Science.gov

Sample records for ozonation-biological coupled processes

  1. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*

    PubMed Central

    Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang

    2010-01-01

    A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs. PMID:20205304

  2. Ozone-biological activated carbon as a pretreatment process for reverse osmosis brine treatment and recovery.

    PubMed

    Lee, Lai Yoke; Ng, How Yong; Ong, Say Leong; Hu, Jiang Yong; Tao, Guihe; Kekre, Kiran; Viswanath, Balakrishnan; Lay, Winson; Seah, Harry

    2009-09-01

    Ozonation was used in this study to improve biodegradability of RO brine from water reclamation facilities. An ozone dosage ranging from 3 to 10 mg O(3)/L and contact times of 10 and 20 min in batch studies were found to increase the biodegradability (BOD(5)/TOC ratio) of the RO brine by 1.8-3.5 times. At the same time, total organic carbon (TOC) removal was in the range of 5.3-24.5%. The lab-scale ozone-biological activated carbon (BAC) at an ozone dosage of 6.0mg O(3)/L with 20-min contact time was able to achieve 3 times higher TOC removal compared to using BAC alone. Further processing with Capacitive Deionization (CDI) process was able to generate a product water with better water quality than the RO feed water, i.e., with more than 80% ions removal and a lower TOC concentration. The ozone-BAC pretreatment has the potential of reducing fouling in the CDI process.

  3. Treatment of waste metalworking fluid by a hybrid ozone-biological process.

    PubMed

    Jagadevan, Sheeja; Graham, Nigel J; Thompson, Ian P

    2013-01-15

    In metal machining processes, the regulation of heat generation and lubrication at the contact point are achieved by application of a fluid referred to as metalworking fluid (MWF). MWFs inevitably become operationally exhausted with age and intensive use, which leads to compromised properties, thereby necessitating their safe disposal. Disposal of this waste through a biological route is an increasingly attractive option, since it is effective with relatively low energy demands. However, successful biological treatment is challenging since MWFs are chemically complex, and include biocides specifically to retard microbial deterioration whilst the fluids are operational. In this study remediation of the recalcitrant component of a semi-synthetic MWF by a novel hybrid ozone-bacteriological treatment, was investigated. The hybrid treatment proved to be effective and reduced the chemical oxygen demand by 72% (26.9% and 44.9% reduction after ozonation and biological oxidation respectively). Furthermore, a near-complete degradation of three non-biodegradable compounds (viz. benzotriazole, monoethanolamine, triethanolamine), commonly added as biocides and corrosion inhibitors in MWF formulations, under ozonation was observed. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Hydromechanical coupling in geologic processes

    USGS Publications Warehouse

    Neuzil, C.E.

    2003-01-01

    Earth's porous crust and the fluids within it are intimately linked through their mechanical effects on each other. This paper presents an overview of such "hydromechanical" coupling and examines current understanding of its role in geologic processes. An outline of the theory of hydromechanics and rheological models for geologic deformation is included to place various analytical approaches in proper context and to provide an introduction to this broad topic for nonspecialists. Effects of hydromechanical coupling are ubiquitous in geology, and can be local and short-lived or regional and very long-lived. Phenomena such as deposition and erosion, tectonism, seismicity, earth tides, and barometric loading produce strains that tend to alter fluid pressure. Resulting pressure perturbations can be dramatic, and many so-called "anomalous" pressures appear to have been created in this manner. The effects of fluid pressure on crustal mechanics are also profound. Geologic media deform and fail largely in response to effective stress, or total stress minus fluid pressure. As a result, fluid pressures control compaction, decompaction, and other types of deformation, as well as jointing, shear failure, and shear slippage, including events that generate earthquakes. By controlling deformation and failure, fluid pressures also regulate states of stress in the upper crust. Advances in the last 80 years, including theories of consolidation, transient groundwater flow, and poroelasticity, have been synthesized into a reasonably complete conceptual framework for understanding and describing hydromechanical coupling. Full coupling in two or three dimensions is described using force balance equations for deformation coupled with a mass conservation equation for fluid flow. Fully coupled analyses allow hypothesis testing and conceptual model development. However, rigorous application of full coupling is often difficult because (1) the rheological behavior of geologic media is complex

  5. Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents.

    PubMed

    He, Yaozhong; Wang, Xiaojun; Xu, Jinling; Yan, Jinli; Ge, Qilong; Gu, Xiaoyang; Jian, Lei

    2013-04-01

    A combined process including integrated ozone-BAFs (ozone biological aerated filters) and membrane filtration was first applied for recycling textile effluents in a cotton textile mill with capacity of 5000 m(3)/d. Influent COD (chemical oxygen demand) in the range of 82-120 mg/L, BOD5 (5-day biochemical oxygen demand) of 12.6-23.1 mg/L, suspended solids (SSs) of 38-52 mg/L and color of 32-64° were observed during operation. Outflows with COD≤45 mg/L, BOD5≤7.6 mg/L, SS≤15 mg/L, color≤8° were obtained after being decontaminated by ozone-BAF with ozone dosage of 20-25 mg/L. Besides, the average removal rates of PVA (polyvinyl alcohol) and UV254 were 100% and 73.4% respectively. Permeate water produced by RO (reverse osmosis) could be reused in dyeing and finishing processes, while the RO concentrates could be discharged directly under local regulations with COD≤100 mg/L, BOD5≤21 mg/L, SS≤52 mg/L, color≤32°. Results showed that the combined process could guarantee water reuse with high quality, and solve the problem of RO concentrate disposal.

  6. Textiles wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter.

    PubMed

    Fu, Zhimin; Zhang, Yugao; Wang, Xiaojun

    2011-02-01

    In this study, the performance of the anoxic filter bed and biological wriggle bed-ozone biological aerated filter (AFB-BWB-O(3)-BAF) process treating real textile dyeing wastewater was investigated. After more than 2 month process operation, the average effluent COD concentration of the AFB, BWB, O(3)-BAF were 704.8 mg/L, 294.6 mg/L and 128.8 mg/L, with HRT being 8.1-7.7h, 9.2h and 5.45 h, respectively. Results showed that the effluent COD concentration of the AFB decreased with new carriers added and the average removal COD efficiency was 20.2%. During operation conditions, HRT of the BWB and O(3)-BAF was increased, resulting in a decrease in the effluent COD concentration. However, on increasing the HRT, the COD reduction capability expressed by the unit carrier COD removal loading of the BWB reactor increased, while that of the O(3)-BAF reactor decreased. This study is a beneficial attempt to utilize the AFB-BWB-O(3)-BAF combine process for textile wastewater treatment. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  8. Coping Processes of Couples Experiencing Infertility

    ERIC Educational Resources Information Center

    Peterson, Brennan D.; Newton, Christopher R.; Rosen, Karen H.; Schulman, Robert S.

    2006-01-01

    This study explored the coping processes of couples experiencing infertility. Participants included 420 couples referred for advanced reproductive treatments. Couples were divided into groups based on the frequency of their use of eight coping strategies. Findings suggest that coping processes, which are beneficial to individuals, may be…

  9. Clinical processes in behavioral couples therapy.

    PubMed

    Fischer, Daniel J; Fink, Brandi C

    2014-03-01

    Behavioral couples therapy is a broad term for couples therapies that use behavioral techniques based on principles of operant conditioning, such as reinforcement. Behavioral shaping and rehearsal and acceptance are clinical processes found across contemporary behavioral couples therapies. These clinical processes are useful for assessment and case formulation, as well as teaching couples new methods of conflict resolution. Although these clinical processes assist therapists in achieving efficient and effective therapeutic change with distressed couples by rapidly stemming couples' corrosive affective exchanges, they also address the thoughts, emotions, and issues of trust and intimacy that are important aspects of the human experience in the context of a couple. Vignettes are provided to illustrate the clinical processes described. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  10. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-03-01

    The thermodynamics of irreversible processes leads to nonlinear governing equations for direct and coupled mass transport processes. Analytical solutions of linearized versions of these equations can be used to verify numerical solutions of the nonlinear equations under conditions such that nonlinear terms are relatively small. This report presents derivations of the analytical solutions for one-dimensional and axisymmetric geometries. 7 refs.

  11. Induction coupled thermomagnetic processing: A disruptive technology

    DOE PAGES

    Ahmad, Aquil; Mackiewicz-Ludtka, Gail; Pfaffmann, George; ...

    2016-06-01

    Here, one of the major goals of the U.S. Department of Energy (DoE) is to achieve energy savings with a corresponding reduction in the carbon footprint. With this in mind, the DoE sponsored the Induction Coupled Thermomagnetic Processing (ITMP) project with major partners Eaton Corp., Ajax Tocco Magnethermic, and Oak Ridge National Laboratory (ORNL) to evaluate the viability of processing metals in a strong magnetic field.

  12. Coupled transport processes in semipermeable media

    SciTech Connect

    Jacobsen, J.S.; Carnahan, C.L.

    1990-04-01

    A numerical simulator has been developed to investigate the effects of coupled processes on heat and mass transport in semipermeable media. The governing equations on which the simulator is based were derived using the thermodynamics of irreversible processes. The equations are nonlinear and have been solved numerically using the n-dimensional Newton's method. As an example of an application, the numerical simulator has been used to investigate heat and solute transport in the vicinity of a heat source buried in a saturated clay-like medium, in part to study solute transport in bentonite packing material surrounding a nuclear waste canister. The coupled processes considered were thermal filtration, thermal osmosis, chemical osmosis and ultrafiltration. In the simulations, heat transport by coupled processes was negligible compared to heat conduction, but pressure and solute migration were affected. Solute migration was retarded relative to the uncoupled case when only chemical osmosis was considered. When both chemical osmosis and thermal osmosis were included, solute migration was enhanced. 18 refs., 20 figs.

  13. Processivity and Coupling in Messenger RNA Transcription

    PubMed Central

    Aitken, Stuart; Robert, Marie-Cécile; Alexander, Ross D.; Goryanin, Igor; Bertrand, Edouard; Beggs, Jean D.

    2010-01-01

    Background The complexity of messenger RNA processing is now being uncovered by experimental techniques that are capable of detecting individual copies of mRNA in cells, and by quantitative real-time observations that reveal the kinetics. This processing is commonly modelled by permitting mRNA to be transcribed only when the promoter is in the on state. In this simple on/off model, the many processes involved in active transcription are represented by a single reaction. These processes include elongation, which has a minimum time for completion and processing that is not captured in the model. Methodology In this paper, we explore the impact on the mRNA distribution of representing the elongation process in more detail. Consideration of the mechanisms of elongation leads to two alternative models of the coupling between the elongating polymerase and the state of the promoter: Processivity allows polymerases to complete elongation irrespective of the promoter state, whereas coupling requires the promoter to be active to produce a full-length transcript. We demonstrate that these alternatives have a significant impact on the predicted distributions. Models are simulated by the Gillespie algorithm, and the third and fourth moments of the resulting distribution are computed in order to characterise the length of the tail, and sharpness of the peak. By this methodology, we show that the moments provide a concise summary of the distribution, showing statistically-significant differences across much of the feasible parameter range. Conclusions We conclude that processivity is not fully consistent with the on/off model unless the probability of successfully completing elongation is low—as has been observed. The results also suggest that some form of coupling between the promoter and a rate-limiting step in transcription may explain the cell's inability to maintain high mRNA levels at low noise—a prediction of the on/off model that has no supporting evidence. PMID

  14. Process-independent strong running coupling

    NASA Astrophysics Data System (ADS)

    Binosi, Daniele; Mezrag, Cédric; Papavassiliou, Joannis; Roberts, Craig D.; Rodríguez-Quintero, Jose

    2017-09-01

    We unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann-Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. This reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann-Low effective charge.

  15. Modeling of Inner Magnetosphere Coupling Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, George V.

    2011-01-01

    The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.

  16. Coupled transport processes in semipermeable media

    SciTech Connect

    Carnahan, C.L.; Jacobsen, J.S.

    1990-04-01

    The thermodynamics of irreversible processes (TTIP) is used to derive governing equations and phenomenological equations for transport processes and chemical reactions in water-saturated semipermeable media. TTIP is based on three fundamental postulates. The first postulate, the assumption of local equilibrium, allows the formulation of balance equations for entropy. These equations are the bases for the derivation of governing equations for the thermodynamic variables, temperature, pressure, and composition. The governing equations involve vector fluxes of heat and mass and scalar rates of chemical reactions; in accordance with the second postulate of TTIP, these fluxes and rates are related, respectively, to all scalar driving forces (gradients of thermodynamic variables) acting within the system. The third postulate of TTIP states equality (the Onsager reciprocal relations) between certain of the phenomenological coefficients relating forces and fluxes. The description by TTIP of a system undergoing irreversible processes allows consideration of coupled transport processes such as thermal osmosis, chemical osmosis, and ultrafiltration. The coupled processes can make significant contributions to flows of mass and energy in slightly permeable, permselective geological materials such as clays and shales.

  17. Synthesis report on thermally driven coupled processes

    SciTech Connect

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of

  18. Abstraction of Drift-Scale Coupled Processes

    SciTech Connect

    N.D. Francis; D. Sassani

    2000-03-31

    This Analysis/Model Report (AMR) describes an abstraction, for the performance assessment total system model, of the near-field host rock water chemistry and gas-phase composition. It also provides an abstracted process model analysis of potentially important differences in the thermal hydrologic (TH) variables used to describe the performance of a geologic repository obtained from models that include fully coupled reactive transport with thermal hydrology and those that include thermal hydrology alone. Specifically, the motivation of the process-level model comparison between fully coupled thermal-hydrologic-chemical (THC) and thermal-hydrologic-only (TH-only) is to provide the necessary justification as to why the in-drift thermodynamic environment and the near-field host rock percolation flux, the essential TH variables used to describe the performance of a geologic repository, can be obtained using a TH-only model and applied directly into a TSPA abstraction without recourse to a fully coupled reactive transport model. Abstraction as used in the context of this AMR refers to an extraction of essential data or information from the process-level model. The abstraction analysis reproduces and bounds the results of the underlying detailed process-level model. The primary purpose of this AMR is to abstract the results of the fully-coupled, THC model (CRWMS M&O 2000a) for effects on water and gas-phase composition adjacent to the drift wall (in the near-field host rock). It is assumed that drift wall fracture water and gas compositions may enter the emplacement drift before, during, and after the heating period. The heating period includes both the preclosure, in which the repository drifts are ventilated, and the postclosure periods, with backfill and drip shield emplacement at the time of repository closure. Although the preclosure period (50 years) is included in the process models, the postclosure performance assessment starts at the end of this initial period

  19. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  20. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strength and weakness of the next generation assessment models.

  1. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak

    1999-01-01

    This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  2. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Lie; Sze, N. D.

    1998-01-01

    This is the third semi-annual report for NAS5-97039, covering January through June 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling for this work are the AER 2-dimensional chemistry-transport model, the AER 2-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. We will continue developing our three-wave model so that we can help NASA determine the strengths and weaknesses of the next generation assessment models.

  3. Coupled process modeling and waste package performance

    SciTech Connect

    McGrail, B.P.; Engel, D.W.

    1992-11-01

    The interaction of borosilicate waste glasses with water has been studied extensively and reasonably good models are available that describe the reaction kinetics and solution chemical effects. Unfortunately, these models have not been utilized in performance assessment analyses, except in estimating radionuclide solubilities at the waste form surface. A geochemical model has been incorporated in the AREST code to examine the coupled processes of glass dissolution and transport within the engineering barrier system. Our calculations show that the typical assumptions used in performance assessment analyses, such as fixed solubilities or constant reaction rate at the waste form surface, do not always give conservative or realistic predictions of radionuclide release. Varying the transport properties of the waste package materials is shown to give counterintuitive effects on the release rates of some radionuclides. The use of noncoupled performance assessment models could lead a repository designer to an erroneous conclusion regarding the relative benefit of one waste package design or host rock setting over another.

  4. Coupled time integration of multiphase processes

    NASA Astrophysics Data System (ADS)

    Sehili, A. M.; Wolke, R.; Knoth, O.

    2003-04-01

    The objective of this subproject is the development of a cloud module which combines a complex multiphase chemistry with detailed microphysics. We investigate several numerical approaches for treating such multiphase processes in a parcel model. The chemical conversions within cloud droplets are essentially determined by the mass transfer between gaseous and aqueous phase. The gas uptake depends strongly on resolution of the droplet spectrum. Therefore the droplets are subdivided into several classes. The decomposition of the droplet spectrum into classes is based on the droplets size and, if required, on the amount of scavenged material inside the droplets. This multi-fractional distribution, all microphysical parameters and the transfer rates of liquid water between the different droplet classes are simultaneously generated by a microphysical cloud model. The phase transfer between the gaseous phase and the aqueous phase species in each class is described by the Schwartz approach. The fast dissociation s in the aqueous phase chemistry are treated as forward and backward reactions. As a first step, the usual "operator splitting" approach is used for coupling multiphase chemistry and microphysics . For the multiphase chemistry, we propose implicit schemes for the time integration of the resulting extremely stiff systems of ordinary differential equations. The aqueous phase and gaseous phase chemistry, the mass transfer between the different droplet classes among themselves and with the gaseous phase are integrated in an implicit and coupled manner by higher order BDF methods. For this part we apply a modification of the code LSODE (Hindmarsh, 1983) with an adapted step size control and special linear system solver. These direct sparse techniques exploit the special block structure of the corresponding Jacobian. Furthermore, we utilise an approximate matrix factorisation which decouples multiphase chemistry and microphysical exchange processes of liquid water (e

  5. Processes of Change in Self-Directed Couple Relationship Education

    ERIC Educational Resources Information Center

    Wilson, Keithia L.; Halford, W. Kim

    2008-01-01

    The current study examined the learning processes involved in professionally supported self-directed couple relationship education (CRE). Fifty-nine couples completed Couple CARE, a systematic, self-directed CRE program designed in flexible delivery mode to be completed at home. Couples watched a DVD introducing key relationship ideas and skills…

  6. Couple-responsible therapy process: positive proximal outcomes.

    PubMed

    Butler, M H; Wampler, K S

    1999-01-01

    Therapist-couple struggle vs. cooperation is linked to clinical outcome. This research conceptualizes and investigates treatment process as it relates to the occurrence of struggle versus cooperation. Models of couple-responsible and therapist-responsible process in couple therapy were developed. Couple-responsible process consists of enactments, accommodation, and inductive process. Therapist-responsible process consists of primary therapist-couple interaction, therapist interpretation, and direct instruction. In counterbalanced order, 25 couples were exposed to couple-responsible and therapist-responsible episodes during one therapy session. Couples reviewed videotapes of the episodes and completed measures of responsibility, struggle, and cooperation. Perceived responsibility was higher and struggle was lower during couple-responsible episodes. No difference in cooperation was found. Presence or absence of a contrast condition, where couples reported on one therapist process after already experiencing its opposite, led to main effects for responsibility and struggle, and mediated effects of struggle and cooperation. Generally speaking, responsibility was even higher during couple-responsible episodes and even lower during therapist-responsible episodes when contrast was present. Similarly, struggle was even lower during couple-responsible episodes and even higher during therapist-responsible episodes when contrast was present. For both couple-responsible and therapist-responsible episodes, cooperation was negatively affected by a shift from the prior, opposite therapist process. Significant proportions of the variance in responsibility, struggle, and cooperation, however, were not accounted for by therapist process alone.

  7. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  8. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)

    1999-01-01

    This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.

  9. Coupling Processes Between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, M. K. W.; Weisenstein, Debra; Shia, Run-Li; Sze, N. D.

    1997-01-01

    This is the first semi-annual report for NAS5-97039 summarizing work performed for January 1997 through June 1997. Work in this project is related to NAS1-20666, also funded by NASA ACMAP. The work funded in this project also benefits from work at AER associated with the AER three-dimensional isentropic transport model funded by NASA AEAP and the AER two-dimensional climate-chemistry model (co-funded by Department of Energy). The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the AER two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry.

  10. Coupling entropy of co-processing model on social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli

    2015-08-01

    Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.

  11. Coupling Computer-Aided Process Simulation and ...

    EPA Pesticide Factsheets

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying process design and simulation of develop a process flow diagram describing the energy and basic material flows of the system. Additional techniques developed by the U.S. Environmental Protection Agency for estimating uncontrolled emissions from chemical processing equipment were then applied to obtain a detailed emission profile for the process. Finally, land use for the process was estimated using a simple sizing model. The methodology was applied to a case study of acetic acid production based on the Cativa tm process. The results reveal improvements in the qualitative LCI for acetic acid production compared to commonly used databases and top-down methodologies. The modeling techniques improve the quantitative LCI results for inputs and uncontrolled emissions. With provisions for applying appropriate emission controls, the proposed method can provide an estimate of the LCI that can be used for subsequent life cycle assessments. As part of its mission, the Agency is tasked with overseeing the use of chemicals in commerce. This can include consideration of a chemical's potential impact on health and safety, resource conservation, clean air and climate change, clean water, and sustainable

  12. Thermodynamically coupled mass transport processes in a saturated clay

    SciTech Connect

    Carnahan, C.L.

    1984-11-01

    Gradients of temperature, pressure, and fluid composition in saturated clays give rise to coupled transport processes (thermal and chemical osmosis, thermal diffusion, ultrafiltration) in addition to the direct processes (advection and diffusion). One-dimensional transport of water and a solute in a saturated clay subjected to mild gradients of temperature and pressure was simulated numerically. When full coupling was accounted for, volume flux (specific discharge) was controlled by thermal osmosis and chemical osmosis. The two coupled fluxes were oppositely directed, producing a point of stagnation within the clay column. Solute flows were dominated by diffusion, chemical osmosis, and thermal osmosis. Chemical osmosis produced a significant flux of solute directed against the gradient of solute concentration; this effect reduced solute concentrations relative to the case without coupling. Predictions of mass transport in clays at nuclear waste repositories could be significantly in error if coupled transport processes are not accounted for. 14 references, 8 figures, 1 table.

  13. Synchronization and information processing by an on-off coupling.

    PubMed

    Wei, G W; Zhao, Shan

    2002-05-01

    This paper proposes an on-off coupling process for chaos synchronization and information processing. An in depth analysis for the net effect of a conventional coupling is performed. The stability of the process is studied. We show that the proposed controlled coupling process can locally minimize the smoothness and the fidelity of dynamical data. A digital filter expression for the on-off coupling process is derived and a connection is made to the Hanning filter. The utility and robustness of the proposed approach is demonstrated by chaos synchronization in Duffing oscillators, the spatiotemporal synchronization of noisy nonlinear oscillators, the estimation of the trend of a time series, and restoration of the contaminated solution of the nonlinear Schrödinger equation.

  14. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  15. Phase transformations coupled to deformation processes

    NASA Astrophysics Data System (ADS)

    Lookman, Turab

    2013-06-01

    Phase transformation processes have a substantial impact on the inelastic and damage response of materials. Yet, our understanding of how different loading conditions affect volume fractions of transformed phases, microstructure and transformation pathways is very much in its infancy. With an emphasis on distilling single crystal physics that can, in principle, be incorporated into higher length scale models, I will discuss how recent atomistic simulations on Ti are beginning to provide insights into transformation pathways and the interplay of phase transformations and deformation processes. These simulations are complemented by shock experiments on Zr, Ti together with characterization studies at the Advanced Photon Source.

  16. Solar terrestrial coupling through space plasma processes

    SciTech Connect

    Birn, J.

    2000-12-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project investigates plasma processes that govern the interaction between the solar wind, charged particles ejected from the sun, and the earth's magnetosphere, the region above the ionosphere governed by the terrestrial magnetic field. Primary regions of interest are the regions where different plasma populations interact with each other. These are regions of particularly dynamic plasma behavior, associated with magnetic flux and energy transfer and dynamic energy release. The investigations concerned charged particle transport and energization, and microscopic and macroscopic instabilities in the magnetosphere and adjacent regions. The approaches combined space data analysis with theory and computer simulations.

  17. Dissociative identity disorder and the process of couple therapy.

    PubMed

    Macintosh, Heather B

    2013-01-01

    Couple therapy in the context of dissociative identity disorder (DID) has been neglected as an area of exploration and development in the couple therapy and trauma literature. What little discussion exists focuses primarily on couple therapy as an adjunct to individual therapy rather than as a primary treatment for couple distress and trauma. Couple therapy researchers have begun to develop adaptations to provide effective support to couples dealing with the impact of childhood trauma in their relationships, but little attention has been paid to the specific and complex needs of DID patients in couple therapy (H. B. MacIntosh & S. Johnson, 2008 ). This review and case presentation explores the case of "Lisa," a woman diagnosed with DID, and "Don," her partner, and illustrates the themes of learning to communicate, handling conflicting needs, responding to child alters, and addressing sexuality and education through their therapy process. It is the hope of the author that this discussion will renew interest in the field of couple therapy in the context of DID, with the eventual goal of developing an empirically testable model of treatment for couples.

  18. Coupling Backbarrier Shorelines to Geomorphologic Processes

    NASA Astrophysics Data System (ADS)

    Trimble, S. M.

    2013-12-01

    Recent evidence suggests that back-barrier structure may act as an historical record of island development, and that back-barrier shorelines can be used as a proxy of an island's past and future transgressive response to sea-level rise. The structure and stability of back-barrier shorelines are dependent on the geologic framework, defined here as the combination of nearshore topography, underlying geology, and modern geomorphologic forces. This antecedent framework controls and influences the present morphology, nearshore dynamics, and rates of transgression in response to sea-level rise while also acting as a feedback to the estuary ecology on the bayside. This project establishes a link between process regimes and an island's geomorphological history. Results show that shorelines and bathymetric isolines share quantitative shape signatures indicative of their shared morphological past. Four United States National Seashores are examined: Fire Island, NY; Assateague Island, MD; Santa Rosa Island, FL; and North Padre Island, TX. The alongshore variation of the back-barrier shoreline, mainland shoreline, lagoon bathymetry, and nearshore bathymetry are digitized from aerial imagery. They are quantified through wavelet analysis and their shape signatures are examined for spatial correspondence. Large and small scale variations are identified and attributed to the geomorphologic controls operating on the same scale and alongshore variation. The result is an improved understanding of how the geologic framework controls back-barrier shoreline shape, which is essentially an expression of the underlying geology.

  19. Dyadic Coping in Couple Therapy Process: An Exploratory Study.

    PubMed

    Margola, Davide; Donato, Silvia; Accordini, Monica; Emery, Robert E; Snyder, Douglas K

    2017-07-10

    This study aimed at moving beyond previous research on couple therapy efficacy by examining moment-by-moment proximal couple and therapist interactions as well as final treatment outcomes and their reciprocal association. Seven hundred four episodes of dyadic coping within 56 early therapy sessions, taken from 28 married couples in treatment, were intensively analyzed and processed using a mixed-methods software (T-LAB). Results showed that negative dyadic coping was self-perpetuating, and therapists tended to passively observe the negative couple interaction; on the contrary, positive dyadic coping appeared to require a therapist's intervention to be maintained, and successful interventions mainly included information gathering as well as interpreting. Couples who dropped out of treatment were not actively engaged from the outset of therapy, and they used more negative dyadic coping, whereas couples who successfully completed treatment showed more positive dyadic coping very early in therapy. Results highlight the role of therapist action and control as critical to establishing rapport and credibility in couple therapy and suggest that dyadic coping patterns early in therapy may contribute to variable treatment response. © 2017 Family Process Institute.

  20. Direct coupled microwave thermal processing for photovoltaic device fabrication

    NASA Astrophysics Data System (ADS)

    Guidici, D. C.

    A microwave thermal processing technology has been developed which reduces cycle time and energy requirements for solar cell manufacture through the direct coupling of a tuned microwave field to the material processed. The microwave processing is shown to be feasible for both junction formation and metallization sintering; cells produced have an efficiency of 8%. Diffusion throughput is satisfactory if multiple wafer processing (coin stacks) is used. Metallization sintering throughput is, however, limited by the single wafer process capability, and another form of applicator would be necessary to make microwave heating economically attractive for this process.

  1. The coupling of pathways and processes through shared components

    PubMed Central

    2011-01-01

    Background The coupling of pathways and processes through shared components is being increasingly recognised as a common theme which occurs in many cell signalling contexts, in which it plays highly non-trivial roles. Results In this paper we develop a basic modelling and systems framework in a general setting for understanding the coupling of processes and pathways through shared components. Our modelling framework starts with the interaction of two components with a common third component and includes production and degradation of all these components. We analyze the signal processing in our model to elucidate different aspects of the coupling. We show how different kinds of responses, including "ultrasensitive" and adaptive responses, may occur in this setting. We then build on the basic model structure and examine the effects of additional control regulation, switch-like signal processing, and spatial signalling. In the process, we identify a way in which allosteric regulation may contribute to signalling specificity, and how competitive effects may allow an enzyme to robustly coordinate and time the activation of parallel pathways. Conclusions We have developed and analyzed a common systems platform for examining the effects of coupling of processes through shared components. This can be the basis for subsequent expansion and understanding the many biologically observed variations on this common theme. PMID:21714894

  2. Vibronic coupling simulations for linear and nonlinear optical processes: Theory

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A comprehensive vibronic coupling model based on the time-dependent wavepacket approach is derived to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering. This approach is particularly well suited for combination with first-principles calculations. Expressions for the Franck-Condon terms, and non-Condon effects via the Herzberg-Teller coupling approach in the independent-mode displaced harmonic oscillator model are presented. The significance of each contribution to the different spectral types is discussed briefly.

  3. Coping with early breast cancer: couple adjustment processes and couple-based intervention.

    PubMed

    Naaman, Sandra; Radwan, Karam; Johnson, Susan

    2009-01-01

    Early breast cancer affects one in every nine women along with their families. Advances in screening and biomedical interventions have changed the face of breast cancer from a terminal condition to a chronic disease with biopsychosocial features. The present review surveyed the nature and extent of psychological morbidity experienced by the breast cancer survivor and her spouse during the post-treatment phase, with particular focus on the impact of disease on the marital relationship. Interpersonal processes shown to unfold in couples facing breast cancer, as well as risk factors associated with greater psychological morbidity, were reviewed. Moreover, interpersonal processes central to coping with chronic illness and adjustment were reconceptualized from the point of view of attachment theory. Attachment theory was also used as the grounding framework for an empirically supported couples-based intervention, Emotionally Focused Therapy, which is advanced as a potentially useful treatment option for couples experiencing unremitting psychological and relational distress following diagnosis and treatment for breast cancer.

  4. Simulation of Stochastic Processes by Coupled ODE-PDE

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  5. Fiber-coupled THz spectroscopy for monitoring polymeric compounding processes

    NASA Astrophysics Data System (ADS)

    Vieweg, N.; Krumbholz, N.; Hasek, T.; Wilk, R.; Bartels, V.; Keseberg, C.; Pethukhov, V.; Mikulics, M.; Wetenkamp, L.; Koch, M.

    2007-06-01

    We present a compact, robust, and transportable fiber-coupled THz system for inline monitoring of polymeric compounding processes in an industrial environment. The system is built on a 90cm x 90cm large shock absorbing optical bench. A sealed metal box protects the system against dust and mechanical disturbances. A closed loop controller unit is used to ensure optimum coupling of the laser beam into the fiber. In order to build efficient and stable fiber-coupled antennas we glue the fibers directly onto photoconductive switches. Thus, the antenna performance is very stable and it is secured from dust or misalignment by vibrations. We discuss fabrication details and antenna performance. First spectroscopic data obtained with this system is presented.

  6. Gene regulation and noise reduction by coupling of stochastic processes

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  7. Gene regulation and noise reduction by coupling of stochastic processes

    PubMed Central

    Hornos, José Eduardo M.; Reinitz, John

    2015-01-01

    Here we characterize the low noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the the two gene states depends on protein number. This fact has a very important implication: there exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction. PMID:25768447

  8. Gene regulation and noise reduction by coupling of stochastic processes.

    PubMed

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  9. [Treatment of petrochemical secondary effluent by ozone-biological aerated filter].

    PubMed

    Liu, Ming-Guo; Wu, Chang-Yong; Zhou, Yue-Xi; Gao, Zhen; Wang, Pei-Chao; Yang, Qi; Dong, De

    2014-02-01

    The advanced treatment of petrochemical secondary wastewater by ozone- aerated biological filter was carried out in this study. The effect of pH on ozonation and the removal of COD and UV254 by the ozone-aerated biological filter combined process were investigated. In addition, the variation of relative molecular mass distribution of organics and the characteristics of three-dimensional fluorescence spectra of the wastewater were also investigated. The results showed that the suitable operating conditions of the ozonation unit were: ozone dosage 10 mg x L(-1), contact time 4 min and slightly alkaline pH. Ozonation can transfer macromolecular organics into small molecular organics, resulting in a 15% increase in the percentage of the organics with small relative molecular mass (less than 1 000). The biodegradability of the petrochemical secondary effluent was significantly improved by ozonation, making it more suitable for the treatment by aerated biological filter. The removal efficiency of COD and UV254 were 40.8% and 45.8% when the hydraulic retention time was 3 hours and the gas to water ratio was 3:1 for BAF. The average COD of the petrochemical wastewater was 86.5 mg x L(-1) while the average COD of the effluent of the combined process was 49.4 mg x L(-1) when it was operated under optimal conditions.

  10. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, D.E.; Bieniewski, T.M.

    1987-04-13

    A method of processing materials. The invention enables ultrafine, ultrapure powders to be formed from solid ingots in a gas free environment. A plasma is formed directly from an ingot which insures purity. The vaporized material is expanded through a nozzle and the resultant powder settles on a cold surface. An inductively coupled plasma may also be used to process waste chemicals. Noxious chemicals are directed through a series of plasma tubes, breaking molecular bonds and resulting in relatively harmless atomic constituents. 3 figs.

  11. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Gonnenthal; N. Spyoher

    2001-02-05

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in

  12. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    E. Sonnenthale

    2001-04-16

    The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation studies described in this AMR are required

  13. MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS

    SciTech Connect

    Y.S. Wu

    2005-08-24

    This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on water and gas

  14. Calcium dynamics in astrocyte processes during neurovascular coupling

    PubMed Central

    Otsu, Yo; Couchman, Kiri; Lyons, Declan G; Collot, Mayeul; Agarwal, Amit; Mallet, Jean-Maurice; Pfrieger, Frank W; Bergles, Dwight E; Charpak, Serge

    2015-01-01

    Enhanced neuronal activity in the brain triggers a local increase in blood flow, termed functional hyperemia, via several mechanisms, including calcium (Ca2+) signaling in astrocytes. However, recent in vivo studies have questioned the role of astrocytes in functional hyperemia because of the slow and sparse dynamics of their somatic Ca2+ signals and the absence of glutamate metabotropic receptor 5 in adults. Here, we reexamined their role in neurovascular coupling by selectively expressing a genetically encoded Ca2+ sensor in astrocytes of the olfactory bulb. We show that in anesthetized mice, the physiological activation of olfactory sensory neuron (OSN) terminals reliably triggers Ca2+ increases in astrocyte processes but not in somata. These Ca2+ increases systematically precede the onset of functional hyperemia by 1–2 s, reestablishing astrocytes as potential regulators of neurovascular coupling. PMID:25531572

  15. Characterization of Coupled Hydrologic-Biogeochemical Processes Using Geophysical Data

    SciTech Connect

    Hubbard, Susan

    2005-06-01

    Biogeochemical and hydrological processes are naturally coupled and variable over a wide range of spatial and temporal scales. Many remediation approaches also induce dynamic transformations in natural systems, such as the generation of gases, precipitates and biofilms. These dynamic transformations are often coupled and can reduce the hydraulic conductivity of the geologic materials, making it difficult to introduce amendments or to perform targeted remediation. Because it is difficult to predict these transformations, our ability to develop effective and sustainable remediation conditions at contaminated sites is often limited. Further complicating the problem is the inability to collect the necessary measurements at a high enough spatial resolution yet over a large enough volume for understanding field-scale transformations.

  16. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Colwell, Frederick; Radtke, Corey; Newby, Deborah; Delwiche, Mark; Crawf, Ronald L.; Paszczynski, Andrzej; Strap, Janice; Conrad, Mark; Brodic, Eoin; Starr, Robert; Lee, Hope

    2006-04-05

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires 'lines of evidence' indicating that the wastes are effectively destroyed. Our research will study the coupled biogeochemical processes that dictate the rate of TCE co-metabolism in contaminated aquifers first at the Idaho National Laboratory and then at Paducah or the Savannah River Site, where natural attenuation of TCE is occurring. We will use flow-through in situ reactors to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. We will use new approaches (e.g., stable isotope probing, enzyme activity probes, real-time reverse transcriptase polymerase chain reaction, proteomics) to assay the TCE co-metabolic rates, and interpret these rates in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different methane concentrations and groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites that are contaminated with chlorinated hydrocarbons.

  17. Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Co-Metabolism

    SciTech Connect

    Rick Colwell; Corey Radtke; Mark Delwiche; Deborah Newby; Lynn Petzke; Mark Conrad; Eoin Brodie; Hope Lee; Bob Starr; Dana Dettmers; Ron Crawford; Andrzej Paszczynski; Nick Bernardini; Ravi Paidisetti; Tonia Green

    2006-06-01

    Chlorinated solvent wastes (e.g., trichloroethene or TCE) often occur as diffuse subsurface plumes in complex geological environments where coupled processes must be understood in order to implement remediation strategies. Monitored natural attenuation (MNA) warrants study as a remediation technology because it minimizes worker and environment exposure to the wastes and because it costs less than other technologies. However, to be accepted MNA requires different ?lines of evidence? indicating that the wastes are effectively destroyed. We are studying the coupled biogeochemical processes that dictate the rate of TCE co-metabolism first in the medial zone (TCE concentration: 1,000 to 20,000 ?g/L) of a plume at the Idaho National Laboratory?s Test Area North (TAN) site and then at Paducah or the Savannah River Site. We will use flow-through in situ reactors (FTISR) to investigate the rate of methanotrophic co-metabolism of TCE and the coupling of the responsible biological processes with the dissolved methane flux and groundwater flow velocity. TCE co-metabolic rates at TAN are being assessed and interpreted in the context of enzyme activity, gene expression, and cellular inactivation related to intermediates of TCE co-metabolism. By determining the rate of TCE co-metabolism at different groundwater flow velocities, we will derive key modeling parameters for the computational simulations that describe the attenuation, and thereby refine such models while assessing the contribution of microbial co-metabolism relative to other natural attenuation processes. This research will strengthen our ability to forecast the viability of MNA at DOE and other sites contaminated with chlorinated hydrocarbons.

  18. Model coupling for predicting a developmental patterning process

    NASA Astrophysics Data System (ADS)

    Dhulekar, Nimit; Oztan, Basak; Yener, Bülent

    2016-03-01

    Physics-based-theoretical models have been used to predict developmental patterning processes such as branching morphogenesis for over half a century. While such techniques are quite successful in understanding the patterning processes in organs such as the lung and the kidney, they are unable to accurately model the processes in other organs such as the submandibular salivary gland. One possible reason is the detachment of these models from data that describe the underlying biological process. This hypothesis coupled with the increasing availability of high quality data has made discrete, data-driven models attractive alternatives. These models are based on extracting features from data to describe the patterns and their time evolving multivariate statistics. These discrete models have low computational complexity and comparable or better accuracy than the continuous models. This paper presents a case study for coupling continuous-physics-based and discrete-empirical-models to address the prediction of cleft formation during the early stages of branching morphogenesis in mouse submandibular salivary glands (SMG). Given a time-lapse movie of a growing SMG, first we build a descriptive model that captures the underlying biological process and quantifies this ground truth. Tissue-scale (global) morphological features are used to characterize the biological ground truth. Second, we formulate a predictive model using the level-set method that simulates branching morphogenesis. This model successfully predicts the topological evolution, however, it is blind to the cellular organization, and cell-to-cell interactions occurring inside a gland; information that is available in the image data. Our primary objective via this study is to couple the continuous level set model with a discrete graph theory model that captures the cellular organization but ignores the forces that determine the evolution of the gland surface, i.e. formation of clefts and buds. We compared the

  19. Electric currents couple spatially separated biogeochemical processes in marine sediment.

    PubMed

    Nielsen, Lars Peter; Risgaard-Petersen, Nils; Fossing, Henrik; Christensen, Peter Bondo; Sayama, Mikio

    2010-02-25

    Some bacteria are capable of extracellular electron transfer, thereby enabling them to use electron acceptors and donors without direct cell contact. Beyond the micrometre scale, however, no firm evidence has previously existed that spatially segregated biogeochemical processes can be coupled by electric currents in nature. Here we provide evidence that electric currents running through defaunated sediment couple oxygen consumption at the sediment surface to oxidation of hydrogen sulphide and organic carbon deep within the sediment. Altering the oxygen concentration in the sea water overlying the sediment resulted in a rapid (<1-h) change in the hydrogen sulphide concentration within the sediment more than 12 mm below the oxic zone, a change explicable by transmission of electrons but not by diffusion of molecules. Mass balances indicated that more than 40% of total oxygen consumption in the sediment was driven by electrons conducted from the anoxic zone. A distinct pH peak in the oxic zone could be explained by electrochemical oxygen reduction, but not by any conventional sets of aerobic sediment processes. We suggest that the electric current was conducted by bacterial nanowires combined with pyrite, soluble electron shuttles and outer-membrane cytochromes. Electrical communication between distant chemical and biological processes in nature adds a new dimension to our understanding of biogeochemistry and microbial ecology.

  20. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    SciTech Connect

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  1. Model-based risk analysis of coupled process steps.

    PubMed

    Westerberg, Karin; Broberg-Hansen, Ernst; Sejergaard, Lars; Nilsson, Bernt

    2013-09-01

    A section of a biopharmaceutical manufacturing process involving the enzymatic coupling of a polymer to a therapeutic protein was characterized with regards to the process parameter sensitivity and design space. To minimize the formation of unwanted by-products in the enzymatic reaction, the substrate was added in small amounts and unreacted protein was separated using size-exclusion chromatography (SEC) and recycled to the reactor. The quality of the final recovered product was thus a result of the conditions in both the reactor and the SEC, and a design space had to be established for both processes together. This was achieved by developing mechanistic models of the reaction and SEC steps, establishing the causal links between process conditions and product quality. Model analysis was used to complement the qualitative risk assessment, and design space and critical process parameters were identified. The simulation results gave an experimental plan focusing on the "worst-case regions" in terms of product quality and yield. In this way, the experiments could be used to verify both the suggested process and the model results. This work demonstrates the necessary steps of model-assisted process analysis, from model development through experimental verification. Copyright © 2013 Wiley Periodicals, Inc.

  2. Upscalling processes in an ocean-atmosphere multiscale coupled model

    NASA Astrophysics Data System (ADS)

    Masson, S. G.; Berthet, S.; Samson, G.; Crétat, J.; Colas, F.; Echevin, V.; Jullien, S.; Hourdin, C.

    2015-12-01

    This work explores new pathways toward a better representation of the multi-scale physics that drive climate variability. We are analysing the key upscaling processes by which small-scale localized errors have a knock-on effect onto global climate. We focus on the Peru-Chilli coastal upwelling, an area known to hold among the strongest models biases in the Tropics. Our approach is based on the development of a multiscale coupling interface allowing us to couple WRF with the NEMO oceanic model in a configuration including 2-way nested zooms in the oceanic and/or the atmospheric component of the coupled model. Upscalling processes are evidenced and quantified by comparing three 20-year long simulations of a tropical channel (45°S-45°N), which differ by their horizontal resolution: 0.75° everywhere, 0.75°+0.25° zoom in the southeastern Pacific or 0.25° everywhere. This set of three 20-year long simulations was repeated with 3 different sets of parameterizations to assess the robustness of our results. Our results show that adding an embedded zoom over the southeastern Pacific only in the atmosphere cools down the SST along the Peru-Chili coast, which is a clear improvement. This change is associated with a displacement of the low-level cloud cover, which moves closer to the coast cooling further the coastal area SST. Offshore, we observe the opposite effect with a reduction of the cloud cover with higher resolution, which increases solar radiation and warms the SST. Increasing the resolution in the oceanic component show contrasting results according to the different set parameterization used in the experiments. Some experiment shows a coastal cooling as expected, whereas, in other cases, we observe a counterintuitive response with a warming of the coastal SST. Using at the same time an oceanic and an atmospheric zoom mostly combines the results obtained when using the 2-way nesting in only one component of the coupled model. In the best case, we archive by this

  3. A Fully Coupled Computational Model of the Silylation Process

    SciTech Connect

    G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters

    1999-02-01

    This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.

  4. Drift-Scale Coupled Processes (DST and THC Seepage) Models

    SciTech Connect

    P. Dixon

    2004-04-05

    The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The DST THC Model is used solely for the validation of the THC

  5. The Detection of Phase Amplitude Coupling during Sensory Processing.

    PubMed

    Seymour, Robert A; Rippon, Gina; Kessler, Klaus

    2017-01-01

    There is increasing interest in understanding how the phase and amplitude of distinct neural oscillations might interact to support dynamic communication within the brain. In particular, previous work has demonstrated a coupling between the phase of low frequency oscillations and the amplitude (or power) of high frequency oscillations during certain tasks, termed phase amplitude coupling (PAC). For instance, during visual processing in humans, PAC has been reliably observed between ongoing alpha (8-13 Hz) and gamma-band (>40 Hz) activity. However, the application of PAC metrics to electrophysiological data can be challenging due to numerous methodological issues and lack of coherent approaches within the field. Therefore, in this article we outline the various analysis steps involved in detecting PAC, using an openly available MEG dataset from 16 participants performing an interactive visual task. Firstly, we localized gamma and alpha-band power using the Fieldtrip toolbox, and extracted time courses from area V1, defined using a multimodal parcelation scheme. These V1 responses were analyzed for changes in alpha-gamma PAC, using four common algorithms. Results showed an increase in alpha (7-13 Hz)-gamma (40-100 Hz) PAC in response to the visual grating stimulus, though specific patterns of coupling were somewhat dependent upon the algorithm employed. Additionally, post-hoc analyses showed that these results were not driven by the presence of non-sinusoidal oscillations, and that trial length was sufficient to obtain reliable PAC estimates. Finally, throughout the article, methodological issues and practical guidelines for ongoing PAC research will be discussed.

  6. Anomalous diffusion and scaling in coupled stochastic processes

    SciTech Connect

    Bel, Golan; Nemenman, Ilya

    2009-01-01

    Inspired by problems in biochemical kinetics, we study statistical properties of an overdamped Langevin processes with the friction coefficient depending on the state of a similar, unobserved, process. Integrating out the latter, we derive the Pocker-Planck the friction coefficient of the first depends on the state of the second. Integrating out the latter, we derive the Focker-Planck equation for the probability distribution of the former. This has the fonn of diffusion equation with time-dependent diffusion coefficient, resulting in an anomalous diffusion. The diffusion exponent can not be predicted using a simple scaling argument, and anomalous scaling appears as well. The diffusion exponent of the Weiss-Havlin comb model is derived as a special case, and the same exponent holds even for weakly coupled processes. We compare our theoretical predictions with numerical simulations and find an excellent agreement. The findings caution against treating biochemical systems with unobserved dynamical degrees of freedom by means of standandard, diffusive Langevin descritpion.

  7. [A new strategy for Chinese medicine processing technologies: coupled with individuation processed and cybernetics].

    PubMed

    Zhang, Ding-kun; Yang, Ming; Han, Xue; Lin, Jun-zhi; Wang, Jia-bo; Xiao, Xiao-he

    2015-08-01

    The stable and controllable quality of decoction pieces is an important factor to ensure the efficacy of clinical medicine. Considering the dilemma that the existing standardization of processing mode cannot effectively eliminate the variability of quality raw ingredients, and ensure the stability between different batches, we first propose a new strategy for Chinese medicine processing technologies that coupled with individuation processed and cybernetics. In order to explain this thinking, an individual study case about different grades aconite is provided. We hope this strategy could better serve for clinical medicine, and promote the inheritance and innovation of Chinese medicine processing skills and theories.

  8. Mountain-Scale Coupled Processes (TH/THC/THM)

    SciTech Connect

    P. Dixon

    2004-02-09

    The purpose of this Model Report is to document the development of the Mountain-Scale Thermal-Hydrological (TH), Thermal-Hydrological-Chemical (THC), and Thermal-Hydrological-Mechanical (THM) Models and evaluate the effects of coupled TH/THC/THM processes on mountain-scale UZ flow at Yucca Mountain, Nevada. This Model Report was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.12.7), and was developed in accordance with AP-SIII.10Q, Models. In this Model Report, any reference to ''repository'' means the nuclear waste repository at Yucca Mountain, and any reference to ''drifts'' means the emplacement drifts at the repository horizon. This Model Report provides the necessary framework to test conceptual hypotheses for analyzing mountain-scale hydrological/chemical/mechanical changes and predict flow behavior in response to heat release by radioactive decay from the nuclear waste repository at the Yucca Mountain site. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH Model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH Model captures mountain-scale three dimensional (3-D) flow effects, including lateral diversion at the PTn/TSw interface and mountain-scale flow patterns. The Mountain-Scale THC Model evaluates TH effects on water and gas chemistry, mineral dissolution/precipitation, and the resulting impact to UZ hydrological properties, flow and transport. The THM Model addresses changes in permeability due to mechanical and thermal disturbances in

  9. Drift-Scale Coupled Processes (DST and TH Seepage) Models

    SciTech Connect

    J. Birkholzer; S. Mukhopadhyay

    2004-09-29

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  10. DRIFT-SCALE COUPLED PROCESSES (DST AND TH SEEPAGE) MODELS

    SciTech Connect

    J.T. Birkholzer; S. Mukhopadhyay

    2005-01-13

    The purpose of this report is to document drift-scale modeling work performed to evaluate the thermal-hydrological (TH) behavior in Yucca Mountain fractured rock close to waste emplacement drifts. The heat generated by the decay of radioactive waste results in rock temperatures elevated from ambient for thousands of years after emplacement. Depending on the thermal load, these temperatures are high enough to cause boiling conditions in the rock, giving rise to water redistribution and altered flow paths. The predictive simulations described in this report are intended to investigate fluid flow in the vicinity of an emplacement drift for a range of thermal loads. Understanding the TH coupled processes is important for the performance of the repository because the thermally driven water saturation changes affect the potential seepage of water into waste emplacement drifts. Seepage of water is important because if enough water gets into the emplacement drifts and comes into contact with any exposed radionuclides, it may then be possible for the radionuclides to be transported out of the drifts and to the groundwater below the drifts. For above-boiling rock temperatures, vaporization of percolating water in the fractured rock overlying the repository can provide an important barrier capability that greatly reduces (and possibly eliminates) the potential of water seeping into the emplacement drifts. In addition to this thermal process, water is inhibited from entering the drift opening by capillary forces, which occur under both ambient and thermal conditions (capillary barrier). The combined barrier capability of vaporization processes and capillary forces in the near-field rock during the thermal period of the repository is analyzed and discussed in this report.

  11. Altered neurovascular coupling during information-processing states.

    PubMed

    Jones, Myles; Devonshire, Ian M; Berwick, Jason; Martin, Chris; Redgrave, Peter; Mayhew, John

    2008-05-01

    Brain imaging techniques rely on changes in blood flow, volume and oxygenation to infer the loci and magnitude of changes in activity. Although progress has been made in understanding the link between stimulus-evoked neural activity and haemodynamics, the extent to which neurovascular-coupling relationships remain constant during different states of baseline cortical activity is poorly understood. Optical imaging spectroscopy, laser Doppler flowmetry and electrophysiology were used to measure haemodynamics and neural activity in the barrel cortex of anaesthetized rats. The responses to stimulation of the whisker pad were recorded during quiescence and cortical desynchronization produced by stimulation of the brainstem. Cortical desynchronization was accompanied by increases in baseline blood flow, volume and oxygenation. Haemodynamic responses to low-frequency whisker stimuli (1 Hz) were attenuated during arousal compared with that observed during quiescence. During arousal it was possible to increase stimulus-evoked haemodynamics by increasing the frequency of the stimulus. Neural responses to low-frequency stimuli were also attenuated but to a far lesser extent than the reduction in the accompanying haemodynamics. In contrast, neuronal activity evoked by high-frequency stimuli (40 Hz) was enhanced during arousal, but induced haemodynamic responses of a similar magnitude compared with that observed for the same high-frequency stimulus presented during quiescence. These data suggest that there may be differences in stimulus-evoked neural activity and accompanying haemodynamics during different information-processing states.

  12. Evolutionary games of condensates in coupled birth–death processes

    PubMed Central

    Knebel, Johannes; Weber, Markus F.; Krüger, Torben; Frey, Erwin

    2015-01-01

    Condensation phenomena arise through a collective behaviour of particles. They are observed in both classical and quantum systems, ranging from the formation of traffic jams in mass transport models to the macroscopic occupation of the energetic ground state in ultra-cold bosonic gases (Bose–Einstein condensation). Recently, it has been shown that a driven and dissipative system of bosons may form multiple condensates. Which states become the condensates has, however, remained elusive thus far. The dynamics of this condensation are described by coupled birth–death processes, which also occur in evolutionary game theory. Here we apply concepts from evolutionary game theory to explain the formation of multiple condensates in such driven-dissipative bosonic systems. We show that the vanishing of relative entropy production determines their selection. The condensation proceeds exponentially fast, but the system never comes to rest. Instead, the occupation numbers of condensates may oscillate, as we demonstrate for a rock–paper–scissors game of condensates. PMID:25908384

  13. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1990-01-01

    A method for making fine power using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The starting material used in the method is in solid form.

  14. Client Discourses on the Process of Seeking Same-Sex Couple Counselling

    ERIC Educational Resources Information Center

    Grove, Jan; Peel, Elizabeth; Owen-Pugh, Valerie

    2013-01-01

    How same-sex couples manage the process of seeking help for their relationships is an under-researched area. Twelve semi-structured interviews were conducted with 16 people who had engaged in same-sex couple counselling, and were analysed using discourse analysis. The ways in which the couples positioned themselves as part of a "minority…

  15. Client Discourses on the Process of Seeking Same-Sex Couple Counselling

    ERIC Educational Resources Information Center

    Grove, Jan; Peel, Elizabeth; Owen-Pugh, Valerie

    2013-01-01

    How same-sex couples manage the process of seeking help for their relationships is an under-researched area. Twelve semi-structured interviews were conducted with 16 people who had engaged in same-sex couple counselling, and were analysed using discourse analysis. The ways in which the couples positioned themselves as part of a "minority…

  16. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, Richard B.; Warren, Barbara K.

    1991-01-01

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  17. Method of processing materials using an inductively coupled plasma

    DOEpatents

    Hull, Donald E.; Bieniewski, Thomas M.

    1989-01-01

    A method for coating surfaces or implanting ions in an object using an inductively coupled plasma. The method provides a gas-free environment, since the plasma is formed without using a gas. The coating material or implantation material is intitially in solid form.

  18. Reflecting "As If": An Integrative Process in Couples Counseling.

    ERIC Educational Resources Information Center

    Watts, Richard E.

    2003-01-01

    An integration of Adlerian and social constructionist ideas, the reflecting "as if" technique asks clients to take a reflective step backward to consider perceptual and behavioral alternatives as a prelude to their acting as if they were the couple they desire to be. This article describes the reflecting as if technique and provides a…

  19. High ethylene to ethane processes for oxidative coupling

    DOEpatents

    Chafin, R.B.; Warren, B.K.

    1991-12-17

    Oxidative coupling of lower alkane to higher hydrocarbon is conducted using a catalyst comprising barium and/or strontium component and a metal oxide combustion promoter in the presence of vapor phase halogen component. High ethylene to ethane mole ratios in the product can be obtained over extended operating periods.

  20. Couple Interaction: A Study of the Punctuation Process.

    ERIC Educational Resources Information Center

    Bernal, Guillermo; Golann, Stuart

    1980-01-01

    Examined couples' punctuation of their own interactions. Punctuation was defined as a way of grouping sequences of interactions. Results suggested that the nature of relatedness, as defined by degree of distress, was associated with the punctuation of interactions by the communicators. (Author)

  1. Coupling of Two Non-processive Myosin 5c Dimers Enables Processive Stepping along Actin Filaments

    PubMed Central

    Gunther, Laura K.; Furuta, Ken'ya; Bao, Jianjun; Urbanowski, Monica K.; Kojima, Hiroaki; White, Howard D.; Sakamoto, Takeshi

    2014-01-01

    Myosin 5c (Myo5c) is a low duty ratio, non-processive motor unable to move continuously along actin filaments though it is believed to participate in secretory vesicle trafficking in vertebrate cells. Here, we measured the ATPase kinetics of Myo5c dimers and tested the possibility that the coupling of two Myo5c molecules enables processive movement. Steady-state ATPase activity and ADP dissociation kinetics demonstrated that a dimer of Myo5c-HMM (double-headed heavy meromyosin 5c) has a 6-fold lower Km for actin filaments than Myo5c-S1 (single-headed myosin 5c subfragment-1), indicating that the two heads of Myo5c-HMM increase F-actin-binding affinity. Nanometer-precision tracking analyses showed that two Myo5c-HMM dimers linked with each other via a DNA scaffold and moved processively along actin filaments. Moreover, the distance between the Myo5c molecules on the DNA scaffold is an important factor for the processive movement. Individual Myo5c molecules in two-dimer complexes move stochastically in 30–36 nm steps. These results demonstrate that two dimers of Myo5c molecules on a DNA scaffold increased the probability of rebinding to F-actin and enabled processive steps along actin filaments, which could be used for collective cargo transport in cells. PMID:24809456

  2. Capillary Waves And Energy Coupling In Laser Materials Processing

    NASA Astrophysics Data System (ADS)

    Gasser, A.; Herziger, G.; Holtgen, B.; Kreutz, E. W.; Treusch, H. G.

    1987-09-01

    Static and dynamic measurements of the incident laser power, of the diffuse and specular reflected power have been performed in order to determine the absorption behavior of various metals and semiconductors during the interaction with powerful CO2-and Nd:YAG-laser-radiation. The absorptivity of the vapor and laser-induced plasma was probed by high-speed photography and measurements of conductivity transients as a function of intensity, composition, and pressure of the ambient atmosphere. For Icoupling is given by the temperature-dependent refractive index and absorption coefficient of matter. For I>IB the intensity-dependent energy coupling is governed by the generation of photon-induced plasma in the surface region in combination with the dynamics of the molten and vaporized material within the interaction zone giving in addition indication for capillary waves.

  3. Panel discussion on near-field coupled processes with emphasis on performance assessment

    SciTech Connect

    Codell, R.B.; Baca, R.G.; Ahola, M.P.

    1996-04-01

    The presentations in this panel discussion involve the general topic of near-field coupled processes and postclosure performance assessment with an emphasis on rock mechanics. The potential impact of near-field rock mass deformation on repository performance was discussed, as well as topics including long term excavation deterioration, the performance of geologic seals, and coupled processes concerning rock mechanics in performance assessments.

  4. The construction of a model of the process of couples' forgiveness in emotion-focused therapy for couples.

    PubMed

    Meneses, Catalina Woldarsky; Greenberg, Leslie S

    2011-10-01

    This study explored how forgiveness unfolds in the context of emotion-focused couples therapy (EFT-C) in eight cases of women betrayed by their partners. Forgiveness was defined as a process involving the reduction in negative feelings and the giving out of undeserved compassion. This was measured by changes in the pre- and posttreatment scores on the Enright Forgiveness Inventory, the Unfinished Business Resolution Scale, and a single item directly asking respondents to indicate their degree of forgiveness. A task analysis was performed to rigorously track the steps leading to forgiveness using videotapes of therapy sessions for eight couples. The performance of the four couples who forgave were compared with each other and then contrasted with the performance of another four couples who did not reach forgiveness at the end of therapy. Based on these observations, a model of the process of forgiveness in EFT-C and a process rating system were developed. © 2011 American Association for Marriage and Family Therapy.

  5. Thin film coating process using an inductively coupled plasma

    DOEpatents

    Kniseley, Richard N.; Schmidt, Frederick A.; Merkle, Brian D.

    1990-01-30

    Thin coatings of normally solid materials are applied to target substrates using an inductively coupled plasma. Particles of the coating material are vaporized by plasma heating, and pass through an orifice to a first vacuum zone in which the particles are accelerated to a velocity greater than Mach 1. The shock wave generated in the first vacuum zone is intercepted by the tip of a skimmer cone that provides a second orifice. The particles pass through the second orifice into a second zone maintained at a higher vacuum and impinge on the target to form the coating. Ultrapure coatings can be formed.

  6. Study of the Strong Coupling Constant Using W+ Jet Processes

    NASA Astrophysics Data System (ADS)

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alitti, J.; Álvarez, G.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Aronson, S. H.; Astur, R.; Avery, R. E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Bendich, J.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; de, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S. P.; Dharmaratna, W.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Dugad, S. R.; Durston-Johnson, S.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Franzini, P.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gao, S. G.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glebov, V.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Griffin, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Gu, W. X.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Guryn, W.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hatcher, R.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Tao; Hu, Ting; Hu, Tong; Huehn, T.; Igarashi, S.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Johnstad, H.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kernan, A.; Kerth, L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klochkov, B. I.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Landsberg, G.; Lebrat, J.-F.; Leflat, A.; Li, H.; Li, J.; Li, Y. K.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Mandrichenko, I. V.; Mangeot, Ph.; Mani, S.; Mansoulié, B.; Mao, H. S.; Margulies, S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; Marx, M.; May, B.; Mayorov, A. A.; McCarthy, R.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; de Mello Neto, J. R.; Merritt, K. W.; Miettinen, H.; Milder, A.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mohammadi-Baarmand, M.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; Mudan, M.; Murphy, C.; Murphy, C. T.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Neis, E.; Nemethy, P.; NešiĆ, D.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, C. H.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peryshkin, A.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Pluquet, A.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pušeljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rao, M. V.; Rapidis, P. A.; Rasmussen, L.; Read, A. L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rusin, S.; Rutherfoord, J.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shao, Y. Y.; Shivpuri, R. K.; Shupe, M.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Streets, K.; Strovink, M.; Sznajder, A.; Taketani, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Taylor, T. L.; Teiger, J.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Virador, P. R.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Wang, J.; Warchol, J.; Wayne, M.; Weerts, H.; Wen, F.; Wenzel, W. A.; White, A.; White, J. T.; Wightman, J. A.; Wilcox, J.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhang, D. H.; Zhang, Y.; Zhu, Q.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zylberstejn, A.

    1995-10-01

    The ratio of the number of W+1 jet to W+0 jet events is measured with the D0 detector using data from the 1992-93 Tevatron Collider run. For the W-->eν channel with a minimum jet ET cutoff of 25 GeV, the experimental ratio is 0.065+/-0.003stat+/-0.007syst. Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant αs in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

  7. COUPLING

    DOEpatents

    Frisch, E.; Johnson, C.G.

    1962-05-15

    A detachable coupling arrangement is described which provides for varying the length of the handle of a tool used in relatively narrow channels. The arrangement consists of mating the key and keyhole formations in the cooperating handle sections. (AEC)

  8. Low power, compact charge coupled device signal processing system

    NASA Technical Reports Server (NTRS)

    Bosshart, P. W.; Buss, D. D.; Eversole, W. L.; Hewes, C. R.; Mayer, D. J.

    1980-01-01

    A variety of charged coupled devices (CCDs) for performing programmable correlation for preprocessing environmental sensor data preparatory to its transmission to the ground were developed. A total of two separate ICs were developed and a third was evaluated. The first IC was a CCD chirp z transform IC capable of performing a 32 point DFT at frequencies to 1 MHz. All on chip circuitry operated as designed with the exception of the limited dynamic range caused by a fixed pattern noise due to interactions between the digital and analog circuits. The second IC developed was a 64 stage CCD analog/analog correlator for performing time domain correlation. Multiplier errors were found to be less than 1 percent at designed signal levels and less than 0.3 percent at the measured smaller levels. A prototype IC for performing time domain correlation was also evaluated.

  9. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    PubMed Central

    Daramola, Michael O.; Aransiola, Elizabeth F.; Ojumu, Tunde V.

    2012-01-01

    Future production of chemicals (e.g., fine and specialty chemicals) in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  10. MODELING COUPLED HYDROLOGICAL AND CHEMICAL PROCESSES: LONG-TERM URANIUM TRANSPORT FOLLOWING PHOSPHOROUS-FERTILIZATION

    USDA-ARS?s Scientific Manuscript database

    Contaminants in the vadose zone are affected by the physical processes of water flow, heat movement and multicomponent transport, as well as generally by a range of interacting biogeochemical processes. Coupling these various processes within one integrated numerical simulator provides a process-ba...

  11. Coupled model of physical and biological processes affecting maize pollination

    NASA Astrophysics Data System (ADS)

    Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.

    2003-04-01

    Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.

  12. Ozone-biological activated carbon integrated treatment for removal of precursors of halogenated nitrogenous disinfection by-products.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Deng, Yang; Templeton, Michael R

    2012-03-01

    Pilot-scale tests were performed to reduce the formation of several nitrogenous and carbonaceous disinfection by-products (DBPs) with an integrated ozone and biological activated carbon (O(3)-BAC) treatment process following conventional water treatment processes (coagulation-sedimentation-filtration). Relative to the conventional processes alone, O(3)-BAC significantly improved the removal of turbidity, dissolved organic carbon, UV(254), NH(4)(+) and dissolved organic nitrogen from 98-99%, 58-72%, 31-53%, 16-93% and 35-74%, respectively, and enhanced the removal efficiency of the precursors for the measured DBPs. The conventional process was almost ineffective in removing the precursors of trichloronitromethane (TCNM) and dichloroacetamide (DCAcAm). Ozonation could not substantially reduce the formation of DCAcAm, and actually increased the formation potential of TCNM; it chemically altered the molecular structures of the precursors and increased the biodegradability of N-containing organic compounds. Consequently, the subsequent BAC filtration substantially reduced the formation of the both TCNM and DCAcAm, thus highlighting a synergistic effect of O(3) and BAC. Additionally, O(3)-BAC was effective at controlling the formation of the total organic halogen, which can be considered as an indicator of the formation of unidentified DBPs.

  13. "The best is always yet to come": Relationship stages and processes among young LGBT couples.

    PubMed

    Macapagal, Kathryn; Greene, George J; Rivera, Zenaida; Mustanski, Brian

    2015-06-01

    Limited research has examined relationship development among lesbian, gay, bisexual, and transgender (LGBT) couples in emerging adulthood. A better understanding of LGBT couples can inform the development of relationship education programs that reflect their unique needs. The following questions guided this study: (a) What are the stages and processes during young LGBT couples' relationship development? and (b) How do these compare with existing literature on heterosexual adults? A secondary goal was to explore similarities and differences between couples assigned male (MAAB) and female at birth (FAAB). Thirty-six couples completed interviews on their relationship history. Qualitative analyses showed that relationship stages and processes were similar to past research on heterosexuals, but participants' subjective experiences reflected their LGBT identities and emerging adulthood, which exerted additional stress on the relationship. These factors also affected milestones indicative of commitment among heterosexual adults (e.g., introducing partner to family). Mixed methods analyses indicated that MAAB couples described negotiating relationship agreements and safe sex in more depth than FAAB couples. Relationship development models warrant modifications to consider the impact of sexual and gender identity and emerging adulthood when applied to young LGBT couples. These factors should be addressed in interventions to promote relationship health among young LGBT couples.

  14. Heck coupling of haloaromatics with octavinylsilsesquioxane: solution processable nanocomposites for application in electroluminescent devices.

    PubMed

    Sellinger, Alan; Tamaki, Ryo; Laine, Richard M; Ueno, Kazunori; Tanabe, Hiroshi; Williams, Evan; Jabbour, Ghassan E

    2005-08-07

    A new solution processable nanocomposite material has been prepared via the Heck coupling of octavinylsilsesquioxane with a selected bromoaromatic hole transport compound. Resultant electroluminescent devices show an 18% improvement in external quantum efficiencies over their small molecule analogues.

  15. Solute coupled diffusion in osmotically driven membrane processes.

    PubMed

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  16. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    SciTech Connect

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.; Fansler, Sarah; Arntzen, Evan; Kennedy, David W.; Fredrickson, Jim K.; Stegen, James C.

    2016-12-16

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptual model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.

  17. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes

    USGS Publications Warehouse

    Karapanagioti, Hrissi K.; Gossard, Chris M.; Strevett, Keith A.; Kolar, Randall L.; Sabatini, David A.

    2001-01-01

    Diffusion, sorption and biodegradation are key processes impacting the efficiency of natural attenuation. While each process has been studied individually, limited information exists on the kinetic coupling of these processes. In this paper, a model is presented that couples nonlinear and nonequilibrium sorption (intraparticle diffusion) with biodegradation kinetics. Initially, these processes are studied independently (i.e., intraparticle diffusion, nonlinear sorption and biodegradation), with appropriate parameters determined from these independent studies. Then, the coupled processes are studied, with an initial data set used to determine biodegradation constants that were subsequently used to successfully predict the behavior of a second data set. The validated model is then used to conduct a sensitivity analysis, which reveals conditions where biodegradation becomes desorption rate-limited. If the chemical is not pre-equilibrated with the soil prior to the onset of biodegradation, then fast sorption will reduce aqueous concentrations and thus biodegradation rates. Another sensitivity analysis demonstrates the importance of including nonlinear sorption in a coupled diffusion/sorption and biodegradation model. While predictions based on linear sorption isotherms agree well with solution concentrations, for the conditions evaluated this approach overestimates the percentage of contaminant biodegraded by as much as 50%. This research demonstrates that nonlinear sorption should be coupled with diffusion/sorption and biodegradation models in order to accurately predict bioremediation and natural attenuation processes. To our knowledge this study is unique in studying nonlinear sorption coupled with intraparticle diffusion and biodegradation kinetics with natural media.

  18. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    PubMed Central

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.; Fansler, Sarah; Arntzen, Evan; Kennedy, David W.; Fredrickson, Jim K.; Stegen, James C.

    2016-01-01

    Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures—imposed by sediment and porewater physicochemistry—integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning. PMID:28123379

  19. Coupling between mantle and surface processes: Insights from analogue modelling

    NASA Astrophysics Data System (ADS)

    Király, Ágnes; Sembroni, Andrea; Faccenna, Claudio; Funiciello, Francesca

    2014-05-01

    Thermal or density anomalies located beneath the lithosphere are thought to generate dynamic topography. Such a topographic signal compensates the viscous stresses originating from the anomaly driven mantle flow. It has been demonstrated that the erosion modulates the dynamic signal of topography changing the uplift rate by unload. The characteristic time for adjustments of dynamic topography due to surface erosion is likely similar to post-glacial rebound time (10000 - 50000 years). Here we present preliminary results of a new set of analogue models realized to study and quantify the contribution given by erosion to dynamic topography, during a process specifically driven by a positively buoyant deep anomaly. The adopted set up consists of a Plexiglas box (40x40x50 cm3) filled with glucose syrup as analogue upper mantle. A silicon plate positioned on the top of the syrup simulates the lithosphere. On the silicone plate is placed a thin layer of a high viscous glucose syrup which reproduces the upper, erodible layer of the crust. To simulate the positively buoyant anomaly we used an elastic, undeformable silicon ball free to rise by buoyancy in the syrup until the floating silicone plate is hit. The changes in topography have been monitored by using a 3D laser scan, while a side-view camera recorded the position of the rising ball in time. Data have been post-processed with image analysis techniques (e.g., Particle Image Velocimetry) in order to obtain the evolution of topography, uplift rate, erosion patterns of the top layer, bulge width and mantle circulation during the experiment. We ran experiments with and without the shallow, erodible crustal layer in order to quantify the effect of erosion on dynamic topography. Preliminary results showed that both the maximum topography and uplift rate are inversely proportional to the lithospheric thickness. The maximum uplift rate and the deformation of the lithospheric plate occurred just before the arrival of the

  20. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Krooss, B. M.; Littke, R.

    2012-12-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a subbituminous A coal from the Surat Basin, Queensland Australia (figure). From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg-corrected permeability depends on gas type. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa, with increasing mean pore pressure at lower confining pressure an increase in permeability is observed, which is attributed to a widening of cleat aperture. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane and CO2. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals was significantly lower (by 50%) than that of dry coals, no hysteresis was observed between sorption and desorption on dry and moisture-equilibrated samples and the

  1. Sequential Processes in Palladium-Catalyzed Silicon-Based Cross-Coupling

    PubMed Central

    Denmark, Scott E.; Liu, Jack H.-C.

    2012-01-01

    Although developed somewhat later, silicon-based cross-coupling has become a viable alternative to the more conventional Suzuki-Miyaura, Stille-Kosugi-Migita, and Negishi cross-coupling reactions because of its broad substrate scope, high stability of silicon-containing reagents, and low toxicity of waste streams. An empowering and yet underappreciated feature unique to silicon-based cross-coupling is the wide range of sequential processes available. In these processes, simple precursors are first converted to complex silicon-containing cross-coupling substrates, and the subsequent silicon-based cross-coupling reaction affords an even more highly functionalized product in a stereoselective fashion. In so doing, structurally simple and inexpensive starting materials are quickly transformed into value-added and densely substituted products. Therefore, sequential processes are often useful in constructing the carbon backbones of natural products. In this review, studies of sequential processes involving silicon-based cross-coupling are discussed. Additionally, the total syntheses that utilize these sequential processes are also presented. PMID:23293392

  2. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Y.; Sartorius, M.; Busch, A.; Cumming, D.; Krooss, B. M.

    2012-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  3. CO2-ECBM related coupled physical and mechanical transport processes

    NASA Astrophysics Data System (ADS)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  4. Coupling centrality and authority of co-processing model on complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhanli; Li, Huibin

    2016-04-01

    Coupling centrality and authority of co-processing model on complex networks are investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are obtained to disclose the formation. Considering the influence of a node to the global dynamical behavior, coupling centrality and authority are introduced for each node, which determine the relative importance and authority of nodes in the diffusion process. Furthermore, the experimental results on large-scale complex networks confirm our analytical prediction.

  5. Study on the in-situ coupling process of fermentation, extraction and distillation for biobutanol production: process analysis

    NASA Astrophysics Data System (ADS)

    Jin, Fuqiang; Zhang, Xiaodong; Hua, Dongliang; Xu, Haipeng; Li, Yan; Mu, Hui

    2017-01-01

    The transfer process of the in-situ coupling process of fermentation, extraction and distillation for biobutanol production was discussed from a theoretical point of view. The existence of temperature gradient in the extraction section was proved. The force of solute in the extracted liquid was discussed. And the mass transfer mechanism and impetus of the FEDIC process was analyzed. The theoretical analysis could provide a foundation for the following research.

  6. Coupling and Coordination in Gene Expression Processes with Pre-mRNA Splicing

    PubMed Central

    Pan, Kewu; Lee, Jimmy Tsz Hang; Huang, Zhe; Wong, Chi-Ming

    2015-01-01

    RNA processing is a tightly regulated and highly complex pathway which includes transcription, splicing, editing, transportation, translation and degradation. It has been well-documented that splicing of RNA polymerase II medicated nascent transcripts occurs co-transcriptionally and is functionally coupled to other RNA processing. Recently, increasing experimental evidence indicated that pre-mRNA splicing influences RNA degradation and vice versa. In this review, we summarized the recent findings demonstrating the coupling of these two processes. In addition, we highlighted the importance of splicing in the production of intronic miRNA and circular RNAs, and hence the discovery of the novel mechanisms in the regulation of gene expression. PMID:25768347

  7. Panel report on coupled thermo-mechanical-hydro-chemical processes associated with a nuclear waste repository

    SciTech Connect

    Tsang, C.F.; Mangold, D.C.

    1984-07-01

    Four basic physical processes, thermal, hydrological, mechanical and chemical, are likely to occur in 11 different types of coupling during the service life of an underground nuclear waste repository. A great number of coupled processes with various degrees of importance for geological repositories were identified and arranged into these 11 types. A qualitative description of these processes and a tentative evaluation of their significance and the degree of uncertainty in prediction is given. Suggestions for methods of investigation generally include, besides theoretical work, laboratory and large scale field testing. Great efforts of a multidisciplinary nature are needed to elucidate details of several coupled processes under different temperature conditions in different geological formations. It was suggested that by limiting the maximum temperature to 100{sup 0}C in the backfill and in the host rock during the whole service life of the repository the uncertainties in prediction of long-term repository behavior might be considerably reduced.

  8. Synchronization of elastically coupled processive molecular motors and regulation of cargo transport.

    PubMed

    Kohler, Felix; Rohrbach, Alexander

    2015-01-01

    The collective work of motor proteins plays an important role in cellular transport processes. Since measuring intermotor coupling and hence a comparison to theoretical predictions is difficult, we introduce the synchronization as an alternative observable for motor cooperativity. This synchronization can be determined from the ratio of the mean times of motor resting and stepping. Results from a multistate Markov chain model and Brownian dynamics simulations, describing the elastically coupled motors, coincide well. Our model can explain the experimentally observed effect of strongly increased transport velocities and powers by the synchronization and coupling of myosin V and kinesin I.

  9. Effect of process parameters on temperature distribution in twin-electrode TIG coupling arc

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Xiong, Jun; Gao, Hongming; Wu, Lin

    2012-10-01

    The twin-electrode TIG coupling arc is a new type of welding heat source, which is generated in a single welding torch that has two tungsten electrodes insulated from each other. This paper aims at determining the distribution of temperature for the coupling arc using the Fowler-Milne method under the assumption of local thermodynamic equilibrium. The influences of welding current, arc length, and distance between both electrode tips on temperature distribution of the coupling arc were analyzed. Based on the results, a better understanding of the twin-electrode TIG welding process was obtained.

  10. Coupled finite element simulation and optimization of single- and multi-stage sheet-forming processes

    NASA Astrophysics Data System (ADS)

    Tamasco, Cynthia M.; Rais-Rohani, Masoud; Buijk, Arjaan

    2013-03-01

    This article presents the development and application of a coupled finite element simulation and optimization framework that can be used for design and analysis of sheet-forming processes of varying complexity. The entire forming process from blank gripping and deep drawing to tool release and springback is modelled. The dies, holders, punch and workpiece are modelled with friction, temperature, holder force and punch speed controlled in the process simulation. Both single- and multi-stage sheet-forming processes are investigated. Process simulation is coupled with a nonlinear gradient-based optimization approach for optimizing single or multiple design objectives with imposed sheet-forming response constraints. A MATLAB program is developed and used for data-flow management between process simulation and optimization codes. Thinning, springback, damage and forming limit diagram are used to define failure in the forming process design optimization. Design sensitivity analysis and optimization results of the example problems are presented and discussed.

  11. Flexible simulation framework to couple processes in complex 3D models for subsurface utilization assessment

    NASA Astrophysics Data System (ADS)

    Kempka, Thomas; Nakaten, Benjamin; De Lucia, Marco; Nakaten, Natalie; Otto, Christopher; Pohl, Maik; Tillner, Elena; Kühn, Michael

    2016-04-01

    Utilization of the geological subsurface for production and storage of hydrocarbons, chemical energy and heat as well as for waste disposal requires the quantification and mitigation of environmental impacts as well as the improvement of georesources utilization in terms of efficiency and sustainability. The development of tools for coupled process simulations is essential to tackle these challenges, since reliable assessments are only feasible by integrative numerical computations. Coupled processes at reservoir to regional scale determine the behaviour of reservoirs, faults and caprocks, generally demanding for complex 3D geological models to be considered besides available monitoring and experimenting data in coupled numerical simulations. We have been developing a flexible numerical simulation framework that provides efficient workflows for integrating the required data and software packages to carry out coupled process simulations considering, e.g., multiphase fluid flow, geomechanics, geochemistry and heat. Simulation results are stored in structured data formats to allow for an integrated 3D visualization and result interpretation as well as data archiving and its provision to collaborators. The main benefits in using the flexible simulation framework are the integration of data geological and grid data from any third party software package as well as data export to generic 3D visualization tools and archiving formats. The coupling of the required process simulators in time and space is feasible, while different spatial dimensions in the coupled simulations can be integrated, e.g., 0D batch with 3D dynamic simulations. User interaction is established via high-level programming languages, while computational efficiency is achieved by using low-level programming languages. We present three case studies on the assessment of geological subsurface utilization based on different process coupling approaches and numerical simulations.

  12. Benchmark initiative on coupled multiphase flow and geomechanical processes during CO2 injection

    NASA Astrophysics Data System (ADS)

    Benisch, K.; Annewandter, R.; Olden, P.; Mackay, E.; Bauer, S.; Geiger, S.

    2012-12-01

    CO2 injection into deep saline aquifers involves multiple strongly interacting processes such as multiphase flow and geomechanical deformation, which threat to the seal integrity of CO2 repositories. Coupled simulation codes are required to establish realistic prognoses of the coupled process during CO2 injection operations. International benchmark initiatives help to evaluate, to compare and to validate coupled simulation results. However, there is no published code comparison study so far focusing on the impact of coupled multiphase flow and geomechanics on the long-term integrity of repositories, which is required to obtain confidence in the predictive capabilities of reservoir simulators. We address this gap by proposing a benchmark study. A wide participation from academic and industrial institutions is sought, as the aim of building confidence in coupled simulators become more plausible with many participants. Most published benchmark studies on coupled multiphase flow and geomechanical processes have been performed within the field of nuclear waste disposal (e.g. the DECOVALEX project), using single-phase formulation only. As regards CO2 injection scenarios, international benchmark studies have been published comparing isothermal and non-isothermal multiphase flow processes such as the code intercomparison by LBNL, the Stuttgart Benchmark study, the CLEAN benchmark approach and other initiatives. Recently, several codes have been developed or extended to simulate the coupling of hydraulic and geomechanical processes (OpenGeoSys, ELIPSE-Visage, GEM, DuMuX and others), which now enables a comprehensive code comparison. We propose four benchmark tests of increasing complexity, addressing the coupling between multiphase flow and geomechanical processes during CO2 injection. In the first case, a horizontal non-faulted 2D model consisting of one reservoir and one cap rock is considered, focusing on stress and strain regime changes in the storage formation and the

  13. Report on Modeling Coupled Processes in the Near Field of a Clay Repository

    SciTech Connect

    Liu, Hui -Hai; Houseworth, Jim; Rutqvist, Jonny; Li, Lianchong; Asahina, Daisuke; Chen, Fei; Birkholzer, Jens

    2012-08-01

    Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world. Coupled thermal, hydrological, mechanical, and chemical (THMC) processes have a significant impact on the long-term safety of a clay repository. For example, the excavation damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability. This report documents results from three R&D activities: (1) implementation and validation of constitutive relationships, (2) development of a discrete fracture network (DFN) model for investigating coupled processes in the EDZ, and (3) development of a THM model for the FE tests at Mont Terri, Switzerland, for the purpose of model validation. The overall objective of these activities is to provide an improved understanding of EDZ evolution in clay repositories and the associated coupled processes, and to develop advanced relevant modeling capabilities.

  14. Differences in Pornography Use Among Couples: Associations with Satisfaction, Stability, and Relationship Processes.

    PubMed

    Willoughby, Brian J; Carroll, Jason S; Busby, Dean M; Brown, Cameron C

    2016-01-01

    The present study utilized a sample of 1755 adult couples in heterosexual romantic relationships to examine how different patterns of pornography use between romantic partners may be associated with relationship outcomes. While pornography use has been generally associated with some negative and some positive couple outcomes, no study has yet explored how differences between partners may uniquely be associated with relationship well-being. Results suggested that greater discrepancies between partners in pornography use were related to less relationship satisfaction, less stability, less positive communication, and more relational aggression. Mediation analyses suggested that greater pornography use discrepancies were primarily associated with elevated levels of male relational aggression, lower female sexual desire, and less positive communication for both partners which then predicted lower relational satisfaction and stability for both partners. Results generally suggest that discrepancies in pornography use at the couple level are related to negative couple outcomes. Specifically, pornography differences may alter specific couple interaction processes which, in turn, may influence relationship satisfaction and stability. Implications for scholars and clinicians interested in how pornography use is associated with couple process are discussed.

  15. Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi; Trebotich, David; Birkholzer, Jens

    2015-09-01

    In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.

  16. Research on the mechanism of multiple inductively coupled plasma source for large area processing

    NASA Astrophysics Data System (ADS)

    Lee, Jangjae; Kim, Sijun; Kim, Daewoong; Kim, Kwangki; Lee, Youngseok; You, Shinjae

    2016-09-01

    In the plasma processing, inductively coupled plasma having the high-density is often used for high productivity. In large area plasma processing, the plasma can be generated by using the multi-pole connected in parallel. However, in case of this, it is difficult for power to be transferred to plasma uniformly. To solve the problem, we studied the mechanism of inductively coupled plasma connected in parallel. By using the transformer model, the multiple ICP source is treated. We also studied about the change of the plasma parameters over the time through the power balance equation and particle balance equation. Corresponding author.

  17. MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS

    SciTech Connect

    Robert Podgorney; Hai Huang; Derek Gaston

    2010-02-01

    Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of 1 km or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and

  18. Coupling pre-mRNA processing to transcription on the RNA factory assembly line

    PubMed Central

    Lee, Kuo-Ming; Tarn, Woan-Yuh

    2013-01-01

    It has been well-documented that nuclear processing of primary transcripts of RNA polymerase II occurs co-transcriptionally and is functionally coupled to transcription. Moreover, increasing evidence indicates that transcription influences pre-mRNA splicing and even several post-splicing RNA processing events. In this review, we discuss the issues of how RNA polymerase II modulates co-transcriptional RNA processing events via its carboxyl terminal domain, and the protein domains involved in coupling of transcription and RNA processing events. In addition, we describe how transcription influences the expression or stability of mRNAs through the formation of distinct mRNP complexes. Finally, we delineate emerging findings that chromatin modifications function in the regulation of RNA processing steps, especially splicing, in addition to transcription. Overall, we provide a comprehensive view that transcription could integrate different control systems, from epigenetic to post-transcriptional control, for efficient gene expression. PMID:23392244

  19. Self-Consistent Magnetosphere-Ionosphere Coupling and Associated Plasma Energization Processes

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Magnetosphere-Ionosphere (MI) coupling and associated with this process electron and ion energization processes have interested scientists for decades and, in spite of experimental and theoretical research efforts, are still ones of the least well known dynamic processes in space plasma physics. The reason for this is that the numerous physical processes associated with MI coupling occur over multiple spatial lengths and temporal scales. One typical example of MI coupling is large scale ring current (RC) electrodynamic coupling that includes calculation of the magnetospheric electric field that is consistent with the ring current (RC) distribution. A general scheme for numerical simulation of such large-scale magnetosphere-ionosphere coupling processes has been presented earlier in many works. The mathematical formulation of these models are based on "modified frozen-in flux theorem" for an ensemble of adiabatically drifting particles in the magnetosphere. By tracking the flow of particles through the inner magnetosphere, the bounce-averaged phase space density of the hot ions and electrons can be reconstructed and the magnetospheric electric field can be calculated such that it is consistent with the particle distribution in the magnetosphere. The new a self-consistent ring current model has been developed that couples electron and ion magnetospheric dynamics with calculation of electric field. Two new features were taken into account in addition to the RC ions, we solve an electron kinetic equation in our model, self-consistently including these results in the solution. Second, using different analytical relationships, we calculate the height integrated ionospheric conductances as the function of precipitated high energy magnetospheric electrons and ions as produced by our model. This results in fundamental changes to the electric potential pattern in the inner magnetosphere, with a smaller Alfven boundary than previous potential formulations would predict but

  20. Linking Tectonics and Surface Processes through SNAC-CHILD Coupling: Preliminary Results Towards Interoperable Modeling Frameworks

    NASA Astrophysics Data System (ADS)

    Choi, E.; Kelbert, A.; Peckham, S. D.

    2014-12-01

    We demonstrate that code coupling can be an efficient and flexible method for modeling complicated two-way interactions between tectonic and surface processes with SNAC-CHILD coupling as an example. SNAC is a deep earth process model (a geodynamic/tectonics model), built upon a scientific software framework called StGermain and also compatible with a model coupling framework called Pyre. CHILD is a popular surface process model (a landscape evolution model), interfaced to the CSDMS (Community Surface Dynamics Modeling System) modeling framework. We first present proof-of-concept but non-trivial results from a simplistic coupling scheme. We then report progress towards augmenting SNAC with a Basic Model Interface (BMI), a framework-agnostic standard interface developed by CSDMS that uses the CSDMS Standard Names as controlled vocabulary for model communication across domains. Newly interfaced to BMI, SNAC will be easily coupled with CHILD as well as other BMI-compatible models. In broader context, this work will test BMI as a general and easy-to-implement mechanism for sharing models between modeling frameworks and is a part of the NSF-funded EarthCube Building Blocks project, "Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks."

  1. Exploring the Influence of Topography on Belowground C Processes Using a Coupled Hydrologic-Biogeochemical Model

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Davis, K. J.; Eissenstat, D. M.; Kaye, J. P.; Duffy, C.; Yu, X.; He, Y.

    2014-12-01

    Belowground carbon processes are affected by soil moisture and soil temperature, but current biogeochemical models are 1-D and cannot resolve topographically driven hill-slope soil moisture patterns, and cannot simulate the nonlinear effects of soil moisture on carbon processes. Coupling spatially-distributed physically-based hydrologic models with biogeochemical models may yield significant improvements in the representation of topographic influence on belowground C processes. We will couple the Flux-PIHM model to the Biome-BGC (BBGC) model. Flux-PIHM is a coupled physically-based land surface hydrologic model, which incorporates a land-surface scheme into the Penn State Integrated Hydrologic Model (PIHM). The land surface scheme is adapted from the Noah land surface model. Because PIHM is capable of simulating lateral water flow and deep groundwater, Flux-PIHM is able to represent the link between groundwater and the surface energy balance, as well as the land surface heterogeneities caused by topography. The coupled Flux-PIHM-BBGC model will be tested at the Susquehanna/Shale Hills critical zone observatory (SSHCZO). The abundant observations, including eddy covariance fluxes, soil moisture, groundwater level, sap flux, stream discharge, litterfall, leaf area index, above ground carbon stock, and soil carbon efflux, make SSHCZO an ideal test bed for the coupled model. In the coupled model, each Flux-PIHM model grid will couple a BBGC cell. Flux-PIHM will provide BBGC with soil moisture and soil temperature information, while BBGC provides Flux-PIHM with leaf area index. Preliminary results show that when Biome- BGC is driven by PIHM simulated soil moisture pattern, the simulated soil carbon is clearly impacted by topography.

  2. Deoxygenative C-C Bond-Forming Processes via a Net Four-Electron Reductive Coupling.

    PubMed

    Todd, David P; Thompson, Benjamin B; Nett, Alex J; Montgomery, John

    2015-10-14

    The nickel-catalyzed coupling of enones or enals with alkynes in the presence of silane and titanium alkoxide reductants provides direct access to skipped diene products. The process involves a net four-electron reductive coupling and proceeds with deoxygenation of the starting enone or enal. A new class of well-defined nickel(0) precatalysts bearing an unhindered N-heterocyclic carbene ligand, which was developed in optimization of the process, is essential for the efficiency of the transformation. The strategy allows the high reactivity of α,β-unsaturated carbonyl substrates to be utilized in couplings with simultaneous extrusion of the oxygen atom, thus enabling a traceless strategy for alkene installation.

  3. Fano-like coupling between two oppositely enhanced processes by diffraction in a dielectric grating.

    PubMed

    Zhang, Jian; Zhang, Xinping

    2015-11-16

    Fano-like coupling was investigated extensively in plasmonic nanostructures, which is based on the interaction between the photonic and plasmonic resonance modes. Metallic photonic crystals consisting of waveguide metallic gratings are typical devices exhibiting strong Fano-coupling between waveguide and plasmon resonance modes. However, we demonstrate here that similar effects can also be achieved in waveguide dielectric grating structures. In this case, the broad-band strong optical extinction results from multifold diffraction processes, instead of the plasmonic absorption and scattering of light. The diffraction efficiency of the waveguide dielectric gratings was tuned by changing the duty cycle through adjusting the exposure time in interference lithography. Enhanced diffraction efficiency reduces the direct transmission while enhances the waveguide resonance mode, leading to a Fano-like coupling process.

  4. Coupling of Termination, 3′ Processing, and mRNA Export

    PubMed Central

    Hammell, C. M.; Gross, Stefan; Zenklusen, Daniel; Heath, Catherine V.; Stutz, Francoise; Moore, Claire; Cole, C. N.

    2002-01-01

    In a screen to identify genes required for mRNA export in Saccharomyces cerevisiae, we isolated an allele of poly(A) polymerase (PAP1) and novel alleles encoding several other 3′ processing factors. Many newly isolated and some previously described mutants (rna14-48, rna14-49, rna14-64, rna15-58, and pcf11-1 strains) are defective in polymerase II (Pol II) termination but, interestingly, retain the ability to polyadenylate these improperly processed transcripts at the nonpermissive temperature. Deletion of the cis-acting sequences required to couple 3′ processing and termination also produces transcripts that fail to exit the nucleus, suggesting that all of these processes (cleavage, termination, and export) are coupled. We also find that several but not all mRNA export mutants produce improperly 3′ processed transcripts at the nonpermissive temperature. 3′ maturation defects in mRNA export mutants include improper Pol II termination and/or the previously characterized hyperpolyadenylation of transcripts. Importantly, not all mRNA export mutants have defects in 3′ processing. The similarity of the phenotypes of some mRNA export mutants and 3′ processing mutants indicates that some factors from each process may mechanistically interact to couple mRNA processing and export. Consistent with this assumption, we present evidence that Xpo1p interacts in vivo with several 3′ processing factors and that the addition of recombinant Xpo1p to in vitro processing reaction mixtures stimulates 3′ maturation. Of the core 3′ processing factors tested (Rna14p, Rna15p, Pcf11p, Hrp1p, Fip1p, and Cft1p), only Hrp1p shuttles. Overexpression of Rat8p/Dbp5p suppresses both 3′ processing and mRNA export defects found in xpo1-1 cells. PMID:12192043

  5. Multi-Region Boundary Element Analysis for Coupled Thermal-Fracturing Processes in Geomaterials

    NASA Astrophysics Data System (ADS)

    Shen, Baotang; Kim, Hyung-Mok; Park, Eui-Seob; Kim, Taek-Kon; Wuttke, Manfred W.; Rinne, Mikael; Backers, Tobias; Stephansson, Ove

    2013-01-01

    This paper describes a boundary element code development on coupled thermal-mechanical processes of rock fracture propagation. The code development was based on the fracture mechanics code FRACOD that has previously been developed by Shen and Stephansson (Int J Eng Fracture Mech 47:177-189, 1993) and FRACOM (A fracture propagation code—FRACOD, User's manual. FRACOM Ltd. 2002) and simulates complex fracture propagation in rocks governed by both tensile and shear mechanisms. For the coupled thermal-fracturing analysis, an indirect boundary element method, namely the fictitious heat source method, was implemented in FRACOD to simulate the temperature change and thermal stresses in rocks. This indirect method is particularly suitable for the thermal-fracturing coupling in FRACOD where the displacement discontinuity method is used for mechanical simulation. The coupled code was also extended to simulate multiple region problems in which rock mass, concrete linings and insulation layers with different thermal and mechanical properties were present. Both verification and application cases were presented where a point heat source in a 2D infinite medium and a pilot LNG underground cavern were solved and studied using the coupled code. Good agreement was observed between the simulation results, analytical solutions and in situ measurements which validates an applicability of the developed coupled code.

  6. Childhood Emotional Abuse and Attachment Processes in the Dyadic Adjustment of Dating Couples

    ERIC Educational Resources Information Center

    Riggs, Shelley A.; Cusimano, Angela M.; Benson, Karen M.

    2011-01-01

    In an effort to improve understanding of the mechanisms that link early maltreatment to later outcomes, this study investigated the mediation effects of adult attachment processes on the association between childhood emotional abuse and later romantic relationships among heterosexual couples. College students and their dating partners (N = 310;…

  7. Multilevel Modeling of Two Cyclical Processes: Extending Differential Structural Equation Modeling to Nonlinear Coupled Systems

    ERIC Educational Resources Information Center

    Butner, Jonathan; Amazeen, Polemnia G.; Mulvey, Genna M.

    2005-01-01

    The authors present a dynamical multilevel model that captures changes over time in the bidirectional, potentially asymmetric influence of 2 cyclical processes. S. M. Boker and J. Graham's (1998) differential structural equation modeling approach was expanded to the case of a nonlinear coupled oscillator that is common in bimanual coordination…

  8. Childhood Emotional Abuse and Attachment Processes in the Dyadic Adjustment of Dating Couples

    ERIC Educational Resources Information Center

    Riggs, Shelley A.; Cusimano, Angela M.; Benson, Karen M.

    2011-01-01

    In an effort to improve understanding of the mechanisms that link early maltreatment to later outcomes, this study investigated the mediation effects of adult attachment processes on the association between childhood emotional abuse and later romantic relationships among heterosexual couples. College students and their dating partners (N = 310;…

  9. Coupled Diffusion and Reaction Processes in Rock Matrices: Impact on Dilute Groundwater Plumes

    DTIC Science & Technology

    2015-12-28

    FINAL REPORT Coupled Diffusion and Reaction Processes in Rock Matrices : Impact on Dilute Groundwater Plumes SERDP Project ER-1685...Rock Within TCE Plume ...................................... 33 3.7 Contaminant Profiles in Rock Matrices ...42 3.9 Model Development to Assess Diffusion and Reaction in Rock Matrices . ........................ 43 4. RESULTS & DISCUSSION

  10. Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region

    DTIC Science & Technology

    2009-01-01

    in the Lombok Strait Region Burton H. Jones Department of Biological Sciences University of Southern California Los Angeles, CA 90089-0371...TITLE AND SUBTITLE Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  11. Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait Region

    DTIC Science & Technology

    2008-09-30

    Bio-Optical Response and Coupling with Physical Processes in the Lombok Strait...The Lombok Strait Region 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK

  12. Numerical methods for TVD transport and coupled relaxing processes in gases and plasmas

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1990-01-01

    The construction of second-order upwind schemes for nonequilibrium plasmas, for both one- and two-fluid formulations is demonstrated. Coupled relaxation processes, including ionization kinetics and radiative processes and their algorithms for nonequilibrium, multiple temperature conditions are described as well. The paper applies the numerical techniques on some simple test cases, points out critical problems and their solutions, and makes qualitative comparisons with known results, whenever possible.

  13. Process research on Emotionally Focused Therapy (EFT) for couples: linking theory to practice.

    PubMed

    Greenman, Paul S; Johnson, Susan M

    2013-03-01

    The focus of this article is on the link among theory, process, and outcome in the practice of Emotionally Focused Therapy (EFT) for couples. We describe the EFT model of change and the EFT perspective on adult love as the reflection of underlying attachment processes. We outline the manner in which theory and research inform EFT interventions. This leads into a detailed review of the literature on the processes of change in EFT. We highlight the client responses and therapist operations that have emerged from process research and their relation to treatment outcomes. We discuss the implications of this body of research for clinical practice and training. © FPI, Inc.

  14. Primary microRNA processing is functionally coupled to RNAP II transcription in vitro

    PubMed Central

    Yin, Shanye; Yu, Yong; Reed, Robin

    2015-01-01

    Previous studies in vivo reported that processing of primary microRNA (pri-miRNA) is coupled to transcription by RNA polymerase II (RNAP II) and can occur co-transcriptionally. Here we have established a robust in vivo system in which pri-miRNA is transcribed by RNAP II and processed to pre-miRNA in HeLa cell nuclear extracts. We show that both the kinetics and efficiency of pri-miRNA processing are dramatically enhanced in this system compared to that of the corresponding naked pri-miRNA. Moreover, this enhancement is general as it occurs with multiple pri-miRNAs. We also show that nascent pri-miRNA is efficiently processed before it is released from the DNA template. Together, our work directly demonstrates that transcription and pri-miRNA processing are functionally coupled and establishes the first in vivo model systems for this functional coupling and for co-transcriptional processing. PMID:26149087

  15. Can neutron stars have auroras ? : electromagnetic coupling process between neutron star and magnetized accretion disk

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Iwakiri, W. B.; Enoto, T.; Wada, T.; Tao, C.

    2015-12-01

    In the binary neutron star system, angular momentum transfer from accretion disk to a star is essential process for spin-up/down of stars. The angular momentum transfer has been well formulated for the accretion disk strongly magnetized by the neutron star [e.g., Ghosh and Lamb, 1978, 1979a, b]. However, the electromagnetic (EM) coupling between the neutron star and accretion disk has not been self-consistently solved in the previous studies although the magnetic field lines from the star are strongly tied with the accretion disk. In this study, we applied the planet-magnetosphere coupling process established for Jupiter [Hill, 1979] to the binary neutron star system. Angular momentum distribution is solved based on the torque balance between the neutron star's surface and accretion disk coupled by the magnetic field tensions. We found the EM coupling can transfer significantly larger fraction of the angular momentum from the magnetized accretion disk to the star than the unmagnetized case. The resultant spin-up rate is estimated to ~10^-14 [sec/sec] for the nominal binary system parameters, which is comparable with or larger than the other common spin-down/up processes: e.g., the magnetic dipole radiation spin-down. The Joule heating energy dissipated in the EM coupling is estimated to be up to ~10^36 [erg/sec] for the nominal binary system parameters. The release is comparable to that of gravitation energy directly caused by the matters accreting onto the neutron star. This suggests the EM coupling at the neutron star can accompany the observable radiation as auroras with a similar manner to those at the rotating planetary magnetospheres like Jupiter, Saturn, and other gas giants.

  16. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes.

    PubMed

    Velasco, Antonio; Ramírez, Martha; Hernández, Sergio; Schmidt, Winfried; Revah, Sergio

    2012-03-15

    Single Cr(VI) reduction and coupled reduction/stabilization (R/S) processes were evaluated at pilot scale to determine their effectiveness to treat chromite ore processing residue (COPR). Sodium sulfide was used as the reducing agent and cement, gypsum and lime were tested as the stabilizing agents. The pilot experiments were performed in a helical ribbon blender mixer with batches of 250 kg of COPR and mixing time up to 30 min. Na2S/Cr(VI) mass ratios of 4.6, 5.7 and 6.8 were evaluated in the single reduction process to treat COPR with Cr(VI) concentration of ≈4.2 g/kg. The R/S process was tested with a Na2S/Cr(VI) mass ratio of 5.7 and including stabilizing agents not exceeding 5% (w/w(COPR)), to treat COPR with a Cr(VI) content of ≈5.1g/kg. The single reduction process with a ratio of 6.8, reached Cr(VI) reduction efficiencies up to 97.6% in the first days, however these values decreased to around 93% after 380 days of storage. At this point the total Cr level was around 12.5 mg/L. Cr(VI) removal efficiencies exceeding 96.5% were reached and maintained during 380 days when the coupled R/S process was evaluated. Total Cr levels lower than 5 mg/l were attained at the initials days in all R/S batch tested, however after 380 days, concentrations below the regulatory limit were only found with gypsum (2%) as single agent and with a blend of cement (4%) and lime (1%). These results indicated that the coupled R/S process is an excellent alternative to stabilize COPR. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Advances in Coupling of Kinetics and Molecular Scale Tools to Shed Light on Soil Biogeochemical Processes

    SciTech Connect

    Sparks, Donald

    2014-09-02

    Biogeochemical processes in soils such as sorption, precipitation, and redox play critical roles in the cycling and fate of nutrients, metal(loid)s and organic chemicals in soil and water environments. Advanced analytical tools enable soil scientists to track these processes in real-time and at the molecular scale. Our review focuses on recent research that has employed state-of-the-art molecular scale spectroscopy, coupled with kinetics, to elucidate the mechanisms of nutrient and metal(loid) reactivity and speciation in soils. We found that by coupling kinetics with advanced molecular and nano-scale tools major advances have been made in elucidating important soil chemical processes including sorption, precipitation, dissolution, and redox of metal(loids) and nutrients. Such advances will aid in better predicting the fate and mobility of nutrients and contaminants in soils and water and enhance environmental and agricultural sustainability.

  18. Coupled 5' nucleotide recognition and processivity in Xrn1-mediated mRNA decay.

    PubMed

    Jinek, Martin; Coyle, Scott M; Doudna, Jennifer A

    2011-03-04

    Messenger RNA decay plays a central role in the regulation and surveillance of eukaryotic gene expression. The conserved multidomain exoribonuclease Xrn1 targets cytoplasmic RNA substrates marked by a 5' monophosphate for processive 5'-to-3' degradation by an unknown mechanism. Here, we report the crystal structure of an Xrn1-substrate complex. The single-stranded substrate is held in place by stacking of the 5'-terminal trinucleotide between aromatic side chains while a highly basic pocket specifically recognizes the 5' phosphate. Mutations of residues involved in binding the 5'-terminal nucleotide impair Xrn1 processivity. The substrate recognition mechanism allows Xrn1 to couple processive hydrolysis to duplex melting in RNA substrates with sufficiently long single-stranded 5' overhangs. The Xrn1-substrate complex structure thus rationalizes the exclusive specificity of Xrn1 for 5'-monophosphorylated substrates, ensuring fidelity of mRNA turnover, and posits a model for translocation-coupled unwinding of structured RNA substrates.

  19. Hybrid models for the simulation of microstructural evolution influenced by coupled, multiple physical processes.

    SciTech Connect

    Tikare, Veena; Hernandez-Rivera, Efrain; Madison, Jonathan D.; Holm, Elizabeth Ann; Patterson, Burton R.; Homer, Eric R.

    2013-09-01

    Most materials microstructural evolution processes progress with multiple processes occurring simultaneously. In this work, we have concentrated on the processes that are active in nuclear materials, in particular, nuclear fuels. These processes are coarsening, nucleation, differential diffusion, phase transformation, radiation-induced defect formation and swelling, often with temperature gradients present. All these couple and contribute to evolution that is unique to nuclear fuels and materials. Hybrid model that combines elements from the Potts Monte Carlo, phase-field models and others have been developed to address these multiple physical processes. These models are described and applied to several processes in this report. An important feature of the models developed are that they are coded as applications within SPPARKS, a Sandiadeveloped framework for simulation at the mesoscale of microstructural evolution processes by kinetic Monte Carlo methods. This makes these codes readily accessible and adaptable for future applications.

  20. Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film.

    PubMed

    Poutrina, Ekaterina; Ciracì, Cristian; Gauthier, Daniel J; Smith, David R

    2012-05-07

    We consider the process of four-wave mixing in an array of gold nanowires strongly coupled to a gold film. Using full-wave simulations, we perform a quantitative comparison of the four-wave mixing efficiency associated with a bare film and films with nanowire arrays. We find that the strongly localized surface plasmon resonances of the coupled nanowires provide an additional local field enhancement that, along with the delocalized surface plasmon of the film, produces an overall four-wave mixing efficiency enhancement of up to six orders of magnitude over that of the bare film. The enhancement occurs over a wide range of excitation angles. The film-coupled nanowire array is easily amenable to nanofabrication, and could find application as an ultra-compact component for integrated photonic and quantum optic systems.

  1. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process.

    PubMed

    Feyissa, Aberham Hailu; Gernaey, Krist V; Adler-Nissen, Jens

    2013-04-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change in microstructure (permeability, water binding capacity and elastic modulus) that occur during the meat roasting process. The developed coupled partial differential equations were solved by using COMSOL Multiphysics®3.5 and state variables are predicted as functions of both position and time. The proposed mechanism was partially validated by experiments in a convection oven where temperatures were measured online.

  2. Detecting changes in coupling with Granger causality method from time series with fast transient processes

    NASA Astrophysics Data System (ADS)

    Sysoev, Ilya V.; Sysoeva, Marina V.

    2015-08-01

    The ability of the Granger causality method to detect directed coupling between subsystems of a complex system in a moving time window is investigated on etalon oscillators. In particular, the time series consisting of alternate stationary regimes characterised by the different amplitude and shape of oscillations with fast transient processes between these regimes are considered, with similar transitions being possible due to changes either in the coupling or in the individual properties of subsystems. Two popular approaches to surrogate times series generation are used to check the significance of the method results. Two model structures: the standard linear and the special non-linear adapted to data are implemented. The Granger causality method using the model structure adapted to data is shown to be significantly advantageous in detecting coupling directionality and the instant time of the regime change than the standard linear method, while in some cases the sensitivity and the specificity of the adapted approach are insufficient.

  3. Sequoia: A fault-tolerant tightly coupled multiprocessor for transaction processing

    SciTech Connect

    Bernstein, P.A.

    1988-02-01

    The Sequoia computer is a tightly coupled multiprocessor, and thus attains the performance advantages of this style of architecture. It avoids most of the fault-tolerance disadvantages of tight coupling by using a new fault-tolerance design. The Sequoia architecture is similar to other multimicroprocessor architectures, such as those of Encore and Sequent, in that it gives dozens of microprocessors shared access to a large main memory. It resembles the Stratus architecture in its extensive use of hardware fault-detection techniques. It resembles Stratus and Auragen in its ability to quickly recover all processes after a single point failure, transparently to the user. However, Sequoia is unique in its combination of a large-scale tightly coupled architecture with a hardware approach to fault tolerance. This article gives an overview of how the hardware architecture and operating systems (OS) work together to provide a high degree of fault tolerance with good system performance.

  4. Reduced functional coupling in the default-mode network during self-referential processing.

    PubMed

    van Buuren, Mariët; Gladwin, Thomas E; Zandbelt, Bram B; Kahn, René S; Vink, Matthijs

    2010-08-01

    Activity within the default-mode network (DMN) is thought to be related to self-referential processing, such as thinking about one's preferences or personality traits. Although the DMN is generally considered to function as a network, evidence is starting to accumulate that suggests that areas of the DMN are each specialized for different subfunctions of self-referential processing. Here, we address the issue of functional specialization by investigating changes in coupling between areas of the DMN during self-referential processing. To this aim, brain activity was assessed during a task in which subjects had to indicate whether a trait adjective described their own personality (self-referential, Self condition), that of another person (other-referential, Other condition), or whether the trait was socially desirable (nonreferential, Control condition). To exclude confounding effects of cardiorespiratory processes on activity and functional coupling, we corrected the fMRI signal for these effects. Activity within areas of the DMN was found to be modulated by self-referential processing. More specifically, during the Self condition compared to the Other and Control condition, activity within the dorsal medial prefrontal cortex, ventral medial prefrontal cortex, and posterior cingulate cortex was increased. Moreover, coupling between areas of the DMN was reduced during the Self condition compared to the Other and Control condition, while coupling between regions of the DMN and regions outside the network was increased. As such, these results provide an indication for functional specialization within the DMN and support the notion that each area of the DMN is involved in different subfunctions of self-referential processing.

  5. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process

    NASA Astrophysics Data System (ADS)

    Breinlinger, Thomas; Kraft, Torsten

    2016-11-01

    Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.

  6. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGES

    Ma, X.; Fang, F.; Li, Q.; ...

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  7. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  8. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  9. Integrated Modeling and Experiments to Characterize Coupled Thermo-hydro-geomechanical-chemical processes in Hydraulic Fracturing

    NASA Astrophysics Data System (ADS)

    Viswanathan, H. S.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Kang, Q.; Makedonska, N.; Hyman, J.; Jimenez Martinez, J.; Frash, L.; Chen, L.

    2015-12-01

    Hydraulic fracturing phenomena involve fluid-solid interactions embedded within coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Feedbacks between processes result in complex dynamics that must be unraveled if one is to predict and, in the case of unconventional resources, facilitate fracture propagation, fluid flow, and interfacial transport processes. The proposed work is part of a broader class of complex systems involving coupled fluid flow and fractures that are critical to subsurface energy issues, such as shale oil, geothermal, carbon sequestration, and nuclear waste disposal. We use unique LANL microfluidic and triaxial core flood experiments integrated with state-of-the-art numerical simulation to reveal the fundamental dynamics of fracture-fluid interactions to characterize the key coupled processes that impact hydrocarbon production. We are also comparing CO2-based fracturing and aqueous fluids to enhance production, greatly reduce waste water, while simultaneously sequestering CO2. We will show pore, core and reservoir scale simulations/experiments that investigate the contolling mechanisms that control hydrocarbon production.

  10. Understanding Coupled Earth-Surface Processes through Experiments and Models (Invited)

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Kim, W.

    2013-12-01

    Traditionally, both numerical models and experiments have been purposefully designed to ';isolate' singular components or certain processes of a larger mountain to deep-ocean interconnected source-to-sink (S2S) transport system. Controlling factors driven by processes outside of the domain of immediate interest were treated and simplified as input or as boundary conditions. Increasingly, earth surface processes scientists appreciate feedbacks and explore these feedbacks with more dynamically coupled approaches to their experiments and models. Here, we discuss key concepts and recent advances made in coupled modeling and experimental setups. In addition, we emphasize challenges and new frontiers to coupled experiments. Experiments have highlighted the important role of self-organization; river and delta systems do not always need to be forced by external processes to change or develop characteristic morphologies. Similarly modeling f.e. has shown that intricate networks in tidal deltas are stable because of the interplay between river avulsions and the tidal current scouring with both processes being important to develop and maintain the dentritic networks. Both models and experiment have demonstrated that seemingly stable systems can be perturbed slightly and show dramatic responses. Source-to-sink models were developed for both the Fly River System in Papua New Guinea and the Waipaoa River in New Zealand. These models pointed to the importance of upstream-downstream effects and enforced our view of the S2S system as a signal transfer and dampening conveyor belt. Coupled modeling showed that deforestation had extreme effects on sediment fluxes draining from the catchment of the Waipaoa River in New Zealand, and that this increase in sediment production rapidly shifted the locus of offshore deposition. The challenge in designing coupled models and experiments is both technological as well as intellectual. Our community advances to make numerical model coupling more

  11. Understanding Air-Sea Coupling Processes and Coupled Model Predictions Using GOTEX Measurements and COAMPS/NCOM and Aircraft Measurements for Understanding Air-Sea Coupling and Improving Coupled Model Predictions

    DTIC Science & Technology

    2012-09-30

    part of the Dynamics of the Madden- Julian Oscillation (DYNAMO) and ONR Litterol Littoral Air-Sea Processes (LASP) DRI. The objectives of the GOTEX... McCreary et al.1989). These studies have hypothesized that a fully-coupled model study of the gap outflow would be beneficial. Observations from...REFERENCES McCreary , J. P., H. S. Lee, and D. B. Enfield, 1989: The response of the coastal ocean to strong offshore winds: With

  12. Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.

  13. Coupled hydro-mechanical processes in crytalline rock and ininduratedand plastic clays: A comparative discussion

    SciTech Connect

    Tsang, Chin-Fu; Blumling, Peter; Bernier, Frederic

    2006-02-15

    This paper provides a comparative discussion of coupledhydromechanical processes in three different geological formations:crystalline rock, plastic clay, and indurated clay. First, the importantprocesses and associated property characteristics in the three rock typesare discussed. Then, one particular hydromechanical coupling is broughtup for detailed consideration, that of pore pressure changes in nearbyrock during tunnel excavation. Three field experiments in the three rocktypes are presented and their results are discussed. It is shown that themain physical processes are common to all three rock types, but with verydifferent time constants. The different issues raised by these cases arepointed out, and the transferable lessons learned are identified. Suchcross fertilization and simultaneous understanding of coupled processesin three very different rock types help to greatly enhance confidence inthe state of science in this field.

  14. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    SciTech Connect

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-04-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 °C to 950 °C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered.

  15. High Efficiency Coupling of Optical Fibres with SU8 Micro-droplet Using Laser Welding Process

    NASA Astrophysics Data System (ADS)

    Yardi, Seema; Gupta, Ankur; Sundriyal, Poonam; Bhatt, Geeta; Kant, Rishi; Boolchandani, D.; Bhattacharya, Shantanu

    2016-09-01

    Apart from micro- structure fabrication, ablation, lithography etc., lasers find a lot of utility in various areas like precision joining, device fabrication, local heat delivery for surface texturing and local change of microstructure fabrication of standalone optical micro-devices (like microspheres, micro-prisms, micro-scale ring resonators, optical switches etc). There is a wide utility of such systems in chemical/ biochemical diagnostics and also communications where the standalone optical devices exist at a commercial scale but chip based devices with printed optics are necessary due to coupling issues between printed structures and external optics. This paper demonstrates a novel fabrication strategy used to join standalone optical fibres to microchip based printed optics using a simple SU8 drop. The fabrication process is deployed for fiber to fiber optical coupling and coupling between fiber and printed SU-8 waveguides. A CO2 laser is used to locally heat the coupling made up of SU8 material. Optimization of various dimensional parameters using design of experiments (DOE) on the bonded assembly has been performed as a function of laser power, speed, cycle control, spot size so on so forth. Exclusive optical [RF] modelling has been performed to estimate the transmissibility of the optical fibers bonded to each other on a surface with SU8. Our studies indicate the formation of a Whispering gallery mode (WGM) across the micro-droplet leading to high transmissibility of the signal. Through this work we have thus been able to develop a method of fabrication for optical coupling of standalone fibers or coupling of on-chip optics with off-chip illumination/detection.

  16. Spheroidal close-coupling scheme to describe ionization processes in one-electron diatomic systems

    SciTech Connect

    Pons, B.

    2003-04-01

    We propose a molecular close-coupling expansion in terms of prolate spheroidal wave functions confined in an ellipsoidal box. We first implement the method for ionization of H{sub 2}{sup +} molecular ions, by linearly polarized strong and short laser pulses, in the nonperturbative regime and within the (fixed nuclei) Born-Oppenheimer approximation. We further analyze the adequacy of the method to reproduce both the bound and the continuum nonadiabatic processes in ion-atom collisions.

  17. Coupling groundwater, vegetation and atmosphere processes: a comparison of two integrated models

    NASA Astrophysics Data System (ADS)

    Sulis, M.; Williams, J. L.; Shrestha, P.; Maxwell, R. M.; Masbou, M.; Simmer, C.

    2012-12-01

    The correct modelling of the mutual response to and feedback between atmospheric, hydrological, and ecological processes is an important prerequisite for accurate climate/meteorological projection, environmental protection, and water management. As such, numerical models based on a detailed representation of both groundwater and atmospheric dynamics have gained increasing attention within the scientific community. In this study, we compare two integrated systems that dynamically simulate soil-vegetation-atmosphere interactions. One system is the combination of the Weather Research and Forecasting (WRF) atmospheric model coupled with the three-dimensional variably saturated subsurface ParFlow model. Both sub-models are internally coupled in an explicit, operator-splitting manner via the Noah land surface scheme. The second system consists of the regional climate and weather forecast model COSMO coupled also with ParFlow but via the Community Land Model (CLM). In this second system the external OASIS coupler is used to pass relevant fluxes and state variables between these three components via the MPI parallel communications protocol. The comparison on how interactions are simulated and how different processes are integrated/coupled is carried out by selecting a set of test cases. These tests involve a flat domain with idealized initial and boundary conditions, as well as simulations over the Rur catchment in Germany based upon equilibrium initial conditions for the subsurface and realistic atmospheric conditions at the boundaries. We explore and explain the differences in model response, and we discuss the pros and cons of the two approaches by emphasizing the role played by factors such as temporal subcycling and coupling frequency between model components.

  18. Understanding the mode coupling process in a strong long period grating

    NASA Astrophysics Data System (ADS)

    Jin, Long; Jin, Wei; Ju, Jian

    2010-09-01

    A long period grating (LPG) is a longitudinal periodic optical structure that drives couplings from the fundamental core mode into phase-matched co-propagating cladding modes of an optical fiber and a series of attenuation dips are formed in the transmission spectrum [1]. LPGs have been applied as photonic sensors to detect external perturbations including temperature, strain, bending and surrounding refractive index, by monitoring the spectral shifts of the resonant dips [2]. LPGs are conventionally fabricated by UV-light exposure to induce periodic refractive-index variation of 10-5 ~ 10-4 in the fiber core. Such an LPG is regarded as weak perturbation to the fiber and the mode coupling process has been described by the wellknown coupled mode theory (CMT) [3]. In addition to the UV-inscription technique, stronger LPGs can also be formed by introducing refractive index/geometry modulation by use of CO2-laser irradiation, arc discharge, and periodic tapering [4-6]. Photonic crystal fibers (PCFs), which contain a two-dimensional array of air holes in their claddings, provide an extra-dimension for LPG-inscription through periodic deformation of the air-holes in the cladding [7]. However, the conventional CMT may not provide accurate description to these strong LPGs because of the significant modification of the mode fields and refractive indexes over the modulated regions. In this paper, the mode coupling process in a strong LPG inscribed in a PCF is quantitatively analyzed based on the coupled local-mode theory. The analysis offers a physical insight and a better understanding over the energy transfers in the LPGs. Based on the theory, a general phase-matching condition for LPG is presented, which accurately determines the resonant wavelengths λres.

  19. Modeling Coupled THMC Processes and Brine Migration in Salt at High Temperatures

    SciTech Connect

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-08-14

    In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.

  20. The Hiccup - A Dynamical Vertical Coupling Process during the Fall Transition of the Northern Hemisphere

    NASA Astrophysics Data System (ADS)

    Matthias, V.; Shepherd, T. G.; Hoffmann, P.; Rapp, M.

    2014-12-01

    Sudden stratospheric warmings (SSWs) are the most prominent and dramatic vertical coupling process in the middle atmosphere occurring during winter months. However, during the fall transition another vertical coupling process occurs, approximately every second year, which we refer to as the Hiccup. The Hiccup acts like a "mini SSW" and is argued to be caused by the sudden onset of planetary wave (PW) activity in the stratosphere as the background winds become westerly. The average characteristics of zonal wind, temperature and PW activity between 65° and 75°N during the Hiccup are considered using the nudged CMAM30 simulation, representing 30 years of historical data. Additionally, the mesospheric zonal wind results are compared to radar observations in Andenes (69°N, 16°E) for the years 2000 - 2013. The average Hiccup is characterized by a weakening of the zonal wind from the troposphere up to the mesosphere and by a warming in the stratosphere and a cooling in the mesosphere, i.e. similar to a SSW but with a much smaller magnitude. A comparison of the Hiccup and SSW shows similarities and differences between both coupling processes.

  1. Coupling of geochemical and multiphase flow processes for validation of the MUFITS reservoir simulator against TOUGHREACT

    NASA Astrophysics Data System (ADS)

    De Lucia, Marco; Kempka, Thomas; Afanasyev, Andrey; Melnik, Oleg; Kühn, Michael

    2016-04-01

    Coupled reactive transport simulations, especially in heterogeneous settings considering multiphase flow, are extremely time consuming and suffer from significant numerical issues compared to purely hydrodynamic simulations. This represents a major hurdle in the assessment of geological subsurface utilization, since it constrains the practical application of reactive transport modelling to coarse spatial discretization or oversimplified geological settings. In order to overcome such limitations, De Lucia et al. [1] developed and validated a one-way coupling approach between geochemistry and hydrodynamics, which is particularly well suited for CO2 storage simulations, while being of general validity. In the present study, the models used for the validation of the one-way coupling approach introduced by De Lucia et al. (2015), and originally performed with the TOUGHREACT simulator, are transferred to and benchmarked against the multiphase reservoir simulator MUFITS [2]. The geological model is loosely inspired by an existing CO2 storage site. Its grid comprises 2,950 elements enclosed in a single layer, but reflecting a realistic three-dimensional anticline geometry. For the purpose of this comparison, homogeneous and heterogeneous scenarios in terms of porosity and permeability were investigated. In both cases, the results of the MUFITS simulator are in excellent agreement with those produced with the fully-coupled TOUGHREACT simulator, while profiting from significantly higher computational performance. This study demonstrates how a computationally efficient simulator such as MUFITS can be successfully included in a coupled process simulation framework, and also suggests ameliorations and specific strategies for the coupling of chemical processes with hydrodynamics and heat transport, aiming at tackling geoscientific problems beyond the storage of CO2. References [1] De Lucia, M., Kempka, T., and Kühn, M. A coupling alternative to reactive transport simulations

  2. Coupled simulation of an electromagnetic heating process using the finite difference time domain method.

    PubMed

    Chen, Hao; Tang, Juming; Liu, Fang

    2007-01-01

    Due to the complexity of interactions between microwaves and food products, a reliable and efficient simulation model can be a very useful tool to guide the design of microwave heating systems and processes. This research developed a model to simulate coupled phenomena of electromagnetic heating and conventional heat transfer by combining commercial electromagnetic software with a customer built heat transfer model. Simulation results were presented and compared with experimental results for hot water and microwave heating in a single mode microwave system at 915 MHz. Good agreement was achieved, showing that this model was able to provide insight into industrial electromagnetic heating processes.

  3. Investigation of velocity-space coupling approach in DSMC for tail-driven processes

    NASA Astrophysics Data System (ADS)

    Pan, Tzu-Jung; Stephani, Kelly A.

    2016-11-01

    In this study, a velocity-space coupling approach is investigated to improve the poor statistics of tail-driven processes in DSMC. The velocity distribution function is separated into bulk and tail regions in velocity space according to the location of a velocity space interface. The highly-populated bulk distribution, fbulk, is evolved in DSMC through selective particle collisions where there are suffcient particles to resolve the distribution with relatively low stochastic noise. The distribution tail, ftail, is computed based on the solution of the Boltzmann equation through discontinuous Galerkin (DG) method in a reduced region of velocity space, which provides a statistically smooth, kinetic "correction" to the DSMC tail. The spatially homogeneous relaxation problem is solved to test the DSMC/DG coupling approach and the results are compared with the standard DSMC solver. The result shows that the coupling approach successfully computes the correct relaxation rate and the evolution of entropy agrees with the DSMC result. Furthermore, using the same initial number of simulation particles, the coupling approach achieves better resolution of the tail velocity bins than DSMC and the results are in good agreement with the DG solution.

  4. Coupled Environmental Processes and Long-term Performance of Landfill Covers in the northern Mojave Desert

    SciTech Connect

    David Shafer; Michael Young; Stephen Zitzer; Eric McDonald; Todd Caldwell

    2004-05-12

    Evapotransiration (ET) covers have gained widespread acceptance as a closure feature for waste disposal sites, particularly in the arid and semi-arid regions of the southwestern U.S. But as landforms, ET covers are subject to change over time because of processes such as pedogenesis, hydrologic processes, vegetation establishment and change, and biological processes. To better understand the effects of coupled process changes to ET covers, a series of four primary analog sites in Yucca Flat on the Nevada Test Site, along with measurements and observations from other locations in the Mojave Desert, were selected to evaluate changes in ET covers over time. The analog sites, of varying ages, were selected to address changes in the early post-institutional control period, the 1,000-year compliance period for disposal of low-level and mixed low-level waste, and the 10,000-year compliance period for transuranic waste sites.

  5. A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes

    NASA Astrophysics Data System (ADS)

    Azad, Vahid Jafari; Li, Chang; Verba, Circe; Ideker, Jason H.; Isgor, O. Burkan

    2016-07-01

    An interface was developed between COMSOL MultiphysicsTM finite element analysis software and (geo)chemical modeling platform, GEMS, for the reactive-transport modeling of (geo)chemical processes in variably saturated porous media. The two standalone software packages are managed from the interface that uses a non-iterative operator splitting technique to couple the transport (COMSOL) and reaction (GEMS) processes. The interface allows modeling media with complex chemistry (e.g. cement) using GEMS thermodynamic database formats. Benchmark comparisons show that the developed interface can be used to predict a variety of reactive-transport processes accurately. The full functionality of the interface was demonstrated to model transport processes, governed by extended Nernst-Plank equation, in Class H Portland cement samples in high pressure and temperature autoclaves simulating systems that are used to store captured carbon dioxide (CO2) in geological reservoirs.

  6. Conservation Laws for Coupled Hydro-mechanical Processes in Unsaturated Porous Media: Theory and Implementation

    SciTech Connect

    Borja, R I; White, J A

    2010-02-19

    We develop conservation laws for coupled hydro-mechanical processes in unsaturated porous media using three-phase continuum mixture theory. From the first law of thermodynamics, we identify energy-conjugate variables for constitutive modeling at macroscopic scale. Energy conjugate expressions identified relate a certain measure of effective stress to the deformation of the solid matrix, the degree of saturation to the matrix suction, the pressure in each constituent phase to the corresponding intrinsic volume change of this phase, and the seepage forces to the corresponding pressure gradients. We then develop strong and weak forms of boundary-value problems relevant for 3D finite element modeling of coupled hydro-mechanical processes in unsaturated porous media. The paper highlights a 3D numerical example illustrating the advances in the solution of large-scale coupled finite element systems, as well as the challenges in developing more predictive tools satisfying the basic conservation laws and the observed constitutive responses for unsaturated porous materials.

  7. Catalysts for Suzuki-Miyaura coupling processes: scope and studies of the effect of ligand structure.

    PubMed

    Barder, Timothy E; Walker, Shawn D; Martinelli, Joseph R; Buchwald, Stephen L

    2005-04-06

    Suzuki-Miyaura coupling reactions of aryl and heteroaryl halides with aryl-, heteroaryl- and vinylboronic acids proceed in very good to excellent yield with the use of 2-(2',6'-dimethoxybiphenyl)dicyclohexylphosphine, SPhos (1). This ligand confers unprecedented activity for these processes, allowing reactions to be performed at low catalyst levels, to prepare extremely hindered biaryls and to be carried out, in general, for reactions of aryl chlorides at room temperature. Additionally, structural studies of various 1.Pd complexes are presented along with computational data that help elucidate the efficacy that 1 imparts on Suzuki-Miyaura coupling processes. Moreover, a comparison of the reactions with 1 and with 2-(2',4',6'-triisopropylbiphenyl)diphenylphosphine (2) is presented that is informative in determining the relative importance of ligand bulk and electron-donating ability in the high activity of catalysts derived from ligands of this type. Further, when the aryl bromide becomes too hindered, an interesting C-H bond functionalization-cross-coupling sequence intervenes to provide product in high yield.

  8. Coupling biological processes and gaseous transport in models describing GHG emission from soils

    NASA Astrophysics Data System (ADS)

    Blagodatsky, S.; Smith, P.

    2012-04-01

    The precise coupling of gaseous transport and biochemistry in models describing the emission of greenhouse gases (GHG) from soil is necessary because CH4 and N2O can be both produced and consumed in soil. Eventual fluxes to the atmosphere depends on the position of reaction sites and the escape pathways for these gases. The CO2 production rate depends in turn on the efficiency of oxygen transport in the soil. Basing on models published in literature and our own experience the main principles leading to the best simulation results can be summarized as: 1) keeping a balanced level of detail in coupled model systems describing biochemical reactions and transport; 2) reduction of unnecessary complexity by means of using the most essential relationships elucidated by comprehensive statistical model testing; 3) consideration of all transport mechanisms in relation to prevailing ecological conditions. We will show examples of the successful application of coupled model systems for the prediction of three main GHG: CO2, N2O and CH4 as well as results of application of our model MICNIT designed for the simulation of CO2 and N2O emission and microbial C and N turnover in soil. We conclude that coupled gas transport and decomposition models lack the latest findings in modelling microbial growth in soil. So, models including an explicit description of microbial growth, i.e. growth rate and efficiency, humification ratios and their relationship with N availability (Blagodatsky, Richter, 1998; Moorhead and Sinsabaugh, 2006; Eliasson, and Ågren, 2011) need to be coupled with well-developed soil physics models with appropriate description of transport processes.

  9. Childhood emotional abuse and attachment processes in the dyadic adjustment of dating couples.

    PubMed

    Riggs, Shelley A; Cusimano, Angela M; Benson, Karen M

    2011-01-01

    In an effort to improve understanding of the mechanisms that link early maltreatment to later outcomes, this study investigated the mediation effects of adult attachment processes on the association between childhood emotional abuse and later romantic relationships among heterosexual couples. College students and their dating partners (N = 310; 155 couples) completed the Childhood Trauma Questionnaire, Experiences in Close Relationship Scale, and Dyadic Adjustment Scale. Using the Actor–Partner Interdependence Model (Kenny, Kashy, & Cook, 2006), multilevel modeling results indicated that memories of childhood emotional abuse reported by both students and their partners were significantly associated with attachment strategies, as well as romantic relationship quality. Findings supported hypothesized mediation effects of attachment anxiety and avoidance.

  10. Coupled Deep Earth and surface processes and their impact on geohazards

    NASA Astrophysics Data System (ADS)

    Cloetingh, Sierd; Tibaldi, Alessandro; Burov, Evgenii

    2012-06-01

    Better understanding of coupled Deep Earth and surface processes is the key for resolving the evolution of the continental lithosphere and its surface topography. The thermo-mechanical structure of the lithosphere exerts a prime control on the interaction of mantle instabilities and tectonic forces operating on the lithosphere. These processes are fundamental for differential vertical motions at or near the Earth's surface and have a strong impact in the domains of geohazards and geo-energy. Stress fields exert a main control on volcano dynamics and in the conduits of fluids and melts. Integrated Solid Earth sciences intrinsically link different spatial and temporal scales and involve an interdisciplinary approach, with strong feedbacks between observational studies and imaging of Earth structure, reconstruction of the geological record and process-modelling.

  11. Modeling coupled Thermo-Hydro-Mechanical processes including plastic deformation in geological porous media

    NASA Astrophysics Data System (ADS)

    Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.

    2012-12-01

    There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses

  12. Understanding the pregnancy decision-making process among couples seeking induced abortion.

    PubMed

    Costescu, Dustin J; Lamont, John A

    2013-10-01

    The role of partners in the abortion experience is complex and poorly understood. We sought to examine how women and their partners navigate the pregnancy decision-making process. Thirty couples presenting for abortion completed questionnaires exploring experiences leading to the abortion. Participants were sequestered from their partners during completion of the study, and booklets were coded to allow comparison within couples. This portion of the study explored partner involvement in the decision-making process. One half of women had decided on abortion before informing their partner of the pregnancy. Of those who were undecided at the time of disclosure, all sought their partner's advice. Most participants (84%) were happy with the amount of discussion that took place with their partners, although one fifth of women and nearly one third of men could have discussed it more. More women than men were happy with the discussions that took place (96.6% vs. 70.4%). Two thirds of respondents viewed the decision to have an abortion as being made by both partners, one quarter viewed the decision as being mostly the woman's choice, and 5% viewed the decision as being mostly the male partner's choice. Although making the choice to have an abortion rests with the woman, her partner may play a role in the decision-making process, particularly when the woman is undecided. For many couples presenting for abortion, the decision is seen as being made jointly by both partners. Further research may identify opportunities to foster greater partner support throughout a woman's abortion experience.

  13. DECOVALEX - an International Cooperative Research Project on Coupled Thermo-hydro-mechanical Processes in Fractured Rocks

    NASA Astrophysics Data System (ADS)

    Tsang, C. F.

    2003-12-01

    The international cooperative project DECOVALEX (acronym for DEvelopment of COupled THM models and their VALidation against EXperiments) was established in 1992 by national agencies involved in nuclear waste disposal. The aim of this project is to develop and test models capable of simulating coupled thermo-hydro-mechanical (THM) processes. Over the last ten years, about 16 research teams from 10 countries have participated in this joint effort. The project objectives include: a. support development of computer simulators for THM modeling; b. investigate and implement suitable algorithms for THM modeling; c. compare model calculations with results from field and laboratory experiments; d. design new experiments to support code development; e. study the application of THM modeling to performance and safety assessment. A large number of benchmark tests (BMT) and test cases (TC) have been studied within the project. BMTs are hypothetical problems used for investigating the behavior of individual coupled THM processes, using alternative conceptual and numerical models by different teams. TCs are laboratory and field experiments that were analyzed to advance our understanding of THM processes and whose data were used to test computer models. A number of large-scale, multiyear experiments have been studied within the project, including: a. multiple borehole tests for shaft excavation design at Sellafield, UK; b. THM experiment on the bentonite-rock system at Kamaishi Mine, Japan; c. full scale bentonite-rock test (FEBEX) at Grimsel Underground Research Laboratory, Switzerland; d. Drift Scale Heater Test (DST) in the Exploratory Studies Facility at Yucca Mountain, USA. The talk will present an overview of the ten-year project by highlighting a few of the main results and lessons learned.

  14. Treatment of oilfield produced water by anaerobic process coupled with micro-electrolysis.

    PubMed

    Li, Gang; Guo, Shuhai; Li, Fengmei

    2010-01-01

    Treatment of oilfield produced water was investigated using an anaerobic process coupled with micro-electrolysis (ME), focusing on changes in chemical oxygen demand (COD) and biodegradability. Results showed that COD exhibited an abnormal change in the single anaerobic system in which it increased within the first 168 hr, but then decreased to 222 mg/L after 360 hr. The biological oxygen demand (five-day) (BODs)/COD ratio of the water increased from 0.05 to 0.15. Hydrocarbons in the wastewater, such as pectin, degraded to small molecules during the hydrolytic acidification process. Comparatively, the effect of ME was also investigated. The COD underwent a slight decrease and the BOD5/COD ratio of the water improved from 0.05 to 0.17 after ME. Removal of COD was 38.3% under the idealized ME conditions (pH 6.0), using iron and active carbon (80 and 40 g/L, respectively). Coupling the anaerobic process with ME accelerated the COD removal ratio (average removal was 53.3%). Gas chromatography/mass spectrometry was used to analyze organic species conversion. This integrated system appeared to be a useful option for the treatment of water produced in oilfields.

  15. Standardized Active Middle-Ear Implant Coupling to the Short Incus Process.

    PubMed

    Mlynski, Robert; Dalhoff, Ernst; Heyd, Andreas; Wildenstein, Daniela; Rak, Kristen; Radeloff, Andreas; Hagen, Rudolf; Gummer, Anthony W; Schraven, Sebastian P

    2015-09-01

    Active middle-ear implants with floating-mass transducer (FMT) technology are used to treat mild-to-severe sensorineural hearing losses. The standard surgical approach for incus vibroplasty is a mastoidectomy and a posterior tympanotomy, crimping the FMT to the long incus process. An alternative fixation side with less surgical trauma might be the short incus process and incus body.The aim of this study was to develop and test a short incus process coupling device for its functional properties in temporal bone preparations and clinical practice. An extended antrotomy and a posterior tympanotomy were performed in 10 fresh human temporal bones. As a control for normal middle-ear function, the tympanic membrane was stimulated acoustically, and the vibration of the stapes footplate was measured using laser Doppler vibrometry. FMT-induced vibration responses of the stapes were then measured for standard attachment at the long process and for 2 types of couplers designed for attachment at the short process of the incus (SP1 and SP2 coupler). Additionally, the functional outcome in 2 patients provided with an SP2 coupler was assessed postoperatively at 2 weeks, 3 months, and then 11 months, using pure-tone audiometry, auditory thresholds for frequency-modulated (warble) tones, vibroplasty thresholds, and speech audiometry in quiet and noise. For the SP2 coupler, velocity-amplitude responses in temporal-bone preparations showed generally similar mean amplitudes as compared with the standard coupling of the FMT to the long process but with clearly increased mean amplitudes between 0.7 and 1.5 kHz and with reduced interindividual variation between 0.5 and 3 kHz. The clinical data of 2 patients with mild-to-severe sensory hearing loss showed good vibroplasty thresholds and convincing results for speech audiometry in quiet (Freiburger monosyllables at 65 dB SPL, 23 ± 31% unaided versus 83 ± 4% aided) and noise (Hochmair-Schulz-Moser-test at 65 dB SPL at 10 dB SNR, 32 ± 45

  16. Modeling coupled thermal-mechanical processes of frozen soil induced by borehole heat exchanger

    NASA Astrophysics Data System (ADS)

    Shao, H.

    2015-12-01

    To utilize the shallow geothermal energy, heat pumps are often coupled with Borehole Heat Exchangers (BHE) to provide heating and cooling for buildings. In cold regions, soil freezing around the BHE is a potential problem which will dramatically influence the underground soil temperature distribution, subsequently the inlet and outlet refrigerant temperature of the BHE, and finally the efficiency of the heat pump. In this study, a numerical model has been developed to simulate the coupled temperature evolution both inside the BHE, and the propagating freezing front in the surrounding soil. The coupled model was validated against analytical solutions and experimental data. The influence of the freezing process on the overall system performance is investigated by comparing one long BHE configuration without freezing and another short one with latent heat from the frozen groundwater. It is found that when freezing happens, the coefficient of performance (COP) of the heat pump will decrease by around 0.5, leading to more electricity consumption. Furthermore, analysis of the simulation result reveals that the exploitation of latent heat through groundwater freezing is only economically attractive if electricity price is low and interest rate high, and it is not the case is most European countries.

  17. Weak and strong coupling in a two-lane asymmetric exclusion process.

    PubMed

    Jiang, Rui; Hu, Mao-Bin; Wu, Yong-Hong; Wu, Qing-Song

    2008-04-01

    This paper studies a two-lane totally asymmetric simple exclusion process, in which particles could jump between the two lanes with asymmetric rates. In the weak coupling situation, the rates are inversely proportional to system size L . The appearance of localized shock in one lane and the discontinuous phase transition as revealed by Juhász [Phys. Rev. E 76, 021117 (2007)] are also reproduced. The density profiles and phase diagrams are constructed in the hydrodynamic limit, by numerically solving the steady state equations. The phase diagram in our model exhibits asymmetry, which is different from the symmetric one in Juhász's model. We have studied the phase boundary and discontinuous line analytically. The analytical results are in good agreement with that obtained from numerical integration. We also study the strong coupling situation, in which the lane changing rates are independent of L . Results completely different from that arising from weak coupling are presented. Furthermore, features different from that of the model presented by Pronina and Kolomeisky [Physica A 372, 12 (2006)] are revealed.

  18. Contagion processes on the static and activity-driven coupling networks

    NASA Astrophysics Data System (ADS)

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  19. Contagion processes on the static and activity-driven coupling networks.

    PubMed

    Lei, Yanjun; Jiang, Xin; Guo, Quantong; Ma, Yifang; Li, Meng; Zheng, Zhiming

    2016-03-01

    The evolution of network structure and the spreading of epidemic are common coexistent dynamical processes. In most cases, network structure is treated as either static or time-varying, supposing the whole network is observed in the same time window. In this paper, we consider the epidemics spreading on a network which has both static and time-varying structures. Meanwhile, the time-varying part and the epidemic spreading are supposed to be of the same time scale. We introduce a static and activity-driven coupling (SADC) network model to characterize the coupling between the static ("strong") structure and the dynamic ("weak") structure. Epidemic thresholds of the SIS and SIR models are studied using the SADC model both analytically and numerically under various coupling strategies, where the strong structure is of homogeneous or heterogeneous degree distribution. Theoretical thresholds obtained from the SADC model can both recover and generalize the classical results in static and time-varying networks. It is demonstrated that a weak structure might make the epidemic threshold low in homogeneous networks but high in heterogeneous cases. Furthermore, we show that the weak structure has a substantive effect on the outbreak of the epidemics. This result might be useful in designing some efficient control strategies for epidemics spreading in networks.

  20. Interpersonal forgiveness in emotion-focused couples' therapy: relating process to outcome.

    PubMed

    Meneses, Catalina Woldarsky; Greenberg, Leslie S

    2014-01-01

    The objective of this study was to relate the in-session processes involved in interpersonal forgiveness to outcome. The sample consisted of 33 couples who received 10-12 sessions of Emotion-focused couple therapy with the aim of resolving various forms of emotional injuries (i.e., transgression that violates the expectations of a close relationship, which leaves one partner feeling hurt and angry). The results of the present study were based on the analyses of 205 video-taped segments from 33 couples' therapies. Hypotheses relating the role of three in-session components of resolution, the injurer's "expression of shame"; the injured partner's "accepting response" to the shame, and the injured partner's "in-session expression of forgiveness", to outcome were tested using hierarchical linear regression analyses. Outcome measures included the Enright Forgiveness Inventory (The Enright Forgiveness Inventory user's manual. Madison: The International Forgiveness Institute, 2000), the Dyadic Adjustment Scale (Journal of Marriage and Family, 1976; 13: 723) and the The Interpersonal Trust Scale (Trust; Journal of Personality and Social Psychology, 1985; 49: 95). © 2012 American Association for Marriage and Family Therapy.

  1. Planar optical coupling elements for multimode fibers with two-step ion migration process

    NASA Astrophysics Data System (ADS)

    Viljanen, J.; Leppihalme, M.

    1981-01-01

    An electric field assisted two-step ion migration process in soda-lime glass plates has been used to produce optical couple waveguides with semicircular and circular cross sections. The radius and the numerical aperture of the guides are approximately the same as those of the graded index multimode fibers. A new coupler structure, the edge reflecting element, which could be used as an integrated demultiplexer in wavelength division multiplexing, has been fabricated. The loss spectrum of the waveguides is analyzed and a theoretical treatment of the ion concentrations is given.

  2. Parallel processing implementation for the coupled transport of photons and electrons using OpenMP

    NASA Astrophysics Data System (ADS)

    Doerner, Edgardo

    2016-05-01

    In this work the use of OpenMP to implement the parallel processing of the Monte Carlo (MC) simulation of the coupled transport for photons and electrons is presented. This implementation was carried out using a modified EGSnrc platform which enables the use of the Microsoft Visual Studio 2013 (VS2013) environment, together with the developing tools available in the Intel Parallel Studio XE 2015 (XE2015). The performance study of this new implementation was carried out in a desktop PC with a multi-core CPU, taking as a reference the performance of the original platform. The results were satisfactory, both in terms of scalability as parallelization efficiency.

  3. Heat transfer and crystallization kinetics in thermoplastic composite processing. A coupled modelling framework

    NASA Astrophysics Data System (ADS)

    Levy, Arthur; Le Corre, Steven; Sobotka, Vincent

    2016-10-01

    The cooling and solidification of a thick semi-crystalline thermoplastic composite part was investigated. The cooling is driven by the heat conduction equation whereas the crystallization at each position follows a given kinetics. The coupled problem is implemented using finite elements in FreeFem++. In the case of thick part, there is usually a sharp liquid/solid transition. To ensure a fine description, a remeshing criterion is proposed. Simulations were performed in parallel, on a complex 3D geometry with up to 1 million degrees of freedom. A 2D simplified geometry permitted fast screening of the process parameters.

  4. A Stable Clock Error Model Using Coupled First and Second Order Gauss-Markov Processes

    NASA Technical Reports Server (NTRS)

    Carpenter, Russell; Lee, Taesul

    2008-01-01

    Long data outages may occur in applications of global navigation satellite system technology to orbit determination for missions that spend significant fractions of their orbits above the navigation satellite constellation(s). Current clock error models based on the random walk idealization may not be suitable in these circumstances, since the covariance of the clock errors may become large enough to overflow flight computer arithmetic. A model that is stable, but which approximates the existing models over short time horizons is desirable. A coupled first- and second-order Gauss-Markov process is such a model.

  5. Method and apparatus for measuring coupled flow, transport, and reaction processes under liquid unsaturated flow conditions

    DOEpatents

    McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.

    1999-01-01

    The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.

  6. The Experience of Chinese Couples Undergoing In Vitro Fertilization Treatment: Perception of the Treatment Process and Partner Support

    PubMed Central

    Ying, Li-Ying; Wu, Lai Har; Loke, Alice Yuen

    2015-01-01

    Background Couples undergoing In Vitro Fertilization (IVF) Treatment suffer as dyads from the stressful experience of the painful treatment and the fear that the IVF cycle will fail. They are likely to report that their marital relationship has become unstable due to the prolonged period of treatment. Methods This is a qualitative study that was conducted to explore the experiences that Chinese couples have had with IVF treatment, especially their perceptions of the process and the support between couples. Results The interviews revealed that couples suffered from the process, experiencing physical and emotional pain, struggling with the urgency and inflexibility of bearing a child, and experiencing disturbances in their daily routines and work. The participants described how they endured the hardships as a couple and how it affected their relationship. The couples felt that sharing feelings and supporting each other contribute to psychological well-being and improves the marital relationship. They also identified some unfavorable aspects in their partner relationship. They were ambivalent about receiving social support from friends and family members. Conclusions With the couples indicating that the support that they received from each other affected their experience during the treatment process, it is suggested that a supportive intervention that focuses on enhancing the partnership of the couples and dealing with their inflexibility on the issue of bearing a child might result in improvements in the psychological status and marital relationship of infertile couples undergoing IVF treatment. PMID:26431545

  7. Sensitivity Analysis of Coupled Groundwater Processes within a Land Surface Model

    SciTech Connect

    Maxwell, R M; Miller, N L; Kollet, S J

    2004-05-05

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  8. Sensitivity analysis of coupled groundwater processes within a land surface model.

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Miller, N. L.; Kollet, S. J.

    2004-05-01

    Management of surface water quality is often complicated by interactions between surface water and groundwater. Traditional Land-Surface Models (LSM) used for numerical weather prediction, climate projection, and as inputs to water management decision support systems, do not treat the lower boundary in a fully process-based fashion. LSMs have evolved from a leaky bucket to more sophisticated land surface water and energy budgets that typically have a so-called basement term to depict the bottom model layer exchange with deeper aquifers. Nevertheless, the LSM lower boundary is often assumed zero flux or the soil moisture content is set to a constant value; an approach that while mass conservative, ignores processes that can alter surface fluxes, runoff, and water quantity and quality. Conversely, models for saturated and unsaturated water flow, while addressing important features such as subsurface heterogeneity and three-dimensional flow, often have overly simplified upper boundary conditions that ignore soil heating, runoff, snow and root-zone uptake. In the present study, a state-of-the-art LSM (CLM2.0) and a variably-saturated groundwater model (ParFlow) have been coupled as single model, in single-column and distributed form. An initial set of single column simulations based on data from the Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) and synthetic data demonstrate the temporal dynamics of both of the coupled models. A 15-year single-column simulation using the data from the Usadievskiy catchment in Valdai, Russia demonstrate the coupled model's ability to accurately predict the soil moisture profile and location of the water table, in addition to water and energy balance within the watershed. The distributed coupled model will also be demonstrated using a series of spatially variable subsurface parameter runs, which will be used to investigate upscaling in land-surface models. The coupled model will ultimately be used to assist

  9. Air-processable silane-coupled polymers to modify a dielectric for solution-processed organic semiconductors.

    PubMed

    Jang, Mi; Yu, Young Chang; Jeon, Hyeonyeol; Youk, Ji Ho; Yang, Hoichang

    2015-03-11

    Poly(styrene-r-3-methacryloxypropyltrimethoxysilane) (PSMPTS) copolymers were synthesized by the free radical polymerization of styrene and 3-methacryloxypropyltrimethoxysilane (MPTS) for use as surface modifiers. PSMPTS copolymers were spun-cast onto a hydrophilic SiO2 layer and were then annealed at 150 °C in ambient air. The polystyrene (PS)-based copolymer, with a molecular weight of 32 700 g mol(-1) and approximately 30 MPTS coupling sites, was easily grafted onto the SiO2 surface after annealing periods longer than 1 min, yielding a physicochemically stable layer. On the untreated and polymer-treated dielectrics, spin-casting of an ultrasonicated poly(3-hexyl thiophene) (P3HT) solution yielded highly interconnected crystal nanofibrils of P3HT. The resulting organic field-effect transistors (OFETs) showed similar mobility values of 0.01-0.012 cm(2) V(-1) s(-1) for all surfaces. However, the threshold voltage (Vth) drastically decreased from +13 (for bare SiO2) to 0 V by grafting the PSMPTS copolymers to the SiO2 surface. In particular, the interfacial charge traps that affect Vth were minimized by grafting the 11 mol % MPTS-loaded copolymer to the polar dielectric surface. We believe that this ambient-air-processable silane-coupled copolymer can be used as a solution-based surface modifier for continuous, large-scale OFET fabrication.

  10. Transformations in the couplings among intellectual abilities and constituent cognitive processes across the life span.

    PubMed

    Li, Shu-Chen; Lindenberger, Ulman; Hommel, Bernhard; Aschersleben, Gisa; Prinz, Wolfgang; Baltes, Paul B

    2004-03-01

    Two-component theories of intellectual development over the life span postulate that fluid abilities develop earlier during child development and decline earlier during aging than crystallized abilities do, and that fluid abilities support or constrain the acquisition and expression of crystallized abilities. Thus, maturation and senescence compress the structure of intelligence by imposing age-specific constraints upon its constituent processes. Hence, the couplings among different intellectual abilities and cognitive processes are expected to be strong in childhood and old age. Findings from a population-based study of 291 individuals aged 6 to 89 years support these predictions. Furthermore, processing robustness, a frequently overlooked aspect of processing, predicted fluid intelligence beyond processing speed in old age but not in childhood, suggesting that the causes of more compressed functional organization of intelligence differ between maturation and senescence. Research on developmental changes in functional brain circuitry may profit from explicitly recognizing transformations in the organization of intellectual abilities and their underlying cognitive processes across the life span.

  11. Hydromechanical coupling in fractured rock masses: mechanisms and processes of selected case studies

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian

    2015-04-01

    Hydromechanical (HM) coupling in fractured rock play an important role when events including dam failures, landslides, surface subsidences due to water withdrawal or drainage, injection-induced earthquakes and others are analysed. Generally, hydromechanical coupling occurs when a rock mass contain interconnected pores and fractures which are filled with water and pore/fracture pressures evolves. In the on hand changes in the fluid pressure can lead to stress changes, deformations and failures of the rock mass. In the other hand rock mass stress changes and deformations can alter the hydraulic properties and fluid pressures of the rock mass. Herein well documented case studies focussing on surface subsidence due to water withdrawal, reversible deformations of large-scale valley flanks and failure as well as deformation processes of deep-seated rock slides in fractured rock masses are presented. Due to pore pressure variations HM coupling can lead to predominantly reversible rock mass deformations. Such processes can be considered by the theory of poroelasticity. Surface subsidence reaching magnitudes of few centimetres and are caused by water drainage into deep tunnels are phenomenas which can be assigned to processes of poroelasticity. Recently, particular focus was given on large tunnelling projects to monitor and predict surface subsidence in fractured rock mass in oder to avoid damage of surface structures such as dams of large reservoirs. It was found that surface subsidence due to tunnel drainage can adversely effect infrastructure when pore pressure drawdown is sufficiently large and spatially extended and differential displacements which can be amplified due to topographical effects e.g. valley closure are occurring. Reversible surface deformations were also ascertained on large mountain slopes and summits with the help of precise deformation measurements i.e. permanent GPS or episodic levelling/tacheometric methods. These reversible deformations are often

  12. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier.

    PubMed

    Yuan, Ching; Chiang, Tzu-Shing

    2007-04-01

    An innovative remediation system of electrokinetic process coupled with permeable reaction barrier (PRB) was proposed for arsenic removal in soil matrix. Batch tests with PRB media of Fe(0) and FeOOH under potential gradient of 2 V cm(-1) for 5d duration were conducted to evaluate the removal mechanisms of arsenic. Arsenic enhancement of 1.6-2.2 times was achieved when a PRB system was installed in an electrokinetic system. A best performance was found in system with FeOOH layer located in the middle of elctrokinetic cell. This was largely because of higher surface area of FeOOH and the moving of HAsO(4)(2-) to the anode side by electromigration effect was inhibited by the electroosmosis flow. The surface characteristics of PRB media, which were qualified by SEM coupled with energy dispersive spectroscopy (EDS), were clearly confirmed that arsenic was found on the passive layer surface. Results indicated that the removal of As in EK/PRB systems was much more contributed by surface adsorption/precipitation on PRB media than by EK process. Furthermore among the electrical removal mechanisms, electromigration was predominant than electrosmotic flow. Surface adsorption and precipitation were respectively the principal removal mechanism under acid environment, e.g. near anode side, and under basic environment, e.g. near cathode side. The results reported in the present work will be beneficial to optimizing design of batch EK/PRB system and enlarging to the field scale system.

  13. A General Strategy for Nanohybrids Synthesis via Coupled Competitive Reactions Controlled in a Hybrid Process

    PubMed Central

    Wang, Rongming; Yang, Wantai; Song, Yuanjun; Shen, Xiaomiao; Wang, Junmei; Zhong, Xiaodi; Li, Shuai; Song, Yujun

    2015-01-01

    A new methodology based on core alloying and shell gradient-doping are developed for the synthesis of nanohybrids, realized by coupled competitive reactions, or sequenced reducing-nucleation and co-precipitation reaction of mixed metal salts in a microfluidic and batch-cooling process. The latent time of nucleation and the growth of nanohybrids can be well controlled due to the formation of controllable intermediates in the coupled competitive reactions. Thus, spatiotemporal-resolved synthesis can be realized by the hybrid process, which enables us to investigate nanohybrid formation at each stage through their solution color changes and TEM images. By adjusting the bi-channel solvents and kinetic parameters of each stage, the primary components of alloyed cores and the second components of transition metal doping ZnO or Al2O3 as surface coatings can be successively formed. The core alloying and shell gradient-doping strategy can efficiently eliminate the crystal lattice mismatch in different components. Consequently, varieties of gradient core-shell nanohybrids can be synthesized using CoM, FeM, AuM, AgM (M = Zn or Al) alloys as cores and transition metal gradient-doping ZnO or Al2O3 as shells, endowing these nanohybrids with unique magnetic and optical properties (e.g., high temperature ferromagnetic property and enhanced blue emission). PMID:25818342

  14. Numerical Simulation of the Friction Stir Welding Process Using Coupled Eulerian Lagrangian Method

    NASA Astrophysics Data System (ADS)

    Iordache, M.; Badulescu, C.; Iacomi, D.; Nitu, E.; Ciuca, C.

    2016-08-01

    Friction Stir Welding (FSW) is a solid state joining process that relies on frictional heating and plastic deformation realized at the interaction between a non-consumable welding tool that rotates on the contact surfaces of the combined parts. The experiments are often time consuming and costly. To overcome these problems, numerical analysis has frequently been used in last years. Several simplified numerical models were designed to elucidate various aspects of the complex thermo-mechanical phenomena associated with FSW. This research investigates a thermo-mechanical finite element model based on Coupled Eulerian Lagrangian method to simulate the friction stir welding of the AA 6082-T6 alloy. Abaqus/cae software is used in order to simulate the welding stage of the Friction Stir Welding process. This paper presents the steps of the numerical simulation using the finite elements method, in order to evaluate the boundary conditions of the model and the geometry of the tools by using the Coupled Eulerian Lagrangian method.

  15. Microwaves and their coupling to advanced oxidation processes: enhanced performance in pollutants degradation.

    PubMed

    Nascimento, Ulisses M; Azevedo, Eduardo B

    2013-01-01

    This review assesses microwaves (MW) coupled to advanced oxidation processes (AOPs) for pollutants degradation, as well as the basic theory and mechanisms of MW dielectric heating. We addressed the following couplings: MW/H2O2, MW/UV/H2O2, MW/Fenton, MW/US, and MW/UV/TiO2, as well as few studies that tested alternative oxidants and catalysts. Microwave Discharge Electrodeless Lamps (MDELs) are being extensively used with great advantages over ballasts. In their degradation studies, researchers generally employed domestic ovens with minor adaptations. Non-thermal effects and synergies between UV and MW radiation play an important role in the processes. Published papers so far report degradation enhancements between 30 and 1,300%. Unfortunately, how microwaves enhance pollutants is still obscure and real wastewaters scarcely studied. Based on the results surveyed in the literature, MW/AOPs are promising alternatives for treating/remediating environmental pollutants, whenever one considers high degradation yields, short reaction times, and small costs.

  16. Numerical simulation of fine blanking process using fully coupled advanced constitutive equations with ductile damage

    NASA Astrophysics Data System (ADS)

    Labergere, C.; Saanouni, K.; Benafia, S.; Galmiche, J.; Sulaiman, H.

    2013-05-01

    This paper presents the modelling and adaptive numerical simulation of the fine blanking process. Thermodynamically-consistent constitutive equations, strongly coupled with ductile damage, together with specific boundary conditions (particular command of forces on blank holder and counterpunch) are presented. This model is implemented into ABAQUS/EXPLICIT using the Vumat user subroutine and connected with an adaptive 2D remeshing procedure. The different material parameters are identified for the steel S600MC using experimental tensile tests conducted until the final fracture. A parametric study aiming to examine the sensitivity of the process parameters (die radius, clearance die/punch) to the punch force and fracture surfaces topology (convex zone, sheared zone, fracture zone and the burr).

  17. Dynamic matrix controller design for performance study of an interacting coupled tank MIMO process

    NASA Astrophysics Data System (ADS)

    Rani, L. Thillai; Sivakumar, D.; Rathikarani, D.

    2017-07-01

    Model predictive control (MPC) is the class of advanced control techniques. A primary advantage to this approach is the explicit handling of constraints. MPC utilizes an internal model to predict system dynamic behaviour over a finite horizon. MPC is a discrete-time form of control, so inaccuracies in predicted behavior are corrected at the next control interval. This technique makes the control of processes to become more efficient and cost effective. Most of its applications are in the refining, petrochemical industries and in other chemical plants. Dynamic Matrix Control(DMC) is a kind of model predictive control technique based on step response model of the process. In this paper, the dynamic matrix control algorithm is implemented on coupled tank system and control quality has been analyzed using a simulation model with different setting parameters. From the simulation results it has been observed that dynamic matrix control algorithm can achieve good results with accuracy.

  18. Lattice Boltzmann technique for heat transport phenomena coupled with melting process

    NASA Astrophysics Data System (ADS)

    Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A.; Gorla, Rama Subba Reddy

    2017-01-01

    In this work, the heat transport phenomena coupled with melting process are studied by using the enthalpy-based lattice Boltzmann method (LBM). The proposed model is a modified version of thermal LB model, where could avoid iteration steps and ensures high accuracy. The Bhatnagar-Gross-Krook (BGK) approximation with a D1Q2 lattice was used to determine the temperature field for one-dimensional melting by conduction and multi-distribution functions (MDF) with D2Q9 lattice was used to determine the density, velocity and temperature fields for two-dimensional melting by natural convection. Different boundary conditions including Dirichlet, adiabatic and bounce-back boundary conditions were used. The influence of increasing Rayleigh number (from 103 to 105) on temperature distribution and melting process is studied. The obtained results show that a good agreement with the analytical solution for melting by conduction case and with the benchmark solution for melting by convection.

  19. Fabrication of light-guiding devices and fiber-coupling structures by the LIGA process

    NASA Astrophysics Data System (ADS)

    Rogner, Arnd; Ehrfeld, Wolfgang

    1991-08-01

    The LIGA process which is based on deep-etch lithography in combination with high-precision electroforming and moulding processes is a particularly promising method for the fabrication of three-dimensional microstructures. Some interesting applications can be seen in the field of integrated optics. Passive waveguide structures can be fabricated by deep-etch synchrotron radiation lithography of multilayer resist systems. Using this technique, multimode strip waveguides with a PMMA core and a P (TFPMA/MMA) cladding as well as a planar grating spectrograph have been realized. The attenuation of 0.18 dB/cm measured at a wavelength of 850 nm can be reduced, especially in the near IR-region, by the use of deuterated PMMA as a core material. For plastic fiber LAN applications, moulding processes for the replication of passive multimode waveguide components like Y-couplers or star couplers are under investigation. The advantages of the LIGA process--unrestricted design in the cross-sectional shape and a small surface roughness in the range of 10 - 20 nm--are of special interest for these developments. For coupling fibers to integrated-optical chips, structures of a coupling array have been fabricated. The fibers are guided by exactly positioned stop faces and then precisely located and prefixed by integrated spring elements. The main advantages are as follows: the thermal expansion coefficient of the array can be matched to the optical chip material, the use of spring elements for prefixing simplifies the handling, and adhesives and the connected problems can be avoided.

  20. MODELING THE UREX-PLUS-3A PROCESS USING ASPEN PLUS COUPLED WITH AMUSE

    SciTech Connect

    Smith, F; Richard Dimenna, R

    2008-01-11

    A plant level simulation of the UREX+3a separations process has been developed using AMUSE for solvent extraction calculations coupled with Aspen Plus for other operations. AMUSE, an Excel based application developed at Argonne National Laboratory [1], performs a rigorous calculation of countercurrent solvent extraction processes using thermodynamically based distribution coefficients specifically designed for nuclear separations. Aspen Plus [2] models simulate other separations plant operations such as head end assembly chopping and dissolution, product solidification, acid recovery, off-gas treatment and waste water treatment. The model predicts that 55 feed streams and 14 output streams will be generated by separations plant operation. On the basis of one metric ton of initial reactor fuel, the model predicts a plant throughput of approximately 200 metric tonnes of material. Approximately half is treated waste water. Another 30% is gas emissions arising from feed to the calcination furnaces. The gas stream is treated for discharge to the environment. About 5% of the throughput is product material. Another 10% is recovered organics and acid that may be recycled. The remaining 5% is contaminated waste that requires disposal. While these results are preliminary, the model has successfully simulated operation of the UREX+3a separations process. Coupling AMUSE to Aspen Plus provides rigorous solvent extraction calculations directly within the plant simulation, greatly increasing the accuracy of the model. Many areas, such as acid recycle, can be optimized to improve performance and reduce material usage and waste generation. The rigorous plant simulation model resulting from this work provides a framework to conduct such studies. The model is easily modified to simulate other variations of the UREX+ process.

  1. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    NASA Astrophysics Data System (ADS)

    Guo, Qing-chun; Zhou, Hong; Wang, Cheng-tao; Zhang, Wei; Lin, Peng-yu; Sun, Na; Ren, Luquan

    2009-04-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  2. Rapidly removing grinding damage layer on fused silica by inductively coupled plasma processing

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Zhou, Lin; Xie, Xuhui; Shi, Baolu; Xiong, Haobin

    2016-10-01

    During the conventional optical shaping process of fused silica, lapping is generally used to remove grinding damage layer. But this process is of low efficiency, it cannot meet the demand of large aperture optical components. Therefore, Inductively Coupled Plasma Processing (ICPP) was proposed to remove grinding damage layer instead of lapping. ICPP is a non-contact, deterministic figuring technology performed at atmospheric pressure. The process benefits from its ability to simultaneously remove sub-surface damage (SSD) while imparting the desired figure to the surface with high material remove rate. The removing damage capability of ICPP has preliminarily been confirmed on medium size optical surfaces made of fused silica, meanwhile serious edge warping was found. This paper focused on edge effect and a technique has been designed to compensate for these difficulties. Then it was demonstrated on a large aperture fused silica mirror (Long320mm×Wide370mm×High50mm), the removal depth was 30.2μm and removal rate got 6.6mm3/min. The results indicate that ICPP can rapidly remove damage layer on the fused silica induced by the previous grinding process and edge effect is effective controlled.

  3. Action-verb processing in Parkinson's disease: new pathways for motor-language coupling.

    PubMed

    Cardona, Juan Felipe; Gershanik, Oscar; Gelormini-Lezama, Carlos; Houck, Alexander Lee; Cardona, Sebastian; Kargieman, Lucila; Trujillo, Natalia; Arévalo, Analía; Amoruso, Lucia; Manes, Facundo; Ibáñez, Agustín

    2013-11-01

    Recent studies suggest that action-verb processing is particularly affected in early stage Parkinson's disease (PD), highlighting the potential role of subcortical areas in language processing and in the semantic integration of actions. However, this disorder-related language impairment is frequently unrecognized by clinicians and often remains untreated. Early detection of action-language processing deficits could be critical for diagnosing and developing treatment strategies for PD. In this article, we review how action-verb processing is affected in PD and propose a model in which multiple and parallel frontotemporal circuits between the cortex and the basal ganglia provide the anatomic substrate for supporting action-language processing. We hypothesize that contextual coupling of action-language networks are partially dependent on cortical-subcortical integration, and not only on somatotopic motor cortical organization or in a mirror neuron system. This hypothesis is supported by both experimental and clinical evidence. Then, we identify further research steps that would help to determine the reliability of action-language impairments as an early marker of PD. Finally, theoretical implications for clinical assessment and for models of action-language interaction (action-perception cycle theories, mirror system models of language, and embodied cognition approaches to language) are discussed.

  4. Modeling the coupled mechanics, transport, and growth processes in collagen tissues.

    SciTech Connect

    Holdych, David J.; Nguyen, Thao D.; Klein, Patrick A.; in't Veld, Pieter J.; Stevens, Mark Jackson

    2006-11-01

    The purpose of this project is to develop tools to model and simulate the processes of self-assembly and growth in biological systems from the molecular to the continuum length scales. The model biological system chosen for the study is the tendon fiber which is composed mainly of Type I collagen fibrils. The macroscopic processes of self-assembly and growth at the fiber scale arise from microscopic processes at the fibrillar and molecular length scales. At these nano-scopic length scales, we employed molecular modeling and simulation method to characterize the mechanical behavior and stability of the collagen triple helix and the collagen fibril. To obtain the physical parameters governing mass transport in the tendon fiber we performed direct numerical simulations of fluid flow and solute transport through an idealized fibrillar microstructure. At the continuum scale, we developed a mixture theory approach for modeling the coupled processes of mechanical deformation, transport, and species inter-conversion involved in growth. In the mixture theory approach, the microstructure of the tissue is represented by the species concentration and transport and material parameters, obtained from fibril and molecular scale calculations, while the mechanical deformation, transport, and growth processes are governed by balance laws and constitutive relations developed within a thermodynamically consistent framework.

  5. A Coupled GCM-Cloud Resolving Modeling System to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Peters-Lidard, Christa; Hou, Arthur; Lin, Xin

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud resolving models (CRMs) agree with observations better than traditional single column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA Satellite and field campaign cloud related data sets can provide initial conditions as well as validation for both the MMF and CRMs. Also we have implemented a Land Information System (LIS that includes the CLM and NOAH land surface models into the MMF. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) This modeling system has been applied and tested its performance for two different climate scenarios, El Nino (1998) and La Nina (1999). The coupled new modeling system produced more realistic propagation and intensity of tropical rainfall systems and intraseasonal oscillations, and diurnal variation of precipitation that are very difficult to forecast using even the state-of-the-art GCMs. In this talk I will present: (1) a brief review on GCE model and its applications on precipitation processes (both Microphysical and land processes) and (2) The Goddard MMF and the Major difference between two existing MMFs (CSU MMF and Goddard MMF) and preliminary results (the comparison with traditional GCMs).

  6. A Coupled GCM-Cloud Resolving Modeling System to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Peters-Lidard, Christa; Hou, Arthur; Lin, Xin

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud resolving models (CRMs) agree with observations better than traditional single column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA Satellite and field campaign cloud related data sets can provide initial conditions as well as validation for both the MMF and CRMs. Also we have implemented a Land Information System (LIS that includes the CLM and NOAH land surface models into the MMF. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) This modeling system has been applied and tested its performance for two different climate scenarios, El Nino (1998) and La Nina (1999). The coupled new modeling system produced more realistic propagation and intensity of tropical rainfall systems and intraseasonal oscillations, and diurnal variation of precipitation that are very difficult to forecast using even the state-of-the-art GCMs. In this talk I will present: (1) a brief review on GCE model and its applications on precipitation processes (both Microphysical and land processes) and (2) The Goddard MMF and the Major difference between two existing MMFs (CSU MMF and Goddard MMF) and preliminary results (the comparison with traditional GCMs).

  7. Arsenic removal from water by coupling photocatalysis and complexation-ultrafiltration processes: A preliminary study.

    PubMed

    Molinari, R; Argurio, P

    2017-02-01

    Inorganic As removal from contaminated water has been studied by off-line coupling of photocatalysis and complexation-ultrafiltration (CP-UF), showing that this combination permits to obtain a quite complete arsenic removal from the treated water. Two commercial polymers, poly(dimethylamine-coepichlorohydrin-coethylenediamine) (PDEHED) and poly(diallyl dimethyl amnmonium chloride) (PolyDADMAC) have been tested in the CP-UF process. The operating conditions (pH and polymer/As weight ratio) for As(V) complexation were determined finding values of 7.5/20 and 9.2/30 for PDEHED and polyDADMAC, respectively. The UF tests were performed by continuous diafiltration and diafiltration with volume reduction modes. The latter method permits to save the volume of washing solution during polymer regeneration. As(III) was not complexed, operating under the As(V) complexation conditions, thus a pre-oxidation step by using the photocatalytic approach was carried out to remove As(III) species. As(III) conversion to As(V) was evaluated by As speciation by using the CP-UF process for analytical purposes. Photocatalytic oxidation was successfully performed under UV radiation by using TiO2 (0.05 mg L(-1)), O2 and pH = 9. The oxidation was very fast during the first 10 min following a zero order kinetics (k = 0.83 mg L(-1) min(-1)) and reaching 90% As(III) oxidation. A conceptual scheme coupling photocatalysis and CP-UF and some criteria to operate the CP-UF process, useful to address it towards application, are reported.

  8. A coupled Bio-EF process for mineralization of the pharmaceuticals furosemide and ranitidine: Feasibility assessment.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Buisson, Didier; Oturan, Mehmet A

    2016-07-01

    A coupled Bio-EF treatment has been applied as a reliable process for the degradation of the pharmaceuticals furosemide (FRSM) and ranitidine (RNTD) in aqueous medium, in order to reduce the high energy consumption related to electrochemical technology. In the first stage of this study, electrochemical degradation of the drugs was assessed by the electro-Fenton process (EF) using a BDD/carbon-felt cell. Biodegradability of the drugs solutions was enhanced reaching BOD5/COD ratios close to the biodegradability threshold of 0.4, evidencing the formation of bio-compatible by-products (mainly short-chain carboxylic acids) which are suitable for biological post-treatment. Moreover, toxicity evaluation by the Microtox(®) method revealed that EF pre-treatment was able of detoxifying both, FRSM and RNTD solutions, constituting another indicator of biodegradability of EF treated solutions. In the second stage, electrolyzed solutions were treated by means of an aerobic biological process. A significant part of the short-chain carboxylic acids formed during the electrochemical phase was satisfactorily removed by the used selected microorganisms. The results obtained demonstrate the efficiency and feasibility of the integrated Bio-EF process.

  9. [Performance optimization of property-improved biodiesel manufacturing process coupled with butanol extractive fermentation].

    PubMed

    Zhang, Longyun; Yang, Ying; Shi, Zhongping

    2008-11-01

    The products concentrations in traditional acetone-butanol (AB) fermentation are too low that large amount of energy has to be consumed in the distillation and product recovery process. Aiming at direct utilization of the fermentation products, in this study, optimization of property-improved biodiesel manufacturing process coupled with AB extractive fermentation was conducted, under the condition of using the biodiesel originated from waste cooking oil as the extractant and high concentrated corn flour medium. The effect of biodiesel/broth volume ratio, waste supernatant recycle ratio, and electronic carrier addition on the major process performance index was carefully investigated. Under the optimized condition, the biodiesel quality was improved with the cetane value increased from 51.4 to 54.4; "actual butanol yield" reached to a level of 18%, and waste supernatant recycle ratio exceeded 50%. In this way, elimination of energy-consuming product recovery process and realization of "energy-saving & waste minimization" industrial production target advocated by the state government, could be potentially expected.

  10. Reactive Transport and Coupled THM Processes in Engineering Barrier Systems (EBS)

    SciTech Connect

    Steefel, Carl; Rutqvist, Jonny; Tsang, Chin-Fu; Liu, Hui-Hai; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    Geological repositories for disposal of high-level nuclear wastes generally rely on a multi-barrier system to isolate radioactive wastes from the biosphere. The multi-barrier system typically consists of a natural barrier system, including repository host rock and its surrounding subsurface environment, and an engineering barrier system (EBS). EBS represents the man-made, engineered materials placed within a repository, including the waste form, waste canisters, buffer materials, backfill and seals (OECD, 2003). EBS plays a significant role in the containment and long-term retardation of radionuclide release. EBS is involved in complex thermal, hydrogeological, mechanical, chemical and biological processes, such as heat release due to radionuclide decay, multiphase flow (including gas release due to canister corrosion), swelling of buffer materials, radionuclide diffusive transport, waste dissolution and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) for EBS and the entire repository. Within the EBS group of Used Fuel Disposition (UFD) Campaign, LBNL is currently focused on (1) thermal-hydraulic-mechanical-chemical (THMC) processes in buffer materials (bentonite) and (2) diffusive transport in EBS associated with clay host rock, with a long-term goal to develop a full understanding of (and needed modeling capabilities to simulate) impacts of coupled processes on radionuclide transport in different components of EBS, as well as the interaction between near-field host rock (e.g., clay) and EBS and how they effect radionuclide release. This final report documents the progress that LBNL has made in its focus areas. Specifically, Section 2 summarizes progress on literature review for THMC processes and reactive-diffusive radionuclide transport in bentonite. The literature review provides a picture of the state-of-the-art of the relevant research areas

  11. Waves and coupling processes at the Polar Environment Atmospheric Research Laboratory (PEARL): Observations and science approach

    NASA Astrophysics Data System (ADS)

    Ward, William E.

    Over the past three years, installation of the suite of instruments planned for investigations of atmospheric phenomena from the ground to the mesopause region at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian Arctic (Eureka, Nunavut, 80N, 86W) has been completed and observations have now started. A subset of this instrumentation is associated with the scientific theme, Waves and Coupling Processes of the Middle Atmosphere. This subset includes E-Region Wind Interferometer, the meteor radar, the Spectral Airglow Temperature Imager SATI), the PEARL All-Sky Imager, the ozone and Rayleigh/Mie/Raman lidars, the VHF and cloud radar, the Fourier Transform Spectrometer and the Atmospheric Emitted Radiance Interferometer. This instrumentation set allows the wave environment above Eureka to be investigated and the coupling of the dynamics between atmospheric layers and geographical locations studied. These studies require contextual information on the large scale state of the atmosphere and collaborations with modelling groups, ground based observatories in the Arctic, and satellite teams have been initiated. This paper will describe the capabilities of the instrumentation involved in these studies, outline the scientific approach and present some initial results. PEARL is supported by the Canadian Foundation for Innovation (CFI); Canadian Foundation for Climate and Atmospheric Science (CFCAS); Canadian Space Agency (CSA); Environment Canada (EC); Government of Canada IPY funding; Ontario Innovation Trust (OIT); Natural Sciences and Engineering Research Council (NSERC); Nova Scotia Research Innovation Trust (NSRIT); Ontario Research Fund (ORF); and the Polar Continental Shelf Program (PCSP).

  12. Simulation of airbag inflation processes using a coupled fluid structure approach

    NASA Astrophysics Data System (ADS)

    Marklund, P.-O.; Nilsson, L.

    This paper explores simulation techniques for airbag inflation problems using a coupled fluid structure approach. It is to be seen as an initial study on the phenomena occurring in an airbag during a so called out of position occupant impact. The problem studied in this paper is an airbag which is set to impact a head form. The head form is positioned at a very short distance from the airbag. A multi material arbitrary Lagrangian Eulerian technique in the explicit finite element code LS-DYNA is used for the fluid and it is coupled to the structure using a penalty based fluid structure contact algorithm. The results for the head form acceleration and velocity show a good agreement to experimentally obtained values. At the early stages of the inflation process a high pressure zone is found to develop between the gas inlet and the head form. Consequently the pressure difference between the inlet and the high pressure zone is too low for an a priori assumption of sonic flow at the inlet, which is a common requirement in the control volume models used in the industry today.

  13. Fiber coupling of high-power diode laser stack for direct polycarbonate processing

    NASA Astrophysics Data System (ADS)

    Vidal, E.; Quintana, I.; Azkorbebeitia, U.; Mendez, E.; Viera, G.; Galán, M.; Otaduy, D.

    2010-02-01

    We present a novel optical system for fiber coupling of a commercial high power diode laser stack and the application of this laser system to transmission welding of engineering thermoplastics. The diode laser stack is made up of two 20% fill factor bars, emitting at 808 nm and with a total maximum output power of 120W CW. The stack was collimated using FSAC micro-optics lenses in the fast and slow axis, with a full angle divergence of <4mrad and <25mrad respectively. The optical design and simulations were carried out using ZEMAX®. Based on the design we built an optical set up, which is divided in two subsystems. The first one collimates the laser beam in order to achieve the best focus and couple it into the 400μm core fiber with NA0.22 and 70% efficiency. The second subsystem is designed for beam conformation after the fiber output, using collimation and beam shaping to have a Gaussian beam profile on the work piece. The laser system was applied to study the welding of polycarbonate plastics, based on the effects of selected welding parameters on the seam geometry and surface integrity. The quality of the spot welding has been analyzed obtaining welded seams with a mean diameter about 500-600μm, preserving the good technological properties of the thermoplastic considered in this work. The results show that we have successfully developed a novel laser system which is highly efficient for thermoplastics processing.

  14. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks

    NASA Astrophysics Data System (ADS)

    Cacace, Mauro; Jacquey, Antoine B.

    2017-09-01

    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  15. Magnetosphere - ionosphere coupling process in the auroral region estimated from auroral tomography

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Ogawa, Y.; Kadokura, A.; Gustavsson, B.; Kauristie, K.; Whiter, D. K.; Enell, C. F. T.; Brandstrom, U.; Sergienko, T.; Partamies, N.; Kozlovsky, A.; Miyaoka, H.; Kosch, M. J.

    2016-12-01

    We have studied the magnetosphere - ionosphere coupling process by using multiple auroral images and the ionospheric data obtained by a campaign observation with multi-point imagers and the EISCAT UHF radar in Northern Europe. We observed wavy structure of discrete arcs around the magnetic zenith at Tromso, Norway, from 22:00 to 23:15 UT on March 14, 2015, followed by auroral breakup, poleward expansion, and pulsating auroras. During this interval, the monochromatic (427.8nm) images were taken at a sampling interval of 2 seconds by three EMCCD imagers and at an interval of 10 seconds by totally six imagers. The EISCAT UHF radar at Tromso measured the ionospheric parameters along the magnetic field line from 20 to 24 UT. We applied the tomographic inversion technique to these data set to retrieve 3D distribution of the 427.8nm emission, that enabled us to obtain the following quantities for the auroras that change from moment to moment; (1) the relation between the 427.8nm emission and the electron density enhancement along the field line, (2) the horizontal distribution of energy flux of auroral precipitating electrons, and (3) the horizontal distribution of height-integrated ionospheric conductivity. By combining those with the ionospheric equivalent current estimated from the ground-based magnetometer network, we discuss the current system of a sequence of the auroral event in terms of the magnetosphere-ionosphere coupling.

  16. Si-compatible cleaning process for graphene using low-density inductively coupled plasma.

    PubMed

    Lim, Yeong-Dae; Lee, Dae-Yeong; Shen, Tian-Zi; Ra, Chang-Ho; Choi, Jae-Young; Yoo, Won Jong

    2012-05-22

    We report a novel cleaning technique for few-layer graphene (FLG) by using inductively coupled plasma (ICP) of Ar with an extremely low plasma density of 3.5 × 10(8) cm(-3). It is known that conventional capacitively coupled plasma (CCP) treatments destroy the planar symmetry of FLG, giving rise to the generation of defects. However, ICP treatment with extremely low plasma density is able to remove polymer resist residues from FLG within 3 min at a room temperature of 300 K while retaining the carbon sp(2)-bonding of FLG. It is found that the carrier mobility and charge neutrality point of FLG are restored to their pristine defect-free state after the ICP treatment. Considering the application of graphene to silicon-based electronic devices, such a cleaning method can replace thermal vacuum annealing, electrical current annealing, and wet-chemical treatment due to its advantages of being a low-temperature, large-area, high-throughput, and Si-compatible process.

  17. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    SciTech Connect

    Janecky, D.R.

    1988-09-21

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs.

  18. FUNDAMENTAL AREAS OF PHENOMENOLOGY (INCLUDING APPLICATIONS): A Tunable Acousto-Optic Fiber Filter Based on Two Simultaneous Mode Coupling Processes

    NASA Astrophysics Data System (ADS)

    Miao, Ren; Zhang, Wei; Feng, Xue; Zhao, Jian-Hui; Liu, Xiao-Ming

    2009-07-01

    A dynamically tunable fiber filter realizing complex spectra of phase-shifted long period fiber gratings (LPFGs) is proposed and demonstrated experimentally. The principle of the filter is based on two acousto-optic coupling processes occurring simultaneously. The first coupling process acts as a normal LPFG, while the second makes the coupling direction of the first process change continuously, leading to a similar transmission spectrum with the phase-shifted LPFGs, in which the changing of coupling direction is realized by the discrete phase shifts of the index modulation. By adjusting the acoustic drive signals, its transmission spectrum can be dynamically tuned to realize the phase-shifted LPFGs' spectra under different phase shift numbers and locations.

  19. “The Best is Always Yet to Come”: Relationship Stages and Processes Among Young LGBT Couples

    PubMed Central

    Macapagal, Kathryn; Greene, George J.; Rivera, Zenaida A.; Mustanski, Brian

    2015-01-01

    Limited research has examined relationship development among lesbian, gay, bisexual, and transgender (LGBT) couples in emerging adulthood. A better understanding of LGBT couples can inform the development of relationship education programs that reflect their unique needs. The following questions guided this study: 1) what are the stages and processes during young LGBT couples’ relationship development? and 2) how do these compare to existing literature on heterosexual adults? A secondary goal was to explore similarities and differences between couples assigned male (MAAB) and female at birth (FAAB). Thirty-six couples completed interviews on their relationship history. Qualitative analyses showed that relationship stages and processes were similar to past research on heterosexuals, but participants’ subjective experiences reflected their LGBT identities and emerging adulthood, which exerted additional stress on the relationship. These factors also affected milestones indicative of commitment among heterosexual adults (e.g., introducing partner to family). Mixed-methods analyses indicated that MAAB couples described negotiating relationship agreements and safe sex in more depth than FAAB couples. Relationship development models warrant modifications to consider the impact of sexual and gender identity and emerging adulthood when applied to young LGBT couples. These factors should be addressed in interventions to promote relationship health among young LGBT couples. PMID:26053345

  20. In situ vitrification: Numerical studies of coupled heat transfer and viscous flow processes

    SciTech Connect

    Carey, G.F.; MacKinnon, R.J.; Murray, P.E.

    1990-09-01

    This report describes the formulation, results and conclusions of a series of numerical studies performed to support the Idaho National Engineering Laboratory (INEL) In Situ Vitrification (ISV) treatability study. These studies were designed to explore some of the questions related to the dominant physical phenomena associated with the coupled electric field, heat transfer, and fluid flow processes. The work examines the case of a 3-D axisymmetric problem with a central electrode. Such issues as the form of an electric heating model, choice of boundary conditions, latent heat effects, and conductive and convective transport are considered. Some important conclusions and recommendations are made in relation to the convective effects, determination of property parameters, and the issue of a valid electrical heating model. 4 refs., 100 figs., 1 tab.

  1. Influence of Multiple Bionic Unit Coupling on Sliding Wear of Laser-Processed Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Zhang, Peng; Sui, Qi; Zhao, Kai; Zhou, Hong; Ren, Luquan

    2017-04-01

    In this study, in effort to improve the sliding wear resistance of gray cast iron under wet lubrication conditions, specimens with different bionic units were manufactured and modified according to bionic theory. Inspired by the structure and appearance of biological wear-resistant skin, two kinds of bionic units were processed by laser on the specimen surfaces. We investigated the wear resistance properties of the samples via indentation method and then observed the wear surface morphology of specimens and the stress distributions. The results indicated that coupling the bionic units enhanced the wear resistance of the cast iron considerably compared to the other samples. We also determined the mechanism of wear resistance improvement according to the results.

  2. Mass spectroscopy of the ion flux produced during inductively coupled plasma nitriding process

    NASA Astrophysics Data System (ADS)

    Kolodko, D. V.; Kaziev, A. V.; Ageychenkov, D. G.; Meshcheryakova, E. A.; Pisarev, A. A.; Tumarkin, A. V.

    2017-05-01

    Ion fluxes on the surface of sample embedded in inductively coupled plasma have been studied in conditions typical for titanium alloy nitriding: total pressure 0.44 Pa, Ar/N2 = 70%/30%, and RF power 1500 W. The gas composition was independently monitored by the quadrupole analyser. The ion fluxes were sampled using a specially designed electrostatic extractor and then analysed with a magnetic sector mass-separator. The extractor design allowed us to apply a bias voltage to the plasma facing electrode thus imitating interaction of ions with the surface during the plasma processing. The ion fluxes of Ar+, {{{N}}}2{}+, and N+ on the surface were measured. The mass spectroscopy diagnostics unit is suitable for extensive ion content studies in the plasma technology facilities.

  3. Advanced inductively coupled plasma etching processes for fabrication of resonator-quantum well infrared photodetector

    NASA Astrophysics Data System (ADS)

    Sun, J.; Choi, K. K.; Jhabvala, M. D.; Jhabvala, C. A.; Waczynski, A.; Olver, K.

    2015-05-01

    Resonator-quantum well infrared photodetectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). To achieve the expected performance, the detector geometry must be produced in precise specification. In particular, the height of the diffractive elements (DE) and the thickness of the active resonator must be uniformly and accurately realized to within 0.05 μm accuracy and the substrates of the detectors have to be removed totally. To achieve these specifications, two optimized inductively coupled plasma (ICP) etching processes are developed. Using these etching techniques, we have fabricated a number of R-QWIP test detectors and FPAs with the required dimensions and completely removed the substrates of the test detectors and FPAs. Their QE spectra were tested to be in close agreement with the theoretical predictions. The operability and spectral non-uniformity of the FPA is about 99.57% and 3% respectively.

  4. Influence of Multiple Bionic Unit Coupling on Sliding Wear of Laser-Processed Gray Cast Iron

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Zhang, Peng; Sui, Qi; Zhao, Kai; Zhou, Hong; Ren, Luquan

    2017-03-01

    In this study, in effort to improve the sliding wear resistance of gray cast iron under wet lubrication conditions, specimens with different bionic units were manufactured and modified according to bionic theory. Inspired by the structure and appearance of biological wear-resistant skin, two kinds of bionic units were processed by laser on the specimen surfaces. We investigated the wear resistance properties of the samples via indentation method and then observed the wear surface morphology of specimens and the stress distributions. The results indicated that coupling the bionic units enhanced the wear resistance of the cast iron considerably compared to the other samples. We also determined the mechanism of wear resistance improvement according to the results.

  5. Localization in covariance matrices of coupled heterogenous Ornstein-Uhlenbeck processes

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2014-12-01

    We define a random-matrix ensemble given by the infinite-time covariance matrices of Ornstein-Uhlenbeck processes at different temperatures coupled by a Gaussian symmetric matrix. The spectral properties of this ensemble are shown to be in qualitative agreement with some stylized facts of financial markets. Through the presented model formulas are given for the analysis of heterogeneous time series. Furthermore evidence for a localization transition in eigenvectors related to small and large eigenvalues in cross-correlations analysis of this model is found, and a simple explanation of localization phenomena in financial time series is provided. Finally we identify both in our model and in real financial data an inverted-bell effect in correlation between localized components and their local temperature: high- and low-temperature components are the most localized ones.

  6. Phase diagrams of three-lane asymmetrically coupled exclusion process with Langmuir kinetics

    NASA Astrophysics Data System (ADS)

    Verma, Atul Kumar; Gupta, Arvind Kumar; Dhiman, Isha

    2015-11-01

    This letter studies a fully asymmetrically coupled three-lane totally asymmetric simple exclusion process with Langmuir kinetics under open boundary conditions. Phase diagrams and density profiles for different kinetic rates are obtained using a mean-field analysis along with a singular perturbation technique and are found to be in good agreement with Monte Carlo simulation results. Some mixed phases are observed in the middle lane resulting into bulk-induced phase transitions. We have found that a number of steady-state phases firstly increases then decreases with respect to an increase in lane changing rate. Critical values of the lane changing rate are identified at which the appearance or disappearance of certain phases is observed. We have identified the jumping effect in the position of shock in the middle lane with respect to an increase in the lane changing rate.

  7. Frequency dependent plasma characteristics in a capacitively coupled 300 mm wafer plasma processing chamber.

    SciTech Connect

    Hebner, Gregory Albert; Holland, J.P.; Paterson, A.M.; Barnat, Edward V.; Miller, Paul Albert

    2006-01-01

    Argon plasma characteristics in a dual-frequency, capacitively coupled, 300 mm-wafer plasma processing system were investigated for rf drive frequencies between 10 and 190 MHz. We report spatial and frequency dependent changes in plasma parameters such as line-integrated electron density, ion saturation current, optical emission and argon metastable density. For the conditions investigated, the line-integrated electron density was a nonlinear function of drive frequency at constant rf power. In addition, the spatial distribution of the positive ions changed from uniform to peaked in the centre as the frequency was increased. Spatially resolved optical emission increased with frequency and the relative optical emission at several spectral lines depended on frequency. Argon metastable density and spatial distribution were not a strong function of drive frequency. Metastable temperature was approximately 400 K.

  8. Multi-scale Characterization and Prediction of Coupled Subsurface Biogeochemical-Hydrological Processes

    SciTech Connect

    Hubbard, Susan; Williams, Ken; Steefel, Carl; Banfield, Jill; Long, Phil; Slater, Lee; Pride, Steve; Jinsong Chen

    2006-06-01

    To advance solutions needed for remediation of DOE contaminated sites, approaches are needed that can elucidate and predict reactions associated with coupled biological, geochemical, and hydrological processes over a variety of spatial scales and in heterogeneous environments. Our previous laboratory experimental experiments, which were conducted under controlled and homogeneous conditions, suggest that geophysical methods have the potential for elucidating system transformations that often occur during remediation. Examples include tracking the onset and aggregation of precipitates associated with sulfate reduction using seismic and complex resistivity methods (Williams et al., 2005; Ntarlagiannis et al., 2005) as well as estimating the volume of evolved gas associated with denitrification using radar velocity. These exciting studies illustrated that geophysical responses correlated with biogeochemical changes, but also that multiple factors could impact the geophysical signature and thus a better understanding as well as integration tools were needed to advance the techniques to the point where they can be used to provide quantitative estimates of system transformations.

  9. Speeding up intrinsically slow collective processes in particle simulations by concurrent coupling to a continuum description.

    PubMed

    Müller, Marcus; Daoulas, Kostas Ch

    2011-11-25

    The difficulty to study intrinsically slow collective processes by computer simulation of particle models stems from multiple disparate time scales (e.g., stiff bonded interactions versus soft nonbonded interactions). Continuum models, which describe the system by collective variables rather than the coordinates of the individual molecular constituents, often do not suffer from this time-scale problem because the stiff microscopic degrees of freedom have been integrated out. We propose to concurrently couple these two descriptions by a heterogeneous multiscale method. We illustrate the technique by studying the Lifshitz-Slyozov coarsening mechanism in a binary polymer blend using a soft coarse-grained particle model and a Landau-Ginzburg-de Gennes free energy functional, respectively. A speedup of up to two orders of magnitudes is achieved.

  10. Forest Succession and Climate Change: Coupling Land-Surface Processes and Ecological Dynamics.

    NASA Astrophysics Data System (ADS)

    Martin, Philippe

    Growing evidence supports the hypothesis that humans are in the process of inadvertently modifying the Earth's climate by increasing the atmospheric concentrations of carbon dioxide and other radiatively active trace gases. The present man-induced climatic change, often referred to as the "greenhouse effect", is different from natural changes because of its unprecedented pace and our incomplete knowledge of its consequences. As some scientists put it, humanity is performing on itself a "global experiment" which may entail a number of surprises. The potential changes in the behavior of atmosphere/biosphere interactions are of particular importance. Such changes could affect atmospheric dynamics, the local and regional hydrology, the global biogeochemistry, and, therefore, human societies. In the present thesis, five distinct aspects of climate/vegetation interactions are examined. First, the climatically and physiologically mediated impacts of increases in the concentration of carbon dioxide on the evaporation from agricultural crops, grassland, and forests are investigated using the Penman-Monteith combination equation. Second, the degree of coupling between the vegetation and the atmosphere, as defined by Jarvis and McNaughton, is reexamined taking radiative losses from the vegetation to the atmosphere into account. Third, the effects of changes in the mean vs. the variance of climatic variables are investigated using a modified version of the forest dynamics model developed by Pastor and Post, LINK-AGES. Fourth, using the same model, changes in the production of non -methane hydrocarbons are estimated as climate and/or vegetation change. Finally, the main part of the thesis focuses on the response of forests to climatic changes using a model treating the physics of energy and water exchange in detail. Because the Energy, water, and momentum eXchange, and Ecological dynamics model (EXE), couples the land-surface processes and the ecological dynamics of forests of

  11. Development of an experimental approach to study coupled soil-plant-atmosphere processes using plant analogs

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew C.; Illangasekare, Tissa H.; Rodriguez-Iturbe, Ignacio; Heck, Katharina; Helmig, Rainer

    2017-04-01

    The atmosphere, soils, and vegetation near the land-atmosphere interface are in a state of continuous dynamic interaction via a myriad of complex interrelated feedback processes which collectively, remain poorly understood. Studying the fundamental nature and dynamics of such processes in atmospheric, ecological, and/or hydrological contexts in the field setting presents many challenges; current experimental approaches are an important factor given a general lack of control and high measurement uncertainty. In an effort to address these issues and reduce overall complexity, new experimental design considerations (two-dimensional intermediate-scale coupled wind tunnel-synthetic aquifer testing using synthetic plants) for studying soil-plant-atmosphere continuum soil moisture dynamics are introduced and tested in this study. Validation of these experimental considerations, particularly the adoption of synthetic plants, is required prior to their application in future research. A comparison of three experiments with bare soil surfaces or transplanted with a Stargazer lily/limestone block was used to evaluate the feasibility of the proposed approaches. Results demonstrate that coupled wind tunnel-porous media experimentation, used to simulate field conditions, reduces complexity, and enhances control while allowing fine spatial-temporal resolution measurements to be made using state-of-the-art technologies. Synthetic plants further help reduce system complexity (e.g., airflow) while preserving the basic hydrodynamic functions of plants (e.g., water uptake and transpiration). The trends and distributions of key measured atmospheric and subsurface spatial and temporal variables (e.g., soil moisture, relative humidity, temperature, air velocity) were comparable, showing that synthetic plants can be used as simple, idealized, nonbiological analogs for living vegetation in fundamental hydrodynamic studies.

  12. A scheme for coupling land surface processes using mutliple non-uniform grid scales

    NASA Astrophysics Data System (ADS)

    Miller, N. L.; Bastidas, L. A.; Yatheendradas, Y.; Jin, J.; Sorooshian, S.

    2003-04-01

    Land surface processes respond differently at a range of scales, depending on the sensitivity and the available information for characterizing the parameter space. A multi-scale procedure for coupling a Land Surface Model (LSM) with atmospheric and subsurface processes has been developed. The Non-uniform Grid Scheme (NGS) utilizes hierarchical sub-grids with a high degree of characterization, that are nested within grid-matched coarser grids preserving spatial location. Conservation of mass and momentum is maintained across the grids and aggregated fluxes are computed for the larger scale, which will bi-directionally coupled to a fine-scale regional atmospheric model. Initial studies have shown a shift in the latent and sensible heating rates as the degree of land surface heterogeneity is increased. The Non-uniform Grid Scheme was setup for the NCEP Noah LSM over the San Pedro River Basin in Arizona as a sensitivity study. An analysis using the Noah LSM, in offline fashion, driven with outputs from the NCAR Mesoscale Model (MM5) is presented. Initially, uniform grids with 1, 4, and 9 km resolution are used throughout the domain. This is followed by a multiple resolution grid structure defined by the degree of land surface and sub-surface characteristics of the San Pedro Basin. The influence of the parameter values is also assessed using the default values for semi-arid conditions (uniform for the entire domain) as a benchmark. Grid-dependent non-uniform parameterization is based on a multi-criteria approach using the MOCOM-UA optimization algorithm. Parameter values derived from remote sensing, and values obtained from a combination of remote sensing and parameter optimization techniques are also presented.

  13. Coupling of Spinosad Fermentation and Separation Process via Two-Step Macroporous Resin Adsorption Method.

    PubMed

    Zhao, Fanglong; Zhang, Chuanbo; Yin, Jing; Shen, Yueqi; Lu, Wenyu

    2015-08-01

    In this paper, a two-step resin adsorption technology was investigated for spinosad production and separation as follows: the first step resin addition into the fermentor at early cultivation period to decrease the timely product concentration in the broth; the second step of resin addition was used after fermentation to adsorb and extract the spinosad. Based on this, a two-step macroporous resin adsorption-membrane separation process for spinosad fermentation, separation, and purification was established. Spinosad concentration in 5-L fermentor increased by 14.45 % after adding 50 g/L macroporous at the beginning of fermentation. The established two-step macroporous resin adsorption-membrane separation process got the 95.43 % purity and 87 % yield for spinosad, which were both higher than that of the conventional crystallization of spinosad from aqueous phase that were 93.23 and 79.15 % separately. The two-step macroporous resin adsorption method has not only carried out the coupling of spinosad fermentation and separation but also increased spinosad productivity. In addition, the two-step macroporous resin adsorption-membrane separation process performs better in spinosad yield and purity.

  14. Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters

    USGS Publications Warehouse

    Fuller, C.C.; Davis, J.A.

    1989-01-01

    Chemical and biological processes have important roles in the transport and cycling of trace elements in natural waters, but their complex interactions are often not well understood. Trace-element concentrations may, for example, be controlled by adsorption-desorption reactions at mineral surfaces, with the equilibrium strongly influenced by pH. Variations in pH due to photosynthetic activity should result in concentration fluctuations as the adsorption-desorption equilibrium shifts with pH. To investigate these interactions, we have studied the effect of diurnal cycling of pH on dissolved arsenate in a perennial stream contaminated with arsenic. As expected, a diurnal cycle in arsenate concentration was observed, but surprisingly, the arsenate cycle lags several hours behind the pH cycle. Laboratory experiments show that the lag results from a slow approach to sorption equilibrium. Our observations demonstrate that the coupling of photosynthesis and sorption processes may have an important influence on the cycling of many trace elements and emphasize the importance of understanding sorption kinetics in modelling these processes.

  15. Coupled diffusion processes and 2D affinities of adhesion molecules at synthetic membrane junctions

    NASA Astrophysics Data System (ADS)

    Peel, Christopher; Choudhuri, Kaushik; Schmid, Eva M.; Bakalar, Matthew H.; Ann, Hyoung Sook; Fletcher, Daniel A.; Journot, Celine; Turberfield, Andrew; Wallace, Mark; Dustin, Michael

    A more complete understanding of the physically intrinsic mechanisms underlying protein mobility at cellular interfaces will provide additional insights into processes driving adhesion and organization in signalling junctions such as the immunological synapse. We observed diffusional slowing of structurally diverse binding proteins at synthetic interfaces formed by giant unilamellar vesicles (GUVs) on supported lipid bilayers (SLBs) that shows size dependence not accounted for by existing models. To model the effects of size and intermembrane spacing on interfacial reaction-diffusion processes, we describe a multistate diffusion model incorporating entropic effects of constrained binding. This can be merged with hydrodynamic theories of receptor-ligand diffusion and coupling to thermal membrane roughness. A novel synthetic membrane adhesion assay based on reversible and irreversible DNA-mediated interactions between GUVs and SLBs is used to precisely vary length, affinity, and flexibility, and also provides a platform to examine these effects on the dynamics of processes such as size-based segregation of binding and non-binding species.

  16. E2F-7 couples DNA damage-dependent transcription with the DNA repair process.

    PubMed

    Zalmas, Lykourgos-Panagiotis; Coutts, Amanda S; Helleday, Thomas; La Thangue, Nicholas B

    2013-09-15

    The cellular response to DNA damage, mediated by the DNA repair process, is essential in maintaining the integrity and stability of the genome. E2F-7 is an atypical member of the E2F family with a role in negatively regulating transcription and cell cycle progression under DNA damage. Surprisingly, we found that E2F-7 makes a transcription-independent contribution to the DNA repair process, which involves E2F-7 locating to and binding damaged DNA. Further, E2F-7 recruits CtBP and HDAC to the damaged DNA, altering the local chromatin environment of the DNA lesion. Importantly, the E2F-7 gene is a target for somatic mutation in human cancer and tumor-derived mutant alleles encode proteins with compromised transcription and DNA repair properties. Our results establish that E2F-7 participates in 2 closely linked processes, allowing it to directly couple the expression of genes involved in the DNA damage response with the DNA repair machinery, which has relevance in human malignancy.

  17. Assessment of anti-fouling strategies for membrane coupled with upflow anaerobic sludge blanket (MUASB) process.

    PubMed

    Tran, Thao Minh; Ye, Yun; Chen, Vicki; Stuetz, Richard; Le-Clech, Pierre

    2013-01-01

    In this novel process, domestic wastewater was filtered by a hollow-fibre membrane coupled with an upflow anaerobic sludge blanket (MUASB) bioreactor. To improve the process sustainability and decrease energy costs, the membranes were operated under low fluxes with little, or no, shear. The efficiency of anti-fouling strategies, including relaxation, backwashing and supply of low aeration and stir rates, was assessed through detailed characterization of the fouling layers. Results indicated that backwashing was more efficient than relaxation, even when the systems were operated under the same flux productivity. In terms of shear supply, stir provided a better fouling limitation strategy compared to aeration, at similar shear stress values. Physical and chemical cleaning methods were applied to recover three fouling fractions (i.e. cake, residual and irreversible) for better characterization of the fouling layers. Under the sustainable operating conditions used in this study, most of the fouling was easily reversible by simple rinsing. In addition, permanent and irreversible fouling, resulting in the need for frequent chemical cleanings and potential membrane degradation, is limited once small shear stresses are applied. These outcomes are expected to form the basis for the future assessment of trade-off between operation, maintenance and replacement costs of membrane filtration processes used in wastewater treatment.

  18. Advanced low carbon-to-nitrogen ratio wastewater treatment by electrochemical and biological coupling process.

    PubMed

    Deng, Shihai; Li, Desheng; Yang, Xue; Zhu, Shanbin; Xing, Wei

    2016-03-01

    Nitrogen pollution in ground and surface water significantly affects the environment and its organisms, thereby leading to an increasingly serious environmental problem. Such pollution is difficult to degrade because of the lack of carbon sources. Therefore, an electrochemical and biological coupling process (EBCP) was developed with a composite catalytic biological carrier (CCBC) and applied in a pilot-scale cylindrical reactor to treat wastewater with a carbon-to-nitrogen (C/N) ratio of 2. The startup process, coupling principle, and dynamic feature of the EBCP were examined along with the effects of hydraulic retention time (HRT), dissolved oxygen (DO), and initial pH on nitrogen removal. A stable coupling system was obtained after 51 days when plenty of biofilms were cultivated on the CCBC without inoculation sludge. Autotrophic denitrification, with [Fe(2+)] and [H] produced by iron-carbon galvanic cells in CCBC as electron donors, was confirmed by equity calculation of CODCr and nitrogen removal. Nitrogen removal efficiency was significantly influenced by HRT, DO, and initial pH with optimal values of 3.5 h, 3.5 ± 0.1 mg L(-1), and 7.5 ± 0.1, respectively. The ammonia, nitrate, and total nitrogen (TN) removal efficiencies of 90.1 to 95.3 %, 90.5 to 99.0 %, and 90.3 to 96.5 % were maintained with corresponding initial concentrations of 40 ± 2 mg L(-1) (NH3-N load of 0.27 ± 0.01 kg NH3-N m(-3) d(-1)), 20 ± 1 mg L(-1), and 60 ± 2 mg L(-1) (TN load of 0.41 ± 0.02 kg TN m(-3) d(-1)). Based on the Eckenfelder model, the kinetics equation of the nitrogen transformation along the reactor was N e  = N 0 exp (-0.04368 h/L(1.8438)). Hence, EBCP is a viable method for advanced low C/N ratio wastewater treatment.

  19. Modeling and Field Study of Coupled Bio-Optical Physical Processes in the Monterey Bay Area.

    NASA Astrophysics Data System (ADS)

    Shulman, I.; Arnone, R.; Teague, W.; Chavez, F.; Schofield, O.; Moline, M.; Penta, B.; Ryan, J.; Gould, R.; Anderson, S.; Jolliff, J. K.; Book, J. W.; Derada, S.; Paduan, J. D.

    2008-12-01

    Scientists from government, academia and non-profit organizations participated in an interdisciplinary field program in the Monterey Bay from during May-June of 2008. The experiment was a collaboration between the NRL project "Bio-Optical Studies of Predictability and Assimilation for the Coastal Environment (BIOSPACE)", Multidisciplinary University Research Initiative (MURI) project "Rapid Environmental Assessment Using an Integrated Coastal Ocean Observation-Modeling System (ESPRESSO)", the Monterey Bay Aquarium Research Institute (MBARI), the NRL project "Unattended Sea-bed Power for In-water Operations", and the U.S. Geological Survey. Objectives of the NRL BIOSPACE and MURI ESPRESSO projects are centered around developing an understanding of coupled bio-optical and physical processes in the coastal zone and improvements of predictability of coastal ocean optical properties on time scales of 1-5 days. MBARI has long-term objectives of monitoring, studying and managing the Monterey Bay ecosystem dynamics and health. The goals for the 2008 field program were to create a synoptic view of the coupled bio- optical physical conditions in the Monterey Bay and to relate satellite observed properties to their subsurface structure. The program was focused on the so-called "upwelling shadow area"(northern part of the bay), where biological processes are enhanced as a result of the slower physical dynamics. The field program deployed a wide range of assets: gliders, AUVs, ScanFish (a ship-towed platform), SEPTR, etc. This deployment was supplemented with intensive station sampling from the R/V Point Sur and satellite ocean color imagery (MODIS, MERIS). The field program was supported by a real-time modeling effort consisting of a hierarchy of different resolution, nested, data assimilating, coupled bio-optical physical models. Development of a pair of cyclonic (in the bay) and anticyclonic (outside of the bay) eddies was observed and predicted by the model during an

  20. Fabrication process and noise properties of antenna-coupled microbolometers based on superconducting YBCO films

    NASA Astrophysics Data System (ADS)

    Karmanenko, S. F.; Semenov, A. A.; Khrebtov, I. A.; Leonov, V. N.; Johansen, T. H.; Galperin, Yu M.; Bobyl, A. V.; Dedoboretz, A. I.; Gaevski, M. E.; Lunev, A. V.; Suris, R. A.

    2000-03-01

    An analysis of how the detectivity and lifetime depend on the fabrication process of superconducting antenna-coupled microbolometers has been carried out. The temperature dependences of responsivity and noise equivalent power (NEP) have been estimated in terms of the thermal model. To reveal the main degradation mechanism, 1/f -noise characterization has been used. Monte-Carlo simulation of the annealing procedure of YBa2 Cu3 O7 (YBCO) films for the operating ranges of frequency and temperature has shown that prevailing sources of flicker noise in superconducting microstrips are associated with transitions of oxygen atoms situated close to low-angle boundaries of the film blocks. The magnetron sputtering technique has been optimized to reduce the Hooge parameter for flicker noise to a record-breaking low value for YBCO films of about 10-4 at 93 K. Comparative analysis of chemical, ion and laser etching techniques by low-temperature scanning electron microscopy and magneto-optics allowed the fabrication of microstrips with uniform current distribution characterized by critical current density higher than 106 A cm-2 at 77 K and long-time stability. The process of low-energy ion milling of YBCO films with an Ar+ beam generated in a duopigatron ion source was used to reach a width resolution at the topology edge better than 0.2 µm. The antenna-coupled bolometers fabricated from the superconducting microstrips were used to register microwave radiation at a frequency of 70.3 GHz and temperature of 93 K. It is demonstrated that the developed technology makes possible the fabrication of long-lived YBCO-based antenna microbolometers with electrical NEPe = 1.5 × 10-12 W Hz-1/2 . The calculated response time of the antenna is about 30-150 ns. Further development is associated with fabrication of coupling microbolometers with immersed lens, with predicted optical detectivity D * = (4 × 109 - 4 × 1010 ) cm Hz1/2 W-1 in the wavelength range 100-1000 µm.

  1. Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Knorr, Andreas; Richter, Marten

    2015-04-01

    The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized double-excitonic states are bound to the optical selection rules of the uncoupled system.

  2. Coupled modeling of transport and biogeochemical processes in aquifers - Model requirements, strength and limitations

    NASA Astrophysics Data System (ADS)

    Mayer, K.

    2003-12-01

    Microbially mediated geochemical changes in aquifers may trigger a series of secondary reactions that include aqueous and surface complexation, ion exchange, and mineral dissolution-precipitation. Due to the coupled nature and the multitude of processes involved it is often difficult to identify the reactions controlling the system's overall evolution. Numerical models can be a useful component for identifying gaps and inconsistencies in conceptual models and for performing a more quantitative investigation of these systems. Suitable computer codes must allow for a general description of transport and reaction processes to facilitate the investigation of site-specific conditions. In recent years significant advances have been made in terms of model generality and applicability. Major advances include the consideration of mass balance equations for reactants and reaction products, the integration of biodegradation and thermodynamic models, and the development of novel approaches for simulating biogeochemical processes and reactive transport under variably saturated conditions. MIN3P is one of the codes capable of simulating coupled biogeochemical and hydrological processes on an increasingly mechanistic level. The simulation of column experiments and a hypothetical case study at the field scale illustrate how reactive transport modeling can be used. Modeling column experiments can be particularly fruitful, because detailed data can be collected to support the mechanistic approach. However, analysis of conceptual models is also beneficial on the field scale. The case study considered here describes natural attenuation of a petroleum hydrocarbon spill in an unconfined aquifer by multiple electron acceptors. The simulations also consider geochemical reactions triggered by contaminant degradation including the re-oxidation of reaction products during transport away from the source area. Comparing the results to contaminant plumes described in the literature suggests

  3. Thermally Activated Site Exchange and Quantum Exchange Coupling Processes in Unsymmetrical Trihydride Osmium Compounds.

    PubMed

    Castillo, Amaya; Barea, Guada; Esteruelas, Miguel A.; Lahoz, Fernando J.; LLedós, Agustí; Maseras, Feliu; Modrego, Javier; Oñate, Enrique; Oro, Luis A.; Ruiz, Natividad; Sola, Eduardo

    1999-04-19

    Reaction of the hexahydride complex OsH(6)(P(i)Pr(3))(2) (1) with pyridine-2-thiol leads to the trihydride derivative OsH(3){kappa-N,kappa-S-(2-Spy)}(P(i)Pr(3))(2) (2). The structure of 2 has been determined by X-ray diffraction. The geometry around the osmium atom can be described as a distorted pentagonal bipyramid with the phosphine ligands occupying axial positions. The equatorial plane contains the pyridine-2-thiolato group, attached through a bite angle of 65.7(1) degrees, and the three hydride ligands. The theoretical structure determination of the model complex OsH(3){kappa-N,kappa-S-(2-Spy)}(PH(3))(2) (2a) reveals that the hydride ligands form a triangle with sides of 1.623, 1.714, and 2.873 Å, respectively. A topological analysis of the electron density of 2a indicates that there is no significant electron density connecting the hydrogen atoms of the OsH(3) unit. In solution, the hydride ligands of 2 undergo two different thermally activated site exchange processes, which involve the central hydride with each hydride ligand situated close to the donor atoms of the chelate group. The activation barriers of both processes are similar. Theoretical calculations suggest that the transition states have a cis-hydride-dihydrogen nature. In addition to the thermally activated exchange processes, complex 2 shows quantum exchange coupling between the central hydride and the one situated close to the sulfur atom of the pyridine-2-thiolato group. The reactions of 1 with L-valine and 2-hydroxypyridine afford OsH(3){kappa-N,kappa-O-OC(O)CH[CH(CH(3))(2)]NH(2)}(P(i)Pr(3))(2) (3) and OsH(3){kappa-N,kappa-O-(2-Opy)}(P(i)Pr(3))(2) (4) respectively, which according to their spectroscopic data have a similar structure to that of 2. In solution, the hydride ligands of 3 and 4 also undergo two different thermally activated site exchange processes. However, they do not show quantum exchange coupling. The tetranuclear complexes [(P(i)Pr(3))(2)H(3)Os(&mgr;-biim)M(TFB)](2) [M = Rh

  4. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    SciTech Connect

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory.

  5. Providing a Connection between a Bayesian Inverse Modeling Tool and a Coupled Hydrogeological Processes Modeling Software

    NASA Astrophysics Data System (ADS)

    Frystacky, H.; Osorio-Murillo, C. A.; Over, M. W.; Kalbacher, T.; Gunnell, D.; Kolditz, O.; Ames, D.; Rubin, Y.

    2013-12-01

    The Method of Anchored Distributions (MAD) is a Bayesian technique for characterizing the uncertainty in geostatistical model parameters. Open-source software has been developed in a modular framework such that this technique can be applied to any forward model software via a driver. This presentation is about the driver that has been developed for OpenGeoSys (OGS), open-source software that can simulate many hydrogeological processes, including couple processes. MAD allows the use of multiple data types for conditioning the spatially random fields and assessing model parameter likelihood. For example, if simulating flow and mass transport, the inversion target variable could be hydraulic conductivity and the inversion data types could be head, concentration, or both. The driver detects from the OGS files which processes and variables are being used in a given project and allows MAD to prompt the user to choose those that are to be modeled or to be treated deterministically. In this way, any combination of processes allowed by OGS can have MAD applied. As for the software, there are two versions, each with its own OGS driver. A Windows desktop version is available as a graphical user interface and is ideal for the learning and teaching environment. High-throughput computing can even be achieved with this version via HTCondor if large projects want to be pursued in a computer lab. In addition to this desktop application, a Linux version is available equipped with MPI such that it can be run in parallel on a computer cluster. All releases can be downloaded from the MAD Codeplex site given below.

  6. Wave Data Processing and Analysis, Part 2: Codes for Coupling GenCade and CMS-Wave

    DTIC Science & Technology

    2013-09-01

    coastal modeling system , Report 2: CMS -Wave. ERDC/CHL-TR-11-10. Vicksburg, MS: US Army Engineer Research and Development Center. Connell, K. J. and...Coupling GenCade and CMS -Wave by Rusty Permenter, Kenneth J. Connell, and Zeki Demirbilek PURPOSE: This Coastal and Hydraulics Engineering...to GenCade. This is the second CHETN in a two‐part series detailing the process of coupling CMS ‐Wave with GenCade. This CHETN focuses on

  7. Up and down or down and up? The process of change in constructive couple behavior during Traditional and Integrative Behavioral Couple Therapy.

    PubMed

    Sevier, Mia; Atkins, David C; Doss, Brian D; Christensen, Andrew

    2015-01-01

    Observed positive and negative spouse behavior during sessions of Traditional (TBCT) and Integrative Behavioral Couples Therapy (IBCT) were compared for couples with successful outcomes and their unsuccessful counterparts. One hundred and thirty-four married chronically and seriously distressed couples (on average in their forties and 80% Caucasian) were randomly assigned to TBCT or IBCT. Trained observers made ratings of 1224 segments from approximately 956 sessions sampled from the course of up to 26 sessions. Multilevel modeling was used to examine change over time. TBCT treatment responders demonstrated a boost-drop pattern, increasing in constructive behaviors early (more positive behaviors and less negative behaviors) but decreasing later. IBCT responders demonstrated an opposite, drop-boost pattern, decreasing in constructive behaviors early and increasing later. Patterns were significant for positive behaviors (p < .05) and approached significance for negative behaviors (p = .05). In both treatments, nonresponders showed a significant pattern of decline in positive and increase in negative behaviors over time, although a trend (p = .05) indicates that TBCT nonresponders initially declined in negative behaviors. This study helps clarify the different process of change in two behavioral couple therapies, which may assist in treatment development and provide a guide for therapists in considering behavioral markers of change during treatment. © 2013 American Association for Marriage and Family Therapy.

  8. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    SciTech Connect

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus

  9. Experimental and Computational Studies of Coupled Geomechanical and Hydrologic Processes in Wellbore Systems (Invited)

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Mori, H.; Porter, M. L.; Lewis, K. C.; Kelkar, S.

    2013-12-01

    Potential leakage from wells is an important issue in the protection of groundwater resources, CO2 sequestration, and hydraulic fracturing. The first defense in all of these applications is a properly constructed well with adequate Portland cement that effectively isolates the subsurface. The chief threat for such wells is mechanical disruption of the cement, cement/steel, or cement/caprock interfaces. This can occur through wellbore operations that pressurize/depressurize the steel tubing or create temperature transients (e.g., injection, production, hydraulic fracturing, and mechanical testing) as well as reservoir-scale stresses (e.g., filling or depletion of the reservoir) and tectonic stresses (e.g., the mobility of salt). However, there is relatively limited information available on the hydrologic consequences of such processes. Toward this end, we discuss recent experiments and computational models of coupled geomechanical and hydrologic processes in wellbore systems. Triaxial coreflood experiments with tomography were conducted on synthetic wellbore systems including cement-steel, rock-cement and rock-cement-steel composites. The aim of the experiments was to induce stresses through application of axial loads in order to create defects within the cement or at the cement/steel or cement/rock interface. High injection fluid pressures (supercritical CO2 × brine) were applied to the base of the initially impermeable composites. Mechanical failure resulted in creation of permeability, which was measured as a function of time (allowing for the possibility of Portland cement to deform and modify permeability). In addition, fracture patterns were characterized using x-ray tomography. We used the computer code FEHM to study coupled hydrologic and mechanical processes in the near-wellbore environment. The wellbore model was developed as a wedge within a radially symmetric 3D volume. The grid elements consist of the steel casing, the casing-cement interface, the

  10. Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions

    NASA Astrophysics Data System (ADS)

    Bright, Vivien Bianca; Bloss, William James; Cai, Xiaoming

    2013-04-01

    Street canyons, formed by rows of buildings in urban environments, are associated with high levels of atmospheric pollutants emitted primarily from vehicles, and substantial human exposure. The street canyon forms a semi-enclosed environment, within which emissions may be entrained in a re-circulatory system; chemical processing of emitted compounds alters the composition of the air vented to the overlying boundary layer, compared with the primary emissions. As the prevailing atmospheric chemistry is highly non-linear, and the canyon mixing and predominant chemical reaction timescales are comparable, the combined impacts of dynamics and chemistry must be considered to quantify these effects. Here we report a model study of the coupled impacts of dynamical and chemical processing upon the atmospheric composition in a street canyon environment, to assess the impacts upon air pollutant levels within the canyon, and to quantify the extent to which within-canyon chemical processing alters the composition of canyon outflow, in comparison to the primary emissions within the canyon. A new model for the simulation of street canyon atmospheric chemical processing has been developed, by integrating an existing Large-Eddy Simulation (LES) dynamical model of canyon atmospheric motion with a detailed chemical reaction mechanism, a Reduced Chemical Scheme (RCS) comprising 51 chemical species and 136 reactions, based upon a subset of the Master Chemical Mechanism (MCM). The combined LES-RCS model is used to investigate the combined effects of mixing and chemical processing upon air quality within an idealised street canyon. The effect of the combination of dynamical (segregation) and chemical effects is determined by comparing the outputs of the full LES-RCS canyon model with those obtained when representing the canyon as a zero-dimensional box model (i.e. assuming mixing is complete and instantaneous). The LES-RCS approach predicts lower (canyon-averaged) levels of NOx, OH and HO

  11. The Interdependence of Plate Coupling Processes, Subduction Rate, and Asthenospheric Pressure Drop across Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Royden, L.; Holt, A.; Becker, T. W.

    2015-12-01

    One advantage of analytical models, in which analytic expressions are used for the various components of the subduction system, is the efficient exploration of parameter space and identification of the physical mechanisms controlling a wide breadth of slab kinematics. We show that, despite subtle differences in how plate interfaces and boundary conditions are implemented, results for single subduction from a 3-D semi-analytical model for subduction FAST (Royden & Husson, 2006; Jagoutz et al., 2015) and from the numerical finite-element model CitcomCU (Moresi & Gurnis, 1996, Zhong et al., 2006) are in excellent agreement when plate coupling (via shear stress on the plate interface) takes place in the FAST without the development of topographic relief at the plate boundary. Results from the two models are consistent across a variety of geometries, with fixed upper plate, fixed lower plate, and stress-free plate ends. When the analytical model is modified to include the development of topography above the subduction boundary, subduction rates are greatly increased, indicating a strong sensitivity of subduction to the mode of plate coupling. Rates of subduction also correlate strongly with the asthenospheric pressure drop across the subducting slab, which drives toroidal flow of the asthenosphere around the slab. When the lower plate is fixed, subduction is relatively slow and the pressure drop from below to above the slab is large, inhibiting subduction and slab roll-back. When the upper plate is fixed and when the plate ends are stress-free, subduction rates are approximately 50% faster and the corresponding asthenospheric pressure drop from below to above the slab is small, facilitating rapid subduction. This qualitative correlation between plate coupling processes, asthenospheric pressure drop, and rates of subduction can be extended to systems with more than one subduction zone (Holt et al., 2015 AGU Fall Abstract). Jagoutz, O., Royden, L., Holt, A. & Becker, T. W

  12. Numerical investigation of coupled density-driven flow and hydrogeochemical processes below playas

    NASA Astrophysics Data System (ADS)

    Hamann, Enrico; Post, Vincent; Kohfahl, Claus; Prommer, Henning; Simmons, Craig T.

    2015-11-01

    Numerical modeling approaches with varying complexity were explored to investigate coupled groundwater flow and geochemical processes in saline basins. Long-term model simulations of a playa system gain insights into the complex feedback mechanisms between density-driven flow and the spatiotemporal patterns of precipitating evaporites and evolving brines. Using a reactive multicomponent transport model approach, the simulations reproduced, for the first time in a numerical study, the evaporite precipitation sequences frequently observed in saline basins ("bull's eyes"). Playa-specific flow, evapoconcentration, and chemical divides were found to be the primary controls for the location of evaporites formed, and the resulting brine chemistry. Comparative simulations with the computationally far less demanding surrogate single-species transport models showed that these were still able to replicate the major flow patterns obtained by the more complex reactive transport simulations. However, the simulated degree of salinization was clearly lower than in reactive multicomponent transport simulations. For example, in the late stages of the simulations, when the brine becomes halite-saturated, the nonreactive simulation overestimated the solute mass by almost 20%. The simulations highlight the importance of the consideration of reactive transport processes for understanding and quantifying geochemical patterns, concentrations of individual dissolved solutes, and evaporite evolution.

  13. Process monitored spectrophotometric titration coupled with chemometrics for simultaneous determination of mixtures of weak acids.

    PubMed

    Liao, Lifu; Yang, Jing; Yuan, Jintao

    2007-05-15

    A new spectrophotometric titration method coupled with chemometrics for the simultaneous determination of mixtures of weak acids has been developed. In this method, the titrant is a mixture of sodium hydroxide and an acid-base indicator, and the indicator is used to monitor the titration process. In a process of titration, both the added volume of titrant and the solution acidity at each titration point can be obtained simultaneously from an absorption spectrum by least square algorithm, and then the concentration of each component in the mixture can be obtained from the titration curves by principal component regression. The method only needs the information of absorbance spectra to obtain the analytical results, and is free of volumetric measurements. The analyses are independent of titration end point and do not need the accurate values of dissociation constants of the indicator and the acids. The method has been applied to the simultaneous determination of the mixtures of benzoic acid and salicylic acid, and the mixtures of phenol, o-chlorophenol and p-chlorophenol with satisfactory results.

  14. Coupled turbulent flow, heat, and solute transport in continuous casting processes

    NASA Astrophysics Data System (ADS)

    Aboutalebi, M. Reza; Hasan, M.; Guthrie, R. I. L.

    1995-08-01

    A fully coupled fluid flow, heat, and solute transport model was developed to analyze turbulent flow, solidification, and evolution of macrosegregation in a continuous billet caster. Transport equations of total mass, momentum, energy, and species for a binary iron-carbon alloy system were solved using a continuum model, wherein the equations are valid for the solid, liquid, and mushy zones in the casting. A modified version of the low-Reynolds number k-ɛ model was adopted to incorporate turbulence effects on transport processes in the system. A control-volume-based finite-difference procedure was employed to solve the conservation equations associated with appropriate boundary conditions. Because of high nonlinearity in the system of equations, a number of techniques were used to accelerate the convergence process. The effects of the parameters such as casting speed, steel grade, nozzle configuration on flow pattern, solidification profile, and carbon segregation were investigated. From the computed flow pattern, the trajectory of inclusion particles, as well as the density distribution of the particles, was calculated. Some of the computed results were compared with available experimental measurements, and reasonable agreements were obtained.

  15. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    PubMed

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  16. Numerical study of heating and evaporation processes of quartz particles in RF inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Grishin, Yu M.; Miao, Long

    2017-05-01

    Numerical simulations of heat and evaporation processes of quartz particles in Ar radio frequency inductively coupled plasma (ICP) are investigated. The quartz particles are supplied by the carrier gas into the ICP within gas-cooling. It is shown that with the increase of amplitude of discharge current above critical value there is a toroidal vortex in the ICP torch at the first coil. The conditions for the formation of vortex and the parameters of the vortex tube have been evaluated and determined. The influence of vortex, discharge current, coil numbers and feed rate of carrier gas on the evaporation efficiency of quartz particles have been demonstrated. It was found that the optimal discharge current is close to the critical value when the quartz particles with initial sizes up to 130 μm can be fully vaporized in the ICP torch with thermal power of 10kW. The heat and evaporation processes of quartz particles in the ICP torch have significant importance for the study of one-step plasma chemical reaction method directly producing silicon from silicide (SiO2) in the argon-hydrogen plasma.

  17. Density-fitted singles and doubles coupled cluster on graphics processing units

    NASA Astrophysics Data System (ADS)

    DePrince, , A. Eugene, III; Kennedy, Matthew R.; Sumpter, Bobby G.; Sherrill, C. David

    2014-03-01

    We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERIs) for use on heterogeneous compute nodes consisting of a multicore central processing unit (CPU) and at least one graphics processing unit (GPU). The use of approximate three-index ERIs ameliorates two of the major difficulties in designing scientific algorithms for GPUs: (1) the extremely limited global memory on the devices and (2) the overhead associated with data motion across the bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses six highly efficient Intel Core i7-3930K CPU cores. The use of two Fermi GPUs provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

  18. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    NASA Astrophysics Data System (ADS)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  19. Investigating redox processes under diffusive and advective flow conditions using a coupled omics and synchrotron approach

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Boyanov, M.; Flynn, T. M.; O'Loughlin, E. J.; Antonopoulos, D. A.; Kelly, S.; Skinner, K.; Mishra, B.; Brooks, S. C.; Watson, D. B.; Wu, W. M.

    2015-12-01

    FeIII- and SO42--reducing microorganisms and the mineral phases they produce have profound implications for many processes in aquatic and terrestrial systems. In addition, many of these microbially-catalysed geochemical transformations are highly dependent upon introduction of reactants via advective and diffusive hydrological transport. We have characterized microbial communities from a set of static microcosms to test the effect of ethanol diffusion and sulfate concentration on UVI-contaminated sediment. The spatial distribution, valence states, and speciation of both U and Fe were monitored in situ throughout the experiment by synchrotron x-ray absorption spectroscopy, in parallel with solution measurements of pH and the concentrations of sulfate, ethanol, and organic acids. After reaction initiation, a ~1-cm thick layer of sediment near the sediment-water (S-W) interface became visibly dark. Fe XANES spectra of the layer were consistent with the formation of FeS. Over the 4 year duration of the experiment, U LIII-edge XANES indicated reduction of U, first in the dark layer and then throughout the sediment. Next, the microcosms were disassembled and samples were taken from the overlying water and different sediment regions. We extracted DNA and characterized the microbial community by sequencing 16S rRNA gene amplicons with the Illumina MiSeq platform and found that the community evolved from its originally homogeneous composition, becoming significantly spatially heterogeneous. We have also developed an x-ray accessible column to probe elemental transformations as they occur along the flow path in a porous medium with the purpose of refining reactive transport models (RTMs) that describe coupled physical and biogeochemical processes in environmental systems. The elemental distribution dynamics and the RTMs of the redox driven processes within them will be presented.

  20. Coupled interactions between volatile activity and Fe oxidation state during arc crustal processes

    USGS Publications Warehouse

    Humphreys, Madeleine C.S.; Brooker, R; Fraser, D.C.; Burgisser, A; Mangan, Margaret T.; McCammon, C

    2015-01-01

    Arc magmas erupted at the Earth’s surface are commonly more oxidized than those produced at mid-ocean ridges. Possible explanations for this high oxidation state are that the transfer of fluids during the subduction process results in direct oxidation of the sub-arc mantle wedge, or that oxidation is caused by the effect of later crustal processes, including protracted fractionation and degassing of volatile-rich magmas. This study sets out to investigate the effect of disequilibrium crustal processes that may involve coupled changes in H2O content and Fe oxidation state, by examining the degassing and hydration of sulphur-free rhyolites. We show that experimentally hydrated melts record strong increases in Fe3+/∑Fe with increasing H2O concentration as a result of changes in water activity. This is relevant for the passage of H2O-undersaturated melts from the deep crust towards shallow crustal storage regions, and raises the possibility that vertical variations in fO2 might develop within arc crust. Conversely, degassing experiments produce an increase in Fe3+/∑Fe with decreasing H2O concentration. In this case the oxidation is explained by loss of H2 as well as H2O into bubbles during decompression, consistent with thermodynamic modelling, and is relevant for magmas undergoing shallow degassing en route to the surface. We discuss these results in the context of the possible controls on fO2 during the generation, storage and ascent of magmas in arc settings, in particular considering the timescales of equilibration relative to observation as this affects the quality of the petrological record of magmatic fO2.

  1. Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Kerkweg, A.; Buchholz, J.; Tost, H.; Sander, R.; Pozzer, A.

    2007-11-01

    The implementation of processes related to chemistry into Earth System Models and their coupling within such systems requires the consistent description of the chemical species involved. We provide a tool (written in Fortran95) to structure and manage information about constituents, herein after referred to as tracers, namely the Modular Earth Submodel System (MESSy) generic (i.e., infrastructure) submodel TRACER. With TRACER it is possible to define a multitude of tracer sets, depending on the spatio-temporal representation (i.e., the grid structure) of the model. The required information about a specific chemical species is split into the static meta-information about the characteristics of the species, and its (generally in time and space variable) abundance in the corresponding representation. TRACER moreover includes two submodels. One is TRACER_FAMILY, an implementation of the tracer family concept. It distinguishes between two types: type-1 families are usually applied to handle strongly related tracers (e.g., fast equilibrating species) for a specific process (e.g., advection). In contrast to this, type-2 families are applied for tagging techniques, in which specific species are artificially decomposed and associated with additional information, in order to conserve the linear relationship between the family and its members. The second submodel is TRACER_PDEF, which corrects and budgets numerical negative overshoots that arise in many process implementations due to the numerical limitations (limited precision, rounding errors). The submodel therefore guarantees the positive definiteness of the tracers and stabilises the integration scheme. As a by-product, it further provides a global tracer mass diagnostic. Last but not least, we present the submodel PTRAC for the definition of prognostic tracers via a Fortran95 namelist. TRACER with its submodels and PTRAC can readily be applied to a variety of models without further requirements. The code and a

  2. Non-Gaussian Multi-resolution Modeling of Magnetosphere-Ionosphere Coupling Processes

    NASA Astrophysics Data System (ADS)

    Fan, M.; Paul, D.; Lee, T. C. M.; Matsuo, T.

    2016-12-01

    The most dynamic coupling between the magnetosphere and ionosphere occurs in the Earth's polar atmosphere. Our objective is to model scale-dependent stochastic characteristics of high-latitude ionospheric electric fields that originate from solar wind magnetosphere-ionosphere interactions. The Earth's high-latitude ionospheric electric field exhibits considerable variability, with increasing non-Gaussian characteristics at decreasing spatio-temporal scales. Accurately representing the underlying stochastic physical process through random field modeling is crucial not only for scientific understanding of the energy, momentum and mass exchanges between the Earth's magnetosphere and ionosphere, but also for modern technological systems including telecommunication, navigation, positioning and satellite tracking. While a lot of efforts have been made to characterize the large-scale variability of the electric field in the context of Gaussian processes, no attempt has been made so far to model the small-scale non-Gaussian stochastic process observed in the high-latitude ionosphere. We construct a novel random field model using spherical needlets as building blocks. The double localization of spherical needlets in both spatial and frequency domains enables the model to capture the non-Gaussian and multi-resolutional characteristics of the small-scale variability. The estimation procedure is computationally feasible due to the utilization of an adaptive Gibbs sampler. We apply the proposed methodology to the computational simulation output from the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamics (MHD) magnetosphere model. Our non-Gaussian multi-resolution model results in characterizing significantly more energy associated with the small-scale ionospheric electric field variability in comparison to Gaussian models. By accurately representing unaccounted-for additional energy and momentum sources to the Earth's upper atmosphere, our novel random field modeling

  3. Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle

    2010-05-01

    gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498

  4. Theory of proton-coupled electron transfer in energy conversion processes.

    PubMed

    Hammes-Schiffer, Sharon

    2009-12-21

    Proton-coupled electron transfer (PCET) reactions play an essential role in a broad range of energy conversion processes, including photosynthesis and respiration. These reactions also form the basis of many types of solar fuel cells and electrochemical devices. Recent advances in the theory of PCET enable the prediction of the impact of system properties on the reaction rates. These predictions may guide the design of more efficient catalysts for energy production, including those based on artificial photosynthesis and solar energy conversion. This Account summarizes the theoretically predicted dependence of PCET rates on system properties and illustrates potential approaches for tuning the reaction rates in chemical systems. A general theoretical formulation for PCET reactions has been developed over the past decade. In this theory, PCET reactions are described in terms of nonadiabatic transitions between the reactant and product electron-proton vibronic states. A series of nonadiabatic rate constant expressions for both homogeneous and electrochemical PCET reactions have been derived in various well-defined limits. Recently this theory has been extended to include the effects of solvent dynamics and to describe ultrafast interfacial PCET. Analysis of the rate constant expressions provides insight into the underlying physical principles of PCET and enables the prediction of the dependence of the rates on the physical properties of the system. Moreover, the kinetic isotope effect, which is the ratio of the rates for hydrogen and deuterium, provides a useful mechanistic probe. Typically the PCET rate will increase as the electronic coupling and temperature increase and as the total reorganization energy and equilibrium proton donor-acceptor distance decrease. The rate constant is predicted to increase as the driving force becomes more negative, rather than exhibit turnover behavior in the inverted region, because excited vibronic product states associated with low

  5. Numerical simulation of casting processes: coupled mould filling and solidification using VOF and enthalpy-porosity method

    NASA Astrophysics Data System (ADS)

    Richter, Ole; Turnow, Johann; Kornev, Nikolai; Hassel, Egon

    2016-12-01

    Within the scope of industrial casting applications a numerical model for the simultaneous mould filling and solidification process has been formulated, implemented in a finite volume code and successfully validated using analytical and experimental data. In order to account for the developing of free surface flow and the liquid/solid phase change, respectively, the volume-of-fluid and enthalpy-porosity method have been coupled under a volume averaging framework on a fixed Eulerian grid. The coupled method captures the basic physical effects of a combined mould filling and solidification process and provides a trustful method for comprehensive casting simulations.

  6. Numerical simulation of casting processes: coupled mould filling and solidification using VOF and enthalpy-porosity method

    NASA Astrophysics Data System (ADS)

    Richter, Ole; Turnow, Johann; Kornev, Nikolai; Hassel, Egon

    2017-06-01

    Within the scope of industrial casting applications a numerical model for the simultaneous mould filling and solidification process has been formulated, implemented in a finite volume code and successfully validated using analytical and experimental data. In order to account for the developing of free surface flow and the liquid/solid phase change, respectively, the volume-of-fluid and enthalpy-porosity method have been coupled under a volume averaging framework on a fixed Eulerian grid. The coupled method captures the basic physical effects of a combined mould filling and solidification process and provides a trustful method for comprehensive casting simulations.

  7. Model of the photoexcitation processes of a two-level molecule coherently coupled to an optical antenna.

    PubMed

    Nakatani, Masatoshi; Nobuhiro, Atsushi; Yokoshi, Nobuhiko; Ishihara, Hajime

    2013-06-07

    We theoretically investigate photoexcitation processes of a two-level molecular system coherently coupled with an antenna system having a significant dissipation. The auxiliary antenna enables the whole system to exhibit anomalous optical effects by controlling the coupling with the molecule. For example, in the weak excitation regime, the quantum interference yields a distinctive energy transparency through the antenna, which drastically reduces the energy dissipation. On the other hand, in the strong excitation regime, a population inversion of the two-level molecule appears due to the nonlinear effect. Both phenomena can be explained by regarding the antenna and molecule as one quantum-mechanically coupled system. Such an approach drives further research to exploit the full potential of the coupled systems.

  8. Stochastic process of pragmatic information for 2D spiral wave turbulence in globally and locally coupled Alief-Panfilov oscillators

    NASA Astrophysics Data System (ADS)

    Kuwahara, Jun; Miyata, Hajime; Konno, Hidetoshi

    2017-09-01

    Recently, complex dynamics of globally coupled oscillators have been attracting many researcher's attentions. In spite of their numerous studies, their features of nonlinear oscillator systems with global and local couplings in two-dimension (2D) are not understood fully. The paper focuses on 2D states of coherent, clustered and chaotic oscillation especially under the effect of negative global coupling (NGC) in 2D Alief-Panfilov model. It is found that the tuning NGC can cause various new coupling-parameter dependency on the features of oscillations. Then quantitative characterization of various states of oscillations (so called spiral wave turbulence) is examined by using the pragmatic information (PI) which have been utilized in analyzing multimode laser, solar activity and neuronal systems. It is demonstrated that the dynamics of the PI for various oscillations can be characterized successfully by the Hyper-Gamma stochastic process.

  9. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  10. Density-fitted singles and doubles coupled cluster on graphics processing units

    SciTech Connect

    Sherrill, David; Sumpter, Bobby G; DePrince, III, A. Eugene

    2014-01-01

    We adapt an algorithm for singles and doubles coupled cluster (CCSD) that uses density fitting (DF) or Cholesky decomposition (CD) in the construction and contraction of all electron repulsion integrals (ERI s) for use on heterogeneous compute nodes consisting of a multicore CPU and at least one graphics processing unit (GPU). The use of approximate 3-index ERI s ameliorates two of the major difficulties in designing scientific algorithms for GPU s: (i) the extremely limited global memory on the devices and (ii) the overhead associated with data motion across the PCI bus. For the benzene trimer described by an aug-cc-pVDZ basis set, the use of a single NVIDIA Tesla C2070 (Fermi) GPU accelerates a CD-CCSD computation by a factor of 2.1, relative to the multicore CPU-only algorithm that uses 6 highly efficient Intel core i7-3930K CPU cores. The use of two Fermis provides an acceleration of 2.89, which is comparable to that observed when using a single NVIDIA Kepler K20c GPU (2.73).

  11. Numerical study on coupled fluid flow and heat transfer process in parabolic trough solar collector tube

    SciTech Connect

    Tao, Y.B.; He, Y.L.

    2010-10-15

    A unified two-dimensional numerical model was developed for the coupled heat transfer process in parabolic solar collector tube, which includes nature convection, forced convection, heat conduction and fluid-solid conjugate problem. The effects of Rayleigh number (Ra), tube diameter ratio and thermal conductivity of the tube wall on the heat transfer and fluid flow performance were numerically analyzed. The distributions of flow field, temperature field, local Nu and local temperature gradient were examined. The results show that when Ra is larger than 10{sup 5}, the effects of nature convection must be taken into account. With the increase of tube diameter ratio, the Nusselt number in inner tube (Nu{sub 1}) increases and the Nusselt number in annuli space (Nu{sub 2}) decreases. With the increase of tube wall thermal conductivity, Nu{sub 1} decreases and Nu{sub 2} increases. When thermal conductivity is larger than 200 W/(m K), it would have little effects on Nu and average temperatures. Due to the effect of the nature convection, along the circumferential direction (from top to down), the temperature in the cross-section decreases and the temperature gradient on inner tube surface increases at first. Then, the temperature and temperature gradients would present a converse variation at {theta} near {pi}. The local Nu on inner tube outer surface increases along circumferential direction until it reaches a maximum value then it decreases again. (author)

  12. Some characteristics of midlatitude F layer storms generated by thermosphere-plasmasphere coupling processes

    SciTech Connect

    Miller, N.J.

    1983-01-01

    In this dissertation, calculations are interpreted that have been made to describe stormtime variations in equinoctial dayside plasma parameters when the variations are primarily caused by processes dependent upon collisional coupling between the thermosphere and the plasmasphere. The calculations are made with a computer model formed by linking two theoretical models: a pre-existing thermospheric model that describes dayside variations in thermospheric parameters during stormtime heating of the thermosphere; a plasmaspheric model which was developed to describe dayside plasmaspheric variations caused by the thermospheric variations described by the thermospheric model and by variations in a magnetospheric electric field. Both portions of the computerized storm model solve partial differential equations describing conservation of species, momentum, and energy by replacing dependent variables with expansions in time series. The thermospheric portion of the storm model solves for variations in gas temperature, horizontal wind velocity, and densities of atomic oxygen and molecular nitrogen while the plasmaspheric portion of the storm model solves for variations in ion densities of oxygen and hydrogen, ion fluxes and electrons, and heat fluxes through ions and electrons. Other calculations that have been used to describe variations in thermospheric and plasmaspheric parameters are summarized and the advantages and limitations of the model calculations used to obtain results presented in this dissertation are noted.

  13. A coupling kinetics model for pollutant release and transport in the process of landfill settlement.

    PubMed

    Zhao, Ying; Xue, Qiang; Liu, Lei

    2012-09-27

    A coupling kinetics model is developed to simulate the release and transport of landfill leachate pollutants in a deformable municipal solid waste landfill by taking into account of landfill settlement, seepage of leachate water, hydrolyse of insoluble and degradable organic pollutants in solid phase, biodegradation of soluble and degradable organic pollutants in solid phase and aqueous one, growth of aerobic and anaerobic microorganism, and consumption of dissolved oxygen. The release and transport of organic pollutants and microorganisms in landfills in the process of landfill settlement was simulated by considering no hydraulic effect. Simulation results demonstrated that the interaction between landfill settlement and the release, transport and biodegradation of landfill leachate pollutants was significant. Porosity and saturated hydraulic conductivity were not constants because of the landfill settlement, which affected the release, transport and biodegradation of landfill leachate pollutants, and furthermore acted on the landfill settlement. The simulation results accorded with the practical situation, which preliminarily verified the reliability of the mathematical model and the numerical program in this paper.

  14. A Coupling Kinetics Model for Pollutant Release and Transport in the Process of Landfill Settlement

    PubMed Central

    Zhao, Ying; Xue, Qiang; Liu, Lei

    2012-01-01

    A coupling kinetics model is developed to simulate the release and transport of landfill leachate pollutants in a deformable municipal solid waste landfill by taking into account of landfill settlement, seepage of leachate water, hydrolyse of insoluble and degradable organic pollutants in solid phase, biodegradation of soluble and degradable organic pollutants in solid phase and aqueous one, growth of aerobic and anaerobic microorganism, and consumption of dissolved oxygen. The release and transport of organic pollutants and microorganisms in landfills in the process of landfill settlement was simulated by considering no hydraulic effect. Simulation results demonstrated that the interaction between landfill settlement and the release, transport and biodegradation of landfill leachate pollutants was significant. Porosity and saturated hydraulic conductivity were not constants because of the landfill settlement, which affected the release, transport and biodegradation of landfill leachate pollutants, and furthermore acted on the landfill settlement. The simulation results accorded with the practical situation, which preliminarily verified the reliability of the mathematical model and the numerical program in this paper. PMID:23202755

  15. Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton

    NASA Astrophysics Data System (ADS)

    Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui

    2009-05-01

    This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.

  16. Fission yeast switches mating type by a replication–recombination coupled process

    PubMed Central

    Arcangioli, Benoit; de Lahondès, Raynald

    2000-01-01

    Fission yeast exhibits a homothallic life cycle, in which the mating type of the cell mitotically alternates in a highly regulated fashion. Pedigree analysis of dividing cells has shown that only one of the two sister cells switches mating type. It was shown recently that a site- and strand-specific DNA modification at the mat1 locus precedes mating-type switching. By tracking the fate of mat1 DNA throughout the cell cycle with a PCR assay, we identified a novel DNA intermediate of mating-type switching in S-phase. The time and rate of appearance and disappearance of this DNA intermediate are consistent with a model in which mating-type switching occurs through a replication–recombination coupled pathway. Such a process provides experimental evidence in support of a copy choice recombination model in Schizosaccharomyces pombe mating-type switching and is reminiscent of the sister chromatid recombination used to complete replication in the presence of certain types of DNA damage. PMID:10716938

  17. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae.

    PubMed

    Peng, Yang; Deng, Aosong; Gong, Xun; Li, Xiaomin; Zhang, Yang

    2017-11-01

    Considering the high concentration of mercury in industrial wastewater, such as coal-fired power plants and gold mining wastewater, this research study investigated the coupling process of lipid production and mercury bioremediation using microalgae cells. Chlorella vulgaris modified by biomimetic mineralization. The cultivation was divided in two stages: a natural cultivation for 7days and 5days of Hg(2+) addition (10-100μg/L) for cultivation at different pH values (4-7) after inoculation. Next, the harvested cells were eluted, and lipid was extracted. The fluorescein diacetate (FDA) dye tests demonstrated that the mineralized layer enhanced the biological activity of microalgae cells in Hg(2+) contaminated media. Hg distribution tests showed that the Hg removal capacity of modified cells was increased from 62.85% to 94.74%, and 88.72% of eluted Hg(2+) concentration was observed in modified cells compared to 48.42% of raw cells, implying that more mercury was transferred from lipid and residuals into elutable forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. An approach to modeling coupled thermal-hydraulic-chemical processes in geothermal systems

    USGS Publications Warehouse

    Palguta, Jennifer; Williams, Colin F.; Ingebritsen, Steven E.; Hickman, Stephen H.; Sonnenthal, Eric

    2011-01-01

    Interactions between hydrothermal fluids and rock alter mineralogy, leading to the formation of secondary minerals and potentially significant physical and chemical property changes. Reactive transport simulations are essential for evaluating the coupled processes controlling the geochemical, thermal and hydrological evolution of geothermal systems. The objective of this preliminary investigation is to successfully replicate observations from a series of hydrothermal laboratory experiments [Morrow et al., 2001] using the code TOUGHREACT. The laboratory experiments carried out by Morrow et al. [2001] measure permeability reduction in fractured and intact Westerly granite due to high-temperature fluid flow through core samples. Initial permeability and temperature values used in our simulations reflect these experimental conditions and range from 6.13 × 10−20 to 1.5 × 10−17 m2 and 150 to 300 °C, respectively. The primary mineralogy of the model rock is plagioclase (40 vol.%), K-feldspar (20 vol.%), quartz (30 vol.%), and biotite (10 vol.%). The simulations are constrained by the requirement that permeability, relative mineral abundances, and fluid chemistry agree with experimental observations. In the models, the granite core samples are represented as one-dimensional reaction domains. We find that the mineral abundances, solute concentrations, and permeability evolutions predicted by the models are consistent with those observed in the experiments carried out by Morrow et al. [2001] only if the mineral reactive surface areas decrease with increasing clay mineral abundance. This modeling approach suggests the importance of explicitly incorporating changing mineral surface areas into reactive transport models.

  19. Interface-coupled dissolution-precipitation processes during acidic weathering of multicomponent minerals

    NASA Astrophysics Data System (ADS)

    Ruiz-Agudo, Encarnacion; King, Helen E.; Patiño-López, Luis D.; Putnis, Christine V.; Geisler, Thorsten; Rodriguez-Navarro, Carlos M.; Putnis, Andrew

    2015-04-01

    The chemical weathering of carbonate and silicate minerals on the Earth's surface controls important geochemical processes such as erosion rates and soil formation, ore genesis or climate evolution. The dissolution of most of these minerals is typically incongruent, and results in the formation of surface coatings (altered layers, also known as leached layers). These coatings may significantly affect mineral dissolution rates over geological timescales, and therefore a great deal of research has been conducted on them. However, the mechanism of leached layer formation is a matter of vigorous debate. Here we report on an in situ atomic force microscopy (AFM) and real-time Mach-Zehnder phase-shift interferometry (PSI) study of the dissolution of wollastonite, CaSiO3, and dolomite, CaMg(CO3)2, as an example of surface coating formation during acidic weathering of multicomponent minerals. Our in situ results provide clear direct experimental evidence that leached layers are formed in a tight interface-coupled two-step process: stoichiometric dissolution of the pristine mineral surfaces and subsequent precipitation of a secondary phase (silica in the case of wollastonite, or hydrated magnesium carbonate in the case of dolomite) from a supersaturated boundary layer of fluid in contact with the mineral surface. This occurs despite the bulk solution remaining undersaturated with respect to the secondary phase. The validation of such a mechanism given by the results reported here completely changes the conceptual framework concerning the mechanism of chemical weathering, and differs significantly from the concept of preferential leaching of cations postulated by most currently accepted incongruent dissolution models.

  20. Coupled isotopic and process-based modeling of gaseous nitrogen losses from tropical rain forests

    NASA Astrophysics Data System (ADS)

    Bai, Edith; Houlton, Benjamin Z.

    2009-06-01

    Gaseous nitrogen (N) losses remove fixed N from the biosphere and play an important role in regulating Earth's climate system. Current techniques for measuring gaseous N fluxes are still limited, however, and many uncertainties remain. We used the natural isotopes of N, 15N/14N, to constrain process-based model (DAYCENT, the daily version of CENTURY) estimates of gaseous N emissions from terrestrial ecosystems. The isotope model considers two scenarios. In the first, soil 15N/14N is a linear function of a fraction of gaseous N losses. In the second, underexpression of denitrification's isotope effect is considered, and soil 15N/14N is determined by both the fraction of gaseous losses and the proportion of NO3- consumed locally by denitrification. We examined the coupled process- and isotope-based model along two Hawaiian rain forest gradients which span a range of tropical climates, soil biogeochemical ages, and ecosystem 15N/14N. Under most conditions (mean annual precipitation (MAP) <4050 mm), modeled soil 15N/14N ratios agreed well with measurements (r2 = 0.89), consistent with full expression of denitrification's isotope effect (scenario 1). In very wet sites (MAP ≥ 4050 mm), locally complete NO3- consumption appears to lower the isotopic expression of denitrification at ecosystem levels, resulting in soil 15N/14N ratios that approach those of the N inputs (i.e., scenario 2). Replacing modeled gaseous N emissions with field-based measures of oxidized N, gas fluxes (NOx + N2O) resulted in consistently lower estimates of soil 15N/14N ratios across the forests. This points to a missing gas N loss term (i.e., N2), inadequate coverage of spatial and temporal heterogeneity by empirical measures, or both. These results demonstrate the potential for soil N isotopes to constrain N gas fluxes at large geographic scales, providing a quantitative tracer of gaseous N emissions from land.

  1. Magnetosphere-Ionosphere Coupling Processes in the Ionospheric Trough Region During Substorms

    NASA Astrophysics Data System (ADS)

    Zou, S.; Moldwin, M.; Nicolls, M. J.; Ridley, A. J.; Coster, A. J.; Yizengaw, E.; Lyons, L. R.; Donovan, E.

    2013-12-01

    The ionospheric troughs are regions of remarkable electron density depression at the subauroral and auroral latitudes, and are categorized into the mid-latitude trough or high-latitude trough, depending on their relative location to the auroral oval. Substorms are one fundamental element of geomagnetic activity, during which structured field-aligned currents (FACs) and convection flows develop in the subauroral and auroral ionosphere. The auroral/trough region is expected to experience severe electron density variations during substorms. Accurate specification of the trough dynamics during substorms and understanding its relationship with the structured FACs and convection flows are of important practical purpose, including providing observational foundations for assessing the attendant impact on navigation and communication. In addition, troughs are important since they map to magnetospheric boundaries allowing the remote sensing of magnetosphere-ionosphere coupling processes. In this talk, we discuss the dynamics of the mid-latitude and high-latitude troughs during substorms based on multi-instrument observations. Using GPS total electron content (TEC) data, we characterize the location and width of the mid-latitude trough through the substorm lifecycle and compare them with existing trough empirical models. Using a combination of incoherent scattering radar (ISR), GPS TEC, auroral imager and a data assimilative model, we investigate the relationship between the high-latitude trough and FACs as well as convection flows. The high-latitude trough is found to be collocated with a counter-clockwise convection flow vortex east of the Harang reversal region, and downward FACs as part of the substorm current system are suggested to be responsible for the high-latitude trough formation. In addition, complex ionospheric electron temperature within the high-latitude trough is found, i.e., increase in the E region while decrease in the F region. We discuss possible

  2. The Role of Ionosphere/Thermosphere Coupling Processes in the Escape of Species from Mars

    NASA Astrophysics Data System (ADS)

    Fox, J. L.; Bougher, S. W.

    2004-12-01

    We discuss coupled ionosphere/thermosphere models of Mars and implications for the photochemical escape processes of the atomic species O, C and N. Escape also occurs by ion outflow, and the relative rates of ion loss are determined by ion-neutral chemistry. The escape flux of ions has been computed by a number of investigators, including Ma et al. and S. Brecht, and some measurements are available from the Phobos spacecraft. The relative escape rates of ions depend on the composition of the ionosphere, which is determined by ion-neutral chemistry. Photochemical escape of atoms often occurs by processes that involves ions, such as dissociative recombination of O2+, N2+, CO+, and NO+, which yields fragments of various energies, many of which exceed the escape energy for Mars. Ions other than N2+ are formed mostly or partially by ion-molecule reactions. Except for NO+, the ions may be destroyed by ion-molecule reactions also. The ratio of ion-molecule reactions to dissociative recombination depends on the presence or absence of neutral species with which the ions can react. At high altitudes, the densities of neutral species is smaller than at lower altitudes. Therefore, above the ``exobase", dissociative recombination may be more important. Since many ions react with H2, its density profile is important in determining the photochemical escape of heavy ions. Earlier in the history of Mars, the atmosphere may have been more reducing. A larger abundance of H2 would decrease the densities of O+, N2+, CO+, and CO2+, which react with H2. We model the ionosphere and photochemical escape mechanisms for the higher solar fluxes and more reducing atmosphere of early Mars.

  3. Scaling of coupled dilatancy-diffusion processes in space and time

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Meredith, P. G.; Brantut, N.; Heap, M.

    2012-04-01

    Coupled dilatancy-diffusion processes resulting from microscopically brittle damage due to precursory cracking have been observed in the laboratory and suggested as a mechanism for earthquake precursors. One reason precursors have proven elusive may be the scaling in space: recent geodetic and seismic data placing strong limits on the spatial extent of the nucleation zone for recent earthquakes. Another may be the scaling in time: recent laboratory results on axi-symmetric samples show both a systematic decrease in circumferential extensional strain at failure and a delayed and a sharper acceleration of acoustic emission event rate as strain rate is decreased. Here we examine the scaling of such processes in time from laboratory to field conditions using brittle creep (constant stress loading) to failure tests, in an attempt to bridge part of the strain rate gap to natural conditions, and discuss the implications for forecasting the failure time. Dilatancy rate is strongly correlated to strain rate, and decreases to zero in the steady-rate creep phase at strain rates around 10-9 s-1 for a basalt from Mount Etna. The data are well described by a creep model based on the linear superposition of transient (decelerating) and accelerating micro-crack growth due to stress corrosion. The model produces good fits to the failure time in retrospect using the accelerating acoustic emission event rate, but in prospective tests on synthetic data with the same properties we find failure-time forecasting is subject to systematic epistemic and aleatory uncertainties that degrade predictability. The next stage is to use the technology developed to attempt failure forecasting in real time, using live streamed data and a public web-based portal to quantify the prospective forecast quality under such controlled laboratory conditions.

  4. Characterizing hydrological processes at the ecological site scale: Coupling rainfall simulation with surface geophysical measurements

    NASA Astrophysics Data System (ADS)

    Carey, A. M.; Paige, G. B.; Carr, B.; Holbrook, W. S.; Miller, S. N.; Peters, M. P.

    2016-12-01

    Ecological sites (ES), hillslope scale soil-vegetation complexes, provide a useful framework for studying complex ecohydrologic processes of rangelands for the improvement of resource management. High-quality hydrologic field investigations are needed to quantitatively link ES characteristics to hydrologic function. Geophysical tools are useful in this context because they provide valuable information about the subsurface at large spatial extents. We conducted 20 field experiments integrating time-lapse electrical resistivity tomography (ERT) and variable intensity rainfall simulation on hillslope plots at five different ESs within the Upper Crow Creek Watershed in southeastern Wyoming. Surface runoff was measured using a pre-calibrated flume. Infiltration information from the rainfall simulator and site specific resistivity-water content relationships coupled with the ERT datasets were used to track the wetting front through time. First order constraints on subsurface structure were made at each site using ERT, seismic refraction and ground penetrating radar. Sites ranged from infiltrating 100% of the applied rainfall to converting over 40% of the rainfall into surface runoff. ANCOVA results indicated significant differences in the rate of the wetting front progression, ranging from 0.346 m min-1/2 for sites with a subsurface dominated by saprolitic material to 0.156 m min-1/2 for sites with a well-developed soil profile. There was broad agreement in subsurface structure between the geophysical methods with GPR typically providing the most detail. Joint interpretation of the geophysics showed that subsurface features such as granite corestones and layers with high clay content had a large effect on the infiltration process. Linking surface information from the rainfall simulator with subsurface information provided by the geophysics, we can begin to discern the characteristics that distinguish the hydrologic response of diverse ESs.

  5. Incorporating Ecosystem Processes Controlling Carbon Balance Into Models of Coupled Human-Natural Systems

    NASA Astrophysics Data System (ADS)

    Currie, W.; Brown, D. G.; Brunner, A.; Fouladbash, L.; Hadzick, Z.; Hutchins, M.; Kiger, S. E.; Makino, Y.; Nassauer, J. I.; Robinson, D. T.; Riolo, R. L.; Sun, S.

    2012-12-01

    A key element in the study of coupled human-natural systems is the interactions of human populations with vegetation and soils. In human-dominated landscapes, vegetation production and change results from a combination of ecological processes and human decision-making and behavior. Vegetation is often dramatically altered, whether to produce food for humans and livestock, to harvest fiber for construction and other materials, to harvest fuel wood or feedstock for biofuels, or simply for cultural preferences as in the case of residential lawns with sparse trees in the exurban landscape. This alteration of vegetation and its management has a substantial impact on the landscape carbon balance. Models can be used to simulate scenarios in human-natural systems and to examine the integration of processes that determine future trajectories of carbon balance. However, most models of human-natural systems include little integration of the human alteration of vegetation with the ecosystem processes that regulate carbon balance. Here we illustrate a few case studies of pilot-study models that strive for this integration from our research across various types of landscapes. We focus greater detail on a fully developed research model linked to a field study of vegetation and soils in the exurban residential landscape of Southeastern Michigan, USA. The field study characterized vegetation and soil carbon storage in 5 types of ecological zones. Field-observed carbon storage in the vegetation in these zones ranged widely, from 150 g C/m2 in turfgrass zones, to 6,000 g C/m2 in zones defined as turfgrass with sparse woody vegetation, to 16,000 g C/m2 in a zone defined as dense trees and shrubs. Use of these zones facilitated the scaling of carbon pools to the landscape, where the areal mixtures of zone types had a significant impact on landscape C storage. Use of these zones also facilitated the use of the ecosystem process model Biome-BGC to simulate C trajectories and also

  6. Technical Note: Coupling of chemical processes with the Modular Earth Submodel System (MESSy) submodel TRACER

    NASA Astrophysics Data System (ADS)

    Jöckel, P.; Kerkweg, A.; Buchholz-Dietsch, J.; Tost, H.; Sander, R.; Pozzer, A.

    2008-03-01

    The implementation of processes related to chemistry into Earth System Models and their coupling within such systems requires the consistent description of the chemical species involved. We provide a tool (written in Fortran95) to structure and manage information about constituents, hereinafter referred to as tracers, namely the Modular Earth Submodel System (MESSy) generic (i.e., infrastructure) submodel TRACER. With TRACER it is possible to define a multitude of tracer sets, depending on the spatio-temporal representation (i.e., the grid structure) of the model. The required information about a specific chemical species is split into the static meta-information about the characteristics of the species, and its (generally in time and space variable) abundance in the corresponding representation. TRACER moreover includes two submodels. One is TRACER_FAMILY, an implementation of the tracer family concept. It distinguishes between two types: type-1 families are usually applied to handle strongly related tracers (e.g., fast equilibrating species) for a specific process (e.g., advection). In contrast to this, type-2 families are applied for tagging techniques. Tagging means the artificial decomposition of one or more species into parts, which are additionally labelled (e.g., by the region of their primary emission) and then processed as the species itself. The type-2 family concept is designed to conserve the linear relationship between the family and its members. The second submodel is TRACER_PDEF, which corrects and budgets numerical negative overshoots that arise in many process implementations due to the numerical limitations (e.g., rounding errors). The submodel therefore guarantees the positive definiteness of the tracers and stabilises the integration scheme. As a by-product, it further provides a global tracer mass diagnostic. Last but not least, we present the submodel PTRAC, which allows the definition of tracers via a Fortran95 namelist, as a complement to

  7. Exploring Couples' Processes of Change in the Context of SASA!, a Violence Against Women and HIV Prevention Intervention in Uganda.

    PubMed

    Starmann, Elizabeth; Collumbien, Martine; Kyegombe, Nambusi; Devries, Karen; Michau, Lori; Musuya, Tina; Watts, Charlotte; Heise, Lori

    2017-02-01

    There is now a growing body of research indicating that prevention interventions can reduce intimate partner violence (IPV); much less is known, however, about how couples exposed to these interventions experience the change process, particularly in low-income countries. Understanding the dynamic process that brings about the cessation of IPV is essential for understanding how interventions work (or don't) to reduce IPV. This study aimed to provide a better understanding of how couples' involvement with SASA!-a violence against women and HIV-related community mobilisation intervention developed by Raising Voices in Uganda-influenced processes of change in relationships. Qualitative data were collected from each partner in separate in-depth interviews following the intervention. Dyadic analysis was conducted using framework analysis methods. Study findings suggest that engagement with SASA! contributed to varied experiences and degrees of change at the individual and relationship levels. Reflection around healthy relationships and communication skills learned through SASA! activities or community activists led to more positive interaction among many couples, which reduced conflict and IPV. This nurtured a growing trust and respect between many partners, facilitating change in longstanding conflicts and generating greater intimacy and love as well as increased partnership among couples to manage economic challenges. This study draws attention to the value of researching and working with both women, men and couples to prevent IPV and suggests IPV prevention interventions may benefit from the inclusion of relationship skills building and support within the context of community mobilisation interventions.

  8. Higher-Order Equation-of-Motion Coupled-Cluster Methods for Ionization Processes

    SciTech Connect

    Kamiya, Muneaki; Hirata, So

    2006-08-21

    Compact algebraic equations defining the equation-of-motion coupled-cluster (EOM-CC) methods for ionization potentials (IP-EOM-CC) have been derived and computer implemented by virtue of a symbolic algebra system largely automating these processes. Models with connected cluster excitation operators truncated after double, triple, or quadruple level and with linear ionization operators truncated after two-hole-one-particle (2h1p), three-hole-two-particle (3h2p), or four-hole-three-particle (4h3p) level (abbreviated as IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively) have been realized into parallel algorithms taking advantage of spin, spatial, and permutation symmetries with optimal size dependence of the computational costs. They are based on spin-orbital formalisms and can describe both {alpha} and {beta} and ionizations from open-shell (doublet, triplet, etc.) reference states into ionized states with various spin magnetic quantum numbers. The application of these methods to Koopmans and satellite ionizations of N{sub 2} and CO (with the ambiguity due to finite basis sets eliminated by extrapolation) has shown that IP-EOM-CCSD frequently accounts for orbital relaxation inadequately and displays errors exceeding a couple of eV. However, these errors can be systematically reduced to tenths or even hundredths of an eV by IP-EOM-CCSDT or CCSDTQ. Comparison of spectroscopic parameters of the FH{sup +} and NH{sup +} radicals between IP-EOM-CC and experiments has also underscored the importance of higher-order IP-EOM-CC treatments. For instance, the harmonic frequencies of the {tilde A} {sup 2}{Sigma}{sup -} state of NH{sup +}+ are predicted to be 1285, 1723, and 1705 cm{sup -1} by IP-EOM-CCSD, CCSDT, and CCSDTQ, respectively, as compared to the observed value of 1707 cm{sup -1}. The small adiabatic energy separation (observed 0.04 eV) between the {tilde X} {sup 2}II and {tilde a} {sup 4}{sigma}{sup -} states of NH{sup +} also requires IP-EOM-CCSDTQ for a quantitative

  9. Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid release.

    PubMed Central

    Cotman, C W; Haycock, J W; White, W F

    1976-01-01

    linearly with the log. [Ca2+]0. The slope for noradrenaline release was greater than that for GABA release. 10. Stimulus-secretion coupling in brain is suggested to be regulated at the level of a voltage dependent calcium permeation mechanism. However, basic differences in the interaction of calcium with the release process may exist between the noradrenaline and GABA systems. PMID:765446

  10. Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid release.

    PubMed

    Cotman, C W; Haycock, J W; White, W F

    1976-01-01

    linearly with the log. [Ca2+]0. The slope for noradrenaline release was greater than that for GABA release. 10. Stimulus-secretion coupling in brain is suggested to be regulated at the level of a voltage dependent calcium permeation mechanism. However, basic differences in the interaction of calcium with the release process may exist between the noradrenaline and GABA systems.

  11. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2016-08-05

    JPAnalytics LLC CC: DCMA Boston DTIC Director, NRL Progress Report #7 Coupled Research in Ocean Acoustics and Signal Processing for the Next...under wind-driven seas: Experiments in an ocean simulator”, at 170th Meeting of the Acoustical Society of America. Jacksonville, FL, Nov. 2-6, 2015. J

  12. Efficient production of acetone-butanol-ethanol (ABE) from cassava by a fermentation-pervaporation coupled process.

    PubMed

    Li, Jing; Chen, Xiangrong; Qi, Benkun; Luo, Jianquan; Zhang, Yuming; Su, Yi; Wan, Yinhua

    2014-10-01

    Production of acetone-butanol-ethanol (ABE) from cassava was investigated with a fermentation-pervaporation (PV) coupled process. ABE products were in situ removed from fermentation broth to alleviate the toxicity of solvent to the Clostridium acetobutylicum DP217. Compared to the batch fermentation without PV, glucose consumption rate and solvent productivity increased by 15% and 21%, respectively, in batch fermentation-PV coupled process, while in continuous fermentation-PV coupled process running for 304 h, the substrate consumption rate, solvent productivity and yield increased by 58%, 81% and 15%, reaching 2.02 g/Lh, 0.76 g/Lh and 0.38 g/g, respectively. Silicalite-1 filled polydimethylsiloxane (PDMS)/polyacrylonitrile (PAN) membrane modules ensured media recycle without significant fouling, steadily generating a highly concentrated ABE solution containing 201.8 g/L ABE with 122.4 g/L butanol. After phase separation, a final product containing 574.3g/L ABE with 501.1g/L butanol was obtained. Therefore, the fermentation-PV coupled process has the potential to decrease the cost in ABE production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Conceptual study of the coupling of a biorefinery process for hydrothermal liquefaction of microalgae with a concentrating solar power plant

    NASA Astrophysics Data System (ADS)

    Giaconia, Alberto; Turchetti, Luca; Ienna, Antonio; Mazzei, Domenico; Schiavo, Benedetto; Scialdone, Onofrio; Caputo, Giampaolo; Galia, Alessandro

    2017-06-01

    A conceptual analysis of the coupling of a concentrating solar power plant with a chemical process for hydrothermal liquefaction (HTL) of microalgae to biocrude was performed. The two plants were considered coupled by molten salt recirculation that granted energetic supply to the chemical process. Preliminary estimations have been done considering a solar field constituted by 3 linear parabolic solar collectors rows, each 200 m long, using a ternary molten salts mixture as heat transfer fluid, and a chemical plant sized to process 10 kT/y of microalgae. Under adopted conditions, we have estimated a minimum selling prize of the biocrude that is similar to that achieved in non-solar HTL processes.

  14. Life cycle assessment of a coupled solar photocatalytic-biological process for wastewater treatment.

    PubMed

    Muñoz, Ivan; Peral, José; Ayllón, José Antonio; Malato, Sixto; Passarinho, Paula; Domènech, Xavier

    2006-11-01

    A comparative life cycle assessment (LCA) of two solar-driven advanced oxidation processes, namely heterogeneous semiconductor photocatalysis and homogeneous photo-Fenton, both coupled to biological treatment, is carried out in order to identify the environmentally preferable alternative to treat industrial wastewaters containing non-biodegradable priority hazardous substances. The study is based on solar pilot plant tests using alpha-methyl-phenylglycine as a target substance. The LCA study is based on the experimental results obtained, along with data from an industrial-scale plant. The system under study includes production of the plant infrastructure, chemicals, electricity, transport of all these materials to the plant site, management of the spent catalyst by transport and landfilling, as well as treatment of the biodegradable effluent obtained in a conventional municipal wastewater treatment plant, and excess sludge treatment by incineration. Nine environmental impact categories are included in the LCA: global warming, ozone depletion, human toxicity, freshwater aquatic toxicity, photochemical ozone formation, acidification, eutrophication, energy consumption, and land use. The experimental results obtained in the pilot plant show that solar photo-Fenton is able to obtain a biodegradable effluent much faster than solar heterogeneous photocatalysis, implying that the latter would require a much larger solar collector area in an industrial application. The results of the LCA show that, an industrial wastewater treatment plant based on heterogeneous photocatalysis involves a higher environmental impact than the photo-Fenton alternative, which displays impact scores 80-90% lower in most impact categories assessed. These results are mainly due to the larger size of the solar collector field needed by the plant.

  15. Coupled Environmental Processes in the Mojave Desert and Implications for ET Covers as Stable Landforms

    SciTech Connect

    D. Shafer; M. Y oung; S. Zitzer; E. McDonald; T. Caldwell

    2006-01-18

    Monolayer evapotranspiration (ET) covers are the baseline method for closure of disposal sites for low-level radioactive waste (LLW), mixed LLW, and transuranic (TRU) waste at the Nevada Test Site (NTS). The regulatory timeline is typically 1,000 years for LLW and 10,000 years for TRU waste. Covers for such waste have different technical considerations than those with shorter timelines because they are subject to environmental change for longer periods of time, and because the environmental processes are often coupled. To evaluate these changes, four analog sites (approximately 30, 1,000 to 2,000, 7,000 to 12,500, and 125,000 years in age) on the NTS were analyzed to address the early post-institutional control period (the youngest site), the 1,000-year compliance period for disposal of LLW, and the 10,000-year period for TRU waste. Tests included soil texture, structure, and morphology; surface soil infiltration and hydraulic conductivity; vegetation and faunal surveys; and literature reviews. Separate measurements were made in plant undercanopy and intercanopy areas. The results showed a progressive increase in silt and clay content of surface soils with age. Changes in soil texture and structure led to a fivefold decline in saturated hydraulic conductivity in intercanopy areas, but no change in undercanopies, which were subject to bioturbation. These changes may have been responsible for the reduction in total plant cover, most dramatically in intercanopy areas, primarily because more precipitation either runs off the site or is held nearer to the surface where plant roots are less common. The results suggest that covers may evolve over longer timeframes to stable landforms that minimize the need for active maintenance.

  16. Coupling of Cloud Processes with the Large-Scale Atmospheric Circulation in Extratropical Cyclonic Systems

    NASA Astrophysics Data System (ADS)

    Wong, S.; Naud, C. M.; Kahn, B. H.; Fetzer, E. J.; Wang, T.

    2016-12-01

    Different sectors in extratropical cyclonic systems (ETCs) exhibit a wide range of large-scale dynamical conditions and provide an excellent test bed for studying coupling between cloud processes and large-scale circulation. Large-scale atmospheric water budgets diagnosed from the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) and cloud properties (cloud top pressure and optical depth, cloud effective radii and thermodynamic phases) from both the Moderate Resolution Imaging Spectroradiometer (MODIS) and Atmospheric Infrared Sounder (AIRS) will be composited around Northern Hemispheric ETCs over ocean according to their stages of development. Flexible coordinate systems are used to construct the composites so that the cyclone center is at the origin and both surface warm and cold fronts are in fixed directions. Cloud structures represented by cloud top pressure versus cloud optical depth joint histograms as well as cloud top effective radii are connected to atmospheric water budgets related to large-scale convergence and moisture advection for different sectors of ETCs in the varying stages of their development. In this way, cloud macroscopic and microscopic properties are linked together with atmospheric water budgets to large-scale dynamical conditions in different sectors of ETCs, including the warm conveyer belts across the warm fronts, the warm sectors, cold frontal rain bands, and the post-frontal sector. As a feedback mechanism, latent heat release in the warm conveyer belts plays an essential role in ETC propagation and development by inducing positive anomalies in low-level vorticity tendencies in the regime of strong large-scale convergence and moisture advection.

  17. Studying coupled hydrological and micro-biological processes by means of tracer injections and mathematical models

    NASA Astrophysics Data System (ADS)

    Worman, A.; Kjellin, J. P.; Lindahl, A.; Johansson, H.

    2005-05-01

    To throw light on coupled hydrological, chemical and microbiological processes in treatment wetlands, this study uses both radioactive water and reactive tracers. A tracer mixture consisting of tritiated water, P-32 in the form of PO4- and N-15 in the form of N2O was injected to the 2.6 hectare large Ekeby wetland, Sweden. From the breakthrough curves of tritium, the mean residence time of water in pond 1 can be estimated to be about 3 to 3.5 days. The total injected activity of phosphorus was 17.98 GBq and about 13.73 GBq was recovered at the outlet during the investigation period ending 10 days and 16 hours after the start of the injection. This implies that 24% of the phosphate solution was removed in the November - December period in which the experiment was performed. The total injected amount of N-15 was 42.1 grams and 29.6 grams was retained at the effluent. This means that 30% of the nitrogen was either retained in the wetland or removed due to denitrification. An analysis of regular monitoring data shows that the annual removal rate in the entire wetland (each flow line passes two ponds in series) is about 50% for total phosphorus and 25% for total nitrogen. Probably, the most important mechanism for this removal is adsorption onto particulate matter and deposition. Analyses of vegetation material indicate that a certain (minor) fraction was adsorbed to submersed and emerging macrophytes, like Elodera Canadensis, Thypa sp. (Cattail) and Glyceria sp. (Manna grass). A 2D mathematical model for both water flow and solute transport could explain the N-transport through the wetland. The model accounts for the rate-limited exchange with bed sediments and denitrification in the water and bed sediment. Independent batch tests indicate a particularly high microbiological activity in the bed sediments. The rate-limited exchange with the bed limits also the denitrification capacity of the wetland.

  18. Mechanism of the cathodic process coupled to the oxidation of iron monosulfide by dissolved oxygen.

    PubMed

    Duinea, Mădălina I; Costas, Andreea; Baibarac, Mihaela; Chiriță, Paul

    2016-04-01

    This study investigated the mechanism of iron monosulfide (FeS) oxidation by dissolved oxygen (O2(aq)). Synthetic FeS was reacted with O2(aq) for 6days and at 25°C. We have characterized the initial and reacted FeS surface using Scanning Electron Microscopy coupled with Energy Dispersive X-ray (SEM/EDX) analysis, Raman spectroscopy and Fourier transform infrared spectroscopy (FTIR). It was found that during the aqueous oxidation of FeS new solid phases (disulfide, polysulfide, elemental sulfur, ferric oxyhydroxides and Fe3O4) develop on the mineral surface. The results of potentiodynamic polarization experiments show that after 2days of FeS electrode immersion in oxygen bearing solution (OBS) at initial pH 5.1 and 25°C the modulus of cathodic Tafel slopes dramatically decreases, from 393mV/dec to 86mV/dec. This decrease is ascribed to the change of the mechanism of electron transfer from cathodic sites to O2 (mechanism of cathodic process). The oxidation current densities (jox) indicate that mineral oxidative dissolution is not inhibited by pH increase up to 6.7. Another conclusion, which emerges from the analysis of jox, is that the dissolved Fe(3+) does not intermediate the aqueous oxidation of FeS. The results of electrochemical impedance spectroscopy (EIS) show that after 2days of contact between electrode and OBS the properties of FeS/water interface change. From the analysis of the EIS, FTIR spectroscopy, Raman spectroscopy and SEM/EDX data we can conclude that the change of FeS/water interface properties accompanies the formation of new solid phases on the mineral surface. The new characteristics of the surface layer and FeS/water interface do not cause the inhibition of mineral oxidation.

  19. Secure base processes in couples: daily associations between support experiences and attachment security.

    PubMed

    Davila, Joanne; Kashy, Deborah A

    2009-02-01

    The authors examined secure base functioning in couples by studying the association between daily social support experiences and attachment security in a 14-day daily experiences study of 114 heterosexual dating couples. Both members of each couple reported on daily relationship-specific attachment security and support sought, provided, and received, as well as felt support. Within- and cross-partner associations were examined, as were reciprocal associations between support and security. Results of over-time Actor-Partner Interdependence Model analyses indicated that security (in the form of high comfort with intimacy and low anxiety about abandonment) was associated with the most adaptive support experiences, whereas high anxiety about abandonment was associated with the least, and particularly with a lack of sensitive caregiving. Implications for understanding secure base dynamics in couples are discussed and guidelines for where to intervene as well as what to target in relationship distress prevention programs are provided.

  20. Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems

    DTIC Science & Technology

    2015-08-09

    Coupled Research in Ocean Acoustics and Signal Processing for the Next Generation of Underwater Acoustic Communication Systems 5a. CONTRACT NUMBER 5b...Processing for the Next Generation of Underwater Acoustic Communication Systems Principal Investigator’s Name: Dr. James Preisig Period Covered By...correlation structure of received communications signals after they have been converted to the frequency domain via Fourier Transforms as de- scribed in

  1. Evaluating Physical Processes during the Freeze-Up Season using a Coupled Sea Ice-Ocean-Atmosphere Forecast Model

    NASA Astrophysics Data System (ADS)

    Solomon, Amy; Intrieri, Janet; Persson, Ola; Cox, Christopher; Hughes, Mimi; Grachev, Andrey; Capotondi, Antonietta; de Boer, Gijs

    2017-04-01

    Improved sea ice forecasting must be based on improved model representation of coupled system processes that impact the sea ice thermodynamic and dynamic state. Pertinent coupled system processes remain uncertain and include surface energy fluxes, clouds, precipitation, boundary layer structure, momentum transfer and sea-ice dynamics, interactions between large-scale circulation and local processes, and others. In this presentation, we use a fully-coupled ocean-sea ice-atmosphere forecast system as a testbed for investigating biases in 0-10 day forecasts, with a focus on processes that determine fluxes at the ocean-ice-air interface. Model results and validation examples from an experimental, weather-scale, coupled ice-ocean-atmosphere model for 2015 and 2016 fall, sea ice freeze-up season will be presented. The model, a limited-area, fully-coupled atmosphere-ice-ocean model (named, RASM-ESRL), was developed from the larger-scale Regional Arctic System Model (RASM) architecture. RASM-ESRL includes the Weather Research and Forecasting (WRF) atmospheric model, Parallel Ocean Program (POP2) model, Community Ice Model (CICE5) and the NCAR Community Land Model. The domain is limited to the Arctic and all components are run with 10 km horizontal resolution. Components are coupled using a regionalized version of the CESM flux coupler (CPL7), which includes modifications important for resolving the sea ice pack's inertial response to transient (i.e. weather) events. The model is initialized with a GFS atmosphere, satellite-derived sea ice analyses using AMSR-2, and forced by 3-hourly GFS forecasts at the lateral boundaries. Experimental forecasts were run daily from late-July through mid-November in 2015 and 2016. These daily forecasts have been compared with observations of surface fluxes and vertical atmospheric profiles at the International Arctic Systems for Observing the Atmosphere (IASOA) stations, and with atmospheric and oceanic observations obtained within the sea

  2. Modeling Coupled Processes for Multiphase Fluid Flow in Mechanically Deforming Faults

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Pike, D. Q.

    2011-12-01

    Modeling of coupled hydrological-mechanical processes in fault zones is critical for understanding the long-term behavior of fluids within the shallow crust. Here we utilize a previously developed cellular-automata (CA) model to define the evolution of permeability within a 2-D fault zone under compressive stress. At each time step, the CA model calculates the increase in fluid pressure within the fault at every grid cell. Pressure surpassing a critical threshold (e.g., lithostatic stress) causes a rupture in that cell, and pressure is then redistributed across the neighboring cells. The rupture can cascade through the spatial domain and continue across multiple time steps. Stress continues to increase and the size and location of rupture events are recorded until a percolating backbone of ruptured cells exists across the fault. Previous applications of this model consider uncorrelated random fields for the compressibility of the fault material. The prior focus on uncorrelated property fields is consistent with development of a number of statistical physics models including percolation processes and fracture propagation. However, geologic materials typically express spatial correlation and this can have a significant impact on the results of the pressure and permeability distributions. We model correlation of the fault material compressibility as a multiGaussian random field with a correlation length defined as the full-width at half maximum (FWHM) of the kernel used to create the field. The FWHM is varied from < 0.001 to approximately 0.47 of the domain size. The addition of spatial correlation to the compressibility significantly alters the model results including: 1) Accumulation of larger amounts of strain prior to the first rupture event; 2) Initiation of the percolating backbone at lower amounts of cumulative strain; 3) Changes in the event size distribution to a combined power-law and exponential distribution with a smaller power; and 4) Evolution of the

  3. The Seismogenic Coupling Zone in Central Chile - Amphibious Experiments SPOC (Subduction Processes Off Chile)

    NASA Astrophysics Data System (ADS)

    Krawczyk, C. M.; Stiller, M.; Mechie, J.; Lueth, S.; Wigger, P.; Oncken, O.; Reichert, C.; Bataille, K.

    2003-12-01

    Nearly all interplate megathrust earthquakes occur in the seismogenic coupling zone between converging plates. In the area of the 1960 Chile earthquake (Mw = 9.5), we aim at a quantitative understanding of the seismicity and its relation to processes operating at depth and at the surface. As a first step, the offshore experiment SPOC with RV SONNE was combined with an onshore-offshore, active-passive seismic experiment between 36\\deg and 39\\deg S, crossing the rupture area of the 1960 Chile earthquake. The campaign comprised: (1) a 2-D wide-angle component recording chemical shots and airgun pulses along three consecutive E-W onshore profiles; (2) a seismic reflection experiment in the onshore-offshore transition; and (3) a 3-D component which recorded both active and passive sources. Offshore, the upper plate is split into many segments with pronounced forearc basins and a narrow accretionary wedge. A thick subduction channel seems to cause a non-frontally accreting subduction mode. Along the westernmost part of the southernmost E-W refraction seismic line, the profile spread of the active reflection seismic survey at 38\\deg 15' S was 54 km long, and also recorded the airgun shots of the marine profile with the first 18 km of its spread. Different mainly eastward dipping reflection bands are observed. Between 5-25 km depth the internal structure of the Palaeozoic accretionary wedge is described. Reflections between 16-42 km correlate with Wadati-Benioff seismicity and are interpreted as imaging the top of the downgoing plate. In the central part of the profile a break in reflectivity located below the axis of the coastal cordillera more or less coincides with the intersection between the oceanic plate and the continental Moho. This break in reflectivity also approximately correlates with the downdip end of the seismogenic plate interface as defined by geodetic modelling. These new seismic data provide the geometry of the subduction zone in the area, and hence

  4. Subduction Processes Off Chile (SPOC): Imaging of the seismogenic coupling zone

    NASA Astrophysics Data System (ADS)

    Stiller, M.; Krawczyk, C. M.; Mechie, J.; Lüth, S.; Spoc Research Group

    2003-04-01

    The multi-disciplinary offshore project SPOC (Subduction Processes Off Chile), located between 36° and 39°S, was complemented by an onshore extension consisting of different active and passive seismic experiments, with the seismogenic coupling zone at 20-40 km depth as the major target (see Krawczyk et al., Lüth et al., this volume). Here, we report the results from a near-vertical seismic reflection land component which, in addition to the larger-scale 2D/3D wide-angle land experiments, was designed as a pilot reflection study to image the subduction zone between the South American and the Nazca Plate with high resolution. Three receiver spread set-ups (180 geophone groups along 18 km length each) recording ten explosive shots within the 54 km long active spread as well as two far-offset shots in the Pacific Ocean and two far-offset shots E of the spread, resulted in an 87 km long E-W trending 2D CDP reflection line. This line is complemented offshore by a wide-angle section constructed from the airgun pulses shot in prolongation of the land profile. The combined CDP-section images the offshore-onshore transition zone along ~38.2°S, extending from 18 km W of the coast to the Longitudinal Valley in the E, down to a depth of more than 60 km and crossing the rupture area of the Chile 1960 earthquake with magnitude 9.5. The depth-migrated seismic image shows several (at least three) strong ~20° E-dipping reflection bands at different crustal levels. The deepest of these bands coincides with the top of the downgoing plate as defined by the Wadati-Benioff seismicity and as confirmed by the velocity structure derived from the simultaneous wide-angle profiling. Two other horizontal reflection bands at ~8 and ~15 km depth can also be correlated with modelled moderate wide-angle velocity steps in the continental plate. These bands are interpreted to describe the internal structure of the Palaeozoic accretionary wedge in the region. In the central part of the profile, a

  5. Oxygen Sensitivity of Anammox and Coupled N-Cycle Processes in Oxygen Minimum Zones

    PubMed Central

    Kalvelage, Tim; Jensen, Marlene M.; Contreras, Sergio; Revsbech, Niels Peter; Lam, Phyllis; Günter, Marcel; LaRoche, Julie; Lavik, Gaute; Kuypers, Marcel M. M.

    2011-01-01

    Nutrient measurements indicate that 30–50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ∼0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O2) on anammox, NH3 oxidation and NO3− reduction in 15N-labeling experiments with varying O2 concentrations (0–25 µmol L−1) in the Namibian and Peruvian OMZs. Our results show that O2 is a major controlling factor for anammox activity in OMZ waters. Based on our O2 assays we estimate the upper limit for anammox to be ∼20 µmol L−1. In contrast, NH3 oxidation to NO2− and NO3− reduction to NO2− as the main NH4+ and NO2− sources for anammox were only moderately affected by changing O2 concentrations. Intriguingly, aerobic NH3 oxidation was active at non-detectable concentrations of O2, while anaerobic NO3− reduction was fully active up to at least 25 µmol L−1 O2. Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O2 concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O2-sensitivity of anammox itself, and not by any effects of O2 on the tightly coupled pathways of aerobic NH3 oxidation and NO3− reduction. With anammox bacteria in the marine environment being active at O2 levels ∼20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O2 sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling. PMID:22216239

  6. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones.

    PubMed

    Kalvelage, Tim; Jensen, Marlene M; Contreras, Sergio; Revsbech, Niels Peter; Lam, Phyllis; Günter, Marcel; LaRoche, Julie; Lavik, Gaute; Kuypers, Marcel M M

    2011-01-01

    Nutrient measurements indicate that 30-50% of the total nitrogen (N) loss in the ocean occurs in oxygen minimum zones (OMZs). This pelagic N-removal takes place within only ~0.1% of the ocean volume, hence moderate variations in the extent of OMZs due to global warming may have a large impact on the global N-cycle. We examined the effect of oxygen (O(2)) on anammox, NH(3) oxidation and NO(3)(-) reduction in (15)N-labeling experiments with varying O(2) concentrations (0-25 µmol L(-1)) in the Namibian and Peruvian OMZs. Our results show that O(2) is a major controlling factor for anammox activity in OMZ waters. Based on our O(2) assays we estimate the upper limit for anammox to be ~20 µmol L(-1). In contrast, NH(3) oxidation to NO(2)(-) and NO(3)(-) reduction to NO(2)(-) as the main NH(4)(+) and NO(2)(-) sources for anammox were only moderately affected by changing O(2) concentrations. Intriguingly, aerobic NH(3) oxidation was active at non-detectable concentrations of O(2), while anaerobic NO(3)(-) reduction was fully active up to at least 25 µmol L(-1) O(2). Hence, aerobic and anaerobic N-cycle pathways in OMZs can co-occur over a larger range of O(2) concentrations than previously assumed. The zone where N-loss can occur is primarily controlled by the O(2)-sensitivity of anammox itself, and not by any effects of O(2) on the tightly coupled pathways of aerobic NH(3) oxidation and NO(3)(-) reduction. With anammox bacteria in the marine environment being active at O(2) levels ~20 times higher than those known to inhibit their cultured counterparts, the oceanic volume potentially acting as a N-sink increases tenfold. The predicted expansion of OMZs may enlarge this volume even further. Our study provides the first robust estimates of O(2) sensitivities for processes directly and indirectly connected with N-loss. These are essential to assess the effects of ocean de-oxygenation on oceanic N-cycling. © 2011 Kalvelage et al.

  7. Deformation Processes In SE Tibet: How Coupled Are The Surface And The Deeper Lithosphere? (Invited)

    NASA Astrophysics Data System (ADS)

    Zeitler, P. K.; Meltzer, A.

    2010-12-01

    We all like to cite the Himalayan collision as a type example of continent-continent collision, and the region has been used as a natural laboratory by a considerable number of diverse investigations. Southeastern Tibet and the Lhasa Block provide an interesting case to consider in this context. Surrounding portions of the Himalayan-Tibet system have been and are being intensely deformed, whereas the Andean-arc lithosphere of the Lhasa Block has remained enigmatically unscathed. High elevations throughout much of the terrane are fairly uniform but the eastern and western portions of block have experienced very different degrees of exhumation. Regions that experienced more exhumation have thinner crustal thicknesses, with the results that that Moho is warped up with respect to the surface. Thicker, less-exhumed portions of the Lhasa Block currently are underlain by what is inferred to be eclogitized lower crust, but this eclogitization is not seen where exhumation is significant. Beneath SE Tibet, subduction of the Indian lithosphere has been complicated, with tomographic imaging showing variations in mantle structure that do not register with the strike of surface features. Adjacent to the Lhasa Block, the Namche Barwa-Gyala metamorphic massif demonstrates a strong coupling between shallower crustal flow and localized erosion that is significant for the evolution of the Lhasa Block in the way that this feature controls base level for the upper Tsangpo drainage and thus the erosional driver for the system. More broadly, a weak lower crust and lower-crustal flow have been invoked by many workers to explain aspects of the region’s deformation patterns and topography. Thus it would seem that in SE Tibet, mid-to-upper crustal, lower-crustal, and whole-lithosphere processes all have the potential to either impact Earth-surface dynamics or be impacted by them. This leads to a number of questions about the 4D nature and scale of compensation, controls on the evolution of

  8. Making sense of dementia: Exploring the use of the Markers of Assimilation of Problematic Experiences in Dementia scale to understand how couples process a diagnosis of dementia.

    PubMed

    Snow, Katie; Cheston, Richard; Smart, Cordet

    2016-11-01

    This qualitative study aimed to see whether the Markers of Assimilation of Problematic Experiences in Dementia (MAPED) scale could be applied to couples. It aimed to explore the interactions between couples and how this affected the levels of assimilation. Semi-structured interviews were conducted with four heterosexual couples. The results suggested that MAPED can be usefully applied to couples. It highlighted the oscillating process which couples undergo as they process a dementia diagnosis. This supports the notion that making sense of a dementia diagnosis is not static, but a fluctuating and ever changing process. The strategies couples employed either facilitated or prevented the expression and integration of the Problematic Voice. The study highlights the importance of supporting couples together during a dementia diagnosis.

  9. The OpenGeoSys coupling concept for THMC processes in subsurface and the neighboring hydro-compartments

    NASA Astrophysics Data System (ADS)

    Kalbacher, T.; Delfs, J. O.; Shao, H.; Boettcher, N.; Walther, M.; Kolditz, O.

    2012-12-01

    State-of-the-art computational models used for integrated water resources management are rapidly developing instruments. Advances in computational mathematics have revolutionized the variety and the nature of the problems that can be addressed by environmental scientists and engineers. For each hydro-compartment, from precipitation and surface run-off to catchment water balance and groundwater interactions, there exist many excellent simulation codes. However, their development has been isolated within different disciplines. The OpenGeoSys (OGS) project is a scientific open source initiative for numerical simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous and fractured media. The basic concept is to provide a flexible numerical framework (using primarily the Finite Element Method (FEM)) for solving multi-field problems in porous and fractured media for applications in geoscience and hydrology. To this purpose, OGS is based on an object-oriented FEM concept including a broad spectrum of interfaces for pre- and post-processing. The idea includes a web-based platform for community access, outfitted with professional software engineering tools such as platform-independent compiling and fully automated benchmarking. The second strategy is to utilize an additional coupling concept that enables OGS simulations to interact sequentially with other individual modeling software in order to address coupled processes in neighboring hydrologic compartments, which includes methods of coupling different physical processes and different geometric model complexities under consideration of the spatial and temporal scale change and the required computational resources. The IWAS ToolBox concept.

  10. The decision-making process for breast reconstruction after cancer surgery: Representations of heterosexual couples in long-standing relationships.

    PubMed

    Fasse, Léonor; Flahault, Cécile; Vioulac, Christel; Lamore, Kristopher; Van Wersch, Anna; Quintard, Bruno; Untas, Aurélie

    2017-05-01

    Most people deal with intrusive life events such as cancer and the care trajectory together with their intimate partners. To our knowledge, no research has studied the involvement of the partner in the decision-making process regarding breast reconstruction (BR) after cancer. This study aimed to gain a better understanding of the couples' decision-making process for BR in the cancer context and particularly to investigate the partners' involvement in this process. Eighteen participants (nine women who underwent a mastectomy following a first breast cancer and their intimate partners) took part in this study. We conducted semidirective interviews, and a general inductive approach was chosen to capture the representations of the couples. The women in the sample were aged between 33 and 66 years (M = 54, SD = 7.5) and their partner between 40 and 76 years (M = 59, SD = 11.6). The duration of their intimate relationship was on average 18 years (SD = 10.4; minimum = 4; maximum = 33). The analysis revealed 11 major themes. The two most salient ones were 'external influence' and 'implication of the partner'. The exploration of the subthemes revealed that the decision-making process is often reported as an interrelated experience by the couples and as a dyadic stressor. The partner's role is depicted as consultative and mostly supportive. These results provide new insights on the involvement of the partner in decision-making. Thus, it now seems crucial to develop a prospective study, which will help understand the progression of the decision-making process over time. Statement of contribution What is already known on this subject? Most people deal with intrusive life events such as cancer and the care trajectory together with their intimate partners. Shared decision-making between patients and physicians is now the 'gold standard' in Western Europe and the United States. However, in the context of breast reconstruction (BR) after cancer, factors guiding

  11. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  12. Good Vibrations: Cross-Frequency Coupling in the Human Nucleus Accumbens during Reward Processing

    ERIC Educational Resources Information Center

    Cohen, Michael X.; Axmacher, Nikolai; Lenartz, Doris; Elger, Christian E.; Sturm, Volker; Schlaepfer, Thomas E.

    2009-01-01

    The nucleus accumbens is critical for reward-guided learning and decision-making. It is thought to "gate" the flow of a diverse range of information (e.g., rewarding, aversive, and novel events) from limbic afferents to basal ganglia outputs. Gating and information encoding may be achieved via cross-frequency coupling, in which bursts of…

  13. A numerical manifold method model for analyzing fully coupled hydro-mechanical processes in porous rock masses with discrete fractures

    NASA Astrophysics Data System (ADS)

    Hu, Mengsu; Rutqvist, Jonny; Wang, Yuan

    2017-04-01

    In this study, a numerical manifold method (NMM) model was developed for fully coupled analysis of hydro-mechanical (HM) processes in porous rock masses with discrete fractures. Using an NMM two-cover-mesh system of mathematical and physical covers, fractures are conveniently discretized by dividing the mathematical cover along fracture traces to physical cover, resulting in a discontinuous model on a non-conforming mesh. In this model, discrete fracture deformation (e.g. open and slip) and fracture fluid flow within a permeable and deformable porous rock matrix are rigorously considered. For porous rock, direct pore-volume coupling was modeled based on an energy-work scheme. For mechanical analysis of fractures, a fracture constitutive model for mechanically open states was introduced. For fluid flow in fractures, both along-fracture and normal-to-fracture fluid flow are modeled without introducing additional degrees of freedom. When the mechanical aperture of a fracture is changing, its hydraulic aperture and hydraulic conductivity is updated. At the same time, under the effect of coupled deformation and fluid flow, the contact state may dynamically change, and the corresponding contact constraint is updated each time step. Therefore, indirect coupling is realized under stringent considerations of coupled HM effects and fracture constitutive behavior transfer dynamically. To verify the new model, examples involving deformable porous media containing a single and two sets of fractures were designed, showing good accuracy. Last, the model was applied to analyze coupled HM behavior of fractured porous rock domains with complex fracture networks under effects of loading and injection.

  14. Achieving Al Melt/Carbon and Al-Ti Melts/Carbon Interfaces Wetting via Ultrasonic Couple Processing

    NASA Astrophysics Data System (ADS)

    Li, Y. L.; Zhou, T. G.

    2013-07-01

    Good wetting among Al, Al-Ti melts and C (carbon) solid was achieved by ultrasonic couple processing (UCP). Due to the action of interfacial tension of wetting, Al melt and Al-Ti melts climb along the side wall of C solid. The wetting angle at the triple junction of gaseous, liquid, and solid phases is all lower than 15 deg. In the meantime, good wetting between Al melt and C powder was also achieved by the ultrasonic couple processing. Al melt infiltrated into the interior of C powder through the capillarity. When the ultrasonic couple processing was applied in the system of wetting between Al-Ti melts and C powder, owing to the superimposed effect of incident acoustic wave and reflected acoustic wave at Al-Ti melts/C interface, local high temperature occurred in the Al-Ti melts near C interface, and the superimposed effect can effectively obstruct a direct reaction of Al melt and C, inhibit the formation of undesirable Al4C3, and promote dissolved Ti to react with C and dissociated C to form TiC particle phase.

  15. Optimization of a microwave-coupled enzymatic digestion process to prepare peanut peptides.

    PubMed

    Zhang, Huicui; Yu, Lina; Yang, Qingli; Sun, Jie; Bi, Jie; Liu, Shaofang; Zhang, Chushu; Tang, Lin

    2012-05-11

    The best enzyme to prepare peanut peptides, papain, coupled with microwave irradiation was selected from five common proteases according to the results of the yield of peanut peptides [nitrogen solution index (NSI) in trichloroacetic acid (TCA), TCA-NSI] and the degree of hydrolysis (DH). The main factors that influenced the microwave-coupled enzymatic digestion method were optimized by response surface analysis. The optimal conditions obtained were as follows: microwave extraction time, 9.5 min; power, 600 W; substrate concentration, 4%; enzymatic reaction temperature, 50 °C; enzyme quantity, 6,500 U/g; pH, 7.1 (phosphate buffer, 0.05 mol/L). Under these conditions, TCA-NSI was 62.00% and DH was 25.89%, which is higher than that obtained with either protease hydrolysis or microwave hydrolysis alone.

  16. Use of Coupled Eutrophication and Network Models for Examination of Fisheries and Eutrophication Processes

    DTIC Science & Technology

    2008-03-01

    Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Approved for public release; distribution is unlimited. Prepared for... develop a coupling between the two models so that they could be used, in combination, to address management questions concerning the effects of...were identified, and an ICM postprocessor was developed to facilitate the exchange of information between the two models. Significant differences

  17. Ternary and coupled binary zinc tin oxide nanopowders: Synthesis, characterization, and potential application in photocatalytic processes

    SciTech Connect

    Ivetić, T.B.; Finčur, N.L.; Đačanin, Lj. R.; Abramović, B.F.; Lukić-Petrović, S.R.

    2015-02-15

    Highlights: • Mechanochemically synthesized nanocrystalline zinc tin oxide (ZTO) powders. • Photocatalytic degradation of alprazolam in the presence of ZTO water suspensions. • Coupled binary ZTO exhibits enhanced photocatalytic activity compared to ternary ZTO. - Abstract: In this paper, ternary and coupled binary zinc tin oxide nanocrystalline powders were prepared via simple solid-state mechanochemical method. X-ray diffraction, scanning electron microscopy, Raman and reflectance spectroscopy were used to study the structure and optical properties of the obtained powder samples. The thermal behavior of zinc tin oxide system was examined through simultaneous thermogravimetric-differential scanning calorimetric analysis. The efficiencies of ternary (Zn{sub 2}SnO{sub 4} and ZnSnO{sub 3}) and coupled binary (ZnO/SnO{sub 2}) zinc tin oxide water suspensions in the photocatalytic degradation of alprazolam, short-acting anxiolytic of the benzodiazepine class of psychoactive drugs, under UV irradiation were determined and compared with the efficiency of pure ZnO and SnO{sub 2}.

  18. The physiologic coupling of sucking and swallowing coordination provides a unique process for neonatal survival

    PubMed Central

    McGrattan, Katlyn E.; Sivalingam, Maneesha; Hasenstab, Kathryn A.; Wei, Lai; Jadcherla, Sudarshan R.

    2016-01-01

    Aim Although the coordination of sucking and swallowing is critical for successful oral intake in neonates, the mechanisms that facilitate this coordination are not well understood. This investigation sought to clarify the mechanisms that facilitate this coordination, by comparing sucks that were coordinated with swallows and sucks that were completed in isolation. Methods Ten neonates with a median gestational age of 28.2 weeks, ranging from 27.0-35.0 weeks, were recruited from the neonatal nurseries at Nationwide Children's Hospital, Columbus, Ohio, USA. They were evaluated while bottle-feeding at term gestation for differences in characteristics between sucks that were coupled and not coupled with swallows. Suction was evaluated using an intraoral pressure transducer and swallows were identified using a micro-manometry pharyngeal catheter. Linear mixed models were applied to distinguish sucking characteristics. Results Suction exhibited an anti-phase relationship with the generation and release of positive pharyngeal pressure during the swallow. Coupled sucks had lower suction generation and release rates (p<0.0001), lower suction amplitude (p=0.004), longer suction duration (p<0.0001) and higher milk ejection pressure (p<0.0001). Conclusion The coordination of unique sucking and swallowing movement patterns may be achieved by the infant adapting to the sucking kinematics around the lingual patterns that facilitate the pharyngeal swallow. PMID:27028793

  19. A process to control light in a micro resonator through a coupling modulation by surface acoustic waves

    PubMed Central

    Fan, Guofang; Li, Yuan; Hu, Chunguang; Lei, Lihua; Guo, Yanchuan

    2016-01-01

    A novel process to control light through the coupling modulation by surface acoustic wave (SAW) is presented in an optical micro resonator. An optical waveguide modulator of a racetrack resonator on silicon-on-insulator (SOI) technology is took as an example to explore the mechanism. A finite-difference time-domain (FDTD) is developed to simulate the acousto-optical (AO) modulator using the mechanism. An analytical method is presented to verify our proposal. The results show that the process can work well as an optical modulator by SAW. PMID:27485470

  20. Improved representations of coupled soil–canopy processes in the CABLE land surface model (Subversion revision 3432)

    DOE PAGES

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; ...

    2016-09-07

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil–canopy processes by introducing an alternative hydrology model with amore » physically accurate representation of coupled energy and water fluxes at the soil–air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Here, marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.« less

  1. Improved representations of coupled soil-canopy processes in the CABLE land surface model (Subversion revision 3432)

    NASA Astrophysics Data System (ADS)

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-01

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil-canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil-air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  2. Improved representations of coupled soil–canopy processes in the CABLE land surface model (Subversion revision 3432)

    SciTech Connect

    Haverd, Vanessa; Cuntz, Matthias; Nieradzik, Lars P.; Harman, Ian N.

    2016-09-07

    CABLE is a global land surface model, which has been used extensively in offline and coupled simulations. While CABLE performs well in comparison with other land surface models, results are impacted by decoupling of transpiration and photosynthesis fluxes under drying soil conditions, often leading to implausibly high water use efficiencies. Here, we present a solution to this problem, ensuring that modelled transpiration is always consistent with modelled photosynthesis, while introducing a parsimonious single-parameter drought response function which is coupled to root water uptake. We further improve CABLE's simulation of coupled soil–canopy processes by introducing an alternative hydrology model with a physically accurate representation of coupled energy and water fluxes at the soil–air interface, including a more realistic formulation of transfer under atmospherically stable conditions within the canopy and in the presence of leaf litter. The effects of these model developments are assessed using data from 18 stations from the global eddy covariance FLUXNET database, selected to span a large climatic range. Here, marked improvements are demonstrated, with root mean squared errors for monthly latent heat fluxes and water use efficiencies being reduced by 40 %. Results highlight the important roles of deep soil moisture in mediating drought response and litter in dampening soil evaporation.

  3. A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling.

    PubMed

    Hermenau, J; Ibañez-Azpiroz, J; Hübner, Chr; Sonntag, A; Baxevanis, B; Ton, K T; Steinbrecher, M; Khajetoorians, A A; Dos Santos Dias, M; Blügel, S; Wiesendanger, R; Lounis, S; Wiebe, J

    2017-09-21

    A cluster of a few magnetic atoms on the surface of a nonmagnetic substrate is one suitable realization of a bit for spin-based information technology. The prevalent approach to achieve magnetic stability is decoupling the cluster spin from substrate conduction electrons in order to suppress destabilizing spin-flips. However, this route entails less flexibility in tailoring the coupling between the bits needed for spin-processing. Here, we use a spin-resolved scanning tunneling microscope to write, read, and store spin information for hours in clusters of three atoms strongly coupled to a substrate featuring a cloud of non-collinearly polarized host atoms, a so-called non-collinear giant moment cluster. The giant moment cluster can be driven into a Kondo screened state by simply moving one of its atoms to a different site. Using the exceptional atomic tunability of the non-collinear substrate mediated Dzyaloshinskii-Moriya interaction, we propose a logical scheme for a four-state memory.Information technology based on few atom magnets requires both long spin-energy relaxation times and flexible inter-bit coupling. Here, the authors show routes to manipulate information in three-atom clusters strongly coupled to substrate electrons by exploiting Dzyaloshinskii-Moriya interactions.

  4. Future planning: default network activity couples with frontoparietal control network and reward-processing regions during process and outcome simulations.

    PubMed

    Gerlach, Kathy D; Spreng, R Nathan; Madore, Kevin P; Schacter, Daniel L

    2014-12-01

    We spend much of our daily lives imagining how we can reach future goals and what will happen when we attain them. Despite the prevalence of such goal-directed simulations, neuroimaging studies on planning have mainly focused on executive processes in the frontal lobe. This experiment examined the neural basis of process simulations, during which participants imagined themselves going through steps toward attaining a goal, and outcome simulations, during which participants imagined events they associated with achieving a goal. In the scanner, participants engaged in these simulation tasks and an odd/even control task. We hypothesized that process simulations would recruit default and frontoparietal control network regions, and that outcome simulations, which allow us to anticipate the affective consequences of achieving goals, would recruit default and reward-processing regions. Our analysis of brain activity that covaried with process and outcome simulations confirmed these hypotheses. A functional connectivity analysis with posterior cingulate, dorsolateral prefrontal cortex and anterior inferior parietal lobule seeds showed that their activity was correlated during process simulations and associated with a distributed network of default and frontoparietal control network regions. During outcome simulations, medial prefrontal cortex and amygdala seeds covaried together and formed a functional network with default and reward-processing regions. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Coupling microbial catabolic actions with abiotic redox processes: a new recipe for persistent organic pollutant (POP) removal.

    PubMed

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Nam, In-Hyun; Chang, Yoon-Seok

    2013-01-01

    The continuous release of toxic persistent organic pollutants (POPs) into the environment has raised a need for effective cleanup methods. The tremendous natural diversity of microbial catabolic mechanisms suggests that catabolic routes may be applied to the remediation of POP-contaminated fields. A large number of the recalcitrant xenobiotics have been shown to be removable via the natural catabolic mechanisms of microbes, and detailed biochemical studies of the catabolic methods, together with the development of sophisticated genetic engineering, have led to the use of synthetic microbes for the bioremediation of POPs. However, the steric effects of substituted halogen moieties, microbe toxicity, and the low bioavailability of POPs still deteriorate the efficiency of removal strategies based on natural and synthetic catabolic mechanisms. Recently, abiotic redox processes that induce rapid reductive dehalogenation, hydroxyl radical-based oxidation, or electron shuttling have been reasonably coupled with microbial catabolic actions, thereby compensating for the drawbacks of biotic processes in POP removal. In this review, we first compare the pros and cons of individual methodologies (i.e., the natural and synthetic catabolism of microbes and the abiotic processes involving zero-valent irons, advanced oxidation processes, and small organic stimulants) for POP removal. We then highlight recent trends in coupling the biotic-abiotic methodologies and discuss how the processes are both feasible and superior to individual methodologies for POP cleanup. Cost-effective and environmentally sustainable abiotic redox actions could enhance the microbial bioremediation potential for POPs.

  6. Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs

    SciTech Connect

    Kelkar, Sharad

    2011-01-01

    The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

  7. A coupling model to simulate the dynamic process of blister-actuated nanosecond laser-induced forward transfer

    NASA Astrophysics Data System (ADS)

    Hu, Yongxiang; Cheng, Han; Xu, Jiaxi; Yao, Zhenqiang

    2017-08-01

    The modeling of laser-induced forward transfer process (LIFT) is helpful to understand and optimize its complex transfer process. In this work, a coupling model is developed to investigate the dynamic response of a thin polymer layer used as the release layer in the blister-actuated LIFT. In this model, the vapor pressure generated by nanosecond laser irradiation is computed through coupling with the transient vapor volume obtained from different step durations to simulate the dynamic blister formation. And the model is validated by experiments on polyimide film irradiated with different laser fluences, which is found to be capable of providing a consistent prediction of blister profiles under several laser conditions. The calibrated energy conversion ratios imply that laser pulse energy is mainly allocated for the heating and vaporizing of polymers, but increasing laser fluence can make this expense gradually saturated to allow more pulse energy to increase the vapor pressure. Transient pressure development from the coupling model is observed to increase rapidly within the pulse duration, but then to decrease because of vapor expansion. Forward velocity in axial direction is also observed to increase with laser fluence. The maximum velocity is possible to exceed the sound velocity under a high laser fluence. And the thin polymer layer is more preferred to obtain a high transfer velocity.

  8. Anomalous quartic and triple gauge couplings in {gamma}-induced processes at the LHC

    SciTech Connect

    Royon, Christophe; Chapon, Emilien

    2011-07-15

    We study the W/Z pair production via two-photon exchange at the LHC and give the sensitivities on trilinear and quartic gauge anomalous couplings between photons and W/Z bosons for an integrated luminosity of 30 and 200 fb{sup -1}. For simplicity and to obtain lower backgrounds, only the leptonic decays of the electroweak bosons are considered. The intact protons in the final states are detected in the ATLAS Forward Proton detectors. The high energy and luminosity of the LHC and the forward detectors allow to probe beyond standard model physics and to test the Higgsless and extra dimension models in an unprecedent way.

  9. A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: sodium modification-direct reduction coupled process

    NASA Astrophysics Data System (ADS)

    Zhang, Yi-min; Yi, Ling-yun; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao

    2017-05-01

    A sodium modification-direct reduction coupled process was proposed for the simultaneous extraction of V and Fe from vanadium- bearing titanomagnetite. The sodium oxidation of vanadium oxides to water-soluble sodium vanadate and the transformation of iron oxides to metallic iron were accomplished in a single-step high-temperature process. The increase in roasting temperature favors the reduction of iron oxides but disfavors the oxidation of vanadium oxides. The recoveries of vanadium, iron, and titanium reached 84.52%, 89.37%, and 95.59%, respectively. Moreover, the acid decomposition efficiency of titanium slag reached 96.45%. Compared with traditional processes, the novel process provides several advantages, including a shorter flow, a lower energy consumption, and a higher utilization efficiency of vanadium-bearing titanomagnetite resources.

  10. Final Progress Report: Coupled Biogeochemical Process Evaluation for Conceptualizing Trichloroethylene Cometabolism

    SciTech Connect

    Crawford, Ronald L; Paszczynski, Andrzej J

    2010-02-19

    Our goal within the overall project is to demonstrate the presence and abundance of methane monooxygenases (MMOs) enzymes and their genes within the microbial community of the Idaho National Laboratory (INL) Test Area North (TAN) site. MMOs are thought to be the primary catalysts of natural attenuation of trichloroethylene (TCE) in contaminated groundwater at this location. The actual presence of the proteins making up MMO complexes would provide direct evidence for its participation in TCE degradation. The quantitative estimation of MMO genes and their translation products (sMMO and pMMO proteins) and the knowledge about kinetics and substrate specificity of MMOs will be used to develop mathematical models of the natural attenuation process in the TAN aquifer. The model will be particularly useful in prediction of TCE degradation rate in TAN and possibly in the other DOE sites. Bacteria known as methanotrophs produce a set of proteins that assemble to form methane monooxygenase complexes (MMOs), enzymes that oxidize methane as their natural substrate, thereby providing a carbon and energy source for the organisms. MMOs are also capable of co-metabolically transforming chlorinated solvents like TCE into nontoxic end products such as carbon dioxide and chloride. There are two known forms of methane monooxygenase, a membrane-bound particulate form (pMMO) and a cytoplasmic soluble form (sMMO). pMMO consists of two components, pMMOH (a hydroxylase comprised of 47-, 27-, and 24-kDa subunits) and pMMOR (a reductase comprised of 63 and 8-kDa subunits). sMMO consists of three components: a hydroxylase (protein A-250 kDa), a dimer of three subunits (α2β2γ2), a regulatory protein (protein B-15.8 kDa), and a reductase (protein C-38.6 kDa). All methanotrophs will produce a methanol dehydrogenase to channel the product of methane oxidation (methanol) into the central metabolite formaldehyde. University of Idaho (UI) efforts focused on proteomic analyses using mass

  11. Narrowband laser generation/air-coupled detection: ultrasonic system for on-line process control of composites

    PubMed

    Baldwin; Berndt; Ehrlich

    1999-06-01

    A hybrid laser generation/air-coupled detection ultrasonic system is presented which capitalizes on matching the source and receiver bandwidth. Laser generation of narrowband (approximately 1.2 MHz) ultrasound is achieved through a spatial modulation technique. The frequency of the generated ultrasound is chosen to match the response characteristics of a micromachined air-coupled capacitance transducer for good signal throughput. The system has proven sensitive to surface defects in composite materials, and is well suited for on-line process control applications, with standoff distance for the transmitter and receiver greater than 2 cm, while retaining single-shot operation. The system provides a significant reduction in cost and complexity relative to laser-in/laser-out systems.

  12. Coupling membrane separation and photocatalytic oxidation processes for the degradation of pharmaceutical pollutants.

    PubMed

    Martínez, F; López-Muñoz, M J; Aguado, J; Melero, J A; Arsuaga, J; Sotto, A; Molina, R; Segura, Y; Pariente, M I; Revilla, A; Cerro, L; Carenas, G

    2013-10-01

    The coupling of membrane separation and photocatalytic oxidation has been studied for the removal of pharmaceutical pollutants. The retention properties of two different membranes (nanofiltration and reverse osmosis) were assessed. Comparable selectivity on the separation of pharmaceuticals were observed for both membranes, obtaining a permeate stream with concentrations of each pharmaceutical below 0.5 mg L(-)(1) and a rejected flux highly concentrated (in the range of 16-25 mg L(-)(1) and 18-32 mg L(-)(1) of each pharmaceutical for NF-90 and BW-30 membranes, respectively), when an initial stream of six pharmaceuticals was feeding to the membrane system (10 mg L(-)(1) of each pharmaceutical). The abatement of concentrated pharmaceuticals of the rejected stream was evaluated by means of heterogeneous photocatalytic oxidation using TiO2 and Fe2O3/SBA-15 in presence of hydrogen peroxide as photo-Fenton system. Both photocatalytic treatments showed remarkable removals of pharmaceutical compounds, achieving values between 80 and 100%. The nicotine was the most refractory pollutant of all the studied pharmaceuticals. Photo-Fenton treatment seems to be more effective than TiO2 photocatalysis, as high mineralization degree and increased nicotine removal were attested. This work can be considered an interesting approach of coupling membrane separation and heterogeneous photocatalytic technologies for the successful abatement of pharmaceutical compounds in effluents of wastewater treatment plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Coupled-channel Treatment of Isobaric Analog Resonances in (p,p‧) Capture Processes

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Arbanas, G.

    2014-04-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in γ-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the non-orthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p'γ) coincidence data exists.

  14. Coupled-channel treatment of Isobaric Analog Resonances in (p,p') Capture Processes

    SciTech Connect

    Thompson, I J; Arbanas, Goran

    2013-01-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in gamma-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the nonorthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p g)

  15. Modeled near-field environment porosity modifications due to coupled thermohydrologic and geochemical processes

    SciTech Connect

    Glassley, W. E.; Nitao, J. J.

    1998-10-30

    Heat deposited by waste packages in nuclear waste repositories can modify rock properties by instigating mineral dissolution and precipitation along hydrothermal flow pathways. Modeling this reactive transport requires coupling fluid flow to permeability changes resulting from dissolution and precipitation. Modification of the NUFT thermohydrologic (TH) code package to account for this coupling in a simplified geochemical system has been used to model the time- dependent change in porosity, permeability, matrix and fracture saturation, and temperature in the vicinity of waste-emplacement drifts, using conditions anticipated for the potential Yucca Mountain repository. The results show, within a few hundred years, dramatic porosity reduction approximately 10 m above emplacement drifts. Most of this reduction is attributed to deposition of solute load at the boiling front, although some of it also results from decreasing temperature along the flow path. The actual distribution of the nearly sealed region is sensitive to the time- dependent characteristics of the thermal load imposed on the environment and suggests that the geometry of the sealed region can be engineered by managing the waste-emplacement strategy.

  16. Transmission spectra and valley processing of graphene and carbon nanotube superlattices with inter-valley coupling

    NASA Astrophysics Data System (ADS)

    Xu, Fuming; Yu, Zhizhou; Ren, Yafei; Wang, Bin; Wei, Yadong; Qiao, Zhenhua

    2016-11-01

    We numerically investigate the electronic transport properties of graphene nanoribbons and carbon nanotubes with inter-valley coupling, e.g., in \\sqrt{3}N× \\sqrt{3}N and 3N× 3N superlattices. By taking the \\sqrt{3}× \\sqrt{3} graphene superlattice as an example, we show that tailoring the bulk graphene superlattice results in rich structural configurations of nanoribbons and nanotubes. After studying the electronic characteristics of the corresponding armchair and zigzag nanoribbon geometries, we find that the linear bands of carbon nanotubes can lead to the Klein tunnelling-like phenomenon, i.e., electrons propagate along tubes without backscattering even in the presence of a barrier. Due to the coupling between K and {K}\\prime valleys of pristine graphene by \\sqrt{3}× \\sqrt{3} supercells, we propose a valley-field-effect transistor based on the armchair carbon nanotube, where the valley polarization of the current can be tuned by applying a gate voltage or varying the length of the armchair carbon nanotubes.

  17. Theoretical study on electron-phonon coupling factor and electron-ion nonequilibrium process in uranium

    NASA Astrophysics Data System (ADS)

    Li, Zi; Wang, Cong; Zhao, Jize; Kang, Wei; Zhang, Ping

    2017-02-01

    Rapid laser heating is an important experimental technique to achieve extreme conditions for uranium. Theoretical simulations of the electron-ion nonequilibrium energy relaxation after laser heating usually employ a two-temperature model using the thermal quantities of the electron heat capacity and the electron-phonon coupling factor as input parameters. Based on the first-principles calculations of the electron density of states and Eliashberg function, we theoretically determine the thermal quantities and their dependence on electron temperature and external pressure for uranium and revealed the connection between the thermal quantities and the electron density of states. The electron/ion temperature evolution was examined by employing the two-temperature model with the obtained thermal quantities. The time/temperature at the peak/equilibrium point of the temperature evolution curve was examined for different external pressures and different laser energy densities. We found that the approximation of a linear temperature-dependent electron heat capacity is acceptable at a low energy density, while at a high energy density, the electron temperature dependence of the electron heat capacity and the coupling factor from the first-principles calculations must be considered.

  18. Constrained generalized predictive control of battery charging process based on a coupled thermoelectric model

    NASA Astrophysics Data System (ADS)

    Liu, Kailong; Li, Kang; Zhang, Cheng

    2017-04-01

    Battery temperature is a primary factor affecting the battery performance, and suitable battery temperature control in particular internal temperature control can not only guarantee battery safety but also improve its efficiency. This is however challenging as current controller designs for battery charging have no mechanisms to incorporate such information. This paper proposes a novel battery charging control strategy which applies the constrained generalized predictive control (GPC) to charge a LiFePO4 battery based on a newly developed coupled thermoelectric model. The control target primarily aims to maintain the battery cell internal temperature within a desirable range while delivering fast charging. To achieve this, the coupled thermoelectric model is firstly introduced to capture the battery behaviours in particular SOC and internal temperature which are not directly measurable in practice. Then a controlled auto-regressive integrated moving average (CARIMA) model whose parameters are identified by the recursive least squares (RLS) algorithm is developed as an online self-tuning predictive model for a GPC controller. Then the constrained generalized predictive controller is developed to control the charging current. Experiment results confirm the effectiveness of the proposed control strategy. Further, the best region of heat dissipation rate and proper internal temperature set-points are also investigated and analysed.

  19. Planarized process for resonant leaky-wave coupled phase-locked arrays of mid-IR quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Chang, C.-C.; Kirch, J. D.; Boyle, C.; Sigler, C.; Mawst, L. J.; Botez, D.; Zutter, B.; Buelow, P.; Schulte, K.; Kuech, T.; Earles, T.

    2015-03-01

    On-chip resonant leaky-wave coupling of quantum cascade lasers (QCLs) emitting at 8.36 μm has been realized by selective regrowth of interelement layers in curved trenches, defined by dry and wet etching. The fabricated structure provides large index steps (Δn = 0.10) between antiguided-array element and interelement regions. In-phase-mode operation to 5.5 W front-facet emitted power in a near-diffraction-limited far-field beam pattern, with 4.5 W in the main lobe, is demonstrated. A refined fabrication process has been developed to produce phased-locked antiguided arrays of QCLs with planar geometry. The main fabrication steps in this process include non-selective regrowth of Fe:InP in interelement trenches, defined by inductive-coupled plasma (ICP) etching, a chemical polishing (CP) step to planarize the surface, non-selective regrowth of interelement layers, ICP selective etching of interelement layers, and non-selective regrowth of InP cladding layer followed by another CP step to form the element regions. This new process results in planar InGaAs/InP interelement regions, which allows for significantly improved control over the array geometry and the dimensions of element and interelement regions. Such a planar process is highly desirable to realize shorter emitting wavelength (4.6 μm) arrays, where fabrication tolerance for single-mode operation are tighter compared to 8 μm-emitting devices.

  20. OGS#PETSc approach for robust and efficient simulations of strongly coupled hydrothermal processes in EGS reservoirs

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Blucher, Guido; Cacace, Mauro; Kolditz, Olaf

    2016-04-01

    A robust and computationally efficient solution is important for 3D modelling of EGS reservoirs. This is particularly the case when the reservoir model includes hydraulic conduits such as induced or natural fractures, fault zones, and wellbore open-hole sections. The existence of such hydraulic conduits results in heterogeneous flow fields and in a strengthened coupling between fluid flow and heat transport processes via temperature dependent fluid properties (e.g. density and viscosity). A commonly employed partitioned solution (or operator-splitting solution) may not robustly work for such strongly coupled problems its applicability being limited by small time step sizes (e.g. 5-10 days) whereas the processes have to be simulated for 10-100 years. To overcome this limitation, an alternative approach is desired which can guarantee a robust solution of the coupled problem with minor constraints on time step sizes. In this work, we present a Newton-Raphson based monolithic coupling approach implemented in the OpenGeoSys simulator (OGS) combined with the Portable, Extensible Toolkit for Scientific Computation (PETSc) library. The PETSc library is used for both linear and nonlinear solvers as well as MPI-based parallel computations. The suggested method has been tested by application to the 3D reservoir site of Groß Schönebeck, in northern Germany. Results show that the exact Newton-Raphson approach can also be limited to small time step sizes (e.g. one day) due to slight oscillations in the temperature field. The usage of a line search technique and modification of the Jacobian matrix were necessary to achieve robust convergence of the nonlinear solution. For the studied example, the proposed monolithic approach worked even with a very large time step size of 3.5 years.

  1. Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective

    NASA Astrophysics Data System (ADS)

    Worni, Raphael; Huggel, Christian; Clague, John J.; Schaub, Yvonne; Stoffel, Markus

    2014-11-01

    Glacial lake outburst floods (GLOFs) are highly mobile mixtures of water and sediment that occur suddenly and are capable of traveling tens to hundreds of kilometers with peak discharges and volumes several orders of magnitude larger than those of normal floods. They travel along existing river channels, in some instances into populated downstream regions, and thus pose a risk to people and infrastructure. Many recent events involve process chains, such as mass movements impacting glacial lakes and triggering dam breaches with subsequent outburst floods. A concern is that effects of climate change and associated increased instability of high mountain slopes may exacerbate such process chains and associated extreme flows. Modeling tools can be used to assess the hazard of potential future GLOFs, and process modeling can provide insights into complex processes that are difficult to observe in nature. A number of numerical models have been developed and applied to simulate different types of extreme flows, but such modeling faces challenges stemming from a lack of process understanding and difficulties in measuring extreme flows for calibration purposes. Here we review the state of knowledge of key aspects of modeling GLOFs, with a focus on process cascades. Analysis and simulation of the onset, propagation, and potential impact of GLOFs are based on illustrative case studies. Numerical models are presently available for simulating impact waves in lakes, dam failures, and flow propagation but have been used only to a limited extent for integrated simulations of process cascades. We present a spectrum of case studies from Patagonia, the European Alps, central Asia, and the Himalayas in which we simulate single processes and process chains of past and potential future events. We conclude that process understanding and process chain modeling need to be strengthened and that research efforts should focus on a more integrative treatment of processes in numerical models.

  2. Software Support for Fully Distributed/Loosely Coupled Processing Systems. Volume 2. Appendix-Selected Papers.

    DTIC Science & Technology

    1984-01-01

    8217mailboxempty’ .o.:*.. event when this event is announced by a process executing the mailbox process script shown in Figure 6. whnh mailboxlempty anounce ...methods of recovery from design flaws in software is at least as pressing as "° that for hardware. Also in [Rand75], Randell states: "If all design...Processing Integrity," from Computing System Reliability, Cambridge University Press , 1978, pp. 288-354. I l)ijk681 Dijkstra, E.W., "Cooperating Sequential

  3. Grey Relational Analysis Coupled with Principal Component Analysis for Optimization of Stereolithography Process to Enhance Part Quality

    NASA Astrophysics Data System (ADS)

    Raju, B. S.; Sekhar, U. Chandra; Drakshayani, D. N.

    2017-08-01

    The paper investigates optimization of stereolithography process for SL5530 epoxy resin material to enhance part quality. The major characteristics indexed for performance selected to evaluate the processes are tensile strength, Flexural strength, Impact strength and Density analysis and corresponding process parameters are Layer thickness, Orientation and Hatch spacing. In this study, the process is intrinsically with multiple parameters tuning so that grey relational analysis which uses grey relational grade as performance index is specially adopted to determine the optimal combination of process parameters. Moreover, the principal component analysis is applied to evaluate the weighting values corresponding to various performance characteristics so that their relative importance can be properly and objectively desired. The results of confirmation experiments reveal that grey relational analysis coupled with principal component analysis can effectively acquire the optimal combination of process parameters. Hence, this confirm that the proposed approach in this study can be an useful tool to improve the process parameters in stereolithography process, which is very useful information for machine designers as well as RP machine users.

  4. Instantaneous Non-Linear Processing by Pulse-Coupled Threshold Units

    PubMed Central

    Rotter, Stefan; Diesmann, Markus

    2010-01-01

    Contemporary theory of spiking neuronal networks is based on the linear response of the integrate-and-fire neuron model derived in the diffusion limit. We find that for non-zero synaptic weights, the response to transient inputs differs qualitatively from this approximation. The response is instantaneous rather than exhibiting low-pass characteristics, non-linearly dependent on the input amplitude, asymmetric for excitation and inhibition, and is promoted by a characteristic level of synaptic background noise. We show that at threshold the probability density of the potential drops to zero within the range of one synaptic weight and explain how this shapes the response. The novel mechanism is exhibited on the network level and is a generic property of pulse-coupled networks of threshold units. PMID:20856583

  5. Using parallel processing for coupled BWR core kinetics and thermal hydraulics

    SciTech Connect

    Lu, S.; Baratta, A.J.; Robinson, G.E.; Bandini, B.

    1995-12-31

    The interactions between reactor neutron dynamics and thermal hydraulics constitute one of the most fundamental issues of boiling water reactor (BWR) safety. The interactions occur in the reactor core and can have direct effects on the integrity of fuel cladding and the cooling circuit. In unfavorable cases, such as out-of-phase power oscillations or asymmetric control rod ejection accidents, their consequences can be very severe. Several BWR neutronically coupled out-of phase oscillation incidents have been-reported. During some of the transients, both the corewide in-phase and out-of-phase power oscillations were observed. These incidents suggest a need to develop a transient three-dimensional neutronic modeling capability. The incorporation of a fully three-dimensional modeling of a reactor core into a system transient code such as TRAC allows best-estimate solution of this problem.

  6. Coupling Processes and Experiences of Never Married Heterosexual Black Men and Women: A Phenomenological Study.

    PubMed

    Awosan, Christiana I; Hardy, Kenneth V

    2017-02-16

    Over the past decades, the decline in Black marriages and the upsurge of never-married Blacks have stimulated much theoretical focus, but researchers conducted few studies on never-married heterosexual Black adults' coupling unions. Guided by an integrated framework of Africana womanism and symbolic interactionism, this qualitative hermeneutic phenomenological study used comprehensive individual interviews to explore the experiences of 26 never-married heterosexual Black men and women between the ages 25 and 35 about their attempts to cultivate and maintain intimate romantic relationships as well as their desire for marriage. Findings revealed mixed emotions from participants' lived experiences in developing and sustaining romantic relationships. Clinical implications highlighted the need to effectively attend to Black romantic relationships and experiences in their sociohistorical and sociocultural contexts.

  7. Rain-aerosol coupling in urban area: Scavenging ratio measurement and identification of some transfer processes

    NASA Astrophysics Data System (ADS)

    Jaffrezo, J.-L.; Colin, J.-L.

    Coupling between rain and associated aerosol has been studied for 1 year in Paris. Sampling techniques were chosen so as to describe the interacting phases as precisely as possible: exclusion of dry deposition, separation of successive rain events by an automatic sequential collector and aerosol collection over 6-h periods only. Study of interphase correlations for 82 events reveals three groups of species with distinctly different behaviour: insolubles—Al, Si, Fe; solubles—SO 42-, K, Ca, Zn, Mg; and the extreme case of Na and Cl. Interphase relationships decrease in this order. Variations of the scavenging ratio are in good agreement with the theoretical curve for collection efficiency. Noteworthy is the rise of the experimental curve for sub-μm particles. An interpretation based on the origin and hygroscopy of the species is attempted. Apart from their predictive ability in geochemical assessment, scavenging ratios appear useful for investigating the mechanisms of transfer between aerosols and precipitation.

  8. A study of the strong coupling constant using W+ jets processes

    SciTech Connect

    Abachi, S.; D0 Collaboration

    1995-07-01

    The ratio of the number of W + 1 jet to W + 0 jet events is measured with the D0 detector using data from, the 1992--93 Tevatron Collider run. For the W {yields} e{nu} channel with a minimum jet E{sub T} cutoff of 25 GeV, the experimental ratio is 0.065 {+-} 0.003(stat) {+-} 0.007(sys). Next-to-Leading order QCD predictions for various parton distributions agree well with each other and are all over one standard deviation below the measurement. Varying the strong coupling constant {alpha}{sub s} in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy.

  9. Study of the strong coupling constant using {ital W}+jet processes

    SciTech Connect

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adam, I.; Adams, D.L.; Adams, M.; Ahn, S.; Aihara, H.; Alitti, J.; Alvarez, G.; Alves, G.A.; Amidi, E.; Amos, N.; Anderson, E.W.; Aronson, S.H.; Astur, R.; Avery, R.E.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Bantly, J.; Bartlett, J.F.; Bazizi, K.; Bendich, J.; Beri, S.B.; Bertram, I.; Bezzubov, V.A.; Bhat, P.C.; Bhatnagar, V.; Bhattacharjee, M.; Bischoff, A.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N.I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V.S.; Butler, J.M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.; Chekulaev, S.V.; Chen, L.; Chen, W.; Chevalier, L.; Chopra, S.; Choudhary, B.C.; Christenson, J.H.; Chung, M.; Claes, D.; Clark, A.R.; Cobau, W.G.; Cochran, J.; Cooper, W.E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M.A.C.; Cutts, D.; Dahl, O.I.; De, K.; Demarteau, M.; Demina, R.; Denisenko, K.; Denisenko, N.; Denisov, D.; Denisov, S.P.; Dharmaratna, W.; Diehl, H.T.; Diesburg, M.; Di Loreto, G.; Dixon, R.; Draper, P.; Drinkard, J.; Ducros, Y.; Dugad, S.R.; Durston-Johnson, S.; Edmunds, D.; Ellison, J.; Elvira, V.D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O.V.; Evdokimov, V.N.; Fahey, S.; Fahland, T.; Fatyga, M.; Fatyga, M.K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H.E.; Fisyak, Y.; Flattum, E.; Forden, G.E.; Fortner, M.; Frame, K.C.; Franzini, P.; Fuess, S.; Gallas, E.; Galyaev, A.N.; Gao, S.G.; Geld, T.L.; Genik, R.J. II; Genser, K.; Gerber, C.E.; Gibbard, B.; Glebov, V.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gomez, B.; Goncharov, P.I.; Gonzalez Solis, J.L.; Gordon, H.; Goss, L.T.; Graf, N.; Grannis, P.D.; Green, D.R.; Green, J.; Greenlee, H.; Griffin, G.; Grossman, N.; Grudberg, P.; Gruenendahl, S.; Gu, W.X.; Guglielmo, G.; Guida, J.A.; Guida, J.M.; Guryn, W.; Gurzhiev, S.N.; Gutierrez, P.

    1995-10-30

    The ratio of the number of {ital W}+1 jet to {ital W}+0 jet events is measured with the D0 detector using data from the 1992--93 Tevatron Collider run. For the {ital W}{r_arrow}{ital e}{nu} channel with a minimum jet {ital E}{sub {ital T}} cutoff of 25 GeV, the experimental ratio is 0.065{plus_minus}0.003(stat){plus_minus}0.007(syst). Next-to-leading order QCD predictions for various parton distributions agree well with each other and are all over 1 standard deviation below the measurement. Varying the strong coupling constant {alpha}{sub {ital s}} in both the parton distributions and the partonic cross sections simultaneously does not remove this discrepancy. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  10. MI Coupling Processes in the Regions of Diffuse Aurora: Magnetospheric Outlook

    NASA Astrophysics Data System (ADS)

    Khazanov, George V.; Glocer, Alex; Sibeck, David

    2016-04-01

    In this talk we present the solution of the Boltzmann-Landau kinetic equation that uniformly describes the entire electron distribution function in the diffuse aurora. The calculation includes the affiliated production of secondary electrons and their energy interplay in the magnetosphere and two conjugated ionospheres. This solution starts with the primary injection of plasma sheet electrons via both electron cyclotron harmonic waves and whistler mode chorus waves to the loss cone, and includes their subsequent multiple atmospheric reflections between the two magnetically conjugated ionospheres. It is demonstrated that magnetosphere-ionosphere coupling is the key element in the formation of electron distribution function in the region of diffuse aurora at the magnetospheric altitudes.

  11. Starch extraction process coupled to protein recovery from leguminous tuberous roots (Pachyrhizus ahipa).

    PubMed

    Díaz, Andrea; Dini, Cecilia; Viña, Sonia Z; García, María A

    2016-11-05

    The objective of this work was to fit together the starch extraction from Pachyrhizus ahipa roots and the recovery of the proteins present in these storage organs, making an improved use of this novel raw material. The replacement of water by buffer PO4(-3)/NaCl as solvent in the first extraction steps improved protein extraction without lowering the starch yield. The starches obtained from the traditional and the proposed methods exhibited some differences in appearance and technological and thermal properties, which were endorsed to the adjustment in the methodology of extraction rather than to the use of buffer as solvent. Thus, P. ahipa starch obtaining procedure could be coupled to protein extraction with a minimum change in the methodology. This innovation did not significantly shift the characteristics of the starch obtained and allowed to obtain a protein yield of 135.7mg BSA equivalent protein/100g of fresh roots. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Simulating the coupling between atmosphere ocean processes and the planktonic ecosystem during SERIES

    NASA Astrophysics Data System (ADS)

    Steiner, N.; Denman, K.; McFarlane, N.; Solheim, L.

    2006-10-01

    We have developed a 1-D atmosphere-ocean-biogeochemical model to investigate the coupling between atmosphere-ocean exchanges and the planktonic ecosystem during the Subarctic Ecosystem Response to Iron Enrichment Study (SERIES) in 2002. The atmospheric Single Column Model (SCM) is based on the Canadian Centre for Climate Modelling and Analysis (CCCma) Atmospheric General Circulation Model (AGCM). The ocean component employs the General Ocean Turbulence Model (GOTM). A seven-component ecosystem model is embedded in GOTM, which includes nitrogen, organic and inorganic carbon, silica and oxygen cycling. We use observations from SERIES combined with atmospheric reanalysis data to initiate and force the coupled physical model. We found that atmospheric temperatures and humidities are higher and the stratification more stable if nudged to National Centre of Environmental Prediction (NCEP) rather than to European Centre for Medium-Range Weather Forecasts (ECMWF) 40-yr reanalysis data. Doubling the vertical resolution in the atmosphere improved the representation of mixing and the thermal structure, affecting cloudiness and radiative fluxes at the ocean surface as well as planetary boundary layer heights and gas dispersion in the lower atmosphere. From observed ocean-surface dimethyl sulphide (DMS) concentrations (outside the patch) we simulated DMS dispersion in the atmospheric boundary layer by applying a first-order loss term, with turnover times ranging from 1 to 4 days. During SERIES, shallow boundary-layer heights that occurred when DMS production was highest prevented dispersion into the atmosphere beyond several 100 m. Finally, successive model runs with iron fertilization starting on June 25, July 10 and 25 showed that the general nature of the response to iron enrichment at OSP (SERIES) is robust, but the strength as well as length of the response depend strongly on short-term atmospheric conditions (wind and radiative fluxes).

  13. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain

    SciTech Connect

    Manteufel, R.D.; Ahola, M.P.; Turner, D.R.; Chowdhury, A.H.

    1993-07-01

    A literature review has been conducted to determine the state of knowledge available in the modeling of coupled thermal (T), hydrologic (H), mechanical (M), and chemical (C) processes relevant to the design and/or performance of the proposed high-level waste (HLW) repository at Yucca Mountain, Nevada. The review focuses on identifying coupling mechanisms between individual processes and assessing their importance (i.e., if the coupling is either important, potentially important, or negligible). The significance of considering THMC-coupled processes lies in whether or not the processes impact the design and/or performance objectives of the repository. A review, such as reported here, is useful in identifying which coupled effects will be important, hence which coupled effects will need to be investigated by the US Nuclear Regulatory Commission in order to assess the assumptions, data, analyses, and conclusions in the design and performance assessment of a geologic reposit``. Although this work stems from regulatory interest in the design of the geologic repository, it should be emphasized that the repository design implicitly considers all of the repository performance objectives, including those associated with the time after permanent closure. The scope of this review is considered beyond previous assessments in that it attempts with the current state-of-knowledge) to determine which couplings are important, and identify which computer codes are currently available to model coupled processes.

  14. Aluminium content of some processed foods, raw materials and food additives in China by inductively coupled plasma-mass spectrometry.

    PubMed

    Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin

    2011-01-01

    The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.

  15. Effect of coupling on stochastic resonance and stochastic antiresonance processes in a unidirectionally N-coupled systems in periodic sinusoidal potential

    NASA Astrophysics Data System (ADS)

    Wadop Ngouongo, Y. J.; Djuidjé Kenmoé, G.; Kofané, T. C.

    2017-04-01

    This work presents the characterization of stochastic resonance (SR) and stochastic antiresonance (SAR) in terms of hysteresis loop area (HLA). In connection with SR and SAR phenomena, we study the dynamics of a chain of particles coupled by nonlinear springs in a periodic sinusoidal potential. The dependence of the coupling parameter as well as the system size on SR and SAR is analysed. We consider the role played by the nonlinear coupling on the SR. We show that there is a range of coupling parameter where only SAR is observed, after this range the SR can occur, however, there also exists a range where neither SAR nor SR appear. It is noted that the maximum and the minimum of the average input energy increases with the coupling parameter. Also demonstrate that there exists an optimal value of the number of particles N for which the average input energy of the first particle reaches the saturation.

  16. Three-dimensional approach using two coupled models for description of hydrological and biogeochemical processes at the catchment scale

    NASA Astrophysics Data System (ADS)

    Plesca, Ina; Kraft, Philipp; Haas, Edwin; Klatt, Steffen; Butterbach-Bahl, Klaus; Frede, Hans-Georg; Breuer, Lutz

    2014-05-01

    Hydrological and biogeochemical transport through changing landscapes has been well described during the past years in literature. However, the uncertainties of combined water quality and water quantity models are still challenging, both due to a lack in process understanding as well to spatiotemporal heterogeneity of environmental conditions driving the processes. In order to reduce the uncertainty in water quality and runoff predictions at the catchment scale, a variety of different model approaches from empirical-conceptual to fully physical and process based models have been developed. In this study we present a new modelling approach for the investigation of hydrological processes and nutrient cycles, with a focus on nitrogen in a small catchment from Hessen, Germany. A hydrological model based on the model toolbox Catchment Modelling Framework (CMF) has been coupled with the process based biogeochemical model LandscapeDNDC. States, fluxes and parameters are exchanged between the models at high temporal and spatial resolution using the Python scripting language in order to obtain a 3-dimensional model application. The transport of water and nutrients through the catchment is modelled using a 3D Richards/Darcy approach for subsurface fluxes, a kinematic wave approach for surface runoff and a Penman-Monteith based calculation of evapotranspiration. Biogeochemical processes are modelled by Landscape-DNDC, including plant growth and biomass allocation, organic matter mineralisation, nitrification, denitrification and associated nitrous oxide emissions. The interactions and module connectivity between the two coupled models, as well as the model application on a 3.7 km² catchment with the runoff results and nitrogen quantification will be presented in this study.

  17. Salicylic acid degradation by advanced oxidation processes. Coupling of solar photoelectro-Fenton and solar heterogeneous photocatalysis.

    PubMed

    Garza-Campos, Benjamin; Brillas, Enric; Hernández-Ramírez, Aracely; El-Ghenymy, Abdellatif; Guzmán-Mar, Jorge Luis; Ruiz-Ruiz, Edgar J

    2016-12-05

    A 3.0 L solar flow plant with a Pt/air-diffusion (anode/cathode) cell, a solar photoreactor and a photocatalytic photoreactor filled with TiO2-coated glass spheres has been utilized to couple solar photoelectro-Fenton (SPEF) and solar heterogeneous photocatalysis (SPC) for treating a 165mgL(-1) salicylic acid solution of pH 3.0. Organics were destroyed by OH radicals formed on the TiO2 photocatalyst and at the Pt anode during water oxidation and in the bulk from Fenton's reaction between added Fe(2+) and cathodically generated H2O2, along with the photolytic action of sunlight. Poor salicylic acid removal and mineralization were attained using SPC, anodic oxidation with electrogenerated H2O2 (AO-H2O2) and coupled AO-H2O2-SPC. The electro-Fenton process accelerated the substrate decay, but with low mineralization by the formation of byproducts that are hardly destroyed by OH. The mineralization was strongly increased by SPEF due to the photolysis of products by sunlight, being enhanced by coupled SPEF-SPC due to the additional oxidation by OH at the TiO2 surface. The effect of current density on the performance of both processes was examined. The most potent SPEF-SPC process at 150mAcm(-2) yielded 87% mineralization and 13% current efficiency after consuming 6.0AhL(-1). Maleic, fumaric and oxalic acids detected as final carboxylic acids were completely removed by SPEF and SPEF-SPC.

  18. Sulfamethazine removal by means of a combined process coupling an oxidation pretreatment and activated sludge culture - preliminary results.

    PubMed

    Saidi, Imen; Fourcade, Florence; Floner, Didier; Soutrel, Isabelle; Bellakhal, Nizar; Amrane, Abdeltif; Geneste, Florence

    2017-01-12

    A coupled electrochemical process and biological treatment was used to remove a biorecalcitrant antibiotic: sulfamethazine (SMT). The pretreatment was performed in a home-made flow cell involving graphite felt as a working electrode at potentials of 1 and 1.6 V/saturated calomel electrode (SCE); it was followed by a biological process involving activated sludge purchased from a local wastewater treatment plant. Activated sludge cultures of pretreated and non-pretreated SMT solution were carried out for 3 weeks, and different parameters were monitored, especially total organic carbon (TOC) and SMT concentrations. high-performance liquid chromatography results revealed that the target molecule was not assimilated by activated sludge. However, and confirming the improvement previously observed for the biological oxygen demand/chemical oxygen demand (BOD5/COD) ratio, from 0.08 before electrolysis to 0.58 after electrolysis, a pretreatment step in oxidation at 1.6 V/SCE led to a fast decrease of TOC during the subsequent biological treatment, since the mineralization yields increased from 10% for a non-pretreated SMT solution to 76.6% after electrolysis in oxidation (1.6 V/SCE), confirming the efficiency of coupling the electro-oxidation process with a biological treatment for the mineralization of SMT. Moreover, when the electrolysis was performed at 1 V/SCE, no biodegradation was observed, underlining the importance of the electrochemical pretreatment.

  19. Boundary Conditions for Diffusion-Mediated Processes within Linear Nanopores: Exact Treatment of Coupling to an Equilibrated External Fluid

    DOE PAGES

    Garcia, Andres; Evans, James W.

    2017-04-03

    In this paper, we consider a variety of diffusion-mediated processes occurring within linear nanopores, but which involve coupling to an equilibrated external fluid through adsorption and desorption. By determining adsorption and desorption rates through a set of tailored simulations, and by exploiting a spatial Markov property of the models, we develop a formulation for performing efficient pore-only simulations of these processes. Coupling to the external fluid is described exactly through appropriate nontrivial boundary conditions at the pore openings. This formalism is applied to analyze the following: (i) tracer counter permeation (TCP) where different labeled particles adsorb into opposite ends ofmore » the pore and establish a nonequilibrium steady state; (ii) tracer exchange (TE) with exchange of differently labeled particles within and outside the pore; (iii) catalytic conversion reactions where a reactant in the external fluid adsorbs into the pore and converts to a product which may desorb. The TCP analysis also generates a position-dependent generalized tracer diffusion coefficient, the form of which controls behavior in the TE and catalytic conversion processes. We focus on the regime of single-file diffusion within the pore which produces the strongest correlations and largest deviations from mean-field type behavior. Finally, behavior is quantified precisely via kinetic Monte Carlo simulations but is also captured with appropriate analytic treatments.« less

  20. Data acquisition and processing parameters for concrete bridge deck condition assessment using ground-coupled ground penetrating radar: Some considerations

    NASA Astrophysics Data System (ADS)

    Varnavina, Aleksandra V.; Khamzin, Aleksey K.; Torgashov, Evgeniy V.; Sneed, Lesley H.; Goodwin, Brandon T.; Anderson, Neil L.

    2015-03-01

    Ground penetrating radar (GPR) is a non-destructive geophysical technique that is widely used to determine the relative condition of reinforced concrete. This paper presents case studies from Missouri, USA, where a ground-coupled GPR system was used to assess the condition of eleven concrete bridge decks. The main goal of this paper is to develop appropriate acquisition and processing parameters in order to conduct rapid, efficient, and cost-effective assessment of bridge decks. To accomplish this goal, the GPR data sets were collected with slightly different acquisition parameters and processed using different parameters. The quality of the results and the time required for each bridge deck survey are analyzed. Additionally, several experimental data sets were collected across a 12th concrete bridge deck to examine the influence of weather conditions on reflection amplitude values, since amplitude analysis is used in this study. Based on the authors' experience and findings, appropriate GPR acquisition and processing parameters are suggested and described for use of the ground-coupled GPR method for bridge deck assessment.

  1. Optoelectronic properties of Black-Silicon generated through inductively coupled plasma (ICP) processing for crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hirsch, Jens; Gaudig, Maria; Bernhard, Norbert; Lausch, Dominik

    2016-06-01

    The optoelectronic properties of maskless inductively coupled plasma (ICP) generated black silicon through SF6 and O2 are analyzed by using reflection measurements, scanning electron microscopy (SEM) and quasi steady state photoconductivity (QSSPC). The results are discussed and compared to capacitively coupled plasma (CCP) and industrial standard wet chemical textures. The ICP process forms parabolic like surface structures in a scale of 500 nm. This surface structure reduces the average hemispherical reflection between 300 and 1120 nm up to 8%. Additionally, the ICP texture shows a weak increase of the hemispherical reflection under tilted angles of incidence up to 60°. Furthermore, we report that the ICP process is independent of the crystal orientation and the surface roughness. This allows the texturing of monocrystalline, multicrystalline and kerf-less wafers using the same parameter set. The ICP generation of black silicon does not apply a self-bias on the silicon sample. Therefore, the silicon sample is exposed to a reduced ion bombardment, which reduces the plasma induced surface damage. This leads to an enhancement of the effective charge carrier lifetime up to 2.5 ms at 1015 cm-3 minority carrier density (MCD) after an atomic layer deposition (ALD) with Al2O3. Since excellent etch results were obtained already after 4 min process time, we conclude that the ICP generation of black silicon is a promising technique to substitute the industrial state of the art wet chemical textures in the solar cell mass production.

  2. A dual process model of grief counseling: findings from the Changing Lives of Older Couples (CLOC) study.

    PubMed

    Richardson, Virginia E

    2007-01-01

    This paper tests Stroebe and Schut's Dual Process Model of Bereavement using data from the Changing Lives of Older Couples (CLOC), a prospective study of 1,532 married persons over the age of 65. This analysis focused on a weighted sample of 104 widowers and 492 widows at six months, 18 months, and four years later. Bradburn's Affect Balance Scale was used as the dependent variable, and the independent variables were based on Stroebe and Schut's bereavement model. The multiple regression analyses revealed that loss- and restoration-oriented activities were important throughout bereavement. Implications for bereavement counseling are discussed.

  3. The Decision-Making Process of Genetically At-Risk Couples Considering Preimplantation Genetic Diagnosis: Initial Findings from a Grounded Theory Study

    PubMed Central

    Hershberger, Patricia E.; Gallo, Agatha M.; Kavanaugh, Karen; Olshansky, Ellen; Schwartz, Alan; Tur-Kaspa, Ilan

    2012-01-01

    Exponential growth in genomics has led to public and private initiatives worldwide that have dramatically increased the number of procreative couples who are aware of their ability to transmit genetic disorders to their future children. Understanding how couples process the meaning of being genetically at risk for their procreative life lags far behind the advances in genomic and reproductive sciences. Moreover, society, policy makers, and clinicians are not aware of the experiences and nuances involved when modern couples are faced with using Preimplantation Genetic Diagnosis (PGD). The purpose of this study was to discover the decision-making process of genetically at-risk couples as they decide whether to use PGD to prevent the transmission of known single-gene or sex-linked genetic disorders to their children. A qualitative, grounded theory design guided the study in which 22 couples (44 individual partners) from the USA, who were actively considering PGD, participated. Couples were recruited from June 2009 to May 2010 from the Internet and from a large PGD center and a patient newsletter. In-depth semi-structured interviews were completed with each individual partner within the couple dyad, separate from their respective partner. We discovered that couples move through four phases (Identify, Contemplate, Resolve, Engage) of a complex, dynamic, and iterative decision-making process where multiple, sequential decisions are made. In the Identify phase, couples acknowledge the meaning of their at-risk status. Parenthood and reproductive options are explored in the Contemplate phase, where 41% of couples remained for up to 36 months before moving into the Resolve phase. In Resolve, one of three decisions about PGD use is reached, including: Accepting, Declining, or Oscillating. Actualizing decisions occur in the Engage phase. Awareness of the decision-making process among genetically at-risk couples provides foundational work for understanding critical processes

  4. Distributed Processing Tools Definition. Volume 1. Hardware and Software Technologies for Tightly-Coupled Distributed Systems.

    DTIC Science & Technology

    1983-06-01

    LOSARDO Project Engineer APPROVED: .MARMCINIhI, Colonel. USAF Chief, Coaud and Control Division FOR THE CCOaIDKR: Acting Chief, Plea Off ice * **711...WORK UNIT NUMBERS General Dynamics Corporation 62702F Data Systems Division P 0 Box 748, Fort Worth TX 76101 55811829 I1. CONTROLLING OFFICE NAME AND...Processing System for 29 the Operation/Direction Center(s) 4-3 Distribution of Processing Control 30 for the Operation/Direction Center(s) 4-4 Generalized

  5. Planetary wave coupling processes in the middle atmosphere (30 90 km): A study involving MetO and MFR data

    NASA Astrophysics Data System (ADS)

    Chshyolkova, T.; Manson, A. H.; Meek, C. E.; Avery, S. K.; Thorsen, D.; MacDougall, J. W.; Hocking, W.; Murayama, Y.; Igarashi, K.

    2006-02-01

    The MetO assimilated data and mesospheric winds provided by five medium frequency radars (MFR) from the Canada US Japan Opportunity (CUJO) network have been used to study coupling processes due to planetary waves (PWs) in the middle atmosphere. It is shown that there is strong vertical coupling between the stratosphere and mesosphere especially during winter months. However, not all observed disturbances in mesospheric winds can be explained by the simple propagation of PWs from below. In addition to the vertical coupling there is also weaker horizontal “inter-hemispheric” coupling during equinoxes. The data used are from December 2000 to December 2002. The time interval was chosen to include austral winters and springs of 2 years: the dynamically unusual year 2002, during which a major stratospheric warming involving a split vortex and wind reversals occurred in the Southern Hemisphere, and a more typical year 2001. The character of PW activity during these 2 years is compared. In contrast to the usually weak PW activity dominated by eastward motions, both strong eastward and westward propagating waves existed during austral winter of 2002. Wavelet spectra of MetO winds show strong peaks near 14 days that match similar signals observed in mesospheric winds at Antarctic stations [Dowdy et al., 2004. The large-scale dynamics of the mesosphere lower thermosphere during the SH stratospheric warming of 2002. Geophysical Research Letters 31, L14102. doi:10.1029/2004GL020282] during the stratospheric warming. It is suggested that this oscillation was generated at low atmospheric heights and propagated upward. The longer duration of the stratospheric mesospheric winter vortex (7 months) compared to that of the summer jet in the Northern Hemisphere provide equinoctial months when eastward winds dominate globally. Results suggest that during equinoxes, with favourable conditions, the PWs with ˜10-, 16- and 25-day periods can penetrate to the opposite hemisphere.

  6. Exploration of the influence of coupled mass transfer processes on chlorinated solvent plume persistence in heterogeneous source zones

    NASA Astrophysics Data System (ADS)

    Yang, L.; Abriola, L. M.

    2016-12-01

    Restoration of source zones to EPA regulated levels has rarely been achieved at chlorinated solvent-contaminated sites. In addition to residual DNAPL, sequestered aqueous and sorbed phase mass in low permeability zones have been recognized as important secondary sources that can be released back into mobile plumes and sustain downgradient plume tailing. This study uses a modified version of MT3DMS to explore the influence of dissolution, sorption, and diffusion process coupling on source longevity and near-source plume persistence for an ensemble of complex field site realizations. Simulation results suggest that sorption/desorption processes will control the rate of reverse mass transport from low permeability zones to mobile regions. Inclusion of sorption and the selected sorption model, whether equilibrium or nonequilibrium, linear or nonlinear, are shown to influence plume persistence, especially for the post-DNAPL dissolution period. Comparison of selected 3-D and 2-D simulations reveals discrepancies in predictions of plume longevity. Simulation dimensionality is shown to be more important when the subsurface material sorption behavior is characterized as non-ideal. The heterogeneous distribution of the DNAPL saturation is demonstrated to strongly influence mass storage and release in low permeability regions. For example, fast depletion of neighboring DNAPL initiates the early release of sequestered mass in low permeability zones, and dominant transport processes vary locally in highly heterogeneous source regions. Simulations also suggest that the presence of small zones of entrapped DNAPL mass can easily be missed in the characterization of aged field sites, since low concentration plumes emanating from entrapped DNAPL mass can be interpreted as originating from other secondary sources. Indeed, for the examined scenarios, DNAPL dissolution processes tended to control plume tailing for 53-98% of the plume life, highlighting the importance of accounting for

  7. Detection and Correction of Under-/Overexposed Optical Soundtracks by Coupling Image and Audio Signal Processing

    NASA Astrophysics Data System (ADS)

    Taquet, Jonathan; Besserer, Bernard; Hassaine, Abdelali; Decenciere, Etienne

    2008-12-01

    Film restoration using image processing, has been an active research field during the last years. However, the restoration of the soundtrack has been mainly performed in the sound domain, using signal processing methods, despite the fact that it is recorded as a continuous image between the images of the film and the perforations. While the very few published approaches focus on removing dust particles or concealing larger corrupted areas, no published works are devoted to the restoration of soundtracks degraded by substantial underexposure or overexposure. Digital restoration of optical soundtracks is an unexploited application field and, besides, scientifically rich, because it allows mixing both image and signal processing approaches. After introducing the principles of optical soundtrack recording and playback, this contribution focuses on our first approaches to detect and cancel the effects of under and overexposure. We intentionally choose to get a quantification of the effect of bad exposure in the 1D audio signal domain instead of 2D image domain. Our measurement is sent as feedback value to an image processing stage where the correction takes place, building up a "digital image and audio signal" closed loop processing. The approach is validated on both simulated alterations and real data.

  8. Coupled-channels study of the {pi}{sup -}p {right arrow} {eta}n process.

    SciTech Connect

    Durand, J.; Julia-Diaz, B.; Lee, T.-S. H.; Saghai, B.; Sato, T.; Physics; Inst. de Recherche sur les lois Fondamentales de l'Univers; Univ. de Barcelona; Thomas Jefferson National Accelerator Facility; Osaka Univ.

    2008-08-01

    The reaction {pi}{sup -}p {yields} {eta}n is investigated within a dynamical coupled-channels model of meson production reactions in the nucleon resonance region. The meson baryon channels included are {pi}N, {eta}N, {pi}{Delta}, {sigma}N, and {rho}N. The nonresonant meson-baryon interactions of the model are derived from a set of Lagrangians by using a unitary transformation method. One or two excited nucleon states in each of S,P,D, and F partial waves are included to generate the resonant amplitudes. Data of the {pi}{sup -}p {yields} {eta}n reaction from threshold up to a total center-of-mass energy of about 2 GeV are satisfactorily reproduced and the roles played by the following nine nucleon resonances are investigated: S{sub 11}(1535),S{sub 11}(1650),P{sub 11}(1440),P{sub 11}(1710),P{sub 13}(1720),D{sub 13}(1520),D{sub 13}(1700),D{sub 15}(1675), and F{sub 15}(1680). The reaction mechanism and the predicted {eta}N scattering length are discussed.

  9. Exploring processes of change in couple relationship education: predictors of change in relationship quality.

    PubMed

    Rauer, Amy J; Adler-Baeder, Francesca; Lucier-Greer, Mallory; Skuban, Emily; Ketring, Scott A; Smith, Thomas

    2014-02-01

    In the past several decades, a number of largely atheoretical individual and meta-analytic studies of couple relationship education (CRE) programs have focused on program effectiveness without considerations of how these programs work and for whom. To address this gap in the literature, the current study drew upon assumptions from social-cognitive and behavioral theories that are implicit in CRE design to assess the influence of short-term changes from pre- to posttreatment in behaviors and commitment on changes in relationship quality among a racially and economically diverse group of 2,824 individuals who participated in a CRE program. Findings from structural equation modeling indicated that the best-fitting model for both men and women was one in which changes in behaviors predicted changes in relationship quality via their influence on changes in commitment. Further, a series of moderational analyses provided some evidence to suggest that the strength of the relationships between these variables may depend to a small extent on the social address of the participants (race, income) and to a greater extent on characteristics of the CRE experience (i.e., beginning the class at lower levels of functioning, attending with a partner). Findings help us begin to understand the influences among domains of change that occur as a result of participating in a CRE program, as well as offering some useful information to practitioners on demographic and contextual moderators of program outcomes. Implications for future research on the mechanisms of change for CRE are presented.

  10. Pore-Scale Process Coupling and Effective Surface Reaction Rates in Heterogeneous Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Liu, Yuanyuan; Kerisit, Sebastien N.; Zachara, John M.

    2015-09-01

    This manuscript provides a review of pore-scale researches in literature including experimental and numerical approaches, and scale-dependent behavior of geochemical and biogeochemical reaction rates in heterogeneous porous media. A mathematical equation that can be used to predict the scale-dependent behavior of geochemical reaction rates in heterogeneous porous media has been derived. The derived effective rate expression explicitly links the effective reaction rate constant to the intrinsic rate constant, and to the pore-scale variations in reactant concentrations in porous media. Molecular simulations to calculate the intrinsic rate constants were provided. A few examples of pore-scale simulations were used to demonstrate the application of the equation to calculate effective rate constants in heterogeneous materials. The results indicate that the deviation of effective rate constant from the intrinsic rate in heterogeneous porous media is caused by the pore-scale distributions of reactants and their correlation, which are affected by the pore-scale coupling of reactions and transport.

  11. Magnetosheath High-Speed Jets: Coupling Bow Shock Processes to the Magnetosphere

    NASA Astrophysics Data System (ADS)

    Hietala, H.

    2016-12-01

    Magnetosheath high-speed jets (HSJs) - dynamic pressure enhancements typically of 1 Earth radius in size - are the most common dayside transient. They impact the magnetopause many times per hour, especially during intervals of low interplanetary magnetic field cone-angle. Upon impact they cause large amplitude yet localized magnetopause indentations, and can couple to global dynamics by driving magnetospheric waves that alter radiation belt electron populations, and by affecting subsolar magnetopause reconnection. Previous observational studies have provided considerable insight into properties of the HSJs. Similarly, recent hybrid simulations have demonstrated the formation of jets downstream of the quasi-parallel shock with properties resembling the observed ones. Yet these studies were based on differing definitions of transients, have used varying terminology, methodology, data sets/simulations, and yielded, not unexpectedly, differing results on origin and characteristics of jets. In this talk we will present the first results towards a more unified understanding of these jets from a dedicated International Space Science Institute (ISSI) team. In particular, we compare the three selection criteria used in the recent observational statistical studies: (i) high dynamic pressure in the Sun-Earth direction with respect to the solar wind; (ii) enhancement of the total dynamic pressure with respect to the ambient magnetosheath plasma; (iii) enhancement of density with respect to the ambient plasma. We apply these criteria to global kinetic simulations and compare what structures they pick out. Consequently, we can effectively demonstrate where the different criteria agree and where they disagree.

  12. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states.

    PubMed

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-02-24

    Spin-orbit interaction entangles the orbitals with the different spins. The spin-orbital-entangled states were discovered in surface states of topological insulators. However, the spin-orbital-entanglement is not specialized in the topological surface states. Here, we show the spin-orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin-orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin-orbit interaction.

  13. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    PubMed Central

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-01-01

    Spin–orbit interaction entangles the orbitals with the different spins. The spin–orbital-entangled states were discovered in surface states of topological insulators. However, the spin–orbital-entanglement is not specialized in the topological surface states. Here, we show the spin–orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin–orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin–orbit interaction. PMID:28232721

  14. Spin-dependent quantum interference in photoemission process from spin-orbit coupled states

    NASA Astrophysics Data System (ADS)

    Yaji, Koichiro; Kuroda, Kenta; Toyohisa, Sogen; Harasawa, Ayumi; Ishida, Yukiaki; Watanabe, Shuntaro; Chen, Chuangtian; Kobayashi, Katsuyoshi; Komori, Fumio; Shin, Shik

    2017-02-01

    Spin-orbit interaction entangles the orbitals with the different spins. The spin-orbital-entangled states were discovered in surface states of topological insulators. However, the spin-orbital-entanglement is not specialized in the topological surface states. Here, we show the spin-orbital texture in a surface state of Bi(111) by laser-based spin- and angle-resolved photoelectron spectroscopy (laser-SARPES) and describe three-dimensional spin-rotation effect in photoemission resulting from spin-dependent quantum interference. Our model reveals that, in the spin-orbit-coupled systems, the spins pointing to the mutually opposite directions are independently locked to the orbital symmetries. Furthermore, direct detection of coherent spin phenomena by laser-SARPES enables us to clarify the phase of the dipole transition matrix element responsible for the spin direction in photoexcited states. These results permit the tuning of the spin polarization of optically excited electrons in solids with strong spin-orbit interaction.

  15. Pore-scale modeling of hydromechanical coupled mechanics in hydrofracturing process

    NASA Astrophysics Data System (ADS)

    Chen, Zhiqiang; Wang, Moran

    2017-05-01

    Hydrofracturing is an important technique in petroleum industry to stimulate well production. Yet the mechanism of induced fracture growth is still not fully understood, which results in some unsatisfactory wells even with hydrofracturing treatments. In this work we establish a more accurate numerical framework for hydromechanical coupling, where the solid deformation and fracturing are modeled by discrete element method and the fluid flow is simulated directly by lattice Boltzmann method at pore scale. After validations, hydrofracturing is simulated with consideration on the strength heterogeneity effects on fracture geometry and microfailure mechanism. A modified topological index is proposed to quantify the complexity of fracture geometry. The results show that strength heterogeneity has a significant influence on hydrofracturing. In heterogeneous samples, the fracturing behavior is crack nucleation around the tip of fracture and connection of it to the main fracture, which is usually accompanied by shear failure. However, in homogeneous ones the fracture growth is achieved by the continuous expansion of the crack, where the tensile failure often dominates. It is the fracturing behavior that makes the fracture geometry in heterogeneous samples much more complex than that in homogeneous ones. In addition, higher pore pressure leads to more shear failure events for both heterogeneous and homogeneous samples.

  16. Intimacy Processes and Psychological Distress among Couples Coping with Head and Neck or Lung Cancers

    PubMed Central

    Manne, Sharon; Badr, Hoda

    2009-01-01

    Objective Couples coping with head and neck and lung cancers are at increased risk for psychological and relationship distress given patients’ poor prognosis and aggressive and sometimes disfiguring treatments. The relationship intimacy model of couples’ psychosocial adaptation proposes that relationship intimacy mediates associations between couples’ cancer-related support communication and psychological distress. Because the components of this model have not yet been evaluated in the same study, we examined associations between three types of cancer-related support communication (self-disclosure, perceived partner disclosure, and protective buffering), intimacy (global and cancer-specific), and global distress among patients coping with either head and neck or lung cancer and their partners. Method One hundred and nine patients undergoing active treatment and their partners whose average time since diagnosis was 15 months completed cross-sectional surveys. Results For both patients and their partners, multilevel analyses using the Actor-Partner Interdependence Model showed that global and cancer-specific intimacy fully mediated associations between self- and perceived partner disclosure and distress; global intimacy partially mediated the association between protective buffering and distress. Evidence for moderated mediation was found; specifically, lower levels of distress were reported as a function of global and cancer-specific intimacy, but these associations were stronger for partners than for patients. Conclusions Enhancing relationship intimacy by disclosing cancer-related concerns may facilitate both partners’ adjustment to these illnesses. PMID:19885852

  17. A process-based evapotranspiration model incorporating coupled soil water-atmospheric controls

    NASA Astrophysics Data System (ADS)

    Haghighi, Erfan; Kirchner, James

    2016-04-01

    Despite many efforts to develop evapotranspiration models (in the framework of the Penman-Monteith equation) with improved parametrizations of various resistance terms to water vapor transfer into the atmosphere, evidence suggests that estimates of evapotranspiration and its partitioning are prone to bias. Much of this bias could arise from the exclusion of surface hydro-thermal properties and of physical interactions close to the surface where heat and water vapor fluxes originate. Recent progress has been made in mechanistic modeling of surface-turbulence interactions, accounting for localized heat and mass exchange rates from bare soil surfaces covered by protruding obstacles. We seek to extend these results partially vegetated surfaces, to improve predictive capabilities and accuracy of remote sensing techniques quantifying evapotranspiration fluxes. The governing equations of liquid water, water vapor, and energy transport dynamics in the soil-plant-atmosphere system are coupled to resolve diffusive vapor fluxes from isolated pores (plant stomata and soil pores) across a near-surface viscous sublayer, explicitly accounting for pore-scale transport mechanisms and environmental forcing. Preliminary results suggest that this approach offers unique opportunities for directly linking transport properties in plants and adjacent bare soil with resulting plant transpiration and localized bare soil evaporation rates. It thus provides an essential building block for interpreting and upscaling results to field and landscape scales for a range of vegetation cover and atmospheric conditions.

  18. Kinetic Modeling of Biogeochemical Processes in Subsurface Environments: Coupling Transport, Microbial Metabolism and Geochemistry

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2002-12-01

    Microbial reactions play an important role in regulating pore water chemistry (e.g., pH and Eh) as well as secondary mineral distribution in many subsurface systems and therefore directly control trace metal migration and recycling in those systems. In this paper, we present a multicomponent kinetic model that explicitly accounts for the coupling of microbial metabolism, microbial population dynamics, advective/dispersive transport of chemical species, aqueous speciation, and mineral precipitation/dissolution in porous geologic media. A modification to the traditional microbial growth kinetic equation is proposed, to account for the likely achievement of quasi-steady state biomass accumulations in natural environments. A scale dependence of microbial reaction rates is derived based on both field observations and the scaling analysis of reactive transport equations. As an example, we use the model to simulate a subsurface contaminant migration scenario, in which a water flow containing both uranium and a complexing organic ligand is recharged into an oxic carbonate aquifer. The model simulation shows that Mn and Fe oxyhydroxides may vary significantly along a flow path. The simulation also shows that uranium (VI) can be reduced and therefore immobilized in the anoxic zone created by microbial degradation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (US DOE) under Contract DE-AC04-94AL85000.

  19. A novel 3D-layered electrochemical-thermal coupled model strategy for the nail-penetration process simulation

    NASA Astrophysics Data System (ADS)

    Liang, Guozhou; Zhang, Yiming; Han, Qi; Liu, Zhaoping; Jiang, Zhen; Tian, Shuang

    2017-02-01

    The safety is one of the persisting concerns related with Lithium-ion (Li-ion) batteries, among which the internal short-circuit is the most dangerous abusive situation and has always been the root cause for several catastrophic accidents in recent years. In this work, a 3D-layered electrochemical-thermal coupled model is employed to investigate the nail-penetration process in a Li-ion cell. The model is based on multilayer construction of a cell, and an effective strategy to evaluate the short-circuit area equivalent resistance (i.e. the equivalent resistance of short-circuit area that is caused by nail-penetration) during the penetration process is proposed. The developed model is proved to have capability of estimating the thermal runaway time, as well as the temperature distribution during nail-penetration process. It is also found that the active material loss during the nail-penetration process can be reconstructed by utilizing the developed model, which could provide understandings about the side reactions inside the cell during the nail-penetration process. The present study provides some insights about the nail-penetration process, and can be treated as a useful tool that helps the design of Li-ion cells for improving safety.

  20. Close coupling of pre- and post-processing vision stations using inexact algorithms

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Hsien V.; Sherkat, Nasser; Thomas, Peter D.

    1996-02-01

    Work has been reported using lasers to cut deformable materials. Although the use of laser reduces material deformation, distortion due to mechanical feed misalignment persists. Changes in the lace patten are also caused by the release of tension in the lace structure as it is cut. To tackle the problem of distortion due to material flexibility, the 2VMethod together with the Piecewise Error Compensation Algorithm incorporating the inexact algorithms, i.e., fuzzy logic, neural networks and neural fuzzy technique, are developed. A spring mounted pen is used to emulate the distortion of the lace pattern caused by tactile cutting and feed misalignment. Using pre- and post-processing vision systems, it is possible to monitor the scalloping process and generate on-line information for the artificial intelligence engines. This overcomes the problems of lace distortion due to the trimming process. Applying the algorithms developed, the system can produce excellent results, much better than a human operator.

  1. Failure Analysis of a Sheet Metal Blanking Process Based on Damage Coupling Model

    NASA Astrophysics Data System (ADS)

    Wen, Y.; Chen, Z. H.; Zang, Y.

    2013-11-01

    In this paper, a blanking process of sheet metal is studied by the methods of numerical simulation and experimental observation. The effects of varying technological parameters related to the quality of products are investigated. An elastoplastic constitutive equation accounting for isotropic ductile damage is implemented into the finite element code ABAQUS with a user-defined material subroutine UMAT. The simulations of the damage evolution and ductile fracture in a sheet metal blanking process have been carried out by the FEM. In order to guarantee computation accuracy and avoid numerical divergence during large plastic deformation, a specified remeshing technique is successively applied when severe element distortion occurs. In the simulation, the evolutions of damage at different stage of the blanking process have been evaluated and the distributions of damage obtained from simulation are in proper agreement with the experimental results.

  2. Chilly Hilly - coupling models of landscape evolution and subsurface thermal processes

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Anderson, R. S.

    2014-12-01

    Many hillslope processes - physical, chemical, and biological - depend on subsurface temperature and water availability. As the subsurface temperature field varies both in space and through climate cycles, the dominant processes of mobile regolith production and transport and the rate at which they act will vary. These processes include the chemical weathering of minerals, cracking of rocks through frost action and tree roots, presence and impact of vegetation on soil cohesion, location and activity of burrowing and trampling animals, frost creep, and solifluction. In order to explore the interplay between these processes across a landscape and over geologic time, we develop a pseudo-three-dimensional subsurface thermal model within the Landlab landscape evolution modeling framework, driven by an associated spatially explicit radiative surface boundary condition. We begin with the analytical solution for conduction in a medium with uniform thermal properties and progress to a numerical model that acknowledges variable material properties, water content, and phase change. At the surface we incorporate spatial and temporal variations in incoming short-wave radiation due to elevation, latitude, aspect, shading and orbital variations. Outgoing long-wave radiation is taken to depend on the surface temperature and may be modified by allowing back-radiation from the atmosphere. With these tools we target variations in regolith production and motion over the long timescales on which hillslopes evolve. We implement a basic parameterization of temperature-dependent chemical and physical weathering linked to mobile regolith generation. We incorporate multiple regolith transport processes including heave, creep, solifluction, tree throw, and animal burrowing. We incorporate material tracking to trace the chemical evolution of regolith as it moves downslope. Our intention is not to parameterize all operative processes, but to include sufficient detail to identify how the

  3. Training Couples in Communication Linkages: An Empirical Study in Maximizing Family Energy through Understanding Communication Processes.

    ERIC Educational Resources Information Center

    Strong, John R.; Brutz, Judy

    The traditional model of communication (sender-message-channel-receiver, SMCR) treats communication as a product rather than a process of interrelated elements of interaction. The SMCR model identifies communication skills, attitudes, knowledge, and sociocultural positions as important factors affecting interactions. According to this model, the…

  4. Coupling mechanism between wear and oxidation processes of 304 stainless steel in hydrogen peroxide environments.

    PubMed

    Dong, Conglin; Yuan, Chengqing; Bai, Xiuqin; Li, Jian; Qin, Honglin; Yan, Xinping

    2017-05-24

    Stainless steel is widely used in strongly oxidizing hydrogen peroxide (H2O2) environments. It is crucial to study its wear behaviour and failure mode. The tribological properties and oxidation of 304 stainless steel were investigated using a MMW-1 tribo-tester with a three-electrode setup in H2O2 solutions with different concentrations. Corrosion current densities (CCDs), coefficients of frictions (COFs), wear mass losses, wear surface topographies, and metal oxide films were analysed and compared. The results show that the wear process and oxidation process interacted significantly with each other. Increasing the concentration of H2O2 or the oxidation time was useful to form a layer of integrated, homogeneous, compact and thick metal oxide film. The dense metal oxide films with higher mechanical strengths improved the wear process and also reduced the oxidation reaction. The wear process removed the metal oxide films to increase the oxidation reaction. Theoretical data is provided for the rational design and application of friction pairs in oxidation corrosion conditions.

  5. Partial nitritation of swine wastewater in view of its coupling with the anammox process

    USDA-ARS?s Scientific Manuscript database

    Partial nitritation (PN) of swine wastewater was investigated in a sequencing batch reactor (SBR) using a high performance nitrifying sludge (HPNS). Characteristics of the wastewater used were low content of biodegradable organic carbon and high alkalinity-to-ammonium ratio. Process temperature was ...

  6. Hydromechanical Imaging of Fractured-Porous Rocks Properties and Coupled Processes

    NASA Astrophysics Data System (ADS)

    Guglielmi, Y.; Cappa, F.; Rutqvist, J.; Wang, J. S.

    2009-12-01

    The High-Pulse Poroelasticity Protocol (HPPP) project is dedicated to geophysical monitoring of CO2 injection in reservoirs (http://hppp.unice.fr/), focusing currently on hydromechanical testing in carbonate rock. The HPPP probe uses fiber-optic sensors for dynamic fluid pressure/mechanical deformation measurements in boreholes, with reflection of light at specific wavelength from fiber Bragg gratings mounted between inflatable packers. The probe requires no downhole electrical supply, thus the operation is passive, with response time << 0.5 ms and probe sizes from ~12 to ~25 mm. The sensor is immune to EM interference, and can stand harsh environments. The probe laboratory and in situ calibration and the development of receiving array of sensors around HPPP are established prior to borehole installation. The field measurements include the detection of coupled seismic - poroelastic waves (Fast Biot Waves) in saturated and unsaturated zones. Within the injection chamber, seismic pressure waves of 1 to 10 Hz and static hydraulic diffusion are measured to quantify the coupling to the reservoir. Oscillations with period of several ms are induced by the onset of fluid pulses and quickly reach quasi-static state with high pressure maintained for seconds. The accuracies of fiber optical displacement sensor is 10-7 m and pressure sensor 103 Pa. In the rock medium, 3D MEM accelerometers with frequency range of 0 - 1 kHz can be mounted with distances of deci-meters to meters from the HPPP probe. Undrained responses with strong differences in amplitude and shape between velocity components are detected right after the rise of fluid pressure. After the pressure pulse, seismicity related to pulse pressure diffusion is detected. Accelerometers are also deployed in the Coaraze site (in southeastern France) with both fault related fractures and bedding planes well characterized. Water tables can be raised or lowered in the fracture/porous block by closing and opening a spring

  7. Capturing poromechanical coupling effects of the reactive fracturing process in porous rock via a DEM-network model

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Sun, WaiChing

    2016-04-01

    Fluid transport in a porous medium has important implications for understanding natural geological processes. At a sufficiently large scale, a fluid-saturated porous medium can be regarded as a two-phase continuum, with the fluid constituent flowing in the Darcian regime. Nevertheless, a fluid mediated chemical reaction can in some cases change the permeability of the rock locally: Mineral dissolution can cause increased permeability, whereas mineral precipitation can reduce the permeability. This might trigger a complicated hydro-chemo-mechanical coupling effect that causes channeling of fluids or clogging of the system. If the fluid is injected or produced at a sufficiently high rate, the pressure might increase enough to cause the onset and propagation of fractures. Fractures in return create preferential flow paths that enhance permeability, localize fluid flow and chemical reaction, prevent build-up of pore pressure and cause anisotropy of the hydro-mechanical responses of the effective medium. This leads to a complex coupled process of solid deformation, chemical reaction and fluid transport enhanced by the fracture formation. In this work, we develop a new coupled numerical model to study the complexities of feedback among fluid pressure evolution, fracture formation and permeability changes due to a chemical process in a 2D system. We combine a discrete element model (DEM) previously used to study a volume expanding process[1, 2] with a new fluid transport model based on poroelasticity[3] and a fluid-mediated chemical reaction that changes the permeability of the medium. This provides new insights into the hydro-chemo-mechanical process of a transforming porous medium. References [1] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A. "Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration", Earth Planet. Sc. Lett. 389C, 2014a, pp. 132 - 142, doi:10.1016/j.epsl.2013.12.039. [2] Ulven, O. I

  8. On the possibility of the multiple inductively coupled plasma and helicon plasma sources for large-area processes

    SciTech Connect

    Lee, Jin-Won; Lee, Yun-Seong Chang, Hong-Young; An, Sang-Hyuk

    2014-08-15

    In this study, we attempted to determine the possibility of multiple inductively coupled plasma (ICP) and helicon plasma sources for large-area processes. Experiments were performed with the one and two coils to measure plasma and electrical parameters, and a circuit simulation was performed to measure the current at each coil in the 2-coil experiment. Based on the result, we could determine the possibility of multiple ICP sources due to a direct change of impedance due to current and saturation of impedance due to the skin-depth effect. However, a helicon plasma source is difficult to adapt to the multiple sources due to the consistent change of real impedance due to mode transition and the low uniformity of the B-field confinement. As a result, it is expected that ICP can be adapted to multiple sources for large-area processes.

  9. A Coupled Approach to Weld Pool, Phase and Residual Stress Modelling of Laser Direct Metal Deposition (LDMD) Processes

    NASA Astrophysics Data System (ADS)

    Vogel, Michael; Khan, Mushtaq; Ibara-Medina, Juansethi; Pinkerton, Andrew; N'Dri, Narcisse; Megahed, Mustafa

    This paper describes a complete CFD model of the laser metal deposition process. The model covers the complete process, starting from the simulation of powder particles in the deposition head and finishing with the final part. Individual phenomena that are considered in the gas-phase stage of the model include the ricocheting of particles within the head, the flow of powder particles, their interaction with the laser and powder catchment/bouncing. Phenomena considered in the liquid phase (melt pool) stage of the model include particle enthalpy effects, buoyancy, temperature-dependent material properties and Marangoni forces. The CFD model is coupled with a metallurgical database to predict the phase and material properties of the solidified deposit and heat affected area and residual stresses in the part. Modelled and experimental characteristics of multi-track deposits of M2 steel show good agreement.

  10. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-01-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions. PMID:27671606

  11. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow.

  12. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-09-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions.

  13. The coupled thermo-mechanical-microstructural finite element modeling of hot stamping process in 22MnB5 steel

    NASA Astrophysics Data System (ADS)

    Chen, Xiangjun; Xiao, Namin; Li, Dianzhong; Li, Guangyao; Sun, Guangyong

    2013-12-01

    In this study, a coupled thermo-mechanical-microstructural finite element model based on the subroutine of commercial software ABAQUS is developed to predict the hot stamping process in 22MnB5 steel. The Johnson-Mehl-Avrami-Kolmogorov type model with Scheil' additivity rule and Koistinen-Marburger model are adopted to simulate the diffusional phase transformation and diffusionless one respectively. During the calculation of temperature and stress/strain field, the contributions of microstructure evolution, e.g. transformation latent heat, transformation strain, and transformation plasticity are taken into account, which give more insight of the material response. The model allows to evaluate the transient stress and strain distributions, the final microstructure constituent and the final distortion of the sheet part during the press quenching process. The effect of transformation plasticity on the geometry precision and the residual stress are discussed.

  14. Health, Trust, or “Just Understood”: Explicit and Implicit Condom Decision-Making Processes Among Black, White, and Interracial Same-Sex Male Couples

    PubMed Central

    Campbell, Chadwick K.; Gómez, Anu Manchikanti; Dworkin, Shari; Wilson, Patrick A.; Grisham, Kirk; McReynolds, Jaih; Vielehr, Peter; Hoff, Colleen

    2013-01-01

    Among gay and bisexual men, primary partners are a leading source of HIV infection. Trust, intimacy, and advancements in HIV treatment may impact same-sex male couples’ decisions to engage in unprotected anal intercourse (UAI). This qualitative study explored how Black, White and interracial couples discussed, and made decisions regarding condoms. Qualitative interviews were conducted with 48 same-sex male couples in the New York and San Francisco metropolitan areas. Stratified purposive sampling was used to include Black (n = 16), White (n = 17), and interracial (Black-White) (n = 15) couples. Twenty-six couples were concordant HIV-negative and 22 were HIV-discordant. Interviews were recorded, transcribed, coded, and analyzed using a grounded theory approach. Some couples described explicit processes, which involved active discussion, while others described implicit processes, where condom-use decisions occurred without any explicit discussion. These processes also differed by race and HIV status. Black couples tended to report condom-use as “just understood.” White, HIV-discordant couples decided not to use condoms, with some identifying the HIV-positive partner’s suppressed viral load and high CD4 count as deciding factors. After an unplanned episode of UAI, White, HIV-negative couples tended to discontinue condom use while Black HIV-negative couples decided to revert to using condoms. HIV prevention efforts focused on same-sex, male couples must consider the explicit/implicit nature of condom decision-making processes. Understanding differences in these processes and considering relationship dynamics, across race and HIV status, can promote the development of innovative couple–level, HIV prevention interventions. PMID:23912774

  15. Modeling and Simulation of Plasmonic Lithography Process with Coupling Between Electromagnetic Wave Model, Phase Field Model and Heat Transfer Model

    NASA Astrophysics Data System (ADS)

    Chao, Ion Hong

    Plasmonic lithography may become a mainstream nano-fabrication technique in the future. Experimental results show that feature size with 22 nm resolution can be achieved by plasmonic lithography [1]. In Pan's experiment, a plasmonic lens is used to focus the laser energy with resolution much higher than the diffraction limit and thereby create features in the thermally sensitive material layer. The energy transport mechanisms are still not fully understood in the plasmonic lithography process. In order to predict the lithography resolution and explore the energy transport mechanisms involved in the process, customized electromagnetic wave and heat transfer models were developed in COMSOL. Parametric studies on both operating parameters and material properties were performed to optimize the lithography process. The parametric studies showed that the lithography process can be improved by either reducing the thickness of the phase change material layer or using a material with smaller real refractive index for that layer. Moreover, a phase field model was also developed in COMSOL to investigate the phase separation mechanism involved in creating features in plasmonic lithography. By including the effect of bond energy in this model, phase separation was obtained from the phase field model under isothermal conditions with speed much faster than the classical diffusion theory can predict. Mathematical transformation was applied to the phase field model, which was necessary for solving numerical issues to obtain the result of complete phase separation. Under isothermal conditions, the phase field model confirmed the fact that the speed of phase separation is determined by both particle mobility and thermodynamic driving force. The fast phase separation in the phase change material is mainly due to strong thermodynamic driving force from the bond energy. The phase field model was coupled with a heat transfer model to simulate phase separation under laser pulse heating

  16. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process.

    PubMed

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5-8.0, 27(±2°C and 10.6-18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery.

  17. On the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells in unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Liang, Xiuyu; Zhan, Hongbin; Zhang, You-Kuan; Liu, Jin

    2017-03-01

    Conventional models of pumping tests in unconfined aquifers often neglect the unsaturated flow process. This study concerns the coupled unsaturated-saturated flow process induced by vertical, horizontal, and slant wells positioned in an unconfined aquifer. A mathematical model is established with special consideration of the coupled unsaturated-saturated flow process and the well orientation. Groundwater flow in the saturated zone is described by a three-dimensional governing equation and a linearized three-dimensional Richards' equation in the unsaturated zone. A solution in the Laplace domain is derived by the Laplace-finite-Fourier-transform and the method of separation of variables, and the semi-analytical solutions are obtained using a numerical inverse Laplace method. The solution is verified by a finite-element numerical model. It is found that the effects of the unsaturated zone on the drawdown of a pumping test exist at any angle of inclination of the pumping well, and this impact is more significant in the case of a horizontal well. The effects of the unsaturated zone on the drawdown are independent of the length of the horizontal well screen. The vertical well leads to the largest water volume drained from the unsaturated zone (W) during the early pumping time, and the effects of the well orientation on W values become insignificant at the later time. The screen length of the horizontal well does not affect W for the whole pumping period. The proposed solutions are useful for the parameter identification of pumping tests with a general well orientation (vertical, horizontal, and slant) in unconfined aquifers affected from above by the unsaturated flow process.

  18. Bioelectricity Generation and Bioremediation of an Azo-Dye in a Microbial Fuel Cell Coupled Activated Sludge Process

    PubMed Central

    Khan, Mohammad Danish; Abdulateif, Huda; Ismail, Iqbal M.; Sabir, Suhail; Khan, Mohammad Zain

    2015-01-01

    Simultaneous bioelectricity generation and dye degradation was achieved in the present study by using a combined anaerobic-aerobic process. The anaerobic system was a typical single chambered microbial fuel cell (SMFC) which utilizes acid navy blue r (ANB) dye along with glucose as growth substrate to generate electricity. Four different concentrations of ANB (50, 100, 200 and 400 ppm) were tested in the SMFC and the degradation products were further treated in an activated sludge post treatment process. The dye decolorization followed pseudo first order kinetics while the negative values of the thermodynamic parameter ∆G (change in Gibbs free energy) shows that the reaction proceeds with a net decrease in the free energy of the system. The coulombic efficiency (CE) and power density (PD) attained peak values at 10.36% and 2,236 mW/m2 respectively for 200 ppm of ANB. A further increase in ANB concentrations results in lowering of cell potential (and PD) values owing to microbial inhibition at higher concentrations of toxic substrates. Cyclic voltammetry studies revealed a perfect redox reaction was taking place in the SMFC. The pH, temperature and conductivity remain 7.5–8.0, 27(±2°C and 10.6–18.2 mS/cm throughout the operation. The biodegradation pathway was studied by the gas chromatography coupled with mass spectroscopy technique, suggested the preferential cleavage of the azo bond as the initial step resulting in to aromatic amines. Thus, a combined anaerobic-aerobic process using SMFC coupled with activated sludge process can be a viable option for effective degradation of complex dye substrates along with energy (bioelectricity) recovery. PMID:26496083

  19. Microencapsulated probiotics using emulsification technique coupled with internal or external gelation process.

    PubMed

    Song, Huiyi; Yu, Weiting; Gao, Meng; Liu, Xiudong; Ma, Xiaojun

    2013-07-01

    Alginate-chitosan microcapsules containing probiotics (Yeast, Y235) were prepared by emulsification/external gelation and emulsification/internal gelation techniques respectively. The gel beads by external gelation showed asymmetrical structure, but those by internal gelation showed symmetrical structure in morphology. The cell viability was approximately 80% for these two techniques. However, during cell culture process, emulsification/internal gelation microcapsules showed higher cell growth and lower cell leakage. Moreover, the survival rate of entrapped low density cells with culture (ELDCwc) increased obviously than that directly entrapped high density cells (dEHDC) and free cells when keeping in simulated gastrointestinal conditions. It indicated the growth process of cells in microcapsule was important and beneficial to keep enough active probiotics under harmful environment stress. Therefore, the emulsification/internal gelation technique was the preferred method for application in food or biotechnological industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Nanoscale Optical Emitters for High Density Information Processing using Photonic-Plasmonic Coupling in Coaxial Nanopillars

    DTIC Science & Technology

    2015-03-10

    compatible linear and nonlinear sources in plasmonic and metamaterials for high-density information processing. The objective of this two-year research...new Si-compatible nonlinear metamaterials . These activities are particularly interesting for the development of “active nano-pixels” with enhanced...SUBJECT TERMS Light sources, plasmonics, high-density integration, metamaterials 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18

  1. Software Support for Fully Distributed/Loosely Coupled Processing Systems. Volume 1.

    DTIC Science & Technology

    1984-01-01

    apply may be better than nothing , but not much, since simulators rarely exhibit operational uniformity. In fact, they often execute entirely different...Design of . Distributed Databases and Communication Networks" and Toby J. Teorey is work- ing with James P. Fry on "A Generalized Facility for...construct for distributed processing. I= Trans. Softw. uz. SE-7, 5 (Sep. 1981) 502-509. -- [KRAM81] Kramer, J., Magee, J., and Sloman , M. Intertask

  2. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes

    PubMed Central

    Buscio, Valentina; García-Jiménez, María; Vilaseca, Mercè; López-Grimau, Victor; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2016-01-01

    The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm2. Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates). Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range. PMID:28773614

  3. [Analysis of changes in minerals contents during cider fermentation process by inductively coupled plasma mass spectrometry].

    PubMed

    Ye, Meng-qi; Yue, Tian-li; Gao, Zhen-peng; Yuan, Ya-hong; Nie, Gang

    2015-01-01

    The changes in mineral elements during cider fermentation process were determined using ICP-MS. The results showed that the main minerals in the fermentation liquor included K, Na, Ca, Mg, Fe, Mn, Zn, Cu, Sr and B. The content of K was the highest in both the apple juice and the cider, being 1 853. 83 and 1 654. 38 mg . L-1 respectively. The content of minerals was in dynamic changes along with the fermentation process. As a whole, during 72-120 h and 144-216 h, most of the minerals contents underwent great fluctuation. Especially when fermented for 192 h, the content of most of the minerals reached peak value or valley value. The content of Fe and Zn achieved their peak value, while the content of K, Na, Ca, Mg, Mn and B achieved valley value. But during the following 24 h, the content of minerals underwent a sharp reversal. After fermentation, the content of K, Mg, Cu, Zn and B decreased significantly, while the content of Na, Ca, Mn, Fe and Sr did not change significantly. The correlational analysis was conducted to evaluate the correlation between the mineral elements, and the result showed that the correlation between Ca and Mn was the most significant, with the correlation index reaching 0. 924. The information of this study will supply sufficient data for the fermentation process control and quality improvement of cider.

  4. Coupled transcription and processing of mouse ribosomal RNA in a cell-free system.

    PubMed Central

    Mishima, Y; Mitsuma, T; Ogata, K

    1985-01-01

    An in vitro processing system of mouse rRNA was achieved using an RNA polymerase I-specific transcription system, (S100) and recombinant plasmids consisting of mouse rRNA gene (rDNA) segments containing the transcription initiation and 5'-terminal region of 18S (or 41S) rRNA. Pulse-chase experiments showed that a specific processing occurred with transcripts of the plasmid DNAs when the direction of transcription was the correct orientation relative to the 18S rRNA coding sequence, but not with transcripts of the DNA templates in which this coding sequence was in the opposite orientation. From the S1 nuclease protection analyses, we concluded that there are several steps of endonucleolytic cleavage including one 105 nucleotides upstream from the 5' end of 18S rRNA. Intermediates cleaved at this site were identified in in vivo processing of rRNA. This result indicates that endonucleolytic cleavage takes place 105 nucleotides upstream from the 5' terminus of 18S rRNA prior to the formation of mature 18S rRNA. Trimming or cleavage of the 105 nucleotides may be involved in the formation of the 5' terminus of mature 18S rRNA. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:3004977

  5. Reuse of Textile Dyeing Effluents Treated with Coupled Nanofiltration and Electrochemical Processes.

    PubMed

    Buscio, Valentina; García-Jiménez, María; Vilaseca, Mercè; López-Grimau, Victor; Crespi, Martí; Gutiérrez-Bouzán, Carmen

    2016-06-20

    The reactive dye Cibacron Yellow S-3R was selected to evaluate the feasibility of combining nanofiltration membranes with electrochemical processes to treat textile wastewater. Synthetic dyeing effluents were treated by means of two nanofiltration membranes, Hydracore10 and Hydracore50. Up to 98% of dye removal was achieved. The influence of salt concentration and pH on membrane treatment was studied. The best dye removal yield was achieved at pH 3 in the presence of 60 g/L of NaCl. After the membrane filtration, the concentrate containing high dye concentration was treated by means of an electrochemical process at three different current densities: 33, 83, and 166 mA/cm². Results showed a lineal relationship between treatment time and applied current density. Both permeates and electrochemically-decoloured effluents were reused in new dyeing processes (100% of permeate and 70% of decoloured concentrates). Dyed fabrics were evaluated with respect to original dyeing. Colour differences were found to be into the acceptance range.

  6. Process Analysis of Lignite Circulating Fluidized Bed Boiler Coupled with Pyrolysis Topping

    NASA Astrophysics Data System (ADS)

    Wang, Baoqun; Dong, Li; Wang, Yin; Matsuzawa, Y.; Xu, Guangwen

    We developed a comprehensive process model in ASPEN Plus to simulate the energy and mass balances of a lignite-fueled atmospheric circulating fluidized bed (CFB) boiler integrated with coal predrying and pyrolysis topping. In this model, it is assumed that the heat from exhausted flue gas was employed for coal predrying, and the sensible heat derived from circulated bed material was used for the pyrolysis topping (endothermic process). The simulation was conducted with respectto the Yunnan Kaiyuan CFB boiler, and two representative lignite coals from Xiao Long Tan (XLT) and Xin Shao (XS) were considered. The result shows that the predrying of coal with the sensible heat of above 363 K from flue gas, the amount of coal consumed in the boiler can be reduced by 3.5% and 5.3% for XLT lignite and XS lignite, respectively. It was also found that integration of pyrolysis topping with the boiler increased the coal consumption of the boiler, and the extent of consumption-increase varies with the yields of tar and gas in the pyrolysis topping process. For agas yield of 5.2% and a tar yield of 5-6%, the consumption of XS lignite increased by about 20% comparing to that in the case without topping.

  7. Scaling-up parameters for site restoration process using surfactant-enhanced soil washing coupled with wastewater treatment by Fenton and Fenton-like processes.

    PubMed

    Bandala, Erick R; Cossio, Horacio; Sánchez-Lopez, Adriana D; Córdova, Felipe; Peralta-Herández, Juan M; Torres, Luis G

    2013-01-01

    Estimation of scaling-up parameters for a site restoration process using a surfactant-enhanced soil washing (SESW) process followed by the application of advanced oxidation processes (Fenton and photo-Fenton) was performed. For the SESW, different parameters were varied and the soil washing efficiency for pesticide (2,4-D) removal assessed. The resulting wastewater was treated using the Fenton reaction in the absence and presence of ultraviolet (UV) radiation for pesticide removal. Results showed that agitation speed of 1550 rpm was preferable for the best pesticide removal from contaminated soil. It was possible to wash contaminated soils with different soil concentrations; however the power drawn was higher as the soil concentration increased. Complete removal of the pesticide and the remaining surfactant was achieved using different reaction conditions. The best degradation conditions were for the photo-Fenton process using [Fe(II)] = 0.3 mM; [H2O2] = 4.0 mM where complete 2,4-D and sodium dodecylsulfate (SDS) removal was observed after 8 and 10 minutes of reaction, respectively. Further increase in the hydrogen peroxide or iron salt concentration did not show any improvement in the reaction rate. Kinetic parameters, i.e. reaction rate constant and scaling-up parameters, were determined. It was shown that, by coupling both processes (SESW and AOPs), it is possible the restoration of contaminated sites.

  8. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  9. Investigation of Coupled Processes and Impact of High Temperature Limits in Argillite Rock

    SciTech Connect

    Zheng, Liange; Rutqvist, Jonny; Kim, Kunhwi; Houseworth, Jim

    2015-07-01

    The focus of research within the UFD Campaign is on repository-induced interactions that may affect the key safety characteristics of an argillaceous rock. These include thermal-hydrological-mechanical-chemical (THMC) process interactions that occur as a result of repository construction and waste emplacement. Some of the key questions addressed in this report include the development of fracturing in the excavation damaged zone (EDZ) and THMC effects on the near-field argillaceous rock and buffer minerals and petrophysical characteristics, particularly the impacts of induced temperature rise caused by waste heat.

  10. Destruction of commercial pesticides by cerium redox couple mediated electrochemical oxidation process in continuous feed mode.

    PubMed

    Balaji, Subramanian; Chung, Sang Joon; Ryu, Jae-Yong; Moon, Il Shik

    2009-12-30

    Mediated electrochemical oxidation was carried out for the destruction of commercial pesticide formulations using cerium(IV) in nitric acid as the mediator electrolyte solution in a bench scale set up. The mediator oxidant was regenerated in situ using an electrochemical cell. The real application of this sustainable process for toxic organic pollutant destruction lies in its ability for long term continuous operation with continuous organic feeding and oxidant regeneration with feed water removal. In this report we present the results of fully integrated MEO system. The task of operating the continuous feed MEO system for a long time was made possible by continuously removing the feed water using an evaporator set up. The rate of Ce(IV) regeneration in the electrochemical cell and the consumption for the pesticide destruction was matched based on carbon content of the pesticides. It was found that under the optimized experimental conditions for Ce(III) oxidation, organic addition and water removal destruction efficiency of ca. 99% was obtained for all pesticides studied. It was observed that the Ce(IV) concentration was maintained nearly the same throughout the experiment. The stable operation for 6h proved that the process can be used for real applications and for possible scale up for the destruction of larger volumes of toxic organic wastes.

  11. Electromagnetic power flows in MI coupling: origins, spatial scales, and conversion processes

    NASA Astrophysics Data System (ADS)

    Haerendel, G.

    2011-12-01

    There are four dominant sources of e.m. energy flow from the outer realms of the magnetosphere into the ionosphere, (1) dragging of open flux tubes by the solar wind, (2) braking of earthward reconnection flows in the tail, (3) earthward directed forces of hot plasma piling up at the inner edge of the tail during substorms, and (4) pressure forces driving the sunward convection along the auroral oval. The fraction of the energy flux arriving immediately at the ionosphere varies strongly among these four mechanisms. In (1) most of the energy first flows into the plasma sheet, while in process (4) most of the energy flows directly into the ionosphere, or a fraction of it indirectly via auroral particle production. There are no intrinsic scales for the direct flow of energy into the ionosphere and dissipation by ion-neutral collisions, but where energy is first processed by energization of auroral particles, various transverse scales appear. They are owed to the matching of Alfvén wave impedance and field-parallel or ionospheric conductances, or to the dissipative properties of kinetic Alfvén waves. In all cases, the dumping of the energy flow involves the release of shear magnetic stresses.

  12. A proposal on the study of solar-terrestrial coupling processes with atmospheric radars and ground-based observation network

    NASA Astrophysics Data System (ADS)

    Tsuda, Toshitaka; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Shiokawa, Kazuo; Ogawa, Yasunobu; Nozawa, Satonori; Miyaoka, Hiroshi; Yoshikawa, Akimasa

    2016-09-01

    The solar energy can mainly be divided into two categories: the solar radiation and the solar wind. The former maximizes at the equator, generating various disturbances over a wide height range and causing vertical coupling processes of the atmosphere between the troposphere and middle and upper atmospheres by upward propagating atmospheric waves. The energy and material flows that occur in all height regions of the equatorial atmosphere are named as "Equatorial Fountain." These processes from the bottom also cause various space weather effects, such as satellite communication and Global Navigation Satellite System positioning. While, the electromagnetic energy and high-energy plasma particles in the solar wind converge into the polar region through geomagnetic fields. These energy/particle inflow results in auroral Joule heating and ion drag of the atmosphere particularly during geomagnetic storms and substorms. The ion outflow from the polar ionosphere controls ambient plasma constituents in the magnetosphere and may cause long-term variation of the atmosphere. We propose to clarify these overall coupling processes in the solar-terrestrial system from the bottom and from above through high-resolution observations at key latitudes in the equator and in the polar region. We will establish a large radar with active phased array antenna, called the Equatorial Middle and Upper atmosphere radar, in west Sumatra, Indonesia. We will participate in construction of the EISCAT_3D radar in northern Scandinavia. These radars will enhance the existing international radar network. We will also develop a global observation network of compact radio and optical remote sensing equipment from the equator to polar region.

  13. Decomplexation efficiency and mechanism of Cu(II)-EDTA by H2O2 coupled internal micro-electrolysis process.

    PubMed

    Zhou, Dongfang; Hu, Yongyou; Guo, Qian; Yuan, Weiguang; Deng, Jiefan; Dang, Yapan

    2016-12-29

    Internal micro-electrolysis (IE) coupled with Fenton oxidation (IEF) was a very effective technology for copper (Cu)-ethylenediaminetetraacetic acid (EDTA) wastewater treatment. However, the mechanisms of Cu(2+) removal and EDTA degradation were scarce and lack persuasion in the IEF process. In this paper, the decomplexation and removal efficiency of Cu-EDTA and the corresponding mechanisms during the IEF process were investigated by batch test. An empirical equation and the oxidation reduction potential (ORP) index were proposed to flexibly control IE and the Fenton process, respectively. The results showed that Cu(2+), total organic carbon (TOC), and EDTA removal efficiencies were 99.6, 80.3, and 83.4%, respectively, under the proper operation conditions of iron dosage of 30 g/L, Fe/C of 3/1, initial pH of 3.0, Fe(2+)/H2O2 molar ratio of 1/4, and reaction time of 20 min, respectively for IE and the Fenton process. The contributions of IE and Fenton to Cu(2+) removal were 91.2 and 8.4%, respectively, and those to TOC and EDTA removal were 23.3, 25.1, and 57, 58.3%, respectively. It was found that Fe(2+)-based replacement-precipitation and hydroxyl radical (•OH) were the most important effects during the IEF process. •OH played an important role in the degradation of EDTA, whose yield and productive rate were 3.13 mg/L and 0.157 mg/(L min(-1)), respectively. Based on the intermediates detected by GC-MS, including acetic acid, propionic acid, pentanoic acid, amino acetic acid, 3-(diethylamino)-1,2-propanediol, and nitrilotriacetic acid (NTA), a possible degradation pathway of Cu-EDTA in the IEF process was proposed. Graphical abstract The mechanism diagram of IEF process.

  14. Constraints on the axion-electron coupling for solar axions produced by a Compton process and bremsstrahlung

    SciTech Connect

    Derbin, A. V.; Kayunov, A. S.; Muratova, V. V.; Semenov, D. A.; Unzhakov, E. V.

    2011-01-15

    The search for solar axions produced by Compton ({gamma}+e{sup -}{yields}e{sup -}+A) and bremsstrahlunglike (e{sup -}+Z{yields}Z+e{sup -}+A) processes has been performed. The axion flux in both cases depends on the axion-electron coupling constant. The resonant excitation of the low-lying nuclear level of {sup 169}Tm was looked for: A+{sup 169}Tm{yields}{sup 169}Tm{sup *}{yields}{sup 169}Tm+{gamma} (8.41 keV). The Si(Li) detector and {sup 169}Tm target installed inside the low-background setup were used to detect 8.41 keV {gamma} rays. As a result, a new model-independent restriction on the axion-electron and the axion-nucleon couplings was obtained: g{sub Ae}x|g{sub AN}{sup 0}+g{sub AN}{sup 3}|{<=}2.1x10{sup -14}. In the model of the hadronic axion this restriction corresponds to the upper limit on the axion-electron coupling and on the axion mass g{sub Ae}xm{sub A{<=}}3.1x10{sup -7} eV (90% C.L.). The limits on the axion mass are m{sub A{<=}}105 eV and m{sub A{<=}}1.3 keV for the Dine-Fischler-Srednicki-Zhitnitskii- and Kim-Shifman-Vainstein-Zakharov-axion models, correspondingly (90% C.L.).

  15. Incorporating 3-D Subsurface Hydrologic Processes within the Community Land Surface Model (CLM): Coupling PFLOTRAN and CLM

    NASA Astrophysics Data System (ADS)

    Bisht, G.; Mills, R. T.; Hoffman, F. M.; Thornton, P. E.; Lichtner, P. C.; Hammond, G. E.

    2011-12-01

    Numerous studies have shown a positive soil moisture-rainfall feedback through observational data, as well as, modeling studies. Spatial variability of topography, soils, and vegetation play a significant role in determining the response of land surface states (soil moisture) and fluxes (runoff, evapotranspirtiaon); but their explicit accounting within Land Surface Models (LSMs) is computa- tionally expensive. Additionally, anthropogenic climate change is altering the hydrologic cycle at global and regional scales. Characterizing the sensitivity of groundwater recharge is critical for understanding the effects of climate change on water resources. In order to explicitly represent lateral redistribution of soil moisture and unified treatment of the unsaturated-saturated zone in the subsurface within the CLM, we propose coupling PFLOTRAN and CLM. PFLOTRAN is a parallel multiphase-multicomponent subsurface reactive flow and transport code for modeling subsurface processes and has been devel- oped under a DOE SciDAC-2 project. PFLOTRAN is written in Fortran 90 using a modular, object-oriented approach. PFLOTRAN utilizes fully implicit time-stepping and is built on top of the Portable, Extensible Toolkit for Scientific Computation (PETSc). The PFLOTRAN model is capable of simulating fluid flow through porous media with fluid phases of air, water, and supercritical CO2. PFLOTRAN has been successfully employed on up to 131,072 cores on Jaguar, the massively parallel Cray XT4/XT5 at ORNL, for problems composed of up to 2 billion degrees of freedom. In this work, we will present a strategy of coupling the two models, CLM and PFLOTRAN, along with a few preliminary results obtained from the coupled model.

  16. Modeling Coupled Thermal-Hydrological-Chemical Processes in the Unsaturated Fractured Rock of Yucca Mountain, Nevada: Heterogeneity and Seepage

    SciTech Connect

    S. Mukhopadhyay; E.L. Donnenthal; N. Spycher

    2006-07-17

    An understanding of processes affecting seepage into emplacement tunnels is needed for correctly predicting the performance of underground radioactive waste repositories. It has been previously estimated that the capillary and vaporization barriers in the unsaturated fractured rock of Yucca Mountain are enough to prevent seepage under present day infiltration conditions. It has also been thought that a substantially elevated infiltration flux will be required to cause seepage after the thermal period is over. While coupled thermal-hydrological-chemical (THC) changes in Yucca Mountain host rock due to repository heating has been previously investigated, those THC models did not incorporate elements of the seepage model. In this paper, we combine the THC processes in unsaturated fractured rock with the processes affecting seepage. We observe that the THC processes alter the hydrological properties of the fractured rock through mineral precipitation and dissolution. We show that such alteration in the hydrological properties of the rock often leads to local flow channeling. We conclude that such local flow channeling may result in seepage under certain conditions, even with nonelevated infiltration fluxes.

  17. Extending the Range of Organic Compounds that Can Be Destroyed Using the Process of Adsorption Coupled with Electrochemical Regeneration - 13054

    SciTech Connect

    Brown, Nigel; Lodge, Mike; Hilton, Linda; Adams, Alex; Vaudey, Claire-Emilie; Toulemonde, Valerie

    2013-07-01

    The nuclear industry is not a provider of oils and solvents but uses them in motors, equipment and even in chemical processes to extract valuable products. Currently, for old and contaminated oils and solvents, techniques still exist, such as incineration, but not all the oils and solvents are compatible with this technique because the activities of some components inside the oils are too high to be accepted at the incineration facility. For these oils, an alternative technique needs to be found for treatment. A process developed for water treatment using a technique of adsorption coupled with electrochemical regeneration has been investigated to assess its capability to treat these organic wastes. One of the strengths of the process is its flexibility and adaptation to different compositions of oils. This point is important because, in the AREVA case, there are a lot of small volumes of old oils which need to be re-characterized. It takes time and money to do it especially when oils are contaminated; this is one reason why the technique is interesting to investigate. Tests have been performed with different oils coming from different sites to test the feasibility. Results demonstrate the destruction of a range of organics with regeneration energy requirements of 13.4 - 68.7 kWh/l and offer confidence for the future potential of the process. (authors)

  18. A high-order language for a system of closely coupled processing elements

    NASA Technical Reports Server (NTRS)

    Feyock, S.; Collins, W. R.

    1986-01-01

    The research reported in this paper was occasioned by the requirements on part of the Real-Time Digital Simulator (RTDS) project under way at NASA Lewis Research Center. The RTDS simulation scheme employs a network of CPUs running lock-step cycles in the parallel computations of jet airplane simulations. Their need for a high order language (HOL) that would allow non-experts to write simulation applications and that could be implemented on a possibly varying network can best be fulfilled by using the programming language Ada. We describe how the simulation problems can be modeled in Ada, how to map a single, multi-processing Ada program into code for individual processors, regardless of network reconfiguration, and why some Ada language features are particulary well-suited to network simulations.

  19. Bio oil synthesis by coupling biological biomass pretreatment and catalytic hydroliquefaction process.

    PubMed

    Hamieh, S; Beauchet, R; Lemee, L; Toufaily, J; Koubaissy, B; Hamieh, T; Pouilloux, Y; Pinard, L

    2014-03-01

    The bio-oil synthesis from a mixture of wastes (7wt.% straw, 38wt.% wood, and 45wt.% grass) was carried out by direct liquefaction reaction using Raney Nickel as catalyst and tetralin as solvent. The green wastes were biologically degraded during 3 months. Longer the destructuration time; higher the yield into oil is. Biological pretreatment of green wastes promotes the liquefaction process. Among the components of degraded biomass, Humin, the major fraction (60-80wt.%) that was favored by the biological treatment, yields to a bio oil extremely energetic with a HHV close to biopetroleum (40MJ kg(-1)), contrariwise, Fulvic acids (2-12wt.%), the minor fraction is refractory to liquefaction reaction.

  20. Coupled deformation and dehydration processes in smectite-rich sediments constrained by laboratory experiments

    NASA Astrophysics Data System (ADS)

    Huepers, Andre; Kopf, Achim J.

    2013-04-01

    Subduction zones play a central role in the geological activity of the earth which is expressed as devastating events such as earthquakes, tsunamis and explosive volcanism. Many processes that lead to such catastrophic behavior are driven by fluids, which in turn affect the rock mechanical behavior. The kinetic reaction of hydrous smectite to illite is widely accepted as a fluid source in subduction zone forearcs that also affects the mechanical state of subduction zone sediments. The released fluids are characterized by low-chlorinity and high volatile content. Also, previous workers demonstrated in uniaxial deformation tests that smectite partially dehydrates with increasing effective stress. To shed light on this process we performed uniaxial deformation experiments on smectite-rich samples from the Nankai and Costa Rica subduction zones. Experiments were conducted at temperatures of up to 100°C under constant rate of strain and effective stresses of up to ~100MPa. Fluids expelled during the experiments were analyzed for major and minor element content. The fluids are characterized by fluid-freshening and increasing volatile content that starts at ~1.3MPa effective stress. During the course of the experiments the smectite interlayer water content decreases from 27 wt-% to 20 wt-%. The released interlayer water comprises up to 17% of the total fluid volume released from the consolidating sediment. The onset of fluid freshening is characterized by a change in deformation behavior of the samples. The porosity decrease with increasing effective stress is smaller at effective stresses greater 1.3MPa. We propose that dehydration of the low permeable smectite leads to excess pore pressures in the sample, which causes a load transfer from the solid phase to the pore fluid.

  1. Alteration of Fractured Rocks Due to Coupled Chemical and Mechanical Processes: High-Resolution Simulations and Experimental Observations

    NASA Astrophysics Data System (ADS)

    Ameli, Pasha

    Engineering activities such as enhanced geothermal energy production and improved oil recovery techniques are heavily dependent on the permeability of the subsurface, while others such as CO2 sequestration and nuclear waste disposal rely on the efficiency of rock formations as transport barriers. In either case fractures provide the main pathways for fluid flow and transport, especially in rocks with lower matrix porosity. Laboratory experiments aimed at quantifying the chemo-mechanical responses of fractures have shown a range of results, some of which contradict simple conceptual models. For example, under conditions favoring mineral dissolution, where one would expect an overall increase in permeability, experiments show that permeability increases under some conditions and decreases under others. Recent experiments have attempted to link these core-scale observations to the relevant small-scale processes occurring within fractures. Results suggest that the loss of mechanical strength in asperities due to chemical alteration may cause non-uniform deformation and alteration of fracture apertures. However, due to the lack of direct micro-scale measurements of the coupled chemical and mechanical processes that lead to alteration of contacting fracture surfaces, our ability to predict the long-term evolution of fractures is still limited. To explore the processes that control permeability evolution, I developed a computational model that uses micro-scale surface roughness and explicitly couples dissolution and elastic deformation to calculate local alterations in fracture aperture under chemical and mechanical stresses. A depth-averaged algorithm of fracture flow is used to model reactive transport and chemical alteration of the fracture surfaces. Then, I deform the resulting altered fracture-surfaces using an algorithm that calculates the elastic deformation. The results of the model are compared with flow-through experiments conducted on fractured limestone. The

  2. [Rapid Start-up of Simultaneous Nitrification and Denitrification Coupled Phosphorus Removal Process and Its Performing Characteristics].

    PubMed

    Leng, Lu; Xin, Xin; Lu, Hang; Tang, Ya-nan; Wan, Li-hua; Guo, Jun-yuan; Cheng, Qing-feng

    2015-11-01

    In this study, simultaneous nitrification and denitrification (SND) coupled Phosphorus removal process through gradually decreasing DO concentration was investigated by treating wastewater with a low COD/TN ratio (C/N = 3 : 1-4: 1) in a sequencing batch reactor (SBR) inoculated with aerobic granular sludge (AGS). Successful SND coupled Phosphorus phenomenon occurred after 20d at the DO concentration of 0.50-1.0 mg x L(-1). In the following 40 days, the average removal rates of COD, NH4(+) -N, TN and TP were 84.84% , 93.51%, 77.06% and 85.69%, and the NO3(-) -N and NO2(-) -N average accumulations in the effluent were only 4.01 mg x L(-1) and 3.17 mg x L(-1), respectively. The AGS had complete forms and good settling performances, and the sludge volume index (SVI) was about 55.22 mL x g(-1) at the end of starting-up stage. The results of different nitrogen sources showed that the removal rate of TN was in the order of NH4(+) -N > NO2(-) -N > NO3(-) -N, and the removal rate of TP was in the order of NO3(-) -N > NO2(-) -N > NH4(+) -N. The nitrogen and phosphorus removal of wastewater were mainly realized by simultaneous nitrification and denitrification and denitrifying phosphorus removal, respectively.

  3. Sequential reductive and oxidative biodegradation of chloroethenes stimulated in a coupled bioelectro-process.

    PubMed

    Lohner, Svenja T; Becker, Dirk; Mangold, Klaus-Michael; Tiehm, Andreas

    2011-08-01

    This article for the first time demonstrates successful application of electrochemical processes to stimulate sequential reductive/oxidative microbial degradation of perchloroethene (PCE) in mineral medium and in contaminated groundwater. In a flow-through column system, hydrogen generation at the cathode supported reductive dechlorination of PCE to cis-dichloroethene (cDCE), vinyl chloride (VC), and ethene (ETH). Electrolytically generated oxygen at the anode allowed subsequent oxidative degradation of the lower chlorinated metabolites. Aerobic cometabolic degradation of cDCE proved to be the bottleneck for complete metabolite elimination. Total removal of chloroethenes was demonstrated for a PCE load of approximately 1.5 μmol/d. In mineral medium, long-term operation with stainless steel electrodes was demonstrated for more than 300 days. In contaminated groundwater, corrosion of the stainless steel anode occurred, whereas DSA (dimensionally stable anodes) proved to be stable. Precipitation of calcareous deposits was observed at the cathode, resulting in a higher voltage demand and reduced dechlorination activity. With DSA and groundwater from a contaminated site, complete degradation of chloroethenes in groundwater was obtained for two months thus demonstrating the feasibility of the sequential bioelectro-approach for field application.

  4. Geophysical Monitoring of Coupled Microbial and Geochemical Processes During Stimulated Subsurface Bioremediation

    SciTech Connect

    Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.

    2009-08-05

    Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.

  5. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    NASA Astrophysics Data System (ADS)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-12-01

    In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Sisbnd Osbnd Mg) were formed by the reaction between Sisbnd OC2H5 or Sisbnd OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  6. Coupled electron and proton transfer processes in 4-dimethylamino-2-hydroxy-benzaldehyde.

    PubMed

    Zgierski, Marek Z; Fujiwara, Takashige; Lim, Edward C

    2011-09-08

    TDDFT calculations, picosecond transient absorption, and time-resolved fluorescence studies of 4-dimethylamino-2-hydroxy-benzaldehyde (DMAHBA) have been carried out to study the electron and proton transfer processes in polar (acetonitrile) and nonpolar (n-hexane) solvents. In n-hexane, the transient absorption (TA) as well as the fluorescence originate from the ππ* state of the keto form (with the carbonyl group in the benzaldehyde ring), which is produced by an intramolecular proton transfer from the initially excited ππ* state of the enol form (OH group in the ring). The decay rate of TA and fluorescence are essentially identical in n-hexane. In acetonitrile, on the other hand, the TA exhibits features that can be assigned to the highly polar twisted intramolecular charge transfer (TICT) states of enol forms, as evidenced by the similarity of the absorption to the TICT-state absorption spectra of the closely related 4-dimethylaminobenzaldehyde (DMABA). As expected, the decay rate of the TICT-state of DMAHBA is different from the fluorescence lifetime of the ππ* state of the keto form. The occurrence of the proton and electron transfers in acetonitrile is in good agreement with the predictions of the TDDFT calculations. The very short-lived (∼1 ps) fluorescence from the ππ* state of the enol form has been observed at about 380 nm in n-hexane and at about 400 nm in acetonitrile.

  7. Smart Frameworks and Self-Describing Models: Model Metadata for Automated Coupling of Hydrologic Process Components (Invited)

    NASA Astrophysics Data System (ADS)

    Peckham, S. D.

    2013-12-01

    Model coupling frameworks like CSDMS (Community Surface Dynamics Modeling System) and ESMF (Earth System Modeling Framework) have developed mechanisms that allow heterogeneous sets of process models to be assembled in a plug-and-play manner to create composite "system models". These mechanisms facilitate code reuse, but must simultaneously satisfy many different design criteria. They must be able to mediate or compensate for differences between the process models, such as their different programming languages, computational grids, time-stepping schemes, variable names and variable units. However, they must achieve this interoperability in a way that: (1) is noninvasive, requiring only relatively small and isolated changes to the original source code, (2) does not significantly reduce performance, (3) is not time-consuming or confusing for a model developer to implement, (4) can very easily be updated to accommodate new versions of a given process model and (5) does not shift the burden of providing model interoperability to the model developers, e.g. by requiring them to provide their output in specific forms that meet the input requirements of other models. In tackling these design challenges, model framework developers have learned that the best solution is to provide each model with a simple, standardized interface, i.e. a set of standardized functions that make the model: (1) fully-controllable by a caller (e.g. a model framework) and (2) self-describing. Model control functions are separate functions that allow a caller to initialize the model, advance the model's state variables in time and finalize the model. Model description functions allow a caller to retrieve detailed information on the model's input and output variables, its computational grid and its timestepping scheme. If the caller is a modeling framework, it can compare the answers to these queries with similar answers from other process models in a collection and then automatically call framework

  8. Coupled Hydrological and Geochemical Processes Governing the Fate and Transport of Radionuclides and Toxic Metals in the Hanford Vadose Zone

    SciTech Connect

    Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Pace, M.N.; Yin, X.; Mehlhorn, T.L.; Zachara, J.M.

    2003-03-27

    At the D.O.E. Hanford Reservation, accelerated migration of radionuclides has been observed in the vadose zone underlying the tank farms. Our goal is to provide an improved understanding and predictive capability of the coupled hydrogeochemical mechanisms responsible for observed migration. Our approach is to perform a suite of experiments ranging from novel surface interrogation techniques (e.g., XAS) to miscible displacement experiments on disturbed and undisturbed sediments from the Hanford, Plio-Pleistocene and Ringold formations. Results indicate during unsaturated conditions hydrologic processes governing transport are a strong function of sediment layering in the Hanford and Ringold formations. The transport of radionuclides and toxic metals (U, Cr(VI), Cs, Sr and Co) is influenced by reactive geochemical nonequilibrium, sedimentary mineralogy and solution chemistry. This research will provide new insights into how physical and mineralogical heterogeneities (e.g. stratification, pore regime connectivity, mineral composition along flowpaths) influence contaminant retardation and degree of geochemical nonequilibrium during transport.

  9. A Coupled Thermo-Mechanical Simulation on Squeeze Casting Solidification Process of Three-Dimensional Geometrically Complex Components

    NASA Astrophysics Data System (ADS)

    Tang, Jie; Han, Zhiqiang; Wang, Feifan; Sun, Jue; Xu, Shanxin

    A coupled thermo-mechanical simulation method for three-dimensional squeeze casting components has been developed. The simulation was achieved by using ANSYS Parametric Design Language (APDL). The effect of volume shrinkage due to cooling and solidification, the effect of pressure on the latent heat release, the mutual dependence of interfacial heat transfer and casting deformation, and materials behavior under elevated temperatures were taken into account in the simulation. A step-shaped trial casting was simulated, which demonstrates the ability of the method to simulate the pressure transmission and decline inside the casting as well as the distribution and evolution of the interfacial heat transfer coefficient. Finally, the method was applied to simulate the solidification of an automotive sub-frame component, based on which the squeeze casting process of the component was optimized.

  10. Ion-implanted capacitively coupled silicon strip detectors with integrated polysilicon bias resistors processed on a 100 mm wafer

    NASA Astrophysics Data System (ADS)

    Hietanen, Iiro; Lindgren, Jukka; Orava, Risto; Tuuva, Tuure; Voutilainen, Martti; Brenner, Richard; Andersson, Mikael; Leinonen, Kari; Ronkainen, Hannu

    1991-12-01

    Double-sided silicon strip detectors with integrated coupling capacitors and polysilicon resistors have been processed on a 100 mm wafer. A detector with an active area of 19 × 19 mm 2 was connected to LSI readout electronics and tested. The strip pitch of the detector is 25 μm on the p-side and 50 μm on the n-side. The readout pitch is 50 μm on both sides. The number of readout strips is 774 and the total number of strips is 1161. On the p-side a signal-to-noise of 35 has been measured using a 90Sr β-source. The n-side has been studied using a laser.

  11. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.

    PubMed

    Durante, Christian; Cuscov, Marco; Isse, Abdirisak Ahmed; Sandonà, Giancarlo; Gennaro, Armando

    2011-02-01

    Using Cr-EDTA as a model system, a two-step method has been investigated for the abatement of persistent chromium complexes in water. The treatment consists of an oxidative decomposition of the organic ligands by means of ozonization or electrochemical oxidation at a boron doped diamond (BDD) electrode, followed by removal of the metal via electrochemical coagulation. In the designed synthetic waste, EDTA has been used both as a chelating agent and as a mimic of the organic content of a typical wastewater provided by a purification leather plant. A crucial point evaluated is the influence of the oxidative pretreatment on the chemical modification of the synthetic waste and hence on the electrocoagulation efficacy. Because of the great stability of Cr complexes, such as Cr-EDTA, the classical coagulation methods, based on ligand exchange between Cr(III) and Fe(II) or Fe(III), are ineffective toward Cr abatement in the presence of organic substances. On the contrary, when advanced oxidation processes (AOPs), such as ozonization or electrooxidation at a BDD anode are applied in series with electrocoagulation (EC), complete abatement of the recalcitrant Cr fraction can be achieved. ECs have been carried out by using Fe sacrificial anodes, with alternating polarization and complete Cr abatement (over 99%) has been obtained with modest charge consumption. It has been found that Cr(III) is first oxidized to Cr(VI) in the AOP preceding EC. Then, during EC, Cr(VI) is mainly reduced back to Cr(III) by electrogenerated Fe(II). Thus, Cr is mainly eliminated as Cr(III). However, a small fraction of Cr(VI) goes with the precipitate as confirmed by XPS analysis of the sludge.

  12. Phosphorus recovery from biogas slurry by ultrasound/H2O2 digestion coupled with HFO/biochar adsorption process.

    PubMed

    He, Xuemeng; Zhang, Tao; Ren, Hongqiang; Li, Guoxue; Ding, Lili; Pawlowski, Lucjan

    2017-02-01

    Phosphorus (P) recovery from biogas slurry has recently attracted considerable interest. In this work, ultrasound/H2O2 digestion coupled with ferric oxide hydrate/biochar (HFO/biochar) adsorption process was performed to promote P dissolution, release, and recovery from biogas slurry. The results showed that the optimal total phosphorus release efficiency was achieved at an inorganic phosphorus/total phosphorus ratio of 95.0% at pH 4, 1mL of added H2O2, and ultrasonication for 30min. The P adsorption by the HFO/biochar followed pseudo second-order kinetics and was mainly controlled by chemical processes. The Langmuir-Freundlich model matched the experimental data best for P adsorption by HFO/biochar at 298 and 308K, whereas the Freundlich model matched best at 318K. The maximum amount of P adsorbed was 220mg/g. The process was endothermic, spontaneous, and showed an increase in disorder at the solid-liquid interface. The saturated adsorbed HFO/biochar continually releases P and is most suitable for use in an alkaline environment. The amount of P released reached 29.1mg/g after five extractions. P mass balance calculation revealed that 11.3% of the total P can be made available. Copyright © 2016. Published by Elsevier Ltd.

  13. Results From an International Simulation Study on Couples Thermal, Hydrological, and Mechanical (THM) Processes Near Geological Nuclear Waste Repositories

    SciTech Connect

    J. Rutqvist; D. Barr; J.T. Birkholzer; M. Chijimatsu; O. Kolditz; Q. Liu; Y. Oda; W. Wang; C. Zhang

    2006-08-02

    As part of the ongoing international DECOVALEX project, four research teams used five different models to simulate coupled thermal, hydrological, and mechanical (THM) processes near waste emplacement drifts of geological nuclear waste repositories. The simulations were conducted for two generic repository types, one with open and the other with back-filled repository drifts, under higher and lower postclosure temperatures, respectively. In the completed first model inception phase of the project, a good agreement was achieved between the research teams in calculating THM responses for both repository types, although some disagreement in hydrological responses is currently being resolved. In particular, good agreement in the basic thermal-mechanical responses was achieved for both repository types, even though some teams used relatively simplified thermal-elastic heat-conduction models that neglected complex near-field thermal-hydrological processes. The good agreement between the complex and simplified process models indicates that the basic thermal-mechanical responses can be predicted with a relatively high confidence level.

  14. Coupling Effects of Heat and Moisture on the Saturation Processes of Buffer Material in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing

    2017-04-01

    Clay barrier plays a major role for the isolation of radioactive wastes in a underground repository. This paper investigates the resaturation behavior of clay barrier, with emphasis on the coupling effects of heat and moisture of buffer material in the near-field of a repository during groundwater intrusion processes. A locally available clay named "Zhisin clay" and a standard bentotine material were adopted in the laboratory program. Water uptake tests were conducted on clay specimens compacted at various densities to simulate the intrusion of groundwater into the buffer material. Soil suction of clay specimens was measured by psychrometers embedded in clay specimens and by vapor equilibrium technique conducted at varying temperatures. Using the soil water characteristic curve, an integration scheme was introduced to estimate the hydraulic conductivity of unsaturated clay. The finite element program ABAQUS was then employed to carry out the numerical simulation of the saturation process in the near field of a repository. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake tests on Zhisin clay. The numerical scheme was then extended to establish a model simulating the resaturation process after the closure of a repository. It was found that, due to the variation in suction and thermal conductivity with temperature of clay barrier material, the calculated temperature field shows a reduction as a result of incorporating the hydro-properties in the calculations.

  15. Emerging structural insights into glycoprotein quality control coupled with N-glycan processing in the endoplasmic reticulum.

    PubMed

    Satoh, Tadashi; Yamaguchi, Takumi; Kato, Koichi

    2015-01-30

    In the endoplasmic reticulum (ER), the sugar chain is initially introduced onto newly synthesized proteins as a triantennary tetradecasaccharide (Glc3Man9GlcNAc2). The attached oligosaccharide chain is subjected to stepwise trimming by the actions of specific glucosidases and mannosidases. In these processes, the transiently expressed N-glycans, as processing intermediates, function as signals for the determination of glycoprotein fates, i.e., folding, transport, or degradation through interactions of a series of intracellular lectins. The monoglucosylated glycoforms are hallmarks of incompletely folded states of glycoproteins in this system, whereas the outer mannose trimming leads to ER-associated glycoprotein degradation. This review outlines the recently emerging evidence regarding the molecular and structural basis of this glycoprotein quality control system, which is regulated through dynamic interplay among intracellular lectins, glycosidases, and glycosyltransferase. Structural snapshots of carbohydrate-lectin interactions have been provided at the atomic level using X-ray crystallographic analyses. Conformational ensembles of uncomplexed triantennary high-mannose-type oligosaccharides have been characterized in a quantitative manner using molecular dynamics simulation in conjunction with nuclear magnetic resonance spectroscopy. These complementary views provide new insights into glycoprotein recognition in quality control coupled with N-glycan processing.

  16. Coupled versus Decoupled Solution Approaches for Non-Linear Fluid Flow Processes in Heterogeneous Porous and Fractured Media

    NASA Astrophysics Data System (ADS)

    Burri, A.; Geiger, S.; Coumou, D.

    2004-12-01

    Many fluid-flow processes in the Earth's crust, such as multiphase flow or convection due to temperature and/or concentration gradients, are non-linear in nature. Studying these processes using numerical simulations is challenging. On one hand, numerical methods must be robust and able to deal with the non-linearities efficiently. On the other hand, they must be capable of resolving orders of magnitude variations in permeability and geologically complex structures that often occur in the Earth's subsurface. This usually requires high-resolution meshes, possibly with up to several million degrees of freedom. Traditionally numerical methods have solved such flow processes fully coupled, i.e. solving for the independent variables simultaneously using iterative techniques to account for the non-linearities. While these approaches have solved challenging problems, they have the disadvantage that the global solution matrices are ill conditioned and hence not always suitable for fast matrix solvers such as algebraic multigrid solvers. Furthermore, iterative techniques such as Newton's method may fail to converge. Numerical approaches that are capable of resolving geologically complex structures, for example the finite element method, require upwind-weighting schemes to model advection-dominated fluid flow. Such upwinding techniques, however, may reduce the geometric flexibility of the finite element method, fail to converge if the permeability varies over more than two orders of magnitude, or smear out shock fronts in advection-dominated flows. Here we present the solutions of a decoupled approach, based on a combination of finite volume and finite element methods, and a fully coupled approach, based on an upwind-weighted finite element method, for a variety of non-linear fluid flow problems. The results are compared for accuracy, robustness, and speed. They show that, in general, the decoupled approach is computationally more efficient and robust, because it does not

  17. Elimination of radiocontrast agent diatrizoic acid by photo-Fenton process and enhanced treatment by coupling with electro-Fenton process.

    PubMed

    Bocos, Elvira; Oturan, Nihal; Pazos, Marta; Sanromán, M Ángeles; Oturan, Mehmet A

    2016-10-01

    The removal of radiocontrast agent diatrizoic acid (DIA) from water was performed using photo-Fenton (PF) process. First, the effect of H2O2 dosage on mineralization efficiency was determined using ultraviolet (UV) irradiation. The system reached a maximum mineralization degree of 60 % total organic carbon (TOC) removal at 4 h with 20 mM initial H2O2 concentration while further concentration values led to a decrease in TOC abatement efficiency. Then, the effect of different concentrations of Fenton's reagents was studied for homogeneous Fenton process. Obtained results revealed that 0.25 mM Fe(3+) and 20 mM H2O2 were the best conditions, achieving 80 % TOC removal efficiency at 4 h treatment. Furthermore, heterogeneous PF treatment was developed using iron-activated carbon as catalyst. It was demonstrated that this catalyst is a promising option, reaching 67 % of TOC removal within 4 h treatment without formation of iron leachate in the medium. In addition, two strategies of enhancement for process efficiency are proposed: coupling of PF with electro-Fenton (EF) process in two ways: photoelectro-Fenton (PEF) or PF followed by EF (PF-EF) treatments, achieving in both cases the complete mineralization of DIA solution within only 2 h. Finally, the Microtox tests revealed the formation of more toxic compounds than the initial DIA during PF process, while, it was possible to reach total mineralization by both proposed alternatives (PEF or PF-EF) and thus to remove the toxicity of DIA solution.

  18. Potential for real-time understanding of coupled hydrologic and biogeochemical processes in stream ecosystems: Future integration of telemetered data with process models for glacial meltwater streams

    NASA Astrophysics Data System (ADS)

    McKnight, Diane M.; Cozzetto, Karen; Cullis, James D. S.; Gooseff, Michael N.; Jaros, Christopher; Koch, Joshua C.; Lyons, W. Berry; Neupauer, Roseanna; Wlostowski, Adam

    2015-08-01

    While continuous monitoring of streamflow and temperature has been common for some time, there is great potential to expand continuous monitoring to include water quality parameters such as nutrients, turbidity, oxygen, and dissolved organic material. In many systems, distinguishing between watershed and stream ecosystem controls can be challenging. The usefulness of such monitoring can be enhanced by the application of quantitative models to interpret observed patterns in real time. Examples are discussed primarily from the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. Although the Dry Valley landscape is barren of plants, many streams harbor thriving cyanobacterial mats. Whereas a daily cycle of streamflow is controlled by the surface energy balance on the glaciers and the temporal pattern of solar exposure, the daily signal for biogeochemical processes controlling water quality is generated along the stream. These features result in an excellent outdoor laboratory for investigating fundamental ecosystem process and the development and validation of process-based models. As part of the McMurdo Dry Valleys Long-Term Ecological Research project, we have conducted field experiments and developed coupled biogeochemical transport models for the role of hyporheic exchange in controlling weathering reactions, microbial nitrogen cycling, and stream temperature regulation. We have adapted modeling approaches from sediment transport to understand mobilization of stream biomass with increasing flows. These models help to elucidate the role of in-stream processes in systems where watershed processes also contribute to observed patterns, and may serve as a test case for applying real-time stream ecosystem models.

  19. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    NASA Astrophysics Data System (ADS)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  20. Uncertainties in coupled thermal-hydrological processes associated with the Drift Scale Test at Yucca Mountain, Nevada.

    PubMed

    Mukhopadhyay, S; Tsang, Y W

    2003-01-01

    Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal-hydrological (TH) conceptual models have yielded a good fit between simulation results and those measured data. However, some uncertainties in understanding the TH processes associated with the DST still exist. This paper evaluates these uncertainties and provides quantitative estimates of the range of these uncertainties. Of particular interest for the DST are the uncertainties resulting from the unmonitored loss of vapor through an open bulkhead of the test. There was concern that the outcome from the test might have been significantly altered by these losses. Using alternative conceptual models, we illustrate that predicted mean temperatures from the DST are within 1 degrees C of the measured mean temperatures through the first 2 years of heating. The simulated spatial and temporal evolution of drying and condensation fronts is found to be qualitatively consistent with measured saturation data. Energy and mass balance computation shows that no more than 13% of the input energy is lost because of vapor leaving the test domain through the bulkhead. The change in average saturation in fractures is also relatively small. For a hypothetical situation in which no vapor is allowed to exit through the bulkhead, the simulated average fracture saturation is not qualitatively different enough to be discerned by measured moisture redistribution data. This leads us to conclude that the DST, despite the uncertainties associated with open field testing, has provided an excellent understanding of the TH processes.

  1. Uncertainties in coupled thermal-hydrological processes associated with the drift scale test at Yucca Mountain, Nevada

    SciTech Connect

    Mukhopadhyay, Sumitra; Tsang, Y.W.

    2002-09-01

    Understanding thermally driven coupled hydrological, mechanical, and chemical processes in unsaturated fractured tuff is essential for evaluating the performance of the potential radioactive waste repository at Yucca Mountain, Nevada. The Drift Scale Test (DST), intended for acquiring such an understanding of these processes, has generated a huge volume of temperature and moisture redistribution data. Sophisticated thermal hydrological (TH) conceptual models have yielded a good fit between simulation results and those measured data. However, some uncertainties in understanding the TH processes associated with the DST still exist. This paper evaluates these uncertainties and provides quantitative estimates of the range of these uncertainties. Of particular interest for the DST are the uncertainties resulting from the unmonitored loss of vapor through an open bulkhead of the test. There was concern that the outcome from the test might have been significantly altered by these losses. Using alternative conceptual models, we illustrate that predicted mean temperatures from the DST are within 1 degree C of the measured mean temperatures through the first two years of heating. The simulated spatial and temporal evolution of drying and condensation fronts is found to be qualitatively consistent with measured saturation data. Energy and mass balance computation shows that no more than 13 percent of the input energy is lost because of vapor leaving the test domain through the bulkhead. The change in average saturation in fractures is also relatively small. For a hypothetical situation in which no vapor is allowed to exit through the bulkhead, the simulated average fracture saturation is not qualitatively different enough to be discerned by measured moisture redistribution data. This leads us to conclude that the DST, despite the uncertainties associated with open field testing, has provided an excellent understanding of the TH processes.

  2. Coupling of an active middle-ear implant to the long process of the incus using an elastic clip attachment.

    PubMed

    Schraven, Sebastian P; Mlynski, Robert; Dalhoff, Ernst; Heyd, Andreas; Wildenstein, Daniela; Rak, Kristen; Radeloff, Andreas; Hagen, Rudolf; Gummer, Anthony W

    2016-10-01

    The active middle-ear implant Vibrant Soundbridge(©) (VSB) is used to treat mild-to-severe sensorineural hearing losses. The standard surgical approach for incus vibroplasty is a mastoidectomy and a posterior tympanotomy, crimping the Floating Mass Transducer (FMT) to the long process of the incus (LPI) (standard crimped application). However, tight crimping increases the risk of necrosis of the LPI, resulting in reduction of energy transfer and loss of amplification. The aim of this study was to develop a new coupling device for the LPI, that does not require crimping, and to test its vibrational transfer properties in temporal-bone preparations. An extended antrotomy and a posterior tympanotomy were performed in ten fresh human temporal bones. As a control for normal middle-ear function, the tympanic membrane was stimulated acoustically and the vibration of the stapes footplate was measured by laser Doppler vibrometry (LDV). FMT-induced vibration responses of the stapes were then measured for the standard crimped application at the LPI and for the newly designed elastic long process coupler (LP coupler). For the LP coupler, velocity-amplitude responses in temporal-bone preparations showed increased mean amplitudes at around 1 kHz (∼10 dB) and a reduction between 1.8 and 6 kHz (13 dB on average for 2 ≤ f ≤ 5 kHz). In conclusion, attachment of the FMT to the LPI with the LP coupler leads to generally good mechanical and functional coupling in temporal-bone preparations with a notable disadvantage between 1.8 and 6 kHz. Due to its elastic clip attachment it is expected that the LP coupler will reduce the risk of necrosis of the incus long process, which has to been shown in further studies. Clinical results of the LP coupler are pending. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. How do how internal and external processes affect the behaviors of coupled marsh mudflat systems; infill, stabilize, retreat, or drown?

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Mariotti, G.; Wiberg, P.; Fagherazzi, S.; McGlathery, K.

    2013-12-01

    Intertidal coastal environments are prone to changes induced by sea level rise, increases in storminess, and anthropogenic disturbances. It is unclear how changes in external drivers may affect the dynamics of low energy coastal environments because their response is non-linear, and characterized by many thresholds and discontinuities. As such, process-based modeling of the ecogeomorphic processes underlying the dynamics of these ecosystems is useful, not only to predict their change through time, but also to generate new hypotheses and research questions. Here, a three-point dynamic model was developed to investigate how internal and external processes affect the behavior of coupled marsh mudflat systems. The model directly incorporates ecogeomorphological feedbacks between wind waves, salt marsh vegetation, allochthonous sediment loading, tidal flat vegetation and sea level rise. The model was applied to examine potential trajectories of salt marshes on the Eastern seaboard of the United States, including those in the Plum Island Ecosystems (PIE), Virginia Coast Reserve (VCR) and Georgia Coastal Ecosystems (GCE) long term ecological research (LTER) sites. While these sites are undergoing similar rates of relative sea level rise (RSLR), they have distinct differences in site specific environmental drivers including tides, wind waves, allochthonous sediment supply and the presence or absence of seagrass. These differences lead to the emergence of altered behaviors in the coupled salt marsh-tidal flat system. For marsh systems without seagrass or significant riverine sediment supply, conditions similar to those at PIE, results indicated that horizontal and vertical marsh evolution respond in opposing ways to wave induced processes. Marsh horizontal retreat is triggered by large mudflats and strong winds, whereas small mudflats and weak winds reduce the sediment supply to the salt marsh, decreasing its capability to keep pace with sea level rise. Marsh expansion and

  4. Prediction of Coupled Thermal, Hydrological and Chemical Processes at the Proposed Yucca Mountain Nuclear Waste Repository: An Integrated Approach

    SciTech Connect

    N. Spycher; E. Sonnenthal; T. Kneafsey; P. Dobson

    2003-10-17

    An integrated modeling approach was developed to investigate long-term coupled thermal, hydrological, and chemical (THC) processes that could take place around nuclear waste emplacement tunnels (drifts). The approach involves the development of process models, followed by numerical implementation and validation against field and laboratory experiments before conducting long-term predictive simulations. An outcome of this work was the refinement and validation of an existing reactive transport numerical code for applications specific to the geologic storage of nuclear waste. The model was applied to the case of the proposed high-level nuclear waste repository at Yucca Mountain, Nevada, to evaluate the chemistry of waters potentially seeping into drifts and the effect of water-rock interaction on long-term hydrological behavior around the repository. At liquid saturations significantly larger than residual, no extreme pH or salinity values were predicted. Mineral precipitation around drifts consists mainly of silica with minor calcite, trace zeolites and clays. The effect of mineral precipitation on flow depends largely on initial fracture porosity, and results in negligible to significant diversion of percolation around the drift. Further analyses of model uncertainty are under way to improve confidence in model results.

  5. Extracellular synthesis of cuprous selenide nanospheres by a biological-chemical coupling reduction process in an anaerobic microbial system.

    PubMed

    Yue, Lei; Wang, Jia; Qi, Shiyue; Xin, Baoping

    2016-09-01

    Biosynthesis of metal nanoparticles represents a clean, eco-friendly and sustainable "green chemistry" engineering. Lately, a number of metal selenides were successfully synthesized by biological methods. Here, cuprous selenide (Cu2 Se) nanospheres were prepared under mild conditions by a novel biological-chemical coupling reduction process. The simple process takes place between EDTA-Cu and Na2 SeO3 in presence of an alkaline solution containing NaBH4 and a selenite-reducing bacteria, Pantoea agglomerans. It is noteworthy that the isolated Pantoea agglomerans and Cu(+) ions, where the latter are obtained from reducing Cu(2+) ions by NaBH4 , play a key role, and Cu(+) ions not only can promote the generation of Se(2-) ions as a catalyst, but also can react with Se(2-) ions to form Cu2 Se. XRD pattern, SEM, and TEM images indicated that Cu2 Se nanoparticles were tetragonal crystal structure and the nanospheres diameter were about 100 nm. EDX, UV-vis, and FTIR spectra show that the biosynthesized Cu2 Se nanospheres are wrapped by protein and have a better stability. This work first proposes a new biosynthesis mechanism, and has important reference value for biological preparation of metal selenide nanomaterials. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1264-1270, 2016.

  6. A comprehensive mathematical model for estimating oil drainage rate in SAGD process considering wellbore/formation coupling effect

    NASA Astrophysics Data System (ADS)

    Cheng, Linsong; Gu, Hao; Huang, Shijun

    2017-05-01

    The aim of this work is to present a comprehensive mathematical model for estimating oil drainage rate in Steam-assisted gravity drainage (SAGD) process, more importantly, wellbore/formation coupling effect is considered. Firstly, mass and heat transfer in vertical and horizontal wellbores are described briefly. Then, a function of steam chamber height is introduced and the expressions for oil drainage rate in rising and expanding steam chamber stages are derived in detail. Next, a calculation flowchart is provided and an example is given to introduce how to use the proposed method. Finally, after the mathematical model is validated, the effects of wellhead steam injection rate on simulated results are further analyzed. The results indicate that heat injection power per meter reduces gradually along the horizontal wellbore, which affects both steam chamber height and oil drainage rate in the SAGD process. In addition, when production time is the same, the calculated oil drainage rate from the new method is lower than that from Butler's method. Moreover, the paper shows that when wellhead steam injection rate is low enough, the steam chamber is not formed at the horizontal well's toe position and enhancing the wellhead steam injection rate can increase the oil drainage rate.

  7. Coupled process of plastics pyrolysis and chemical vapor deposition for controllable synthesis of vertically aligned carbon nanotube arrays

    NASA Astrophysics Data System (ADS)

    Yang, Zhou; Zhang, Qiang; Luo, Guohua; Huang, Jia-Qi; Zhao, Meng-Qiang; Wei, Fei

    2010-08-01

    Efficient conversion of waste plastics into advanced materials is of conspicuous environmental, social and economic benefits. A coupled process of plastic pyrolysis and chemical vapor deposition for vertically aligned carbon nanotube (CNT) array growth was proposed. Various kinds of plastics, such as polypropylene, polyethylene, and polyvinyl chloride, were used as carbon sources for the controllable growth of CNT arrays. The relationship between the length of CNT arrays and the growth time was investigated. It was found that the length of aligned CNTs increased with prolonged growth time. CNT arrays with a length of 500 μm were obtained for a 40-min growth and the average growth rate was estimated to be 12 μm/min. The diameter of CNTs in the arrays can be modulated by controlling the growth temperature and the feeding rate of ferrocene. In addition, substrates with larger specific surface area such as ceramic spheres, quartz fibers, and quartz particles, were adopted to support the growth of CNT arrays. Those results provide strong evidence for the feasibility of conversion from waste plastics into CNT arrays via this reported sustainable materials processing.

  8. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    SciTech Connect

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D.

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  9. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process.

    PubMed

    Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.

  10. Recovery of salts from ion-exchange regeneration streams by a coupled nanofiltration-membrane distillation process.

    PubMed

    Jiříček, Tomáš; De Schepper, Wim; Lederer, Tomáš; Cauwenberg, Peter; Genné, Inge

    2015-01-01

    Ion-exchange tap water demineralization for process water preparation results in a saline regeneration wastewater (20-100 mS cm(-1)) that is increasingly problematic in view of discharge. A coupled nanofiltration-membrane distillation (NF-MD) process is evaluated for the recovery of water and sodium chloride from this wastewater. NF-MD treatment of mixed regeneration wastewater is compared to NF-MD treatment of separate anion- and cation-regenerate fractions. NF on mixed regeneration wastewater results in a higher flux (30 L m(-2) h(-1) at 7 bar) compared to NF on the separate fractions (6-9 L m(-2) h(-1) at 30 bar). NF permeate recovery is strongly limited by scaling (50% for separate and 60% for mixed, respectively). Physical signs of scaling were found during MD treatment of the NF permeates but did not result in flux decline for mixed regeneration wastewater. Final salt composition is expected to qualify as a road de-icing salt. NF-MD is an economically viable alternative compared to external disposal of wastewater for larger-scale installations (1.4 versus 2.5 euro m(-3) produced demineralized water for a 10 m3 regenerate per day plant). The cost benefits of water re-use and salt recuperation are small when compared to total treatment costs for mixed regenerate wastewater.

  11. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process

    PubMed Central

    Mohamed, Amr E.; Dorrah, Hassen T.

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444

  12. Potentialities of coupling biological processes (biotrickler/biofilter) for the degradation of a mixture of sulphur compounds.

    PubMed

    Malhautier, Luc; Soupramanien, Alexandre; Bayle, Sandrine; Rocher, Janick; Fanlo, Jean-Louis

    2015-01-01

    This study deals with the potential of biological processes combining a biotrickler and a biofilter to treat a mixture of sulphur-reduced compounds including dimethyl sulphide (DMS), dimethyl disulphide (DMDS) and hydrogen sulphide (H2S). As a reference, duplicated biofilters were implemented, and operating conditions were similar for all bioprocesses. The first step of this work was to determine the efficiency removal level achieved for each compound of the mixture and in a second step, to assess the longitudinal distribution of biodegradation activities and evaluate the total bacteria, Hyphomicrobium sp. and Thiobacillus thioparus densities along the bed height. A complete removal of hydrogen sulphide is reached at the start of the experiment within the first stage (biotrickler) of the coupling. This study highlighted that the coupling of a biotrickling filter and a biofilter is an interesting way to improve both removal efficiency levels (15-20% more) and kinetics of recalcitrant sulphur compounds such as DMS and DMDS. The total cell densities remained similar (around 1 × 10(10) 16S recombinant DNA (rDNA) copies g dry packing material) for duplicated biofilters and the biofilter below the biotrickling filter. The relative abundances of Hyphomicrobium sp. and T. thioparus have been estimated to an average of 10 ± 7.0 and 0.23 ± 0.07%, respectively, for all biofilters. Further investigation should allow achieving complete removal of DMS by starting the organic sulphur compound degradation within the first stage and surveying microbial community structure colonizing this complex system.

  13. An efficient semi-analytical method for modeling strongly coupled diffusion and deformation processes in layered poroelastic media

    NASA Astrophysics Data System (ADS)

    Wang, R.; Kuempel, H.

    2003-12-01

    From poroelasticity theory we know that fluid diffusion will induce matrix deformation and vice versa. In practice, well known phenomena for such coupled processes are, for example, occurrence of seismo-tectonically induced groundwater fluctuations, land subsidence as a result of fluid extraction from subsurface reservoirs, production-induced surface strain near the vicinity of wells, reservoir- or injection-induced seismicity. Modeling of deformation and pore-pressure data that have been observed near the surface can help to image the dynamics and to assess the hydraulic properties of subsurface aquifers. We here present a semi-analytical Haskell propagator method to fully handle linear poroelastic problems in a multilayered half-space. Our method is a powerful tool for various reasons: (1) It is faster than traditional numerical schemes when respective discretization of the object region is chosen and solutions are sought for single locations only; (2) a problem is easily formulated, as only a set of five poroelastic parameters per layer plus the layers' thicknesses need to be specified; (3) the method is highly flexible, as forcing functions of point injection, single force (e.g., surface loading), double couple dislocation (earthquakes), etc. may be readily incorporated; (4) the so-called loss-of-precision problem of the original propagator algorithm has been fully overcome using the orthonormalization technique. The effectiveness of the new tool has been demonstrated by modeling pump-induced near-surface tilt data obtained at a test site near Sopron in western Hungary. The results show that the hydraulic diffusivity of the shallow subsurface aquifer can be assessed with an accuracy better than half an order of magnitude, if other elastic parameters and the geometry (depth and thickness) of the water-bearing formations are sufficiently known from, for example, bore-log records. Moreover, the present method can be applied to model induced seismicity based on the

  14. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  15. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  16. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  17. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes.

    PubMed

    López-Loveira, Elsa; Ariganello, Federico; Medina, María Sara; Centrón, Daniela; Candal, Roberto; Curutchet, Gustavo

    2016-09-17

    Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as "likely to be carcinogenic in humans" for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H2O2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H2O2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H2O2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

  18. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  19. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  20. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  1. Evaluation of soil nitrogen emissions from riparian zones coupling simple process-oriented models with remote sensing data.

    PubMed

    Wang, Xuelei; Mannaerts, C M; Yang, Shengtian; Gao, Yunfei; Zheng, Donghai

    2010-07-15

    Riparian ecosystems have critical impacts on controlling the non-point source pollution and maintaining the health of aquatic ecosystems. In this study, a process oriented soil denitrification model was extended with algorithms from a simple nitrogen (N) cycle model and coupled to land surface remote sensing data to enhance its performance in spatial and temporal prediction of gaseous N emissions from soils in the riparian buffer zone surrounding the Guanting reservoir (China). The N emission model is based on chemical and physical relationships that govern the heat budget, soil moisture variations and nitrogen movement in soils. Besides soil water and heat processes, it includes nitrification, denitrification and ammonia (NH(3)) volatilization. SPOT-5 and Landsat-5 TM satellite data were used to derive spatial land surface information and the temporal variation in land cover parameters was also used to drive the model. A laboratory-scale anaerobic incubation experiment was used to estimate the soil denitrification model parameters for the different soil types. An in situ field-scale experiment was conducted to calibrate and validate the soil temperature, moisture and nitrogen sub-models. An indirect method was used to verify simulated N emissions, resulting in a coefficient of determination of R(2)=0.83 between simulated and observed values. Then the model was applied to the whole riparian buffer zone catchment, using the spatial resolution (10m) of the SPOT-5 image. Model sensitivity analysis showed that soil moisture was the most sensitive parameter for gaseous N emissions and soil denitrification was the main process affecting N losses to the atmosphere in the riparian area. From the aspect of land use management around the Guanting reservoir, the spatial structure and distribution of land cover and land use types in the riparian area should be adapted, to enhance faster ecological restoration of the wetland ecological system surrounding this strategically

  2. RecQ helicase translocates along single-stranded DNA with a moderate processivity and tight mechanochemical coupling.

    PubMed

    Sarlós, Kata; Gyimesi, Máté; Kovács, Mihály

    2012-06-19

    Maintenance of genome integrity is the major biological role of RecQ-family helicases via their participation in homologous recombination (HR)-mediated DNA repair processes. RecQ helicases exert their functions by using the free energy of ATP hydrolysis for mechanical movement along DNA tracks (translocation). In addition to the importance of translocation per se in recombination processes, knowledge of its mechanism is necessary for the understanding of more complex translocation-based activities, including nucleoprotein displacement, strand separation (unwinding), and branch migration. Here, we report the key properties of the ssDNA translocation mechanism of Escherichia coli RecQ helicase, the prototype of the RecQ family. We monitored the pre-steady-state kinetics of ATP hydrolysis by RecQ and the dissociation of the enzyme from ssDNA during single-round translocation. We also gained information on the translocation mechanism from the ssDNA length dependence of the steady-state ssDNA-activated ATPase activity. We show that RecQ occludes 18 ± 2 nt on ssDNA during translocation. The hydrolysis of ATP is noncooperative in the presence of ssDNA, indicating that RecQ active sites work independently during translocation. In the applied conditions, the enzyme hydrolyzes 35 ± 4 ATP molecules per second during ssDNA translocation. RecQ translocates at a moderate processivity, with a mean run length of 100-320 nt on ssDNA. The determined tight mechanochemical coupling of 1.1 ± 0.2 ATP consumed per nucleotide traveled indicates an inchworm-type mechanism.

  3. Metal speciation in a complexing soft film layer: a theoretical dielectric relaxation study of coupled chemodynamic and electrodynamic interfacial processes.

    PubMed

    Merlin, Jenny; Duval, Jérôme F L

    2012-04-07

    We report a comprehensive formalism for the dynamics of metal speciation across an interphase formed between a complexing soft film layer and an electrolyte solution containing indifferent ions and metal ions that form complexes with charged molecular ligands distributed throughout the film. The analysis integrates the intricate interplay between metal complexation kinetics and diffusive metal transfer from/toward the ligand film, together with the kinetics of metal electrostatic partitioning across the film/solution interphase. This partitioning is determined by the settling dynamics of the interfacial electric double layer (EDL), as governed by time-dependent conduction-diffusion transports of both indifferent and reactive metal ions. The coupling between such chemodynamic and electrodynamic processes is evaluated via derivation of the dielectric permittivity increment for the ligand film/electrolyte interphase that is perturbed upon application of an ac electric field (pulsation ω) between electrodes supporting the films. The dielectric response is obtained from the ω-dependent distributions of all ions across the ligand film, as ruled by coupled Poisson-Nernst-Planck equations amended for a chemical source term involving the intra-film complex formation and dissociation pulsations (ω(a) and ω(d) respectively). Dielectric spectra are discussed for bare and film coated-electrodes over a wide range of field pulsations and Deborah numbers De = ω(a,d)/ω(diff), where ω(diff) is the electric double layer relaxation pulsation. The frequency-dependent dynamic or inert character of the formed metal complexes is then addressed over a time window that ranges from transient to fully relaxed EDL. The shape and magnitude of the dielectric spectra are further shown to reflect the lability of dynamic complexes, i.e. whether the overall speciation process at a given pulsation ω is primarily rate-limited either by complexation kinetics or by ion-transport dynamics. The

  4. Coupling and optimisation of online nuclear magnetic resonance spectroscopy and mass spectrometry for process monitoring to cover the broad range of process concentration.

    PubMed

    Blanazs, Alexander; Bristow, Tony W T; Coombes, Steven R; Corry, Tom; Nunn, Mike; Ray, Andrew D

    2017-04-01

    Real time online monitoring of chemical processes can be carried out by a number of analytical techniques, including optical and vibrational spectroscopies, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). As each technique has unique advantages and challenges, combinations are an attractive option. The combination of a 500-MHz (1) H NMR and a small footprint mass spectrometer to monitor a batch reaction at process concentration was investigated. The mass spectrometer was coupled into the flow path of an online reaction monitoring NMR. Reaction mixture was pumped from a 100-ml vessel to an NMR flow tube before returning to the vessel. Small aliquots were diverted into a sampling make-up flow using an active flow splitter and passed to the mass spectrometer. Advantages of the combination were observed. (1) H NMR was ideal for quantitation of high level components, whereas MS showed a greater capability for detecting those at low level. In preliminary experiments MS produced a limited linear relationship with concentration (0.02% to 2% relative concentration, 0.01 mg/ml-1.25 mg/ml), because of signal saturation at the higher concentrations. NMR was unable to detect components below 0.1% relative to concentration maximum. Optimisation of sample transfer to the MS extended the linearity to 10% relative to the concentration maximum. Therefore, the combination of online NMR and MS allows both qualitative and quantitative analysis of reaction components over the full process range. The application of the combination was demonstrated by monitoring a batch chemical reaction and this is described. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si

    NASA Astrophysics Data System (ADS)

    Hamilton, C.; Węglowski, M. St.; Dymek, S.; Sedek, P.

    2015-03-01

    A coupled thermal/material flow model of friction stir processing is developed for friction stir processing of an as-cast AlSi9Mg aluminum alloy. By capturing material flow during processing, an asymmetric temperature distribution is generated with higher processing temperatures on the advancing side than on the retreating side. The temperature distribution from the coupled model is then incorporated into a thermomechanical model to predict the residual stress state after processing. These numerical results are compared with the residual stresses experimentally measured by the trepanation method. Experimental results show that the tensile residual stresses are higher on the advancing side than on the retreating side. The simulation successfully captures the asymmetric behavior of the residual stress profile, and the predicted maximum residual stress values show relatively good agreement with the experimental values. The simulated profile, however, is narrower than the experimental profile, yielding a smaller region of tensile residual stresses around the process zone than experimentally observed.

  6. Development of the T+M coupled flow–geomechanical simulator to describe fracture propagation and coupled flow–thermal–geomechanical processes in tight/shale gas systems

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermoporomechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully accounts for leak-off in all directions during hydraulic fracturing. We first validate the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  7. Development of the T+M coupled flow-geomechanical simulator to describe fracture propagation and coupled flow-thermal-geomechanical processes in tight/shale gas systems

    NASA Astrophysics Data System (ADS)

    Kim, Jihoon; Moridis, George J.

    2013-10-01

    We developed a hydraulic fracturing simulator by coupling a flow simulator to a geomechanics code, namely T+M simulator. Modeling of the vertical fracture development involves continuous updating of the boundary conditions and of the data connectivity, based on the finite element method for geomechanics. The T+M simulator can model the initial fracture development during the hydraulic fracturing operations, after which the domain description changes from single continuum to double or multiple continua in order to rigorously model both flow and geomechanics for fracture-rock matrix systems. The T+H simulator provides two-way coupling between fluid-heat flow and geomechanics, accounting for thermo-poro-mechanics, treats nonlinear permeability and geomechanical moduli explicitly, and dynamically tracks changes in the fracture(s) and in the pore volume. We also fully account for leak-off in all directions during hydraulic fracturing. We first test the T+M simulator, matching numerical solutions with the analytical solutions for poromechanical effects, static fractures, and fracture propagations. Then, from numerical simulation of various cases of the planar fracture propagation, shear failure can limit the vertical fracture propagation of tensile failure, because of leak-off into the reservoirs. Slow injection causes more leak-off, compared with fast injection, when the same amount of fluid is injected. Changes in initial total stress and contributions of shear effective stress to tensile failure can also affect formation of the fractured areas, and the geomechanical responses are still well-posed.

  8. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Quantum Information Processing in An Array of Fiber Coupled Cavities

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zou, Jian; Shao, Bin

    2010-04-01

    We consider a fiber coupled cavity array. Each cavity is doped with a single two-level atom. By treating the atom-cavity systems as combined polaritonic qubits, we can transform it into a polaritonic qubit-qubit array in the dispersive regime. We show that the four fiber coupled cavity open chain and ring can both generate the four qubit W state and cluster state, and can both transfer one and two qubit arbitrary states. We also discuss the dynamical behaviors of the four fiber coupled cavity array with unequal couplings.

  9. Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales

    SciTech Connect

    Clement, T Prabhakar; Barnett, Mark O; Zheng, Chunmiao; Jones, Norman L

    2010-05-05

    DE-FG02-06ER64213: Development of Modeling Methods and Tools for Predicting Coupled Reactive Transport Processes in Porous Media at Multiple Scales Investigators: T. Prabhakar Clement (PD/PI) and Mark O. Barnett (Auburn), Chunmiao Zheng (Univ. of Alabama), and Norman L. Jones (BYU). The objective of this project was to develop scalable modeling approaches for predicting the reactive transport of metal contaminants. We studied two contaminants, a radioactive cation [U(VI)] and a metal(loid) oxyanion system [As(III/V)], and investigated their interactions with two types of subsurface materials, iron and manganese oxyhydroxides. We also developed modeling methods for describing the experimental results. Overall, the project supported 25 researchers at three universities. Produced 15 journal articles, 3 book chapters, 6 PhD dissertations and 6 MS theses. Three key journal articles are: 1) Jeppu et al., A scalable surface complexation modeling framework for predicting arsenate adsorption on goethite-coated sands, Environ. Eng. Sci., 27(2): 147-158, 2010. 2) Loganathan et al., Scaling of adsorption reactions: U(VI) experiments and modeling, Applied Geochemistry, 24 (11), 2051-2060, 2009. 3) Phillippi, et al., Theoretical solid/solution ratio effects on adsorption and transport: uranium (VI) and carbonate, Soil Sci. Soci. of America, 71:329-335, 2007

  10. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999).

  11. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization.

    PubMed

    Zou, Haiming; Wang, Yan

    2016-07-01

    A new process of enhanced biological phosphorus removal coupled with crystallization recovery of phosphorus was developed here, where the feasibility of nutrients removal and potential for phosphorus recovery from domestic wastewater was further assessed. Results showed that an excellent nutrients removal and phosphorus recovery performance was achieved, in which the averaged COD, PO4(3-)-P and NO3(-)-N removal efficiencies were 82.6%, 87.5% and 91.6%, respectively and a total of 59.3% of phosphorus was recovered as hydroxyapatite. What's more, crystallization recovery of phosphorus greatly enhanced the biological phosphorus removal efficiency. After the incorporation of the phosphorus recovery column via side-stream, the phosphorus concentration of effluent was significantly decreased ranging from 1.24mg/L to 0.85mg/L, 0.52mg/L and 0.41mg/L at the lateral flow ratios of 0, 0.1, 0.2 and 0.3, respectively. The results obtained here would be beneficial to provide a prospective alternative for phosphorus removal and recovery from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. A comparative simulation study of coupled THM processes and their effect on fractured rock permeability around nuclear waste repositories

    SciTech Connect

    Rutqvist, Jonny; Barr, Deborah; Birkholzer, Jens T.; Fujisaki, Kiyoshi; Kolditz, Olf; Liu, Quan-Shen; Fujita, tomoo; Wang, Wenqing; Zhang, Cheng-Yuan

    2008-10-23

    This paper presents an international, multiple-code, simulation study of coupled thermal, hydrological, and mechanical (THM) processes and their effect on permeability and fluid flow in fractured rock around heated underground nuclear waste emplacement drifts. Simulations were conducted considering two types of repository settings: (a) open emplacement drifts in relatively shallow unsaturated volcanic rock, and (b) backfilled emplacement drifts in deeper saturated crystalline rock. The results showed that for the two assumed repository settings, the dominant mechanism of changes in rock permeability was thermal-mechanically-induced closure (reduced aperture) of vertical fractures, caused by thermal stress resulting from repository-wide heating of the rock mass. The magnitude of thermal-mechanically-induced changes in permeability was more substantial in the case of an emplacement drift located in a relatively shallow, low-stress environment where the rock is more compliant, allowing more substantial fracture closure during thermal stressing. However, in both of the assumed repository settings in this study, the thermal-mechanically-induced changes in permeability caused relatively small changes in the flow field, with most changes occurring in the vicinity of the emplacement drifts.

  13. Improving carbohydrate production of Chlorella sorokiniana NIES-2168 through semi-continuous process coupled with mixotrophic cultivation.

    PubMed

    Wang, Yue; Chiu, Sheng-Yi; Ho, Shih-Hsin; Liu, Zhuo; Hasunuma, Tomohisa; Chang, Ting-Ting; Chang, Kuan-Fu; Chang, Jo-Shu; Ren, Nan-Qi; Kondo, Akihiko

    2016-08-01

    Biofuels from microalgae is now a hot issue of great potential. However, achieving high starch productivity with photoautotrophic microalgae is still challenging. A feasible approach to enhance the growth and target product of microalgae is to conduct mixotrophic cultivation. The appropriate acetate addition combined with CO2 supply as dual carbon sources (i.e., mixotrophic cultivation) could enhance the cell growth of some microalgae species, but the effect of acetate-mediated mixotrophic culture mode on carbohydrate accumulation in microalgae remains unclear. Moreover, there is still lack of the information concerning how to increase the productivity of carbohydrates from microalgae under acetate-amended mixotrophic cultivation and how to optimize the engineering strategies to achieve the goal. This study was undertaken to develop an optimal acetate-contained mixotrophic cultivation system coupled with effective operation strategies to markedly improve the carbohydrate productivity of Chlorella sorokiniana NIES-2168. The optimal carbohydrate productivity of 695 mg/L/d was obtained, which is the highest value ever reported. The monosaccharide in the accumulated carbohydrates is mainly glucose (i.e., 85-90%), which is very suitable for bio-alcohols fermentation. Hence, by applying the optimal process developed in this study, C. sorokiniana NIES-2168 has a high potential to serve as a feedstock for subsequent biofuels conversion.

  14. Different types of signal coupling in the visual cortex related to neural mechanisms of associative processing and perception.

    PubMed

    Eckhorn, Reinhard; Gail, Alexander M; Bruns, Andreas; Gabriel, Andreas; Al-Shaikhli, Basim; Saam, Mirko

    2004-09-01

    The hypothesis of object representation by synchronization in the visual cortex has been supported by our recent experiments in monkeys. They demonstrated local synchrony among gamma activities (30-90 Hz) and their perceptual modulation, according to the rules of figure-ground segregation. However, gamma-synchrony in primary visual cortex is restricted to few mm, challenging the synchronization hypothesis for larger cortical object representations. The restriction is due to randomly changing phase relations among locally synchronized patches which, however, form continuous waves of gamma-activity, traveling across object representations. The phase continuity of these waves may support coding of object continuity. Interactions across still larger distances, measured among cortical areas in human data, involve amplitude envelopes of gamma signals. Based on models with spiking neurons we discuss potentially underlying mechanisms. Most important for gamma synchronization are local facilitatory connections with distance-dependent delays. They also explain the occurrence of gamma waves and the restriction of gamma-synchrony. Fast local feedback inhibition generates gamma oscillations and supports local synchrony, while slow shunting inhibitory feedback supports figure-ground segregation. Finally, dispersion in inter-areal far projections destroys coherence of gamma signals, but preserves their amplitude modulations. In conclusion, we propose that the hypothesis of associative processing by gamma synchronization be extended to more general forms of signal coupling.

  15. Coupling of Cellular Processes and Their Coordinated Oscillations under Continuous Light in Cyanothece sp. ATCC 51142, a Diazotrophic Unic