1996-08-01

    Single-cell solid oxide fuel cells were constructed using strontium cerate as the electrolyte and their performance tested. Like certain zirconates, hafnates, and tantalates, the cerate perovskites are among a class of solid electrolytes that conduct protons at elevated temperatures. Depending on the temperature and chemical environment, these ceramics also support electronic and oxygen ion currents. A maximum power output of {approx}100 mW per cm{sup 2} electrolyte surface area was obtained at 900{degrees}C using 4% hydrogen as the fuel and air as the oxidant. A series of rare earth/ceria/zirconia were prepared and their electrical properties characterized. Rare earth dopants included ytterbia, yttria, terbia, and europia. Ionic conductivities were highest for rare earth/ceria and rare earth zirconia compositions; a minimum in ionic conductivity for all series were found for equimolar mixtures of ceria and zirconia. Cerium oxysulfide is of interest in fossil energy applications because of its high chemical stability and refractory nature. An alternative synthesis route to preparing cerium oxysulfide powders has been developed using combustion techniques.

  13. Synthesis and characterization of physical properties of Gd2O2S:Pr3+ semi-nanoflower phosphor

    NASA Astrophysics Data System (ADS)

    Bagheri, A.; Rezaee Ebrahim Saraee, Kh.; Shakur, H. R.; Zamani Zeinali, H.

    2016-05-01

    Pure gadolinium oxysulfide phosphor (Gd2O2S) and trivalent praseodymium-doped gadolinium oxysulfide phosphor (Gd2O2S:Pr3+) scintillators with semi-nanoflower crystalline structures were successfully synthesized through a precipitation method and subsequent calcination treatment as a converter for X-ray imaging detectors. The characterization such as the crystal structures and nanostructure of Gd2O2S:Pr3+ scintillator measured by XRD and FeE-SEM experiment. The optical properties of Gd2O2S:Pr3+ scintillator were studied. Luminescence spectra of Gd2O2S:Pr3+ under 320 nm UV excitation show a green emission at near 511 nm corresponding to the 3P0-3H4 of Pr ions. After scintillation properties of synthesized Gd2O2S:Pr3+ scintillator investigated, Gd2O2S:Pr3+ scintillating film fabricated on a glass substrate by a sedimentation method. X-ray imaging of the fabricated scintillators confirmed that the Gd2O2S:Pr3+ scintillator could be used for radiography applications in which good spatial resolution is needed.

  14. Nanostructure-Directed Chemical Sensing: The IHSAB Principle and the Effect of Nitrogen and Sulfur Functionalization on Metal Oxide Decorated Interface Response

    PubMed Central

    Laminack, William I.; Gole, James L.

    2013-01-01

    The response matrix, as metal oxide nanostructure decorated n-type semiconductor interfaces are modified in situ through direct amination and through treatment with organic sulfides and thiols, is demonstrated. Nanostructured TiO2, SnOx, NiO and CuxO (x = 1,2), in order of decreasing Lewis acidity, are deposited to a porous silicon interface to direct a dominant electron transduction process for reversible chemical sensing in the absence of significant chemical bond formation. The metal oxide sensing sites can be modified to decrease their Lewis acidity in a process appearing to substitute nitrogen or sulfur, providing a weak interaction to form the oxynitrides and oxysulfides. Treatment with triethylamine and diethyl sulfide decreases the Lewis acidity of the metal oxide sites. Treatment with acidic ethane thiol modifies the sensor response in an opposite sense, suggesting that there are thiol (SH) groups present on the surface that provide a Brønsted acidity to the surface. The in situ modification of the metal oxides deposited to the interface changes the reversible interaction with the analytes, NH3 and NO. The observed change for either the more basic oxynitrides or oxysulfides or the apparent Brønsted acid sites produced from the interaction of the thiols do not represent a simple increase in surface basicity or acidity, but appear to involve a change in molecular electronic structure, which is well explained using the recently developed inverse hard and soft acids and bases (IHSAB) model. PMID:28348345

  15. Characterizing energy dependence and count rate performance of a dual scintillator fiber-optic detector for computed tomography

    SciTech Connect

    Hoerner, Matthew R. Stepusin, Elliott J.; Hyer, Daniel E.; Hintenlang, David E.

    2015-03-15

    Purpose: Kilovoltage (kV) x-rays pose a significant challenge for radiation dosimetry. In the kV energy range, even small differences in material composition can result in significant variations in the absorbed energy between soft tissue and the detector. In addition, the use of electronic systems in light detection has demonstrated measurement losses at high photon fluence rates incident to the detector. This study investigated the feasibility of using a novel dual scintillator detector and whether its response to changes in beam energy from scatter and hardening is readily quantified. The detector incorporates a tissue-equivalent plastic scintillator and a gadolinium oxysulfide scintillator, which has a higher sensitivity to scatter x-rays. Methods: The detector was constructed by coupling two scintillators: (1) small cylindrical plastic scintillator, 500 μm in diameter and 2 mm in length, and (2) 100 micron sheet of gadolinium oxysulfide 500 μm in diameter, each to a 2 m long optical fiber, which acts as a light guide to transmit scintillation photons from the sensitive element to a photomultiplier tube. Count rate linearity data were obtained from a wide range of exposure rates delivered from a radiological x-ray tube by adjusting the tube current. The data were fitted to a nonparalyzable dead time model to characterize the time response. The true counting rate was related to the reference free air dose air rate measured with a 0.6 cm{sup 3} Radcal{sup ®} thimble chamber as described in AAPM Report No. 111. Secondary electron and photon spectra were evaluated using Monte Carlo techniques to analyze ionization quenching and photon energy-absorption characteristics from free-in-air and in phantom measurements. The depth/energy dependence of the detector was characterized using a computed tomography dose index QA phantom consisting of nested adult head and body segments. The phantom provided up to 32 cm of acrylic with a compatible 0.6 cm{sup 3} calibrated

  16. Electrical properties of point defects in CdS and ZnS

    NASA Astrophysics Data System (ADS)

    Varley, J. B.; Lordi, V.

    2013-09-01

    We investigate native point defects in CdS and ZnS, which are conventional n-type buffer layers used in thin-film solar cells. Using hybrid functional calculations, we characterize the electrical behavior of these defects and also consider common impurities such as O, H, and their complexes. We find cation vacancies are the dominant compensating acceptors and recombination centers, and their effects are more dramatic in ZnS than in CdS. We also determine the band alignment for conventional Cu(In,Ga)Se2-based solar cells, giving insight into why CdS outperforms ZnS and why Zn oxysulfides are promising due to their improved conduction band offsets.

  17. Improving the Spatial Resolution of Neutron Imaging at Paul Scherrer Institut - The Neutron Microscope Project

    NASA Astrophysics Data System (ADS)

    Trtik, Pavel; Hovind, Jan; Grünzweig, Christian; Bollhalder, Alex; Thominet, Vincent; David, Christian; Kaestner, Anders; Lehmann, Eberhard H.

    Here we present results stemming from the first prototype of the Neutron Microscope instrument at Paul ScherrerInstitut (PSI). The instrument is based on a very thin gadolinium oxysulfide (Gd2O2S:Tb+) scintillator screen and a magnifying optics. The Neutron Microscope prototype has been tested at the ICON and the BOA beamlines at PSI and sub-10 μm features can be clearly resolved on a focussed ion beam (FIB) enhance test object - a gadolinium-based Siemens star. The spatial resolution of the images of the gadolinium-based Siemensstar assessed by Fourier ring correlation was about 7.6 μm. The outlook for future improvement of the Neutron Microscope system is presented.

  18. Optical fiber sensor for low dose gamma irradiation monitoring

    NASA Astrophysics Data System (ADS)

    de Andrés, Ana I.; Esteban, Ã.`scar; Embid, Miguel

    2016-05-01

    An optical fiber gamma ray detector is presented in this work. It is based on a Terbium doped Gadolinium Oxysulfide (Gd2O2S:Tb) scintillating powder which cover a chemically etched polymer fiber tip. This etching improves the fluorescence gathering by the optical fiber. The final diameter has been selected to fulfill the trade-off between light gathering and mechanical strength. Powder has been encapsulated inside a microtube where the fiber tip is immersed. The sensor has been irradiated with different air Kerma doses up to 2 Gy/h with a 137Cs source, and the spectral distribution of the fluorescence intensity has been recorded in a commercial grade CCD spectrometer. The obtained signal-to-noise ratio is good enough even for low doses, which has allowed to reduce the integration time in the spectrometer. The presented results show the feasibility for using low cost equipment to detect/measure ionizing radiation as gamma rays are.

  19. Laser-induced fluorescence of phosphors for remote cryogenic thermometry

    NASA Technical Reports Server (NTRS)

    Beshears, D. L.; Capps, G. J.; Cates, M. R.; Simmons, C. M.; Schwenterly, S. W.

    1990-01-01

    Remote cryogenic temperature measurements can be made by inducing fluorescence in phosphors with temperature-dependent emissions and measuring the emission lifetimes. The thermographic phosphor technique can be used for making precision, noncontact, cryogenic-temperature measurements in electrically hostile environments, such as high dc electric or magnetic fields. The National Aeronautics and Space Administration is interested in using these thermographic phosphors for mapping hot spots on cryogenic tank walls. Europium-doped lanthanum oxysulfide (La2O2S:Eu) and magnesium fluorogermanate doped with manganese (Mg4FGeO6:Mn) are suitable for low-temperature surface thermometry. Several emission lines, excited by a 337-nm ultraviolet laser, provide fluorescence lifetimes having logarithmic dependence with temperature from 4 to above 125 K. A calibration curve for both La2O2S:Eu and Mg4FGeO6:Mn is presented, as well as emission spectra taken at room temperature and 11 K.

  20. In situ microscopic studies on the structural and chemical behaviors of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Shao, Minhua

    2014-12-01

    The direct observation of the microstructural evolution and state-of-charge (SOC) distribution in active materials is crucial to understand the lithiation/delithiation mechanisms during electrochemical cycling of lithium-ion batteries (LIBs). Owing to their high spatial resolutions and capability to map chemical states by combining other spectroscopic techniques, microscopic techniques including X-ray fluorescence (XRF) microscopy, Raman microscopy, transmission X-ray microscopy (TXM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) play significant roles in real time monitoring the dynamic changes in the LIB electrodes and materials. This paper reviews the recent progress of using in situ microscopic techniques to study LIB materials, including Si-, Sn-, Ge-, C- and metal oxides-based anode materials, and layered oxysulfide, metal fluorides, LiCoO2, LiNi0.8Co0.15Al0.05O2, LiMn2O4, LiFePO4 cathode materials.

  1. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    K. C., Sanal; Nair, P. K.; Nair, M. T. S.

    2017-02-01

    Zinc oxy-sulfide, ZnOxS1-x, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnOxS1-x/SnS-CUB interface, in which the ZnOxS1-x thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (Eg) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO0.27S0.73 and -0.28 eV for SnS-CUB/ZnO0.88S0.12 interfaces. Thin films of ZnOxS1-x with 175-240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO0.27S0.73 with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO0.88S0.12. The optical band gap of the ZnOxS1-x thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  2. Nuclear spin lattice relaxation and conductivity studies of the non-Arrhenius conductivity behavior in lithium fast ion conducting sulfide glasses

    NASA Astrophysics Data System (ADS)

    Meyer, Benjamin Michael

    Homogeneous xB2O3 + (1-x)B 2S3 glasses were prepared between 0 ≤ x ≤ 0.80. Raman, IR, and 11B NMR spectroscopies show that the boron oxide structures of B2O3, especially the six-membered rings, quickly diminish with increasing sulfide content, whereas the corresponding sulfide structures in B2S3 remain relatively intense as oxide content is increased. Differential scanning calorimetry (DSC) and density measurements show that physical properties of these boron oxysulfide glasses heavily favor the B2S3 properties regardless of the amount of B2O3 added to the system. It is hypothesized that the stability of the thioboroxol ring group relative to that of the BS 3/2 trigonal group is a possible source of this behavior. The formation of mixed boron oxysulfide structures of composition BSzO3-z where 0 < z < 3 is proposed. Structural studies of the ternary xLi2S + (1-x)[0.5 B2S3 + 0.5 GeS2] glasses using IR, Raman, and 11B NMR show that these glasses do not have equal sharing of the lithium atoms between GeS2 and B2S3. The IR spectra indicates that the B2S3 glass network are under-doped in comparison to corresponding compositions in the xLi 2S + (1-x)B2S3 binary system. Additionally, the Raman spectra show that the GeS2 glass network is over-modified. 11Boron static NMR gives evidence that ˜80% of the boron atoms are in tetrahedral coordinated. A super macro tetrahedron is proposed as one of the structures in these glasses in which some of them may contain boron sites substituted by germanium atoms at lower Li2S content. Nuclear Spin Lattice Relaxation and ionic conductivity measurements of Li doped Li2S + GeS2 + B2S3 glasses were performed to investigate the ion hopping dynamics and the non-Arrhenius conductivity behavior that has been observed in some fast ion conducting glasses. A distribution of activation energies model was used to fit the NSLR results and conductivity results. Comparisons are made to previously studied binary lithium thio-germanate and binary

  3. Thermographic phosphor strain measurements. Final report

    SciTech Connect

    Allison, S.W.; Capps, G.J.; Smith, D.B.; Cates, M.R.; Gleason, J.; Turley, W.D.

    1994-05-01

    This report describes the first phase of research aimed at developing a high-temperature strain gauge for power equipment use based on materials whose fluorescence characteristics are affected by strain. In electric power generating plants, the combined effect of temperature and strain on equipment and structures is a critical factor in safe, efficient operation and component lifetime. For the first part of this project, the pressure responses of phosphor and crystalline materials were surveyed. Next, pressure measurements on some promising materials, YVO{sub 4}:Dy and Gd{sub 2}O{sub 2}S:Tb, were performed. The latter phosphor appears to exhibit the greatest change with pressure. Its fluorescence lifetime decreases by a factor of 10 with pressure increase of 20 kbar. In a strain test configuration, a tapered sapphire rod compressed a similar phosphor material, La{sub 2}O{sub 2}S:Eu. The intensity level increased, as expected for this material, with compression. Both of the oxysulfide materials possess potential for use in an optical strain gauge for temperatures up to at least 300{degrees}C. It is suggested that a mixture of these two materials may be a useful way to obtain the maximum pressure or strain sensitivity.

  4. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    SciTech Connect

    Chyu, M.K.

    1996-04-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:Eu{sup +3}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  5. Reaction of Hydrogen Sulfide with Oxygen in the Presence ofSulfite

    SciTech Connect

    Weres, Oleh; Tsao, Leon

    1983-01-01

    Commonly, abatement of hydrogen sulfide emissions from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One Mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. The authors studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDT are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use.

  6. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    NASA Astrophysics Data System (ADS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    High surface area TiO2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid - Ni3/2PW12O40 was applied as oxide precursor of the active components. The catalyst was characterized by SBET, XRD, UV-vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  7. Synthesis and photoluminescence properties of red emitting phosphor La2-x Eux Li0.5 Al0.5 O4 [x = 0.2-2] with K2 NiF4 structure.

    PubMed

    Kasturi, S; Satish Kumar, S; Sivakumar, V

    2017-01-31

    Europium (Eu)(3+) -substituted La2 Li0.5 Al0.5 O4 red emitting phosphors were prepared by a conventional high-temperature solid-state reaction method. Powder X-ray diffraction, diffuse reflectance spectra and spectrofluorometry were used as vital characterizing tools for the phosphors. The Eu concentration dependence luminescence properties and Judd-Ofelt intensity parameters were investigated and calculated, respectively. All compositions showed an orange red emission (due to the magnetic and electric dipole transitions of the Eu(3+) ion) with the appropriate Commission Internationale de l'Eclairage (CIE) colour gamut under near ultraviolet or blue ray light excitation. The calculated critical distance showed that the energy transfer occured between Eu to Eu via an exchange mechanism. The Eu1.4 La0.6 Li0.5 Al0.5 O4 composition showed the highest red emission intensity with CIE colour saturation compared with that of the commercial Eu-activated yttrium oxysulfide red phosphor.

  8. ALD Zn(O,S) Thin Films’ Interfacial Chemical and Structural Configuration Probed by XAS

    PubMed Central

    2016-01-01

    The ability to precisely control interfaces of atomic layer deposited (ALD) zinc oxysulfide (Zn(O,S)) buffer layers to other layers allows precise tuning of solar cell performance. The O K- and S K-edge X-ray absorption near edge structure (XANES) of ∼2–4 nm thin Zn(O,S) films reveals the chemical and structural influences of their interface with ZnO, a common electrode material and diffusion barrier in solar cells. We observe that sulfate formation at oxide/sulfide interfaces is independent of film composition, a result of sulfur diffusion toward interfaces. Leveraging sulfur’s diffusivity, we propose an alternative ALD process in which the zinc precursor pulse is bypassed during H2S exposure. Such a process yields similar results to the nanolaminate deposition method and highlights mechanistic differences between ALD sulfides and oxides. By identifying chemical species and structural evolution at sulfide/oxide interfaces, this work provides insights into increasing thin film solar cell efficiencies. PMID:27223620

  9. Comparison of fan- and cone-beam imaging capabilities on a portable x-ray imaging system

    NASA Astrophysics Data System (ADS)

    White, Timothy A.; Roney, Tim J.; Pink, Robert J.; Noo, Frederic; Clackdoyle, Rolf; Smith, Mike; Jones, Warren F.

    1999-09-01

    Portable systems for x-ray imaging of objects up to 20-cm in diameter have been developed for field inspection of industrial objects. These systems can be configured with either a linear diode array (45-cm long, 1024-elements, 12- bits/element) or a large-area amorphous-silicon (a-Si) detector (30 X 40-cm2, 2304 X 3200-elements, 12- bits/element). Each detector utilizes gadolinium oxysulfide as the scintillation element. X-rays are emitted from an 80 to 300-kVp constant-potential source with a spot size of approximately 1.6-mm. The object can be rotated and the source and detector translated vertically for collection of 'spiral' fanbeam or 'helical' conebeam computed-tomography (CT) data. For low-density objects, the reconstructed spatial resolution of CT data collected with either detector is about the same and the choice of detector is determined by detector parameters such as dynamic range and integration/readout time. For higher-density objects, which need to be imaged at higher energies and for which there is a higher probability of Compton scatter, the linear diode array produces better contrast images of small voids in a scattering medium. A series of experiments designed to test the performance of each detector with and without a scattering medium will be presented.

  10. Use of a laser-induced fluorescence thermal imaging system for film cooling heat transfer measurement

    SciTech Connect

    Chyu, M.K.

    1995-10-01

    This paper describes a novel approach based on fluorescence imaging of thermographic phosphor that enables the simultaneous determination of both local film effectiveness and local heat transfer on a film-cooled surface. The film cooling model demonstrated consists of a single row of three discrete holes on a flat plate. The transient temperature measurement relies on the temperature-sensitive fluorescent properties of europium-doped lanthanum oxysulfide (La{sub 2}O{sub 2}S:EU{sup 3+}) thermographic phosphor. A series of full-field surface temperatures, mainstream temperatures, and coolant film temperatures were acquired during the heating of a test surface. These temperatures are used to calculate the heat transfer coefficients and the film effectiveness simultaneously. Because of the superior spatial resolution capability for the heat transfer data reduced from these temperature frames, the laser-induced fluorescence (LIF) imaging system, the present study observes the detailed heat transfer characteristics over a film-protected surface. The trend of the results agrees with those obtained using other conventional thermal methods, as well as the liquid crystal imaging technique. One major advantage of this technique is the capability to record a large number of temperature frames over a given testing period. This offers multiple-sample consistency.

  11. Reaction of hydrogen sulfide with oxygen in the presence of sulfite

    SciTech Connect

    Weres, O.; Tsao, L.

    1983-01-14

    Commonly, abatement of hydrogen sulfide emission from a geothermal powerplant requires that hydrogen sulfide dissolved in the cooling water be eliminated by chemical reaction. Oxidation by atmospheric oxygen is the preferred reaction, but requires a suitable catalyst. Nickel is the most potent and thereby cheapest catalyst for this purpose. One mg/L nickel in the cooling water would allow 99% removal of hydrogen sulfide to be attained. A major drawback of catalytic air oxidation is that colloidal sulfur is a major reaction product; this causes rapid sludge accumulation and deposition of sulfur scale. We studied the kinetics and product distribution of the reaction of hydrogen sulfide with oxygen, catalyzed by nickel. Adding sodium sulfite to the solution completely suppresses formation of colloidal sulfur by converting it to thiosulfate. The oxidation reaction is an autocatalytic, free radical chain reaction. A rate expression for this reaction and a detailed reaction mechanism were developed. Nickel catalyzes the chain initiation step, and polysulfidoradical ions propagate the chains. Several complexes of iron and cobalt were also studied. Iron citrate and iron N-hydroxyEDTA are the most effective iron based catalysts. Uncomplexed cobalt is as effective as nickel, but forms a precipitate of cobalt oxysulfide and is too expensive for practical use. 33 figures, 9 tables.

  12. Development of x-ray imaging technique for liquid screening at airport

    SciTech Connect

    Sulaiman, Nurhani binti Srisatit, Somyot

    2016-01-22

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities of liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid.

  13. Monte Carlo simulation of the transit dosimetric response of an a-Si electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Blake, S. J.; McNamara, A. L.; Vial, P.; Holloway, L.; Greer, P. B.; Kuncic, Z.

    2014-03-01

    Amorphous silicon (a-Si) electronic portal imaging devices (EPIDs) are x-ray detectors frequently used in radiotherapy imaging and dosimetry applications. EPIDs employ a copper plate and gadolinium oxysulfide phosphor screen with an array of a-Si photodiodes to indirectly detect incident radiation. In this study, a previously developed Monte Carlo (MC) model of an a-Si EPID has been extended for transit dosimetry. The GEANT4 MC toolkit was used to integrate an a-Si EPID model with two phantoms and a 6 MV x-ray source. A solid water phantom was used to simulate EPID transmission factors, field size output factors and relative dose profiles and results were compared to experimental measurements. An anthropomorphic head phantom was used to qualitatively compare simulated and measured portal images of humanoid anatomy. Calculated transmission factors and field size output factors agreed to within 2.0% and 1.9% of experimental measurements, respectively. A comparison of calculated and measured relative dose profiles yielded >98% of points passing a gamma analysis with 3%/3 mm criterion for all field sizes. The simulated anthropomorphic head phantom image shows macroscopic anatomical features and qualitatively agrees with the measured image. Results validate the suitability of the MC model for predicting EPID response in transit dosimetry.

  14. Resistive switching characteristics of Cu/ZnO0.4S0.6/Al devices constructed on plastic substrates.

    PubMed

    Han, Yong; Cho, Kyoungah; Kim, Sangsig

    2012-07-01

    In this study, Cu/ZnO0.4S0.6Al devices are fabricated on plastic substrates using the sputtering method at room temperature. The ratio of O/S in the zinc oxysulfide thin film is confirmed to be 0.4/0.6 from the Auger depth profiling. The Cu/ZnO0.4S0.6/Al devices show unipolar resistive switching behaviors and the ratio of the measured resistance in the low-resistance state (LRS) to that in the high-resistance state (HRS) is above 10(4). The conduction mechanism of the LRS is governed by Ohm's law. On the other hand, in the HRS, the conduction mechanism at low voltages is controlled by Ohm's law, but that at high voltages results from the Poole-Frenkel emission mechanism. The Ohmic and Poole-Frenkel conduction mechanisms observed in the LRS and HRS support the filament model of unipolar resistive switching. The memory characteristics of the Cu/ZnO0.4S0.6/Al devices are retained for 10(4) sec without any change.

  15. Development of x-ray imaging technique for liquid screening at airport

    NASA Astrophysics Data System (ADS)

    Sulaiman, Nurhani binti; Srisatit, Somyot

    2016-01-01

    X-ray imaging technology is a viable option to recognize flammable liquids for the purposes of aviation security. In this study, an X-ray imaging technology was developed whereby, the image viewing system was built with the use of a digital camera coupled with a gadolinium oxysulfide (GOS) fluorescent screen. The camera was equipped with a software for remote control setting of the camera via a USB cable which allows the images to be captured. The image was analysed to determine the average grey level using a software designed by Microsoft Visual Basic 6.0. The data was obtained for various densities of liquid thickness of 4.5 cm, 6.0 cm and 7.5 cm respectively for X-ray energies ranging from 70 to 200 kVp. In order to verify the reliability of the constructed calibration data, the system was tested with a few types of unknown liquids. The developed system could be conveniently employed for security screening in order to discriminate between a threat and an innocuous liquid.

  16. A novel structure optical fiber radiation dosimeter for radiotherapy applications

    NASA Astrophysics Data System (ADS)

    Sun, Weimin; Qin, Zhuang; Ma, Yu; Zhao, Wenhui; Hu, Yaosheng; Zhang, Daxin; Chen, Ziyin; Lewis, Elfed

    2016-04-01

    An investigation into a novel in-vivo PMMA (polymethyl methacrylate) fiber-optic dosimeter to monitor the dose of ionizing radiation, both for instantaneous and integrating measurements, for radiotherapy applications is proposed. This fiber sensor is designed as an intracorporal X-ray ionizing sensor to enhance the curative effect of radiotherapy. The fiber-optic dosimeter is made in a PMMA fiber, whose core is micromachined to create a small diameter (0.25 to 0.5 mm) hole at one fiber end. An inorganic scintillating material, terbium-doped gadolinium oxysulfide (Gd2O2S:Tb) is chosen as the sensing material, because it can fluoresce on immediately under exposure of ionizing radiation (X-Rays or electron beam). This sensing material is filled and packaged in the small hole by epoxy resin adhesive. This kind of novel structure dosimeter shows high light coupling efficiency compared with other kind of inorganic scintillation dosimeter. This fiber-optic dosimeter shows good repeatability with a maximum deviation of 0.16%. The testing results of the fiber-optic dosimeter are perfectly proportional to the data of IC with R2 as 0.9999. In addition, the fiber sensor shows excellent isotropic in its radial angular dependence. All the experiments indicate that the fiber-optic dosimeter is properly used for patient in-vivo dosimeter such as brachytherapy applications or intraoperative radiation therapy.

  17. Effect of corrosive contaminants on lubricating properties of turbine oil

    SciTech Connect

    Spirkin, V.G.; Gil`mutdinov, Sh.K.

    1995-01-01

    In the operation of centrifugal and piston compressors on natural gas transmission lines, it is found that air, moisture, and hydrogen sulfide get into the lubricating oil. These contaminants, especially hydrogen sulfide, affect the lubricating properties of the oil to a great degree; however, this problem, which is directly related to the operating reliability of the moving parts of compressors, has not been studied adequately. Oxygen dissolved in the oil forms an iron oxide film on rubbing metal surfaces, protecting them from wear. When no oxygen is present, the wear becomes much more severe, all the way up to grabbing of the rubbing surfaces and pitting. Oil contaminants that form surface films with a different composition and structure, for example oxysulfide films, have received less attention. Using a procedure that we had developed, in which the oil can be saturated with hydrogen sulfide or other gases, we investigated the effects on wear rate and coefficient of friction from the presence of corrosive contaminants that find their way into turbine oil in the process of natural gas transmission.

  18. X-ray performance of a wafer-scale CMOS flat panel imager for applications in medical imaging and nondestructive testing

    NASA Astrophysics Data System (ADS)

    Cha, Bo Kyung; Jeon, Seongchae; Seo, Chang-Woo

    2016-09-01

    This paper presents a wafer-scale complementary metal-oxide semiconductor (CMOS)-based X-ray flat panel detector for medical imaging and nondestructive testing applications. In this study, our proposed X-ray CMOS flat panel imager has been fabricated by using a 0.35 μm 1-poly/4-metal CMOS process. The pixel size is 100 μm×100 μm and the pixel array format is 1200×1200 pixels, which provide a field-of-view (FOV) of 120mm×120 mm. The 14.3-bit extended counting analog-to digital converter (ADC) with built-in binning mode was used to reduce the area and simultaneously improve the image resolution. The different screens such as thallium-doped CsI (CsI:Tl) and terbium gadolinium oxysulfide (Gd2O2S:Tb) scintillators were used as conversion materials for X-rays to visible light photons. The X-ray imaging performance such as X-ray sensitivity as a function of X-ray exposure dose, spatial resolution, image lag and X-ray images of various objects were measured under practical medical and industrial application conditions. This paper results demonstrate that our prototype CMOS-based X-ray flat panel imager has the significant potential for medical imaging and non-destructive testing (NDT) applications with high-resolution and high speed rate.

  19. Electrodeposition of ZnO-doped films as window layer for Cd-free CIGS-based solar cells

    NASA Astrophysics Data System (ADS)

    Tsin, Fabien; Vénérosy, Amélie; Hildebrandt, Thibaud; Hariskos, Dimitrios; Naghavi, Negar; Lincot, Daniel; Rousset, Jean

    2016-02-01

    The Cu(In,Ga)Se2 (CIGS) thin film solar cell technology has made a steady progress within the last decade reaching efficiency up to 22.3% on laboratory scale, thus overpassing the highest efficiency for polycrystalline silicon solar cells. High efficiency CIGS modules employ a so-called buffer layer of cadmium sulfide CdS deposited by Chemical Bath Deposition (CBD), which presence and Cd-containing waste present some environmental concerns. A second potential bottleneck for CIGS technology is its window layer made of i-ZnO/ZnO:Al, which is deposited by sputtering requiring expensive vacuum equipment. A non-vacuum deposition of transparent conductive oxide (TCO) relying on simpler equipment with lower investment costs will be more economically attractive, and could increase competitiveness of CIGS-based modules with the mainstream silicon-based technologies. In the frame of Novazolar project, we have developed a low-cost aqueous solution photo assisted electrodeposition process of the ZnO-based window layer for high efficiency CIGS-based solar cells. The window layer deposition have been first optimized on classical CdS buffer layer leading to cells with efficiencies similar to those measured with the sputtered references on the same absorber (15%). The the optimized ZnO doped layer has been adapted to cadmium free devices where the CdS is replaced by chemical bath deposited zinc oxysulfide Zn(S,O) buffer layer. The effect of different growth parameters has been studied on CBD-Zn(S,O)-plated co-evaporated Cu(In,Ga)Se2 substrates provided by the Zentrum für Sonnenenergie-und Wasserstoff-Forschung (ZSW). This optimization of the electrodeposition of ZnO:Cl on CIGS/Zn(S,O) stacks led to record efficiency of 14%, while the reference cell with a sputtered (Zn,Mg)O/ZnO:Al window layer has an efficiency of 15.2%.

  20. Novel applications of diagnostic x-rays in activating photo-agents through x-ray induced visible luminescence from rare-earth particles: an in vitro study

    NASA Astrophysics Data System (ADS)

    Abliz, Erkinay; Collins, Joshua E.; Friedberg, Joseph S.; Kumar, Ajith; Bell, Howard; Waynant, Ronald W.; Tata, Darrell B.

    2010-02-01

    Photodynamic agents such as Photofrin II (Photo II) utilized in photodynamic therapy (PDT) possess a remarkable property to become preferentially retained within the tumor's micro-environment. Upon the photo-agent's activation through visible light photon absorption, the agents exert their cellular cytotoxicity through type II and type I mechanistic pathways through extensive generation of reactive oxygen species (ROS): singlet oxygen 1O2, superoxide anion O2 -, and hydrogen peroxide H2O2, within the intratumoral environment. Unfortunately, due to shallow visible light penetration depth (~2mm to 5mm) in tissues, the PDT strategy currently has largely been restricted to the treatments of surface tumors, such as the melanomas. Additional invasive strategies through optical fibers are currently utilized in getting the visible light into the intended deep seated targets within the body for PDT. In this communication, we report on a novel strategy in utilizing "soft" energy diagnostic X-rays to indirectly activate Photo II through X-ray induced luminescence from Gadolinium oxysulfide (20 micron dimension) particles doped with Terbium: Gd2O2S:Tb. X-ray induced visible luminescence from Gd2O2S:Tb particles was spectroscopically characterized and the ROS production levels from clinically relevant concentration (10 μg/ml) of Photo II was quantified through changes in the Vitamin C absorbance. ROS kinetics through X-ray induced luminescence was found to be similar to the ROS kinetics from red He-Ne laser exposures used in the clinics. Taken together, in-vitro findings herein provide the basis for future studies in determining the safety and efficacy of this non-invasive X-ray induced luminescence strategy in activating photo-agent in deep seated tumors.

  1. Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations.

    PubMed

    Peter, Matthias; Marks, Tobin J

    2015-12-09

    Using abundant soft oxidants, a high methane-to-ethylene conversion might be achievable due to the low thermodynamic driving force for over-oxidation. Here we report on the oxidative coupling of methane by gaseous S2 (SOCM). The catalytic properties of Pd/Fe3O4 are compared with those of Fe3O4, and it is found that high ethylene selectivities can be achieved without noble metals; conversion and selectivity on Fe3O4 are stable for at least 48 h at SOCM conditions. SOCM data for 10 oxides are compared, and ethylene selectivities as high as 33% are found; the C2H4/C2H6 ratios of 9-12 observed at the highest S2 conversions are significantly higher than the C2H4/C2H6 ratios usually found in the CH4 coupling with O2. Complementary in-detail analytical studies show that, on Mg, Zr, Sm, W, and La catalysts, which strongly coke during the reaction, lower ethylene selectivities are observed than on Fe, Ti, and Cr catalysts, which only coke to a minor extent. Further catalyst-dependent changes during SOCM in surface area, surface composition, and partial conversion to oxysulfides and sulfides are discussed. Evidence concerning the reaction mechanism is obtained taking into account the selectivity for the different reaction products versus the contact time. CH4 coupling proceeds non-oxidatively with the evolution of H2 on some catalysts, and evidence is presented that C2H4 and C2H2 formation occur via C2H6 and C2H4 dehydrogenation, respectively.

  2. Toxicity evaluation of high-fluorescent rare-earth metal nanoparticles for bioimaging applications.

    PubMed

    Hernandez-Adame, Luis; Cortez-Espinosa, Nancy; Portales-Pérez, Diana P; Castillo, Claudia; Zhao, Wayne; Juarez, Zaida N; Hernandez, Luis R; Bach, Horacio; Palestino, Gabriela

    2017-04-01

    Research on nanometer-sized luminescent semiconductors and their biological applications in detectors and contrasting agents is an emergent field in nanotechnology. When new nanosize technologies are developed for human health applications, their interaction with biological systems should be studied in depth. Rare-earth elements are used in medical and industrial applications, but their toxic effects are not known. In this work, the biological interaction between terbium-doped gadolinium oxysulfide nanoparticles (GOSNPs) with human peripheral blood mononuclear cells (PBMC), human-derived macrophages (THP-1), and human cervical carcinoma cell (HeLa) were evaluated. The GOSNPs were synthetized using a hydrothermal method to obtain monodisperse nanoparticles with an average size of 91 ± 9 nm. Characterization techniques showed the hexagonal phase of the Gd2 O2 S:Tb(3+) free of impurities, and a strong green emission at λemi  = 544 nm produced by Tb(3+) was observed. Toxic effects of GOSNPs were evaluated using cell viability, apoptosis, cell-cycle progression, and immunological response techniques. In addition, an Artemia model was used to assess the toxicity in vivo. Results indicated cell apoptosis in both types of cells with less sensitivity for PBMC cells compared to HeLa cells. In addition, no toxic effects were observed in the in vivo model of Artemia. Moreover, GOSNPs significantly reduced the activation and cell-cycle progression of PBMC and HeLa cells, respectively. Interestingly, an increase in proinflammatory cytokines was not observed. Our data suggest that fluorescence applications of GOSNPs for biolabeling are not toxic in primary immune cells and they may have an immunomodulatory effect. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 605-615, 2017.

  3. TH-C-17A-07: Visualizing and Quantifying Radiation Therapy in Real-Time Using a Novel Beam Imaging Technique

    SciTech Connect

    Jenkins, C; Naczynski, D; Xing, L

    2014-06-15

    Purpose: Radiation therapy uses invisible high energy X-rays to treat an invisible tumor. Proper positioning of the treatment beam relative to the patient's anatomy during dose delivery is critically important to the success of treatment. We develop and characterize a novel radiation therapy beam visualization technique for real-time monitoring of patient treatment. Methods: Custom made flexible scintillator sheets were fabricated from gadolinium oxysulfide (GOS) particles that had been doped with terbium within a silicone elastomer matrix. Sheets of several thicknesses ranging from 0.3 to 1mm were prepared and tested. Sheets were exposed to megavoltage X-ray and electron beams from a Varian linac and the resulting optical signal was collected by multiple CMOS cameras placed in the treatment room. Real-time images were collected for different beam energies and dose rates. Signal intensity and SNR were calculated by processing the acquired images. Results: All signals were detectable in the presence of full room lighting and at an integration time of 45ms. Average signal intensity and SNR increased with both sheet thickness and dose rate and decreased with beam energy and incident light. For a given sheet thickness and beam energy the correlation between dose rate and signal intensity was highly linear. Increased sheet thickness or dose rate results in a linear increase in the detected signal. All results are consistent with analytical approximations. Conclusion: The technique offers a means of accurately visualizing a radiation therapy beam shape and fluence in real time. The effects of salient parameters have been characterized and will enable further optimization of the technique as it is implemented into the clinical workflow. The project described was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health through UL1 TR001085.

  4. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  5. A Hypothesis for Cast Iron Microstructures

    NASA Astrophysics Data System (ADS)

    Campbell, John

    2009-12-01

    The various microstructures of cast irons are reviewed, including carbidic and graphite forms (flake, compacted, spheroidal, and undercooled, etc.), exploring whether the presence of externally introduced defects in the form of oxide double films (bifilms) in suspension in melts seem to provide, for the first time, a uniform explanation for all the structures and their properties. Silica-rich oxide bifilms provide the substrates on which oxysulfide particles form, nucleating graphite. The presence of the film provides the favored substrate over which graphite grows, which leads to the development of flake graphite. The addition of limited Mg to form compacted graphite destroys all but a remnant of the silica-rich bifilms. The oxide film remnant is stabilized by the presence of the graphite nucleus, which causes the graphite to grow unidirectionally in a filamentary form. The addition of excess Mg destroys all traces of the oxide bifilms, leaving only the original nuclei, around which graphite is now free to entirely enclose, initiating the spherical growth mode. Undercooled graphite is the true coupled growth form, nucleated at even lower temperatures in the absence of favorable film substrates in suspension; the graphite adopts a continuous growth mode in a matrix of austenite. Carbides in mottled and white irons form on the oxide bifilms that often lie along grain and interdendritic boundaries, which explains the apparent brittleness of these strong, hard phases. In most cases of nonspheroidal growth modes (flake and misshaped spheroids), it is proposed that the impairment of the mechanical properties of irons is not strongly determined by graphite morphology but by the presence of oxide bifilms. Spheroidal graphite iron has the potential for high properties because of the absence of bifilms.

  6. An experimentally supported model for the origin of charge transport barrier in Zn(O,S)/CIGSSe solar cells

    SciTech Connect

    Chua, Rou Hua; Li, Xianglin; Walter, Thomas; Teh, Lay Kuan; Hahn, Thomas; Hergert, Frank; Mhaisalkar, Subodh; Wong, Lydia Helena

    2016-01-25

    Zinc oxysulfide buffer layers with [O]:[S] of 1:0, 6:1, 4:1, 2:1, and 1:1 ratios were deposited by atomic layer deposition on Cu(In,Ga)(S,Se){sub 2} absorbers and made into finished solar cells. We demonstrate using Time-Resolved Photoluminescence that the minority carrier lifetime of Zn(O,S) buffered solar cells is dependent on the sulfur content of the buffer layer. τ{sub 1} for devices with [O]:[S] of 1:0–4:1 are <10 ns, indicating efficient charge separation in devices with low sulfur content. An additional τ{sub 2} is observed for relaxed devices with [O]:[S] of 2:1 and both relaxed and light soaked devices with [O]:[S] of 1:1. Corroborated with one-dimensional electronic band structure simulation results, we attribute this additional decay lifetime to radiative recombination in the absorber due to excessive acceptor-type defects in sulfur-rich Zn(O,S) buffer layer that causes a buildup in interface-barrier for charge transport. A light soaking step shortens the carrier lifetime for the moderately sulfur-rich 2:1 device when excess acceptors are passivated in the buffer, reducing the crossover in the dark and illuminated I-V curves. However, when a high concentration of excess acceptors exist in the buffer and cannot be passivated by light soaking, as with the sulfur-rich 1:1 device, then cell efficiency of the device will remain low.

  7. Microstructure, texture evolution and magnetic properties of strip-casting non-oriented 6.5 wt.% Si electrical steel doped with cerium

    SciTech Connect

    Li, Hao-Ze Liu, Hai-Tao; Liu, Zhen-Yu Wang, Guo-Dong

    2015-05-15

    A 0.3 mm thick non-oriented 6.5 wt.% Si electrical steel sheet doped with cerium is produced by twin-roll strip casting, hot rolling, warm rolling and annealing. A detailed study of the cerium precipitates in the as-cast strip, microstructure and texture evolution at different processing stages is carried out by electron probe micro-analysis, optical microscopy, X-ray diffraction and electron backscattered diffraction analysis. Grain interior distributing precipitates identified as Ce-oxides, Ce-oxysulfides and Ce-phosphides, and boundary distributing Ce-oxides and Ce-phosphides are observed in the as-cast strip. The initial as-cast strip is characterized by a much finer solidification microstructure and dominated by obvious < 001 >//ND texture through the strip thickness. After hot and warm rolling, inhomogeneous microstructure containing large amounts of in-grain shear bands is characterized by mixed < 110 >//RD and < 111 >//ND textures. The texture of the annealed sheet with a relatively large average grain size is far more optimized by the domination of the beneficial cube, rotated cube, (001)< 120 > to (001)< 130 > and Goss texture components, and the elimination of the detrimental γ-fiber texture, leading to a superior magnetic induction and improved iron loss. - Highlights: • An Fe–6.5 wt.% Si as-cast strip doped with cerium was produced. • A thin warm rolled sheet with limited edge cracks was obtained. • Microstructure and texture evolution at each stage were investigated. • Strong λ-fiber and Goss recrystallization textures were formed. • The magnetic properties of the annealed sheet were significantly improved.

  8. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  9. Tungsten disulfide nanotubes reinforced biodegradable polymers for bone tissue engineering.

    PubMed

    Lalwani, Gaurav; Henslee, Allan M; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F Kurtis; Mikos, Antonios G; Sitharaman, Balaji

    2013-09-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt.%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental group. Single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as the baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus and flexural yield strength) of WSNT-reinforced PPF nanocomposites compared to the baseline control. In comparison to the positive controls, significant improvements in the mechanical properties of WSNT nanocomposites were also observed at various concentrations. In general, the inorganic nanotubes (WSNTs) showed mechanical reinforcement better than (up to 127%) or equivalent to that of carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt.%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron-sized aggregates. The trend in the surface area of nanostructures obtained by Brunauer-Emmett-Teller (BET) surface area analysis was SWCNTs>MWCNTs>WSNTs. The BET surface area analysis, TEM analysis and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), the presence of functional groups (such as sulfide and oxysulfide) and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters

  10. WE-D-17A-02: Evaluation of a Two-Dimensional Optical Dosimeter On Measuring Lateral Profiles of Proton Pencil Beams

    SciTech Connect

    Hsi, W; Lee, T; Schultz, T; Arjomandy, B; Park, S; Gao, M; Pankuch, M; Boyer, S; Mah, D; Pillainayagam, M; Schreuder, A

    2014-06-15

    Purpose: To evaluate the accuracy of a two-dimensional optical dosimeter on measuring lateral profiles for spots and scanned fields of proton pencil beams. Methods: A digital camera with a color image senor was utilized to image proton-induced scintillations on Gadolinium-oxysulfide phosphor reflected by a stainless-steel mirror. Intensities of three colors were summed for each pixel with proper spatial-resolution calibration. To benchmark this dosimeter, the field size and penumbra for 100mm square fields of singleenergy pencil-scan protons were measured and compared between this optical dosimeter and an ionization-chamber profiler. Sigma widths of proton spots in air were measured and compared between this dosimeter and a commercial optical dosimeter. Clinical proton beams with ranges between 80 mm and 300 mm at CDH proton center were used for this benchmark. Results: Pixel resolutions vary 1.5% between two perpendicular axes. For a pencil-scan field with 302 mm range, measured field sizes and penumbras between two detection systems agreed to 0.5 mm and 0.3 mm, respectively. Sigma widths agree to 0.3 mm between two optical dosimeters for a proton spot with 158 mm range; having widths of 5.76 mm and 5.92 mm for X and Y axes, respectively. Similar agreements were obtained for others beam ranges. This dosimeter was successfully utilizing on mapping the shapes and sizes of proton spots at the technical acceptance of McLaren proton therapy system. Snow-flake spots seen on images indicated the image sensor having pixels damaged by radiations. Minor variations in intensity between different colors were observed. Conclusions: The accuracy of our dosimeter was in good agreement with other established devices in measuring lateral profiles of pencil-scan fields and proton spots. A precise docking mechanism for camera was designed to keep aligned optical path while replacing damaged image senor. Causes for minor variations between emitted color lights will be investigated.

  11. Crystal Chemistry and Ceramic Processing of Rare Earth Chalcogenide Optical and Electronic Materials

    NASA Astrophysics Data System (ADS)

    Vaughan, Cheryl Marie

    1990-01-01

    The thesis is concerned with the development of new IR transmitting materials for the 8-14 micrometer atomspheric window. The strategy was to investigate, in detail, the synthesis, crystal chemistry, processing, optical, and electronic properties of the rare earth sulfide as candidate materials. The rare earths crystallize in five known structures. Study of their temperature stabilities during long reaction times showed that alpha (orthorhombic, Pnma) exists as the low temperature form, and gamma (cubic, I| 43d) exists as the high temperature form in the large rare earths. Delta (monoclinic, P2/m) exists in the smaller rare earths from Ho through Tm over all temperature ranges, and episilon (trigonal, R| 3c) forms from Yb and Lu. Beta (tetragonal, I4/acd), which is reported in literature as a mid temperature range, oxygen stabilized rare earth sulfide, appears to be an oxysulfide and is an intermediate step between the oxide and sulfide from La through Nd. Extremely fine-grained precursor oxides were synthesized by evaporative decomposition of solution. An ultrasonic dispersion of aqueous nitrate salts is misted into a hot walled furnace. The 2-5 micrometer resulting oxides were predominantly well-crystallized spherical particles. The sesquisulfides could be readily synthesized by direct reaction of the oxides with flowing H_2S in the presence of graphite. These reactive, fine-grained, EDS-derived sulfides could be sintered into ceramic compacts that achieved 92 -98 percent of theoretical density. Sintering temperatures from 1200^circ-1400 ^circC and time of 80-120 minutes in flowing H_2S produced the best ceramics. This method of preparation is superior to the method using stock 25-35 micrometer starting materials which only received 70-78 percent of theoretical density. The measurement of the electronic absorption edge yielded band gaps of 1.6-2.6 eV. The first-order transverse and longitudinal phonon frequencies obtained by specular reflectance FTIR spectroscopy

  12. The energy transfer phenomena and colour tunability in Y2O2S:Eu(3+)/Dy(3+) micro-fibers for white emission in solid state lighting applications.

    PubMed

    Som, S; Mitra, P; Kumar, Vijay; Kumar, Vinod; Terblans, J J; Swart, H C; Sharma, S K

    2014-07-14

    This paper reports on the structural, optical and photometric characterization of an Eu(3+)/Dy(3+) doped yttrium oxysulfide phosphor (Y2O2S:Eu(3+)/Dy(3+)) for near white emission in solid state lighting. A series of Y2O2S phosphors doped with Eu(3+)/Dy(3+) were prepared by the hydrothermal method. The microstructures of the as-synthesized phosphors were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results reveal that the obtained powder phosphors have a single-phase hexagonal structure and also indicate that the incorporation of the dopants/co-dopants did not affect the crystal structure. The SEM images reveal the morphology of the prepared phosphors as an intense interpenetrating network of interconnected micro-fibers with a diameter of about 0.15 μm. The band gap of the phosphors was calculated from diffuse reflectance spectra using the Kubelka-Munk function. The Eu(3+), Dy(3+) doped and Eu(3+)/Dy(3+) co-doped phosphors illuminated with ultraviolet light showed characteristic red luminescence corresponding to the (5)D0→(7)FJ transitions of Eu(3+) and characteristic blue and yellow luminescence corresponding to the (4)F9/2→(6)H15/2 or (4)F9/2→(6)H13/2 transitions of Dy(3+). The luminescence spectra, the energy transfer efficiency and the decay curves of the phosphors indicated that there exists a strong energy transfer from Dy(3+) to Eu(3+) and this was demonstrated to be a resonant type via a dipole-quadrupole reaction. Furthermore, the critical distance of the Eu(3+) and Dy(3+) ions have also been calculated. By utilizing the principle of energy transfer it was also demonstrated that with an appropriate tuning of the activator content the Y2O2S:Eu(3+)/Dy(3+) phosphors can exhibit a great potential to act as single-emitting component phosphors for white light emission in solid state lighting technology.

  13. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    USGS Publications Warehouse

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  14. Analysis of a free-running synchronization artifact correction for MV-imaging with aSi:H flat panels

    SciTech Connect

    Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Sedlmayer, Felix; Deutschmann, Heinz; Huber, Stefan

    2013-03-15

    Purpose: Solid state flat panel electronic portal imaging devices (EPIDs) are widely used for megavolt (MV) photon imaging applications in radiotherapy. In addition to their original purpose in patient position verification, they are convenient to use in quality assurance and dosimetry to verify beam geometry and dose deposition or to perform linear accelerator (linac) calibration procedures. However, native image frames from amorphous silicon (aSi:H) detectors show a range of artifacts which have to be eliminated by proper correction algorithms. When a panel is operated in free-running frame acquisition mode, moving vertical stripes (periodic synchronization artifacts) are a disturbing feature in image frames. Especially for applications in volumetric intensity modulated arc therapy (VMAT) or motion tracking, the synchronization (sync) artifacts are the limiting factor for potential and accuracy since they become even worse at higher frame rates and at lower dose rates, i.e., linac pulse repetition frequencies (PRFs). Methods: The authors introduced a synchronization correction method which is based on a theoretical model describing the interferences of the panel's readout clocking with the linac's dose pulsing. Depending on the applied PRF, a certain number of dose pulses is captured per frame which is readout columnwise, sequentially. The interference of the PRF with the panel readout is responsible for the period and the different gray value levels of the sync stripes, which can be calculated analytically. Sync artifacts can then be eliminated multiplicatively in precorrected frames without additional information about radiation pulse timing. Results: For the analysis, three aSi:H EPIDs of various types were investigated with 6 and 15 MV photon beams at varying PRFs of 25, 50, 100, 200, and 400 pulses per second. Applying the sync correction at panels with gadolinium oxysulfide scintillators improved single frame flood field image quality drastically

  15. Metal oxide electrocatalysts for alternative energy technologies

    NASA Astrophysics Data System (ADS)

    Pacquette, Adele Lawren

    This dissertation focuses on the development of metal oxide electrocatalysts with varying applications for alternative energy technologies. Interest in utilizing clean, renewable and sustainable sources of energy for powering the planet in the future has received much attention. This will address the growing concern of the need to reduce our dependence on fossil fuels. The facile synthesis of metal oxides from earth abundant metals was explored in this work. The electrocatalysts can be incorporated into photoelectrochemical devices, fuel cells, and other energy storage devices. The first section addresses the utilization of semiconductors that can harness solar energy for water splitting to generate hydrogen. An oxysulfide was studied in order to combine the advantageous properties of the stability of metal oxides and the visible light absorbance of metal chalcogenides. Bi 2O2S was synthesized under facile hydrothermal conditions. The band gap of Bi2O2S was smaller than that of its oxide counterpart, Bi2O3. Light absorption by Bi 2O2S was extended to the visible region (>600 nm) in comparison to Bi2O3. The formation of a composite with In 2O3 was formed in order to create a UV irradiation protective coating of the Bi2O2S. The Bi2O2S/In 2O3 composite coupled with a dye CrTPP(Cl) and cocatalysts Pt and Co3O4 was utilized for water splitting under light irradiation to generate hydrogen and oxygen. The second section focuses on improving the stability and light absorption of semiconductors by changing the shapes and morphologies. One of the limitations of semiconductor materials is that recombination of electron-hole pairs occur within the bulk of the materials instead of migration to the surface. Three-dimensional shapes, such as nanorods, can prevent this recombination in comparison to spherical particles. Hierarchical structures, such as dendrites, cubes, and multipods, were synthesized under hydrothermal conditions, in order to reduce recombination and improve

  16. UT-CT: A National Resource for Applications of High-Resolution X-ray Computed Tomography in the Geological Sciences

    NASA Astrophysics Data System (ADS)

    Carlson, W. D.; Ketcham, R. A.; Rowe, T. B.

    2002-12-01

    An NSF-sponsored (EAR-IF) shared multi-user facility dedicated to research applications of high-resolution X-ray computed tomography (CT) in the geological sciences has been in operation since 1997 at the University of Texas at Austin. The centerpiece of the facility is an industrial CT scanner custom-designed for geological applications. Because the instrument can optimize trade-offs among penetrating ability, spatial resolution, density discrimination, imaging modes, and scan times, it can image a very broad range of geological specimens and materials, and thus offers significant advantages over medical scanners and desktop microtomographs. Two tungsten-target X-ray sources (200-kV microfocal and 420-kV) and three X-ray detectors (image-intensifier, high-sensitivity cadmium tungstate linear array, and high-resolution gadolinium-oxysulfide radiographic line scanner) can be used in various combinations to meet specific imaging goals. Further flexibility is provided by multiple imaging modes: second-generation (translate-rotate), third-generation (rotate-only; centered and variably offset), and cone-beam (volume CT). The instrument can accommodate specimens as small as about 1 mm on a side, and as large as 0.5 m in diameter and 1.5 m tall. Applications in petrology and structural geology include measuring crystal sizes and locations to identify mechanisms governing the kinetics of metamorphic reactions; visualizing relationships between alteration zones and abundant macrodiamonds in Siberian eclogites to elucidate metasomatic processes in the mantle; characterizing morphologies of spiral inclusion trails in garnet to test hypotheses of porphyroblast rotation during growth; measuring vesicle size distributions in basaltic flows for determination of elevation at the time of eruption to constrain timing and rates of continental uplift; analysis of the geometry, connectivity, and tortuosity of migmatite leucosomes to define the topology of melt flow paths, for numerical

  17. A piecewise-focused high DQE detector for MV imaging

    PubMed Central

    Star-Lack, Josh; Shedlock, Daniel; Swahn, Dennis; Humber, Dave; Wang, Adam; Hirsh, Hayley; Zentai, George; Sawkey, Daren; Kruger, Isaac; Sun, Mingshan; Abel, Eric; Virshup, Gary; Shin, Mihye; Fahrig, Rebecca

    2015-01-01

    Purpose: Electronic portal imagers (EPIDs) with high detective quantum efficiencies (DQEs) are sought to facilitate the use of the megavoltage (MV) radiotherapy treatment beam for image guidance. Potential advantages include high quality (treatment) beam’s eye view imaging, and improved cone-beam computed tomography (CBCT) generating images with more accurate electron density maps with immunity to metal artifacts. One approach to increasing detector sensitivity is to couple a thick pixelated scintillator array to an active matrix flat panel imager (AMFPI) incorporating amorphous silicon thin film electronics. Cadmium tungstate (CWO) has many desirable scintillation properties including good light output, a high index of refraction, high optical transparency, and reasonable cost. However, due to the 0 1 0 cleave plane inherent in its crystalline structure, the difficulty of cutting and polishing CWO has, in part, limited its study relative to other scintillators such as cesium iodide and bismuth germanate (BGO). The goal of this work was to build and test a focused large-area pixelated “strip” CWO detector. Methods: A 361  ×  52 mm scintillator assembly that contained a total of 28 072 pixels was constructed. The assembly comprised seven subarrays, each 15 mm thick. Six of the subarrays were fabricated from CWO with a pixel pitch of 0.784 mm, while one array was constructed from BGO for comparison. Focusing was achieved by coupling the arrays to the Varian AS1000 AMFPI through a piecewise linear arc-shaped fiber optic plate. Simulation and experimental studies of modulation transfer function (MTF) and DQE were undertaken using a 6 MV beam, and comparisons were made between the performance of the pixelated strip assembly and the most common EPID configuration comprising a 1 mm-thick copper build-up plate attached to a 133 mg/cm2 gadolinium oxysulfide scintillator screen (Cu-GOS). Projection radiographs and CBCT images of phantoms were acquired. The work

  18. Optimization of phosphor-based detector design for oblique x-ray incidence in digital breast tomosynthesis

    PubMed Central

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2011-01-01

    Purpose: In digital breast tomosynthesis (DBT), a volumetric reconstruction of the breast is generated from a limited range of x-ray projections. One trade-off of DBT is resolution loss in the projections due to non-normal (i.e., oblique) x-ray incidence. Although degradation in image quality due to oblique incidence has been studied using empirical data and Monte Carlo simulations, a theoretical treatment has been lacking. The purpose of this work is to extend Swank’s calculations of the transfer functions of turbid granular phosphors to oblique incidence. The model is ultimately used as a tool for optimizing the design of DBT detectors. Methods: A quantum-limited system and 20 keV x-rays are considered. Under these assumptions, the modulation transfer function (MTF) and noise power spectra (NPS) are derived using the diffusion approximation to the Boltzmann equation to model optical scatter within the phosphor. This approach is applicable to a nonstructured scintillator such as gadolinium oxysulfide doped with terbium (Gd2O2S:Tb), which is commonly used in breast imaging and which can reasonably approximate other detector materials. The detective quantum efficiency (DQE) is then determined from the Nishikawa formulation, where it is written as the product of the x-ray quantum detection efficiency, the Swank factor, and the Lubberts fraction. Transfer functions are calculated for both front- and back-screen configurations, which differ by positioning the photocathode at the exit or entrance point of the x-ray beam, respectively. Results: In the front-screen configuration, MTF and DQE are found to have considerable angular dependence, while NPS is shown to vary minimally with projection angle. As expected, the high frequency MTF and DQE are degraded substantially at large angles. By contrast, all transfer functions for the back-screen configuration have the advantage of significantly less angular dependence. Using these models, we investigated the possibility for

  19. Anode materials for sour natural gas solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Danilovic, Nemanja

    Novel anode catalysts have been developed for sour natural gas solid oxide fuel cell (SOFC) applications. Sour natural gas comprises light hydrocarbons, and typically also contains H2S. An alternative fuel SOFC that operates directly on sour natural gas would reduce the overall cost of plant construction and operation for fuel cell power generation. The anode for such a fuel cell must have good catalytic and electrocatalytic activity for hydrocarbon conversion, sulfur-tolerance, resistance to coking, and good electronic and ionic conductivity. The catalytic activity and stability of ABO3 (A= La, Ce and/or Sr, B=Cr and one or more of Ti, V, Cr, Fe, Mn, or Co) perovskites as SOFC anode materials depends on both A and B, and are modified by substituents. The materials have been prepared by both solid state and wet-chemical methods. The physical and chemical characteristics of the materials have been fully characterized using electron microscopy, XRD, calorimetry, dilatometry, particle size and area, using XPS and TGA-DSC-MS. Electrochemical performance was determined using potentiodynamic and potentiostatic cell testing, electrochemical impedance analysis, and conductivity measurements. Neither Ce0.9Sr0.1VO3 nor Ce0.9 Sr0.1Cr0.5V0.5O3 was an active anode for oxidation of H2 and CH4 fuels. However, active catalysts comprising Ce0:9Sr0:1V(O,S)3 and Ce0.9Sr 0.1Cr0.5V0.5(O,S)3 were formed when small concentrations of H2S were present in the fuels. The oxysulfides formed in-situ were very active for conversion of H2S. The maximum performance improved from 50 mW cm-2 to 85 mW cm -2 in 0.5% H2S/CH4 at 850°C with partial substitution of V by Cr in Ce0.9Sr0.1V(O,S)3. Selective conversion of H2S offers potential for sweetening of sour gas without affecting the hydrocarbons. Perovskites La0.75Sr0.25Cr0.5X 0.5O3--delta, (henceforth referred to as LSCX, X=Ti, Mn, Fe, Co) are active for conversion of H2, CH4 and 0.5% H2S/CH4. The order of activity in the different fuels depends on

  20. Photoelectrochemical Hydrogen Production

    SciTech Connect

    Hu, Jian

    2013-12-23

    -circuit photocurrent density of the hybrid device (measured in a 2-electrode configuration) increased significantly without assistance of any external bias, i.e. from ≤1 mA/cm{sup 2} to ~5 mA/cm{sup 2}. With the copper chalcopyrite compounds, we have achieved a STH efficiency of 3.7% in a coplanar configuration with 3 a-Si solar cells and one CuGaSe{sub 2} photocathode. This material class exhibited good durability at a photocurrent density level of -4 mA/cm{sup 2} (“5% STH” equivalent) at a fixed potential (-0.45 VRHE). A poor band-edge alignment with the hydrogen evolution reaction (HER) potential was identified as the main limitation for high STH efficiency. Three new pathways have been identified to solve this issue. First, PV driver with bandgap lower than that of amorphous silicon were investigated. Crystalline silicon was identified as possible bottom cell. Mechanical stacks made with one Si solar cell and one CuGaSe{sub 2} photocathode were built. A 400 mV anodic shift was observed with the Si cell, leading to photocurrent density of -5 mA/cm{sup 2} at 0VRHE (compared to 0 mA/cm{sup 2} at the same potential without PV driver). We also investigated the use of p-n junctions to shift CuGaSe{sub 2} flatband potential anodically. Reactively sputtered zinc oxy-sulfide thin films was evaluated as n-type buffer and deposited on CuGaSe{sub 2}. Ruthenium nanoparticles were then added as HER catalyst. A 250 mV anodic shift was observed with the p-n junction, leading to photocurrent density at 0VRHE of -1.5 mA/cm{sup 2}. Combining this device with a Si solar cell in a mechanical stack configuration shifted the onset potential further (+400 mV anodically), leading to photocurrent density of -7 mA/cm{sup 2} at 0VRHE. Finally, we developed wide bandgap copper chalcopyrite thin film materials. We demonstrated that Se can be substituted with S using a simple annealing step. Photocurrent densities in the 5-6 mA/cm{sub 2} range were obtained with red 2.0eV CuInGaS{sub 2} photocathodes

  1. Solid State Ionics Advanced Materials for Emerging Technologies

    NASA Astrophysics Data System (ADS)

    Chowdari, B. V. R.; Careem, M. A.; Dissanayake, M. A. K. L.; Rajapakse, R. M. G.; Seneviratne, V. A.

    2006-06-01

    SiO[symbol]) ceramics via solid state sintering of Zr)[symbol] and SiO[symbol] and the effect of dopants on the zircon yield / U. Dhanayake, B. S. B. Karunaratne. Preparation and properties of vanadium doped ZnTe cermet thin films / M. S. Hossain, R. Islam, K. A. Khan. Dynamical properties and electronic structure of lithium-ion conductor / M. Kobayashi ... [et al.]. Cuprous ion conducting Montmorillonite-Polypyrrole nanocomposites / D. M. M. Krishantha ... [et al.]. Frequency dependence of conductivity studies on a newly synthesized superionic solid solution/mixed system: [0.75AgI: 0.25AgCl] / R. K. Nagarch, R. Kumar. Diffuse X-ray and neutron scattering from Powder PbS / X. Lian ... [et al.]. Electron affinity and work function of Pyrolytic MnO[symbol] thin films prepared from Mn(C[symbol]H[symbol]O[symbol])[symbol].4H[symbol]) / A. K. M. Farid Ul Islam, R. Islam, K. A. Khan. Crystal structure and heat capacity of Ba[symbol]Ca[symbol]Nb[symbol]O[symbol] / T. Shimoyama ... [et al.]. XPS and impedance investigations on amorphous vanadium oxide thin films / M. Kamalanathan ... [et al.]. Sintering and mixed electronic-ionic conducting properties of La[symbol]Sr[symbol]NiO[symbol] derived from a polyaminocarboxylate complex precursor / D.-P. Huang ... [et al.]. Preparation and characteristics of ball milled MgH[symbol] + M (M= Fe, VF[symbol] and FeF[symbol]) nanocomposites for hydrogen storage / N. W. B. Balasooriya, Ch. Poinsignon. Structural studies of oxysulfide glasses by X-ray diffraction and molecular dynamics simulation / R. Prasada Rao, M. Seshasayee, J. Dheepa. Synthesis, sintering and oxygen ionic conducting properties of Bi[symbol]V[symbol]Cu[symbol]O[symbol] / F. Zhang ... [et al.]. Synthesis and transport characteristics of PbI[symbol]-Ag[symbol]O-Cr[symbol]O[symbol] superioninc system / S. A. Suthanthiraraj, V. Mathew. Electronic conductivity of La[symbol]Sr[symbol]Ga[symbol]Mg[symbol]Co[symbol]O[symbol] electrolytes / K. Yamaji ... [et al.] -- pt. II. Electrode materials