Effect of acute ozone exposure on the lung metabolomes of obese and lean mice.
Mathews, Joel Andrew; Kasahara, David Itiro; Cho, Youngji; Bell, Lauren Nicole; Gunst, Philip Ross; Karoly, Edward D; Shore, Stephanie Ann
2017-01-01
Pulmonary responses to the air pollutant, ozone, are increased in obesity. Both obesity and ozone cause changes in systemic metabolism. Consequently, we examined the impact of ozone on the lung metabolomes of obese and lean mice. Lean wildtype and obese db/db mice were exposed to acute ozone (2 ppm for 3 h) or air. 24 hours later, the lungs were excised, flushed with PBS to remove blood and analyzed via liquid-chromatography or gas-chromatography coupled to mass spectrometry for metabolites. Both obesity and ozone caused changes in the lung metabolome. Of 321 compounds identified, 101 were significantly impacted by obesity in air-exposed mice. These included biochemicals related to carbohydrate and lipid metabolism, which were each increased in lungs of obese versus lean mice. These metabolite changes may be of functional importance given the signaling capacity of these moieties. Ozone differentially affected the lung metabolome in obese versus lean mice. For example, almost all phosphocholine-containing lysolipids were significantly reduced in lean mice, but this effect was attenuated in obese mice. Glutathione metabolism was also differentially affected by ozone in obese and lean mice. Finally, the lung metabolome indicated a role for the microbiome in the effects of both obesity and ozone: all measured bacterial/mammalian co-metabolites were significantly affected by obesity and/or ozone. Thus, metabolic derangements in obesity appear to impact the response to ozone.
Human Health and Economic Impacts of Ozone Reductions by Income Group.
Saari, Rebecca K; Thompson, Tammy M; Selin, Noelle E
2017-02-21
Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.
Effect of low-level ozone fumigations on crown rust of oats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heagle, A.S.
1970-02-01
Exposure of crown rust differential varieties of Avena spp. to 10 pphm ozone for 6 hr in the light for 10 days after infection with Puccinia coronata significantly reduced the growth of uredia. Urediospores produced on the plants exposed to ozone germinated as well, produced as many appressoria, and resulted in as much infection as spores produced on unexposed leaves. Exposure on dry leaves to 20 pphm ozone for 3 hr for 1-5 days did not affect urediospore germination, appressoria formation, or penetration. 9 references, 1 figure, 3 tables.
Jing, Liquan; Dombinov, Vitalij; Shen, Shibo; Wu, Yanzhen; Yang, Lianxin; Wang, Yunxia; Frei, Michael
2016-03-01
Rising tropospheric ozone concentrations in Asia affect the yield and quality of rice. This study investigated ozone-induced changes in rice grain quality in contrasting rice genotypes, and explored the associated physiological processes during the reproductive growth phase. The ozone sensitive variety Nipponbare and a breeding line (L81) containing two tolerance QTLs in Nipponbare background were exposed to 100 ppb ozone (8 h per day) or control conditions throughout their growth. Ozone affected grain chalkiness and protein concentration and composition. The percentage of chalky grains was significantly increased in Nipponbare but not in L81. Physiological measurements suggested that grain chalkiness was associated with a drop in foliar carbohydrate and nitrogen levels during grain filling, which was less pronounced in the tolerant L81. Grain total protein concentration was significantly increased in the ozone treatment, although the albumin fraction (water soluble protein) decreased. The increase in protein was more pronounced in L81, due to increases in the glutelin fraction in this genotype. Amino acids responded differently to the ozone treatment. Three essential amino acids (leucine, methionine and threonine) showed significant increases, while seven showed significant treatment by genotype interactions, mostly due to more positive responses in L81. The trend of increased grain protein was in contrast to foliar nitrogen levels, which were negatively affected by ozone. A negative correlation between grain protein and foliar nitrogen in ozone stress indicated that higher grain protein cannot be explained by a concentration effect in all tissues due to lower biomass production. Rather, ozone exposure affected the nitrogen distribution, as indicated by altered foliar activity of the enzymes involved in nitrogen metabolism, such as glutamine synthetase and glutamine-2-oxoglutarate aminotransferase. Our results demonstrate differential responses of grain quality to ozone due to the presence of tolerance QTL, and partly explain the underlying physiological processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ozone Differentially Affects Perception of Plant Volatiles in Western Honey Bees.
Dötterl, Stefan; Vater, Marina; Rupp, Thomas; Held, Andreas
2016-06-01
Floral scents play a key role in mediating plant-pollinator interactions. Volatile organic compounds (VOCs) emitted by flowers are used by flower visitors as olfactory cues to locate flowers, both from a distance and at close range. More recently it has been demonstrated that reactive molecules such as ozone can modify or degrade VOCs, and this may impair the communication between plants and their pollinators. However, it is not known whether such reactive molecules also may affect the olfactory system of pollinators, and thus not only influence signal transmission but perception of the signal. In this study, we used electroantennographic measurements to determine the effect of increased levels of ozone on antennal responses in western honey bees (Apis mellifera L.). Linalool and 2-phenylethanol, both known to be involved in location of flowers by the bees, and (Z)-3-hexenyl acetate, a widespread green leaf volatile also detected by bees, were used. The results showed that ozone affected antennal responses to the different substances differently. Ozone decreased antennal responses to (Z)-3-hexenyl acetate, whereas responses to linalool and 2-phenylethanol were not influenced by ozone. Overall, the study does not provide evidence that pollination by honey bees is impaired by damage in the olfactory system of the bees caused by increased levels of ozone, at least when linalool and 2-phenylethanol are the attractive signals. However, the results also suggest that ozone can change the overall perception of an odor blend. This might have negative effects in pollination systems and other organismic interactions mediated by specific ratios of compounds.
Air Pollution and Epigenetics: Effects on SP-A and Innate Host Defense in the Lung
Silveyra, Patricia; Floros, Joanna
2013-01-01
Summary An appropriate immune and inflammatory response is key to defend against harmful agents present in the environment such as pathogens, allergens, and inhaled pollutants, including ozone and particulate matter. Air pollution is a serious public health concern worldwide, and cumulative evidence revealed that air pollutants contribute to epigenetic variation in several genes, and this in turn can contribute to disease susceptibility. Several groups of experts have recently reviewed findings on epigenetics and air pollution [1–6]. Surfactant proteins play a central role in pulmonary host defense by mediating pathogen clearance, modulating allergic responses and facilitating the resolution of lung inflammation. Recent evidence indicates that surfactant proteins are subject to epigenetic regulation under hypoxia and other conditions. Oxidative stress caused by ozone, and exposure to particulate matter have been shown to affect the expression of surfactant protein A (SP-A), an important lung host defense molecule, as well as alter its functions. In this review, we discuss recent findings in the fields of epigenetics and air pollution effects on innate immunity, with focus on SP-A, and the human SP-A variants in particular. Their function may be differentially affected by pollutants and specifically by ozone-induced oxidative stress, and this in turn may differentially affect susceptibility to lung disease. PMID:22553125
Shadkami, F; Helleur, R J; Cox, R M
2007-07-01
Plant secondary metabolites have an important role in defense responses against herbivores and pathogens, and as a chemical barrier to elevated levels of harmful air pollutants. This study involves the rapid chemical profiling of phenolic and diterpene resin acids in needles of two (ozone-tolerant and ozone-sensitive) white pine (Pinus strobus) clones, fumigated with different ozone levels (control, and daily events peaking at 80 and 200 ppb) for 40 days. The phenolic and resin acids were measured using thermally assisted hydrolysis and methylation (THM) gas chromatography/mass spectrometry. Short-term fumigation affected the levels of two phenolic acids, i.e., 3-hydroxybenzoic and 3,4-dihydroxybenzoic acids, in that both showed a substantial decrease in concentration with increased ozone dose. The decrease in concentration of these THM products may be caused by inhibition of the plant's shikimate biochemical pathway caused by ozone exposure. The combined occurrence of these two ozone-sensitive indicators has a role in biomonitoring of ozone levels and its impact on forest productivity. In addition, chromatographic profile differences in the major diterpene resin acid components were observed between ozone-tolerant and ozone-sensitive clones. The resin acids anticopalic, 3-oxoanticopalic, 3beta-hydroxyanticopalic, and 3,4-cycloanticopalic acids were present in the ozone-sensitive pine; however, only anticopalic acid was present in the ozone-tolerant clone. This phenotypic variation in resin acid composition may be useful in distinguishing populations that are differentially adapted to air pollutants.
A new technique is presented for the retrieval of ozone concentration profiles from backscattered signals obtained by a multi-wavelength differential-absorption lidar (DIAL). The technique makes it possible to reduce erroneous local fluctuations induced in the ozone-concentration...
NASA Astrophysics Data System (ADS)
Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. A.; Nevzorov, A. V.; Kharchenko, O. V.
2016-12-01
Prediction of atmospheric ozone layer, which is the valuable and irreplaceable geo asset, is currently the important scientific and engineering problem. The relevance of the research is caused by the necessity to develop laser remote methods for sensing ozone to solve the problems of controlling the environment and climatology. The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The report introduces the technique of recovering profiles of ozone vertical distribution considering temperature and aerosol correction in atmosphere lidar sounding by differential absorption method. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. Sensing is performed according to the method of differential absorption at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-18 km. The recovered ozone profiles were compared with IASI satellite data and Kruger model. The results of applying the developed technique to recover the profiles of ozone vertical distribution considering temperature and aerosol correction in the altitude range of 6-18 km in lidar atmosphere sounding by differential absorption method confirm the prospects of using the selected wavelengths of ozone sensing 341 and 299 nm in the ozone lidar.
Fuentes, Nathalie; Roy, Arpan; Mishra, Vikas; Cabello, Noe; Silveyra, Patricia
2018-05-08
Sex differences in the incidence and prognosis of respiratory diseases have been reported. Studies have shown that women are at increased risk of adverse health outcomes from air pollution than men, but sex-specific immune gene expression patterns and regulatory networks have not been well studied in the lung. MicroRNAs (miRNAs) are environmentally sensitive posttranscriptional regulators of gene expression that may mediate the damaging effects of inhaled pollutants in the lung, by altering the expression of innate immunity molecules. Male and female mice of the C57BL/6 background were exposed to 2 ppm of ozone or filtered air (control) for 3 h. Female mice were also exposed at different stages of the estrous cycle. Following exposure, lungs were harvested and total RNA was extracted. We used PCR arrays to study sex differences in the expression of 84 miRNAs predicted to target inflammatory and immune genes. We identified differentially expressed miRNA signatures in the lungs of male vs. female exposed to ozone. In silico pathway analyses identified sex-specific biological networks affected by exposure to ozone that ranged from direct predicted gene targeting to complex interactions with multiple intermediates. We also identified differences in miRNA expression and predicted regulatory networks in females exposed to ozone at different estrous cycle stages. Our results indicate that both sex and hormonal status can influence lung miRNA expression in response to ozone exposure, indicating that sex-specific miRNA regulation of inflammatory gene expression could mediate differential pollution-induced health outcomes in men and women.
USDA-ARS?s Scientific Manuscript database
Biochemical and physiological traits of two soybean [Glycine max (L.) Merr.] genotypes that differ in sensitivity to ozone (O3) were investigated to determine the possible basis for the differential response. Fiskeby III (O3-tolerant) and Mandarin (Ottawa) (O3-sensitive) were grown in a greenhouse ...
Gladys I. Loranger; Kurt S. Pregitzer; John S. King
2004-01-01
Rising atmospheric CO2 concentrations may change soil fauna abundance. How increase of tropospheric ozone (O3t) concentration will modify these responses is still unknown. We have assessed independent and interactive effects of elevated [CO2] and [O3t] on selected groups of soil...
Ozone: Good Up High, Bad Nearby
... How Does the Depletion of “Good” Ozone Affect Human Health and the Environment? Ozone depletion can cause increased ... their original sources. How Does “Bad” Ozone Affect Human Health and the Environment? Breathing ozone can trigger a ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, G.R.; Potra, F.
1998-10-06
A major goal of this research was to quantify the interactions between UVR, ozone and aerosols. One method of quantification was to calculate sensitivity coefficients. A novel aspect of this work was the use of Automatic Differentiation software to calculate the sensitivities. The authors demonstrated the use of ADIFOR for the first time in a dimensional framework. Automatic Differentiation was used to calculate such quantities as: sensitivities of UV-B fluxes to changes in ozone and aerosols in the stratosphere and the troposphere; changes in ozone production/destruction rates to changes in UV-B flux; aerosol properties including loading, scattering properties (including relativemore » humidity effects), and composition (mineral dust, soot, and sulfate aerosol, etc.). The combined radiation/chemistry model offers an important test of the utility of Automatic Differentiation as a tool in atmospheric modeling.« less
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.
2014-04-01
Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.) from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19% from 0-1.5 km, 10-18% from 1.5-3 km, and 11-25% from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.
NASA Technical Reports Server (NTRS)
Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.
2014-01-01
Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99 N, 76.84 W, 57 meters ASL) from 400 m to 12 km AGL. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived. An interesting atmospheric case study involving the Stratospheric-Tropospheric Exchange (STE) of ozone is shown to emphasize the regional importance of this instrument as well as assessing the validation and calibration of data. The retrieval yields an uncertainty of 16-19 percent from 0-1.5 km, 10-18 percent from 1.5-3 km, and 11-25 percent from 3 km to 12 km. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington DC area.
NASA Astrophysics Data System (ADS)
Granados-Muñoz, M. J.; Leblanc, T.
2015-12-01
Ozone in the lower troposphere acts as an air pollutant affecting human health and vegetation. Tropospheric ozone sources and variability are not yet fully identified or understood and recent studies reveal the importance of increasing the number of tropospheric ozone profiling stations and long term measurements. As part of the international monitoring network NDACC, and the U.S.-based network TOLNet, a differential absorption lidar has been performing tropospheric ozone measurements (3-20 km) at the JPL Table Mountain Facility (TMF, California) since 1999, and surface measurements have been performed since 2013 with a UV photometric analyzer. Because of the site's geolocation and high elevation, background tropospheric ozone, unaffected by the boundary layer dynamics and local anthropogenic emissions of ozone precursors, is usually expected. However, transboundary ozone contributions such as stratospheric intrusions and Asian pollution episodes are frequently detected. In this study, a statistical analysis of the 14-year lidar profiles and the 2.5-year surface data is presented. Seasonal, interannual and diurnal variability and its possible causes (e.g. El Nino/La Nina events, North American Monsoon) are investigated. Together with the high elevation surface data gathered at TMF, surface data from ARB stations nearby are analyzed to understand the lowermost tropospheric ozone variability component. The frequency of stratospheric intrusions and Asian pollution episodes reaching the Western U.S. is also examined in an attempt to understand the relative contribution of each process to the observed variability throughout the troposphere. The Table Mountain surface and lidar measurements are expected to contribute significantly to the emerging system of global air quality observations, and to the improvement of global and regional data assimilation and modeling.
Differential Absorption Lidar to Measure Sub-Hourly Variation of Tropospheric Ozone Profiles
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephanie
2009-01-01
A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by the University of Alabama at Huntsville and NASA, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min temporal integration
Ciencewicki, Jonathan M.; Verhein, Kirsten C.; Gerrish, Kevin; McCaw, Zachary R.; Li, Jianying; Bushel, Pierre R.
2016-01-01
Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl+/+) and MBL-deficient (Mbl−/−) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl−/− than Mbl+/+ mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl+/+ and Mbl−/− mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS2 data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model. PMID:27106289
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Ziemke, J. R.; Thorpe, A.; Einaudi, Franco (Technical Monitor)
2000-01-01
Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods.
Autonomous Ozone and Aerosol Lidar Platform: Preliminary Results
NASA Astrophysics Data System (ADS)
Strawbridge, K. B.
2014-12-01
Environment Canada is developing an autonomous tropospheric ozone and aerosol lidar system for deployment in support of short-term field studies. Tropospheric ozone and aerosols (PM10 and PM2.5) are important atmospheric constituents in low altitude pollution affecting human health and vegetation. Ozone is photo-chemically active with nitrogen oxides and can have a distinct diurnal variability. Aerosols contribute to the radiative budget, are a tracer for pollution transport, undergo complex mixing, and contribute to visibility and cloud formation. This particular instrument will employ two separate lidar transmitter and receiver assemblies. The tropospheric ozone lidar, based on the differential absorption lidar (DIAL) technique, uses the fourth harmonics of a Nd:YAG laser directed into a CO2 Raman cell to produce 276 nm, 287nm and 299 nm (first to third Stokes lines) output wavelengths. The aerosol lidar is based on the 3+2 design using a tripled Nd:YAG to output 355 nm, 532 nm and 1064nm wavelengths. Both lidars will be housed in a modified cargo trailer allowing for easy deployment to remote areas. The unit can be operated and monitored 24 hours a day via an internet link and requires an external power source. Simultaneous ozone and aerosol lidar measurements will provide the vertical context necessary to understand the complex mixing and transformation of pollutants - particularly when deployed near other ground-based in-situ sensors. Preliminary results will be shown from a summer field study at the Centre For Atmospheric Research Experiments (CARE).
Differential Absorption Lidar to Measure Subhourly Variation of Tropospheric Ozone Profiles
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John F.; Newchurch, Michael J.; Johnson, Steve; Long, Stephania
2011-01-01
A tropospheric ozone Differential Absorption Lidar system, developed jointly by The University of Alabama in Huntsville and the National Aeronautics and Space Administration, is making regular observations of ozone vertical distributions between 1 and 8 km with two receivers under both daytime and nighttime conditions using lasers at 285 and 291 nm. This paper describes the lidar system and analysis technique with some measurement examples. An iterative aerosol correction procedure reduces the retrieval error arising from differential aerosol backscatter in the lower troposphere. Lidar observations with coincident ozonesonde flights demonstrate that the retrieval accuracy ranges from better than 10% below 4 km to better than 20% below 8 km with 750-m vertical resolution and 10-min 17 temporal integration.
Ozonation of oil sands process-affected water accelerates microbial bioremediation.
Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange
2010-11-01
Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.
Microwave Limb Sounder Measurements Depicting the Relationship Between Nitrous Oxide Levels and
NASA Technical Reports Server (NTRS)
2005-01-01
Aura's Microwave Limb Sounder measures nitrous oxide, which is unaffected by stratospheric chemical processes. By studying changes in its levels, scientists can better understand how air is moving around and how ozone is affected by that air motion, allowing them to differentiate those changes from the ones caused by chemical ozone destruction. In these cross-sections of nitrous oxide (top) and ozone (bottom) data from Aura, changes in the levels of these two chemicals at various temperatures and latitudes are depicted over time. The white contour shows the approximate location of the polar vortex boundary. The left panel data were collected on January 23, 2005, near the beginning of chemical ozone destruction this winter. Virtually all chemical loss occurred before March 10 (center panel). Ozone destruction extended throughout the polar vortex from about 15-20 kilometers (9-13 miles), but occurred only in the outer part of the vortex from 20-25 kilometers (13-16 miles). The differences between the two days are depicted in the right panel. The largest observed difference is about a 1.2 parts per million by volume decrease in ozone. Plots of nitrous oxide show a decrease in the region in the outer part of the vortex where most ozone loss occurs, indicating that air from above (where nitrous oxide is lower) has moved into this region. This downward motion brings higher ozone into the region where chemical loss is occurring, thus partially masking the effects of chemical loss. Calculations using Microwave Limb Sounder data to separate dynamical and chemical effects indicate maximum chemical ozone loss of approximately 2 parts per million by volume (approximately 60 percent) in the outer part of the vortex near 18-21 kilometers (11-13 miles), and approximately 1.5 parts per million by volume when averaged throughout the whole vortex region.Identification of differentially expressed genes in Fiskeby III under ozone stress conditions
USDA-ARS?s Scientific Manuscript database
As the global climate changes, plants will be challenged by environmental stresses that are more extreme and more frequent leading to increased yield loss. Specifically, ozone stress is an increasing problem in both urban and rural areas. Soybeans are one of the plant species that are quite ozone se...
Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma
Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon
2015-01-01
Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468
Ozone suppression of oat crown rust uredia development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heagle, A.S.
1969-01-01
First foliage leaves of 10-day-old crown rust differential varieties of Avena sativa were inoculated with urediospores of race 264 of Puccinia coronata var. avenae and placed for 16 hr in a mist chamber at 23 C. Infected plants were then placed in two separate chambers at 25C, 80% relative humidity, 3000 ft-c, and a 16-hr photoperiod. Plants in one chamber were exposed to 10 pphm ozone (KI corrected Mast value) for 6 hr daily in the light for 10 days. Plants in the other chamber were not exposed to ozone. Visible ozone injury was restricted to minor flecking. In severalmore » varieties, a slight reddening appeared on inoculated leaves near the end of the experiment. The reaction to rust on ozone-exposed plants of all varieties was resistant, whereas the reaction on nonexposed plants of all differentials except 8, 9, and 10 was susceptible. The level of ozone used in this experiment is often surpassed in rural areas near urban centers, indicating that air pollution can influence rust development in the field.« less
McDonald-Buller, Elena; Kimura, Yosuke; Craig, Michael; McGaughey, Gary; Allen, David; Webster, Mort
2016-02-02
Cap and trade programs have historically been designed to achieve annual or seasonal reductions in emissions of nitrogen oxides and sulfur dioxide from power plants. Emissions reductions may not be temporally coincident with meteorological conditions conducive to the formation of peak ozone and fine particulate matter concentrations. Integrated power system and air quality modeling methods were developed to evaluate time-differentiated emissions price signals on high ozone days in the Mid-Atlantic portion of the Pennsylvania-New Jersey-Maryland (PJM) Interconnection and Electric Reliability Council of Texas (ERCOT) grids. Sufficient flexibility exists in the two grids with marked differences in demand and fuel generation mix to accommodate time-differentiated emissions pricing alone or in combination with a season-wide program. System-wide emissions reductions and production costs from time-differentiated pricing are shown to be competitive with those of a season-wide program on high ozone days and would be more cost-effective if the primary policy goal was to target emissions reductions on these days. Time-differentiated pricing layered as a complement to the Cross-State Air Pollution Rule had particularly pronounced benefits for the Mid-Atlantic PJM system that relies heavily on coal-fired generation. Time-differentiated pricing aimed at reducing ozone concentrations had particulate matter reduction co-benefits, but if particulate matter reductions are the primary objective, other approaches to time-differentiated pricing may lead to greater benefits.
Sex differences in the expression of lung inflammatory mediators in response to ozone
Cabello, Noe; Mishra, Vikas; Sinha, Utkarshna; DiAngelo, Susan L.; Chroneos, Zissis C.; Ekpa, Ndifreke A.; Cooper, Timothy K.; Caruso, Carla R.
2015-01-01
Sex differences in the incidence of respiratory diseases have been reported. Women are more susceptible to inflammatory lung disease induced by air pollution and show worse adverse pulmonary health outcomes than men. However, the mechanisms underlying these differences remain unknown. In the present study, we hypothesized that sex differences in the expression of lung inflammatory mediators affect sex-specific immune responses to environmental toxicants. We focused on the effects of ground-level ozone, a major air pollutant, in the expression and regulation of lung immunity genes. We exposed adult male and female mice to 2 ppm of ozone or filtered air (control) for 3 h. We compared mRNA levels of 84 inflammatory genes in lungs harvested 4 h postexposure using a PCR array. We also evaluated changes in lung histology and bronchoalveolar lavage fluid cell counts and protein content at 24 and 72 h postexposure. Our results revealed sex differences in lung inflammation triggered by ozone exposure and in the expression of genes involved in acute phase and inflammatory responses. Major sex differences were found in the expression of neutrophil-attracting chemokines (Ccl20, Cxcl5, and Cxcl2), the proinflammatory cytokine interleukin-6, and oxidative stress-related enzymes (Ptgs2, Nos2). In addition, the phosphorylation of STAT3, known to mediate IL-6-related immune responses, was significantly higher in ozone-exposed mice. Together, our observations suggest that a differential regulation of the lung immune response could be implicated in the observed increased susceptibility to adverse health effects from ozone observed in women vs. men. PMID:26342085
NASA Astrophysics Data System (ADS)
Romanovskii, Oleg A.; Nevzorov, Alexey A.; Nevzorov, Alexey V.; Kharchenko, Olga V.
2018-04-01
The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. The recovered ozone profiles were compared with IASI satellite data and Kruger model.
Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C
2013-11-01
The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ozone is a ubiquitous ambient air pollutant that causes pulmonary inflammation upon exposure. The ozone-induced inflammatory response varies by orders of magnitude and the range of variation in “healthy” individuals extends beyond that of “susceptible” po...
NASA Astrophysics Data System (ADS)
Amjad, M.; Salam, Z.; Ishaque, K.
2014-04-01
In order to design an efficient resonant power supply for ozone gas generator, it is necessary to accurately determine the parameters of the ozone chamber. In the conventional method, the information from Lissajous plot is used to estimate the values of these parameters. However, the experimental setup for this purpose can only predict the parameters at one operating frequency and there is no guarantee that it results in the highest ozone gas yield. This paper proposes a new approach to determine the parameters using a search and optimization technique known as Differential Evolution (DE). The desired objective function of DE is set at the resonance condition and the chamber parameter values can be searched regardless of experimental constraints. The chamber parameters obtained from the DE technique are validated by experiment.
NASA Astrophysics Data System (ADS)
Lombardozzi, D.; Bonan, G. B.; Levis, S.; Sparks, J. P.
2010-12-01
Humans are indirectly increasing concentrations of surface ozone (O3) through industrial processes. Ozone is known to have negative impacts on plants, including reductions in crop yields, plant growth, and visible leaf injury. Research also suggests that O3 exposure differentially affects photosynthesis and transpiration because biochemical aspects of photosynthesis are damaged in addition to stomatal conductance, the common link that controls both processes. However, most models incorporate O3 damage as a decrease in photosynthesis, with stomatal conductance responding linearly through the coupling of photosynthesis and conductance calculations. The observed differential effects of O3 on photosynthesis and conductance are not explicitly expressed in most modeling efforts, potentially causing larger decreases in transpiration. We ran five independent simulations of the CLM that compare current methods of incorporating O3 as a decrease in photosynthesis to a new method of separating photosynthesis and transpiration responses to O3 by independently modifying each parameter. We also determine the magnitude of both direct decreases to photosynthesis and transpiration and decreases caused by feedbacks in each parameter. Results show that traditional methods of modeling O3 effects by decreasing photosynthesis cause linear decreases in predicted transpiration that are ~20% larger than observed decreases in transpiration. However, modeled decreases in photosynthesis and transpiration that are incorporated independently of one another predict observed decreases in photosynthesis and improve transpiration predictions by ~13%. Therefore, models best predict carbon and water fluxes when incorporating O3-induced decreases in photosynthesis and transpiration independently.
The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination
NASA Technical Reports Server (NTRS)
Aikin, A.C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.
A Madden-Julian Oscillation in Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
2003-01-01
This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.
Ozone affects growth and development of Pieris brassicae on the wild host plant Brassica nigra.
Khaling, Eliezer; Papazian, Stefano; Poelman, Erik H; Holopainen, Jarmo K; Albrectsen, Benedicte R; Blande, James D
2015-04-01
When plants are exposed to ozone they exhibit changes in both primary and secondary metabolism, which may affect their interactions with herbivorous insects. Here we investigated the performance and preferences of the specialist herbivore Pieris brassicae on the wild plant Brassica nigra under elevated ozone conditions. The direct and indirect effects of ozone on the plant-herbivore system were studied. In both cases ozone exposure had a negative effect on P. brassicae development. However, in dual-choice tests larvae preferentially consumed plant material previously fumigated with the highest concentration tested, showing a lack of correlation between larval preference and performance on ozone exposed plants. Metabolomic analysis of leaf material subjected to combinations of ozone and herbivore-feeding, and focussing on known defence metabolites, indicated that P. brassicae behaviour and performance were associated with ozone-induced alterations to glucosinolate and phenolic pools. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joad, Jesse P.; Kott, Kayleen S.; Bric, John M.
2006-08-01
Both allergen and ozone exposure increase asthma symptoms and airway responsiveness in children. Little is known about how these inhalants may differentially modify airway responsiveness in large proximal as compared to small distal airways. We evaluated whether bronchi and respiratory bronchioles from infant monkeys exposed episodically to allergen and/or ozone differentially develop intrinsic hyperresponsiveness to methacholine and whether eosinophils and/or pulmonary neuroendocrine cells play a role. Infant monkeys were exposed episodically for 5 months to: (1) filtered air, (2) aerosolized house dust mite allergen, (3) ozone 0.5 ppm, or (4) house dust mite allergen + ozone. Studying the function/structure relationshipmore » of the same lung slices, we evaluated methacholine airway responsiveness and histology of bronchi and respiratory bronchioles. In bronchi, intrinsic responsiveness was increased by allergen exposure, an effect reduced by bombesin antagonist. In respiratory bronchioles, intrinsic airway responsiveness was increased by allergen + ozone exposure. Eosinophils were increased by allergen and allergen + ozone exposure in bronchi and by allergen exposure in respiratory bronchioles. In both airways, exposure to allergen + ozone resulted in fewer tissue eosinophils than did allergen exposure alone. In bronchi, but not in respiratory bronchioles, the number of eosinophils and neuroendocrine cells correlated with airway responsiveness. We conclude that episodically exposing infant monkeys to house dust mite allergen with or without ozone increased intrinsic airway responsiveness to methacholine in bronchi differently than in respiratory bronchioles. In bronchi, eosinophils and neuroendocrine cells may play a role in the development of airway hyperresponsiveness.« less
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Hoff, R. M.; Twigg, L.; Sumnicht, G. K.
2014-12-01
Tropospheric ozone profiles have been retrieved from the new ground based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Fort Collins, CO from 200 m to 16 km AGL. These measurements were taken as part of NASA's DISCOVER-AQ campaign in July/August 2014. Measurements were made during simultaneous aircraft spirals over the lidar site as well as collocated ozonesonde launches. Ozone enhancement from local sources typically occurred in the mid-afternoon convection period, especially when there was light winds and low cloud cover. Interesting ozone profiles and time series data will be shown. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. Three of these lidars, including the GSFC TROPOZ DIAL, recorded measurements during the DISCOVER-AQ campaign. The GSFC TROPOZ DIAL is based on the Differential Absorption Lidar (DIAL) technique, which currently detects two wavelengths, 289 and 299 nm. Ozone is absorbed more strongly at 289 nm than at 299 nm. The DIAL technique exploits this difference between the returned backscatter signals to obtain the ozone number density as a function of altitude. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high pressure hydrogen and deuterium. Stimulated Raman Scattering (SRS) within the focus generates a significant fraction of the pump energy at the first Stokes shift. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range resolved number density can be derived.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Sumnicht, G. K.; Twigg, L. W.; Hoff, R. M.
2014-10-01
Tropospheric ozone profiles have been retrieved from the new ground-based National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) in Greenbelt, MD (38.99° N, 76.84° W, 57 m a.s.l.), from 400 m to 12 km a.g.l. Current atmospheric satellite instruments cannot peer through the optically thick stratospheric ozone layer to remotely sense boundary layer tropospheric ozone. In order to monitor this lower ozone more effectively, the Tropospheric Ozone Lidar Network (TOLNet) has been developed, which currently consists of five stations across the US. The GSFC TROPOZ DIAL is based on the DIAL technique, which currently detects two wavelengths, 289 and 299 nm, with multiple receivers. The transmitted wavelengths are generated by focusing the output of a quadrupled Nd:YAG laser beam (266 nm) into a pair of Raman cells, filled with high-pressure hydrogen and deuterium, using helium as buffer gas. With the knowledge of the ozone absorption coefficient at these two wavelengths, the range-resolved number density can be derived. An interesting atmospheric case study involving the stratospheric-tropospheric exchange (STE) of ozone is shown, to emphasize the regional importance of this instrument as well as to assess the validation and calibration of data. There was a low amount of aerosol aloft, and an iterative aerosol correction has been performed on the retrieved data, which resulted in less than a 3 ppb correction to the final ozone concentration. The retrieval yields an uncertainty of 16-19% from 0 to 1.5 km, 10-18% from 1.5 to 3 km, and 11-25% from 3 to 12 km according to the relevant aerosol concentration aloft. There are currently surface ozone measurements hourly and ozonesonde launches occasionally, but this system will be the first to make routine tropospheric ozone profile measurements in the Baltimore-Washington, D.C. area.
Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters
NASA Technical Reports Server (NTRS)
Drdla, K.
2003-01-01
Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.
Development of a UAV-based Global Ozone Lidar Demonstrator (GOLD)
NASA Astrophysics Data System (ADS)
Browell, E. V.; Deyoung, R. J.; Hair, J. W.; Ismail, S.; McGee, T.; Hardesty, R. M.; Brewer, W. A.; McDermid, I. S.
2006-12-01
Global ozone measurements are needed across the troposphere with high vertical resolution to enable comprehensive studies of continental and intercontinental atmospheric chemistry and dynamics, which are affected by diverse natural and human-induced processes. The development of a unattended aerial vehicle (UAV) based Global Ozone Lidar Demonstrator (GOLD) is an important step in enabling a space-based ozone and aerosol lidar and for conducting unique UAV-based large-scale atmospheric investigations. The GOLD system will incorporate the most advanced technology developed under the NASA Laser Risk Reduction Program (LRRP) and the Small Business Innovative Research (SBIR) program to produce a compact, autonomously operating ozone and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. This system will leverage advanced Nd:YAG and optical parametric oscillator (OPO) laser technologies being developed by ITT Industries under the LRRP and the autonomously operating ozone DIAL system being developed by Science and Engineering Services Inc. (SESI) under an SBIR Phase-3 contract. Laser components from ITT will be integrated into the SESI DIAL system, and the resulting GOLD system will be flight tested on a NASA UAV. The development of the GOLD system was initiated as part of the NASA Instrument Incubator Program in December 2005, and great progress has been made towards completing major GOLD subsystems. ITT has begun construction of the high-power Nd:YAG pump laser and the ultraviolet OPO for generating the ozone DIAL wavelengths of 290 and 300 nm and the aerosol visible wavelength at 532 nm. SESI is completing the Phase-3 SBIR contract for the delivery and demonstration of the ozone DIAL receiver and data system, and NOAA is completing detector evaluations for use in the GOLD system. Welch Mechanical is examining system designs for integrating GOLD into the external pod that will be hung under the new IKANA (Predator-B) UAV that NASA Dryden is acquiring. Details of the GOLD system design and development will be presented in this paper, and science applications for a UAV-based and space-based ozone lidar will be discussed.
Correlation of DIAL Ozone Observations with Lightning
NASA Technical Reports Server (NTRS)
Peterson, Harold; Kuang, Shi; Koshak, William; Newchurch, Michael
2014-01-01
The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to lightning events occurring 24-48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National Lightning Detection Network (NLDN) are used to examine the presence/absence of lightning along the trajectory. This type of analysis suggests that lightning-produced NOx may be responsible for some of the ozone maxima over Huntsville.
Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements
NASA Technical Reports Server (NTRS)
Torres, O.; Bhartia, P. K.
1998-01-01
The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.
ZINC-DEFICIENCY ENHANCES PRO-INFLAMMATORY RESPONSES AFTER OZONE EXPOSURE
Epidemiological and controlled exposure studies have demonstrated that humans are differentially susceptible to adverse health effects induced by exposure to ozone. Serum analysis of vitamins and trace elements have shown that the elderly (people >65 years) are deficient in sever...
Influence of Mountains on Arctic Tropospheric Ozone
NASA Astrophysics Data System (ADS)
Whiteway, J. A.; Seabrook, J.
2015-12-01
Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.
Siefermann-Harms, Dorothea; Payer, Hans Dieter; Schramel, Peter; Lütz, Cornelius
2005-02-01
During two vegetation periods, young clonal spruce trees (Picea abies (L.) Karst.) with sufficient and poor magnesium (Mg) supply were exposed in the environmental chambers of the GSF phytotron to three levels of ozone (daily means: 18-22, 88-130, and 135-190 microg m(-3); 10% reduction at night). Previous year's needles were examined at 4-week intervals with respect to their contents of Mg, Ca, K, Mn, N, P, and chlorophyll (Chl), various parameters of Chl fluorescence, and the stability of the isolated light-harvesting Chl-a/b-protein complex LHC II. The needles of the two nutrition variants contained more than 0.53 or less than 0.27mg Mg g(-1) needle dry matter, respectively. The ratio of variable to maximal Chl-a fluorescence of the dark-adapted needles, Fv/Fm, and the photoinhibitory quenching of Fv after light treatment, SVi.v, were affected by the Mg content of the needles rather than the ozone levels. Changes of the Chl content and the behavior of the LHC II allowed differentiating between a slow process of needle yellowing occurring under Mg deficiency only, and a rapid process of needle yellowing occurring under the combined action of Mg deficiency and ozone pollution. Only the rapid yellowing process was accompanied by destabilization of the LHC II, and the degree of destabilization was correlated with the ozone concentration present in the days before sampling. The results are consistent with observations obtained at a research site in the Central Black Forest (J Plant Physiol 161 (2004) 423).
Exploring the direct impacts of particulate matter and surface ozone on global crop production
NASA Astrophysics Data System (ADS)
Schiferl, L. D.; Heald, C. L.
2016-12-01
The current era of rising food demand to feed an increasing population along with expansion of industrialization throughout the globe has been accompanied by deteriorating air quality and an enhancement in agricultural activity. Both air quality and the food supply are vitally important to sustaining human enterprise, and understanding the effects air quality may have on agricultural production is critical. Particulate matter (PM) in the atmosphere decreases the total photosynthetically available radiation (PAR) available to crops through the scattering and absorption of radiation while also increasing the diffuse fraction (DF) of this PAR. Since plants respond positively to a higher DF through the more even distribution of photons to all leaves, the net effect of PM on crop production depends on the magnitudes of these values and the response mechanisms of a specific crop. In contrast, atmospheric ozone always acts to decrease crop production through its phytotoxic properties. While the relationships between ozone and crop production have been readily studied, the effects of PM on crop production and their relative importance compared to ozone is much more uncertain. This study uses the GEOS-Chem chemical transport model linked to the RRTMG radiative transfer model and the DSSAT crop model to explore the impacts of PM and ozone on the globally distributed production of maize, rice, wheat and soybeans. First, we examine how air quality differentially affects total seasonal production by crop and region. Second, we investigate the dependence of simulated production on air quality over different timescales and under varying cloud conditions.
Learn the difference between good (stratospheric) and bad (tropospheric) ozone, how bad ozone affects our air quality, health, and environment, and what EPA is doing about it through regulations and standards.
Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles
Background -Mechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown. Objective -We hypothesized that episodic exposure of rats to ozone or diesel exhaust particles (DEP) will cause differential cardiovascular impairments, which will b...
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Thompson, A. M.; Holdren, D. H.; Northam, E. T.; Witte, J. C.; Oltmans, S. J.; Hoegger, B.; Levrat, G. M.; Kirchhoff, V.
2000-01-01
Vertical ozone profiles between the Equator and 10 S latitude available from the Southern Hemisphere Additional Ozone (SHADOZ) program provide consistent data Ozone sets from up to 10 sounding locations. SHADOZ designed to provide independent ozone profiles in the tropics for evaluation of satellite ozone data and models has made available over 600 soundings over the period 1998-1999. These observations provide an ideal data base for the detailed description of ozone and afford differential comparison between sites. TOMS total ozone when compared with correlative integrated total ozone overburden from the sondes is found to be negatively biased when using the classical constant mixing ratio procedure to determine residual ozone. On the other hand, the climatological method proposed by McPeters and Labow appears to give consistent results but is positively biased. The longer then two years series of measurements also was subjected to harmonic analysis to examine data cycles. These will be discussed as well.
Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion
NASA Technical Reports Server (NTRS)
Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)
2001-01-01
The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.
Correlation of DIAL Ozone Observations with Lightning
NASA Technical Reports Server (NTRS)
Peterson, Harold; Kuang, Shi; Koshak, William; Newchurch, Michael
2013-01-01
The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to lightning events occurring 24- 48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL as well as ozonesonde measurements. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National Lightning Detection Network (NLDN) are used to examine the presence/absence of lightning along the trajectory. This type of analysis suggests that lightning-produced NOx may be responsible for some of the ozone maxima over Huntsville.
Damages of surface ozone: evidence from agricultural sector in China
NASA Astrophysics Data System (ADS)
Yi, Fujin; McCarl, Bruce A.; Zhou, Xun; Jiang, Fei
2018-03-01
This study measures the damages that surface ozone pollution causes within the Chinese agricultural sector under 2014 conditions. It also analyzes the agricultural benefits of ozone reductions. The analysis is done using a partial equilibrium model of China’s agricultural sector. Results indicate that there are substantial, spatially differentiated damages that are greatest in ozone-sensitive crop growing areas with higher ozone concentrations. The estimated damage to China’s agricultural sector range is between CNY 1.6 trillion and 2.2 trillion, which for comparison is about one fifth of 2014 agricultural revenue. When considering concentration reduction we find a 30% ozone reduction yields CNY 678 billion in sectoral benefits. These benefits largely fall to consumers with producers losing as the production gains lead to lower prices.
Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan
2017-09-01
To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.
Differential Absorption Lidar (DIAL) Measurements from Air and Space
NASA Technical Reports Server (NTRS)
Browell, E. V.; Ismail, S.; Grant, W. B.
1998-01-01
Differential absorption lidar (DIAL) systems have been used for the measurement of ozone, water vapor, and aerosols from aircraft platforms for over 18 years, yielding new insights into atmospheric chemistry, composition, and dynamics in large-scale field experiments conducted all over the world. The successful deployment of the lidar in-space technology experiment (LITE) in September 1994 demonstrated that space-based lidars can also collect valuable information on the global atmosphere. This paper reviews some of the contributions of the NASA Langley Research Center's airborne ozone and water vapor DIAL systems and space-based LITE system to the understanding of the atmosphere and discusses the feasibility and advantages of putting DIAL systems in space for routine atmospheric measurements of ozone and/or water vapor and aerosols and clouds. The technology and applications of the differential absorption lidar (DIAL) technique have progressed significantly since the first DIAL measurements of Schotland, and airborne DIAL measurements of ozone and water vapor are frequently being made in a wide range of field experiments. In addition, plans are underway to develop DIAL systems for use on satellites for continuous global measurements. This paper will highlight the history of airborne lidar and DIAL systems, summarize the major accomplishments of the NASA Langley DIAL program, and discuss specifications and goals for DIAL systems in space.
A Madden-Julian Oscillation in Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
2004-01-01
This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5- 10 DU peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. The implications of these results are: (1) model values of TCO in the tropical Pacific region, when accounted for the MJO may be highly variable depending upon the phase of the MJO, and (2) MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.
GOME Total Ozone and Calibration Error Derived Usign Version 8 TOMS Algorithm
NASA Technical Reports Server (NTRS)
Gleason, J.; Wellemeyer, C.; Qin, W.; Ahn, C.; Gopalan, A.; Bhartia, P.
2003-01-01
The Global Ozone Monitoring Experiment (GOME) is a hyper-spectral satellite instrument measuring the ultraviolet backscatter at relatively high spectral resolution. GOME radiances have been slit averaged to emulate measurements of the Total Ozone Mapping Spectrometer (TOMS) made at discrete wavelengths and processed using the new TOMS Version 8 Ozone Algorithm. Compared to Differential Optical Absorption Spectroscopy (DOAS) techniques based on local structure in the Huggins Bands, the TOMS uses differential absorption between a pair of wavelengths including the local stiucture as well as the background continuum. This makes the TOMS Algorithm more sensitive to ozone, but it also makes the algorithm more sensitive to instrument calibration errors. While calibration adjustments are not needed for the fitting techniques like the DOAS employed in GOME algorithms, some adjustment is necessary when applying the TOMS Algorithm to GOME. Using spectral discrimination at near ultraviolet wavelength channels unabsorbed by ozone, the GOME wavelength dependent calibration drift is estimated and then checked using pair justification. In addition, the day one calibration offset is estimated based on the residuals of the Version 8 TOMS Algorithm. The estimated drift in the 2b detector of GOME is small through the first four years and then increases rapidly to +5% in normalized radiance at 331 nm relative to 385 nm by mid 2000. The lb detector appears to be quite well behaved throughout this time period.
Spatial regression analysis on 32 years of total column ozone data
NASA Astrophysics Data System (ADS)
Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.
2014-08-01
Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009-2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.
Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China
NASA Astrophysics Data System (ADS)
Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai
2018-01-01
Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.
Effects of temperature-dependent NOx emissions on continental ozone production
NASA Astrophysics Data System (ADS)
Romer, Paul S.; Duffey, Kaitlin C.; Wooldridge, Paul J.; Edgerton, Eric; Baumann, Karsten; Feiner, Philip A.; Miller, David O.; Brune, William H.; Koss, Abigail R.; de Gouw, Joost A.; Misztal, Pawel K.; Goldstein, Allen H.; Cohen, Ronald C.
2018-02-01
Surface ozone concentrations are observed to increase with rising temperatures, but the mechanisms responsible for this effect in rural and remote continental regions remain uncertain. Better understanding of the effects of temperature on ozone is crucial to understanding global air quality and how it may be affected by climate change. We combine measurements from a focused ground campaign in summer 2013 with a long-term record from a forested site in the rural southeastern United States, to examine how daily average temperature affects ozone production. We find that changes to local chemistry are key drivers of increased ozone concentrations on hotter days, with integrated daily ozone production increasing by 2.3 ppb °C-1. Nearly half of this increase is attributable to temperature-driven increases in emissions of nitrogen oxides (NOx), most likely by soil microbes. The increase of soil NOx emissions with temperature suggests that ozone will continue to increase with temperature in the future, even as direct anthropogenic NOx emissions decrease dramatically. The links between temperature, soil NOx, and ozone form a positive climate feedback.
NASA Astrophysics Data System (ADS)
Bao, Hai; Shrestha, Kundan Lal; Kondo, Akira; Kaga, Akikazu; Inoue, Yoshio
2010-01-01
Tropospheric ozone adversely affects human health and vegetation, and biogenic volatile organic compound (BVOC) emission has potential to influence ozone concentration in summer season. In this research, the standard emissions of isoprene and monoterpene from the vegetation of the Kinki region of Japan, estimated from growth chamber experiments, were converted into hourly emissions for July 2002 using the temperature and light intensity data obtained from results of MM5 meteorological model. To investigate the effect of BVOC emissions on ozone production, two ozone simulations for one-month period of July 2002 were carried out. In one simulation, hourly BVOC emissions were included (BIO), while in the other one, BVOC emissions were not considered (NOBIO). The quantitative analyses of the ozone results clearly indicate that the use of spatio-temporally varying BVOC emission improves the prediction of ozone concentration. The hourly differences of monthly-averaged ozone concentrations between BIO and NOBIO had the maximum value of 6 ppb at 1400 JST. The explicit difference appeared in urban area, though the place where the maximum difference occurred changed with time. Overall, BVOC emissions from the forest vegetation strongly affected the ozone generation in the urban area.
Lidar Measurements of Tropospheric Ozone in the Arctic
NASA Astrophysics Data System (ADS)
Seabrook, Jeffrey; Whiteway, James
2016-06-01
This paper reports on differential absorption lidar (DIAL) measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.
Cumulus cloud venting of mixed layer ozone
NASA Technical Reports Server (NTRS)
Ching, J. K. S.; Shipley, S. T.; Browell, E. V.; Brewer, D. A.
1985-01-01
Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon.
Wang, Nan; Chelme-Ayala, Pamela; Perez-Estrada, Leonidas; Garcia-Garcia, Erick; Pun, Jonathan; Martin, Jonathan W; Belosevic, Miodrag; Gamal El-Din, Mohamed
2013-06-18
Oil sands process-affected water (OSPW) is the water contained in tailings impoundment structures in oil sands operations. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. In this study, ozonation followed by biodegradation was used to remediate OSPW. The impacts of the ozone process evolution on the naphthenic acids (NAs) speciation and acute toxicity were evaluated. Ion-mobility spectrometry (IMS) was used to preliminarily separate isomeric and homologous species. The results showed limited effects of the ozone reactor size on the treatment performance in terms of contaminant removal. In terms of NAs speciation, high reactivity of NAs with higher number of carbons and rings was only observed in a region of high reactivity (i.e., utilized ozone dose lower than 50 mg/L). It was also found that nearly 0.5 mg/L total NAs was oxidized per mg/L of utilized ozone dose, at utilized ozone doses lower than 50 mg/L. IMS showed that ozonation was able to degrade NAs, oxidized NAs, and sulfur/nitrogenated NAs. Complete removal of toxicity toward Vibrio fischeri was achieved after ozonation followed by 28-day biodegradation period. In vitro and in vivo assays indicated that ozonation reduced the OSPW toxicity to mice.
Xian, G.; Crane, M.
2006-01-01
Urban development in the Las Vegas Valley, Nevada, has grown rapidly in the past fifty years. Associated with this growth has been a change in landscape from natural cover types to developed urban land mixed with planned vegetation canopy throughout in the metropolitan area. Air quality in the Las Vegas Valley has been affected by increases in anthropogenic emissions and concentrations of carbon monoxide, ozone, and criteria pollutants of particular matter. Ozone concentration in the region is generally influenced by synoptic and mesoscale meteorological conditions, as well as regional transport of pollutants from the western side of Las Vegas. Local influences from ground-level nitrogen oxide emissions and vegetation canopy coverage also affect ozone concentration. Multi-year observational data collected by a network of local air monitoring stations in Clark County, Nevada, indicate that ozone maximums develop in May and June, while minimums exist primarily from November to February. Ozone concentrations are high on the west and northwest sides of the valley. A nighttime ozone reduction in the urban area characterizes the heterogeneous features of spatial distribution for average ozone levels in the Las Vegas urban area. The urban vegetation canopy has a locally positive effect by reducing ozone in urban areas. Decreased ozone levels associated with increased urban development density suggests that the highest ozone concentrations are associated with medium- to low-density urban development in Las Vegas.
Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.
Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian
2011-10-01
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.
An Overview of Occupational Risks From Climate Change.
Applebaum, Katie M; Graham, Jay; Gray, George M; LaPuma, Peter; McCormick, Sabrina A; Northcross, Amanda; Perry, Melissa J
2016-03-01
Changes in atmosphere and temperature are affecting multiple environmental indicators from extreme heat events to global air quality. Workers will be uniquely affected by climate change, and the occupational impacts of major shifts in atmospheric and weather conditions need greater attention. Climate change-related exposures most likely to differentially affect workers in the USA and globally include heat, ozone, polycyclic aromatic hydrocarbons, other chemicals, pathogenic microorganisms, vector-borne diseases, violence, and wildfires. Epidemiologic evidence documents a U-, J-, or V-shaped relationship between temperature and mortality. Whereas heat-related morbidity and mortality risks are most evident in agriculture, many other outdoor occupational sectors are also at risk, including construction, transportation, landscaping, firefighting, and other emergency response operations. The toxicity of chemicals change under hyperthermic conditions, particularly for pesticides and ozone. Combined with climate-related changes in chemical transport and distribution, these interactions represent unique health risks specifically to workers. Links between heat and interpersonal conflict including violence require attention because they pose threats to the safety of emergency medicine, peacekeeping and humanitarian relief, and public safety professionals. Recommendations for anticipating how US workers will be most susceptible to climate change include formal monitoring systems for agricultural workers; modeling scenarios focusing on occupational impacts of extreme climate events including floods, wildfires, and chemical spills; and national research agenda setting focusing on control and mitigation of occupational susceptibility to climate change.
NASA Astrophysics Data System (ADS)
Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.
2016-01-01
Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.
A three-wavelength differential-absorption lidar (DIAL) technique for the UV spectral region is presented that reduces the influence of aerosol differential scattering on measured O3-concentration profiles. The principal advantage of this approach is that, to a good first approxi...
NASA Astrophysics Data System (ADS)
Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Godin-Beekmann, Sophie; Haefele, Alexander; Trickl, Thomas; Payen, Guillaume; Liberti, Gianluigi
2016-08-01
A standardized approach for the definition, propagation, and reporting of uncertainty in the ozone differential absorption lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One essential aspect of the proposed approach is the propagation in parallel of all independent uncertainty components through the data processing chain before they are combined together to form the ozone combined standard uncertainty. The independent uncertainty components contributing to the overall budget include random noise associated with signal detection, uncertainty due to saturation correction, background noise extraction, the absorption cross sections of O3, NO2, SO2, and O2, the molecular extinction cross sections, and the number densities of the air, NO2, and SO2. The expression of the individual uncertainty components and their step-by-step propagation through the ozone differential absorption lidar (DIAL) processing chain are thoroughly estimated. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which requires knowledge of the covariance matrix when the lidar signal is vertically filtered. In addition, the covariance terms must be taken into account if the same detection hardware is shared by the lidar receiver channels at the absorbed and non-absorbed wavelengths. The ozone uncertainty budget is presented as much as possible in a generic form (i.e., as a function of instrument performance and wavelength) so that all NDACC ozone DIAL investigators across the network can estimate, for their own instrument and in a straightforward manner, the expected impact of each reviewed uncertainty component. In addition, two actual examples of full uncertainty budget are provided, using nighttime measurements from the tropospheric ozone DIAL located at the Jet Propulsion Laboratory (JPL) Table Mountain Facility, California, and nighttime measurements from the JPL stratospheric ozone DIAL located at Mauna Loa Observatory, Hawai'i.
Haertel, Beate; Straßenburg, Susanne; Wende, Kristian; von Woedtke, Thomas
2013-01-01
Adequate chronic wound healing is a major problem in medicine. A new solution might be non-thermal atmospheric-pressure plasma effectively inactivating microorganisms and influencing cells in wound healing. Plasma components as, for example, radicals can affect cells differently. HaCaT keratinocytes were treated with Dielectric Barrier Discharge plasma (DBD/air, DBD/argon), ozone or hydrogen peroxide to find the components responsible for changes in integrin expression, intracellular ROS formation or apoptosis induction. Dependent on plasma treatment time reduction of recovered cells was observed with no increase of apoptotic cells, but breakdown of mitochondrial membrane potential. DBD/air plasma increased integrins and intracellular ROS. DBD/argon caused minor changes. About 100 ppm ozone did not influence integrins. Hydrogen peroxide caused similar effects compared to DBD/air plasma. In conclusion, effects depended on working gas and exposure time to plasma. Short treatment cycles did neither change integrins nor induce apoptosis or ROS. Longer treatments changed integrins as important for influencing wound healing. Plasma effects on integrins are rather attributed to induction of other ROS than to generation of ozone. Changes of integrins by plasma may provide new solutions of improving wound healing, however, conditions are needed which allow initiating the relevant influence on integrins without being cytotoxic to cells. PMID:23936843
Symptomology of ozone injury to pine foliage
Kenneth Stolte
1996-01-01
Symptoms of ozone injury on western pines, ranging from effects on needles to effects on portions of ecosystems, can be differentiated from symptoms induced by other natural biotic and abiotic stressors occurring in the same area. Once identified in laboratory and field studies, quantification and monitoring of these symptoms can be used to provide reliable information...
Characterization of a 16-Bit Digitizer for Lidar Data Acquisition
NASA Technical Reports Server (NTRS)
Williamson, Cynthia K.; DeYoung, Russell J.
2000-01-01
A 6-MHz 16-bit waveform digitizer was evaluated for use in atmospheric differential absorption lidar (DIAL) measurements of ozone. The digitizer noise characteristics were evaluated, and actual ozone DIAL atmospheric returns were digitized. This digitizer could replace computer-automated measurement and control (CAMAC)-based commercial digitizers and improve voltage accuracy.
Lidar measurements of stratospheric ozone at Table Mountain, California, since 1988
NASA Technical Reports Server (NTRS)
Mcdermid, I. Stuart; Schmoe, Martha; Walsh, T. Daniel
1994-01-01
Regular measurements of stratospheric ozone concentration profiles have been made at Table Mountain, California, since January 1988. During the period to December 1991, 435 independent profiles were measured by the differential absorption lidar technique. These long-term results, and an evaluation of their quality, is presented in this paper.
Pulmonary and systemic effects of ozone (O3) are mediated by hypothalamus pituitary adrenal (HPA)-axis activation. Fish oil (FO) and olive oil (OO) dietary supplementation have several cardioprotective benefits, but it is not established if these supplements can protect against t...
NASA Astrophysics Data System (ADS)
Cacciani, Marco; di Sarra, Alcide; Fiocco, Giorgio; Amoruso, Antonella
1989-06-01
Absolute measurements of the ozone absorption coefficient in the Huggins bands at different temperatures have been carried out. Ozone is produced by an electrical discharge and stored cryogenically; differential absorption measurements are subsequently obtained in a slowly evolving mixture of ozone and molecular oxygen. High resolution (to 0.012 nm) measurements cover a spectral range (339-355 nm) where the ozone absorption shows a strong dependence on temperature. Results at 293 and 220 K are reported; they are particularly interesting in view of the utilization of this spectral region as a low-absorption reference channel for the observation of atmospheric ozone profiles by active probing techniques. Coherent radiation at two wavelengths, around 355 and 353 nm, respectively, can be obtained as third harmonic of the fundamental output of an Nd:YAG laser and by H2 Raman shifting of an XeCl excimer laser output.
Influence of mountains on Arctic tropospheric ozone
NASA Astrophysics Data System (ADS)
Seabrook, Jeffrey; Whiteway, James
2016-02-01
Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.
NASA Technical Reports Server (NTRS)
McPeters, Richard; Bhartia, P. K. (Technical Monitor)
2002-01-01
The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.
Detecting recovery of the stratospheric ozone layer.
Chipperfield, Martyn P; Bekki, Slimane; Dhomse, Sandip; Harris, Neil R P; Hassler, Birgit; Hossaini, Ryan; Steinbrecht, Wolfgang; Thiéblemont, Rémi; Weber, Mark
2017-09-13
As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.
Detecting recovery of the stratospheric ozone layer
NASA Astrophysics Data System (ADS)
Chipperfield, Martyn P.; Bekki, Slimane; Dhomse, Sandip; Harris, Neil R. P.; Hassler, Birgit; Hossaini, Ryan; Steinbrecht, Wolfgang; Thiéblemont, Rémi; Weber, Mark
2017-09-01
As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.
NASA Technical Reports Server (NTRS)
Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.
1992-01-01
The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.
DOAS-based total column ozone retrieval from Phaethon system
NASA Astrophysics Data System (ADS)
Gkertsi, F.; Bais, A. F.; Kouremeti, N.; Drosoglou, Th; Fountoulakis, I.; Fragkos, K.
2018-05-01
This study introduces the measurement of the total ozone column using Differential Optical Absorption Spectroscopy (DOAS) analysis of direct-sun spectra recorded by the Phaethon system. This methodology is based on the analysis of spectra relative to a reference spectrum that has been recorded by the same instrument. The slant column density of ozone associated with the reference spectrum is derived by Langley extrapolation. Total ozone data derived by Phaethon over two years in Thessaloniki are compared with those of a collocated, well-maintained and calibrated, Brewer spectrophotometer. When the retrieval of total ozone is based on the absorption cross sections of (Paur and Bass, 1984) at 228 K, Phaethon shows an average overestimation of 1.85 ± 1.86%. Taking into account the effect of the day-to-day variability of stratospheric temperature on total ozone derived by both systems, the bias is reduced to 0.94 ± 1.26%. The sensitivity of the total ozone retrieval to changes in temperature is larger for Phaethon than for Brewer.
Interpretation of DIAL Measurements of Lower Stratospheric Ozone in Regions with Pinatubo Aerosols
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.; Fenn, Marta A.; Butler, Carolyn F.; Brackett, Vincent G.; Veiga, Robert E.; Mayor, Shane D.; Fishman, Jack; Nganga, D.; Minga, A.
1992-01-01
The influence of volcanic aerosols on stratospheric ozone is a topic of current interest, especially with the June 15, 1991 eruption of Mt. Pinatubo in the Philippines. Lidar has been used in the past to provide aerosol profiles which could be compared with ozone profiles measured using ozonesondes to look for coincidences between volcanic aerosols and ozone decreases. The differential absorption lidar (DIAL) technique has the advantages of being able to measure ozone and aerosol profiles simultaneously as well as being able to cover large geographical regions rapidly. While there are problems associated with correcting the ozone profiles for the presence of aerosols, the corrections can be made reliably when the wavelengths are closely spaced and the Bernoulli method is applied. The DIAL measurements considered in this paper are those obtained in the tropical stratosphere in January 1992 during the Airborne Arctic Stratospheric Expedition (AASE-II). The determination of ozone profiles in the presence of Pinatubo aerosols is discussed in a companion paper.
A Compact Mobile Ozone Lidar for Atmospheric Ozone and Aerosol Profiling
NASA Technical Reports Server (NTRS)
De Young, Russell; Carrion, William; Pliutau, Denis
2014-01-01
A compact mobile differential absorption lidar (DIAL) system has been developed at NASA Langley Research Center to provide ozone, aerosol and cloud atmospheric measurements in a mobile trailer for ground-based atmospheric ozone air quality campaigns. This lidar is integrated into the Tropospheric Ozone Lidar Network (TOLNet) currently made up of four other ozone lidars across the country. The lidar system consists of a UV and green laser transmitter, a telescope and an optical signal receiver with associated Licel photon counting and analog channels. The laser transmitter consist of a Q-switched Nd:YLF inter-cavity doubled laser pumping a Ce:LiCAF tunable UV laser with all the associated power and lidar control support units on a single system rack. The system has been configured to enable mobile operation from a trailer and was deployed to Denver, CO July 15-August 15, 2014 supporting the DISCOVER-AQ campaign. Ozone curtain plots and the resulting science are presented.
NASA Technical Reports Server (NTRS)
Chyba, Thomas; Zenker, Thomas
1998-01-01
The objective of this project is to develop a portable, eye-safe, ground-based ozone lidar instrument specialized for ozone differential absorption lidar (DIAL) measurements in the troposphere. This prototype instrument is intended to operate at remote field sites and to serve as the basic unit for monitoring projects requiring multi-instrument networks, such as that discussed in the science plan for the Global Tropospheric Ozone Project (GTOP). This instrument will be based at HU for student training in lidar technology as well as atmospheric ozone data analysis and interpretation. It will be also available for off-site measurement campaigns and will serve as a test bed for further instrument development. Later development beyond this grant to extend the scientific usefulness of the instrument may include incorporation of an aerosol channel and upgrading the laser to make stratospheric ozone measurements. Undergraduate and graduate students have been and will be active participants in this research effort.
NASA Technical Reports Server (NTRS)
Granados Munoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry
2016-01-01
In the past decades, significant efforts have been made to increase tropospheric ozone long-term monitoring. A large number of ground-based, airborne and space-borne instruments are currently providing valuable data to contribute to better understand tropospheric ozone budget and variability. Nonetheless, most of these instruments provide in-situ surface and column-integrated data, whereas vertically resolved measurements are still scarce. Besides ozonesondes and aircraft, lidar measurements have proven to be valuable tropospheric ozone profilers. Using the measurements from the tropospheric ozone differential absorption lidar (DIAL) located at the JPL Table Mountain Facility, California, and the GEOS-Chem and GEOS-5 model outputs, the impact of the North American monsoon on tropospheric ozone during summer 2014 is investigated. The influence of the Monsoon lightning-induced NOx will be evaluated against other sources (e.g. local anthropogenic emissions and the stratosphere) using also complementary data such as backward-trajectories analysis, coincident water vapor lidar measurements, and surface ozone in-situ measurements.
Ozone fumigation for safety and quality of wine grapes in postharvest dehydration.
Botondi, Rinaldo; De Sanctis, Federica; Moscatelli, Niccolò; Vettraino, Anna Maria; Catelli, Cesare; Mencarelli, Fabio
2015-12-01
This paper proposes postharvest ozone fumigation (as a method) to control microorganisms and evaluate the effect on polyphenols, anthocyanins, carotenoids and cell wall enzymes during the grape dehydration for wine production. Pignola grapes were ozone-treated (1.5 g/h) for 18 h (A=shock treatment), then dehydrated or ozone-treated (1.5 g/h) for 18 h and at 0.5 g/h for 4 h each day (B=long-term treatment) during dehydration. Treatment and dehydration were performed at 10 °C. No significant difference was found for total carotenoid, total phenolic and total anthocyanin contents after 18 h of O3 treatment. A significant decrease in phenolic and anthocyanin contents occurred during treatment B. Also carotenoids were affected by B ozone treatment. Pectin methylesterase (PME) and polygalacturonase (PG) activities were higher in A-treated grapes during dehydration. Finally, ozone reduced fungi and yeasts by 50%. Shock ozone fumigation (A treatment) before dehydration can be used to reduce the microbial count during dehydration without affecting polyphenol and carotenoid contents. Copyright © 2015 Elsevier Ltd. All rights reserved.
Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin.
Ekren, Orhun; Ozkomur, Ahmet
2016-08-01
The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials.
Impacts of stratospheric sulfate geoengineering on tropospheric ozone
NASA Astrophysics Data System (ADS)
Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan
2017-10-01
A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM.
OZONE GENERATION IN DC-ENERGIZED ELECTROSTATIC PRECIPATORS
Ozone emissions from a short wire-plate precipitator and three commercial electronic air cleaners were measured. Ozone generation was most strongly affected by the corona current and polarity of the discharge electrode. To a lesser extent, the type of corona (i.e. whether tuft or...
Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn.
Qi, Lijun; Li, Yulin; Luo, Xiaohu; Wang, Ren; Zheng, Ruihang; Wang, Li; Li, Yongfu; Yang, Dan; Fang, Wenmiao; Chen, Zhengxing
2016-11-01
Zearalenone (ZEN) and ochratoxin A (OTA) are secondary toxic metabolites of fungi that can contaminate a wide range of food and feedstuff. In this study, the effects of ozone treatment on ZEN and OTA and the quality of ozonised corn are investigated. Ozone significantly affects ZEN and OTA solutions. ZEN was undetectable 5 s after being treated with 10 mg l -1 ozone. However, OTA was resistant to ozonation with a degradation rate of 65.4% after 120 s of treatment. Moreover, ZEN and OTA solutions were difficult to degrade after being dried by a nitrogen stream. Results showed that ozone effectively degraded ZEN and OTA in corn. The degradation rates of ZEN and OTA in corn increased with ozone concentration and treatment time. The degradation of ZEN and OTA at different ozone concentrations appropriately conformed to first-order kinetics with an R 2 value > 0.8749. Furthermore, under the same conditions, corn with increased moisture content (MC) (19.6%) was more sensitive to ozone than corn with a low MC (14.1%). When treated with 100 mg l -1 ozone for 180 min, ZEN and OTA in corn with 19.6% MC decreased by 90.7% and 70.7%, respectively. To evaluate the quality of ozonised corn, subsequent quality experiments were conducted using corn samples treated at different times with 100 mg l -1 ozone. The MC of corn decreased after ozone treatment. The whiteness and yellowness of the corn increased and decreased with increasing time, respectively. The fatty acid value of the corn increased significantly (p ≤ 0.05) after 180 min of treatment. This study verified that ozone can effectively degrade ZEN and OTA in corn, but slightly affected corn quality.
Analysis of Ozone in Cloudy Versus Clear Sky Conditions
NASA Technical Reports Server (NTRS)
Strode, Sarah; Douglass, Anne; Ziemke, Jerald
2016-01-01
Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.
Compact Ozone Lidar for Atmospheric Ozone and Aerosol Measurements
NASA Technical Reports Server (NTRS)
Marcia, Joel; DeYoung, Russell J.
2007-01-01
A small compact ozone differential absorption lidar capable of being deployed on a small aircraft or unpiloted atmospheric vehicle (UAV) has been tested. The Ce:LiCAF tunable UV laser is pumped by a quadrupled Nd:YLF laser. Test results on the laser transmitter demonstrated 1.4 W in the IR and 240 mW in the green at 1000 Hz. The receiver consists of three photon-counting channels, which are a far field PMT, a near field UV PMT, and a green PMT. Each channel was tested for their saturation characteristics.
78 FR 39830 - Proposed Collection; Comment Request for Regulation Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-02
... excise tax on chemicals that deplete the ozone layer and on products containing such chemicals. DATES... the Ozone Layer and on Products Containing Such Chemicals. OMB Number: 1545-1153. Regulation Project... ozone layer and on products containing such chemicals. The regulation affects manufacturers and...
Bohler, Sacha; Bagard, Matthieu; Oufir, Mouhssin; Planchon, Sébastien; Hoffmann, Lucien; Jolivet, Yves; Hausman, Jean-François; Dizengremel, Pierre; Renaut, Jenny
2007-05-01
Tropospheric ozone pollution is described as having major negative effects on plants, compromising plant survival. Carbon metabolism is especially affected. In the present work, the effects of chronic ozone exposure were evaluated at the proteomic level in developing leaves of young poplar plants exposed to 120 ppb of ozone for 35 days. Soluble proteins (excluding intrinsic membrane proteins) were extracted from leaves after 3, 14 and 35 days of ozone exposure, as well as 10 days after a recovery period. Proteins (pI 4 to 7) were analyzed by 2-D DIGE experiments, followed by MALDI-TOF-TOF identification. Additional observations were obtained on growth, lesion formation, and leaf pigments analysis. Although treated plants showed large necrotic spots and chlorosis in mature leaves, growth decreased only slightly and plant height was not affected. The number of abscised leaves was higher in treated plants, but new leaf formation was not affected. A decrease in chlorophylls and lutein contents was recorded. A large number of proteins involved in carbon metabolism were identified. In particular, proteins associated with the Calvin cycle and electron transport in the chloroplast were down-regulated. In contrast, proteins associated with glucose catabolism increased in response to ozone exposure. Other identified enzymes are associated with protein folding, nitrogen metabolism and oxidoreductase activity.
DIAL Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL
NASA Technical Reports Server (NTRS)
Kuang, Shi; Burris, John; Newchurch, Michael J.; Johnson, Steve
2007-01-01
A tropospheric ozone Differential Absorption Lidar (DIAL) system, developed jointly by NASA and the University of Alabama at Huntsville (UAH), measures free-tropospheric ozone profiles between 4-10 km. Located at 192 meters altitude in the Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) on the UAH campus in Huntsville, AL, USA, this tropospheric ozone lidar operates under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from better than 8% at 4km to 40%-60% at 10 kin with 750-m vertical resolution and 30-minute integration. With anticipated improvements to allow retrievals at both higher and lower altitudes, this ozone lidar, along with co-located aerosol and Doppler Wind Lidars, will provide a unique 18 dataset for investigations of PBL and free-tropospheric chemical and dynamic processes.
Ozone damage detection in cantaloupe plants
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R.; Thomas, C. E.; Bowen, R. L.
1978-01-01
Ozone causes up to 90 percent of air pollution injury to vegetation in the United States; excess ozone affects plant growth and development and can cause undetected decrease in yields. Laboratory and field reflectance measurements showed that ozone-damaged cantaloupe (Cucumis melo L.) leaves had lower water contents and higher reflectance than did nondamaged leaves. Cantaloupe plants which were lightly, severely, and very severely ozone-damaged were distinguishable from nondamaged plants by reflectance measurements in the 1.35- to 2.5 micron near-infrared water absorption waveband. Ozone-damaged leaf areas were detected photographically 16 h before the damage was visible. Sensors are available for use with aircraft and spacecraft that possibly could be used routinely to detect ozone-damaged crops.
Consideration of air quality standards for vegetation with respect to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heggestad, H.E.
1969-06-01
Present evidence suggests that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations of ozone have exceeded 0.5 part per million (ppm) in the Los Angeles area. One-tenth of this level for 8 hours is known to injure very sensitive tobacco varieties. Many plant species are visibly affected after a few hours exposure at concentrations much lower than 0.5 ppm. There is also some evidence that ozone reduces plant growth. Many factors must be taken into account when considering standards to protect vegetation from ozone damage. Thesemore » include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of plant species, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. Lack of specific routine methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 and 0.10 ppm, respectively, for 1 hour. How these standards relate to the ozone dosage causing acute and chronic injury to various plant species is discussed.« less
Biochemical reactions of ozone in plants
J. Brian Mudd
1998-01-01
Plants react biochemically to ozone in three phases: with constitutive chemicals in the apoplastic fluid and cell membranes; by forming messenger molecules by the affected constitutive materials (ethylene); and by responding to the messenger molecules with pathogenic RNAs and proteins. For instance, plant reactions with ozone result in constitutive molecules such as...
Quality of tomato slices disinfected with ozonated water.
Aguayo, Encarna; Escalona, Víctor; Silveira, Ana Cecilia; Artés, Francisco
2014-04-01
Fresh-cut industry needs novel disinfectant to replace the use of chlorine. Ozone is one of the most powerful oxidizing agents and is applied in gaseous or aqueous form for sanitation purposes. However, the strong oxidative effect could affect the nutritional and sensorial quality, in particular, when time of washing is extended. For that reason, the overall impact of ozonated water (0.4 mg/L) dipping applied during 1, 3 and 5 min compared to control washed in water during 5 min was studied in tomato slices stored during 14 days at 5 . According to the results, ozonated water treatment of 3 min achieved the best firmness retention, microbial quality (mesophilic, psychrotrophic and yeas load) and reduced the consumption of fructose and glucose. The use of ozonated water did not affect the total acidity, pH, total solid soluble, organic acid as ascorbic, fumaric or succinic acid and the sensorial parameters, which were only affected by storage time. However, the poor appearance, aroma and overall quality obtained in all treatments prevented shelf life of 14 days and the quality at acceptable levels was established in 10 days at 5 . It is recommended to wash tomato slices with 0.4 mg/L ozonated water for 3 min only. Extending treatment duration did not improve the microbiological quality, possibly due to the extra time permitting the ozone to react with other components of the fruit tissue, undermining the antimicrobial benefits.
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Schoeberl, M. R.; Kawa, S. R.; Browell, E. V.
2000-01-01
The processes which contribute to the ozone evolution in the high latitude northern lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS); the Polar Ozone and Aerosol Measurement (POAM II) solar occultation instrument. Time series for the different data sets are consistent with each other, and diverge from model time series during December and January. The model ozone in December and January is shown to be much less sensitive to the model photochemistry than to the model vertical transport, which depends on the model vertical motion as well as the model vertical gradient. We evaluate the dependence of model ozone evolution on the model ozone gradient by comparing simulations with different initial conditions for ozone. The modeled ozone throughout December and January most closely resembles observed ozone when the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. We make a quantitative estimate of the uncertainty in the vertical advection using diabatic trajectory calculations. The net transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The observed and modeled ozone time series during December and January are consistent when these transport uncertainties are taken into account.
LIDAR measurements of Arctic boundary layer ozone depletion events over the frozen Arctic Ocean
NASA Astrophysics Data System (ADS)
Seabrook, J. A.; Whiteway, J.; Staebler, R. M.; Bottenheim, J. W.; Komguem, L.; Gray, L. H.; Barber, D.; Asplin, M.
2011-09-01
A differential absorption light detection and ranging instrument (Differential Absorption LIDAR or DIAL) was installed on-board the Canadian Coast Guard Ship Amundsen and operated during the winter and spring of 2008. During this period the vessel was stationed in the Amundsen Gulf (71°N, 121-124°W), approximately 10-40 km off the south coast of Banks Island. The LIDAR was operated to obtain a continuous record of the vertical profile of ozone concentration in the lower atmosphere over the sea ice during the polar sunrise. The observations included several ozone depletion events (ODE's) within the atmospheric boundary layer. The strongest ODEs consisted of air with ozone mixing ratio less than 10 ppbv up to heights varying from 200 m to 600 m, and the increase to the background mixing ratio of about 35-40 ppbv occurred within about 200 m in the overlying air. All of the observed ODEs were connected to the ice surface. Back trajectory calculations indicated that the ODEs only occurred in air that had spent an extended period of time below a height of 500 m above the sea ice. Also, all the ODEs occurred in air with temperature below -25°C. Air not depleted in ozone was found to be associated with warmer air originating from above the surface layer.
Quantifying isentropic stratosphere-troposphere exchange of ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huang; Chen, Gang; Tang, Qi
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
Quantifying isentropic stratosphere-troposphere exchange of ozone
Yang, Huang; Chen, Gang; Tang, Qi; ...
2016-03-25
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
Support of validation of SAGE 2 data
NASA Technical Reports Server (NTRS)
Copeland, Gary E.
1986-01-01
An error analysis of differential absorption lidar (DIAL) measurements of stratospheric ozone from a Space Shuttle is discussed. A transmitter system consisting of a KrF excimer laser pumping gas cells of H2 or D2 producing output wavelengths in the near UV is shown to be useful for the measurement of ozone in an altitude range from 15 to 50 km.
Gregory A. Endress; Anton G. Endress; Louis R. Iverson; Louis R. Iverson
1999-01-01
Differential responses of species to environmental stress may interfere with restoration of prairie ecosystems or change community structure. The impact of increasing atmospheric ozone (O3) concentrations and/or low water on the growth of Andropogon gerardii Vitm. (big bluestem) and Sorghastrum nutans (L.) Nash (Indian grass), two common warm-season native grasses,...
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.; Duncan, B. N.; Froidevaux, L.; Bhartia, P. K.; Levelt, P. F.; Waters, J. W.
2006-01-01
Ozone measurements from the OMI and MLS instruments on board the Aura satellite are used for deriving global distributions of tropospheric column ozone (TCO). TCO is determined using the tropospheric ozone residual method which involves subtracting measurements of MLS stratospheric column ozone (SCO) from OMI total column ozone after adjusting for intercalibration differences of the two instruments using the convective-cloud differential method. The derived TCO field, which covers one complete year of mostly continuous daily measurements from late August 2004 through August 2005, is used for studying the regional and global pollution on a timescale of a few days to months. The seasonal and zonal characteristics of the observed TCO fields are also compared with TCO fields derived from the Global Modeling Initiative's Chemical Transport Model. The model and observations show interesting similarities with respect to zonal and seasonal variations. However, there are notable differences, particularly over the vast region of the Saharan desert.
Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander
An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.
Regional impacts of oil and gas development on ozone formation in the western United States.
Rodriguez, Marco A; Barna, Michael G; Moore, Tom
2009-09-01
The Intermountain West is currently experiencing increased growth in oil and gas production, which has the potential to affect the visibility and air quality of various Class I areas in the region. The following work presents an analysis of these impacts using the Comprehensive Air Quality Model with extensions (CAMx). CAMx is a state-of-the-science, "one-atmosphere" Eulerian photochemical dispersion model that has been widely used in the assessment of gaseous and particulate air pollution (ozone, fine [PM2.5], and coarse [PM10] particulate matter). Meteorology and emissions inventories developed by the Western Regional Air Partnership Regional Modeling Center for regional haze analysis and planning are used to establish an ozone baseline simulation for the year 2002. The predicted range of values for ozone in the national parks and other Class I areas in the western United States is then evaluated with available observations from the Clean Air Status and Trends Network (CASTNET). This evaluation demonstrates the model's suitability for subsequent planning, sensitivity, and emissions control strategy modeling. Once the ozone baseline simulation has been established, an analysis of the model results is performed to investigate the regional impacts of oil and gas development on the ozone concentrations that affect the air quality of Class I areas. Results indicate that the maximum 8-hr ozone enhancement from oil and gas (9.6 parts per billion [ppb]) could affect southwestern Colorado and northwestern New Mexico. Class I areas in this region that are likely to be impacted by increased ozone include Mesa Verde National Park and Weminuche Wilderness Area in Colorado and San Pedro Parks Wilderness Area, Bandelier Wilderness Area, Pecos Wilderness Area, and Wheeler Peak Wilderness Area in New Mexico.
Wu, Chiu-Hsien; Jiang, Guo-Jhen; Chang, Kai-Wei; Deng, Zu-Yin; Li, Yu-Ning; Chen, Kuen-Lin; Jeng, Chien-Chung
2018-01-09
In this study, the sensing properties of an amorphous indium gallium zinc oxide (a-IGZO) thin film at ozone concentrations from 500 to 5 ppm were investigated. The a-IGZO thin film showed very good reproducibility and stability over three test cycles. The ozone concentration of 60-70 ppb also showed a good response. The resistance change (Δ R ) and sensitivity ( S ) were linearly dependent on the ozone concentration. The response time ( T 90-res ), recovery time ( T 90-rec ), and time constant (τ) showed first-order exponential decay with increasing ozone concentration. The resistance-time curve shows that the maximum resistance change rate (dRg/dt) is proportional to the ozone concentration during the adsorption. The results also show that it is better to sense rapidly and stably at a low ozone concentration using a high light intensity. The ozone concentration can be derived from the resistance change, sensitivity, response time, time constant (τ), and first derivative function of resistance. However, the time of the first derivative function of resistance is shorter than other parameters. The results show that a-IGZO thin films and the first-order differentiation method are promising candidates for use as ozone sensors for practical applications.
Wu, Chiu-Hsien; Jiang, Guo-Jhen; Chang, Kai-Wei; Deng, Zu-Yin; Li, Yu-Ning; Chen, Kuen-Lin; Jeng, Chien-Chung
2018-01-01
In this study, the sensing properties of an amorphous indium gallium zinc oxide (a-IGZO) thin film at ozone concentrations from 500 to 5 ppm were investigated. The a-IGZO thin film showed very good reproducibility and stability over three test cycles. The ozone concentration of 60–70 ppb also showed a good response. The resistance change (ΔR) and sensitivity (S) were linearly dependent on the ozone concentration. The response time (T90-res), recovery time (T90-rec), and time constant (τ) showed first-order exponential decay with increasing ozone concentration. The resistance–time curve shows that the maximum resistance change rate (dRg/dt) is proportional to the ozone concentration during the adsorption. The results also show that it is better to sense rapidly and stably at a low ozone concentration using a high light intensity. The ozone concentration can be derived from the resistance change, sensitivity, response time, time constant (τ), and first derivative function of resistance. However, the time of the first derivative function of resistance is shorter than other parameters. The results show that a-IGZO thin films and the first-order differentiation method are promising candidates for use as ozone sensors for practical applications. PMID:29315218
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochhar, M.
An effort was made to look at the effects of fescue and/or ozone on clover decline in the grass-clover mixture. The objectives of this study were to determine (1) if chemical interactions play a role in clover decline from a clover-fescue mixture, (2) if ozone affects the growth of clover, and (3) if ozone modifies plant-plant interactions between clover and fescue.
Kerner, René; Delgado-Eckert, Edgar; Ernst, Dieter; Dupuy, Jean-William; Grams, Thorsten E E; Barbro Winkler, J; Lindermayr, Christian; Müller-Starck, Gerhard
2014-09-23
In the present study, we performed a large-scale protein analysis based on 2-DE DIGE to examine the effects of ozone on the leaves of juvenile European beech (Fagus sylvatica L.), one of the most important deciduous tree species in Central Europe. To this end, beech trees were grown under field conditions and subjected to ambient and twice ambient ozone concentrations during the vegetation periods of four consecutive years. The twice ambient ozone concentration altered the abundance of 237 protein spots, which showed relative ratios higher than 30% compared to the ambient control trees. A total of 74 protein spots were subjected to mass spectrometry identification (LC-MS/MS), followed by homology-driven searches. The differentially expressed proteins participate in key biological processes including the Calvin cycle and photosynthesis, carbon metabolism, defense- and stress-related responses, detoxification mechanisms, protein folding and degradation, and mechanisms involved in senescence. The ozone-induced responses provide evidence of a changing carbon metabolism and counteraction against increased levels of reactive oxygen species. This study provides useful information on how European beech, an economically and ecologically important tree species, reacts on the molecular level to increased ozone concentrations expected in the near future. The main emphasis in the present study was placed on identifying differentially abundant proteins after long-term ozone exposure under climatically realistic settings, rather than short-term responses or reactions under laboratory conditions. Additionally, using nursery-grown beech trees, we took into account the natural genotypic variation of this species. As such, the results presented here provide information on molecular responses to ozone in an experimental plant system at very close to natural conditions. Furthermore, this proteomic approach was supported by previous studies on the present experiment. Ultimately, the combination of this proteomic approach with several approaches including transcriptomics, analysis of non-structural carbohydrates, and morphological effects contributes to a more global picture of how beech trees react under increased ozone concentrations. Copyright © 2014. Published by Elsevier B.V.
Interactive influences of ozone and climate on streamflow of forested watersheds
Ge Sun; Samuel B. Mclaughlin; John H. Porter; Johan Uddling; Patrick J. Mulholland; Mary B. Adams; Neil Pederson
2012-01-01
The capacity of forests tomitigate global climate change can be negatively influenced by tropospheric ozone that impairs both photosynthesis and stomatal control of plant transpiration, thus affecting ecosystem productivity and watershed hydrology. We have evaluated individual and interactive effects of ozone and climate on late season streamflow for six forested...
Shi, Yijing; Huang, Chunkai; Rocha, Ketley Costa; El-Din, Mohamed Gamal; Liu, Yang
2015-09-01
Two moving bed biofilm reactors (MBBRs) were operated to treat raw (untreated) and 30 mg/L ozone-treated oil sands process-affected water (OSPW). After 210 days, the MBBR process showed 18.3% of acid-extractable fraction (AEF) and 34.8% of naphthenic acids (NAs) removal, while the ozonation combined MBBR process showed higher removal of AEF (41.0%) and NAs (78.8%). Biodegradation of raw and ozone treated OSPW showed similar performance. UPLC/HRMS analysis showed a highest NAs removal efficiency with a carbon number of 14 and a -Z number of 4. Confocal laser scanning microscopy (CLSM) showed thicker biofilms in the raw OSPW MBBR (97 ± 5 μm) than in the ozonated OSPW MBBR (71 ± 12 μm). Quantitative polymerase chain reaction (q-PCR) results showed higher abundance of gene copies of total bacteria and nitrogen removal relevant bacteria in the ozonated OSPW MBBR, but no significant difference was found. MiSeq sequencing showed Proteobacteria, Nitrospirae, and Acidobacteria were dominant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Atmospheric Effects of Biomass Burning in Madagascar
NASA Technical Reports Server (NTRS)
Aikin, Arthur C.; Hoegy, Walter R.; Ziemke, Jerry R.; Thorpe, Arthur; Einaudi, Franco (Technical Monitor)
2000-01-01
Simultaneous tropospheric ozone and aerosols observed using the TOMS satellite instrument are reported for Madagascar during the 1979 through 1999 time period Ozone observations made using the TOMS tropospheric ozone convective-cloud differential method show that the tropospheric ozone amount associated with Madagascar has an average monthly value of 30 DU (Dobson units). The average value is enhanced by 10 to 15 DU in October This maximum coincides with the time of maximum biomass area burning in Madagascar and parts of southern Africa. The aerosol index derived from TOMS is examined for correlation with biomass burning in Madagascar and southern Africa. There is good correlation between a satellite observation derived fire index for different parts of Madagascar, tropospheric ozone and the TOMS aerosol index in the same geographical area. Aerosols from fires were found to reach their peak in November and to persist over Madagascar until sometime in December.
Elevated Tropospheric Ozone over the Atlantic
NASA Technical Reports Server (NTRS)
Chandra, S.; Ziemke, J. R.; Tie, X.
2003-01-01
Tropospheric column ozone (TCO) is derived from differential measurements of TOMS total column ozone and Microwave Limb Sounder stratospheric column ozone. It is shown that TCO during summer months over the Atlantic and Pacific Oceans in northern midlatitudes is about the same (50 to 60 Dobson Units) as over the continents of North America, Europe, and Asia, where surface emissions of nitrogen oxides from industrial sources, biomass and biofuel burning and biogenic emissions are significantly larger. This nearly uniform zonal variation in TCO is modulated by surface topography of the Rocky and Himalayan mountains, and Tibetan plateau where TCO is reduced by 20 to 30 Dobson Units. The zonal variation in TCO is well simulated by a global chemical transport model called MOZART-2 (Model of Ozone and Related Chemical Tracers, version 2). The model results are analyzed to delineate the relative importance of various processes contributing to observed zonal characteristics of TCO.
Verhein, Kirsten C; McCaw, Zachary; Gladwell, Wesley; Trivedi, Shweta; Bushel, Pierre R; Kleeberger, Steven R
2015-08-01
Ozone is a highly toxic air pollutant and global health concern. Mechanisms of genetic susceptibility to ozone-induced lung inflammation are not completely understood. We hypothesized that Notch3 and Notch4 are important determinants of susceptibility to ozone-induced lung inflammation. Wild-type (WT), Notch3 (Notch3-/-), and Notch4 (Notch4-/-) knockout mice were exposed to ozone (0.3 ppm) or filtered air for 6-72 hr. Relative to air-exposed controls, ozone increased bronchoalveolar lavage fluid (BALF) protein, a marker of lung permeability, in all genotypes, but significantly greater concentrations were found in Notch4-/- compared with WT and Notch3-/- mice. Significantly greater mean numbers of BALF neutrophils were found in Notch3-/- and Notch4-/- mice compared with WT mice after ozone exposure. Expression of whole lung Tnf was significantly increased after ozone in Notch3-/- and Notch4-/- mice, and was significantly greater in Notch3-/- compared with WT mice. Statistical analyses of the transcriptome identified differentially expressed gene networks between WT and knockout mice basally and after ozone, and included Trim30, a member of the inflammasome pathway, and Traf6, an inflammatory signaling member. These novel findings are consistent with Notch3 and Notch4 as susceptibility genes for ozone-induced lung injury, and suggest that Notch receptors protect against innate immune inflammation.
Borowiak, Klaudia; Wujeska, Agnieszka
2012-03-01
The cumulative ozone effect on morphological parameters (visible leaf injury, plant height and leaf growth, number of bean pods, petunia flowers and stalks) was examined in this study. Well-known ozonesensitive (Bel W3) and ozone-resistant (Bel B) tobacco cultivars as well as bean cv. Nerina and petunia cv. White cascade, both recognized as ozone sensitive, were used in the experiment. Investigations were carried out at two exposure sites varying in tropospheric ozone levels. Ozone negatively affected the leaf growth of both tobacco cultivars and bean. A negative relation was also found for ozone concentration and tobacco plant height. Number of petunia flowers and stalks and bean pods was positively correlated with ozone concentration. This could have been connected with earlier plant maturation due to faster generative development of plants in ozone-stress conditions.
When Will the Antarctic Ozone Hole Recover?
NASA Technical Reports Server (NTRS)
Newman, Paul A.
2006-01-01
The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. In this talk we will demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating 61 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area's variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.
When Will the Antarctic Ozone Hole Recover?
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Stephen A.; Schauffler, Sue
2006-01-01
The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.
Inheritance of ozone resistance in tall fescue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, W.J.; Haaland, R.L.; Dickens, R.
Ozone is considered the most important air pollutant affecting vegetation. With progressive urbanization, ozone levels have steadily escalated. Reports suggest that ozone tolerance is a highly heritable characteristic and that the selection of resistant plants and breeding for ozone resistance should be possible. This study was undertaken to gain information on the inheritance of ozone resistance in tall fescue (Festuca arundinacea Schreb.).Progenies from a diallel among six tall fescue genotypes of diverse origin were evaluated for ozone resistance in a fumigation-chamber. Sixteen-day-old seedlings were exposed to 0.5 ppm ozone for 3 hours and scored for injury after 3 days. Generalmore » combining ability (GCA) and reciprocal effects were both highly significant; however, GCA constituted a major portion of the genotypic variation. Specific combining ability was not significant. The predominance of additive genetic variance observed indicates that breeding for ozone resistance in this tall fescue population should be possible.« less
NASA Astrophysics Data System (ADS)
Lei, R.; Wang, S. C.; Yang, S.; Wang, Y.; Talbot, R. W.
2016-12-01
The policy-relevant background (PRB) ozone is defined by the U.S. Environmental Protection Agency (EPA) as the surface ozone mixing ratio that would occur over the U.S. without North American anthropogenic emission influences. PRB ozone over the Houston-Galveston-Brazoria (HGB) area may be affected by foreign sources due to its unique geographical location and meteorology. Our monitoring data revealed several high ozone events over HGB area which might be caused by Central American fire during the years of 2013-2015. To qualify the effects from Central American fire, we estimated the US, Central American and worldwide background over HGB area during those events using the GEOS-Chem global 3-D model. Anomalies in fire emissions leading to high PRB ozone were mapped through spatiotemporal sampling of the Fire INventory from NCAR (FINN) along background trajectories of air masses affecting the HGB area prior to and during the selected high PRB ozone days. Daily HGB PRB ozone estimated by researchers at the Texas Commission on Environmental Quality (TCEQ) was used as the data source to validate model results. Results showed that contribution of emission from Central American to HGB PRB ozone could be tripled during fire events compared to non-impacted fire days. Besides fire emissions from Central American, different types of meteorological events (e.g., cold fronts and thunderstorms) and high local photochemical production (e.g., heat waves and stagnation) are also found associated with high PRB ozone in HGB area during these events. Thus we imply that synthetic contribution from foreign sources and local meteorology to HGB PRB ozone warrants further investigated.
Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)
NASA Astrophysics Data System (ADS)
Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus
2017-07-01
The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the original training on satellite data. Hence, the new version allows for an implementation into climate models in combination with an existing stratospheric transport scheme. Finally, the model is now formulated on several vertical levels encompassing the vertical range in which polar ozone depletion is observed. The results of the Polar SWIFT model are validated with independent Microwave Limb Sounder (MLS) satellite observations and output from the original detailed chemistry model of ATLAS.
Ueda, Yoshiaki; Frindte, Katharina; Knief, Claudia; Ashrafuzzaman, Md; Frei, Michael
2016-01-01
Microbes constitute a vital part of the plant holobiont. They establish plant-microbe or microbe-microbe associations, forming a unique microbiota with each plant species and under different environmental conditions. These microbial communities have to adapt to diverse environmental conditions, such as geographical location, climate conditions and soil types, and are subjected to changes in their surrounding environment. Elevated ozone concentration is one of the most important aspects of global change, but its effect on microbial communities living on plant surfaces has barely been investigated. In the current study, we aimed at elucidating the potential effect of elevated ozone concentrations on the phyllosphere (aerial part of the plant) and rhizoplane (surface of the root) microbiota by adopting next-generation 16S rRNA amplicon sequencing. A standard japonica rice cultivar Nipponbare and an ozone-tolerant breeding line L81 (Nipponbare background) were pre-grown in a greenhouse for 10 weeks and then exposed to ozone at 85 ppb for 7 h daily for 30 days in open top chambers. Microbial cells were collected from the phyllosphere and rhizoplane separately. The treatment or different genotypes did not affect various diversity indices. On the other hand, the relative abundance of some bacterial taxa were significantly affected in the rhizoplane community of ozone-treated plants. A significant effect of ozone was detected by homogeneity of molecular variance analysis in the phyllosphere, meaning that the community from ozone-treated phyllosphere samples was more variable than those from control plants. In addition, a weak treatment effect was observed by clustering samples based on the Yue and Clayton and weighted UniFrac distance matrices among samples. We therefore conclude that the elevated ozone concentrations affected the bacterial community structure of the phyllosphere and the rhizosplane as a whole, even though this effect was rather weak and did not lead to changes of the function of the communities.
Ueda, Yoshiaki; Frindte, Katharina; Knief, Claudia; Ashrafuzzaman, Md; Frei, Michael
2016-01-01
Microbes constitute a vital part of the plant holobiont. They establish plant-microbe or microbe-microbe associations, forming a unique microbiota with each plant species and under different environmental conditions. These microbial communities have to adapt to diverse environmental conditions, such as geographical location, climate conditions and soil types, and are subjected to changes in their surrounding environment. Elevated ozone concentration is one of the most important aspects of global change, but its effect on microbial communities living on plant surfaces has barely been investigated. In the current study, we aimed at elucidating the potential effect of elevated ozone concentrations on the phyllosphere (aerial part of the plant) and rhizoplane (surface of the root) microbiota by adopting next-generation 16S rRNA amplicon sequencing. A standard japonica rice cultivar Nipponbare and an ozone-tolerant breeding line L81 (Nipponbare background) were pre-grown in a greenhouse for 10 weeks and then exposed to ozone at 85 ppb for 7 h daily for 30 days in open top chambers. Microbial cells were collected from the phyllosphere and rhizoplane separately. The treatment or different genotypes did not affect various diversity indices. On the other hand, the relative abundance of some bacterial taxa were significantly affected in the rhizoplane community of ozone-treated plants. A significant effect of ozone was detected by homogeneity of molecular variance analysis in the phyllosphere, meaning that the community from ozone-treated phyllosphere samples was more variable than those from control plants. In addition, a weak treatment effect was observed by clustering samples based on the Yue and Clayton and weighted UniFrac distance matrices among samples. We therefore conclude that the elevated ozone concentrations affected the bacterial community structure of the phyllosphere and the rhizosplane as a whole, even though this effect was rather weak and did not lead to changes of the function of the communities. PMID:27643794
Consideration of air quality standards for vegetation with respect to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heggestad, H.E.
1968-01-01
There is an increasing body of evidence that ozone is the most damaging of all air pollutants affecting vegetation. It is the principal oxidant in the photochemical smog complex. Concentrations measured with an ultraviolet photometer, considered specific for ozone, have exceeded 0.5 part per million (ppM) in the Los Angeles area. Only one-tenth of this level, or 0.05 ppM, for 8 hours is known to injure very sensitive tobacco varieties. Studies in several laboratories show that a broad spectrum of plant species is visibly affected after a few hours exposure at concentrations much lower than 0.5 ppM. There is alsomore » some evidence that ozone reduces plant growth. Many factors must be taken into account in considering standards for possible use in the protection of vegetation from ozone damage. These include ozone concentration and methods of measurement, time of exposure, possible additive effects of other pollutants, sensitivity of species to ozone, their economic value, and the extent of injury which can be tolerated. The response of a species to the pollutant is conditioned by genetic factors and environmental conditions. The lack of routine, specific methods for measuring ozone in ambient air is a handicap. California and Colorado established standards for oxidants at 0.15 ppM and 0.10 ppM, respectively, for 1 hour. How these standards relate to the dosage of ozone that causes acute and chronic injury to various plant species is discussed. 28 references.« less
Landesmann, Jennifer B; Gundel, Pedro E; Martínez-Ghersa, M Alejandra; Ghersa, Claudio M
2013-01-01
Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergulaarvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production.
Landesmann, Jennifer B.; Gundel, Pedro E.; Martínez-Ghersa, M. Alejandra; Ghersa, Claudio M.
2013-01-01
Tropospheric ozone is one of the major drivers of global change. This stress factor alters plant growth and development. Ozone could act as a selection pressure on species communities composition, but also on population genetic background, thus affecting life history traits. Our objective was to evaluate the consequences of prolonged ozone exposure of a weed community on phenotypic traits of Spergula arvensis linked to persistence. Specifically, we predicted that the selection pressure exerted by high ozone concentrations as well as the concomitant changes in the weed community would drive population adaptive changes which will be reflected on seed germination, dormancy and longevity. In order to test seed viability and dormancy level, we conducted germination experiments for which we used seeds produced by S. arvensis plants grown within a weed community exposed to three ozone treatments during four years (0, 90 and 120 ppb). We also performed a soil seed bank experiment to test seed longevity with seeds coming from both the four-year ozone exposure experiment and from a short-term treatment conducted at ambient and added ozone concentrations. We found that prolonged ozone exposure produced changes in seed germination, dormancy and longevity, resulting in three S. arvensis populations. Seeds from the 90 ppb ozone selection treatment had the highest level of germination when stored at 75% RH and 25 °C and then scarified. These seeds showed the lowest dormancy level when being subjected to 5 ºC/5% RH and 25 ºC/75% followed by 5% RH storage conditions. Furthermore, ozone exposure increased seed persistence in the soil through a maternal effect. Given that tropospheric ozone is an important pollutant in rural areas, changes in seed traits due to ozone exposure could increase weed persistence in fields, thus affecting weed-crop interactions, which could ultimately reduce crop production. PMID:24086640
NASA Astrophysics Data System (ADS)
Kotsakis, A.; Choi, Y.; Souri, A.; Jeon, W.; Flynn, J. H., III
2017-12-01
From the years 2000 to 2014, Dallas-Fort Worth (DFW) has seen a decrease in ozone exceedances due to decreased emissions of ozone precursors. In this study, a wind pattern analysis was done to gain a better understanding of the meteorological patterns that have historically contributed to ozone exceedances over the DFW area. Long-term trends in ozone and the seasonal distribution of ozone exceedances were analyzed using surface monitoring data. Using a clustering algorithm called self-organizing maps, characteristic regional wind patterns from 2000-2014 were determined. For each of the wind pattern clusters, the frequency over the last 15 years and average ozone from monitors across DFW was analyzed. Finally, model simulations were performed to determine if pollution transported out of Houston affected incoming background ozone into DFW.
Satellite ozone measurements and the detection of trends
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest
1990-01-01
Due to the international scientific community's concern with the problem of anthropogenic gas-caused depletion of the ozone layer, an international observational program has been established to conduct stratospheric studies for at least a decade. These observations, which will be performed both by the Space Shuttle and the Upper Atmosphere Research Satellite, will encompass the energy input by solar UV irradiance, source and intermediate gases in ozone chemistry, and the global distributions of these ozone-affecting gases by winds.
Zhang, Yanyan; Xue, Jinkai; Liu, Yang; Gamal El-Din, Mohamed
2018-04-05
Previously, anoxic-aerobic membrane bioreactor (MBR) coupled with mild ozonation pretreatment has been applied to remove toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW). To further improve MBR performance, the optimal operation conditions including hydraulic retention time (HRT) and initial ammonia nitrogen (NH 4 + -N) need to be explored. In this study, the role of ozone pretreatment on MBR optimization was investigated. Compared with MBR treating raw OSPW, MBR treating ozonated OSPW had the same optimal operation conditions (HRT of 12 h and NH 4 + -N concentration of 25 mg/L). Nevertheless, MBR performance benefited from HRT adjustment more after ozone pretreatment. HRT adjustment resulted in NA removal in the range of 33-50% for the treatment of ozonated OSPW whereas NA removal for raw OSPW only fluctuated between 27% and 38%. Compared with the removal of classical NAs, the degradation of oxidized NAs was more sensitive to the adjustment of operation conditions. Adjusting HRT increased the removal of oxidized NAs in ozonated OSPW substantially (from 6% to 35%). It was also noticed that microbial communities in MBR treating ozonated OSPW were more responsive to the adjustment of operation conditions as indicated by the noticeable increase of Shannon index and extended genetic distances. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Grant, William B.; Butler, Carolyn F.; Fenn, Marta A.; Kooi, Susan A.; Browell, Edward V.; Fuelberg, Henry
1998-01-01
The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system participated in the Subsonic Assessment, Ozone and Nitrogen Oxide Experiment (SONEX) mission from October 13 to November 12, 1997. The purpose of the mission was to study the upper troposphere/lower stratosphere in and near the North Atlantic flight corridor to better understand this region of the atmosphere and how civilian air travel in the corridor might be affecting the atmospheric chemistry. Bases of operations included NASA Ames, California (37.4 deg N, 122.1 deg W); Bangor, Maine (44.8 deg N, 68.8 deg W); Shannon, Ireland (52.7 deg N, 8.9 deg W); and Lajes, Terceira Island, Azores (38.8 deg N, 27.1 deg W). Since the UV DIAL system observes in the nadir as well as the zenith, aerosol and ozone data were obtained from near the Earth's surface to the lower stratosphere. A number of interesting features were noted relating to both chemistry and dynamics of the troposphere, which are reported here.
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Schoeberl, M. R.; Kawa, S. R.
2000-01-01
The processes which contribute to the ozone evolution in the high latitude lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite; and the Polar Ozone and Aerosol Measurement (POAM II) solar occulation instrument, on board the French Satellite Pour I'Observations de la Terre. Comparisons of the different data sets with the model simulation are shown to provide complementary information and a consistent view of the ozone evolution. The model ozone in December and January is shown to be sensitive to the ozone vertical gradient and the model vertical transport, and only weakly sensitive to the model photochemistry. The most consistent comparison between observed and modeled ozone evolution is found for a simulation where the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. Diabatic trajectory calculations are used to estimate the uncertainty due to vertical advection quantitatively. The transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The model ozone evolution during December and January is broadly consistent with the observations when these transport uncertainties are taken into account.
The air quality of many large coastal areas in the United States is affected by the confluence of polluted urban and relatively clean marine airmasses, each with distinct atmospheric chemistry. In this context, the role of iodide-mediated ozone (O3) deposition over seawater and m...
Interhemispheric Differences in Dentifrication and Related Processes Affecting Polar Ozone
NASA Technical Reports Server (NTRS)
Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.
1994-01-01
The severe depletion of stratospheric ozone over Antarctica in late winter and early spring is caused by enhanced CLO abundances arising from heterogeneous reactions on polar stratospheric clouds (PSCs). CLO abundances comparable to those over Antarctica have also been observed throughout the Arctic Vortex, but the accompanying loss of Arctic ozone has been much less severe.
Keutgen, Norbert; Keutgen, Anna J; Janssens, Marc J J
2008-08-13
Sweet potato cultivars respond differently to elevated tropospheric ozone concentrations of ca. 130 mug m (-3), 8 h a day for 4 weeks, which affects their selection for cultivation. In the first cultivar presented here, an adequate leafy vegetable supplier, the ozone load resulted in a shift of biomass to maintain the canopy at the expense of tuber development. Starch content of leaves was reduced, indicating an impairment of quality, but carotenoid content remained stable. The second cultivar may be grown for tuber production. Although the ratio tuber/plant remained stable under ozone, tuber yield and its starch content were significantly reduced. The lower starch content indicated a worse quality for certain industrial processing, but it is desirable for chip production. Elevated tropospheric ozone concentrations also influenced free amino acids and macronutrient contents of tubers, but these modifications were of minor significance for tuber quality in the second cultivar.
Hwang, Geelsu; Dong, Tao; Islam, Md Sahinoor; Sheng, Zhiya; Pérez-Estrada, Leónidas A; Liu, Yang; Gamal El-Din, Mohamed
2013-02-01
To examine the effects of the ozonation process (as an oxidation treatment for water and wastewater treatment applications) on microbial biofilm formation and biodegradability of organic compounds present in oil sands process-affected water (OSPW), biofilm reactors were operated continuously for 6weeks. Two types of biofilm substrate materials: polyethylene (PE) and polyvinylchloride (PVC), and two types of OSPW-fresh and ozonated OSPWs-were tested. Endogenous microorganisms, in OSPW, quickly formed biofilms in the reactors. Without ozonation, the bioreactor (using endogenous microorganisms) removed 13.8% of the total acid-extractable organics (TAO) and 18.5% of the parent naphthenic acids (NAs) from fresh OSPW. The combined ozonation and biodegradation process removed 87.2% of the OSPW TAO and over 99% of the OSPW parent NAs. Further UPLC/HRMS analysis showed that NA biodegradability decreased as the NA cyclization number increased. Microbial biofilm formation was found to depend on the biofilm substrate type. Copyright © 2012 Elsevier Ltd. All rights reserved.
The signs of Antarctic ozone hole recovery.
Kuttippurath, Jayanarayanan; Nair, Prijitha J
2017-04-03
Absorption of solar radiation by stratospheric ozone affects atmospheric dynamics and chemistry, and sustains life on Earth by preventing harmful radiation from reaching the surface. Significant ozone losses due to increases in the abundances of ozone depleting substances (ODSs) were first observed in Antarctica in the 1980s. Losses deepened in following years but became nearly flat by around 2000, reflecting changes in global ODS emissions. Here we show robust evidence that Antarctic ozone has started to recover in both spring and summer, with a recovery signal identified in springtime ozone profile and total column measurements at 99% confidence for the first time. Continuing recovery is expected to impact the future climate of that region. Our results demonstrate that the Montreal Protocol has indeed begun to save the Antarctic ozone layer.
NASA Technical Reports Server (NTRS)
Fusco, Andrew C.; Logan, Jennifer A.
2004-01-01
I ] The causes of trends in tropospheric ozone at Northern Hemisphere midlatitudes from 1970 to 1995 are investigated with the GEOS-CHEM model, a global three-dimensional model of the troposphere driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS). This model is used to investigate the sensitivity of tropospheric ozone with respect to (1) changes in the anthropogenic emission of nitrogen oxides and nonmethane hydrocarbons, (2) increases in methane concentrations, (3) variations in the stratospheric source of ozone, (4) changes in solar radiation resulting from stratospheric ozone depletion, and ( 5 ) increases in tropospheric temperatures. Model results indicate that local increases in NO, emissions have caused most of the increases seen in lower tropospheric ozone over Europe and Japan. Increases in methane are responsible for roughly one fifth of the anthropogenically induced increase in tropospheric ozone at northern midlatitudes. However, changes in ozone precursors do not adequately explain either the spatial differences in observed ozone trends across midlatitudes or the observed decreases in ozone over Canada throughout the troposphere. We argue that ozone depletion in the lowermost stratosphere is likely to have reduced the stratospheric source by as much as 30% from the early 1970s to the mid 1990s. Model simulations that account for such a reduction along with reported changes in anthropogenic emissions show steep declines of ozone in the upper troposphere and variable increases in the lower troposphere that are more consistent with observations. Differential temperature trends in summer between North America and Europe may account for at least some of the remaining spatial variation in tropospheric ozone trends. Increases in ultraviolet (UV) radiation due to stratospheric ozone depletion do not appear to significantly reduce tropospheric ozone, except at midlatitudes in the Southern Hemisphere following the breakup of the ozone hole.
A method for retrieving vertical ozone profiles from limb scattered measurements
NASA Astrophysics Data System (ADS)
Wang, Zijun; Chen, Shengbo; Yang, Chunyan; Jin, Lihua
2011-10-01
A two-step method is employed in this study to retrieve vertical ozone profiles using scattered measurements from the limb of the atmosphere. The combination of the Differential Optical Absorption Spectroscopy (DOAS) and the Multiplicative Algebraic Reconstruction Technique (MART) is proposed. First, the limb radiance, measured over a range of tangent heights, is processed using the DOAS technique to recover the effective column densities of atmospheric ozone. Second, these effective column densities along the lines of sight (LOSs) are inverted using the MART coupled with a forward model SCIATRAN (radiative transfer model for SCIAMACHY) to derive the ozone profiles. This method is applied to Optical Spectrograph and Infra Red Imager System (OSIRIS) radiance, using the wavelength windows 571-617 nm. Vertical ozone profiles between 10 and 48 km are derived with a vertical resolution of 1 km. The results illustrate a good agreement with the cloud-free coincident SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) ozone measurements, with deviations less than ±10% (±5% for altitudes from 17 to 47 km). Furthermore, sensitivities of retrieved ozone to aerosol, cloud parameters and NO2 concentration are also investigated.
Role of Biomass Burning in the Formation of Tropospheric Ozone Laminae
NASA Astrophysics Data System (ADS)
Nair, U. S.; Wu, Y.; Kuang, S.; Newchurch, M.
2016-12-01
Laminar structure in free-tropospheric ozone profiles is a feature that is frequently observed in ozonesonde and lidar observations. Origins of these features are not well understood and have been linked to tropopause folding, stratospheric warming events and biomass burning emissions. Ozone laminae events with maximum ozone exceeding 80 ppb have been observed by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, Alabama. While many of the events are linked to tropopause folding, a subset of events located in the mid troposphere (2-6km) coincided with a smoke layer are associated with biomass burning. Satellite observations show the smoke originated from northwestern US wildfire events. Several of these ozone laminae associated with smoke have ozone excess of 20 ppb above the background values and have the potential to impact surface air quality if they enter the boundary layer. This presentation will report on process studies of ozone laminae associated with biomass burning plumes using A-Train satellite, ground based DIAL and ozonesonde observations. Fate and transport of the feature is also examined using WRFChem simulations, in specific transport into the boundary layer and impact on air quality at the surface.
The Upper Atmosphere Research Satellite: From Coffee Table Art to Quantitative Science
NASA Technical Reports Server (NTRS)
Douglass, Anne R.
1999-01-01
The Upper Atmosphere Research Satellite (UARS) has provided an unprecedented set of observations of constituents of the stratosphere. When used in combination with data from other sources and appropriate modeling tools, these observations are useful for quantitative evaluation of stratospheric photochemical processes. This is illustrated by comparing ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen occultation Experiment (HALOE) with ozone fields generated with a three dimensional model. For 1995-96, at polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with ozone fields from the GSFC 3D chemistry and transport model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge. The importance of chlorine catalyzed photochemistry to this ozone loss is explored by comparing observations from MLS and HALOE with simulations for other northern winters, particularly 1997-98.
Effects of Temperature and Air Density Profiles on Ozone Lidar Retrievals
NASA Astrophysics Data System (ADS)
Kirgis, G.; Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II
2017-12-01
The recent reduction in the primary U.S. National Ambient Air Quality Standard (NAAQS) for ozone (O3) from 75 to 70 parts-per-billion by volume (ppbv) adds urgency to the need for better understanding of the processes that control ground-level concentrations in the United States. While ground-based in situ sensors are capable of measuring ozone levels, they don't give any insight into upper air transport and mixing. Differential absorption lidars such as the NOAA/ESRL Tunable Optical Profiler for Aerosol and oZone (TOPAZ) measure continuous vertical ozone profiles with high spatial and temporal resolution. However, the retrieved ozone mixing ratios depend on the temperature and air density profiles used in the analysis. This study analyzes the ozone concentrations for seven field campaigns from 2013 to 2016 to evaluate the impact of the assumed pressure and temperature profiles on the ozone mixing ratio retrieval. Pressure and temperature profiles from various spatial and temporal resolution models (Modern Era Retrospective-Analysis for Research and Applications, NCEP/NCAR Reanalysis, NCEP North American Regional Reanalysis, Rapid Refresh, and High-Resolution Rapid Refresh) are compared to reference ozone profiles created with pressure and temperature profiles from ozonesondes launched close to the TOPAZ measurement site. The results show significant biases with respect to time of day and season, altitude, and location of the model-extracted profiles. Limitations and advantages of all datasets used will also be discussed.
Measurements of in situ chemical ozone (oxidant) production rates
NASA Astrophysics Data System (ADS)
Huang, Hao; Faloon, Kate; Najera, Juan; Bloss, William
2013-04-01
Tropospheric ozone is a major air pollutant, harmful to human health, agricultural crops and vegetation, the main precursor to the atmospheric oxidants which initiate the degradation of most reactive gases emitted to the atmosphere, and an important greenhouse gas in its own right. The capacity to understand and predict tropospheric ozone levels is a key goal for atmospheric science - but one which is challenging, as ozone is formed in the atmosphere from the complex oxidation of VOCs in the presence of NOx and sunlight, on a timescale such that in situ chemical processes, deposition and transport all affect ozone levels. Known uncertainties in emissions, chemistry, dynamics and deposition affect the accuracy of predictions of current and future ozone levels, and hinder development of optimal air quality policies to mitigate against ozone exposure. Recently new approaches to directly measure the local chemical ozone production rate, bypassing the many uncertainties in emissions and chemical schemes, have been developed (Cazorla & Brune, AMT 2010). Here, we describe the development of an analogous Ozone Production Rate (OPR) approach: Air is sampled into parallel reactors, within which ozone formation either occurs as in the ambient atmosphere, or is suppressed. Comparisons of ozone levels exiting a pair of such reactors determines the net chemical oxidant production rate, after correction for perturbation of the NOx-O3 photochemical steady state, and when operated under conditions such that wall effects are minimised. We report preliminary measurements of local chemical ozone production made during the UK NERC ClearfLo (Clean Air for London) campaign at an urban background location in London in January and July 2012. The OPR system was used to measure the local chemical oxidant formation rate, which is compared with observed trends in O3 and NOx and the prevailing meteorology, and with the predictions of a detailed zero-dimensional atmospheric chemistry model, constrained by observations of long-lived species.
NASA Astrophysics Data System (ADS)
Yin, Xiufeng; Kang, Shichang; de Foy, Benjamin; Cong, Zhiyuan; Luo, Jiali; Zhang, Lang; Ma, Yaoming; Zhang, Guoshuai; Rupakheti, Dipesh; Zhang, Qianggong
2017-09-01
Ozone is an important pollutant and greenhouse gas, and tropospheric ozone variations are generally associated with both natural and anthropogenic processes. As one of the most pristine and inaccessible regions in the world, the Tibetan Plateau has been considered as an ideal region for studying processes of the background atmosphere. Due to the vast area of the Tibetan Plateau, sites in the southern, northern and central regions exhibit different patterns of variation in surface ozone. Here, we present continuous measurements of surface ozone mixing ratios at Nam Co Station over a period of ˜ 5 years (January 2011 to October 2015), which is a background site in the inland Tibetan Plateau. An average surface ozone mixing ratio of 47.6 ± 11.6 ppb (mean ± standard deviation) was recorded, and a large annual cycle was observed with maximum ozone mixing ratios in the spring and minimum ratios during the winter. The diurnal cycle is characterized by a minimum in the early morning and a maximum in the late afternoon. Nam Co Station represents a background region where surface ozone receives negligible local anthropogenic emissions inputs, and the anthropogenic contribution from South Asia in spring and China in summer may affect Nam Co Station occasionally. Surface ozone at Nam Co Station is mainly dominated by natural processes involving photochemical reactions, vertical mixing and downward transport of stratospheric air mass. Model results indicate that the study site is affected differently by the surrounding areas in different seasons: air masses from the southern Tibetan Plateau contribute to the high ozone levels in the spring, and enhanced ozone levels in the summer are associated with air masses from the northern Tibetan Plateau. By comparing measurements at Nam Co Station with those from other sites on the Tibetan Plateau, we aim to expand the understanding of ozone cycles and transport processes over the Tibetan Plateau. This work may provide a reference for future model simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Debbie L.; Gerriets, Joan E.; Schelegle, Edward S.
Epidemiology supports a causal link between air pollutant exposure and childhood asthma, but the mechanisms are unknown. We have previously reported that ozone exposure can alter the anatomic distribution of CD25+ lymphocytes in airways of allergen-sensitized infant rhesus monkeys. Here, we hypothesized that ozone may also affect eosinophil trafficking to allergen-sensitized infant airways. To test this hypothesis, we measured blood, lavage, and airway mucosa eosinophils in 3-month old monkeys following cyclical ozone and house dust mite (HDM) aerosol exposures. We also determined if eotaxin family members (CCL11, CCL24, CCL26) are associated with eosinophil location in response to exposures. In lavage,more » eosinophil numbers increased in animals exposed to ozone and/or HDM. Ozone + HDM animals showed significantly increased CCL24 and CCL26 protein in lavage, but the concentration of CCL11, CCL24, and CCL26 was independent of eosinophil number for all exposure groups. In airway mucosa, eosinophils increased with exposure to HDM alone; comparatively, ozone and ozone + HDM resulted in reduced eosinophils. CCL26 mRNA and immunofluorescence staining increased in airway mucosa of HDM alone animals and correlated with eosinophil volume. In ozone + HDM animal groups, CCL24 mRNA and immunofluorescence increased along with CCR3 mRNA, but did not correlate with airway mucosa eosinophils. Cumulatively, our data indicate that ozone exposure results in a profile of airway eosinophil migration that is distinct from HDM mediated pathways. CCL24 was found to be induced only by combined ozone and HDM exposure, however expression was not associated with the presence of eosinophils within the airway mucosa. -- Highlights: Black-Right-Pointing-Pointer Ozone can modulate the localization of eosinophils in infant allergic airways. Black-Right-Pointing-Pointer Expression of eotaxins within the lung is affected by ozone and allergen exposure. Black-Right-Pointing-Pointer CCL24 induction by ozone and allergen exposure is not linked to eosinophilia.« less
NASA Astrophysics Data System (ADS)
Farooqui, Mohmmed Zuber
Tropospheric ozone is one of the major air pollution problems affecting urban areas of United States as well as other countries in the world. Analysis of surface observed ozone levels in south and central Texas revealed several days exceeding 8-hour average ozone National Ambient of Air Quality Standards (NAAQS) over the past decade. Two major high ozone episodes were identified during September of 1999 and 2002. A photochemical modeling framework for the high ozone episodes in 1999 and 2002 were developed for the Corpus Christi urban airshed. The photochemical model was evaluated as per U.S. Environmental Protection Agency (EPA) recommended statistical methods and the models performed within the limits set by EPA. An emission impact assessment of various sources within the urban airshed was conducted using the modeling framework. It was noted that by nudging MM5 with surface observed meteorological parameters and sea-surface temperature, the coastal meteorological predictions improved. Consequently, refined meteorology helped the photochemical model to better predict peak ozone levels in urban airsheds along the coastal margins of Texas including in Corpus Christi. The emissions assessment analysis revealed that Austin and San Antonio areas were significantly affected by on-road mobile emissions from light-duty gasoline and heavy-duty diesel vehicles. The urban areas of San Antonio, Austin, and Victoria areas were estimated to be NOx sensitive. Victoria was heavily influenced by point sources in the region while Corpus Christi was influenced by both point and non-road mobile sources and was identified to be sensitive to VOC emissions. A rise in atmospheric temperature due to climate change potentially increase ozone exceedances and the peak ozone levels within the study region and this will be a major concern for air quality planners. This study noted that any future increase in ambient temperature would result in a significant increase in the urban and regional ozone levels within the modeling domain and it would also enhance the transported levels of ozone across the region. Overall, the photochemical modeling framework helped in evaluating the impact of various parameters affecting ozone air quality; and, it has the potential to be a tool for policy-makers to develop effective emissions control strategies under various regulatory and climate conditions.
Gamal El-Din, Mohamed; Fu, Hongjing; Wang, Nan; Chelme-Ayala, Pamela; Pérez-Estrada, Leonidas; Drzewicz, Przemysław; Martin, Jonathan W; Zubot, Warren; Smith, Daniel W
2011-11-01
The Athabasca Oil Sands industry produces large volumes of oil sands process-affected water (OSPW) as a result of bitumen extraction and upgrading processes. Constituents of OSPW include chloride, naphthenic acids (NAs), aromatic hydrocarbons, and trace heavy metals, among other inorganic and organic compounds. To address the environmental issues associated with the recycling and/or safe return of OSPW into the environment, water treatment technologies are required. This study examined, for the first time, the impacts of pretreatment steps, including filtration and petroleum-coke adsorption, on ozonation requirements and performance. The effect of the initial OSPW pH on treatment performance, and the evolution of ozonation and its impact on OSPW toxicity and biodegradability were also examined. The degradation of more than 76% of total acid-extractable organics was achieved using a semi-batch ozonation system at a utilized ozone dose of 150 mg/L. With a utilized ozone dose of 100 mg/L, the treated OSPW became more biodegradable and showed no toxicity towards Vibrio fischeri. Changes in the NA profiles in terms of carbon number and number of rings were observed after ozonation. The filtration of the OSPW did not improve the ozonation performance. Petroleum-coke adsorption was found to be effective in reducing total acid-extractable organics by a 91%, NA content by an 84%, and OSPW toxicity from 4.3 to 1.1 toxicity units. The results of this study indicate that the combination of petroleum-coke adsorption and ozonation is a promising treatment approach to treat OSPW. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, J.; Heue, K.-P.; Coldewey-Egbers, M.; Romahn, F.; Doicu, A.; Loyola, D.
2018-04-01
Characterizing vertical distributions of ozone from nadir-viewing satellite measurements is known to be challenging, particularly the ozone information in the troposphere. A novel retrieval algorithm called Full-Physics Inverse Learning Machine (FP-ILM), has been developed at DLR in order to estimate ozone profile shapes based on machine learning techniques. In contrast to traditional inversion methods, the FP-ILM algorithm formulates the profile shape retrieval as a classification problem. Its implementation comprises a training phase to derive an inverse function from synthetic measurements, and an operational phase in which the inverse function is applied to real measurements. This paper extends the ability of the FP-ILM retrieval to derive tropospheric ozone columns from GOME- 2 measurements. Results of total and tropical tropospheric ozone columns are compared with the ones using the official GOME Data Processing (GDP) product and the convective-cloud-differential (CCD) method, respectively. Furthermore, the FP-ILM framework will be used for the near-real-time processing of the new European Sentinel sensors with their unprecedented spectral and spatial resolution and corresponding large increases in the amount of data.
Variables affecting efficiency of molasses fermentation wastewater ozonation.
Coca, M; Peña, M; González, G
2005-09-01
The main operating variables affecting ozonation efficiencies of wastewater from beet molasses alcoholic fermentation have been studied. Semibatch experiments have been performed in order to analyze the influence of pH, bicarbonate ion, temperature and stirring rate on color and organic matter removals. The efficiencies were similar regardless of the pH, which indicates that direct reactions of ozone with wastewater organics were predominant to radical reactions. Gel permeation chromatography confirmed the reduction in the concentration of organics absorbing light at 475 nm after ozonation. The elimination of bicarbonate ion, strong inhibitor of hydroxyl radical reactions, yielded an improvement in both color and COD reduction efficiencies. Acidification for removing bicarbonate ions produced a shift of colored compounds to smaller molecular weights. The highest efficiencies were achieved at 40 degrees C. Color and COD reductions at 40 degrees C were about 90% and 37%, respectively. In no case, the percentage of TOC removed was higher than 10-15%. Stirring rate had a slightly positive effect during the first stage of the ozonation showing that mass transfer played a role only during the initial reaction phase when direct attack of ozone molecules to aromatic/olefinic structures of colored substances was the predominant pathway.
Tham, Andrea; Lullo, Dominic; Dalton, Sarah; Zeng, Siyang; van Koeverden, Ian; Arjomandi, Mehrdad
2017-02-01
Epidemiologic studies have linked inhalation of air pollutants such as ozone to cardiovascular mortality. Human exposure studies have shown that inhalation of ambient levels of ozone causes airway and systemic inflammation and an imbalance in sympathetic/parasympathetic tone. To explore molecular mechanisms through which ozone inhalation contributes to cardiovascular mortality, we compared transcriptomics data previously obtained from bronchoalveolar lavage (BAL) cells obtained from healthy subjects after inhalational exposure to ozone (200 ppb for 4 h) to those of various cell samples from 11 published studies of patients with atherosclerotic disease using the Nextbio genomic data platform. Overlapping gene ontologies that may be involved in the transition from pulmonary to systemic vascular inflammation after ozone inhalation were explored. Local and systemic enzymatic activity of an overlapping upregulated gene, matrix metalloproteinase-9 (MMP-9), was measured by zymography after ozone exposure. A set of differentially expressed genes involved in response to stimulus, stress, and wounding were in common between the ozone and most of the atherosclerosis studies. Many of these genes contribute to biological processes such as cholesterol metabolism dysfunction, increased monocyte adherence, endothelial cell lesions, and matrix remodeling, and to diseases such as heart failure, ischemia, and atherosclerotic occlusive disease. Inhalation of ozone increased MMP-9 enzymatic activity in both BAL fluid and serum. Comparison of transcriptomics between BAL cells after ozone exposure and various cell types from patients with atherosclerotic disease reveals commonly regulated processes and potential mechanisms by which ozone inhalation may contribute to progression of pre-existent atherosclerotic lesions.
de Ondarza, José
2017-01-01
Background: Ozone exposure rapidly leads to bacterial death, making ozone an effective disinfectant in food industry and health care arena. However, microbial defenses may moderate this effect and play a role in the effective use of oxidizing agents for disinfection. Serratia marcescens is an opportunistic pathogen, expressing genes differentially during infection of a human host. A better understanding of regulatory systems that control expression of Serratia’s virulence genes and defenses is therefore valuable. Objective: Here, we investigated the role of pigmentation and catalase in Serratia marcescens on survival to ozone exposure. Method: Pigmented and non-pigmented strains of Serratia marcescens were cultured to exponential or stationary phase and exposed to 5 ppm of gaseous ozone for 2.5 – 10 minutes. Survival was calculated via plate counts. Catalase activity was measured photometrically and tolerance to hydrogen peroxide was assayed by disk-diffusion. Results: Exposure of S. marcescens to 5 ppm gaseous ozone kills > 90% of cells within 10 minutes in a time and concentration-dependent manner. Although pigmented Serratia (grown at 28°C) survived ozonation better than unpigmented Serratia (grown at 35°C), non-pigmented mutant strains of Serratia had similar ozone survival rates, catalase activity and H2O2 tolerance as wild type strains. Rather, ozone survival and catalase activity were elevated in 6 hour cultures compared to 48 hour cultures. Conclusion: Our studies did not bear out a role for prodigiosin in ozone survival. Rather, induction of oxidative stress responses during exponential growth increased both catalase activity and ozone survival in both pigmented and unpigmented S. marcescens. PMID:28567147
Lower-free tropospheric ozone dial measurements over Athens, Greece
NASA Astrophysics Data System (ADS)
Mytilinaios, Michail; Papayannis, Alexandros; Tsaknakis, Georgios
2018-04-01
A compact ozone differential absorption lidar (DIAL) was implemented at the Laboratory of Laser Remote Sensing of the National Technical University of Athens (NTUA), in Athens, Greece. The DIAL system is based on a Nd:YAG laser emitting at 266 nm. A high-pressure Raman cell, filled with D2, was used to generate the λON and λOFF laser wavelength pairs (i.e., 266-289 nm and 289-316 nm, respectively) based on the Stimulated Raman Scattering (SRS) effect. The system was run during daytime and nighttime conditions to obtain the vertical profile of tropospheric ozone in the Planetary Boundary Layer (PBL) and the adjacent free troposphere.
Science Accomplishments from a Decade of Aura OMI/MLS Tropospheric Ozone Measurements
NASA Technical Reports Server (NTRS)
Ziemke, Jerald R.; Douglass, Anne R.; Joiner, Joanna; Duncan, Bryan N.; Olsen, Mark A.; Oman, Luke D.; Witte, Jacquelyn C.; Liu, X.; Wargan, K.; Schoeberl, Mark R.;
2014-01-01
Measurements of tropospheric ozone from combined Aura OMI and MLS instruments have yielded a large number of new and important science discoveries over the last decade. These discoveries have generated a much greater understanding of biomass burning, lightning NO, and stratosphere-troposphere exchange sources of tropospheric ozone, ENSO dynamics and photochemistry, intra-seasonal variability-Madden-Julian Oscillation including convective transport, radiative forcing, measuring ozone pollution from space, improvements to ozone retrieval algorithms, and evaluation of chemical-transport and chemistry-climate models. The OMI-MLS measurements have been instrumental in giving us better understanding of the dynamics and chemistry involving tropospheric ozone and the many drivers affecting the troposphere in general. This discussion will provide an overview focusing on our main science results.
Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation.
Cheng, Ya-Ling; Juang, Yu-Chuan; Liao, Guan-Yu; Tsai, Pei-Wen; Ho, Shih-Hsin; Yeh, Kuei-Ling; Chen, Chun-Yen; Chang, Jo-Shu; Liu, Jhy-Chern; Chen, Wen-Ming; Lee, Duu-Jong
2011-01-01
The Scenedesmus obliquus FSP-3, a species with excellent potential for CO(2) capture and lipid production, was harvested using dispersed ozone flotation. While air aeration does not, ozone produces effective solid-liquid separation through flotation. Ozone dose applied for sufficient algal flotation is similar to those used in practical drinking waterworks. The algae removal rate, surface charge, and hydrophobicity of algal cells, and fluorescence characteristics and proteins and polysaccharides contents of algogenic organic matter (AOM) were determined during ozonation. Proteins released from tightly bound AOM are essential to modifying the hydrophobicity of bubble surfaces for easy cell attachment and to forming a top froth layer for collecting floating cells. Humic substances in the suspension scavenge dosed ozone that adversely affects ozone flotation efficiency of algal cells. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Miller, Riley O.; Brown, Dwight D.
1959-01-01
An experimental study shows that 2 percent by weight ozone in oxygen has little effect on overall reactivity for a range of oxidant-fuel weight ratios from 1 to 6. This conclusion is based on characteristic-velocity measurements in 200-pound-thrust chambers at a pressure of 300 pounds per square inch absolute with low-efficiency injectors. The presence of 9 percent ozone in oxygen also did not affect performance in an efficient chamber. Explosions were encountered when equipment or procedure permitted ozone to concentrate locally. These experiments indicate that even small amounts of ozone in oxygen can cause operational problems.
Characterizing the Vertical Processes of Ozone in Colorado's Front Range Using the GSFC Ozone Dial
NASA Technical Reports Server (NTRS)
Sullivan, John T.; McGee, Thomas J.; Hoff, Raymond M.; Sumnicht, Grant; Twigg, Laurence
2015-01-01
Although characterizing the interactions of ozone throughout the entire troposphere are important for health and climate processes, there is a lack of routine measurements of vertical profiles within the United States. In order to monitor this lower ozone more effectively, the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZDIAL) has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Two scientifically interesting ozone episodes are presented that were observed during the 2014 Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER AQ) campaign at Ft. Collins,Colorado.The first case study, occurring between 22-23 July 2014, indicates enhanced concentrations of ozone at Ft. Collins during nighttime hours, which was due to the complex recirculation of ozone within the foothills of the Rocky Mountain region. Although quantifying the ozone increase a loft during recirculation episodes has been historically difficult, results indicate that an increase of 20 -30 ppbv of ozone at the Ft. Collins site has been attributed to this recirculation. The second case, occurring between Aug 4-8th 2014, characterizes a dynamical exchange of ozone between the stratosphere and the troposphere. This case, along with seasonal model parameters from previous years, is used to estimate the stratospheric contribution to the Rocky Mountain region. Results suggest that a large amount of stratospheric air is residing in the troposphere in the summertime near Ft. Collins, CO. The results also indicate that warmer tropopauses are correlated with an increase in stratospheric air below the tropopause in the Rocky Mountain Region.
Sarkar, Abhijit; Singh, Aditya Abha; Agrawal, Shashi Bhushan; Ahmad, Altaf; Rai, Shashi Pandey
2015-05-01
For the past few decades continuous increase in the levels of tropospheric ozone (O3) concentrations is posing to be a threat for agricultural productivity. Two high yielding tropical rice cultivars (Malviya dhan 36 and Shivani) were evaluated against different concentrations of O3 under field conditions. Experimental design included filtered chambers, non-filtered chambers having ambient O3 and 10 and 20ppb elevated O3 above the ambient. Study was conducted to assess differential response if any in induction of antioxidative defense system, genome stability, leaf proteome, yield and quality of the product in both the test cultivars. Superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR) were induced under ambient and elevated levels of O3. Native polyacrylamide gel electrophoresis (PAGE) of SOD, CAT and POD also displayed increased enzymatic activity along with associated alterations in specific isoforms. Ascorbic acid, thiols and phenolics were also stimulated at ambient and elevated O3. Structural alterations in DNA of rice plants due to O3 affecting its genome template stability (GTS) was examined using RAPD technique. 2-D PAGE revealed 25 differential spots in Malviya dhan 36 and 36 spots in Shivani after O3 treatment with reductions in RuBisCO subunits. Reductions in yield and change in the quality of grains were also noticed. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wieser, G.; Emberson, L. D.
It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.
Mesospheric ozone measurements by SAGE II
NASA Technical Reports Server (NTRS)
Chu, D. A.; Cunnold, D. M.
1994-01-01
SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
NASA Astrophysics Data System (ADS)
Fernandez, Rafael Pedro; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso
2017-04-01
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14% when natural VSLBr are considered, in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affect the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by year 2070, and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.
Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo
NASA Technical Reports Server (NTRS)
Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.
1994-01-01
Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.
Richet, Nicolas; Afif, Dany; Huber, Françoise; Pollet, Brigitte; Banvoy, Jacques; El Zein, Rana; Lapierre, Catherine; Dizengremel, Pierre; Perré, Patrick; Cabané, Mireille
2011-01-01
Wood formation in trees is a dynamic process that is strongly affected by environmental factors. However, the impact of ozone on wood is poorly documented. The objective of this study was to assess the effects of ozone on wood formation by focusing on the two major wood components, cellulose and lignin, and analysing any anatomical modifications. Young hybrid poplars (Populus tremula×alba) were cultivated under different ozone concentrations (50, 100, 200, and 300 nl l−1). As upright poplars usually develop tension wood in a non-set pattern, the trees were bent in order to induce tension wood formation on the upper side of the stem and normal or opposite wood on the lower side. Biosynthesis of cellulose and lignin (enzymes and RNA levels), together with cambial growth, decreased in response to ozone exposure. The cellulose to lignin ratio was reduced, suggesting that cellulose biosynthesis was more affected than that of lignin. Tension wood was generally more altered than opposite wood, especially at the anatomical level. Tension wood may be more susceptible to reduced carbon allocation to the stems under ozone exposure. These results suggested a coordinated regulation of cellulose and lignin deposition to sustain mechanical strength under ozone. The modifications of the cellulose to lignin ratio and wood anatomy could allow the tree to maintain radial growth while minimizing carbon cost. PMID:21357770
Sensitivities of NOx transformation and the effects on surface ozone and nitrate
NASA Astrophysics Data System (ADS)
Lei, H.; Wang, J. X. L.
2013-08-01
As precursors for tropospheric ozone and nitrate aerosols, Nitrogen oxides (NOx) in present atmosphere and its transformation in responding to emission and climate perturbations are studied by CAM-Chem model and air quality measurements including National Emission Inventory (NEI), Clean Air Status and Trends Network (CASTNET) and Environmental Protection Agency Air Quality System (EPA AQS). It is found that not only the surface ozone formation but also the nitrate formation is associated with the relative emissions of NOx and volatile organic compounds (VOC). Due to the availability of VOC and associated NOx titration, ozone productions in industrial regions increase in warmer conditions and slightly decrease against NOx emission increase, which is converse to the response in farming region. The decrease or small increase in ozone concentrations over industrial regions result in the responded nitrate increasing rate staying above the increasing rate of NOx emissions. It is indicated that ozone concentration change is more directly affected by changes in climate and precursor emissions, while nitrate concentration change is also affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations on the historical emission and air quality records on typical pollution areas further confirm the conclusion drawn from modeling experiments.
Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere
NASA Astrophysics Data System (ADS)
Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.
2014-04-01
There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.
NASA Astrophysics Data System (ADS)
Chu, Hone-Jay; Lin, Chuan-Yao; Liau, Churn-Jung; Kuo, Yi-Ming
2012-12-01
Kaohsiung City and the suburban region of southwestern Taiwan have suffered from severe air pollution since becoming the largest center of heavy industry in Taiwan. The complex process of ozone (O3) formation and its precursor compounds (the volatile organic compounds (VOCs) and nitrogen oxide (NOx) emissions), accompanied by meteorological conditions, make controlling ozone difficult. Using a decision tree is especially appropriate for analyzing time series data that contain ozone levels and meteorological and explanatory variables for ozone formation. Results show that dominant variables such as temperature, wind speed, VOCs, and NOx can play vital roles in describing ozone variations among observations. That temperature and wind speed are highly correlated with ozone levels indicates that these meteorological conditions largely affect ozone variability. The results also demonstrate that spatial heterogeneity of ozone patterns are in coastal and inland areas caused by sea-land breeze and pollutant sources during high ozone episodes over southwestern Taiwan. This study used a decision tree to obtain quantitative insight into spatial distributions of precursor compound emissions and effects of meteorological conditions on ozone levels that are useful for refining monitoring plans and developing management strategies.
Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.
Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V
2014-02-06
The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Situ, S.; Guenther, Alex B.; Wang, X. J.
In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions onmore » surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.« less
Xue, Jinkai; Zhang, Yanyan; Liu, Yang; Gamal El-Din, Mohamed
2016-11-01
Batch experiments were performed to evaluate biodegradation of raw and ozonated oil sands process-affected water (OSPW) under denitrifying anoxic and nitrifying aerobic conditions for 33 days. The results showed both the anoxic and aerobic conditions are effective in degrading OSPW classical and oxidized naphthenic acids (NAs) with the aerobic conditions demonstrating higher removal efficiency. The reactors under nitrifying aerobic condition reduced the total classical NAs of raw OSPW by 69.1 %, with better efficiency for species of higher hydrophobicity. Compared with conventional aerobic reactor, nitrifying aerobic condition substantially shortened the NA degradation half-life to 16 days. The mild-dose ozonation remarkably accelerated the subsequent aerobic biodegradation of classical NAs within the first 14 days, especially for those with long carbon chains. Moreover, the ozone pretreatment enhanced the biological removal of OSPW classical NAs by leaving a considerably lower final residual concentration of 10.4 mg/L under anoxic conditions, and 5.7 mg/L under aerobic conditions. The combination of ozonation and nitrifying aerobic biodegradation removed total classical NAs by 76.5 % and total oxy-NAs (O3-O6) by 23.6 %. 454 Pyrosequencing revealed that microbial species capable of degrading recalcitrant hydrocarbons were dominant in all reactors. The most abundant genus in the raw and ozonated anoxic reactors was Thauera (~56 % in the raw OSPW anoxic reactor, and ~65 % in the ozonated OSPW anoxic reactor); whereas Rhodanobacter (~40 %) and Pseudomonas (~40 %) dominated the raw and ozonated aerobic reactors, respectively. Therefore, the combination of mild-dose ozone pretreatment and subsequent biological process could be a competent choice for OSPW treatment.
Impact of climate change on ozone-related mortality and morbidity in Europe.
Orru, Hans; Andersson, Camilla; Ebi, Kristie L; Langner, Joakim; Aström, Christofer; Forsberg, Bertil
2013-02-01
Ozone is a highly oxidative pollutant formed from precursors in the presence of sunlight, associated with respiratory morbidity and mortality. All else being equal, concentrations of ground-level ozone are expected to increase due to climate change. Ozone-related health impacts under a changing climate are projected using emission scenarios, models and epidemiological data. European ozone concentrations are modelled with the model of atmospheric transport and chemistry (MATCH)-RCA3 (50×50 km). Projections from two climate models, ECHAM4 and HadCM3, are applied under greenhouse gas emission scenarios A2 and A1B, respectively. We applied a European-wide exposure-response function to gridded population data and country-specific baseline mortality and morbidity. Comparing the current situation (1990-2009) with the baseline period (1961-1990), the largest increase in ozone-associated mortality and morbidity due to climate change (4-5%) have occurred in Belgium, Ireland, the Netherlands and the UK. Comparing the baseline period and the future periods (2021-2050 and 2041-2060), much larger increases in ozone-related mortality and morbidity are projected for Belgium, France, Spain and Portugal, with the impact being stronger using the climate projection from ECHAM4 (A2). However, in Nordic and Baltic countries the same magnitude of decrease is projected. The current study suggests that projected effects of climate change on ozone concentrations could differentially influence mortality and morbidity across Europe.
Total Ozone from the Ozone Monitoring System (OMI) using TOMS and DOAS Methods
NASA Technical Reports Server (NTRS)
Veefkind, J. P.; Bhartia, P. K.; Gleason, J.; deHaan, J. F.; Wellemeyer, C.; Levelt, P. F.
2003-01-01
The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to NASA's EOS-Aura satellite scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance in the wavelength range of 270 to 500 nm. The instrument provides near global coverage in one day with a spatial resolution of 13x24 square kilometers. OMI is a new instrument, with a heritage from TOMS, SBW, GOME, GOMOS and SCIAMACHY. OMI'S unique capabilities for measuring important trace gases and aerosols with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will provide data continuity with the 23-year ozone record of TOMS. There are three ozone products planned for OMI: total column ozone, ozone profile and tropospheric column ozone. We are developing two different algorithms for total column ozone: one similar to the algorithm currently being used to process the TOMS data, and the other an improved version of the differential optical absorption spectroscopy (DOAS) method, which has been applied to GOME and SCIAMACHY data. The main reasons for starting with two algorithms for total ozone have to do with heritage and past experience; our long-term goal is to combine the two to develop a more accurate and reliable total ozone product for OMI. We will compare the performance of these two algorithms by applying both of them to the GOME data. We will examine where and how the results differ, and use the extensive TOMS-Dobson comparison studies to assess the performance of the DOAS algorithm.
Breeding of ozone resistant rice: relevance, approaches and challenges.
Frei, Michael
2015-02-01
Tropospheric ozone concentrations have been rising across Asia, and will continue to rise during the 21st century. Ozone affects rice yields through reductions in spikelet number, spikelet fertility, and grain size. Moreover, ozone leads to changes in rice grain and straw quality. Therefore the breeding of ozone tolerant rice varieties is warranted. The mapping of quantitative trait loci (QTL) using bi-parental populations identified several tolerance QTL mitigating symptom formation, grain yield losses, or the degradation of straw quality. A genome-wide association study (GWAS) demonstrated substantial natural genotypic variation in ozone tolerance in rice, and revealed that the genetic architecture of ozone tolerance in rice is dominated by multiple medium and small effect loci. Transgenic approaches targeting tolerance mechanisms such as antioxidant capacity are also discussed. It is concluded that the breeding of ozone tolerant rice can contribute substantially to the global food security, and is feasible using different breeding approaches. Copyright © 2014 Elsevier Ltd. All rights reserved.
Model development for naphthenic acids ozonation process.
Al Jibouri, Ali Kamel H; Wu, Jiangning
2015-02-01
Naphthenic acids (NAs) are toxic constituents of oil sands process-affected water (OSPW) which is generated during the extraction of bitumen from oil sands. NAs consist mainly of carboxylic acids which are generally biorefractory. For the treatment of OSPW, ozonation is a very beneficial method. It can significantly reduce the concentration of NAs and it can also convert NAs from biorefractory to biodegradable. In this study, a factorial design (2(4)) was used for the ozonation of OSPW to study the influences of the operating parameters (ozone concentration, oxygen/ozone flow rate, pH, and mixing) on the removal of a model NAs in a semi-batch reactor. It was found that ozone concentration had the most significant effect on the NAs concentration compared to other parameters. An empirical model was developed to correlate the concentration of NAs with ozone concentration, oxygen/ozone flow rate, and pH. In addition, a theoretical analysis was conducted to gain the insight into the relationship between the removal of NAs and the operating parameters.
Flexible NO(x) abatement from power plants in the eastern United States.
Sun, Lin; Webster, Mort; McGaughey, Gary; McDonald-Buller, Elena C; Thompson, Tammy; Prinn, Ronald; Ellerman, A Denny; Allen, David T
2012-05-15
Emission controls that provide incentives for maximizing reductions in emissions of ozone precursors on days when ozone concentrations are highest have the potential to be cost-effective ozone management strategies. Conventional prescriptive emissions controls or cap-and-trade programs consider all emissions similarly regardless of when they occur, despite the fact that contributions to ozone formation may vary. In contrast, a time-differentiated approach targets emissions reductions on forecasted high ozone days without imposition of additional costs on lower ozone days. This work examines simulations of such dynamic air quality management strategies for NO(x) emissions from electric generating units. Results from a model of day-specific NO(x) pricing applied to the Pennsylvania-New Jersey-Maryland (PJM) portion of the northeastern U.S. electrical grid demonstrate (i) that sufficient flexibility in electricity generation is available to allow power production to be switched from high to low NO(x) emitting facilities, (ii) that the emission price required to induce EGUs to change their strategies for power generation are competitive with other control costs, (iii) that dispatching strategies, which can change the spatial and temporal distribution of emissions, lead to ozone concentration reductions comparable to other control technologies, and (iv) that air quality forecasting is sufficiently accurate to allow EGUs to adapt their power generation strategies.
Ozonation of wastewater: removal and transformation products of drugs of abuse.
Rodayan, Angela; Segura, Pedro Alejandro; Yargeau, Viviane
2014-07-15
In this study amphetamine, methamphetamine, methylenedioxymethamphetamine (MDMA), cocaine (COC), benzoylecgonine (BE), ketamine (KET) and oxycodone (OXY) in wastewater at concentrations of 100 μgL(-1) were subjected to ozone to determine their removals as a function of ozone dose and to identify significant oxidation transformation products (OTPs) produced as a result of ozonation. A method based on high resolution mass spectrometry and differential analysis was used to facilitate and accelerate the identification and structural elucidation of the transformation products. The drug removal ranged from 3 to 50% depending on the complexity of the matrix and whether a mixture or individual drugs were ozonated. Both transient and persistent oxidation transformation products were identified for MDMA, COC and OXY and their chemical formulae were determined. Three possible structures of the persistent transformation product of MDMA (OTP-213) with chemical formula C10H16O4N, were determined based on MS(n) mass spectra and the most plausible structure (OTP-213a) was determined based on the chemistry of ozone. These results indicate that ozone is capable of removing drugs of abuse from wastewater to varying extents and that persistent transformation products are produced as a result of treatment. Copyright © 2013 Elsevier B.V. All rights reserved.
Breaks induced in the deoxyribonucleic acid of aerosolized Escherichia coli by ozonized cyclohexene.
De Mik, G; De Groot, I
1978-01-01
The inactivation of aerosolized Escherichia coli by ozone, cyclohexene, and ozonized cyclohexene was studied. The parameters for damage were loss of reproduction and introduction of breaks in the deoxyribonucleic acid (DNA). Aerosolization of E. coli in clean air at 80 percent relative humidity or in air containing either ozone or cyclohexene hardly affected survival; however, some breaks per DNA molecule were induced, as shown by sucrose gradient sedimentation of the DNA. Aerosolization of E. coli in air containing ozonized cyclohexene at 80 percent relative humidity decreased the survival by a factor of 10(3) or more after 1 h of exposure and induced many breaks in the DNA. PMID:341811
Gretchen C. Smith; John W. Coulston; Barbara M. O' Connell
2008-01-01
In 1994, the Forest Inventory and Analysis (FIA) and Forest Health Monitoring programs of the U.S. Forest Service implemented a national ozone (O3) biomonitoring program designed to address specific questions about the area and percent of forest land subject to levels of O3 pollution that may negatively affect the forest...
Processes Affecting Tropospheric Ozone over Africa
NASA Technical Reports Server (NTRS)
Diab, Roseanne D.; Thompson, Anne M.
2004-01-01
This is a Workshop Report prepared for Eos, the weekly AGU magazine, The workshop took place between 26-28 January 2004 at the University of KwaZulu-Natal in Durban, South Africa and was attended by 26 participants (http//www.geography.und.ac.za). Considerable progress has been made in ozone observations except for northern Africa (large data gaps) and west Africa (to be covered by the French-sponsored AMMA program). The present-day ozone findings were evaluated and reviewed by speakers using Aircraft data (MOZAIC program), NASA satellites (MOPITT, TRMM, TOMS) and ozone soundings (SHADOZ). Besides some ozone gaps, there are challenges posed by the need to assess the relative strengths of photochemical and dynamic influences on the tropospheric ozone budget. Biogenic, biofuels, biomass burning sources of ozone precursors remain highly uncertain. Recent findings (by NASA's Chatfield and Thompson, using satellite and sounding data) show significant impact of Indian Ocean pollution on African ozone. European research on pollutants over the Mediterranean and the middle east, that suggests that ozone may be exported to Africa from these areas, also needs to be considered.
NASA Astrophysics Data System (ADS)
Newchurch, M.; Johnson, M. S.; Leblanc, T.; Langford, A. O.; Senff, C. J.; Kuang, S.; Strawbridge, K. B.; McGee, T. J.; Berkoff, T.; Chen, G.
2017-12-01
The Tropospheric Ozone Lidar Network, TOLNet, has matured into a credible scientific group of six ozone lidars that are capable of accurate, high-spatio-temporal-resolution measurement of tropospheric ozone structures and morphology These lidars have demonstrated their 10% accuracy in several intercomparison campaigns and have participated in several scientific investigations both in small and large instrumentation groups. They have investigated many scientific phenomena including stratosphere-to-troposphere exchange, boundary-layer development, the interaction between the boundary layer and the free troposphere, Front-range-ozone morphology, urban outflow, land/sea interactions, et al. These processes determine the ozone distribution affecting large portions of the population. The TOLNet group is now making significant contributions to the innovation of ozone lidar instrumentation and retrieval techniques. The campaigns proposed over the next few years build on demonstrated capability to address more difficult scientific issues, especially the ozone production potential and distribution from wildfires and prescribed burns. Through scientific cooperation with other ground-based profiling instrumentation, TOLNet is also contributing to the validation of the new measurement capabilities of TEMPO.
NASA Astrophysics Data System (ADS)
Thomasson, A.; Geffroy, S.; Frejafon, E.; Weidauer, D.; Fabian, R.; Godet, Y.; Nominé, M.; Ménard, T.; Rairoux, P.; Moeller, D.; Wolf, J. P.
Continuous mapping of an ozone episode in Paris in June 1999 has been performed using a differential absorption lidar system. The 2D ozone concentration vertical maps recorded over 33 h at the Champ de Mars are compiled in a video clip that gives access to local photochemical dynamics with unprecedented precision. The lidar data are compared over the whole period with point monitors located at 0-, 50-, and 300-m altitudes on the Eiffel Tower. Very good agreement is found when spatial resolution, acquisition time, and required concentration accuracy are optimized. Sensitivity to these parameters for successful intercomparison in urban areas is discussed.
Ashrafuzzaman, Md; Lubna, Farzana Afrose; Holtkamp, Felix; Manning, William J; Kraska, Thorsten; Frei, Michael
2017-11-01
Rising tropospheric ozone concentrations in Asia necessitate the breeding of adapted rice varieties to ensure food security. However, breeding requires field-based evaluation of ample plant material, which can be technically challenging or very costly when using ozone fumigation facilities. The chemical ethylenediurea (EDU) has been proposed for estimating the effects of ozone in large-scale field applications, but controlled experiments investigating constitutive effects on rice or its suitability to detect genotypic differences in ozone tolerance are missing. This study comprised a controlled open top chamber experiment with four treatments (i) control (average ozone concentration 16 ppb), (ii) control with EDU application, (iii) ozone stress (average 77 ppb for 7 h daily throughout the season), and (iv) ozone stress with EDU application. Three contrasting rice genotypes were tested, i.e. the tolerant line L81 and the sensitive Nipponbare and BR28. The ozone treatment had significant negative effects on plant growth (height and tillering), stomatal conductance, SPAD value, spectral reflectance indices such as the normalized difference vegetation index (NDVI), lipid peroxidation, as well as biomass and grain yields. These negative effects were more pronounced in the a priori sensitive varieties, especially the widely grown Bangladeshi variety BR28, which showed grain yield reductions by 37 percent. EDU application had almost no effects on plants in the absence of ozone, but partly mitigated ozone effects on foliar symptoms, lipid peroxidation, SPAD value, stomatal conductance, several spectral reflectance parameters, panicle number, grain yield, and spikelet sterility. EDU responses were more pronounced in sensitive genotypes than in the tolerant L81. In conclusion, EDU had no constitutive effects on rice and partly offset negative ozone effects, especially in sensitive varieties. It can thus be used to diagnose ozone damage in field grown rice and for distinguishing tolerant (less EDU-responsive) and sensitive (more EDU-responsive) genotypes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
NASA Astrophysics Data System (ADS)
Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso
2017-02-01
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ˜ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.
NASA Technical Reports Server (NTRS)
Chen, Songsheng; Storm, Mark E.; Marsh, Waverly D.; Petway, Larry B.; Edwards, William C.; Barnes, James C.
2000-01-01
A compact and high-pulse-energy Ti:Sapphire laser with its Third Harmonic Generation (THG) has been developed for an airborne ozone differential absorption lidar (DIAL) to study the distributions and concentrations of the ozone throughout the troposphere. The Ti:Sapphire laser, pumped by a frequency-doubled Nd:YAG laser and seeded by a single mode diode laser, is operated either at 867 nm or at 900 nm with a pulse repetition frequency of 20 Hz. High energy laser pulses (more than 110 mJ/pulse) at 867 nm or 900 nm with a desired beam quality have been achieved and utilized to generate its third harmonic at 289nm or 300nm, which are on-line and off-line wavelengths of an airborne ozone DIAL. After being experimentally compared with Beta-Barium Borate (beta - BaB2O4 or BBO) nonlinear crystals, two Lithium Triborate (LBO) crystals (5 x 5 x 20 cu mm) are selected for the Third Harmonic Generation (THG). In this paper, we report the Ti:Sapphire laser at 900 nm and its third harmonic at 300 nm. The desired high ultraviolet (UV) output pulse energy is more than 30 mJ at 300 nm and the energy conversion efficiency from 900 nm to 300 nm is 30%.
Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala
2016-05-01
Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.
Lidar stratospheric ozone measurements at the observatoire de Haute Provence (France)
NASA Technical Reports Server (NTRS)
Godin, S.; Pelon, J.; Megie, G.
1986-01-01
Strastospheric ozone monitoring is of particular importance to confirm present day theories predicting a maximal ozone depletion, due to chlorofluorocarbon emission, in the 35 to 45 km altitude range. Measurements presently rely on both ground based and satellite-borne passive experiments. Such systems have been recently shown to have intrinsic limitations mainly due to atmospheric aerosol presence and calibration problems. During the last few years, active lidar profiling of the ozone vertical distribution by the Differential Absorption Laser technique (DIAL) in the UV wavelength range has been developed using two different laser sources: a Nd-YAG pumped dye laser which enables a large tuning range of the UV emitted wavelengths; and exciplex laser sources using xenon chloride as an active medium and emitting at 308 nm, the off wavelength being usually generated by Raman shifting techniques. Advantages and limitations of using both of these systems are briefly discussed.
The multispecies modeling of the premixed, laminar steady-state ozone flame
NASA Technical Reports Server (NTRS)
Heimerl, J. M.; Coffee, T. P.
1980-01-01
Species dependent kinetic, transport and thermodynamic coefficients were employed in a one dimensional model of the premixed, laminar, steady state ozone flame. Convenient expressions for these coefficients are reported. They are based on independent measurements, no arbitrary parameters are used. The governing equations are solved using a relaxation technique and the partial differential equation package, PDECOL. Species and temperature profiles and the burning velocities are found over the range of initial ozone mole fraction of 0.25 to 1.00. The computed burning velocities are no more than 30% greater than the measurements of Streng and Grosses. Comparison with the computed results of Warnatz shows agreement within + or - 12%, even though quite different expressions for some of the kinetic coefficients were used. These differences are most obvious in the atomic oxygen and temperature profiles at an initial ozone mole fraction of unity.
Surface ozone measurements in the southwest of the Iberian Peninsula (Huelva, Spain).
Carnero, Jose A Adame; Bolívar, Juan P; de la Morena, Benito A
2010-02-01
Photochemical ozone pollution of the lower troposphere (LT) is a very complex process involving meteorological, topographic emissions and chemical parameters. Ozone is considered the most important air pollutant in rural, suburban and industrial areas of many sites in the world since it strongly affects human health, vegetation and forest ecosystems, and its increase during the last decades has been significant. In addition, ozone is a greenhouse gas that contributes to climate change. For these reasons, it is necessary to carry out investigations that determine the behaviour of ozone at different locations. The aim of this work is to understand the levels and temporal variations of surface ozone in an industrial-urban region of the Southwest Iberian Peninsula. The study is based on ozone hourly data recorded during a 6-year period, 2000 to 2005 at four stations and meteorological data from a coastal station. The stations used were El Arenosillo and Cartaya--both coastal stations, Huelva--an urban site and Valverde--an inland station 50 km away from the coastline. The general characteristics of the ozone series, seasonal and daily ozone cycles as well as number of exceedances of the threshold established in the European Ozone Directive have been calculated and analysed. Analysis of the meteorological data shows that winter-autumn seasons are governed by the movement of synoptic weather systems; however, in the spring-summer seasons, both synoptic and mesoescale conditions exist. Average hourly ozone concentrations range from 78.5 +/- 0.1 microg m(-3) at Valverde to 57.8 +/- 0.2 microg m(-3) at Huelva. Ozone concentrations present a seasonal variability with higher values in summer months, while in wintertime, lower values are recorded. A seasonal daily evolution has also been found with minimum levels around 08:00 UTC, which occurs approximately 1-1.5 h after sunrise, whereas the maximum is reached at about 16:00 UTC. Furthermore, during summer, the maximum value at El Arenosillo and Valverde stations remains very uniformed until 20:00 UTC. These levels could be due to the photochemical production in situ and also to the horizontal and vertical ozone transport at El Arenosillo from the reservoir layers in the sea and in the case of Valverde, the horizontal transport, thanks to the marine breeze. Finally, the data have been evaluated relative to the thresholds defined in the European Ozone Directive. The threshold to protect human health has been exceeded during the spring and summer months mainly at El Arenosillo and Valverde. The vegetation threshold has also been frequently exceeded, ranging from 131 days at Cartaya up to 266 days at Valverde. The results in the seasonal and daily variations demonstrate that El Arenosillo and Valverde stations show higher ozone concentrations than Cartaya and Huelva during the spring and summer months. Under meteorological conditions characterized by land-sea breeze circulation, the daytime sea breeze transports the emissions from urban and industrial sources in the SW further inland. Under this condition, the area located downwind to the NE is affected very easily by high ozone concentrations, which is the case for the Valverde station. Nevertheless, according to this circulation model, the El Arenosillo station located at the coast SE from these sources is not directly affected by their emissions. The ozone concentrations observed at El Arenosillo can be explained by the ozone residual layer over the sea, similar to other coastal sites in the Mediterranean basin. The temporal variations of the ozone concentrations have been studied at four measurement sites in the southwest of the Iberian Peninsula. The results obtained point out that industrial and urban emissions combined with specific meteorological conditions in spring and summer cause high ozone levels which exceed the recommended threshold limits and could affect the vegetation and human health in this area. This work is the first investigation related to surface ozone in this region; therefore, the results obtained may be a useful tool to air quality managers and policy-makers to apply possible air control strategies towards a reduction of ozone exceedances and the impact on human health and vegetation. Due to the levels, variability and underlying boundary layer dynamics, it is necessary to extend this research in this geographical area with the purpose of improving the understanding of photochemical air pollution in the Western Mediterranean Basin and in the south of the Iberian Peninsula.
NASA Astrophysics Data System (ADS)
Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.
2015-12-01
Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.
NASA Astrophysics Data System (ADS)
Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.
2009-04-01
Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).
S-Nitroso-Proteome in Poplar Leaves in Response to Acute Ozone Stress
Vanzo, Elisa; Ghirardo, Andrea; Merl-Pham, Juliane; Lindermayr, Christian; Heller, Werner; Hauck, Stefanie M.; Durner, Jörg; Schnitzler, Jörg-Peter
2014-01-01
Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = −3.6) and caffeic acid O-methyltransferase (−3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure. PMID:25192423
Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.
Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena
2015-05-06
Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.
Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber.
Rai, A C; Guo, B; Lin, C-H; Zhang, J; Pei, J; Chen, Q
2014-02-01
Human health is adversely affected by ozone and the volatile organic compounds (VOCs) produced from its reactions in the indoor environment. Hence, it is important to characterize the ozone-initiated reactive chemistry under indoor conditions and study the influence of different factors on these reactions. This investigation studied the ozone reactions with clothing through a series of experiments conducted in an environmental chamber under various conditions. The study found that the ozone reactions with a soiled (human-worn) T-shirt consumed ozone and generated VOCs. The ozone removal rate and deposition velocity for the T-shirt increased with the increasing soiling level and air change rate, decreased at high ozone concentrations, and were relatively unaffected by the humidity. The deposition velocity for the soiled T-shirt ranged from 0.15 to 0.29 cm/s. The ozone-initiated VOC emissions included C6-C10 straight-chain saturated aldehydes, acetone, and 4-OPA (4-oxopentanal). The VOC emissions were generally higher at higher ozone, humidity, soiling of T-shirt, and air change rate. The total molar yield was approximately 0.5 in most cases, which means that for every two moles of ozone removed by the T-shirt surface, one mole of VOCs was produced. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Solar mesosphere explorer: Experiment description
NASA Technical Reports Server (NTRS)
1977-01-01
The Solar Mesosphere Explorer (SME) satellite experiments will provide a comprehensive study of atmospheric ozone and the processes which form and destroy it. Five instruments to be carried on the spacecraft will measure the ozone density and altitude distribution, monitor the incoming solar radiation, and measure other atmospheric constituents which affect ozone. The investigative approach concept, methods and procedures, preflight studies, and orbits and mission lifetime are presented. Descriptions of the instruments are also presented.
A Novel Gene, OZONE-RESPONSIVE APOPLASTIC PROTEIN1, Enhances Cell Death in Ozone Stress in Rice1
Ueda, Yoshiaki; Siddique, Shahid; Frei, Michael
2015-01-01
A novel protein, OZONE-RESPONSIVE APOPLASTIC PROTEIN1 (OsORAP1), was characterized, which was previously suggested as a candidate gene underlying OzT9, a quantitative trait locus for ozone stress tolerance in rice (Oryza sativa). The sequence of OsORAP1 was similar to that of ASCORBATE OXIDASE (AO) proteins. It was localized in the apoplast, as shown by transient expression of an OsORAP1/green fluorescent protein fusion construct in Nicotiana benthamiana leaf epidermal and mesophyll cells, but did not possess AO activity, as shown by heterologous expression of OsORAP1 in Arabidopsis (Arabidopsis thaliana) mutants with reduced background AO activity. A knockout rice line of OsORAP1 showed enhanced tolerance to ozone stress (120 nL L−1 average daytime concentration, 20 d), as demonstrated by less formation of leaf visible symptoms (i.e. cell death), less lipid peroxidation, and lower NADPH oxidase activity, indicating reduced active production of reactive oxygen species. In contrast, the effect of ozone on chlorophyll content was not significantly different among the lines. These observations suggested that OsORAP1 specifically induced cell death in ozone stress. Significantly enhanced expression of jasmonic acid-responsive genes in the knockout line implied the involvement of the jasmonic acid pathway in symptom mitigation. Sequence analysis revealed extensive polymorphisms in the promoter region of OsORAP1 between the ozone-susceptible cv Nipponbare and the ozone-tolerant cv Kasalath, the OzT9 donor variety, which could be responsible for the differential regulation of OsORAP1 reported earlier. These pieces of evidence suggested that OsORAP1 enhanced cell death in ozone stress, and its expression levels could explain the effect of a previously reported quantitative trait locus. PMID:26220952
The use of visible-channel data from NOAA satellites to measure total ozone amount over Antarctica
NASA Technical Reports Server (NTRS)
Boime, Robert D.; Warren, Steven G.; Gruber, Arnold
1994-01-01
Accurate, detailed maps of total ozone were not available until the launch of the Total Ozone Mapping Spectrometer (TOMS) in late 1978. However, the Scanning Radiometer (SR), an instrument on board the NOAA series satellites during the 1970s, had a visible channel that overlapped closely with the Chappuis absorption band of ozone. We are investigating whether data from the SR can be used to map Antarctic ozone prior to 1978. The method is being developed with 1980s data from the Advanced Very High Resolution Radiometer (AVHRR), which succeeded the SR on the NOAA polar-orbiting satellites. Visible-derived total ozone maps can then be compared able on the NOAA satellites, which precludes the use of a differential absorption technique to measure ozone. Consequently, our method works exclusively over scenes whose albedos are large and unvarying, i.e. scenes that contain ice sheets and/or uniform cloud-cover. Initial comparisons of time series for October-December 1987 at locations in East Antarctica show that the visible absorption by ozone in measurable and that the technique may be usable for the 1970s, but with much less accuracy than TOMS. This initial test assumes that clouds, snow, and ice all reflect the same percentage of visible light towards the satellite, regardless of satellite position or environmental conditions. This assumption is our greatest source of error. To improve the accuracy of ozone retrievals, realistic anisotropic reflectance factors are needed, which are strongly influenced by cloud and snow surface features.
NASA Astrophysics Data System (ADS)
Miller, S. K.; Thompson, A. M.; Witte, J. C.; Balashov, N. V.; Kollonige, D. E.
2012-12-01
The more than 5000 sets of ozone and P-T-U profiles provided for the tropics and subtropics by the Southern Hemisphere Additional Ozonesondes (SHADOZ) since 1998 have provided a wealth of insights into convective and mixing processes, especially in the upper troposphere through lower stratosphere. The observations have been used in evaluations of satellite ozone and chemical-transport and climate-chemistry models. Recently, we analyzed a climatology of ozone profiles based on the 2005-2009 SHADOZ data when 4 new stations joined the network (15 stations total), giving latitudinal coverage from 25S to 21N. We answer the following questions: How do ozone distributions at two new subtropical stations, Hanoi and Hilo in the northern hemisphere, compare to those at the southern subtropical stations, Irene and La Réunion? Are there better-defined regional classifications of tropospheric and tropopause transition layer (TTL) SHADOZ ozone profiles in the tropics, defined as within + 18 degrees latitude, than the Atlantic-Pacific differentiation identified in published studies with 1998-2004 SHADOZ data? Three distinct regions of the tropics are identified based on the criteria: ozone structure in the TTL; convective influence inferred from laminar identification (LID) of ozone and potential temperature; degree of pollution in the free troposphere (FT). These are: (1) western Pacific/eastern Indian Ocean; (2) equatorial Americas (San Cristóbal, Alajuela, Paramaribo); (3) Atlantic Ocean and Africa. In addition, we have re-examined potential trends in FT and TTL ozone at several SHADOZ stations for which data extend back to the early 1990s.
NASA Technical Reports Server (NTRS)
Leblanc, T.; McDermid, I. S.
2000-01-01
Using more than 1600 nighttime profiles obtained by the JPL differential absorption lidars (DIAL) located at Table Mountain Facility (TMF, 34.4 N) and Mauna Loa Observatory (MLO, 19.5 N) is presented in this paper. These two systems have been providing high-resolution vertical profiles of ozone number density between 15-50 km, several nights a week since 1989 (TMF) and 1993 (MLO). The climatology presented here is typical of early night ozone values with only a small influence of the Pinatubo aerosols and the 11-year solar cycle. The observed seasonal and vertical structure of the ozone concentration at TMF is consistent with that typical of mid- to subtropical latitudes. A clear annual cycle in opposite phase below and above the ozone concentration peak is observed. The observed winter maximum below the ozone peak is associated with a maximum day-to-day variability, typical of a dynamically driven lower stratosphere. The maximum concentration observed in summer above the ozone peak emphasizes the more dominant role of photochemistry. Unlike TMF, the ozone concentration observed at MLO tends to be higher during the summer months and lower during the winter months throughout the entire stratospheric ozone layer. Only a weak signature of the extra-tropical latitudes is observed near 19-20 km, with a secondary maximum in late winter. The only large variability observed at MLO is associated with the natural variability of the tropical tropopause.
Long Acting β2 Adrenergic Potentiates Ozone-Induced Lung Injury and Inflammation
Ozone (O3), a ubiquitous air pollutant, disproportionately affects asthmatics. We have shown that O3-induced lung injury and inflammation are associated with increased circulating epinephrine and corticosterone, and inhibiting β adrenergic receptors (AR) and glucocor...
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Rabenhorst, S. D.; Delgado, R.; Dreessen, J.; Sumnicht, G. K.; Twigg, L.
2016-12-01
A unique multi-day air quality event occurred throughout the Mid-Atlantic region from June 9-12, 2015. The June event was coupled to the advection of widespread smoke and debris from western Canada throughout the region. Observations indicated that the aged smoke impacted the Planetary Boundary Layer (PBL) and greatly enhanced ozone concentrations at the surface. Many ground sites in the region, particularly in Maryland, recorded 8-hr ozone concentrations that were in exceedance of the 75 ppb EPA National Ambient Air Quality Standard (NAAQS). After the high O3 episode occurred, a nocturnal low-level jet developed throughout the Mid-Atlantic region, which was spatially correlated with next day high O3 at several sites within the New England region. During this event, nearly continuous vertical profiles of ozone are presented at Beltsville, MD from the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL), which has been developed and validated within the Tropospheric Ozone Lidar Network (TOLNet). Lidar observations reveal a well-mixed polluted PBL, nocturnal residual layer, and subsequent mixing down of the residual layer in the morning. Additional measurements of surface ozone, aerosol lidar profiles, wind profiles, and balloon borne profiles are also presented. Model output and trajectory analyses are also presented to illustrate the complex flow regimes that occurred during the daytime and nighttime to help redistribute the polluted air mass.
Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System
NASA Technical Reports Server (NTRS)
Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady
1997-01-01
Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McConnell, Michael S., E-mail: mmcconn5@nd.edu; Schneider, Louisa C.; Karbasian, Golnaz
This work describes the fabrication of single electron transistors using electron beam lithography and atomic layer deposition to form nanoscale tunnel transparent junctions of alumina (Al{sub 2}O{sub 3}) on platinum nanowires using either water or ozone as the oxygen precursor and trimethylaluminum as the aluminum precursor. Using room temperature, low frequency conductance measurements between the source and drain, it was found that devices fabricated using water had higher conductance than devices fabricated with ozone. Subsequent annealing caused both water- and ozone-based devices to increase in conductance by more than 2 orders of magnitude. Furthermore, comparison of devices at low temperaturesmore » (∼4 K) showed that annealed devices displayed much closer to the ideal behavior (i.e., constant differential conductance) outside of the Coulomb blockade region and that untreated devices showed nonlinear behavior outside of the Coulomb blockade region (i.e., an increase in differential conductance with source-drain voltage bias). Transmission electron microscopy cross-sectional images showed that annealing did not significantly change device geometry, but energy dispersive x-ray spectroscopy showed an unusually large amount of oxygen in the bottom platinum layer. This suggests that the atomic layer deposition process results in the formation of a thin platinum surface oxide, which either decomposes or is reduced during the anneal step, resulting in a tunnel barrier without the in-series native oxide contribution. Furthermore, the difference between ozone- and water-based devices suggests that ozone promotes atomic layer deposition nucleation by oxidizing the surface but that water relies on physisorption of the precursors. To test this theory, devices were exposed to forming gas at room temperature, which also reduces platinum oxide, and a decrease in resistance was observed, as expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Retzlaff, W.A.; Williams, L.E.; DeJong, T.M.
1997-05-01
Nursery stock of plum (Prunus salicina Lindel., cv. Casselman) was planted 1 Apr. 1988 in an experimental orchard at the Univ. of California Kearney Agricultural Center near Fresno, CA. Trees in this study were enclosed in open-top fumigation chambers on 1 May 1989, and exposed to three atmospheric ozone partial pressures (charcoal filtered air, ambient air, and ambient air + ozone) during the 1989 through 1992 growing seasons (typically 1 Apr. - 1 Nov.). A nonchamber treatment plot was used to assess chamber effects on tree performance. This study details the results of the exposures during the initial commercial bearingmore » period (1991 through 1993) in this orchard. The mean 12-h (0800-2000 h Pacific Daylight Time [PDT]) ozone partial pressures during the experimental periods in the charcoal filtered, ambient, ambient + ozone, and nonchamber treatments averaged 0.031, 0.048, 0.091, and 0.056 {mu}Pa Pa{sup {minus}1} in 1991 and 1992, respectively. Fruit number per tree decreased as atmospheric ozone partial pressure increased from the charcoal filtered to ambient + ozone treatment, significantly affecting yield. Yield of plum trees averaged 23.6, 19.8, 13.7, and 17.9 kg tree{sup {minus}1} in 1991 and 1992 in the charcoal filtered, ambient, ambient + ozone, and nonchamber treatments, respectively. Only one out of the five original treatment plots was exposed to ozone treatments during the 1993 growing season. Yield of plum trees in this single replicate in 1993 was reduced by increased atmospheric ozone partial pressure. Yield of plum trees in the four remaining unexposed treatment plots in 1993 was 16.7, 17.9, and 16.0 kg tree{sup {minus}1} in the previous charcoal filtered, ambient, and ambient + ozone treatments respectively. The similarity in yield of the post-chamber treatments indicates that a change in air quality in the current growing season can affect yield of Casselman plum trees. 26 refs., 6 figs., 4 tabs.« less
Genetic dissection of ozone tolerance in rice (Oryza sativa L.) by a genome-wide association study
Ueda, Yoshiaki; Frimpong, Felix; Qi, Yitao; Matthus, Elsa; Wu, Linbo; Höller, Stefanie; Kraska, Thorsten; Frei, Michael
2015-01-01
Tropospheric ozone causes various negative effects on plants and affects the yield and quality of agricultural crops. Here, we report a genome-wide association study (GWAS) in rice (Oryza sativa L.) to determine candidate loci associated with ozone tolerance. A diversity panel consisting of 328 accessions representing all subgroups of O. sativa was exposed to ozone stress at 60 nl l–1 for 7h every day throughout the growth season, or to control conditions. Averaged over all genotypes, ozone significantly affected biomass-related traits (plant height –1.0%, shoot dry weight –15.9%, tiller number –8.3%, grain weight –9.3%, total panicle weight –19.7%, single panicle weight –5.5%) and biochemical/physiological traits (symptom formation, SPAD value –4.4%, foliar lignin content +3.4%). A wide range of genotypic variance in response to ozone stress were observed in all phenotypes. Association mapping based on more than 30 000 single-nucleotide polymorphism (SNP) markers yielded 16 significant markers throughout the genome by applying a significance threshold of P<0.0001. Furthermore, by determining linkage disequilibrium blocks associated with significant SNPs, we gained a total of 195 candidate genes for these traits. The following sequence analysis revealed a number of novel polymorphisms in two candidate genes for the formation of visible leaf symptoms, a RING and an EREBP gene, both of which are involved in cell death and stress defence reactions. This study demonstrated substantial natural variation of responses to ozone in rice and the possibility of using GWAS in elucidating the genetic factors underlying ozone tolerance. PMID:25371505
Scientific Assessment of Stratospheric Ozone: 1989, volume 2. Appendix: AFEAS Report
NASA Technical Reports Server (NTRS)
1990-01-01
The results are presented of the Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), which was organized to evaluate the potential effects on the environment of alternate compounds targeted to replace fully halogenated chlorofluorocarbons (CFCs). All relevant current scientific information to determine the environmental acceptability of the alternative fluorocarbons. Special emphasis was placed on: the potential of the compounds to affect stratospheric ozone; their potential to affect tropospheric ozone; their potential to contribute to model calculated global warming; the atmospheric degradation mechanisms of the compounds, in order to identify their products; and the potential environmental effects of the decomposition products. The alternative compounds to be studied were hydrofluorocarbons (HFCs) with one or two carbon atoms and one or more each of fluorine and hydrogen.
Jung, Youmi; Yoon, Yeojoon; Hong, Eunkyung; Kwon, Minhwan; Kang, Joon-Wun
2013-07-15
Since ballast water affects the ocean ecosystem, the International Maritime Organization (IMO) sets a standard for ballast water management and might impose much tighter regulations in the future. The aim of this study is to evaluate the inactivation efficiency of ozonation, electrolysis, and an ozonation-electrolysis combined process, using B. subtilis spores. In seawater ozonation, HOBr is the key active substance for inactivation, because of rapid reactivity of ozone with Br(-) in seawater. In seawater electrolysis, it is also HOBr, but not HOCl, because of the rapid reaction of HOCl with Br(-), which has not been recognized carefully, even though many electrolysis technologies have been approved by the IMO. Inactivation pattern was different in ozonation and electrolysis, which has some limitations with the tailing or lag-phase, respectively. However, each deficiency can be overcome with a combined process, which is most effective as a sequential application of ozonation followed by electrolysis. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Holdeman, J. D.
1979-01-01
Three analytical problems in estimating the frequency at which commercial airline flights will encounter high cabin ozone levels are formulated and solved: namely, estimating flight-segment mean levels, estimating maximum-per-flight levels, and estimating the maximum average level over a specified flight interval. For each problem, solution procedures are given for different levels of input information - from complete cabin ozone data, which provides a direct solution, to limited ozone information, such as ambient ozone means and standard deviations, with which several assumptions are necessary to obtain the required estimates. Each procedure is illustrated by an example case calculation that uses simultaneous cabin and ambient ozone data obtained by the NASA Global Atmospheric Sampling Program. Critical assumptions are discussed and evaluated, and the several solutions for each problem are compared. Example calculations are also performed to illustrate how variations in lattitude, altitude, season, retention ratio, flight duration, and cabin ozone limits affect the estimated probabilities.
NASA Astrophysics Data System (ADS)
Granados-Muñoz, Maria Jose; Johnson, Matthew S.; Leblanc, Thierry
2017-06-01
The impact of the North American (NA) monsoon on tropospheric ozone variability in Southern California is investigated using lidar measurements at Jet Propulsion Laboratory-Table Mountain Facility, California, and the chemical-transport model GEOS-Chem. Routine lidar observations obtained in July-August 2013-2014 reveal a consistent ozone enhancement of 23 ppbv in the free troposphere (6-9 km), when ozone-rich air is transported along the western edge of the upper level anticyclone associated with the NA monsoon from regions where maximum lightning-induced NOx production occurs. When the high-pressure system shifts to the southeast, a zonal westerly flow of the air parcels reaching the Table Mountain Facility (TMF) occurs, prohibiting the lightning-induced ozone enhanced air to reach TMF. This modulation of tropospheric ozone by the position of the NA monsoon anticyclone could have implications on long-term ozone trends associated with our changing climate, due to the expected widening of the tropical belt affecting the strength and position of the anticyclone.
Attempts to probe the ozone layer and the ultraviolet-B levels of the past.
Björn, Lars Olof; McKenzie, Richard L
2007-07-01
To get a proper perspective on the current status of atmospheric ozone, which protects the biosphere from ultraviolet-B (UV-B; 280-315 nm) radiation, it would be of value to know how ozone and UV-B radiation have varied in the past. The record of worldwide ozone monitoring goes back only a few decades, and the record of reliable UV-B measurements is even shorter. Here we review indirect methods to assess their status further back in time. These include variations in the Sun's emission and how these affect the atmosphere, changes in the Earth's orbit, geologic imprints of atmospheric ozone, effects of catastrophic events such as volcanic eruptions, biological proxies of UV-B radiation, the spectral signature of terrestrial ozone in old recordings of star spectra, and the modeling of UV-B irradiance from ozone data and meteorological recordings. Although reliable reconstructions do not yet extend far into the past, there is some hope for future progress.
NASA Astrophysics Data System (ADS)
Bauguitte, S. J.; Brough, N.; Frey, M. M.; Jones, A. E.; Roscoe, H. K.; Wolff, E. W.
2009-12-01
Concentrations of surface ozone over polar regions cannot be derived from satellite data so can only be studied from ground-based platforms. To understand the regional picture a carefully-designed network of ground-based monitors is required. Here we report on a network of 10 autonomous ozone monitors that was established around the Weddell Sea sector of coastal Antarctica with a transect up onto the Antarctic Plateau during the International Polar Year. The aim was to measure for a full year, thus gaining a much-improved broader view of boundary layer ozone seasonality at different locations as well as on factors affecting the budget of surface ozone in Antarctica. Of specific interest were the balance between halogen-driven destruction and photochemical production from snow-emitted precursors, as well as the spatial extent of ozone depletion events. Each ozone monitor measured successfully within its predefined duty cycle throughout the year, with some differences in performance dependent on power availability. Here we present technical information and first results from the network.
NASA Astrophysics Data System (ADS)
Polvani, L. M.; Wang, L.; Aquila, V.; Waugh, D.
2016-12-01
The impact of ozone depleting substances on global lower stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower stratospheric temperature trends has proven more challenging. While the tropical lower stratospheric cooling observed from 1979 to 1997 has also been shown to result almost entirely from ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979-1997 tropical ozone trends are believed to originate from enhanced upwelling which, it is often stated, would be driven by increasing concentrations of well mixed greenhouse gases. In this study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, we argue that ozone depleting substances, not well mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone depleting substances affect tropical upwelling and the entire Brewer-Dobson circulation.
Ozone reaction with clothing and its initiated particle generation in an environmental chamber
NASA Astrophysics Data System (ADS)
Rai, Aakash C.; Guo, Bing; Lin, Chao-Hsin; Zhang, Jianshun; Pei, Jingjing; Chen, Qingyan
2013-10-01
Ozone-initiated chemistry in indoor air can produce sub-micron particles, which are potentially harmful for human health. Occupants in indoor spaces constitute potential sites for particle generation through ozone reactions with human skin and clothing. This investigation conducted chamber experiments to examine particle generation from ozone reactions with clothing (a T-shirt) under different indoor conditions. We studied the effect of various factors such as ozone concentration, relative humidity, soiling levels of T-shirt with human skin oils, and air change rate on particle generation. The results showed that ozone reactions with the T-shirt generated sub-micron particles, which were enhanced by the soiling of the T-shirt with human skin oils. In these reactions, a burst of ultrafine particles was observed about one hour after ozone injection, and then the particles grew to larger sizes. The particle generation from the ozone reactions with the soiled T-shirt was significantly affected by the different factors studied and these reactions were identified as another potential source for indoor ultrafine particles.
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois; ...
2017-02-03
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less
Differential effects of airway anesthesia on ozone-induced pulmonary responses in human subjects.
Schelegle, E S; Eldridge, M W; Cross, C E; Walby, W F; Adams, W C
2001-04-01
We examined the effect of tetracaine aerosol inhalation, a local anesthetic, on lung volume decrements, rapid shallow breathing, and subjective symptoms of breathing discomfort induced by the acute inhalation of 0.30 ppm ozone for 65 min in 22 ozone-sensitive healthy human subjects. After 50 min of ozone inhalation FEV(1) was reduced 24%, breathing frequency was increased 40%, tidal volume was decreased 31%, and total subjective symptom score was increased (71.2, compared with 3.8 for filtered air exposure). Inhalation of tetracaine aerosol resulted in marked reductions in ozone-induced subjective symptoms of throat tickle and/or irritation (92.1%), cough (78.5%), shortness of breath (72.5%), and pain on deep inspiration (69.4%). In contrast, inhalation of tetracaine aerosol (mass median aerodynamic diameter of 3.52 microm with a geometric standard deviation of 1.92) resulted in only minor and inconsistent rectification of FEV(1) decrements (5.0%) and breathing frequency (-3.8%) that was not significantly different from that produced by saline aerosol alone (FEV(1), 5.1% and breathing frequency, -2.7%). Our data are consistent with afferent endings located within the large conducting airways of the tracheobronchial tree being primarily responsible for ozone-induced subjective symptoms and provides strong evidence that ozone-induced inhibition of maximal inspiratory effort is not dependent on conscious sensations of inspiratory discomfort.
Rapid removal of nitrobenzene in a three-phase ozone loaded system with gas-liquid-liquid
Li, Shiyin; Zhu, Jiangpeng; Wang, Guoxiang; Ni, Lixiao; Zhang, Yong; Green, Christopher T.
2015-01-01
This study explores the removal rate of nitrobenzene (NB) using a new gas-liquid-liquid (G-L-L) three-phase ozone loaded system consisting of a gaseous ozone, an aqueous solvent phase, and a fluorinated solvent phase (perfluorodecalin, or FDC). The removal rate of NB was quantified in relation to six factors including 1) initial pH, 2) initial NB dosage, 3) gaseous ozone dosage, 4) free radical scavenger, 5) FDC pre-aerated gaseous ozone, and 6) reuse of FDC. The NB removal rate is positively affected by the first three factors. Compared with the conventional gas-liquid (water) (G-L) two-phase ozonation system, the free radical scavenger (tertiary butyl alcohol) has much less influence on the removal rate of NB in the G-L-L system. The FDC loaded ozone acts as an ozone reservoir and serves as the main reactive phase in the G-L-L three-phase system. The reuse of FDC has little influence on the removal rate of NB. These experimental results suggest that the oxidation efficiency of ozonation in the G-L-L three-phase system is better than that in the conventional G-L two-phase system.
Understanding ozone response to its precursor emissions is crucial for effective air quality management practices. This nonlinear response is usually simulated using chemical transport models, and the modeling results are affected by uncertainties in emissions inputs. In this stu...
The Role of Ambient Ozone in Epidemiologic Studies of Heat-Related Mortality
Snowden, Jonathan M.; Kontgis, Caitlin; Tager, Ira B.
2012-01-01
Background: A large and growing literature investigating the role of extreme heat on mortality has conceptualized the role of ambient ozone in various ways, sometimes treating it as a confounder, sometimes as an effect modifier, and sometimes as a co-exposure. Thus, there is a lack of consensus about the roles that temperature and ozone together play in causing mortality. Objectives: We applied directed acyclic graphs (DAGs) to the topic of heat-related mortality to graphically represent the subject matter behind the research questions and to provide insight on the analytical options available. Discussion: On the basis of the subject matter encoded in the graphs, we assert that the role of ozone in studies of temperature and mortality is a causal intermediate that is affected by temperature and that can also affect mortality, rather than a confounder. Conclusions: We discuss possible questions of interest implied by this causal structure and propose areas of future work to further clarify the role of air pollutants in epidemiologic studies of extreme temperature. PMID:22899622
[Effect of ozone on membrane fouling in water and wastewater treatment: a research review].
Zhu, Hong-tao; Wen, Xiang-hua; Huang, Xia
2009-01-01
As a high efficient water and wastewater treatment technology, membrane filtration has been mainly used in wastewater treatment as membrane bioreactor, in reclaiming secondary effluent,treating surface water and potable water, and etc. Membrane fouling is a main obstacle to the wide application of membrane technology. Ozone has strong oxidizing power and has been utilized widely in water and wastewater treatment. In recent years, researches on combined process of ozone-membrane filtration are increasing. This paper does reviews and analysis of these researches. It is noticed that there has been a few of researches on the ozone treatment plus MBR process. Pre-ozonation of feed to MBR and slight ozonation of the mixed liquid in MBR may be used to relieve membrane fouling.Combined processes of ozone-membrane filtration can be divided into three classes in terms of the function of ozone and the system configuration: (1) cleaning the fouled membrane with ozone; (2) separate ozone-membrane filtration process; (3) integrated ozone-membrane filtration process. Although most reports supported that ozonation can control membrane fouling development,there were contrary results. At present, researches on the mechanisms of ozone's effect on membrane fouling control concentrated on the change of organic composition of the filtration influent under ozonation, however, particulate substances, microbial and inorganic substances may also be affected and then play roles in membrane fouling, depending on source water quality and process configuration. Moreover, there have not been common parameters to evaluate the ozone diffusion equipment and efficiency. The authors suggest that further researches should emphasize on integrated ozone-membrane process, and more attention should be paid to the cost-effectiveness of the combined process.
Passive ozone network of Dallas: a modeling opportunity with community involvement. 2.
Sather, M E; Varns, J L; Mulik, J D; Glen, G; Smith, L; Stallings, C
2001-11-15
Attaining the current lower tropospheric U.S. ozone standards continues to be a difficult task for many areas in the U.S. Concentrations of ozone above the standards negatively affects human health, agricultural crops, forests, and other ecosystem elements. This paper describes year two (1999) of a regional networking of passive and continuous ozone monitoring sites in the Dallas-Fort Worth (DFW) Metroplex region. The objectives of the second year of study were to (1) validate conclusions of the 1998 Passive Ozone Network of Dallas (POND) I study, (2) define the value of taking 12-h diurnal samples in addition to 24-h samples, and (3) add to the scientific knowledge base of rural/urban ozone comparison studies. Results of the POND II (1999) study demonstrated that ozone concentrations exceeding the new 8-h ozone standard could be recorded at least 130 km, or 80 miles, from the DFW Metroplex core in more rural areas. In addition, results of the POND II study indicated that ozone concentrations exceeding the 8-h standard probably occurred in areas recording a 12-h daytime ozone concentration above 60 parts per billion (ppb). The 12-h passive ozone data from POND II also suggests the relative magnitude of anthropogenic pollution influence could be assessed for rural passive ozone sites. The data from the POND II study provide modelers a rich database for future photochemical subgrid development for the DFW ozone nonattainment area. Indeed, the POND database provides a great amount of additional ozone ambient data covering 26 8-h and 13 1-h ozone standard exceedance days over an approximate 25000 km2 region. These data should help decrease uncertainties derived from future DFW ozone model exercises.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.; Heald, C. L.
2015-12-01
Surface ozone is one of the most significant air pollutants due to its damaging effects not only on human health, but also on vegetation and crop productivity. Chronic ozone exposure has been shown to reduce photosynthesis and interfere with gas exchange in plants, which in turn affect the surface energy balance, carbon sink and other biogeochemical fluxes. Ozone damage on vegetation can thus have major ramifications on climate and atmospheric composition, including possible feedbacks onto ozone itself (see figure) that are not well understood. The damage of ozone on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to ozone-vegetation interaction. Using the Community Earth System Model, we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is modified by -20 to +4 ppbv depending on the relative importance of competing mechanisms in different regions. We also perform a statistical analysis of multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures to characterize the spatial variability of crop sensitivity to ozone and temperature extremes, specifically accounting for the confounding effect of ozone-temperature covariation. We find that several crops exhibit stronger sensitivity to ozone than found by previous field studies, with a strong anticorrelation between the sensitivity and average ozone levels that reflects biological adaptive ozone resistance. Our results show that a more complete understanding of ozone-vegetation interaction is necessary to derive more realistic future projections of climate, air quality and agricultural production, and thereby to formulate optimal strategies to safeguard public health and food security.
NASA Technical Reports Server (NTRS)
Pitari, G.; Palermi, S.; Visconti, G.; Prinn, R. G.
1992-01-01
A spectral 3D model of the stratosphere has been used to study the sensitivity of polar ozone with respect to a carbon dioxide increase. The lower stratospheric cooling associated with an imposed CO2 doubling may increase the probability of polar stratospheric cloud (PSC) formation and this affect ozone. The ozone perturbation obtained with the inclusion of a simple parameterization for heterogeneous chemistry on PSCs is compared to that relative to a pure homogeneous chemistry. In both cases the temperature perturbation is determined by a CO2 doubling, while the total chlorine content is kept at the present level. It is shown that the lower temperature may increase the depth and the extension of the ozone hole by extending the area amenable to PSC formation. It may be argued that this effect, coupled with an increasing amount of chlorine, may produce a positive feedback on the ozone destruction.
NASA Technical Reports Server (NTRS)
DeYoung, Russell J.; Goldschmidt, Soenke
1999-01-01
Measurements of global atmosphere ozone concentrations call for flexible lidar systems that can be operated from an unpiloted atmospheric vehicle (UAV) to reduce the cost of measurement missions. A lidar receiver system consisting of a fiber-optic-coupled telescope has been designed and tested for this purpose. The system weight is 13 kg and its volume of 0.06 m 3 would fit into the payload compartment of a Perseus B UAV. The optical efficiency of the telescope is 37 percent at 288 nm and 64 percent at 300 nm. Atmospheric measurements with a DIAL laser system have been performed, and the measured ozone density has matched the data from ozonesondes to an altitude of 7 km.
The Impact of Increasing Carbon Dioxide on Ozone Recovery
NASA Technical Reports Server (NTRS)
Rosenfield, Joan E.; Douglass, Anne R.; Considine, David B.; Einaudi, Franco (Technical Monitor)
2001-01-01
We have used the GSFC coupled two-dimensional (2D) model to study the impact of increasing carbon dioxide from 1980 to 2050 on the recovery of ozone to its pre-1980 amounts. We find that the changes in temperature and circulation arising from increasing CO2 affect ozone recovery in a manner which varies greatly with latitude, altitude, and time of year. Middle and upper stratospheric ozone recovers faster at all latitudes due to a slowing of the ozone catalytic loss cycles. In the lower stratosphere, the recovery of tropical ozone is delayed due to a decrease in production and a speed up in the overturning circulation. The recovery of high northern latitude lower stratospheric ozone is delayed in spring and summer due to an increase in springtime heterogeneous chemical loss, and is speeded up in fall and winter due to increased downwelling. The net effect on the higher northern latitude column ozone is to slow down the recovery from late March to late July, while making it faster at other times. In the high southern latitudes, the impact of CO2 cooling is negligible. Annual mean column ozone is predicted to recover faster at all latitudes, and globally averaged ozone is predicted to recover approximately ten years faster as a result of increasing CO2.
Zhou, Xiaodong; Zhou, Juan; Wang, Yunxia; Peng, Bin; Zhu, Jianguo; Yang, Lianxin; Wang, Yulong
2015-01-01
Rising tropospheric ozone affects crop yield and quality. Rice protein concentration, which is closely associated with eating/cooking quality, is of critical importance to nutritional quality. The ozone effect on amino acids of rice grains was little known, especially grown under different cultivation conditions. A hybrid rice cultivar Shanyou 63 was grown in 2010 and 2011 to investigate the interactive effect of ozone exposure and planting density on rice protein quality in a free-air ozone enrichment system. The content of protein, total amino acids (TAA), total essential (TEAA) and non-essential amino acids (TNEAA) in rice grain was increased by 12-14% with elevated ozone. A similar significant response to ozone was observed for concentrations of the seven essential and eight non-essential amino acids. In contrast, elevated ozone caused a small but significant decrease in percentage of TEAA to TAA. The year effect was significant for all measured traits; however, interactions of ozone with year or planting density were not detected. The study suggested that season-long elevation of ozone concentration to projected 2050 levels will increase protein and amino acids of Shanyou 63, and crop management such as changing planting density might not alter the impact. © 2014 Society of Chemical Industry.
Factors affecting ozone removal rates in a simulated aircraft cabin environment
NASA Astrophysics Data System (ADS)
Tamás, Gyöngyi; Weschler, Charles J.; Bakó-Biró, Zsolt; Wyon, David P.; Strøm-Tejsen, Peter
Ozone concentrations were measured concurrently inside a simulated aircraft cabin and in the airstream providing ventilation air to the cabin. Ozone decay rates were also measured after cessation of ozone injection into the supply airstream. By systematically varying the presence or absence of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone removal occurring within the cabin and recirculation system; respiration can only have been responsible for about 4% of this removal. The aircraft seats removed about 25% of the ozone; the loaded HEPA filter, 7%; and the other surfaces, 10%. A T-shirt that had been slept in overnight removed roughly 70% as much ozone as a person, indicating the importance of skin oils in ozone removal. The presence of the used HEPA filter in the recirculated airstream reduced the perceived air quality. Over a 5-h period, the overall ozone removal rate by cabin surfaces decreased at ˜3% h -1. With people present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15-0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently remove ozone from the air supply system of an aircraft.
NASA Astrophysics Data System (ADS)
Ran, L.; Zhao, C.; Xu, W.; Geng, F.; Lu, X.; Han, M.; Lin, W.; Xu, X.
2011-12-01
As one of the most widespread and stubborn environmental issues, the ozone problem has been of particular concern for many years, given the potential adverse effects of high ozone concentrations on public health and agricultural productivity. In the past decades, rapid urbanization and industrialization have given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated megacities. Due to the highly nonlinear impacts of ozone precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs) on ozone photochemistry, formation of ozone affected by different precursor emission patterns in those megacities has exhibited different characteristics. A comparative analysis of ozone photochemical production in the megacities of Tianjin and Shanghai has thus been carried out, using the data sets of surface ozone and its precursors measured respectively at an urban and a suburban site of the two megacities during the summertime. Observation-based analysis indicated an elevated ozone daily peak under photochemistry dominant conditions from the urban center to the suburb in both regions, nevertheless bearing different reasons. Ozone production was generally sensitive to VOCs in the Tianjin region, leading to a relatively higher level of ozone in the suburb where reactive VOCs were abundantly released from a number of industrial facilities, whereas a sensitivity of ozone production to NOx was found in Shanghai. The high level of NOx emitted mainly by motor vehicles in urban Shanghai largely inhibited ozone formation and resulted in a much more rapid decrease in ozone concentrations after reaching the daily maximum around midday compared with the other three areas. Ozone pollution in the megacity of Tianjin was more representative of the regional condition, implying that combined efforts would be needed to bring the ozone problem under control within this region. Improved understanding of ozone formation in the two megacities would be quite imperative and critical to provide a solid scientific basis for designing effective ozone control strategies.
NASA Astrophysics Data System (ADS)
Zainuri; Jayaputra; Sauqi, A.; Sjah, T.; Desiana, R. Y.
2018-01-01
Tomato is very important vegetable crop but has short shelf life. The objective of this research was to determine the effect of ozone and packaging combination treatment on the quality and the storage life of tomato fruit. There were six treatments including: control (without ozone and packaging); without ozone and packaged with polyethylene bag; without ozone and polyethylene terephtalate punnet; with ozone but without packaging; with ozone and packaged with polyethylene bag; and with ozone and polyethylene terephtalate punnet. Each treatment was made into 3 replications. Tomato samples were harvested at turning stage. Ozone treatment was applied for 60 seconds. Tomatoes were then treated with and without packaging. The fruit were then stored at room temperature for up to 12 days. The parameters for assessment were water content, color, texture, weight loss and the population of naturally contamination Escherichia coli. Each parameter was assessed on day 0, 6 and 12 of storage. The results indicated that combination of ozone and packaging treatments significantly affected the physical and biochemical changes (water content, color, texture and weight loss) of the fruit, suppressed the microbiological contamination on the fruit and maintained fruit freshness or quality after 12 days of storage. The combination of ozone and perforated polyethylene packaging treatment was the best treatment to maintain the quality and prolonged the shelf life of tomato fruit to be 12 days at room temperature.
On the Climate Impacts of Upper Tropospheric and Lower Stratospheric Ozone
NASA Astrophysics Data System (ADS)
Xia, Yan; Huang, Yi; Hu, Yongyun
2018-01-01
The global warming simulations of the general circulation models (GCMs) are generally performed with different ozone prescriptions. We find that the differences in ozone distribution, especially in the upper tropospheric and lower stratospheric (UTLS) region, account for important model discrepancies shown in the ozone-only historical experiment of the Coupled Model Intercomparison Project Phase 5 (CMIP5). These discrepancies include global high cloud fraction, stratospheric temperature, and stratospheric water vapor. Through a set of experiments conducted by an atmospheric GCM with contrasting UTLS ozone prescriptions, we verify that UTLS ozone not only directly radiatively heats the UTLS region and cools the upper parts of the stratosphere but also strongly influences the high clouds due to its impact on relative humidity and static stability in the UTLS region and the stratospheric water vapor due to its impact on the tropical tropopause temperature. These consequences strongly affect the global mean effective radiative forcing of ozone, as noted in previous studies. Our findings suggest that special attention should be paid to the UTLS ozone when evaluating the climate effects of ozone depletion in the 20th century and recovery in the 21st century. UTLS ozone difference may also be important for understanding the intermodel discrepancy in the climate projections of the CMIP6 GCMs in which either prescribed or interactive ozone is used.
Acute Ozone-Induced Pulmonary and Systemic Metabolic ...
Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (p=0.15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not obser
Acute Ozone-Induced Pulmonary and Systemic Metabolic ...
Acute ozone exposure increases circulating stress hormones and induces peripheral metabolic alterations in animals and humans. We hypothesized that the increase of adrenal-derived stress hormones is necessary for ozone-induced systemic metabolic effects and lung injury. Male Wistar-Kyoto rats (12 week-old) underwent total bilateral adrenalectomy (ADREX), adrenal demedullation (DEMED) or sham surgery (SHEM). After 4 day recovery, rats were exposed to air or ozone (1ppm), 4h/day for 1 or 2 days. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to air-exposed SHAM. Corticosterone levels tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids and branched-chain amino acids tended to increase after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX>DMED). Ozone-mediated decrease in circulating WBC in SHAM was not
Measuring Terrestrial Ozone from Historic Astronomical Spectra
ERIC Educational Resources Information Center
Griffin, Elizabeth
2009-01-01
"Ozone" is a sensitive topic that arouses interest everywhere. Its presence in the stratosphere affects us all, and its threatened reduction would have such dire consequences that it energizes international campaigns, influences the thinking of governments, and activates substantial alterations in the accustomed habits of millions throughout the…
Vinciguerra, Timothy; Bull, Emily; Canty, Timothy; He, Hao; Zalewsky, Eric; Woodman, Michael; Aburn, George; Ehrman, Sheryl; Dickerson, Russell R
2017-03-01
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NO x emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NO x emissions were adjusted to match the lowest NO x rates observed during the ozone seasons (April 1-October 31) of 2005-2012 (Scenario A), where ozone decreased by 3-4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ∼4-7 ppb. NO x emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ∼4-5 ppb. Finally in Scenario D, the impact of additional NO x reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2-4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NO x originates, even if additional capital investments are not made (Scenario A). With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NO x ) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1-2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Hudson, Robert D.
1998-01-01
The well-known wave-one pattern seen in tropical total ozone [Shiotani, 1992; Ziemke et al., 1996, 1998] has been used to develop a modified-residual (MR) method for retrieving time-averaged stratospheric ozone and tropospheric ozone column amount from TOMS (Total Ozone Mapping Spectrometer) over the 14 complete calendar years of Nimbus 7 observations (1979-1992) and from TOMS on the Earth-Probe (1996-present) and ADEOS platforms (1996- 1997). Nine- to sixteen-day averaged tropical tropospheric ozone (TTO) maps, validated with ozonesondes, show a seasonality expected from dynamical and chemical influences. The maps may be viewed on a homepage: http://metosrv2.umd.edu/tropo. Stratospheric column ozone, which is also derived by the modified-residual method, compares well with sondes (to within 6-7 DU) and with stratospheric ozone column derived from other satellites (within 8-10 DU). Validation of the TTO time-series is presently limited to ozonesonde comparisons with Atlantic stations and sites on the adjacent continents (Ascension Island, Natal, Brazil; Brazzaville); for the sounding periods, TTO at all locations agrees with the sonde record to +/-7 DU. TTO time-series and the magnitude of the wave-one pattern show ENSO signals in the strongest El Nifio periods from 1979-1998. From 12degN and 12degS, zonally averaged tropospheric ozone shows no significant trend from 1980-1990. Trends are also not significant during this period in localized regions, e.g. from just west of South America across to southern Africa. This is consistent with the ozonesonde record at Natal, Brazil (the only tropical ozone data publicly available for the 1980's), which shows a not statistically significant increase. The lack of trend in tropospheric ozone agrees with a statistical analysis based on another method for deriving TTO from TOMS, the so-called Convective-Cloud-Differential approach of Ziemke et al. [1998].
McCaw, Zachary; Gladwell, Wesley; Trivedi, Shweta; Bushel, Pierre R.; Kleeberger, Steven R.
2015-01-01
Background Ozone is a highly toxic air pollutant and global health concern. Mechanisms of genetic susceptibility to ozone-induced lung inflammation are not completely understood. We hypothesized that Notch3 and Notch4 are important determinants of susceptibility to ozone-induced lung inflammation. Methods Wild-type (WT), Notch3 (Notch3–/–), and Notch4 (Notch4–/–) knockout mice were exposed to ozone (0.3 ppm) or filtered air for 6–72 hr. Results Relative to air-exposed controls, ozone increased bronchoalveolar lavage fluid (BALF) protein, a marker of lung permeability, in all genotypes, but significantly greater concentrations were found in Notch4–/– compared with WT and Notch3–/– mice. Significantly greater mean numbers of BALF neutrophils were found in Notch3–/– and Notch4–/– mice compared with WT mice after ozone exposure. Expression of whole lung Tnf was significantly increased after ozone in Notch3–/– and Notch4–/– mice, and was significantly greater in Notch3–/– compared with WT mice. Statistical analyses of the transcriptome identified differentially expressed gene networks between WT and knockout mice basally and after ozone, and included Trim30, a member of the inflammasome pathway, and Traf6, an inflammatory signaling member. Conclusions These novel findings are consistent with Notch3 and Notch4 as susceptibility genes for ozone-induced lung injury, and suggest that Notch receptors protect against innate immune inflammation. Citation Verhein KC, McCaw Z, Gladwell W, Trivedi S, Bushel PR, Kleeberger SR. 2015. Novel roles for Notch3 and Notch4 receptors in gene expression and susceptibility to ozone-induced lung inflammation in mice. Environ Health Perspect 123:799–805; http://dx.doi.org/10.1289/ehp.1408852 PMID:25658374
DOE Office of Scientific and Technical Information (OSTI.GOV)
Videla, H.A.; Guiamet, P.S.; Mele, M.F.L. de
1999-11-01
Two aspects of ozone utilization as sole chemical treatment for cooling water demand a better understanding: (a) the effect of dissolved ozone on the corrosion behavior of heat exchanger structural materials and (b) the biocidal action of ozone on bacterial biofilms. To assess the effect of ozone dissolved in synthetic cooling water on the corrosion behavior of different structural materials (stainless steel; 70:30 copper-nickel; aluminum brass and titanium), voltamperometric experiments and corrosion potential vs. time measurements were made at ozone concentrations between 0.1 and 1.2 ppm. Present results show that the passive behavior of stainless steel and titanium is notmore » affected by dissolved ozone whereas copper alloys are susceptible to corrosion in the presence of ozone. To study the biocidal action of various concentrations of dissolved ozone against planktonic and sessile bacteria, liquid cultures and biofilms of Pseudomonas fluorescense, formed on different structural materials, were used at different contact times. The results show that dissolved ozone is an effective biocide for controlling planktonic cells but its effectiveness decreases in the presence of sessile bacteria and the extracellular polymeric matrix of the biofilm. It is suggested that the penetration of ozone through the biofilm depends on the simultaneous diffusion and reaction of the biocide with the biofilm matrix which may exhibit local differences in biomass distribution and hydrodynamic conditions.« less
Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater.
Shin, Minjung; Lee, Hye-Jin; Kim, Min Sik; Park, Noh-Back; Lee, Changha
2017-02-01
The inactivation of C. polykrikoides, a red tide dinoflagellate, by ozonation was investigated in seawater by monitoring numbers of viable and total cells. Parameters affecting the inactivation efficacy of C. polykrikoides such as the ozone dose, initial cell concentration, pH, and temperature were examined. The viable cell number rapidly decreased in the initial stage of the reaction (mostly in 1-2 min), whereas the decrease in total cell number was relatively slow and steady. Increasing ozone dose and decreasing initial cell concentration increased the inactivation efficacy of C. polykrikoides, while increasing pH and temperature decreased the cell inactivation efficacy. The addition of humic acid (a promoter for the ozone decomposition) inhibited the inactivation of C. polykrikoides, whereas bicarbonate ion (an inhibitor for the ozone decomposition) accelerated the C. polykrikoides inactivation. Observations regarding the effects of pH, temperature, humic acid, and bicarbonate ion collectively indicate that the inactivation of C. polykrikoides by ozonation is mainly attributed to oxidative cell damages by molecular ozone, rather than by hydroxyl radical, produced during the ozone decomposition. At high ozone dose (e.g., 5 mg/L), hypobromous acid formed by the reaction of bromide with ozone may partially contribute to cell inactivation. The use of ozone of less than 1 mg/L produced 0.75-2.03 μg/L bromate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Response of mesospheric ozone to the heating of the lower ionosphere by high-power HF radio emission
NASA Astrophysics Data System (ADS)
Kulilov, Yu. Yu.; Frolov, V. L.; Grigor'ev, G. I.; Demkin, V. M.; Komrakov, G. P.; Krasilnokov, A. A.; Ryskin, V. G.
2013-01-01
We detected a decrease in the intensity of microwave radiation at the atmospheric ozone line at a frequency of 110836.04 MHz during ionospheric modification by high-power HF radiowaves radiated by the Sura Ionospheric Heating Facility. The obtained experimental data allowed us to hypothesize that this effect was caused by the fact that mesospheric ozone was affected by internal gravity waves generated in the E region of the ionosphere during its high-power HF radiowave heating.
Ozone and NO2 measurements from Aberystwyth and Lerwick
NASA Technical Reports Server (NTRS)
Bartlett, L. M.; Vaughan, Geraint
1994-01-01
Measurements of the total column of ozone and NO2 were obtained by a SAOZ UV/Visible spectrometer at Aberystwyth (52.4 deg N, 4.1 deg W) and Lerwick (60.1 deg N, 1.2 deg W) during the period March 1991 - April 1992. NO2 measurements show a marked decrease in 1992 compared with 1991, due to the effect of aerosols from Mt. Pinatubo. Ozone measurements appear to have been affected by the aerosols - comparisons with both Dobson and TOMS measurements are presented.
Jianwei Zhang; Marcus Schaub; Jonathan A. Ferdinand; John M. Skelly; Kim C. Steiner; James E. Savage
2010-01-01
We investigated the effect of leaf age on the response of net photosynthesis (A), stomatal conductance (gwv), foliar injury, and leaf nitrogen concentration (NL) to tropospheric ozone (O3) on Prunus serotina seedlings grown in open-plots (AA) and open-top...
Reaction rates of graphite with ozone measured by etch decoration
NASA Technical Reports Server (NTRS)
Hennig, G. R.; Montet, G. L.
1968-01-01
Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.
ERIC Educational Resources Information Center
Wilson, Karla G.
This curriculum unit on the ozone is intended for high school students and contains sections on environmental science and chemistry. It has been structured according to a learning cycle model and contains numerous activities, some of which are in a cooperative learning format. Skills emphasized include laboratory procedures, experimental design,…
Ozone time scale decomposition and trend assessment from surface observations
NASA Astrophysics Data System (ADS)
Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi
2017-04-01
Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological effects, has been developed in order to a) investigate if trends are masked by meteorological variability and b) to understand which part of the observed trends is meteorology driven. By correlating short-term variation of ozone, as obtained from the EEMD, with the corresponding short-term variation of relevant meteorological parameters, we subtract the variation of ozone concentrations that is related to the meteorological effects explained by the GAM. We find that higher frequency meteorological correction reduces further the uncertainty in trend estimation by a small factor. In addition, the seasonal variability of ozone as obtained from the EEMD has been studied in more detail for possible changes in its behavior. A shortening of the seasonal cycle was observed, i.e. reduction of maximum and in-crease of minimum concentration per year, while the occurrence of maximum is shifted to earlier times during a year. In summary, we present a sophisticated and consistent approach for detecting and categorizing trends and meteorological influences on ozone concentrations in long-term measurements across Europe.
Impact of Ozone Radiative Feedbacks on Global Weather Forecasting
NASA Astrophysics Data System (ADS)
Ivanova, I.; de Grandpré, J.; Rochon, Y. J.; Sitwell, M.
2017-12-01
A coupled Chemical Data Assimilation system for ozone is being developed at Environment and Climate Change Canada (ECCC) with the goals to improve the forecasting of UV index and the forecasting of air quality with the Global Environmental Multi-scale (GEM) Model for Air quality and Chemistry (MACH). Furthermore, this system provides an opportunity to evaluate the benefit of ozone assimilation for improving weather forecasting with the ECCC Global Deterministic Prediction System (GDPS) for Numerical Weather Prediction (NWP). The present UV index forecasting system uses a statistical approach for evaluating the impact of ozone in clear-sky and cloudy conditions, and the use of real-time ozone analysis and ozone forecasts is highly desirable. Improving air quality forecasting with GEM-MACH further necessitates the development of integrated dynamical-chemical assimilation system. Upon its completion, real-time ozone analysis and ozone forecasts will also be available for piloting the regional air quality system, and for the computation of ozone heating rates, in replacement of the monthly mean ozone distribution currently used in the GDPS. Experiments with ozone radiative feedbacks were run with the GDPS at 25km resolution and 84 levels with a lid at 0.1 hPa and were initialized with ozone analysis that has assimilated total ozone column from OMI, OMPS, and GOME satellite instruments. The results show that the use of prognostic ozone for the computation of the heating/cooling rates has a significant impact on the temperature distribution throughout the stratosphere and upper troposphere regions. The impact of ozone assimilation is especially significant in the tropopause region, where ozone heating in the infrared wavelengths is important and ozone lifetime is relatively long. The implementation of the ozone radiative feedback in the GDPS requires addressing various issues related to model biases (temperature and humidity) and biases in equilibrium state (ozone mixing ratio, air temperature and overhead column ozone) used for the calculation of the linearized photochemical production and loss of ozone. Furthermore the radiative budget in the tropopause region is strongly affected by water vapor cooling, which impact requires further evaluation for the use in chemically coupled operational NWP systems.
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.; Bhartia, P. K.; Einaudi, Franco (Technical Monitor)
2000-01-01
A new technique denoted cloud slicing has been developed for estimating tropospheric ozone profile information. All previous methods using satellite data were only capable of estimating the total column of ozone in the troposphere. Cloud slicing takes advantage of the opaque property of water vapor clouds to ultraviolet wavelength radiation. Measurements of above-cloud column ozone from the Nimbus 7 total ozone mapping spectrometer (TOMS) instrument are combined together with Nimbus 7 temperature humidity and infrared radiometer (THIR) cloud-top pressure data to derive ozone column amounts in the upper troposphere. In this study tropical TOMS and THIR data for the period 1979-1984 are analyzed. By combining total tropospheric column ozone (denoted TCO) measurements from the convective cloud differential (CCD) method with 100-400 hPa upper tropospheric column ozone amounts from cloud slicing, it is possible to estimate 400-1000 hPa lower tropospheric column ozone and evaluate its spatial and temporal variability. Results for both the upper and lower tropical troposphere show a year-round zonal wavenumber 1 pattern in column ozone with largest amounts in the Atlantic region (up to approx. 15 DU in the 100-400 hPa pressure band and approx. 25-30 DU in the 400-1000 hPa pressure band). Upper tropospheric ozone derived from cloud slicing shows maximum column amounts in the Atlantic region in the June-August and September-November seasons which is similar to the seasonal variability of CCD derived TCO in the region. For the lower troposphere, largest column amounts occur in the September-November season over Brazil in South America and also southern Africa. Localized increases in the tropics in lower tropospheric ozone are found over the northern region of South America around August and off the west coast of equatorial Africa in the March-May season. Time series analysis for several regions in South America and Africa show an anomalous increase in ozone in the lower troposphere around the month of March which is not observed in the upper troposphere. The eastern Pacific indicates weak seasonal variability of upper, lower, and total tropospheric ozone compared to the western Pacific which shows largest TCO amounts in both hemispheres around spring months. Ozone variability in the western Pacific is expected to have greater variability caused by strong convection, pollution and biomass burning, land/sea contrast and monsoon developments.
Raman shifting of KrF laser radiation for tropospheric ozone measurements
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Ismail, Syed
1991-01-01
The differential absorption lidar (DIAL) measurement of tropospheric ozone requires use of high average power UV lasers operating at two appropriate DIAL wavelengths. Laboratory experiments have demonstrated that a KrF excimer laser can be used to generate several wavelengths with good energy conversion efficiencies by stimulated Raman shifting using hydrogen (H2) and deuterium (D2). Computer simulations for an airborne lidar have shown that these laser emissions can be used for the less than 5 percent random error, high resolution measuremment of ozone across the troposphere using the DIAL technique. In the region of strong ozone absorption, laser wavelengths of 277.0 and 291.7 nm were generated using H2 and D2, respectively. In addition, a laser wavelength at 302.0 nm was generated using two cells in series, with the first containing D2 and the second containing H2. The energy conversion efficiency for each wavelength was between 14 and 27 percent.
NASA Technical Reports Server (NTRS)
Rodriguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.
1994-01-01
The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -06%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.
NASA Astrophysics Data System (ADS)
Rodríguez, J. M.; Shia, R.-L.; Ko, M. K. W.; Heisey, C. W.; Weistenstein, D. K.; Miake-Lye, R. C.; Kolb, C. E.
1994-01-01
The deposition altitude of nitrogen oxides and other exhaust species emitted by stratospheric aircraft is a crucial parameter in determining the impact of these emissions on stratospheric ozone. We have utilized a model for the wake of a High-Speed Civil Transport (HSCT) to estimate the enhancements in water and reductions in ozone in these wakes as a function of time. Radiative calculations indicate differential cooling rates as large as -5K/day at the beginning of the far-wake regime, mostly due to the enhanced water abundance. These cooling rates would imply a net sinking of the wakes of about 1.2 km after three days in the limit of no mixing. Calculated mid-latitude column ozone reductions due to emissions from a Mach 2.4 HSCT would then change from about -1% to -0.6%. However, more realistic calculations adopting moderate mixing for the wake reduce the net sinking to less than 0.2 km, making the impact of radiative subsidence negligible.
Neufeld, Howard S; Chappelka, Arthur H; Somers, Greg L; Burkey, Kent O; Davison, Alan W; Finkelstein, Peter L
2006-03-01
The ability of the SPAD-502 chlorophyll meter to quantify chlorophyll amounts in ozone-affected leaves of cutleaf coneflower (Rudbeckia laciniata var. digitata) was assessed in this study. When relatively uninjured leaves were measured (percent leaf area affected by stipple less than 6%), SPAD meter readings were linearly related to total chlorophyll with an adjusted R (2) of 0.84. However, when leaves with foliar injury (characterized as a purple to brownish stipple on the upper leaf surface affecting more than 6% of the leaf area) were added, likelihood ratio tests showed that it was no longer possible to use the same equation to obtain chlorophyll estimations for both classes of leaves. Either an equation with a common slope or a common intercept was necessary. We suspect several factors are involved in altering the calibration of the SPAD meter for measuring chlorophyll amounts in visibly ozone-injured leaves, with the most likely being changes in either light absorption or scattering resulting from tissue necrosis.
[Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].
Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng
2013-04-01
The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.
Natural zeolite reactivity towards ozone: the role of compensating cations.
Valdés, Héctor; Alejandro, Serguei; Zaror, Claudio A
2012-08-15
Among indoor pollutants, ozone is recognised to pose a threat to human health. Recently, low cost natural zeolites have been applied as alternative materials for ozone abatement. In this work, the effect of compensating cation content of natural zeolite on ozone removal is studied. A Chilean natural zeolite is used here as starting material. The amount of compensating cations in the zeolite framework was modified by ion exchange using an ammonium sulphate solution (0.1 mol L(-1)). Characterisation of natural and modified zeolites were performed by X-ray powder diffraction (XRD), nitrogen adsorption at 77K, elemental analysis, X-ray fluorescence (XRF), thermogravimetric analysis coupled with mass spectroscopy (TGA-MS), and temperature-programmed desorption of ammonia (NH(3)-TPD). Ozone adsorption and/or decomposition on natural and modified zeolites were studied by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Results show that the zeolite compensating cation content affects ozone interaction with zeolite active sites. Ammonium ion-exchange treatments followed by thermal out-gassing at 823 K, reduces ozone diffusion resistance inside the zeolite framework, increasing ozone abatement on zeolite surface active sites. Weak and strong Lewis acid sites of zeolite surface are identified here as the main active sites responsible of ozone removal. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Treshow, M.; Harner, F.M.; Price, H.E.
1969-09-01
Fumigations with ozone at concentrations of 10 pphm or more for 4 hr repeated daily for 4 days suppressed radial growth and spore production of Colletotrichum lindemuthianum, the most sensitive species studied. Neither radial nor mass growth of Alternaria oleraceae, a more tolerant species, was inhibited by 60 pphm ozone, although spore production was significantly accelerated. Since ozone did not affect spore viability, the inoculum potential was greatly enhanced. Histological effects of ozone included loss of pigmentation in C. lindemuthianum and abundant formation of light-refractive globules in the hyphae. Chemical analyses of mycelial mats showed an average 28% decrease inmore » neutral lipid content of ozone-fumigated cultures. No differences were detectable in fatty acid composition of fumigated cultures. While some lipids may have leaked into the substrate, it was suspected that ozone penetrated into vital sites within the cell-oxidizing sulfhydryl groups, thereby suppressing lipid synthesis. The actual degree of suppression in fumigated hyphae may have been greater than indicated, since much of the mycelia analyzed grew within the substrate and was not directly subjected to ozone. 14 references.« less
NASA Technical Reports Server (NTRS)
Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.
1985-01-01
A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.
Heleno, Fernanda F; de Queiroz, Maria Eliana L R; Neves, Antônio Augusto; Freitas, Romenique S; Faroni, Lêda Rita A; De Oliveira, André Fernando
2014-01-01
The effect of ozone fumigation on the reduction of difenoconazole residue on strawberries was studied. Strawberries were immersed in 1.0 L of aqueous solution containing 400 μL of the commercial product (250 g L(-1) of difenoconazole) for 1 min. Then, they were dried and exposed to ozone gas (O3) at concentrations of 0.3, 0.6 and 0.8 mg L(-1) for 1 h. The ozone fumigation treatments reduced the difenoconazole residue on strawberries to concentrations below 0.5 mg kg(-1), which corresponds to a 95% reduction. The strawberries treated with ozone and the control group, which was not treated with ozone, were stored at 4°C for 10 days. Some characteristics of the fruit were monitored throughout this period. Among these, pH, weight loss and total color difference did not change significantly (P > 0.05). The fumigation with ozone significantly affected the soluble solids, titratable acidity and ascorbic acid content (vitamin C) of the strawberries preventing a sharp reduction of these parameters during storage.
Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements
NASA Technical Reports Server (NTRS)
Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong
2013-01-01
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
Brodowska, Agnieszka Joanna; Nowak, Agnieszka; Śmigielski, Krzysztof
2017-04-10
The food contamination issue requires continuous control of food at each step of the production process. High quality and safety of products are equally important factors in the food industry. They may be achieved with several, more or less technologically advanced methodologies. In this work, we review the role, contribution, importance, and impact of ozone as a decontaminating agent used to control and eliminate the presence of microorganisms in food products as well as to extend their shelf-life and remove undesirable odors. Several researchers have been focusing on the ozone's properties and applications, proving that ozone treatment technology can be applied to all types of foods, from fruits, vegetables, spices, meat, and seafood products to beverages. A compilation of those works, presented in this review, can be a useful tool for establishing appropriate ozone treatment conditions, and factors affecting the improved quality and safety of food products. A critical evaluation of the advantages and disadvantages of ozone in the context of its application in the food industry is presented as well.
Screening agrochemicals as potential protectants of plants against ozone phytotoxicity.
Saitanis, Costas J; Lekkas, Dimitrios V; Agathokleous, Evgenios; Flouri, Fotini
2015-02-01
We tested seven contemporary agrochemicals as potential plant protectants against ozone phytotoxicity. In nine experiments, Bel-W3 tobacco plants were experienced weekly exposures to a) 80 nmol mol(-1) of ozone-enriched or ozone-free air in controlled environment chambers, b) an urban air polluted area, and c) an agricultural-remote area. Ozone caused severe leaf injury, reduced chlorophylls' and total carotenoids' content, and negatively affected photosynthesis and stomatal conductance. Penconazole, (35% ± 8) hexaconazole (28% ± 5) and kresoxim-methyl (28% ± 15) showed higher plants' protection (expressed as percentage; mean ± s.e.) against ozone, although the latter exhibited a high variability. Azoxystrobin (21% ± 15) showed lower protection efficacy and Benomyl (15% ± 9) even lower. Trifloxystrobin (7% ± 11) did not protect the plants at all. Acibenzolar-S-methyl + metalaxyl-M (Bion MX) (-6% ± 17) exhibited the higher variability and contrasting results: in some experiments it showed some protection while in others it intensified the ozone injury by causing phytotoxic symptoms on leaves, even in control plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
The practicality of using ozone with fruit and vegetables.
Glowacz, Marcin; Rees, Deborah
2016-11-01
The fresh produce industry is constantly growing as a result of increasing consumer demand. Food quality and safety management are still major issues for the supply chain. The use of ozone has been identified as a feasible solution to reduce microorganisms present in food, in this way extending the shelf-life of fresh produce. A number of factors that may affect the efficiency of ozone treatment have been identified, e.g. microbial populations, ozone concentration and time of exposure, type of produce, temperature, relative humidity and packaging material, and they are briefly discussed. Furthermore, practical information derived from studies with ozone conducted by the authors and from their knowledge of the subject directs the reader's attention to the key aspects of ozone use under commercial conditions, i.e. from the practical point of view. Finally, one possible direction for future research with the postharvest use of ozone, i.e. the important role of fruit cuticle in response to this postharvest treatment, is indicated. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
In vivo exposure to ozone produces an increase in a 72-kDa heat shock protein in guinea pigs.
Su, W Y; Gordon, T
1997-09-01
Although several lines of evidence have suggested that oxidizing agents can induce heat shock proteins (HSPs) in vitro, little is known about the induction of HSPs during in vivo exposure to oxidants. Guinea pigs were exposed to ozone for 6 h and euthanized up to 72 h later. Proteins from lavage cells and lung tissue were characterized by immunoblotting with 72- and 73/72-kDa HSP monoclonal antibodies. Although 73-kDa HSP was expressed constituitively in lung tissue, it was not affected by ozone. In contrast, 72-kDa HSP was significantly increased in lavage cells and lung tissue of animals exposed to 0.4 and 0.66 parts/million of ozone. Both heat treatment and arsenite induced 72-kDa HSP in cultured alveolar macrophages. The increase in 72-kDa HSP in the lavage cell pellet peaked at 24 h after ozone, whereas the influx of polymorphonuclear leukocytes peaked at 4 h. Examination of the induction of HSPs by ozone may provide clues to the development of ozone tolerance in humans and animals.
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Thompson, Anne M.; Guan, Hong; Witte, Jacquelyn C.; Hudson, Robert D.
2004-01-01
We have found repeated illustrations in the maps of Total Tropospheric Ozone (TTO) of apparent transport of ozone from the Indian Ocean to the Equatorial Atlantic Ocean. Most interesting are examples that coincide with the INDOEX observations of late northern winter. Three soundings with the SHADOZ (Southern Hemisphere Additional Ozonesondes) network help confirm and quantify degree of influence of pollution, lightning, and stratospheric sources, suggesting that perhaps 40% of increased Atlantic ozone could be Asian pollution during periods of maximum identified in the TTO maps. This analysis also indicates a mechanism for such extended transport. We outline recurrent periods of apparent ozone transport from Indian to Atlantic Ocean regions outside the late-winter period. Clearly brown-cloud aerosol affects tropospheric ozone, both limiting its chemical production and also potentially obscuring its detection by the TOMS instrument. Introductory statistical studies will be presented, evaluating the role of tropopause meteorology, aerosol, and other factors in the modifying the relationship between true tropospheric ozone measured by SHADOZ and the TTO product, with suggestions for extending the product.
Huang, Chunkai; Shi, Yijing; Gamal El-Din, Mohamed; Liu, Yang
2015-11-15
Two integrated fixed-film activated sludge (IFAS) reactors were operated continuously to treat raw (untreated) and ozonated (30 mg/L) oil sands process-affected water (OSPW). After 11 months, 12.1% of the acid extractable fraction (AEF) and 43.1% of the parent naphthenic acids (NAs) were removed in the raw OSPW IFAS, while 42.0% AEF and 80.2% of parent NAs were removed in the ozonated OSPW IFAS. UPLC/HRMS analysis showed that NA biodegradation significantly decreased as the NA cyclization number increased. Confocal laser scanning microscopy (CLSM) results showed that the biofilm in the ozonated OSPW IFAS was significantly thicker (94 ± 1.6 μm) than the biofilm in the raw OSPW IFAS (72 ± 2.8 μm) after 283 days of cultivation. The quantitative polymerase chain reaction (q-PCR) revealed that the abundance proportions of both nitrifier genes (AomA, NSR and Nitro) and denitrifier genes (narG, nirS, nirK and nosZ) within total bacteria were significantly higher in biofilms than in flocs in the raw OSPW IFAS system, but a different trend was observed in the ozonated OSPW IFAS system. Copyright © 2015 Elsevier Ltd. All rights reserved.
How is ozone pollution reducing our food supply?
Wilkinson, Sally; Mills, Gina; Illidge, Rosemary; Davies, William J
2012-01-01
Ground-level ozone pollution is already decreasing global crop yields (from ∼2.2-5.5% for maize to 3.9-15% and 8.5-14% for wheat and soybean, respectively), to differing extents depending on genotype and environmental conditions, and this problem is predicted to escalate given climate change and increasing ozone precursor emissions in many areas. Here a summary is provided of how ozone pollution affects yield in a variety of crops, thus impacting global food security. Ozone causes visible injury symptoms to foliage; it induces early senescence and abscission of leaves; it can reduce stomatal aperture and thereby carbon uptake, and/or directly reduce photosynthetic carbon fixation; it can moderate biomass growth via carbon availability or more directly; it can decrease translocation of fixed carbon to edible plant parts (grains, fruits, pods, roots) due either to reduced availability at source, redirection to synthesis of chemical protectants, or reduced transport capabilities via phloem; decreased carbon transport to roots reduces nutrient and water uptake and affects anchorage; ozone can moderate or bring forward flowering and induce pollen sterility; it induces ovule and/or grain abortion; and finally it reduces the ability of some genotypes to withstand other stresses such as drought, high vapour pressure deficit, and high photon flux density via effects on stomatal control. This latter point is emphasized here, given predictions that atmospheric conditions conducive to drought formation that also give rise to intense precursor emission events will become more severe over the coming decades.
NASA Astrophysics Data System (ADS)
Ancellet, G.; Gaudel, A.; Godin-Beekmann, S.
2016-12-01
Tropospheric ozone vertical profile measurements have been carried out at OHP (Observatoire de Haute Provence, 44°N, 6.7°E, 690 m) since 1991 using both UV DIAL (DIfferential Absorption Lidar) and ECC (Electrochemical Concentration Cell) ozonesondes. For the first time, ECC and lidar data measured at the same site, have been compared over a 24 year period. The comparison conducted reveals a bias between both measurement types (ECC - lidar) of the order of 0.6 ppbv. The measurements of both instruments have been however combined to decrease the impact of short-term atmospheric variability on the trend estimate. Air mass trajectories have been calculated for all the ozone observations available at OHP including ECMWF potential vorticity (PV) and humidity chnage along the trajectories. The interannual ozone variability shows a negligible trend in the mid troposphere, but a 0.36 ppbv/year significant positive ozone trend in the upper troposphere. The trends will be discussed using the variability of the meteorological parameters. Data clustering using PV and air mass trajectories is useful to identify the role of Stratosphere-Tropopshere Exchanges and long range transport of pollutants in the observed long term trends. In the lower troposphere, the interannual variability shows contrasted trends with an ozone decrease between 1998 and 2008, consistent with the NOx emission decrease, but a new period of ozone increase since 2008 which is not very well understood.
Eckey-Kaltenbach, H.; Ernst, D.; Heller, W.; Sandermann, H.
1994-01-01
Parsley (Petroselinum crispum L.) is known to respond to ultraviolet irradiation by the synthesis of flavone glycosides, whereas fungal or elicitor stress leads to the synthesis of furanocoumarin phytoalexins. We tested how these defensive pathways are affected by a single ozone treatment (200 nL L-1; 10 h). Assays were performed at the levels of transcripts, for enzyme activities, and for secondary products. The most rapid transcript accumulation was maximal at 3 h, whereas flavone glycosides and furanocoumarins were maximally induced at 12 and 24 h, respectively, after the start of ozone treatment. Ozone acted as a cross-inducer because the two distinct pathways were simultaneously induced. These results are consistent with the previously observed ozone induction of fungal and viral defense reactions in tobacco, spruce, and pine. PMID:12232062
Climate change, tropospheric ozone and particulate matter, and health impacts.
Ebi, Kristie L; McGregor, Glenn
2008-11-01
Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.
Discoveries about Tropospheric Ozone Pollution from Satellite and Sounding
NASA Technical Reports Server (NTRS)
Thompson, Anne M.
2004-01-01
We have been producing near-real time tropospheric ozone satellite maps from the TOMS (Total Ozone Mapping Spectrometer) sensor since 1997. This is most readily done for the tropics, where the stratospheric and tropospheric ozone column amounts can be discriminated readily. Maps for 1996-2000 for the operational Earth-Probe instrument reside at: chttp://www.atmos.umd.edu/-trope>. Pollution in the tropics is influenced by biomass burning and by transport patterns that favor recirculation and in other cases reflect climate variability like the El-Nino-Southern Oscillation [Thompson et al., 2001]. Time permitting, examples of mid-latitude, intercontinental transport of ozone pollution sensed by TOMS will be shown. The satellite view of chemical-dynamical interactions in tropospheric ozone is not adequate to capture vertical variability. Thus, in 1998, NASA's Goddard Space Flight Center and a team of international sponsors established the SHADOZ (Southern Hemisphere ADditional OZonesondes) project to address the gap in tropical ozone soundings. SHADOZ augments launches and provides a public archive of ozonesonde data from twelve tropical stations at http://croc.gsfc.nasa.gov/shadoz. Further insights into the role of chemical and dynamical influences have emerged from the first 4-5 years of SHADOZ data (less than 2000 ozone profiles): (a) highly variable tropospheric ozone; (b) a zonal wave-one pattern in tropospheric column ozone; (c) convective variability affects tropospheric ozone over the Indian and Pacific Ocean; (d) a "tropical Atlantic Paradox" appears in December-January-February.
Tropospheric ozone using an emission tagging technique in the CAM-Chem and WRF-Chem models
NASA Astrophysics Data System (ADS)
Lupascu, A.; Coates, J.; Zhu, S.; Butler, T. M.
2017-12-01
Tropospheric ozone is a short-lived climate forcing pollutant. High concentration of ozone can affect human health (cardiorespiratory and increased mortality due to long-term exposure), and also it damages crops. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used as an important component of the design of emissions reduction strategies by indicating which emission sources could be targeted for effective reductions, thus reducing the burden of ozone pollution. Using a "tagging" approach within the CAM-Chem (global) and WRF-Chem (regional) models, we can quantify the contribution of individual emission of NOx and VOC precursors on air quality. Hence, when precursor emissions of NOx are tagged, we have seen that the largest contributors on ozone levels are the anthropogenic sources, while in the case of precursor emissions of VOCs, the biogenic sources and methane account for more than 50% of ozone levels. Further, we have extended the NOx tagging method in order to investigate continental source region contributions to concentrations of ozone over various receptor regions over the globe, with a zoom over Europe. In general, summertime maximum ozone in most receptor regions is largely attributable to local emissions of anthropogenic NOx and biogenic VOC. During the rest of the year, especially during springtime, ozone in most receptor regions shows stronger influences from anthropogenic emissions of NOx and VOC in remote source regions.
Effect of fiber material on ozone removal and carbonyl production from carpets
NASA Astrophysics Data System (ADS)
Abbass, Omed A.; Sailor, David J.; Gall, Elliott T.
2017-01-01
Indoor air quality is affected by indoor materials such as carpets that may act as sources and/or sinks of gas-phase air pollutants. Heterogeneous reactions of ozone with carpets may result in potentially harmful products. In this study, indoor residential carpets of varying fiber types were tested to evaluate their ability to remove ozone, and to assess their role in the production of carbonyls when exposed to elevated levels of ozone. Tests were conducted with six types of new unused carpets. Two sets of experiments were conducted, the first measured ozone removal and ozone deposition velocities, and the second measured primary carbonyl production and secondary production as a result of exposure to ozone. The tests were conducted using glass chambers with volume of 52 L each. Air exchange rates for all tests were 3 h-1. The ozone removal tests show that, for the conditions tested, the polyester carpet sample had the lowest ozone removal (40%), while wool carpet had the greatest ozone removal (65%). Most carpet samples showed higher secondary than primary carbonyl emissions, with carpets containing polypropylene fibers being a notable exception. Carpets with polyester fibers had both the highest primary and secondary emissions of formaldehyde among all samples tested. While it is difficult to make blanket conclusions about the relative air quality merits of various carpet fiber options, it is clear that ozone removal percentages and emissions of volatile organic compounds can vary drastically as a function of fiber type.
Cho, Youngjae; Muhlisin; Choi, Ji Hye; Hahn, Tae-Wook; Lee, Sung Ki
2014-01-01
This study was designed to elucidate the effect of ozone exposure on the bacteria counts and oxidative properties of ground Hanwoo beef contaminated with Escherichia coli O157:H7 at refrigeration temperature. Ground beef was inoculated with 7 Log CFU/g of E. coli O157:H7 isolated from domestic pigs and was then subjected to ozone exposure (10×10(-6) kg O3 h(-1)) at 4℃ for 3 d. E. coli O157:H7, total aerobic and anaerobic bacterial growth and oxidative properties including instrumental color changes, TBARS, catalase (CAT) and glutathione peroxidase (GPx) activity were evaluated. Ozone exposure significantly prohibited (p<0.05) the growths of E. coli O157:H7, total aerobic and anaerobic bacteria in ground beef samples during storage. Ozone exposure reduced (p<0.05) the CIE a* value of samples over storage time. The CIE L* and CIE b* values of the samples fluctuated over storage time, and ozone had no clear effect. Ozone exposure increased the TBARS values during 1 to 3 d of storage (p<0.05). The CAT and GPx enzyme activities were not affected by ozone exposure until 2 and 3 d of storage, respectively. This study provides information about the use of ozone exposure as an antimicrobial agent for meat under refrigerated storage. The results of this study provide a foundation for the further application of ozone exposure by integrating an ozone generator inside a refrigerator. Further studies regarding the ozone concentrations and exposure times are needed.
Influence of ozonation on the in vitro mutagenic and toxic potential of secondary effluents.
Petala, M; Samaras, P; Zouboulis, A; Kungolos, A; Sakellaropoulos, G P
2008-12-01
Reclamation of municipal effluents by advanced treatment processes is an attractive perspective for facing certain water shortage problems. However, the application of tertiary techniques should be thoroughly examined for their potential hazardous effects. Ozonation is an efficient chemical oxidation method, often used in wastewater reclamation, which may result in by-products that may alter the toxic and mutagenic properties of effluents. In this study, Ames test and Microtox test were used for the evaluation of ozonation efficiency to upgrade secondary effluents quality. In general, the toxic response and mutagenic effect without metabolic activation of test species were influenced mainly by the ozone dose and ozonation duration, whereas the mutagenic effect with metabolic activation was influenced mainly by ozone dose, indicating that ozone conditions strongly affect the formation of by-products. In most cases, the toxicity was increased and reached up to 100% (in relation to that of secondary effluent) after ozonation with 8.0 mg O3/L for 5 min. On the contrary, in most cases the mutagenic activity towards strain TA98 without metabolic activation was reduced, when ozone dose and contact time increased. However, the mutagenicity was also increased after ozonation at low ozone doses and for contact times less than 5 min. The mutagenic activity of treated effluents towards strain TA98 with metabolic activation remained about the same or was reduced, compared to that of secondary effluent, and was even eliminated after ozonation with 8.0 mg O3/L for contact times higher than 5 min.
NASA Technical Reports Server (NTRS)
Koukouli, M.E.; Lerot, C.; Granville, J.; Goutail, F.; Lambert, J.-C.; Pommereau, J.-P.; Balis, D.; Zyrichidou, I.; Van Roozendael, M.; Coldewey-Egbers, M.;
2015-01-01
The European Space Agency's Ozone Climate Change Initiative (O3-CCI) project aims at producing and validating a number of high-quality ozone data products generated from different satellite sensors. For total ozone, the O3-CCI approach consists of minimizing sources of bias and systematic uncertainties by applying a common retrieval algorithm to all level 1 data sets, in order to enhance the consistency between the level 2 data sets from individual sensors. Here we present the evaluation of the total ozone products from the European sensors Global Ozone Monitoring Experiment (GOME)/ERS-2, SCIAMACHY/Envisat, and GOME-2/MetOp-A produced with the GOME-type Direct FITting (GODFIT) algorithm v3. Measurements from the three sensors span more than 16 years, from 1996 to 2012. In this work, we present the latest O3-CCI total ozone validation results using as reference ground-based measurements from Brewer and Dobson spectrophotometers archived at the World Ozone and UV Data Centre of the World Meteorological Organization as well as from UV-visible differential optical absorption spectroscopy (DOAS)/Système D'Analyse par Observations Zénithales (SAOZ) instruments from the Network for the Detection of Atmospheric Composition Change. In particular, we investigate possible dependencies in these new GODFIT v3 total ozone data sets with respect to latitude, season, solar zenith angle, and different cloud parameters, using the most adequate type of ground-based instrument. We show that these three O3-CCI total ozone data products behave very similarly and are less sensitive to instrumental degradation, mainly as a result of the new reflectance soft-calibration scheme. The mean bias to the ground-based observations is found to be within the 1 plus or minus 1 percent level for all three sensors while the near-zero decadal stability of the total ozone columns (TOCs) provided by the three European instruments falls well within the 1-3 percent requirement of the European Space Agency's Ozone Climate Change Initiative project.
Recent Changes in Tropospheric Ozone in the Tropics
NASA Technical Reports Server (NTRS)
Chandra, S.; Ziemke, J. R.; Einaudi, Franco (Technical Monitor)
2000-01-01
This paper presents a detailed characterization of tropical tropospheric column ozone variability on time scales varying from a few days to a solar cycle. The study is based on more than 20 years (1979 to the present) of tropospheric column ozone time series derived from the convective cloud differential (CCD) method using total ozone mapping spectrometer (TOMS) data. Results indicate three distinct regions in the tropics with distinctly three different zonal characteristics related to seasonal, interannual and solar variabilities. These three regions are the eastern Pacific, Atlantic, and western Pacific. Tropospheric column ozone in the Atlantic region peaks at about the same time (September-October) from 20 N to 20 S. The amplitude of the annual cycle, however, varies from about 3 to 6 Dobson unit (DU) from north to south of the equator. In comparison, the annual cycle in both the eastern and western Pacific is generally week and the phase varies from peak values in March and April in the northern hemisphere to September and October in the southern hemisphere. The interannual pattern in the three regions are also very different. The Atlantic region indicates a quasi biennial oscillation in the tropospheric column ozone which is out of phase with the stratospheric ozone. This is consistent with the photochemical control of this region caused by high pollution and high concentration of ozone producing precursors. The observed pattern, however, does not seem to be related to the interannual variability in ozone precursors related to biomass burning. Instead, it appears to be a manifestation of the UV modulation of upper tropospheric chemistry on a QBO time scale caused by stratospheric ozone. During El Nino events, there is anomalously low ozone in the eastern Pacific and high values in the western Pacific indicating the effects of convectively driven transport. The observed increase of 10-20 DU in tropospheric column ozone in the Indonesian region in the western Pacific during the recent 1997-1998 El Nino was associated with large-scale forest fires which may have contributed 5-10 DU of the total increase.
NASA Astrophysics Data System (ADS)
Kinney, P.; Fann, N.
2016-12-01
Ambient air pollution can be affected by climate in a variety of ways, which in turn have important implications for human health. Observed and projected changes in climate lead to modified weather patterns and biogenic emissions, which influence the levels and geographic patterns of outdoor air pollutants of health concern, including ground-level ozone (O3) and fine particulate matter (PM2.5). The USGCRP scientific assessment of the human health impacts of climate change concluded with high confidence that climate change will make it harder for any given regulatory approach to reduce ground-level ozone pollution in the future as meteorological conditions become increasingly conducive to forming ozone over most of the United States. Unless offset by additional emissions reductions of ozone precursors, these climate-driven increases in ozone will cause premature deaths, hospital visits, lost school days, and acute respiratory symptoms. The evidence for climate impacts on PM2.5 is less robust than that for ozone. However, one mechanism through which climate change is likely to affect PM2.5 as well as O3 in the United States is via impacts on wildfires. Wildfires emit precursors of both fine particles and O3, which increase the risk of premature death and adverse chronic and acute cardiovascular and respiratory health outcomes. Climate change is projected to increase the number and severity of naturally occurring wildfires in parts of the United States, increasing emissions of particulate matter and ozone precursors and resulting in additional adverse health outcomes. We present the key results and conclusions from a nationwide assessment of O3 health impacts in 2030, as well as new evidence for respiratory health effects of wildfires in the western United States.
NASA Astrophysics Data System (ADS)
Cuesta, J.; Eremenko, M.; Dufour, G.; Hoepfner, M.; Orphal, J.
2012-04-01
Both tropospheric ozone and aerosols significantly affect air quality in megacities during pollution events. Moreover, living conditions may be seriously aggravated when such agglomerations are affected by wildfires (e.g. Russian fires over Moscow in 2010), which produce smoke and pollutant precursors, or even during dense desert dust outbreaks (e.g. recurrently over Beijing or Cairo). Moreover, since aerosols diffuse and absorb solar radiation, they have a direct impact on the photochemical production of tropospheric ozone. These interactions during extreme events of high aerosol loads are nowadays poorly known, even though they may significantly affect the tropospheric photochemical equilibrium. In order to address these issues, we have developed a new retrieval technique to jointly characterize the 3D distribution of both tropospheric ozone and coarse aerosols, using spaceborne observations of the infrared spectrometer IASI onboard MetOp-A satellite. Our methodology is based on the inversion of Earth radiance spectra in the atmospheric window from 8 to 12 μm measured by IASI and a «Tikhonov-Philipps»-type regularisation with constraints varying in altitude (as in [Eremenko et al., 2008, GRL; Dufour et al., 2010 ACP]) to simultaneously retrieve ozone profiles, aerosol optical depths at 10 μm and aerosol layer effective heights. Such joint retrieval prevents biases in the ozone profile retrieval during high aerosol load conditions. Aerosol retrievals using thermal infrared radiances mainly account for desert dust and the coarse fraction of biomass burning aerosols. We use radiances from 15 micro-windows within the 8-12 μm atmospheric window, which were carefully chosen (following [Worden et al., 2006 JGR]) for extracting the maximum information on aerosols and ozone and minimizing contamination by other species. We use the radiative transfer code KOPRA, including line-by-line calculations of gas absorption and single scattering for aerosols [Hoepfner et al., 2006 ACP]. As a priori inputs, we consider climatological ozone profiles, ECMWF meteorological fields and aerosol refractive index and size distributions based on desert dust [Hess et al., 1998 AMS] and smoke [Tsay and Stephens 1990] climatologies. We have used our joint ozone/aerosol retrieval to analyse two major events: i) the Russian fires during the heatwave of summer 2010 in the Moscow area and ii) a desert dust outbreak reaching Beijing in springtime 2008. We propose to present our results on these two study cases, as well as the performance assessment of our technique.
Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone.
Grulke, N E; Miller, P R; Scioli, D
1996-06-01
We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.
Ozone risk for crops and pastures in present and future climates
NASA Astrophysics Data System (ADS)
Fuhrer, Jürg
2009-02-01
Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.
NASA Technical Reports Server (NTRS)
Isaksen, I. S. A.; Stordal, F.
1986-01-01
Observations made over the last few years suggest that the tropospheric concentrations of N2O, CH4, and O3 are increasing. Increases in the concentration of chlorofluorocarbons (CFCs) have been observed for some time. The present study is concerned with combined scenarios of future releases of N2O, CH4, and CFCs, which can affect the height profiles of ozone, while changes in latitudinal gradients of ozone may also be expected. Ozone perturbation calculations performed in the two-dimensional transport-chemistry model described by Stordal et al. (1985) are also presented, and the effects of increased levels of CFCs, N2O, and CH4 are examined. It is found that CH4 may be the most important ozone-perturbing trace species in connection with future tropospheric climatic impacts. A substantial increase in the tropospheric abundancy of CH4 could lead to large future ozone enhancements throughout the troposphere and lower stratosphere at middle and low latitudes.
The roles of ozone and zeolite on reactive dye degradation in electrical discharge reactors.
Peternel, L; Kusic, H; Koprivanac, N; Locke, B R
2006-05-01
In this study high voltage pulsed corona electrical discharge advanced oxidation processes (AOPs) were applied to bleach and degrade C.I. Reactive Green 8 and C.I. Reactive Red 45 organic dyes in water solutions. Two types of hybrid gas/liquid high voltage electrical discharge (corona) reactors, known as hybrid series and hybrid parallel were studied. The difference between these reactors relates to electrode configuration, which affects the amounts of ozone, hydrogen peroxide and hydroxyl radicals produced. Experiments were conducted using dye concentrations of 20 mgl(-1) and 75 mgl(-1), with and without NH4ZSM5 zeolite addition in order to determine possible effects of added solid particles to total process efficiency. The role of ozone in combination with zeolites was assessed through comparative direct ozonation experiments with ozone supplied by an ozone generator. UV/VIS spectrophotometric measurements and measurements of total organic carbon (TOC) were used for the determination of decolorization and mineralization rates.
NASA Astrophysics Data System (ADS)
Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Janda, Vaclav; Sunka, Pavel
2005-02-01
Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min-1), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O2 mixtures with the maximum efficiency (energy yield) of 23 g kW h-1 for 40% argon content.
20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations
NASA Astrophysics Data System (ADS)
Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.
2016-12-01
Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.
NASA Astrophysics Data System (ADS)
Zhou, S.; Tai, A. P. K.; Lombardozzi, D.
2016-12-01
Apart from being an important greenhouse gas, tropospheric ozone is a significant air pollutant that is shown to have harmful effects both on human health and vegetation. Ozone damages vegetation mainly through reducing plant photosynthesis and stomatal conductance. Meanwhile, ozone is also strongly dependent on vegetation via various biogeochemical and physical processes. These interdependences between ozone and vegetation would constitute feedback mechanisms that can potentially alter ozone concentration itself, and should be considered in future climate and air quality projections. In this study, we first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM), and simulate the relative changes in leaf area indices (LAI) and stomatal conductance for three plant groups (consolidated from 15 plant functional types) at various prescribed ozone levels (from 0 ppb to 100 ppb). We find that all plant groups suffer the greatest decreases in LAI and stomatal conductance in regions with their greatest abundance, and grasses and crops show the most severe damage from ozone exposure compared with broadleaf and needleleaf groups, with an LAI reduction of as much as 50% in some areas even at an ozone level of 30 ppb. Using the CLM-simulated results, we develop a semi-empirical parameterization scheme to link prescribed ozone levels to the spatially varying simulated relative changes in LAI and stomatal conductance at model steady state. We implement the scheme in the GEOS-Chem chemical transport model so that ozone-vegetation chemical coupling via ozone dry deposition and biogenic volatile organic compound (VOC) emissions can be simulated online. Model simulations indicate that ozone effect on stomatal conductance (which modifies dry deposition) appears to be the dominant feedback pathway influencing surface ozone, whereas ozone-mediated LAI changes (which affects biogenic VOC emissions) appear to play a lesser role. This work is the first attempt to account for online ozone-vegetation coupling in a chemical transport model, with important ramifications for more realistic assessment of ozone air quality under a constantly evolving climate and land cover.
OZONE UPTAKE IN THE INTACT HUMAN RESPIRATORY TRACT - RELATIONSHIP BETWEEN INHALED AND ACTUAL DOSE
Inhaled concentration (C), minute volume (MV), and exposure duration (T) are factors that may affect the uptake of ozone (03) within the respiratory tract. Ten healthy adult nonsmokers participated in four sessions, inhaling 0.2 or 0.4 ppm 03 through an oral mask while exercisi...
There is growing concern that exposure to air pollutants during pregnancy affects health outcomes in the offspring due to alterations in the development of immune and other homeostatic processes. To assess the risks of maternal inhalation exposure to ozone (O3), timed pregnant BA...
High ozone increases soil perchlorate but does not affect foliar perchlorate content
USDA-ARS?s Scientific Manuscript database
Ozone (O3) is implicated in the natural source inventory of perchlorate (ClO4-), a hydrophilic salt that migrates to ground water and interferes with uptake of iodide in mammals, including humans. Tropospheric O3 is elevated in many areas. We previously showed (Grantz et al., 2013; Environmental Pol...
NASA Astrophysics Data System (ADS)
Asikainen, T.; Salminen, A.; Maliniemi, V.; Mursula, K.
2017-12-01
Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.
NASA Astrophysics Data System (ADS)
Salminen, Antti; Asikainen, Timo; Maliniemi, Ville; Mursula, Kalevi
2017-04-01
Energetic particle precipitation (EPP) has been shown to cause ozone loss in the stratosphere during polar winter. This has been suggested to enhance polar vortex with the effect propagating even to ground level, where it is observed as a more positive phase of the Northern Annular Mode (NAM), the dominant ground circulation pattern in the winter time at high latitudes. Recent research has also shown that the quasi-biennial oscillation (QBO) modulates the relationship between the ground NAM and EPP so that the positive correlation between the two is more clearly seen in the easterly phase of QBO measured at 30 hPa height especially during the late winter season. Here we elaborate the QBO modulated connection between EPP and NAM by studying how the EPP affects the stratospheric polar vortex in the two phases of the QBO. Since the EPP presumably affects the polar stratosphere via indirect ozone loss we will study how the EPP modulates the amount of ozone, the stratospheric temperatures and zonal winds in the two QBO phases.
Adame, José A; Lozano, Antonio; Bolívar, Juan P; De la Morena, Benito A; Contreras, Juan; Godoy, Francisca
2008-01-01
In order to improve our knowledge of the surface ozone in the south of the Iberian Peninsula, annual, monthly, weekly and daily ozone concentrations have been closely monitored in the Seville metropolitan area highlighting those episodes that exceed the European Ozone Directive. A three-year period (2003-2005) and eight ozone stations were used; five of them located in the city's busiest areas and the rest in adjacent zones ( approximately 25km). In addition, the wind regime was also studied in order to understand the main characteristics of the surface atmospheric dynamics. The lowest ozone concentrations 17-33microgm(-3) took place in January while the highest 57-95microgm(-3) occurred in June. The ozone concentration week-weekend differences from May to September indicate that this phenomenon does not affect the ozone stations analysed. Daily cycles show minimum values between 7:00 and 8:00 UTC and maximum at noon, exceeding 90microgm(-3) during summer months. From March to October the ozone concentrations were above the target value for the protection of human health, especially during the summer months, with values up to 30% over the limit. The information threshold has been exceeded at all ozone stations studied but with greater frequency in the stations far from the city centre. In addition, at these latter stations the alert threshold was also exceeded on six occasions. This study in the city of Seville indicates that the high ozone levels are due to local atmospheric effects, mainly since the ozone air masses may undergo recirculation processes. The ozone is transported to the city from the S-SW, having a major impact in the NE areas.
Dynamical variability in the modelling of chemistry-climate interactions.
Pyle, J A; Braesicke, P; Zeng, G
2005-01-01
We have used a version of the Met Office's climate model, into which we have introduced schemes for atmospheric chemistry, to study chemistry-dynamics-climate interactions. We have considered the variability of the stratospheric polar vortex, whose behaviour influences stratospheric ozone loss and will affect ozone recovery. In particular, we analyse the dynamical control of high latitude ozone in a model version which includes an assimilation of the equatorial quasi-biennial oscillation (QBO), demonstrating the stability of the linear relation between vortex strength and high latitude ozone. We discuss the effect of interactive model ozone on polar stratospheric cloud (PSC) area/volume and winter-spring stratospheric ozone loss in the northern hemisphere. In general we find larger polar ozone losses calculated in those model integrations in which modelled ozone is used interactively in the radiation scheme, even though we underestimate the slope of the ozone loss per PSC volume relation derived from observations. We have also looked at the influence of changing stratosphere-to-troposphere exchange on the tropospheric oxidizing capacity and, in particular, have considered the variability of tropospheric composition under different climate regimes (El Niño/La Niña, etc.). Focusing on the UT/LS, we show the response of ozone to El Niño in two different model set-ups (tropospheric/ stratospheric). In the stratospheric model set-up we find a distinct signal in the lower tropical stratosphere, which shows an anti-correlation between the Niño 3 index and the ozone column amount. In contrast ozone generally increases in the upper troposphere of the tropospheric model set-up after an El Niño. Understanding future trends in stratospheric ozone and tropospheric oxidizing capacity requires an understanding of natural variability, which we explore here.
Sensitivities of NOx transformation and the effects on surface ozone and nitrate
NASA Astrophysics Data System (ADS)
Lei, H.; Wang, J. X. L.
2014-02-01
As precursors to tropospheric ozone and nitrate, nitrogen oxide (NOx) in the present atmosphere and its transformation in response to emission and climate perturbations are studied by using the CAM-Chem model and air quality measurements from the National Emissions Inventory (NEI), Clean Air Status and Trends Network (CASTNET), and Environmental Protection Agency Air Quality System (EPA AQS). It is found that NOx transformations in present atmospheric conditions show different sensitivities over industrial and non-industrial regions. As a result, the surface ozone and nitrate formations can be divided into several regimes associated with the dominant emission types and relative levels of NOx and volatile organic compounds (VOC). Ozone production in industrial regions (the main NOx emission source areas) increases in warmer conditions and slightly decreases following an increase in NOx emissions due to NOx titration, which is opposite to the response in non-industrial regions. The ozone decrease following a temperature increase in non-industrial regions indicates that ozone production in regions that lack NOx emission sources may be sensitive to NOx transformation in remote source regions. The increase in NO2 from NOx titration over industrial regions results in an increase rate of total nitrate that remains higher than the increase rate of NOx emissions. The presented findings indicate that a change in the ozone concentration is more directly affected by changes in climate and precursor emissions, while a change in the nitrate concentration is affected by local ozone production types and their seasonal transfer. The sensitivity to temperature perturbations shows that a warmer climate accelerates the decomposition of odd nitrogen (NOy) during the night. As a result, the transformation rate of NOx to nitrate decreases. Examinations of the historical emissions and air quality records of a typical NOx-limited area, such as Atlanta and a VOC-limited area, such as Los Angeles further confirm the conclusions drawn from the modeling experiments.
Vitamin D Synthesis by UV Radiation: the Importance of Ozone Monitoring
NASA Astrophysics Data System (ADS)
Olds, W. J.; Moore, M. R.; Kimlin, M. G.
2006-12-01
The majority of humans rely on incidental sun exposure to maintain vitamin D sufficiency. Depending on where thresholds of vitamin D "sufficiency" are defined, it was recently stated that up to one billion people worldwide have suboptimal vitamin D levels (Bouillon, R., University of Leuven). Even in sunny southeast Queensland, the world's skin cancer capital, a 2006 study uncovered deficiency rates of up to 78% (at a threshold of 75 nmol/L of circulating 25-hydroxyvitamin D). Vitamin D regulates calcium absorption and inadequate levels are proven to result in osteomalacia, osteoporosis, rickets, bone pain and general skeletal weakness. Recent evidence also suggests vitamin D plays a preventative role in autoimmune diseases including numerous cancers, diabetes, schizophrenia, coronary heart disease, depression and other disorders. The most promising means of alleviating the worldwide burden of vitamin D deficiency seems to be by increased UV exposure. However, a much more mature understanding of UV exposures encountered in everyday life is required. This understanding is fundamentally founded in geophysics. UV exposures are strongly influenced by season/time of year, time of day, climate, location, pollution, aerosols and, importantly, ozone. In this work, we use computer simulations to obtain daily totals of vitamin D producing UV at numerous latitudes during one year. The ozone concentration is varied from 260 DU to 360 DU to determine the role of ozone variability on the ambient levels of vitamin D UV. Vitamin D synthesis is highly dependent on UVB. In our results, we demonstrate that this has important implications. Namely, vitamin D is strongly affected by ozone variability, since ozone filters UVB more strongly than UVA. Moreover, since erythema (sunburn) can occur at UVA wavelengths, ozone variation will more strongly affect vitamin D synthesis than erythema. Our results highlight that ozone monitoring is essential for understanding appropriate UV exposures for vitamin D health. We finally discuss implications for population health and how geophysics continues to play a vital role in addressing the widespread dilemma of vitamin D deficiency.
Analysis of Ozone And CO2 Profiles Measured At A Diary Facility
NASA Astrophysics Data System (ADS)
Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.
2015-12-01
Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the afternoon when the boundary layer is fully developed, greatly contrast ozone profiles are typical of urban environment
Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds.
Oya, Masami; Kosaka, Koji; Asami, Mari; Kunikane, Shoichi
2008-12-01
Formation of N-nitrosodimethylamine (NDMA) by ozonation of commercially available dyes and related compounds was investigated. Ozonation was conducted using a semi-batch type reactor, and ozone concentration in gas phase and the ozone gas flow were 10 mg L(-1) and 1.0 L min(-1), respectively. NDMA was formed by 15 min of ozonation of seven out of eight selected target compounds (0.05 mM) at pH 7. All the target compounds with N,N-dimethylamino functions were NDMA precursors in ozonation. The lowest and highest NDMA concentrations after ozonation of the target compounds were 13 ng L(-1) for N,N-dimethylformamide (DMF) and 1600 ng L(-1) for N,N-dimethyl-p-phenylenediamine (DMPD), respectively. NDMA concentrations after 15 min of ozonation of 0.05 mM methylene blue (MB) and DMPD increased with an increase in pH in its range of 6-8. The effects of coexisting compounds on NDMA concentrations after 15 min of ozonation of 0.05 mM MB and DMPD were examined at pH 7. NDMA concentrations after ozonation of MB and DMPD increased by the presence of 0.05 mM (0.7 mg L(-1) as N) nitrite (NO(2)(-)); 5000 ng L(-1) for MB and 4000 ng L(-1) for DMPD. NDMA concentration after MB ozonation decreased by the presence of 5mM tertiary butyl alcohol (TBA), a hydroxyl radical (HO.) scavenger, but that after DMPD ozonation was increased by the presence of TBA. NDMA concentrations after ozonation of MB and DMPD were not affected by the presence of 0.16 mM (5.3 mg L(-1)) hydrogen peroxide (H(2)O(2)). When 0.05 mM MB and DMPD were added to the Yodo and Tone river water samples, NDMA concentrations after 15 min of their ozonation at pH 7 increased compared with those in the case of addition to ultrapure water samples.
Compact high-pulse-energy ultraviolet laser source for ozone lidar measurements.
Elsayed, Khaled A; DeYoung, Russell J; Petway, Larry B; Edwards, William C; Barnes, James C; Elsayed-Ali, Hani E
2003-11-20
An all solid-state Ti:sapphire laser differential absorption lidar transmitter was developed. This all-solid-state laser provides a compact, robust, and highly reliable laser transmitter for potential application in differential absorption lidar measurements of atmospheric ozone. Two compact, high-energy-pulsed, and injection-seeded Ti:sapphire lasers operating at a pulse repetition frequency of 30 Hz and wavelengths of 867 and 900 nm, with M2 of 1.3, have been experimentally demonstrated and their properties compared with model results. The output pulse energy was 115 mJ at 867 nm and 105 mJ at 900 nm, with a slope efficiency of 40% and 32%, respectively. At these energies, the beam quality was good enough so that we were able to achieve 30 mJ of ultraviolet laser output at 289 and 300 nm after frequency tripling with two lithium triborate nonlinear crystals.
Inflammatory and Repair Pathways Induced in Human Bronchoalveolar Lavage Cells with Ozone Inhalation
Wong, Hofer; Tenney, Rachel; Chen, Chun; Stiner, Rachel; Balmes, John R.; Paquet, Agnès C.; Arjomandi, Mehrdad
2015-01-01
Background Inhalation of ambient levels of ozone causes airway inflammation and epithelial injury. Methods To examine the responses of airway cells to ozone-induced oxidative injury, 19 subjects (7 with asthma) were exposed to clean air (0ppb), medium (100ppb), and high (200ppb) ambient levels of ozone for 4h on three separate occasions in a climate-controlled chamber followed by bronchoscopy with bronchoalveolar lavage (BAL) 24h later. BAL cell mRNA expression was examined using Affymetrix GeneChip Microarray. The role of a differentially expressed gene (DEG) in epithelial injury was evaluated in an in vitro model of injury [16HBE14o- cell line scratch assay]. Results Ozone exposure caused a dose-dependent up-regulation of several biologic pathways involved in inflammation and repair including chemokine and cytokine secretion, activity, and receptor binding; metalloproteinase and endopeptidase activity; adhesion, locomotion, and migration; and cell growth and tumorigenesis regulation. Asthmatic subjects had 1.7- to 3.8-fold higher expression of many DEGs suggestive of increased proinflammatory and matrix degradation and remodeling signals. The most highly up-regulated gene was osteopontin, the protein level of which in BAL fluid increased in a dose-dependent manner after ozone exposure. Asthmatic subjects had a disproportionate increase in non-polymerized osteopontin with increasing exposure to ozone. Treatment with polymeric, but not monomeric, osteopontin enhanced the migration of epithelial cells and wound closure in an α9β1 integrin-dependent manner. Conclusions Expression profiling of BAL cells after ozone exposure reveals potential regulatory genes and pathways activated by oxidative stress. One DEG, osteopontin, promotes epithelial wound healing in an in vitro model of injury. PMID:26035830
Aerosol-associated changes in tropical stratospheric ozone following the eruption of Mount Pinatubo
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.; Fishman, Jack; Brackett, Vincent G.; Veiga, Robert E.; Nganga, Dominique; Minga, A.; Cros, Bernard; Butler, Carolyn F.; Fenn, Marta A.
1994-01-01
The large amount of sulfuric acid aerosol formed in the stratosphere by conversion of sulfur dioxide emitted by the eruption of Mount Pinatubo (15.14 deg N, 120.35 deg E) in the Philippines around June 15, 1991, has had a pronounced effect on lower stratospheric ozone in the tropics. Measurements of stratospheric ozone in the tropics using electrochemical concentration cell (ECC) sondes before and after the eruption and the airborne UV differential absorption lidar (DIAL) system after the eruption are compared with Stratospheric Aerosol and Gas Experiment II (SAGE II) measurements from several years before the eruption and ECC sonde measurements from the year prior to the eruption to determine the resulting changes. Ozone decreases of up to 33 % compared with SAGE II climatological values were found to be directly correlated with altitude regions of enhanced aerosol loading in the 16- to 28-km range. A maximum partial-column decrease of 29 +/- Dobson units (DU) was found over the 16- to 28-km range in September 1991 along with small increases (to 5.9 +/- 2 DU) from 28 to 31.5 km. A large decrease of ozone was also found at 4 deg to 8 deg S from May to August 1992, with a maximum decrease of 33 +/- 7 DU found above Brazzaville in July. Aerosol data form the visible channel of the advanced very high resolution radiometer (AVHRR) and the visible wavelength of the UV DIAL system were used to examine the relationship between aerosol (surface area) densities and ozone changes. The tropical stratospheric ozone changes we observed in 1991 and 1992 are likely be explained by a combination of dynamical (vertical transport) perturbations, radiative perturbations on ozone photochemistry, and heterogeneous chemistry.
NASA Astrophysics Data System (ADS)
Ginnebaugh, Diana L.; Jacobson, Mark Z.
2012-12-01
This study investigates the air quality impacts of using a high-blend ethanol fuel (E85) instead of gasoline in vehicles in an urban setting when a morning fog is present under summer and winter conditions. The model couples the near-explicit gas-phase Master Chemical Mechanism (MCM v. 3.1) with the extensive aqueous-phase Chemical Aqueous Phase Radical Mechanism (CAPRAM 3.0i) in SMVGEAR II, a fast and accurate ordinary differential equation solver. Summer and winter scenarios are investigated during a two day period in the South Coast Air Basin (SCAB) with all gasoline vehicles replaced by flex-fuel vehicles running on E85 in 2020. We find that E85 slightly increases ozone compared with gasoline in the presence or absence of a fog under summer conditions but increases ozone significantly relative to gasoline during winter conditions, although winter ozone is always lower than summer ozone. A new finding here is that a fog during summer may increase ozone after the fog disappears, due to chemistry alone. Temperatures were high enough in the summer to increase peroxy radical (RO2) production with the morning fog, which led to the higher ozone after fog dissipation. A fog on a winter day decreases ozone after the fog. Within a fog, ozone is always lower than if no fog occurs. The sensitivity of the results to fog parameters like droplet size, liquid water content, fog duration and photolysis are investigated and discussed. The results support previous work suggesting that E85 and gasoline both enhance pollution with E85 enhancing pollution significantly more at low temperatures. Thus, neither E85 nor gasoline is a ‘clean-burning’ fuel.
Impact of aircraft NO x emission on NO x and ozone over China
NASA Astrophysics Data System (ADS)
Liu, Yu; Isaksen, I. S. A.; Sundet, J. K.; Zhou, Xiuji; Ma, Jianzhong
2003-07-01
A three-dimensional global chemistry transport model (OSLO CTM2) is used to investigate the impact of subsonic aircraft NO x emission on NO x and ozone over China in terms of a year 2000 scenario of subsonic aircraft NO x emission. The results show that subsonic aircraft NO x emission significantly affects northern China, which makes NO x at 250 hPa increase by about 50 pptv with the highest percentage of 60% in January, and leading to an ozone increase of 8 ppbv with 5% relative change in April. The NO x increase is mainly attributed to the transport process, but ozone increase is produced by the chemical process. The NO x increases by less than 10 pptv by virtue of subsonic aircraft NO x emission over China, and ozone changes less than 0.4 ppbv. When subsonic aircraft NO x emission over China is doubled, its influence is still relatively small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1970-01-01
Crown rust, the most destructive disease of oats, was suppressed in laboratory fumigation chambers by ozone air pollution levels commonly surpassed in many areas. Whether the effects of air pollution on crown rust are of economic importance under field conditions is yet to be determined. Crown rust, caused by the fungus Puccinia coronata, is particularly destructive in Southern and North Central States, often reducing yields 20 percent or more. Rust pustules on oats were significantly smaller when plants were exposed to 10 parts per hundred million ozone for 6 hours in the light on the 10 days after infection. Aboutmore » half as many rust spores were produced in the ozone chamber as in one protected by carbon filters. Exposure to 10 pphm ozone did not affect viability of spores. Spores produced on exposed plants germinated and penetrated stomates of oat leaves as well as spores produced on unexposed leaves.« less
Climate Impacts on Tropospheric Ozone and Hydroxyl
NASA Technical Reports Server (NTRS)
Shindell, Drew T.; Bell, N.; Faluvegi, G.
2003-01-01
Climate change may influence tropospheric ozone and OH via several main pathways: (1) altering chemistry via temperature and humidity changes, (2) changing ozone and precursor sources via surface emissions, stratosphere-troposphere exchange, and light- ning, and (3) affecting trace gas sinks via the hydrological cycle and dry deposition. We report results from a set of coupled chemistry-climate model simulations designed to systematically study these effects. We compare the various effects with one another and with past and projected future changes in anthropogenic and natural emissions of ozone precursors. We find that white the overall impact of climate on ozone is probably small compared to emission changes, some significant seasonal and regional effects are apparent. The global effect on hydroxyl is quite large, however, similar in size to the effect of emission changes. Additionally, we show that many of the chemistry-climate links that are not yet adequately modeled are potentially important.
Coupling Processes Between Atmospheric Chemistry and Climate
NASA Technical Reports Server (NTRS)
Ko, Malcolm K. W.; Weisenstein, Debra; Rodriguez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Junusz; Sze, Nien-Dak
1999-01-01
This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.
Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Wang, L.; Sadeke, M.
2017-12-01
Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.
Effect of ozonation on minocycline degradation and N-Nitrosodimethylamine formation.
Lv, Juan; Li, Yong M
2018-06-07
The objective of this study was to assess reactivity of Minocycline (MNC) towards ozone and determine the effects of ozone dose, pH value, and water matrix on MNC degradation as well as to characterize N-Nitrosodimethylamine (NDMA) formation from MNC ozonation. The MNC initial concentration of the solution was set in the range of 2-20 mg/L to investigate NDMA formation during MNC ozonation. Four ozone doses (22.5, 37.2, 58.0, and 74.4 mg/min) were tested to study the effect of ozone dose. For the evaluation of effects of pH value, pH was adjusted from 5 to 9 in the presence of phosphate buffer. MNC ozonation experiments were also conducted in natural water to assess the influence of water matirx. The influence of the typical component of natural water was also investigated with the addition of HA and NaHCO 3 solution. Results indicated that ozone was effective in MNC removal. Consequently, NDMA and dimethylamine (DMA) were generated from MNC oxidation. Increasing pH value enhanced MNC removal but led to greater NDMA generation. Water matrices, such as HCO 3 - and humic acid, affected MNC degradation. Conversely, more NDMA accumulated due to the inhibition of NDMA oxidation by oxidant consumption. Though ⋅OH can enhance MNC degradation, ozone molecules were heavily involved in NDMA production. Seven transformation products were identified. However, only DMA and the unidentified tertiary amine containing DMA group contributed to NDMA formation.
Brié, Adrien; Boudaud, Nicolas; Mssihid, Annabelle; Loutreul, Julie; Bertrand, Isabelle; Gantzer, Christophe
2018-04-01
Raspberries are vulnerable products for which industrial treatment solutions ensuring both food safety and sensory quality are not easily applicable. Raspberries have been associated with numerous foodborne outbreaks in recent decades. Ozone has been proven effective as a drinking water treatment against pathogenic microorganisms. Nevertheless, to date, little information is available regarding the effect of gaseous ozone on viruses in food matrices. A comparison of the effect of gaseous ozone on murine norovirus (MNV-1) and hepatitis A virus (HAV) adsorbed on fresh raspberries was performed. Infectious MNV-1 was highly inactivated (>3.3 log 10 ) by ozone (3 ppm, 1 min). The raspberry matrix seems to enhance inactivation by ozone compared to water. The same treatment was observed to have little effect on HAV even for the highest dose under the tested conditions (5 ppm, 3 min). Ozone treatment (5 ppm, 3 min) did not affect the appearance of raspberries even after three days post-treatment. No ozone effect was observed on the genomes detected by RT-PCR on both tested viruses, irrespective of the matrix or tested doses used. Gaseous ozone could therefore be a good candidate for human norovirus inactivation on raspberries but new conditions are needed for it to have significant effects on HAV inactivation. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Doddridge, B. G.; Luke, W. T.; Johnson, J. E.; Witte, J. C.; Reynolds, R. M.; Johnson, B.; Oltmans, S. J.
1999-01-01
During the Aerosols-99 trans-Atlantic cruise from Norfolk, VA, to Cape Town, South Africa, 22 ozonesondes were launched from the NOAA R/V R H Brown between 17 Jan and 6 Feb 1999, with all sondes but one reaching 30 km. A composite of ozone profiles along the transect shows high free tropospheric ozone (up to 100 ppbv at 9 km) between 5N and 20S, a coherent feature straddling either side of the ITCZ. Latitudinal variations of tropospheric ozone are interpreted using correlative measurements of surface ozone, CO, water vapor, and aerosol optical thickness (column absorbance) measured from the ship. Elevated ozone in the lower troposphere results from photochemical reactions of precursors emitted by biomass burning north of the ITCZ. However, the greatest ozone mixing ratios are in the mid-troposphere south of the ITCZ, which gives evidence of interhemispheric transport. Column-integrated tropospheric ozone, 35 DU from 0-16 km, agrees with that derived from the TOMS satellite by the modified-residual method [Thompson and Hudson, 1999]. NCEP wind fields, ship-launched radiosondes and back trajectories are consistent with a picture of recirculating air parcels centered in the tropical Atlantic region which is identified with the maximum wave-one amplitude in total ozone seen in sondes and by satellite.
Verhein, Kirsten C.; Salituro, Francesco G.; Ledeboer, Mark W.; Fryer, Allison D.; Jacoby, David B.
2013-01-01
Ozone exposure causes airway hyperreactivity and increases hospitalizations resulting from pulmonary complications. Ozone reacts with the epithelial lining fluid and airway epithelium to produce reactive oxygen species and lipid peroxidation products, which then activate cell signaling pathways, including the mitogen activated protein kinase (MAPK) pathway. Both p38 and c-Jun NH2 terminal kinase (JNK) are MAPK family members that are activated by cellular stress and inflammation. To test the contribution of both p38 and JNK MAPK to ozone-induced airway hyperreactivity, guinea pigs were pretreated with dual p38 and JNK MAPK inhibitors (30 mg/kg, ip) 60 minutes before exposure to 2 ppm ozone or filtered air for 4 hours. One day later airway reactivity was measured in anesthetized animals. Ozone caused airway hyperreactivity one day post-exposure, and blocking p38 and JNK MAPK completely prevented ozone-induced airway hyperreactivity. Blocking p38 and JNK MAPK also suppressed parasympathetic nerve activity in air exposed animals, suggesting p38 and JNK MAPK contribute to acetylcholine release by airway parasympathetic nerves. Ozone inhibited neuronal M2 muscarinic receptors and blocking both p38 and JNK prevented M2 receptor dysfunction. Neutrophil influx into bronchoalveolar lavage was not affected by MAPK inhibitors. Thus p38 and JNK MAPK mediate ozone-induced airway hyperreactivity through multiple mechanisms including prevention of neuronal M2 receptor dysfunction. PMID:24058677
Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping
2002-03-01
The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.
Inactivation of Escherichia coli by ozone treatment of apple juice at different pH levels.
Patil, S; Valdramidis, V P; Cullen, P J; Frias, J; Bourke, P
2010-09-01
This research investigated the efficacy of gaseous ozone on the inactivation of Escherichia coli ATCC 25922 and NCTC 12900 strains in apple juice of a range of pH levels, using an ozone bubble column. The pH levels investigated were 3.0, 3.5, 4.0, 4.5 and 5.0. Apple juice inoculated with E. coli strains (10(6)CFU/mL) was treated with ozone gas at a flow rate of 0.12L/min and ozone concentration of 0.048 mg/min/mL for up to 18 min. Results show that inactivation kinetics of E. coli by ozone were affected by pH of the juice. The ozone treatment duration required for achieving a 5-log reduction was faster (4 min) at the lowest pH than at the highest pH (18 min) studied. The relationship between time required to achieve 5log reduction (t(5d)) and pH for both strains was described mathematically by two exponential equations. Ozone treatment appears to be an effective process for reducing bacteria in apple juice and the required applied treatment for producing a safe apple juice is dependant on its acidity level. Copyright 2010 Elsevier Ltd. All rights reserved.
Acute Ozone-Induced Pulmonary and Systemic Metabolic Effects Are Diminished in Adrenalectomized Rats
Miller, Desinia B.; Snow, Samantha J.; Schladweiler, Mette C.; Richards, Judy E.; Ghio, Andrew J.; Ledbetter, Allen D.; Kodavanti, Urmila P.
2016-01-01
Acute ozone exposure increases circulating stress hormones and induces metabolic alterations in animals. We hypothesized that the increase of adrenal-derived stress hormones is necessary for both ozone-induced metabolic effects and lung injury. Male Wistar-Kyoto rats underwent bilateral adrenal demedullation (DEMED), total bilateral adrenalectomy (ADREX), or sham surgery (SHAM). After a 4 day recovery, rats were exposed to air or ozone (1 ppm), 4 h/day for 1 or 2 days and responses assessed immediately postexposure. Circulating adrenaline levels dropped to nearly zero in DEMED and ADREX rats relative to SHAM. Corticosterone tended to be low in DEMED rats and dropped to nearly zero in ADREX rats. Adrenalectomy in air-exposed rats caused modest changes in metabolites and lung toxicity parameters. Ozone-induced hyperglycemia and glucose intolerance were markedly attenuated in DEMED rats with nearly complete reversal in ADREX rats. Ozone increased circulating epinephrine and corticosterone in SHAM but not in DEMED or ADREX rats. Free fatty acids (P = .15) and branched-chain amino acids increased after ozone exposure in SHAM but not in DEMED or ADREX rats. Lung minute volume was not affected by surgery or ozone but ozone-induced labored breathing was less pronounced in ADREX rats. Ozone-induced increases in lung protein leakage and neutrophilic inflammation were markedly reduced in DEMED and ADREX rats (ADREX > DEMED). Ozone-mediated decreases in circulating white blood cells in SHAM were not observed in DEMED and ADREX rats. We demonstrate that ozone-induced peripheral metabolic effects and lung injury/inflammation are mediated through adrenal-derived stress hormones likely via the activation of stress response pathway. PMID:26732886
Short-term effects of multiple ozone metrics on daily mortality in a megacity of China.
Li, Tiantian; Yan, Meilin; Ma, Wenjun; Ban, Jie; Liu, Tao; Lin, Hualiang; Liu, Zhaorong
2015-06-01
Epidemiological studies have widely demonstrated association between ambient ozone and mortality, though controversy remains, and most of them only use a certain metric to assess ozone levels. However, in China, few studies have investigated the acute effects of ambient ozone, and rare studies have compared health effects of multiple daily metrics of ozone. The present analysis aimed to explore variability of estimated health effects by using multiple temporal ozone metrics. Six metrics of ozone, 1-h maximum, maximum 8-h average, 24-h average, daytime average, nighttime average, and commute average, were used in a time-series study to investigate acute mortality associated with ambient ozone pollution in Guangzhou, China, using 3 years of daily data (2006-2008). We used generalized linear models with Poisson regression incorporating natural spline functions to analyze the mortality, ozone, and covariate data. We also examined the association by season. Daily 1- and 8-h maximum, 24-h average, and daytime average concentrations yielded statistically significant associations with mortality. An interquartile range (IQR) of O3 metric increase of each ozone metric (lag 2) corresponds to 2.92 % (95 % confidence interval (CI) 0.24 to 5.66), 3.60 % (95 % CI, 0.92 to 8.49), 3.03 % (95 % CI, 0.57 to 15.8), and 3.31 % (95 % CI, 0.69 to 10.4) increase in daily non-accidental mortality, respectively. Nighttime and commute metrics were weakly associated with increased mortality rate. The associations between ozone and mortality appeared to be more evident during cool season than in the warm season. Results were robust to adjustment for co-pollutants, weather, and time trend. In conclusion, these results indicated that ozone, as a widespread pollutant, adversely affects mortality in Guangzhou.
Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios
NASA Technical Reports Server (NTRS)
Kanter, David R.; McDermid, Sonali P.
2016-01-01
Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.
Response of the rat erythrocyte to ozone exposure
NASA Technical Reports Server (NTRS)
Larkin, E. C.; Kimzey, S. L.; Siler, K.
1978-01-01
Sprague-Dawley rats were exposed to high (6-8 ppm) and moderate (1.5 ppm) amounts of ozone (O3) for various time periods. Response of the rat erythrocyte to ozone was monitored with red blood cell potassium (rubidium) influx studies, with storage stress combined with ultrastructural studies and with levels of erythrocyte glutathione peroxidase and superoxide dismutase. Erythrocytes of rats exposed to O3 showed no significant changes either in their potassium influx or in their glutathione peroxidase and superoxide dismutase activities compared to controls. Erythrocyte differential counts on O3-exposed animals showed significant changes initially as well as following storage stress compared to controls. Rats exposed to 8 ppm O3 for 4 h showed a marked increase in echinocytes. These consistent transformations from discocytes to echinocytes following O3 exposure suggest latent erythrocyte damage has occurred.
Ozone (O3) and soil water deficit are two environmental stresses that significantly affect the growth and yield of alfalfa. However, little is known of the responses of field-grown alfalfa to O3, and the effects of the interaction between O3 and water stress on canopy temperature...
Variable performance of outbreak defoliators on aspen clones exposed to elevated CO2 and O3
Daniel A. Herms; William J. Mattson; David N. Karowe; Mark D. Coleman; Terry M. Trier; Bruce A. Birr; J. G. Isebrands
1996-01-01
Increasing atmospheric concentrations of ozone and CO2 affect many aspects of tree physiology. However, their effects on tree resistance to insects have received relatively little attention. The objectives of this study were to test the effects of elevated CO2 and ozone on the resistance of three quaking aspen (...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... List HFO-1234yf as an Exempt Compound C. Contribution to Tropospheric Ozone D. Health and Environmental... Health and Safety Risks H. Executive Order 13211: Actions That Significantly Affect Energy Supply... presence of sunlight. Because of the harmful health effects of ozone, the EPA and state governments limit...
Johan Uddling; Ronald M. Teclaw; Mark E. Kubiske; Kurt S. Pregitzer; David S. Ellsworth
2008-01-01
Elevated concentrations of atmospheric carbon dioxide ([CO2]) and tropospheric ozone ([O3]) have the potential to affect tree physiology and structure and hence forest water use, which has implications for climate feedbacks. We investigated how a 40% increase above ambient values in [CO2] and [O
Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers
ERIC Educational Resources Information Center
Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.
2009-01-01
Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Walden, V. P.; Oltmans, S. J.; Petropavlovskikh, I. V.; Kivi, R.; Thölix, L.
2017-12-01
The current trend and future concentrations of atmospheric ozone are active areas of research as the effect of the Montreal Protocol is realized. The trend of ozone is due to various chemical and dynamical parameters that create, destroy, and transport atmospheric ozone. These important parameters can be represented by different proxies, but their effects on ozone concentration are not completely understood. Previous studies show that proxies related to ozone have different contributions depending on latitude and altitude. In this study, we use vertical profiles of ozone derived from ozonesondes launched by the NOAA Global Monitoring Division at Summit Station, Greenland from 2005 to 2016. The effects of different proxies on ozone are investigated. Summit Station is located at 3,200 meters above sea level on the Greenland Ice Sheet and is a unique place in the Arctic. We use a stepwise multiple regression (MLR) technique to remove the seasonal cycle of ozone and investigate how the different proxies [solar flux (SF), the Quasi-Biennial Oscillation (QBO), the El Nino-Southern Oscillation index (ENSO), the Arctic Oscillation (AO), eddy heat flux (EHF), the volume of polar stratospheric clouds (VPSC), equivalent latitude (EL), and the tropopause pressure (TP)] affect the vertical distribution of ozone over Summit. The MLR is applied separately to total column ozone (TCO) as well as partial ozone columns (PCO) in the troposphere and the lower, middle, and upper stratosphere. Our results show that dynamical processes are important contributors to ozone concentrations over Summit Station. Tropospheric pressure and the QBO are effective predictors of ozone in the troposphere, lower and middle stratosphere, and to the TCO. The VPSC is an important contributor to changes in ozone in the middle stratosphere. AO explains part of low/mid stratospheric and TCO ozone cycle. A simulation model of ozone over Summit built from the MLR results explains the seasonal cycle and the trends in TCO over Summit with a correlation coefficient (R2) of 82% for TCO. Simulations of PCO in the lower and middle stratosphere range from R2 = 62% to 85%.
NASA Astrophysics Data System (ADS)
Franz, Martina; Simpson, David; Arneth, Almut; Zaehle, Sönke
2017-01-01
Ozone (O3) is a toxic air pollutant that can damage plant leaves and substantially affect the plant's gross primary production (GPP) and health. Realistic estimates of the effects of tropospheric anthropogenic O3 on GPP are thus potentially important to assess the strength of the terrestrial biosphere as a carbon sink. To better understand the impact of ozone damage on the terrestrial carbon cycle, we developed a module to estimate O3 uptake and damage of plants for a state-of-the-art global terrestrial biosphere model called OCN. Our approach accounts for ozone damage by calculating (a) O3 transport from 45 m height to leaf level, (b) O3 flux into the leaf, and (c) ozone damage of photosynthesis as a function of the accumulated O3 uptake over the lifetime of a leaf. A comparison of modelled canopy conductance, GPP, and latent heat to FLUXNET data across European forest and grassland sites shows a general good performance of OCN including ozone damage. This comparison provides a good baseline on top of which ozone damage can be evaluated. In comparison to literature values, we demonstrate that the new model version produces realistic O3 surface resistances, O3 deposition velocities, and stomatal to total O3 flux ratios. A sensitivity study reveals that key metrics of the air-to-leaf O3 transport and O3 deposition, in particular the stomatal O3 uptake, are reasonably robust against uncertainty in the underlying parameterisation of the deposition scheme. Nevertheless, correctly estimating canopy conductance plays a pivotal role in the estimate of cumulative O3 uptake. We further find that accounting for stomatal and non-stomatal uptake processes substantially affects simulated plant O3 uptake and accumulation, because aerodynamic resistance and non-stomatal O3 destruction reduce the predicted leaf-level O3 concentrations. Ozone impacts on GPP and transpiration in a Europe-wide simulation indicate that tropospheric O3 impacts the regional carbon and water cycling less than expected from previous studies. This study presents a first step towards the integration of atmospheric chemistry and ecosystem dynamics modelling, which would allow for assessing the wider feedbacks between vegetation ozone uptake and tropospheric ozone burden.
Ground-based lidar for atmospheric boundary layer ozone measurements.
Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong
2013-05-20
Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trumble, J.T.; Hare, J.D.; Musselman, R.C.
Tomato pinworms, Keiferia lycopersicella (Walsingham), survived better and developed faster on tomato plants, Lycopersicon esculentum Mill., damaged by ozone than on plants not subjected to ozone fumigation. Other measures of fitness, including survival during pupation, sex ratio of adults, female longevity, and fecundity, were not affected. Analyses of ozonated foliage at zero, two and seven days following fumigation demonstrated a transient but significant increase (18-24%) in soluble protein concentration. Although the concentration of the total free amino acids in ozonated foliage did not increase significantly, significant changes were observed in at least 10 specific amino acids, some of which aremore » critical for either insect development or the production of plant defensive chemicals. A reduction in total nitrogen in ozonated foliage at seven days postfumigation indicated that nitrogen was being translocated to other portions of the plant. The implications of increases in assimilable forms of nitrogen in ozonated foliage, which lead to improved host-plant suitability for insect herbivores, are discussed both in relation to some current ecological theories and in regard to pest-management strategies. 59 references, 1 figure, 4 tables.« less
Mäenpää, Maarit; Riikonen, Johanna; Kontunen-Soppela, Sari; Rousi, Matti; Oksanen, Elina
2011-08-01
Rising temperature and tropospheric ozone (O(3)) concentrations are likely to affect carbon assimilation processes and thus the carbon sink strength of trees. In this study, we investigated the joint action of elevated ozone and temperature on silver birch (Betula pendula) and European aspen (Populus tremula) saplings in field conditions by combining free-air ozone exposure (1.2 × ambient) and infrared heaters (ambient +1.2 °C). At leaf level measurements, elevated ozone decreased leaf net photosynthesis (P(n)), while the response to elevated temperature was dependent on leaf position within the foliage. This indicates that leaf position has to be taken into account when leaf level data are collected and applied. The ozone effect on P(n) was partly compensated for at elevated temperature, showing an interactive effect of the treatments. In addition, the ratio of photosynthesis to stomatal conductance (P(n)/g(s) ratio) was decreased by ozone, which suggests decreasing water use efficiency. At the plant level, the increasing leaf area at elevated temperature resulted in a considerable increase in photosynthesis and growth in both species.
NASA Astrophysics Data System (ADS)
Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.
2015-08-01
The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.
Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts
Ebi, Kristie L.; McGregor, Glenn
2008-01-01
Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695
Meshref, Mohamed N A; Klamerth, Nikolaus; Islam, Md Shahinoor; McPhedran, Kerry N; Gamal El-Din, Mohamed
2017-08-01
Ozonation at high doses is a costly treatment for oil sands process-affected water (OSPW) naphthenic acids (NAs) degradation. To decrease costs and limit doses, different peroxone (hydrogen peroxide/ozone; H 2 O 2 :O 3 ) processes using mild-ozone doses of 30 and 50 mg/L were investigated. The degradation efficiency of O x -NAs (classical (O 2 -NAs) + oxidized NAs) improved from 58% at 30 mg/L ozone to 59%, 63% and 76% at peroxone (1:1), 50 mg/L ozone, and peroxone (1:2), respectively. Suppressing the hydroxyl radical (•OH) pathway by adding tert-butyl alcohol did significantly reduce the degradation in all treatments, while molecular ozone contribution was around 50% and 34% for O 2 -NAs and O x -NAs, respectively. Structure reactivity toward degradation was observed with degradation increase for both O 2 -NAs and O x -NAs with increase of both carbon (n) and hydrogen deficiency/or |-Z| numbers in all treatments. However, the combined effect of n and Z showed specific insights and differences between ozone and peroxone treatments. The degradation pathway for |-Z|≥10 isomers in ozone treatments through molecular ozone was significant compared to •OH. Though peroxone (1:2) highly reduced the fluorophore organics and toxicity to Vibrio fischeri, the best oxidant utilization in the degradation of O 2 -NAs (mg/L) per ozone dose (mg/L) was observed in the peroxone (1:1) (0.91) and 30 mg/L ozone treatments (0.92). At n = 9-11, peroxone (1:1) had similar or enhanced effect on the O 2 -NAs degradation compared to 50 mg/L ozone. Enhancing •OH pathway through peroxone versus ozone may be an effective OSPW treatment that will allow its safe release into receiving environments with marginal cost addition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Climate change, tropospheric ozone and particulate matter, and health impacts.
Ebi, Kristie; McGregor, Glenn
2009-01-01
We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.
Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona
2012-01-01
Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID:22496898
Signal-Induced Noise Effects in a Photon Counting System for Stratospheric Ozone Measurement
NASA Technical Reports Server (NTRS)
Harper, David B.; DeYoung, Russell J.
1998-01-01
A significant source of error in making atmospheric differential absorption lidar ozone measurements is the saturation of the photomultiplier tube by the strong, near field light return. Some time after the near field light signal is gone, the photomultiplier tube gate is opened and a noise signal, called signal-induced noise, is observed. Research reported here gives experimental results from measurement of photomultiplier signal-induced noise. Results show that signal-induced noise has several decaying exponential signals, suggesting that electrons are slowly emitted from different surfaces internal to the photomultiplier tube.
Dial Measurements of Free-Tropospheric Ozone Profiles in Huntsville, AL
NASA Technical Reports Server (NTRS)
Newchurch, Mike; Kuang, Shi; Burris, John; Johnson, Steve; Long, Stephanie
2008-01-01
A tropospheric ozone DIfferential Absorption Lidar (DIAL) system has been developed jointly by NASA and the University of Alabama at Huntsville (UAH). Two separated Nd:YAG pumped dye laser systems produce the laser pulses with wavelengths of 285 and 291 nm at 20 Hz frequency. The receiver is a Newtonian telescope with a 40 cm primary and a two-channel aft optics unit. The detection system currently uses photon counting to facilitate operations at the maximum achievable altitude. This lidar measures free-tropospheric ozone profiles between 4-10 km at Regional Atmospheric Profiling Laboratory for Discovery (RAPCD) in UAH campus (ASL 206 m) under both daytime and nighttime conditions. Frequent coincident ozonesonde flights and theoretical calculations provide evidence to indicate the retrieval accuracy ranges from approx.5% at 4 km to approx.60% at 10 km with 750-m vertical resolution and 30-minute integration. Three Hamamatsu 7400 PMTs and analog detection technique will be added on the current system to extend the measurement to approx.100 m above ground to monitor the PBL and lower tropospheric ozone variations.
Short-term ozone exposure and asthma severity: Weight-of-evidence analysis.
Goodman, Julie E; Zu, Ke; Loftus, Christine T; Lynch, Heather N; Prueitt, Robyn L; Mohar, Isaac; Shubin, Sara Pacheco; Sax, Sonja N
2018-01-01
To determine whether evidence indicates that short-term exposure to ambient concentrations of ozone in the United States can affect asthma severity, we systematically reviewed published controlled human exposure, epidemiology, and animal toxicity studies. The strongest evidence for a potential causal relationship came from epidemiology studies reporting increased emergency department visits and hospital admissions for asthma following elevated ambient ozone concentrations. However, while controlled exposure studies reported lung function decrements and increased asthma symptoms following high ozone exposures 160-400 parts per billion [ppb]), epidemiology studies evaluating similar outcomes reported less consistent results. Animal studies showed changes in pulmonary function at high ozone concentrations (> 500ppb), although there is substantial uncertainty regarding the relevance of these animal models to human asthma. Taken together, the weight of evidence indicates that there is at least an equal likelihood that either explanation is true, i.e., the strength of the evidence for a causal relationship between short-term exposure to ambient ozone concentrations and asthma severity is "equipoise and above." Copyright © 2017 Elsevier Inc. All rights reserved.
Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan.
Bennett, J P; Jepsen, E A; Roth, J A
2006-07-01
Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed.
NASA Astrophysics Data System (ADS)
Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus
2018-03-01
The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the systematic error is small and does not accumulate during the course of a simulation. In the context of a 10-year simulation, the ozone layer simulated by SWIFT shows a stable annual cycle, with inter-annual variations comparable to the ATLAS model. The application of Extrapolar SWIFT requires the evaluation of polynomial functions with 30-100 terms. Computers can currently calculate such polynomial functions at thousands of model grid points in seconds. SWIFT provides the desired numerical efficiency and computes the ozone layer 104 times faster than the chemistry scheme in the ATLAS CTM.
Multiannual tropical tropospheric ozone columns and the case of the 2015 el Niño event
NASA Astrophysics Data System (ADS)
Leventidou, Elpida; Eichmann, Kai-Uwe; Weber, Mark; Burrows, John P.
2016-04-01
Stratospheric ozone is well known for protecting the surface from harmful ultraviolet solar radiation whereas ozone in the troposphere plays a more complex role. In the lower troposphere ozone can be extremely harmful for human health as it can oxidize biological tissues and causes respiratory problems. Several studies have shown that the tropospheric ozone burden (300±30Tg (IPCC, 2007)) increases by 1-7% per decade in the tropics (Beig and Singh, 2007; Cooper et al., 2014) which makes the need to monitor it on a global scale crucial. Remote sensing from satellites has been proven to be very useful in providing consistent information of tropospheric ozone concentrations over large areas. Tropical tropospheric ozone columns can be retrieved with the Convective Cloud Differential (CCD) technique (Ziemke et al. 1998) using retrieved total ozone columns and cloud parameters from space-borne observations. We have developed a CCD-IUP algorithm which was applied to GOME/ ERS-2 (1995-2003), SCIAMACHY/ Envisat (2002-2012), and GOME-2/ MetOpA (2007-2012) weighting function DOAS (Coldewey-Egbers et al., 2005, Weber et al., 2005) total ozone data. A unique long-term record of monthly averaged tropical tropospheric ozone columns (20°S - 20°N) was created starting in 1996. This dataset has been extensively validated by comparisons with SHADOZ (Thompson et al., 2003) ozonesonde data and limb-nadir Matching (Ebojie et al. 2014) tropospheric ozone data. The comparison shows good agreement with respect to range, inter-annual variation, and variance. Biases where found to be within 5DU and the RMS errors less than 10 DU. This 17-years dataset has been harmonized into one consistent time series, taking into account the three instruments' difference in ground pixel size. The harmonised dataset is used to determine tropical tropospheric ozone trends and climatological values. The 2015 el Niño event has been characterised as one of the top three strongest el Niños since 1950. El Niño events are major sources of the tropospheric ozone variability (Ziemke and Chandra,2003) due to changes in the convection pattern and large-scale circulation in the tropical Pacific region. More clouds and rainfall appear in the central and/or eastern Pacific whereas more dryness over Indonesia and as a result strongest forest fires. These effects cause enhanced tropospheric ozone columns over the Indonesian region and reduced over the eastern Pacific. The focus of this work is to present the first results of tropospheric ozone trends the last 17 years as long as to understand and quantify the tropical tropospheric ozone (TTCO) anomalies due to the 2015 el Niño event.
Increasingly, urban air pollution is recognized as an important determinant of cardiovascular disease. Host susceptibility to air pollution can vary due to genetic predisposition and underlying disease. To elucidate key factors of host ...
Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone
Carolyn Hunsaker; Andrzej Bytnerowicz; Jessica Auman; Ricardo Cisneros
2007-01-01
Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and...
Shang, Bo; Feng, Zhaozhong; Li, Pin; Calatayud, Vicent
2018-03-01
The effects of elevated ozone on C (carbon), N (nitrogen) and P (phosphorus) ecological stoichiometry and nutrient resorption in different organs including leaves, stems and roots were investigated in poplar clones 546 (P. deltoides cv. '55/56' × P. deltoides cv. 'Imperial') and 107 (P. euramericana cv. '74/76') with a different sensitivity to ozone. Plants were exposed to two ozone treatments, NF (non-filtered ambient air) and NF60 (NF with targeted ozone addition of 60 ppb), for 96 days in open top chambers (OTCs). Significant ozone effects on most variables of C, N and P ecological stoichiometry were found except for the C concentration and the N/P in different organs. Elevated ozone increased both N and P concentrations of individual organs while for C/N and C/P ratios a reduction was observed. On these variables, ozone had a greater effect for clone 546 than for clone 107. N concentrations of different leaf positions ranked in the order upper > middle > lower, showing that N was transferred from the lower senescent leaves to the upper ones. This was also indicative of N resorption processes, which increased under elevated ozone. N resorption of clone 546 was 4 times larger than that of clone 107 under ambient air (NF). However, elevated ozone (NF60) had no significant effect on P resorption for both poplar clones, suggesting that their growth was only limited by N, while available P in the soil was enough to sustain growth. Understanding ecological stoichiometric responses under ozone stress is crucial to predict future effects on ecological processes and biogeochemical cycles. Copyright © 2017 Elsevier Ltd. All rights reserved.
Treatment of azo dye Acid Orange 52 using ozonation and completed-mixed activated sludge process
NASA Astrophysics Data System (ADS)
Abidin, C. Z. A.; Fahmi; Ong, S. A.; Ahmad, R.; Sabri, S. N.
2017-06-01
In this study, the characteristic of colour and COD removal of azo dye Acid Orange 52 (AO52) by ozonation, in combination with complete-mixed activated sludge process (CMAS) was evaluated. The experimentation was arranged in two phases: during the first one, only ozonation was performed, while, during the second phase, it was integrated with CMAS. The performance of colour and COD concentration of AO52 with and without CMAS treatment, is compared and evaluated. From the results, it is obvious that high decolourization from the start of CMAS was contributed from the pre-treatments. The colour removal was due to the fact that ozonation able to cleave the azo bonds that represent colour. Thus, CMAS without pre-treatment are unable to decolourize the dyes sufficiently. 59.6% COD was removed from the first-stage, while merely 9.8% COD fraction removed from the subsequence second-stage CMAS. It is suggested that the rapid COD removal without ozonation are due to activated sludge adsorption processes. The decreased of mixed liquor suspended solids (MLSS) affected the CMAS performances, as the biomass decreased due to lack of nutrient for activated sludge microorganisms to multiply. Results from pre-ozonation alone contributed more than 50% of total COD removal, which indicated that at higher ozone dosage, tend to mineralize azo dye. Thus, ozonation not oxidized the dye though complete mineralization that produce carbon dioxide and water. However, it is a potential process for enhancing colour removal and biodegradability of dye-containing wastewater, once the appropriate ozonation time is determined. Therefore, the role of ozonation seems to break down the dye molecules and created ozonation by-product that is easily biodegraded in the subsequent biological treatment.
Depletions in winter total ozone values over southern England
NASA Technical Reports Server (NTRS)
Lapworth, A.
1994-01-01
A study has been made of the recently re-evaluated time series of daily total ozone values for the period 1979 to 1992 for southern England. The series consists of measurements made at two stations, Bracknell and Camborne. The series shows a steady decline in ozone values in the spring months over the period, and this is consistent with data from an earlier decade that has been published but not re-evaluated. Of exceptional note is the monthly mean for January 1992 which was very significantly reduced from the normal value, and was the lowest so far measured for this month. This winter was also noteworthy for a prolonged period during which a blocking anticyclone dominated the region, and the possibility existed that this was related to the ozone anomaly. It was possible to determine whether the origin of the low ozone value lay in ascending stratospheric motions. A linear regression analysis of ozone value deviation against 100hPa temperature deviations was used to reduce ozone values to those expected in the absence of high pressure. The assumption was made that the normal regression relation was not affected by atmospheric anomalies during the winter. This showed that vertical motions in the stratosphere only accounted for part of the ozone anomaly and that the main cause of the ozone deficit lay either in a reduced stratospheric circulation to which the anticyclone may be related or in chemical effects in the reduced stratospheric temperatures above the high pressure area. A study of the ozone time series adjusted to remove variations correlated with meteorological quantities, showed that during the period since 1979, one other winter, that of 1982/3, showed a similar although less well defined deficit in total ozone values.
Coincident Observations of Surface Ozone and NMVOCs over Abu Dhabi
NASA Astrophysics Data System (ADS)
Abbasi, Naveed; Majeed, Tariq; Iqbal, Mazhar; Tarasick, David; Davies, Jonathan; Riemer, Daniel; Apel, Eric
2016-07-01
The vertical profiles of ozone are measured coincidently with non-methane volatile organic compounds (NMVOCs) at the meteorological site located at the Abu Dhabi international airport (latitude 24.45N; longitude 54.22E) during the years 2012 - 2014. Some of the profiles show elevated surface ozone >95 ppbv during the winter months (December, January and February). The ground-level NMVOCs obtained from the gas chromatography-flame ionization detection/mass spectrometry system also show elevated values of acetylene, ethane, propane, butane, pentane, benzene, and toluene. NMVOCs and ozone abundances in other seasons are much lower than the values in winter season. NMVOCs are emitted from an extensive number of sources in urban environments including fuel production, distribution, and consumption, and serve as precursor of ozone. Transport sources contribute a substantial portion of the NMVOC burden to the urban atmosphere in developed regions. Abu Dhabi is located at the edge of the Arabian Gulf and is highly affected by emissions from petrochemical industries in the neighboring Gulf region. The preliminary results indicate that wintertime enhancement in ozone is associated with large values of NMVOCs at Abu Dhabi. The domestic production of surface ozone is estimated from the combination of oxygen recombination and NMVOCs and compared with the data. It is estimated that about 40-50% of ozone in Abu Dhabi is transported from the neighbouring petrochemical industries. We will present ozone sounding and NMVOCs data and our model estimates of surface ozone, including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.
A Semi-empirical Model of the Stratosphere in the Climate System
NASA Astrophysics Data System (ADS)
Sodergren, A. H.; Bodeker, G. E.; Kremser, S.; Meinshausen, M.; McDonald, A.
2014-12-01
Chemistry climate models (CCMs) currently used to project changes in Antarctic ozone are extremely computationally demanding. CCM projections are uncertain due to lack of knowledge of future emissions of greenhouse gases (GHGs) and ozone depleting substances (ODSs), as well as parameterizations within the CCMs that have weakly constrained tuning parameters. While projections should be based on an ensemble of simulations, this is not currently possible due to the complexity of the CCMs. An inexpensive but realistic approach to simulate changes in stratospheric ozone, and its coupling to the climate system, is needed as a complement to CCMs. A simple climate model (SCM) can be used as a fast emulator of complex atmospheric-ocean climate models. If such an SCM includes a representation of stratospheric ozone, the evolution of the global ozone layer can be simulated for a wide range of GHG and ODS emissions scenarios. MAGICC is an SCM used in previous IPCC reports. In the current version of the MAGICC SCM, stratospheric ozone changes depend only on equivalent effective stratospheric chlorine (EESC). In this work, MAGICC is extended to include an interactive stratospheric ozone layer using a semi-empirical model of ozone responses to CO2and EESC, with changes in ozone affecting the radiative forcing in the SCM. To demonstrate the ability of our new, extended SCM to generate projections of global changes in ozone, tuning parameters from 19 coupled atmosphere-ocean general circulation models (AOGCMs) and 10 carbon cycle models (to create an ensemble of 190 simulations) have been used to generate probability density functions of the dates of return of stratospheric column ozone to 1960 and 1980 levels for different latitudes.
Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds
de Jesus Andreoli Pinto, Terezinha; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; do Nascimento Pedrosa, Tatiana; Maria-Engler, Silvya Stuchi
2016-01-01
The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects. PMID:26757850
Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds.
Rediguieri, Carolina Fracalossi; Pinto, Terezinha de Jesus Andreoli; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; Pedrosa, Tatiana do Nascimento; Maria-Engler, Silvya Stuchi; De Bank, Paul A
2016-04-01
The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects.
NASA Astrophysics Data System (ADS)
Boersma, F. F.; Verstraeten, W. W.; Williams, J. E.; Neu, J. L.; Bowman, K. W.; Worden, J.
2014-12-01
Tropospheric ozone is an important greenhouse gas and a global air pollutant originating from photo-chemical oxidation of ozone precursors in the presence of NOX. Eastern Asia has the fastest growing anthropogenic emissions in the world, possibly affecting both the pollution in the local troposphere as well as in the trans-Pacific region. Local measurements over Asia show that tropospheric ozone has increased by 1 to 3% per year since the start of the millennium. This increase is often invoked to explain positive ozone trends observed in western United States, but to date there is no unambiguous evidence showing that enhanced Asian pollution is responsible for these trends. Here we interpret satellite measurements of tropospheric ozone and its precursor nitrate dioxide from the Aura Tropospheric Emission Spectrometer (TES) and Ozone Monitoring Instrument (OMI) using the TM5 global chemistry-transport model to directly show that tropospheric ozone over China has increased by ~10% from 2005-2010 in response to both a ~15% rise in Chinese emissions and an increased downward ozone transport from the stratosphere. What is more, we demonstrate that Chinese export of ozone and its precursors have offset one-third of the reduction in free tropospheric ozone over the western United States that should have occurred during 2005-2010 via emissions reductions associated with air quality policies in the United States. The issue of export and long-range transport of pollution from other countries indicates that global efforts may be required to address both the global as well as the regional air quality and climate change.
NASA Astrophysics Data System (ADS)
Newchurch, M.; Al-Saadi, J. A.; Alvarez, R. J.; Burris, J.; Cantrell, W.; Chen, G.; De Young, R.; Hardesty, R.; Hoff, R. M.; Kaye, J. A.; kuang, S.; Langford, A. O.; LeBlanc, T.; McDermid, I. S.; McGee, T. J.; Pierce, R.; Senff, C. J.; Sullivan, J. T.; Szykman, J.; Tonnesen, G.; Wang, L.
2012-12-01
An interagency research initiative for ground-based ozone and aerosol lidar profiling recently funded by NASA has important applications to air-quality studies in addition to the goal of serving the GEO-CAPE and other air-quality missions. Ozone is a key trace-gas species, a greenhouse gas, and an important pollutant in the troposphere. High spatial and temporal variability of ozone affected by various physical and photochemical processes motivates the high spatio-temporal lidar profiling of tropospheric ozone for improving the simulation and forecasting capability of the photochemical/air-quality models, especially in the boundary layer where the resolution and precision of satellite retrievals are fundamentally limited. It is well known that there are large discrepancies between the surface and upper-air ozone due to titration, surface deposition, diurnal processes, free-tropospheric transport, and other processes. Near-ground ozone profiling has been technically challenging for lidars due to some engineering difficulties, such as near-range saturation, field-of-view overlap, and signal processing issues. This initiative provides an opportunity for us to solve those engineering issues and redesign the lidars aimed at long-term, routine ozone/aerosol observations from the near surface to the top of the troposphere at multiple stations (i.e., NASA/GSFC, NASA/LaRC, NASA/JPL, NOAA/ESRL, UAHuntsville) for addressing the needs of NASA, NOAA, EPA and State/local AQ agencies. We will present the details of the science investigations, current status of the instrumentation development, data access/protocol, and the future goals of this lidar network. Ozone lidar/RAQMS comparison of laminar structures.
NASA Astrophysics Data System (ADS)
Oltmans, S. J.; Schnell, R. C.; Mefford, T. K.; Neely, R. R., III
2012-12-01
The wintertime cold, reduced sunlight conditions of the mid-latitudes of continental interior locations are normally not considered to be conducive to significant ozone production. Recent observations have shattered this expectation with hourly ozone mixing ratios regularly exceeding 100 ppb measured in January, February and March in the states of Wyoming and Utah in the United States. Maximum daily eight hour average ozone mixing ratios have exceeded 100 ppb, far exceeding the U.S. threshold of 75 ppb. Conditions under which this dramatic ozone production takes place include a mix of high levels of ozone precursors (NOx and VOCs), a very stable and shallow boundary layer, snow cover providing enhanced UV radiation, and air confining terrain features. The high levels of precursors have been tied to oil and gas extraction activities in the affected regions. Under the requisite meteorological conditions where high pressure, low winds, and snow-covered ground are present extremely stable and shallow (~50-200 m) boundary layers persist. The highly reflective snow cover provides enhanced photolysis rates that in February can exceed those in June. For several winters in Utah and Wyoming with large ozone enhancements, the time series of various meteorological (wind, temperature, solar radiation, snow cover) and chemical parameters (ozone and NOx) show a somewhat different progression of high ozone events between the two locations. In the Unitah Basin of Utah high ozone formation conditions are more persistent throughout the winter than in the Pinedale Anticline region of Wyoming. This is likely a function of the differing topography of the two areas. However, for individual events the two sites show a similar progression of rapid ozone formation each day. Sites in both Utah and Wyoming just outside the oil and gas extraction activity areas show little or no enhanced ozone. Winters without the requisite meteorological conditions also do not experience high ozone events.
Removal of dimethyl phthalate from water by ozone microbubbles.
Jabesa, Abdisa; Ghosh, Pallab
2017-08-01
This work investigates the removal of dimethyl phthalate (DMP) from water using ozone microbubbles in a pilot plant of 20 dm 3 capacity. Experiments were performed under various reaction conditions to examine the effects of the initial concentration of DMP, pH of the medium, ozone generation rate, and the role of H 2 O 2 on the removal of DMP. The DMP present in water was effectively removed by the ozone microbubbles. The removal was effective in neutral and alkaline media. Increase in the initial concentration of the target pollutant negatively affected its removal efficiency. The removal efficiency dramatically increased from 1% to 99% when the ozone generation rate was increased from 0.28 to 1.94 mg s -1 at pH 7. The total organic carbon measurements revealed that a complete mineralization of DMP was achieved within 1.8 ks at the high ozone feed rate. The use of t-butyl alcohol as the hydroxyl radical scavenger confirmed that the reaction between the target organic compound and ·OH radical dominated over its direct reaction with ozone. The reaction between DMP and ozone followed an overall second-order kinetics. The volumetric mass transfer coefficient of ozone in the reacting system and the enhancement factor increased with increasing initial concentration of DMP. Very low values of Hatta number were obtained at all initial concentrations of DMP and pH, which show that the mass transfer resistance was small.
NASA Astrophysics Data System (ADS)
Smith-Johnsen, Christine; Orsolini, Yvan; Stordal, Frode; Limpasuvan, Varavut; Pérot, Kristell
2018-03-01
Sudden Stratospheric Warmings (SSW) affect the chemistry and dynamics of the middle atmosphere. Major warmings occur roughly every second winter in the Northern Hemisphere (NH), but has only been observed once in the Southern Hemisphere (SH), during the Antarctic winter of 2002. Observations by the Global Ozone Monitoring by Occultation of Stars (GOMOS, an instrument on board Envisat) during this rare event, show a 40% increase of ozone in the nighttime secondary ozone layer at subpolar latitudes compared to non-SSW years. This study investigates the cause of the mesospheric nighttime ozone increase, using the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model with specified dynamics (SD-WACCM). The 2002 SH winter was characterized by several reductions of the strength of the polar night jet in the upper stratosphere before the jet reversed completely, marking the onset of the major SSW. At the time of these wind reductions, corresponding episodic increases can be seen in the modelled nighttime secondary ozone layer. This ozone increase is attributed largely to enhanced upwelling and the associated cooling of the altitude region in conjunction with the wind reversal. This is in correspondence to similar studies of SSW induced ozone enhancements in NH. But unlike its NH counterpart, the SH secondary ozone layer appeared to be impacted less by episodic variations in atomic hydrogen. Seasonally decreasing atomic hydrogen plays however a larger role in SH compared to NH.
Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model.
Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail
2016-03-07
Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy.
Immobilization of naringin onto chitosan substrates by using ozone activation.
Li, Chung Hsing; Wang, Jing Wei; Ho, Ming Hua; Shih, Jia Lin; Hsiao, Sheng Wen; Thien, Doan Van Hong
2014-03-01
Ozone oxidation can easily produce peroxides containing active free radicals that can be used for the surface modification of biomaterials. This process is highly efficient and nontoxic. In this research, naringin, an HMG-CoA reductase inhibitor that can promote bone formation, was immobilized onto a chitosan film using ozone activation. First, a chitosan film was treated by ozone to produce peroxides; these peroxides were then quantified and their amount was optimized by an iodide assay. For the in vitro delivery of naringin, a chitosan-naringin substrate was immersed in phosphate-buffered saline to quantify the released amount of naringin. It was found that the immobilized naringin was slowly released over the course of two weeks, where its concentration in the medium was controlled by this delivery process. The results of cell culture showed that cell viability and early osteogenic differentiation, as measured by alkaline phosphatase expression, were promoted with the immobilized naringin on chitosan substrates. The expression of osteogenic proteins, including type-I collagen, bone siloprotein, and osteocalcin, were also enhanced. According to the results of Smad1 and Smad6 phosphorylation, immobilized naringin on ozonated chitosan substrates would be able to initiate bone morphogenetic protein-Smad signaling by activating receptor Smad and by suppressing inhibitory Smad. The results in this research demonstrated that the naringin-chitosan substrate produced by biocompatible ozone activation was highly osteoconductive without cytotoxicity. Copyright © 2013 Elsevier B.V. All rights reserved.
Threat to future global food security from climate change and ozone air pollution
NASA Astrophysics Data System (ADS)
Tai, Amos P. K.; Martin, Maria Val; Heald, Colette L.
2014-09-01
Future food production is highly vulnerable to both climate change and air pollution with implications for global food security. Climate change adaptation and ozone regulation have been identified as important strategies to safeguard food production, but little is known about how climate and ozone pollution interact to affect agriculture, nor the relative effectiveness of these two strategies for different crops and regions. Here we present an integrated analysis of the individual and combined effects of 2000-2050 climate change and ozone trends on the production of four major crops (wheat, rice, maize and soybean) worldwide based on historical observations and model projections, specifically accounting for ozone-temperature co-variation. The projections exclude the effect of rising CO2, which has complex and potentially offsetting impacts on global food supply. We show that warming reduces global crop production by >10% by 2050 with a potential to substantially worsen global malnutrition in all scenarios considered. Ozone trends either exacerbate or offset a substantial fraction of climate impacts depending on the scenario, suggesting the importance of air quality management in agricultural planning. Furthermore, we find that depending on region some crops are primarily sensitive to either ozone (for example, wheat) or heat (for example, maize) alone, providing a measure of relative benefits of climate adaptation versus ozone regulation for food security in different regions.
N-fixation in legumes--An assessment of the potential threat posed by ozone pollution.
Hewitt, D K L; Mills, G; Hayes, F; Norris, D; Coyle, M; Wilkinson, S; Davies, W
2016-01-01
The growth, development and functioning of legumes are often significantly affected by exposure to tropospheric ozone (O3) pollution. However, surprisingly little is known about how leguminous Nitrogen (N) fixation responds to ozone, with a scarcity of studies addressing this question in detail. In the last decade, ozone impacts on N-fixation in soybean, cowpea, mung bean, peanut and clover have been shown for concentrations which are now commonly recorded in ambient air or are likely to occur in the near future. We provide a synthesis of the existing literature addressing this issue, and also explore the effects that may occur on an agroecosystem scale by predicting reductions in Trifolium (clovers) root nodule biomass in United Kingdom (UK) pasture based on ozone concentration data for a "high" (2006) and "average" ozone year (2008). Median 8% and 5% reductions in clover root nodule biomass in pasture across the UK were predicted for 2006 and 2008 respectively. Seasonal exposure to elevated ozone, or short-term acute concentrations >100 ppb, are sufficient to reduce N-fixation and/or impact nodulation, in a range of globally-important legumes. However, an increasing global burden of CO2, the use of artificial fertiliser, and reactive N-pollution may partially mitigate impacts of ozone on N-fixation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chappelka, A H; Somers, G L; Renfro, J R
2007-10-01
Incidence and severity of ozone-induced foliar symptoms on tall milkweed (Asclepias exaltata L.) along selected trails in Great Smoky Mountains National Park (GRSM) were determined by two surveys/season conducted from 1992 through 1996. Overall incidence was 73%, and was 84%, 44%, 90%, 58%, and 82% for 1992-1996, respectively for the same clusters. Average incidence was 61% and 84% for the 1st and 2nd surveys, respectively. Seasonal comparisons showed two distinct injury groupings regarding incidence and severity of injury: 1992, 1994 and 1996 (high injury); 1993 and 1995 (low injury). No discernible patterns were observed between symptomatic and asymptomatic plants regarding height, herbivory or flowering. Regression analyses indicated no differentiation in foliar symptoms regarding topographic position, aspect, slope or elevation over the 5-year study period. Our findings indicate other micro-site or genetic factors may control ozone sensitivity of tall milkweed in GRSM.
Lower tropospheric ozone over India and its linkage to the South Asian monsoon
NASA Astrophysics Data System (ADS)
Lu, Xiao; Zhang, Lin; Liu, Xiong; Gao, Meng; Zhao, Yuanhong; Shao, Jingyuan
2018-03-01
Lower tropospheric (surface to 600 hPa) ozone over India poses serious risks to both human health and crops, and potentially affects global ozone distribution through frequent deep convection in tropical regions. Our current understanding of the processes controlling seasonal and long-term variations in lower tropospheric ozone over this region is rather limited due to spatially and temporally sparse observations. Here we present an integrated process analysis of the seasonal cycle, interannual variability, and long-term trends of lower tropospheric ozone over India and its linkage to the South Asian monsoon using the Ozone Monitoring Instrument (OMI) satellite observations for years 2006-2014 interpreted with a global chemical transport model (GEOS-Chem) simulation for 1990-2010. OMI observed lower tropospheric ozone over India averaged for 2006-2010, showing the highest concentrations (54.1 ppbv) in the pre-summer monsoon season (May) and the lowest concentrations (40.5 ppbv) in the summer monsoon season (August). Process analyses in GEOS-Chem show that hot and dry meteorological conditions and active biomass burning together contribute to 5.8 Tg more ozone being produced in the lower troposphere in India in May than January. The onset of the summer monsoon brings ozone-unfavorable meteorological conditions and strong upward transport, which all lead to large decreases in the lower tropospheric ozone burden. Interannually, we find that both OMI and GEOS-Chem indicate strong positive correlations (r = 0.55-0.58) between ozone and surface temperature in pre-summer monsoon seasons, with larger correlations found in high NOx emission regions reflecting NOx-limited production conditions. Summer monsoon seasonal mean ozone levels are strongly controlled by monsoon strengths. Lower ozone concentrations are found in stronger monsoon seasons mainly due to less ozone net chemical production. Furthermore, model simulations over 1990-2010 estimate a mean annual trend of 0.19 ± 0.07 (p value < 0.01) ppbv yr-1 in Indian lower tropospheric ozone over this period, which are mainly driven by increases in anthropogenic emissions with a small contribution (about 7 %) from global methane concentration increases.
The interaction of ozone and nitrogen dioxide in the stratosphere of East Antarctica
NASA Astrophysics Data System (ADS)
Bruchkouski, Ilya; Krasouski, Aliaksandr; Dziomin, Victar; Svetashev, Alexander
2016-04-01
At the Russian Antarctic station "Progress" (S69°23´, E76°23´) simultaneous measurements of trace gases using the MARS-B (Multi-Axis Recorder of Spectra) instrument and PION-UV spectro-radiometer for the time period from 05.01.2014 to 28.02.2014 have been performed. Both instruments were located outdoors. The aim of the measurements was to retrieve the vertical distribution of ozone and nitrogen dioxide in the atmosphere and to study their variability during the period of measurements. The MARS-B instrument, developed at the National Ozone Monitoring Research and Education Centre of the Belarusian State University (NOMREC BSU), successfully passed the procedure of international inter-comparison campaign MAD-CAT 2013 in Mainz, Germany. The instrument is able to record the spectra of scattered sunlight at different elevation angles within a maximum aperture of 1.3°. 12 elevation angles have been used in this study, including the zenith direction. Approximately 7000 spectra per day were registered in the range of 403-486 nm, which were then processed by DOAS technique aiming to retrieve differential slant columns of ozone, nitrogen dioxide and oxygen dimer. Furthermore, total nitrogen dioxide column values have been retrieved employing the Libradtran radiative transfer model. The PION-UV spectro-radiometer, also developed at NOMREC BSU, is able to record the spectra of scattered sunlight from the hemisphere in the range of 280-430 nm. The registered spectra have been used to retrieve the total ozone column values employing the Stamnes method. In this study observational data from both instruments is presented and analyzed. Furthermore, by combining analysis of this data with model simulations it is shown that decreases in nitrogen dioxide content in the upper atmosphere can be associated with increases in total ozone column values and rising of the ozone layer upper boundary. Finally, the time delay between changes in nitrogen dioxide and ozone values is calculated from the observed time series, demonstrating that changes in nitrogen dioxide content cause subsequent changes in the ozone layer. Attempt to explain this phenomenon as influence upper atmosphere on ozone layer is under discussed.
NASA Astrophysics Data System (ADS)
Wang, Yuxuan; Jia, Beixi; Wang, Sing-Chun; Estes, Mark; Shen, Lu; Xie, Yuanyu
2016-12-01
The Bermuda High (BH) quasi-permanent pressure system is the key large-scale circulation pattern influencing summertime weather over the eastern and southern US. Here we developed a multiple linear regression (MLR) model to characterize the effect of the BH on year-to-year changes in monthly-mean maximum daily 8 h average (MDA8) ozone in the Houston-Galveston-Brazoria (HGB) metropolitan region during June, July, and August (JJA). The BH indicators include the longitude of the BH western edge (BH-Lon) and the BH intensity index (BHI) defined as the pressure gradient along its western edge. Both BH-Lon and BHI are selected by MLR as significant predictors (p < 0.05) of the interannual (1990-2015) variability of the HGB-mean ozone throughout JJA, while local-scale meridional wind speed is selected as an additional predictor for August only. Local-scale temperature and zonal wind speed are not identified as important factors for any summer month. The best-fit MLR model can explain 61-72 % of the interannual variability of the HGB-mean summertime ozone over 1990-2015 and shows good performance in cross-validation (R2 higher than 0.48). The BH-Lon is the most important factor, which alone explains 38-48 % of such variability. The location and strength of the Bermuda High appears to control whether or not low-ozone maritime air from the Gulf of Mexico can enter southeastern Texas and affect air quality. This mechanism also applies to other coastal urban regions along the Gulf Coast (e.g., New Orleans, LA, Mobile, AL, and Pensacola, FL), suggesting that the BH circulation pattern can affect surface ozone variability through a large portion of the Gulf Coast.
Lyons, Danielle D; Morrison, Christie; Philibert, Danielle A; Gamal El-Din, Mohamed; Tierney, Keith B
2018-05-07
Due to the increasing volume of oil sands process-affect water (OSPW) and its toxicity to aquatic organisms, it is important to fully understand its effects and study remediation processes that will enable its release to the environment. Ozone treatment is currently being considered as a tool to expedite remediation, as it is known to degrade toxic organic compounds present in OSPW. In this study, we aimed to measure the effects of OSPW exposure on the growth, development and recovery of zebrafish (Danio rerio) embryos. We also used ozone-treated OSPW to determine whether ozonation negated any effects of raw OSPW exposure. As biomarkers of exposure, we assessed the expression of genes involved in neurodevelopment (ngn1, neuroD), estrogenicity (vtg), oxidative stress (sod1), and biotransformation (cyp1a, cyp1b). Our study found that exposure to both raw and ozonated OSPW did not impair growth of zebrafish embryos, however, otoliths of exposed embryos were smaller than those of control embryos. The expression levels of both cyp1a and cyp1b were induced by raw OSPW exposure. However, after the exposure period, expression levels of these genes returned to control levels within two days of residence in clean water. We found no changes in the expression levels of ngn1, neuroD and vtg genes with exposure to treated or untreated OSPW. Overall, our study found that raw OSPW exposure did not have many negative effects on zebrafish embryos and embryos appeared to recover relatively quickly after exposure ended. Furthermore, ozone treatment decreased the induction of cyp1a and cyp1b. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhang, Lei; Zhang, Yanyan; Gamal El-Din, Mohamed
2018-04-15
In this study, a fixed-bed biofiltration system (biofilter) that utilized indigenous microorganisms was developed for the reclamation of oil sands process-affected water (OSPW). With the assistance of quantitative polymerase chain reaction (qPCR) and confocal laser scanning microscopy (CLSM), indigenous microorganisms from OSPW were able to attach to the surface of sand media and form biofilms. The number of total bacteria on the biofilter media reached a steady state (10 9 /g) after 23 days of operation. Ultra Performance Liquid Chromatography/High Resolution Mass Spectrometry (UPLC/HRMS) analysis showed that 21.8% of the classical naphthenic acids (NAs) removal was achieved through the circulation of raw OSPW on the biofilter for 8 times (equivalent to a hydraulic retention time of 16 h). When ozonation with utilized ozone dose of 30 mg/L was applied as pretreatment, the classical NAs in the ozonated OSPW were removed by 89.3% with an accelerated biodegradation rate of 0.5 mg/L/h. Compared with other biofilm reactors such as moving bed biofilm reactor (MBBR), ozonation pretreatment could benefit the biodegradation of NAs in the biofilter more (classical NA removal: 89.3% vs. 34.4%), especially for those with high carbon number and cyclicity. The combined ozonation-biofiltration process could remove 92.7% of classical NAs from raw OSPW in 16 h. Although both ozonation and biofiltration alone did not show degradation of oxidized NAs from raw OSPW, the combined process led to a 52.9% and 42.6% removal for O 3 -NAs and O 4 -NAs, respectively, which were the dominant oxidized NA species in OSPW. Metagenomic sequencing analysis showed that Rhodococcus was the dominant bacterial genus on the sand media, which may play a crucial role during the NA biodegradation. With the advantage of high NA removal efficiency, the combined ozonation-biofiltration process is a promising approach for NA degradation and shows high potential to be scaled up for in-situ OSPW treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hernández-Zimbrón, L F; Rivas-Arancibia, S
2015-09-24
Oxidative stress is a major risk factor for Alzheimer's disease (AD) that has been suggested to be the trigger of AD pathology. However, whether oxidative damage precedes and contributes directly to the intracellular accumulation of beta amyloid 1-42 (βA42) peptide remains a matter of debate. Chronic exposure to low doses of ozone similar to the levels during a day of high pollution in México City causes a state of oxidative stress that elicits progressive neurodegeneration in the hippocampi of rats. Several reports have demonstrated that the mitochondria are among the first organelles to be affected by oxidative stress and βA42 toxicity and act as sites of the accumulation of βA42, which affects energy metabolism. However, the mechanisms related to the neurodegeneration process and organelle damage that occur in conditions of chronic exposure to low doses of ozone have not been demonstrated. To analyze the effect of chronic ozone chronic exposure on changes in the production and accumulation of the βA42 and βA40 peptides in the mitochondria of hippocampal neurons of rats exposed to ozone, we examined the mitochondrial expression levels of Presenilins 1 and 2 and ADAM10 to detect changes related to the oxidative stress caused by low doses of ozone (0.25ppm). The results revealed significant accumulations of βA42 peptide in the mitochondrial fractions on days 60 and 90 of ozone exposure along with reductions in beta amyloid 1-40 accumulation, significant overexpressions of Pres2 and significant reductions in ADAM10 expression. Beta amyloid immunodetection revealed that there were some intracellular deposits of βA42 and that βA42 and the mitochondrial markers OPA1 and COX1 colocalized. These results indicate that the time of exposure to ozone and the accumulation of βA42 in the mitochondria of the hippocampal cells of rats were correlated. Our results suggest that the accumulation of the βA42 peptide may promote mitochondrial dysfunction due to its accumulation and overproduction. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Traditional toxicological paradigms have relied on factors such as age, genotype, and disease status to explain variability in responsiveness to toxicant exposure; however, these are neither sufficient to faithfully identify differentially responsive individuals nor are they modi...
Alternative Fuels Tests on a C-17 Aircraft: Emissions Characteristics
2010-12-01
Chamber DMA Differential Mobility Analyzer DNPH Dinitrophenylhydrazine EC Elemental Carbon EIn Particle Number Emission Index EIm...flows at 2 SLPM for five minutes through an ozone scrubber and then through a silica gel cartridge treated with 2,4- dinitrophenylhydrazine (DNPH). The
Impact of rising greenhouse gas concentrations on future tropical ozone and UV exposure
NASA Astrophysics Data System (ADS)
Meul, Stefanie; Dameris, Martin; Langematz, Ulrike; Abalichin, Janna; Kerschbaumer, Andreas; Kubin, Anne; Oberländer-Hayn, Sophie
2016-03-01
Future projections of tropical total column ozone (TCO) are challenging, as its evolution is affected not only by the expected decline of ozone depleting substances but also by the uncertain increase of greenhouse gas (GHG) emissions. To assess the range of tropical TCO projections, we analyze simulations with a chemistry-climate model forced by three different GHG scenarios (Representative Concentration Pathway (RCP) 4.5, RCP6.0, and RCP8.5). We find that tropical TCO will be lower by the end of the 21st century compared to the 1960s in all scenarios with the largest decrease in the medium RCP6.0 scenario. Uncertainties of the projected TCO changes arise from the magnitude of stratospheric column decrease and tropospheric ozone increase which both strongly vary between the scenarios. In the three scenario simulations the stratospheric column decrease is not compensated by the increase in tropospheric ozone. The concomitant increase in harmful ultraviolet irradiance reaches up to 15% in specific regions in the RCP6.0 scenario.
The seasonality and geographic dependence of ENSO impacts on U.S. surface ozone variability
NASA Astrophysics Data System (ADS)
Xu, Li; Yu, Jin-Yi; Schnell, Jordan L.; Prather, Michael J.
2017-04-01
We examine the impact of El Niño-Southern Oscillation (ENSO) on surface ozone abundance observed over the continental United States (U.S.) during 1993-2013. The monthly ozone decreases (increases) during El Niño (La Niña) years with amplitude up to 1.8 ppb per standard deviation of Niño 3.4 index. The largest ENSO influences occur over two southern U.S. regions during fall when the ENSO develops and over two western U.S. regions during the winter to spring after the ENSO decays. ENSO affects surface ozone via chemical processes during warm seasons in southern regions, where favorable meteorological conditions occur, but via dynamic transport during cold seasons in western regions, where the ENSO-induced circulation variations are large. The geographic dependence and seasonality of the ENSO impacts imply that regulations regarding air quality and its exceedance need to be adjusted for different seasons and U.S. regions to account for the ENSO-driven patterns in surface ozone.
Coupling Processes Between Atmospheric Chemistry and Climate
NASA Technical Reports Server (NTRS)
Ko, Malcolm; Weisenstein, Debra; Rodriquez, Jose; Danilin, Michael; Scott, Courtney; Shia, Run-Lie; Eluszkiewicz, Janusz; Sze, Nien-Dak; Stewart, Richard W. (Technical Monitor)
1999-01-01
This is the final report for NAS5-97039 for work performed between December 1996 and November 1999. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.
Effect of shipping emissions on European ground-level ozone
NASA Astrophysics Data System (ADS)
Stergiou, Ioannis; -Eleni Sotiropoulou, Rafaella; Tagaris, Efthimios
2017-04-01
Shipping emissions contribution to the global nitrogen oxides emissions is about 15%, affecting ozone formation and the chemical composition of the atmosphere. The objective of this study is to assess the impact of shipping emissions on ozone levels over Europe suggesting regions where air quality degradation due to shipping emissions dominates against the rest of the anthropogenic source emissions. Ranking the importance of the Standard Nomenclature for Air Pollution (SNAP) categories on ozone mixing ratio, road transport has the major impact followed by other mobile sources, power generation, and industrial combustion sectors. All other sectors have a minor impact, therefor, our analysis is focused on these four emission categories. Results suggest that shipping emissions seem to play an important role on ozone levels compared to road transport sector near the coastal zone, while they could partly offset the benefits from the emissions reduction of other mobile sources, power generation and industrial combustion sources, over a great part of the European land.
NASA Astrophysics Data System (ADS)
Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; McQueen, J.; Tang, Y.; Langel, T.; McKeen, S.; Williams, E. J.; Brown, S. S.
2015-05-01
Air quality forecast models typically predict large summertime ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline differential optical absorption spectroscopy (DOAS) observations in southeastern Wisconsin and as predicted by the Community Multiscale Air Quality (CMAQ) model. From 2008 to 2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008 to 2010 measurements of ambient ozone were conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI, and Muskegon, MI, up to six times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha, with little dependence on position of the ferry or temperature and with greatest differences during evening and night. Concurrent 1-48 h forecasts from the CMAQ model in the upper Midwestern region surrounding Lake Michigan were compared to ferry ozone measurements, shoreline DOAS measurements and Environmental Protection Agency (EPA) station measurements. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. Trends in the bias with respect to location and time of day were explored showing non-uniformity in model bias over the lake. Model ozone bias was consistently high over the lake in comparison to land-based measurements, with highest biases for 25-48 h after initialization.
NASA Astrophysics Data System (ADS)
Xing, Chengzhi; Liu, Cheng; Wang, Shanshan; Chan, Ka Lok; Gao, Yang; Huang, Xin; Su, Wenjing; Zhang, Chengxin; Dong, Yunsheng; Fan, Guangqiang; Zhang, Tianshu; Chen, Zhenyi; Hu, Qihou; Su, Hang; Xie, Zhouqing; Liu, Jianguo
2017-12-01
Ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) and lidar measurements were performed in Shanghai, China, during May 2016 to investigate the vertical distribution of summertime atmospheric pollutants. In this study, vertical profiles of aerosol extinction coefficient, nitrogen dioxide (NO2) and formaldehyde (HCHO) concentrations were retrieved from MAX-DOAS measurements using the Heidelberg Profile (HEIPRO) algorithm, while vertical distribution of ozone (O3) was obtained from an ozone lidar. Sensitivity study of the MAX-DOAS aerosol profile retrieval shows that the a priori aerosol profile shape has significant influences on the aerosol profile retrieval. Aerosol profiles retrieved from MAX-DOAS measurements with Gaussian a priori profile demonstrate the best agreements with simultaneous lidar measurements and vehicle-based tethered-balloon observations among all a priori aerosol profiles. Tropospheric NO2 vertical column densities (VCDs) measured with MAX-DOAS show a good agreement with OMI satellite observations with a Pearson correlation coefficient (R) of 0.95. In addition, measurements of the O3 vertical distribution indicate that the ozone productions do not only occur at surface level but also at higher altitudes (about 1.1 km). Planetary boundary layer (PBL) height and horizontal and vertical wind field information were integrated to discuss the ozone formation at upper altitudes. The results reveal that enhanced ozone concentrations at ground level and upper altitudes are not directly related to horizontal and vertical transportation. Similar patterns of O3 and HCHO vertical distributions were observed during this campaign, which implies that the ozone productions near the surface and at higher altitudes are mainly influenced by the abundance of volatile organic compounds (VOCs) in the lower troposphere.
Ozone Observations by the Gas and Aerosol Measurement Sensor during SOLVE II
NASA Technical Reports Server (NTRS)
Pitts, M. C.; Thomason, L. W.; Zawodny, J. M.; Wenny, B. N.; Livingston, J. M.; Russell, P. B.; Yee, J.-H.; Swartz, W. H.; Shetter, R. E.
2006-01-01
The Gas and Aerosol Measurement Sensor (GAMS) was deployed aboard the NASA DC-8 aircraft during the second SAGE III Ozone Loss and Validation Experiment (SOLVE II). GAMS acquired line-of-sight (LOS) direct solar irradiance spectra during the sunlit portions of ten science flights of the DC-8 between 12 January and 4 February 2003. Differential line-of-sight (DLOS) optical depth spectra are produced from the GAMS raw solar irradiance spectra. Then, DLOS ozone number densities are retrieved from the GAMS spectra using a multiple linear regression spectral fitting technique. Both the DLOS optical depth spectra and retrieved ozone data are compared with coincident measurements from two other solar instruments aboard the DC-8 platform to demonstrate the robustness and stability of the GAMS data. The GAMS ozone measurements are then utilized to evaluate the quality of the Wulf band ozone cross sections, a critical component of the SAGE III aerosol, water vapor, and temperature/pressure retrievals. Results suggest the ozone cross section compilation of Shettle and Anderson currently used operationally in SAGE III data processing may be in error by as much as 10-20% in theWulf bands, and their lack of reported temperature dependence is a significant deficiency. A second, more recent, cross section database compiled for the SCIAMACHY satellite mission appears to be of much better quality in the Wulf bands, but still may have errors as large as 5% near the Wulf band absorption peaks, which is slightly larger than their stated uncertainty. Additional laboratory measurements of the Wulf band cross sections should be pursued to further reduce their uncertainty and better quantify their temperature dependence.
Snow, Samantha J; Cheng, Wan-Yun; Henriquez, Andres; Hodge, Myles; Bass, Virgina; Nelson, Gail M; Carswell, Gleta; Richards, Judy E; Schladweiler, Mette C; Ledbetter, Allen D; Chorley, Brian; Gowdy, Kymberly M; Tong, Haiyan; Kodavanti, Urmila P
2018-05-01
Fish, olive, and coconut oil dietary supplementation have several cardioprotective benefits, but it is not established if they protect against air pollution-induced adverse effects. We hypothesized that these dietary supplements would attenuate ozone-induced systemic and pulmonary effects. Male Wistar Kyoto rats were fed either a normal diet, or a diet supplemented with fish, olive, or coconut oil for 8 weeks. Animals were then exposed to air or ozone (0.8 ppm), 4 h/day for 2 days. Ozone exposure increased phenylephrine-induced aortic vasocontraction, which was completely abolished in rats fed the fish oil diet. Despite this cardioprotective effect, the fish oil diet increased baseline levels of bronchoalveolar lavage fluid (BALF) markers of lung injury and inflammation. Ozone-induced pulmonary injury/inflammation were comparable in rats on normal, coconut oil, and olive oil diets with altered expression of markers in animals fed the fish oil diet. Fish oil, regardless of exposure, led to enlarged, foamy macrophages in the BALF that coincided with decreased pulmonary mRNA expression of cholesterol transporters, cholesterol receptors, and nuclear receptors. Serum microRNA profile was assessed and demonstrated marked depletion of a variety of microRNAs in animals fed the fish oil diet, several of which were of splenic origin. No ozone-specific changes were noted. Collectively, these data indicate that although fish oil offered vascular protection from ozone exposure, it increased pulmonary injury/inflammation and impaired lipid transport mechanisms resulting in foamy macrophage accumulation, demonstrating the need to be cognizant of potential off-target pulmonary effects that might offset the overall benefit of this vasoprotective supplement.
Comparison of laser and ozone treatments on oral mucositis in an experimental model.
Bayer, Suzan; Kazancioglu, Hakki Oguz; Acar, Ahmet Hüseyin; Demirtas, Nihat; Kandas, Nur Ozten
2017-04-01
Oral mucositis (OM) induces severe pain and limits fundamental life behaviors such as eating, drinking, and talking for patients receiving chemotherapy or radiotherapy. In addition, through opportunistic microorganisms, OM frequently leads to systemic infection which then leads to prolonged hospitalization. Severe lesions often adversely affect curative effects in cancer cases. Therefore, the control of OM is important for oral health quality of life and prognosis. Low-level laser therapy (LLLT) and ozone may be useful to accelerate wound healing. In this study, 24 Sprague-Dawley rats were divided into three groups as control, ozone, and laser groups. All groups received 5-fluorouracil intraperitoneally and trauma to the mouth pouch with a needle. After the formation of OM in the mouth, the control group had no treatment; the ozone group was administered ozone, and the laser group, LLLT. Then, all groups were sacrificed and basic fibroblast growth factor (bFGF), transforming growth factor (TGF-β), and platelet-derived growth factor (PDGF) were evaluated in all groups. LLLT was determined to be statistically significantly more effective than ozone on FGF and PDGF. However, in respect of TGF-β, no statistically significant difference was observed between the groups. In conclusion, within the limitations of this study, LLLT is more effective than ozone. However, further studies on this subject are required.
NASA Technical Reports Server (NTRS)
Fisher, Donald A.; Hales, Charles H.; Filkin, David L.; Ko, Malcolm K. W.; Sze, N. Dak; Connell, Peter S.; Wuebbles, Donald J.; Isaksen, Ivar S. A.; Stordal, Frode
1990-01-01
Four atmospheric modeling groups have calculated relative effects of several halocarbons (chlorofluorocarbons (CFC's)-11, 12, 113, 114, and 115; hydrochlorofluorocarbons (HCFC's) 22, 123, 124, 141b, and 142b; hydrofluorocarbons (HFC's) 125, 134a, 143a, and 152a, carbon tetrachloride; and methyl chloroform) on stratospheric ozone. Effects on stratospheric ozone were calculated for each compound and normalized relative to the effect of CFC-11. These models include the representations for homogeneous physical and chemical processes in the middle atmosphere but do no account for either heterogeneous chemistry or polar dynamics which are important in the spring time loss of ozone over Antarctica. Relative calculated effects using a range of models compare reasonably well. Within the limits of the uncertainties of these model results, compounds now under consideration as functional replacements for fully halogenated compounds have modeled stratospheric ozone reductions of 10 percent or less of that of CFC-11. Sensitivity analyses examined the sensitivity of relative calculated effects to levels of other trace gases, assumed transport in the models, and latitudinal and seasonal local dependencies. Relative effects on polar ozone are discussed in the context of evolving information on the special processes affecting ozone, especially during polar winter-springtime. Lastly, the time dependency of relative effects were calculated.
Nath, Debashis; Chen, Wen; Graf, Hans-F; Lan, Xiaoqing; Gong, Hainan; Nath, Reshmita; Hu, Kaiming; Wang, Lin
2016-02-12
Drawn from multiple reanalysis datasets, an increasing trend and westward shift in the number of Potential Vorticity intrusion events over the Pacific are evident. The increased frequency can be linked to a long-term trend in upper tropospheric equatorial westerly wind and subtropical jets during boreal winter to spring. These may be resulting from anomalous warming and cooling over the western Pacific warm pool and the tropical eastern Pacific, respectively. The intrusions brought dry and ozone rich air of stratospheric origin deep into the tropics. In the tropical upper troposphere, interannual ozone variability is mainly related to convection associated with El Niño/Southern Oscillation. Zonal mean stratospheric overturning circulation organizes the transport of ozone rich air poleward and downward to the high and midlatitudes leading there to higher ozone concentration. In addition to these well described mechanisms, we observe a long-term increasing trend in ozone flux over the northern hemispheric outer tropical (10-25°N) central Pacific that results from equatorward transport and downward mixing from the midlatitude upper troposphere and lower stratosphere during PV intrusions. This increase in tropospheric ozone flux over the Pacific Ocean may affect the radiative processes and changes the budget of atmospheric hydroxyl radicals.
Optical Band Gap Alteration of Graphene Oxide via Ozone Treatment.
Hasan, Md Tanvir; Senger, Brian J; Ryan, Conor; Culp, Marais; Gonzalez-Rodriguez, Roberto; Coffer, Jeffery L; Naumov, Anton V
2017-07-25
Graphene oxide (GO) is a graphene derivative that emits fluorescence, which makes GO an attractive material for optoelectronics and biotechnology. In this work, we utilize ozone treatment to controllably tune the band gap of GO, which can significantly enhance its applications. Ozone treatment in aqueous GO suspensions yields the addition/rearrangement of oxygen-containing functional groups suggested by the increase in vibrational transitions of C-O and C=O moieties. Concomitantly it leads to an initial increase in GO fluorescence intensity and significant (100 nm) blue shifts in emission maxima. Based on the model of GO fluorescence originating from sp 2 graphitic islands confined by oxygenated addends, we propose that ozone-induced functionalization decreases the size of graphitic islands affecting the GO band gap and emission energies. TEM analyses of GO flakes confirm the size decrease of ordered sp 2 domains with ozone treatment, whereas semi-empirical PM3 calculations on model addend-confined graphitic clusters predict the inverse dependence of the band gap energies on sp 2 cluster size. This model explains ozone-induced increase in emission energies yielding fluorescence blue shifts and helps develop an understanding of the origins of GO fluorescence emission. Furthermore, ozone treatment provides a versatile approach to controllably alter GO band gap for optoelectronics and bio-sensing applications.
Field responses of Prunus serotina and Asclepias syriaca to ozone around southern Lake Michigan
Bennett, J.P.; Jepsen, E.A.; Roth, J.A.
2006-01-01
Higher ozone concentrations east of southern Lake Michigan compared to west of the lake were used to test hypotheses about injury and growth effects on two plant species. We measured approximately 1000 black cherry trees and over 3000 milkweed stems from 1999 to 2001 for this purpose. Black cherry branch elongation and milkweed growth and pod formation were significantly higher west of Lake Michigan while ozone injury was greater east of Lake Michigan. Using classification and regression tree (CART) analyses we determined that departures from normal precipitation, soil nitrogen and ozone exposure/peak hourly concentrations were the most important variables affecting cherry branch elongation, and milkweed stem height and pod formation. The effects of ozone were not consistently comparable with the effects of soil nutrients, weather, insect or disease injury, and depended on species. Ozone SUM06 exposures greater than 13 ppm-h decreased cherry branch elongation 18%; peak 1-h exposures greater than 93 ppb reduced milkweed stem height 13%; and peak 1-h concentrations greater than 98 ppb reduced pod formation 11% in milkweed. Decreased cherry branch elongation, milkweed stem height and pod production, and foliar injury on both species occurred at sites around southern Lake Michigan at ozone exposures of 13 SUM06 ppm-h and 93a??98 ppb peak hourly.
Rapid Transport of Stratospheric Ozone into the Planetary Boundary Layer over the Rocky Mountains
NASA Astrophysics Data System (ADS)
Skerlak, B.; Sprenger, M.; Pfahl, S.; Wernli, H.
2013-12-01
Stratosphere-troposphere exchange (STE) has important impacts on atmospheric chemistry: it changes the oxidative capacity of the troposphere and affects the climate system through the exchange of water vapor and ozone. Although a large part of tropospheric ozone is produced photochemically, significant amounts of stratospheric ozone can be brought into the troposphere during STE events. The relative importance of these two sources depends on the location of interest and transport characteristics. Of particular interest are so-called deep exchange events where ozone-rich stratospheric air reaches the planetary boundary layer (PBL) within a few days (deep STT). This rapid vertical transport can contribute to ozone concentrations at ground level which can impair plant and human physiology. It is therefore not only important to quantify the ozone flux across the tropopause but also to investigate the transport pathways after the crossing to identify affected areas at ground. Using a Lagrangian methodology and 33 years of ERA-Interim reanalysis data, we have compiled a global climatology of STE from which the mountainous areas in western North America can be identified as a 'hot spot' of deep STT, especially in boreal spring. To address the question of how the stratospheric air masses are transported into the PBL in more detail, we investigate case studies in this region with the mesoscale numerical weather prediction model COSMO. On this account, we initialize a passive tracer in the stratosphere using an elaborated 3D-labeling algorithm which applies the dynamical 2 pvu/380 K tropopause definition. This tracer is then advected by both resolved and parameterized processes and allows us to follow the stratospheric air masses along their journey into the mountainous PBL. Although this tracer does not directly represent a specific chemical species, its concentrations at the lowest model level can indicate when and where ozone levels at ground are likely to be influenced by the stratosphere. Concentration of a passive tracer (initialized in the stratosphere) at the lowest model level (10 m above ground) on May 3rd 00 UTC 2006. Around this time, increased levels of surface ozone (peaks up to 89 ppbv) were measured at Yellowstone National Park (YEL) in Wyoming. Contours indicate the geopotential at 500 hPa and show that the tracer is brought down from the stratosphere in the vicinity of a cyclone located to the northeast of YEL at this time.
Direct EPP Affects on the Middle Atmosphere
NASA Technical Reports Server (NTRS)
Jackman, Charles H.
2011-01-01
Energetic precipitating particles (EPPs) can cause significant direct constituent changes in the mesosphere and stratosphere (middle atmosphere) during certain periods. Both protons and electrons can influence the polar middle atmosphere through ionization and dissociation processes. EPPs can enhance HOx (H, OH, HO2) through the formation of positive ions followed by complex ion chemistry and NOx (N, NO, NO2) through the dissociation of molecular nitrogen. The HOx increases result in direct ozone destruction in the mesosphere and upper stratosphere via several catalytic loss cycles. Such middle atmospheric HOx-caused ozone loss is rather short-lived due to the relatively short lifetime (hours) of the HOx constituents. The NOx family has a considerably longer lifetime than the HOx family and can also lead to catalytic ozone destruction. EPP-caused enhancements of the NOx family can affect ozone directly, if produced in the stratosphere. Ozone decreases from the EPPs lead to a reduction in atmospheric heating and, subsequent atmospheric cooling. Conversely, EPPs can cause direct atmospheric heating through Joule heating. Measured HOx constituents OH and HO2 showed increases due to solar protons. Observed NOx constituents NO and NO2 were enhanced due to both solar protons and precipitating electrons. Other hydrogen- and nitrogen-ocntaining constituents were also measured to be directly influenced by EPPs, including N2O, HNO3, HO2NO2, N2OS, H2O2, ClONO2, HCl, and HOCl. Observed constituents ClO and CO were directly affected by EPPs as well. Many measurements indicated significant direct ozone decreases. A significant number of satellites housed instruments, which observed direct EPP-caused atmospheric effects, including Nimbus 4 (BUV), Nimbus 7 (SBUV), several NOAA platforms (SBUV/2), SME, UARS (HALOE, CLAES), SCISAT-1 (ACE-FTS), Odin (OSIRIS), Envisat-l (GOMOS, MIPAS, SCIAMACHY), and Aura (MLS). Measurements by rockets and ground-based radar also indicated EPP direct impacts. Atmospheric models have been used with some success in predicting the direct EPP impacts on the mesosphere and stratosphere. A review of the observed direct effects of EPP on the middle atmosphere will be given in this presentation.
Ozone adsorption on carbon nanoparticles
NASA Astrophysics Data System (ADS)
Chassard, Guillaume; Gosselin, Sylvie; Visez, Nicolas; Petitprez, Denis
2014-05-01
Carbonaceous particles produced by incomplete combustion or thermal decomposition of hydrocarbons are ubiquitous in the atmosphere. On these particles are adsorbed hundreds of chemical species. Those of great concern to health are polycyclic aromatic hydrocarbons (PAHs). During atmospheric transport, particulate PAHs react with gaseous oxidants. The induced chemical transformations may change toxicity and hygroscopicity of these potentially inhalable particles. The interaction between ozone and carbon particles has been extensively investigated in literature. However ozone adsorption and surface reaction mechanisms are still ambiguous. Some studies described a fast catalytic decomposition of ozone initiated by an atomic oxygen chemisorption followed by a molecular oxygen release [1-3]. Others suggested a reversible ozone adsorption according to Langmuir-type behaviour [4,5]. The aim of this present study is a better understanding of ozone interaction with carbon surfaces. An aerosol of carbon nanoparticles was generated by flowing synthetic air in a glass tube containing pure carbon (primary particles < 50 nm), under magnetic stirring. The aerosol was then mixed with ozone in an aerosol flow tube. Ozone uptake experiments were performed with different particles concentrations with a fixed ozone concentration. The influence of several factors on kinetics was examined: initial ozone concentration, particle size (50 nm ≤ Dp ≤ 200 nm) and competitive adsorption (with probe molecule and water). The effect of initial ozone concentration was first studied. Accordingly to literature, it has been observed that the number of gas-phase ozone molecules lost per unit particle surface area tends towards a plateau for high ozone concentration suggesting a reversible ozone adsorption according to a Langmuir mechanism. We calculated the initial reaction probability between O3 and carbon particles.An initial uptake coefficient of 1.10-4 was obtained. Similar experiments were realized by selecting the particles size with a differential mobility analyser. We observed a strong size-dependent increase in reactivity with the decrease of particles size. This result is relevant for the health issues. Indeed the smallest particles are most likely to penetrate deep into the lungs. Competitive reactions between ozone and other species like H2O or atomic oxygen were also considered. Oxygen atoms were generated by photolysis of O3 (or O2) and were chosen because it is believed to form the same reactive oxygen intermediates than ozone. A weak water physisorption on soot was observed revealing hydrophobic properties of particles. Oxygen atoms were found to be strongly reactive. A Langmuir behavior was observed for oxygen atoms adsorption on carbon particles and we were able to determine an initial uptake coefficient of approximately 2.10-2. [1] Fenidel, W., et al., Interaction between carbon or iron aerosol particles and ozone. Atmospheric Environment, 1995. 29(9): p. 967-973. [2] Smith, D. and A. Chughtai, Reaction kinetics of ozone at low concentrations with n-hexane soot. Journal of geophysical research, 1996. 101(D14): p. 19607-19,620. [3] Kamm, S., et al., The heterogeneous reaction of ozone with soot aerosol. Atmospheric Environment, 1999. 33(28): p. 4651-4661. [4] Stephens, S., M.J. Rossi, and D.M. Golden, The heterogeneous reaction of ozone on carbonaceous surfaces. International journal of chemical kinetics, 1986. 18(10): p. 1133-1149. [5] Pöschl, U., et al., Interaction of ozone and water vapor with spark discharge soot aerosol particles coated with benzo [a] pyrene: O3 and H2O adsorption, benzo [a] pyrene degradation, and atmospheric implications. The Journal of Physical Chemistry A, 2001. 105(16): p. 4029-4041.
NASA Astrophysics Data System (ADS)
Wolfram, E. A.; Salvador, J.; Orte, F.; D'Elia, R.; Godin-Beekmann, S.; Kuttippurath, J.; Pazmiño, A.; Goutail, F.; Casiccia, C.; Zamorano, F.; Paes Leme, N.; Quel, E. J.
2012-10-01
Record-low ozone column densities (with a minimum of 212 DU) persisted over three weeks at the Río Gallegos NDACC (Network for the Detection of Atmospheric Composition Change) station (51.5° S, 69.3° W) in November 2009. Total ozone remained two standard deviations below the climatological mean for five consecutive days during this period. The statistical analysis of 30 years of satellite data from the Multi Sensor Reanalysis (MSR) database for Río Gallegos revealed that such a long-lasting low-ozone episode is a rare occurrence. The event is examined using height-resolved ozone lidar measurements at Río Gallegos, and observations from satellite and ground-based instruments. The computed relative difference between the measured total ozone and the climatological monthly mean shows reductions varying between 10 and 30% with an average decrease of 25%. The mean absolute difference of total ozone column with respect to climatological monthly mean ozone column is around 75 DU. Extreme values of the UV index (UVI) were measured at the ground for this period, with the daily maximum UVI of around 13 on 15 and 28 November. The high-resolution MIMOSA-CHIM (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection) model was used to interpret the ozone depletion event. An ozone decrease of about 2 ppmv was observed in mid-November at the 550 K isentropic level (~22 km). The position of Río Gallegos relative to the polar vortex was classified using equivalent latitude maps. During the second week of November, the vortex was over the station at all isentropic levels, but after 20 November and until the end of the month, only the 10 lower levels in the stratosphere were affected by vortex overpasses with ozone poor air masses. A rapid recovery of the ozone column density was observed later, due to an ozone rich filament moving over Río Gallegos between 18 and 24 km in the first two weeks of December 2009.
Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.
Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich
2003-03-01
Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an additional ethylene independent signalling pathway for ozone-induced expression of genes involved in phytoalexin biosynthesis.
Ozone treatment of shell eggs to preserve functional quality and enhance shelf life during storage.
Yüceer, Muhammed; Aday, Mehmet Seçkin; Caner, Cengiz
2016-06-01
Eggs have long been recognised as a source of high-quality proteins. Many methods exist to extend shelf life of food and one of them is ozone treatment, which is an emerging technology for disinfecting surfaces in the food industry. This study aimed to extend the shelf life of fresh eggs using gaseous ozone treatments at concentrations of 2, 4 and 6 ppm with exposure times of 2 and 5 min during storage for 6 weeks at 24 °C. The effect of the treatments on interior quality and functional properties of eggs is also reported. Ozone concentration and exposure time significantly affected the Haugh unit (HU), yolk index, albumen pH, relative whipping capacity (RWC), and albumen viscosity of eggs during the storage. Control eggs had the highest albumen pH and lowest albumen viscosity. Attributes such as albumen pH and RWC of eggs exposed to ozone treatments were better than the control samples. The measurement results showed that ozone concentration at 6 ppm and exposure time of 5 min can be applied to fresh eggs and extend shelf life up to 6 weeks at 24 °C storage period. Ozone treatments helped to maintain egg quality for a longer time. Ozone concentrations at 2 and 4 ppm showed promising results in maintaining internal quality and functional properties of fresh eggs during storage. Ozone at high concentration (6 ppm) caused a detrimental effect on eggshell quality. As a result, this study demonstrated that ozone treatments of 2, and especially 4 and 6 ppm concentration maintained eggshell quality during the storage. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Liu, Yin; Zhang, Wei
2016-12-01
This study develops a proper way to incorporate Atmospheric Infrared Sounder (AIRS) ozone data into the bogus data assimilation (BDA) initialization scheme for improving hurricane prediction. First, the observation operator at some model levels with the highest correlation coefficients is established to assimilate AIRS ozone data based on the correlation between total column ozone and potential vorticity (PV) ranging from 400 to 50 hPa level. Second, AIRS ozone data act as an augmentation to a BDA procedure using a four-dimensional variational (4D-Var) data assimilation system. Case studies of several hurricanes are performed to demonstrate the effectiveness of the bogus and ozone data assimilation (BODA) scheme. The statistical result indicates that assimilating AIRS ozone data at 4, 5, or 6 model levels can produce a significant improvement in hurricane track and intensity prediction, with reasonable computation time for the hurricane initialization. Moreover, a detailed analysis of how BODA scheme affects hurricane prediction is conducted for Hurricane Earl (2010). It is found that the new scheme developed in this study generates significant adjustments in the initial conditions (ICs) from the lower levels to the upper levels, compared with the BDA scheme. With the BODA scheme, hurricane development is found to be much more sensitive to the number of ozone data assimilation levels. In particular, the experiment with the assimilation of AIRS ozone data at proper number of model levels shows great capabilities in reproducing the intensity and intensity changes of Hurricane Earl, as well as improve the track prediction. These results suggest that AIRS ozone data convey valuable meteorological information in the upper troposphere, which can be assimilated into a numerical model to improve hurricane initialization when the low-level bogus data are included.
NASA Astrophysics Data System (ADS)
Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.
2016-12-01
The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9-2497-2016, 2016. WMO 2014: Pawson, S., Steinbrecht, W. et al.: Update on global ozone: Past, present, and future, Chapter 2 in: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project - Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.
Differential regulation of the lung endothelin system by urban particulate matter and ozone.
Thomson, Errol; Kumarathasan, Prem; Goegan, Patrick; Aubin, Rémy A; Vincent, Renaud
2005-11-01
Periodic elevation of ambient particulate matter and ozone levels is linked to acute cardiac morbidity and mortality. Increased plasma levels of the potent vasoconstrictor endothelin (ET)-1, a prognostic indicator of cardiac mortality, have been detected in both animal models and humans after exposure to air pollutants. The lungs are the primary source of circulating ET-1, but the direct effects of individual air pollutants and their interaction in modulating the pulmonary endothelin system are unknown. Fischer-344 rats were exposed to particles (0, 5, 50 mg/m3 EHC-93), ozone (0, 0.4, 0.8 ppm), or combinations of particles and ozone for 4 h. Changes in gene expression were measured using real-time reverse transcription polymerase chain reaction immediately after exposure and following 24 h recovery in clean air. Both pollutants individually increased preproET-1, endothelin converting enzyme-1, and endothelial nitric oxide synthase mRNA levels in the lungs shortly after exposure, consistent with the concomitant increase in plasma of the 21 amino acid ET-1[1-21] peptide measured by HPLC-fluorescence. PreproET-1 mRNA remained elevated 24 h after exposure to particles but not after ozone, in line with previously documented changes of the peptide in plasma. Both pollutants transiently increased endothelin-B receptor mRNA expression, while ozone decreased endothelin-A receptor mRNA levels. Coexposure to particles plus ozone increased lung preproET-1 mRNA but not plasma ET-1[1-21], suggesting alternative processing or degradation of endothelins. This coincided with an increase in the lungs of matrix metalloproteinase-2 (MMP-2), an enzyme that cleaves bigET-1 to ET-1[1-32]. Taken together, our data indicate that ozone and particulate matter independently regulate the expression of lung endothelin system genes, but show complex toxicological interaction with respect to plasma ET-1.
microRNA Profiling Reveals Differential Response to Ozone between Asthmatic and Healthy Donors
Introduction: Morbidity and mortality attributable to air pollution continue to be growing problems worldwide. People with underlying pulmonary diseases, such as asthma, are susceptible to the negative health effects of air pollutant exposure. Asthma is characterized by an increa...
Use of Ozone to Treat Ileostomy Dermatitis in an Experimental Rat Model
Biçer, Şenol; Sayar, İlyas; Gürsul, Cebrail; Işık, Arda; Aydın, Merve; Peker, Kemal; Demiryilmaz, İsmail
2016-01-01
Background Dermatitis associated with ileostomy is an important problem that affects many people, especially children. The aim of this study was to investigate the therapeutic effects of ozone on dermatitis due to ileostomy, and to develop an alternative treatment option. Material/Methods A total of 28 rats were divided into 4 groups: control, ileostomy, ozone, and zinc oxide. Ileostomy was performed in all rats except the control group. After a 1-week waiting time, the ozone group was administered ozone therapy and the zinc oxide group was administered zinc oxide cream locally once a day for a total of 7 days. All rats were sacrificed at the end of this period. The efficacy of treatment was examined by biochemical, histopathological, and immunohistochemical parameters. The levels of malondialdehyde (MDA), total glutathione (tGSH), total antioxidant capacity (TAC), and total oxidant status (TOS) were measured from tissue. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) were examined immunohistochemically. Results Dermatitis occurred pathologically in all rats that underwent ileostomy surgery. The lowest dermatitis score was in the ozone treatment group (p<0.05). Ileostomy dermatitis caused increased levels of MDA and TOS. Ozone treatment resulted in reduced MDA and TOS levels, while the levels of tGSH and TAC were increased (p<0.05). Both VEGF and PCNA immunostaining were augmented in the ozone treatment group (p<0.05). Conclusions Local ozone application may be a good alternative compared to the conventional treatment methods for the prevention of skin lesions that develop after ileostomy. PMID:26947591
Effects of age, socioeconomic status, and menstrual cycle on pulmonary response to ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, E. Jr.; McDonnell, W.F.; House, D.E.
The purpose of this study was to investigate the effects of age, socioeconomic status, and menstrual cycle phase on the pulmonary response to ozone exposure. Three hundred seventy-two healthy white and black young adults, between the ages of 18 and 35 y, were exposed only once to 0.0, 0.12, 0.18, 0.24, 0.30, or 0.40 ppm ozone for 2.3 h. Prior to and after exposure, pulmonary function tests were obtained. Prior to exposure, each subject completed a personal and family-history questionnaire. The response to this questionnaire were used to investigate age, socioeconomic status, and menstrual cycle phase effects on pulmonary responsivenessmore » to ozone. We concluded that the ages of subjects, within the age range studied, had an effect on responsiveness (i.e., decrements in forced expiratory volume in 1 s decreased as the subjects` ages decreased). Socioeconomic status, as reflected by education of fathers, also appeared to affect forced expiratory volume in 1-s responsiveness to ozone, with the middle socioeconomic group being the most responsive. The phase of menstrual cycle did not have an impact on individual responsiveness to ozone. 14 refs., 4 figs.« less
Arctic “ozone hole” in a cold volcanic stratosphere
Tabazadeh, A.; Drdla, K.; Schoeberl, M. R.; Hamill, P.; Toon, O. B.
2002-01-01
Optical depth records indicate that volcanic aerosols from major eruptions often produce clouds that have greater surface area than typical Arctic polar stratospheric clouds (PSCs). A trajectory cloud–chemistry model is used to study how volcanic aerosols could affect springtime Arctic ozone loss processes, such as chlorine activation and denitrification, in a cold winter within the current range of natural variability. Several studies indicate that severe denitrification can increase Arctic ozone loss by up to 30%. We show large PSC particles that cause denitrification in a nonvolcanic stratosphere cannot efficiently form in a volcanic environment. However, volcanic aerosols, when present at low altitudes, where Arctic PSCs cannot form, can extend the vertical range of chemical ozone loss in the lower stratosphere. Chemical processing on volcanic aerosols over a 10-km altitude range could increase the current levels of springtime column ozone loss by up to 70% independent of denitrification. Climate models predict that the lower stratosphere is cooling as a result of greenhouse gas built-up in the troposphere. The magnitude of column ozone loss calculated here for the 1999–2000 Arctic winter, in an assumed volcanic state, is similar to that projected for a colder future nonvolcanic stratosphere in the 2010 decade. PMID:11854461
NASA Technical Reports Server (NTRS)
Reichardt, J.; Reichardt, S.; Yang, P.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)
2001-01-01
A retrieval algorithm has been developed for the microphysical analysis of polar stratospheric cloud (PSC) optical data obtained using lidar instrumentation. The parameterization scheme of the PSC microphysical properties allows for coexistence of up to three different particle types with size-dependent shapes. The finite difference time domain (FDTD) method has been used to calculate optical properties of particles with maximum dimensions equal to or less than 2 mu m and with shapes that can be considered more representative of PSCs on the scale of individual crystals than the commonly assumed spheroids. Specifically. these are irregular and hexagonal crystals. Selection of the optical parameters that are input to the inversion algorithm is based on a potential data set such as that gathered by two of the lidars on board the NASA DC-8 during the Stratospheric Aerosol and Gas Experiment 0 p (SAGE) Ozone Loss Validation experiment (SOLVE) campaign in winter 1999/2000: the Airborne Raman Ozone and Temperature Lidar (AROTEL) and the NASA Langley Differential Absorption Lidar (DIAL). The 0 microphysical retrieval algorithm has been applied to study how particle shape assumptions affect the inversion of lidar data measured in leewave PSCs. The model simulations show that under the assumption of spheroidal particle shapes, PSC surface and volume density are systematically smaller than the FDTD-based values by, respectively, approximately 10-30% and approximately 5-23%.
Larsen, Peter E; Cseke, Leland J; Miller, R Michael; Collart, Frank R
2014-10-21
Rising atmospheric levels of carbon dioxide and ozone will impact productivity and carbon sequestration in forest ecosystems. The scale of this process and the potential economic consequences provide an incentive for the development of models to predict the types and rates of ecosystem responses and feedbacks that result from and influence of climate change. In this paper, we use phenotypic and molecular data derived from the Aspen Free Air CO2 Enrichment site (Aspen-FACE) to evaluate modeling approaches for ecosystem responses to changing conditions. At FACE, it was observed that different aspen clones exhibit clone-specific responses to elevated atmospheric levels of carbon dioxide and ozone. To identify the molecular basis for these observations, we used artificial neural networks (ANN) to examine above and below-ground community phenotype responses to elevated carbon dioxide, elevated ozone and gene expression profiles. The aspen community models generated using this approach identified specific genes and subnetworks of genes associated with variable sensitivities for aspen clones. The ANN model also predicts specific co-regulated gene clusters associated with differential sensitivity to elevated carbon dioxide and ozone in aspen species. The results suggest ANN is an effective approach to predict relevant gene expression changes resulting from environmental perturbation and provides useful information for the rational design of future biological experiments. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.
1999-01-01
Highly relativistic electron precipitation (HRE) events containing significant fluxes of electrons with E>1MeV have been predicted by models to deplete mesospheric ozone. For the electron fluxes measured during the great HRE of May 1992, depletions were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause a local minimum in the ozone number density and mixing ratio. Measurements of the precipitating electron fluxes by the particle environment monitor (PEM) tend to underestimate their intensity; thus the predictions of ozone depletion should be considered an estimate of a lower limit. Since the horizontal distribution of the electron precipitation follows the terrestrial magnetic field, it would show a distinct boundary equatorward of the L=3 magnetic shell and be readily distinguished from material that was not affected by the HRE precipitation. To search for possible ozone depletion effects, we have analyzed data from the cryogenic limb array etalon spectrometer and microwave limb sounder instruments on UARS for the above HRE. A simplified diurnal model is proposed to understand the ozone data from UARS, also illustrating the limitations of the UARS instruments for seeing the ozone depletions caused by the HRE events. This diurnal analysis limits the relative ozone depletion at around 60 km altitude to values of <10% during the very intense May 1992 event, consistent with our prediction using an improved Goddard Space Flight Center two-dimensional model.
NASA Astrophysics Data System (ADS)
Gu, Myojeong; Enell, Carl-Fredrik; Pukite, Janis; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas
2017-04-01
After to the Montreal protocol and amendments, the production of CFCs was strongly reduced. Since then scientists have steadily made efforts to monitor the amount of chlorine compounds which are responsible for the destruction of ozone in the stratosphere. Although very recent research of stratospheric ozone indicates an ozone recovery, ozone depletion is still observed in the polar spring and is expected to last for about another 70 years according to the WMO. Therefore, continuous observation and analysis of the stratospheric ozone as well as other stratospheric trace gases are highly demanded. Several previous studies have investigated OClO which is an indicator for stratospheric chlorine activation using satellite, ground-based, and balloon remote sensing measurements. In this work, we investigate long-term time series of OClO DSCDs (Differential Slant Column densities) above Kiruna, Sweden (67.84°N, 20.41°E) which is located inside the Arctic Circle by using the ground-based zenith sky DOAS measurements. Since our measurements are performed at the fixed site, for the interpretation also the relative position of the polar vortex has to be considered. Our long-term data obtained during about 15 years allows us to classify the dependence of the OClO amount on the various meteorological conditions. Our data show a large variability with high OClO SCDs in cold, and low OClO SCDs in warm winters. Our measurements also allow to investigate the effect of the chlorine activation and its duration on the strength of the ozone destruction.
Wei Ren; Hanqin Tian; Bo Tao; Art Chappelka; Ge Sun; et al
2011-01-01
Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across Chinaâs forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10-km-resolution gridded historical data sets (...
Michael Arbaugh; Andrzej Bytnerowicz; Nancy Grulke; Mark Fenn; Mark Poth; Patrick Temple; Paul Miller
2003-01-01
Toxic effects of photochemical smog on ponderosa and Jeffrey pines in the San Bernardino Mountains were discovered in the 1950s. It was revealed that ozone is the main cause of foliar injury manifested as chlorotic mottle and premature needle senescence. Various morphological, physiological and biochemical alterations in the affected plants have been reported over a...
Toxicological analysis of limonene reaction products using an in vitro exposure system
Anderson, Stacey E.; Khurshid, Shahana S.; Meade, B. Jean; Lukomska, Ewa; Wells, J.R.
2015-01-01
Epidemiological investigations suggest a link between exposure to indoor air chemicals and adverse health effects. Consumer products contain reactive chemicals which can form secondary pollutants which may contribute to these effects. The reaction of limonene and ozone is a well characterized example of this type of indoor air chemistry. The studies described here characterize an in vitro model using an epithelial cell line (A549) or differentiated epithelial tissue (MucilAir™). The model is used to investigate adverse effects following exposure to combinations of limonene and ozone. In A549 cells, exposure to both the parent compounds and reaction products resulted in alterations in inflammatory cytokine production. A one hour exposure to limonene + ozone resulted in decreased proliferation when compared to cells exposed to limonene alone. Repeated dose exposures of limonene or limonene + ozone were conducted on MucilAir™ tissue. No change in proliferation was observed but increases in cytokine production were observed for both the parent compounds and reaction products. Factors such as exposure duration, chemical concentration, and sampling time point were identified to influence result outcome. These findings suggest that exposure to reaction products may produce more severe effects compared to the parent compound. PMID:23220291
Decomposition of gas-phase trichloroethene by the UV/TiO2 process in the presence of ozone.
Shen, Y S; Ku, Y
2002-01-01
The decomposition of gas-phase trichloroethene (TCE) in air streams by direct photolysis, the UV/TiO2 and UV/O3 processes was studied. The experiments were carried out under various UV light intensities and wavelengths, ozone dosages, and initial concentrations of TCE to investigate and compare the removal efficiency of the pollutant. For UV/TiO2 process, the individual contribution to the decomposition of TCE by direct photolysis and hydroxyl radicals destruction was differentiated to discuss the quantum efficiency with 254 and 365 nm UV lamps. The removal of gaseous TCE was found to reduce by UV/TiO2 process in the presence of ozone possibly because of the ozone molecules could scavenge hydroxyl radicals produced from the excitation of TiO2 by UV radiation to inhibit the decomposition of TCE. A photoreactor design equation for the decomposition of gaseous TCE by the UV/TiO2 process in air streams was developed by combining the continuity equation of the pollutant and the surface catalysis reaction rate expression. By the proposed design scheme, the temporal distribution of TCE at various operation conditions by the UV/TiO2 process can be well modeled.
Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change
NASA Technical Reports Server (NTRS)
Li, Feng; Newman, Paul; Pawson, Steven
2013-01-01
Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion
Study on regional air quality impact from a chemical plant emergency shutdown.
Ge, Sijie; Wang, Sujing; Xu, Qiang; Ho, Thomas
2018-06-01
Emergency shutdowns of chemical plants (ESCP) inevitably generate intensive and huge amounts of VOCs and NO x emissions through flaring that can cause highly localized and transient air pollution events with elevated ozone concentrations. However, quantitative studies of regional ozone impact due to ESCP, in terms of how ESCP would affect and to what extent ESCP could impact, are still lacking. This paper reports a systematic study on regional air quality impact from an olefin plant emergency shutdown due to the sudden failure of its cracked gas compressor (CGC). It demonstrates that emergency shutdown may cause significant ozone increment subject to different factors such as the starting time of emergency shutdown, flare destruction and removal efficiency (DRE) and plant location. In our studied case, the 8-hr ozone increment ranges from 0.4 to 3.3 ppb under different starting time, from 3.3 to 24.8 ppb under different DRE, and from 1.6 to 3.3 ppb under different locations. The results enable us to understand how and to what extent emergency operating activities of the chemical process will affect local air quality, which might be beneficial for decision makings on emergency air-quality response and control in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ozone Time Series From GOMOS and SAGE II Measurements
NASA Astrophysics Data System (ADS)
Kyrola, E. T.; Laine, M.; Tukiainen, S.; Sofieva, V.; Zawodny, J. M.; Thomason, L. W.
2011-12-01
Satellite measurements are essential for monitoring changes in the global stratospheric ozone distribution. Both the natural variation and anthropogenic change are strongly dependent on altitude. Stratospheric ozone has been measured from space with good vertical resolution since 1985 by the SAGE II solar occultation instrument. The advantage of the occultation measurement principle is the self-calibration, which is essential to ensuring stable time series. SAGE II measurements in 1985-2005 have been a valuable data set in investigations of trends in the vertical distribution of ozone. This time series can now be extended by the GOMOS measurements started in 2002. GOMOS is a stellar occultation instrument and offers, therefore, a natural continuation of SAGE II measurements. In this paper we study how well GOMOS and SAGE II measurements agree with each other in the period 2002-2005 when both instruments were measuring. We detail how the different spatial and temporal sampling of these two instruments affect the conformity of measurements. We study also how the retrieval specifics like absorption cross sections and assumed aerosol modeling affect the results. Various combined time series are constructed using different estimators and latitude-time grids. We also show preliminary results from a novel time series analysis based on Markov chain Monte Carlo approach.
Kim, Hye Y.; Mathews, Joel A.; Verbout, Norah G.; Williams, Alison S.; Wurmbrand, Allison P.; Ninin, Fernanda M. C.; Neto, Felippe L.; Benedito, Leandro A. P.; Hug, Christopher; Umetsu, Dale T.; Shore, Stephanie A.
2013-01-01
Adiponectin is an adipose-derived hormone with anti-inflammatory activity. Following subacute ozone exposure (0.3 ppm for 24–72 h), neutrophilic inflammation and IL-6 are augmented in adiponectin-deficient (Adipo−/−) mice. The IL-17/granulocyte colony-stimulating factor (G-CSF) axis is required for this increased neutrophilia. We hypothesized that elevated IL-6 in Adipo−/− mice contributes to their augmented responses to ozone via effects on IL-17A expression. Therefore, we generated mice deficient in both adiponectin and IL-6 (Adipo−/−/IL-6−/−) and exposed them to ozone or air. In ozone-exposed mice, bronchoalveolar lavage (BAL) neutrophils, IL-6, and G-CSF, and pulmonary Il17a mRNA expression were greater in Adipo−/− vs. wild-type mice, but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. IL-17A+ F4/80+ cells and IL-17A+ γδ T cells were also reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice exposed to ozone. Only BAL neutrophils were reduced in IL-6−/− vs. wild-type mice. In wild-type mice, IL-6 was expressed in Gr-1+F4/80−CD11c− cells, whereas in Adipo−/− mice F4/80+CD11c+ cells also expressed IL-6, suggesting that IL-6 is regulated by adiponectin in these alveolar macrophages. Transcriptomic analysis identified serum amyloid A3 (Saa3), which promotes IL-17A expression, as the gene most differentially augmented by ozone in Adipo−/− vs. wild-type mice. After ozone, Saa3 mRNA expression was markedly greater in Adipo−/− vs. wild-type mice but reduced in Adipo−/−/IL-6−/− vs. Adipo−/− mice. In conclusion, our data support a pivotal role of IL-6 in the hyperinflammatory condition observed in Adipo−/− mice after ozone exposure and suggest that this role of IL-6 involves its ability to induce Saa3, IL-17A, and G-CSF. PMID:24381131
Highly Relativistic Electrons from UARS and Their Effect on Atmospheric Ozone
NASA Astrophysics Data System (ADS)
Pesnell, W. D.; Goldberg, R. A.; Jackman, C. H.; Chenette, D. L.; Gaines, E. E.
2001-12-01
In a study involving 5 of the instruments on UARS, we have investigated how fluxes of high-energy electrons could modify the chemistry of the upper stratosphere and mesosphere. Fluxes of high-energy electrons (E > 100~keV) have been predicted to deplete mesospheric ozone by 20% or more, and stratospheric ozone to a lesser degree. Precipitating fluxes of these electrons can increase by 1--2 orders of magnitude during highly relativistic electron (HRE) events, and often contain significant contributions from electrons with E > 1~MeV. This research has produced a database of differential electron energy spectra obtained during the decline of solar cycle 22. We have used this database to understand the radiation environment of low-Earth orbit. We will show how the HEPS data provides energy-dependent lifetimes for the energetic electrons and that elevated electron fluxes should be expected on any satellite mission lasting more than 1 week. Once the electron fluxes are known, the atmospheric effects can be predicted by model calculations and those predictions compared with composition measurements. For the instantaneous electron fluxes measured during a large May 1992 HRE, relative depletions of ozone greater than 15% were predicted to occur between altitudes of 60--80~km, where HO{}x reactions cause a local minimum in the ozone concentration. The chemical signature of an HRE would be ozone depletions in the region of enhanced flux, particularly within the magnetic L-shell limits of 3 < L < 4. Data from HEPS, CLAES, HALOE, HRDI, and MLS were combined to search for such effects during the May 1992 HRE. Mesospheric ozone measurements from HRDI and stratospheric ozone measurements by CLAES and MLS were searched for the predicted depletions. The seasonal evolution of water vapor was monitored with HALOE. Our analysis shows that between altitudes of 65--75 km the ozone mixing ratio was relatively constant within the overlapping local solar time bands during May 1992. Above 80--85 km, there was evidence of evolution through May 1992 and the HRE event.
The Impact of Meteorology on Ozone Levels in the Lake Tahoe Basin
NASA Astrophysics Data System (ADS)
Theiss, Sandra
The Lake Tahoe Basin is located on the California-Nevada border and occasionally experiences elevated levels of ozone exceeding the 70 ppb California Air Resources Board (CARB) ambient air quality standard (8-hour average). Previous studies indicate that both the local generation of ozone in the Basin and long-range transport from out-of-Basin sources are important in contributing to ozone exceedances, but little is known about the impact of meteorology on the distribution of ozone source regions. In order to develop a better understanding of the factors affecting ozone levels and sources in the Lake Tahoe Basin, this study combines observational data from a 2010 and 2012 summer field campaigns, HYSPLIT back trajectories, and WRF model output to examine the meteorological influences of ozone transport in the topographically complex Lake Tahoe Basin. Findings from the field work portions of this study include enhanced background ozone levels at higher elevations, the local circulation pattern of lake breezes occurring at Lake level sites, and an indication that ozone precursors are coming off the Lake. Our analysis also showed that if transport of ozone does occur, it is more likely to come from the San Joaquin Valley to the south rather than originate in the large cities to the west, such as Sacramento and San Francisco. Analysis of modeled PBL schemes as compared with observational data showed that the ACM2 PBL scheme best represented the geographical domain. The ACM2 PBL scheme was then used to show wind circulation patterns in the Lake Tahoe Basin and concluded that there is decent vertical mixing over the Basin and no indication of ozone transport from the west however some indication of transport from the east. Overall this study concludes that transport from the west is less significant than transport from the south and east, and that transport only influences ozone values at higher elevations. Within the Basin itself (at lower elevations), local factors including mixing depth, rising or sinking air, and lake/land breeze circulations are more significant in influencing ozone values.
Neufeld, Howard S; Johnson, Jennifer; Kohut, Robert
2018-01-01
Cutleaf coneflower (Rudbeckia laciniata L. var. digitata) is native to Great Smoky Mountains National Park (GRSM) and an ozone bioindicator species. Variety ampla, whose ozone sensitivity is less well known, is native to Rocky Mountain National Park (ROMO). In the early 2000s, researchers found putative ozone symptoms on var. ampla and rhizomes were sent to Appalachian State University to verify that the symptoms were the result of ozone exposure. In 2011, potted plants were exposed to ambient ozone from May to August. These same plants were grown in open-top chambers (OTCs) in 2012 and 2013, and exposed to charcoal-filtered (CF), non-filtered (NF), elevated ozone (EO), NF+50ppb in 2012 for 47days and NF+30/NF+50ppb ozone in 2013 for 36 and 36days, respectively. Ozone symptoms similar to those found in ROMO (blue-black adaxial stippling) were reproduced both in ambient air and in the OTCs. Both varieties exhibited foliar injury in the OTCs in an exposure-dependent manner, verifying that symptoms resulted from ozone exposure. In two of the three study years, var. digitata appeared more sensitive than var. ampla. Exposure to EO caused reductions in ambient photosynthetic rate (A) and stomatal conductance (g s ) for both varieties. Light response curves indicated that ozone reduced A, g s , and the apparent quantum yield while it increased the light compensation point. In CF air, var. ampla had higher light saturated A (18.2±1.04 vs 11.6±0.37μmolm -2 s -1 ), higher light saturation (1833±166.7 vs 1108±141.7μmolm -2 s -1 ), and lower Ci/Ca ratio (0.67±0.01 vs 0.77±0.01) than var. digitata. Coneflowers in both Parks are adversely affected by exposure to ambient ozone and if ozone concentrations increase in the Rocky Mountains, greater amounts of injury on var. ampla can be expected. Copyright © 2017 Elsevier B.V. All rights reserved.
This paper shows that rat models of cardiovascular diseases have differential degrees of underlying pathologies at a young age. Rodent models of cardiovascular diseases (CVD) and metabolic disorders are used for examining susceptibility variations to environmental exposures. How...
De Vera, Glen Andrew; Stalter, Daniel; Gernjak, Wolfgang; Weinberg, Howard S; Keller, Jurg; Farré, Maria José
2015-12-15
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.
On the role of ozone feedback in the ENSO amplitude response under global warming
NASA Astrophysics Data System (ADS)
Nowack, P. J.; Braesicke, P.; Abraham, N. L.; Pyle, J. A.
2017-12-01
The El Niño-Southern Oscillation (ENSO) in the tropical Pacific is of key importance to global climate and weather. However, climate models still disagree on the ENSO's response under climate change. Here we show that typical model representations of ozone can have a first-order impact on ENSO amplitude projections in climate sensitivity simulations (i.e. standard abrupt 4xCO2). We mainly explain this effect by the lapse rate adjustment of the tropical troposphere to ozone changes in the upper troposphere and lower stratosphere (UTLS) under 4xCO2. The ozone-induced lapse rate changes modify the Walker circulation response to the CO2 forcing and consequently tropical Pacific surface temperature gradients. Therefore, not including ozone feedbacks increases the number of extreme ENSO events in our model. In addition, we demonstrate that even if ozone changes in the tropical UTLS are included in the simulations, the neglect of the ozone response in the middle-upper stratosphere still leads to significantly larger ENSO amplitudes (compared to simulations run with a fully interactive atmospheric chemistry scheme). Climate modeling studies of the ENSO often neglect changes in ozone. Our results imply that this could affect the inter-model spread found in ENSO projections and, more generally, surface climate change simulations. We discuss the additional complexity in quantifying such ozone-related effects that arises from the apparent model dependency of chemistry-climate feedbacks and, possibly, their range of surface climate impacts. In conclusion, we highlight the need to understand better the coupling between ozone, the tropospheric circulation, and climate variability. Reference: Nowack PJ, Braesicke P, Abraham NL, and Pyle JA (2017), On the role of ozone feedback in the ENSO amplitude response under global warming, Geophys. Res. Lett. 44, 3858-3866, doi:10.1002/2016GL072418.
Biofiltration of high formaldehyde loads with ozone additions in long-term operation.
Maldonado-Diaz, G; Arriaga, S
2015-01-01
Formaldehyde (FA) biofiltration was evaluated over 310 days with and without ozone addition. Without ozone, the biofilter was able to treat formaldehyde at inlet loads (ILs) lower than 40 g m(-3) h(-1), maintaining, under this condition, an average removal efficiency (RE) of 88 % for a few days before collapsing to zero. The continuous addition of ozone (90 ppbv) helped to recover the RE from zero to 98 ± 2 % and made it possible to operate at an IL of 40 g m(-3) h(-1) for long periods of operation (107 days). Furthermore, the ozone addition aided in operating the biofilter at a formaldehyde IL of up to 120 g m(-3) h(-1) values that have never before been reached. GC-mass spectrometry (MS) analysis showed that dimethoxymethane was the common compound in leachate during the performance decay. Also, the addition of ozone aided in maintaining an optimal pH in the biofilter with values between 7.5 and 8.2, due to the carbonate species formed during the ozone reactions with formaldehyde and its by-products. Thus, the pH control was confirmed and the alkalinity of the biofilter increased from 334.1 ± 100.3 to 1450 ± 127 mg CaCO3 L(-1) when ozone was added. Ozone addition diminished the exopolymeric substances (EPS) content of biofilm and biofilm thickness without affecting cell viability. Kinetic parameters suggested that the best conditions for carrying out FA biofiltration were reached under ozone addition. The addition of ozone during formaldehyde biofiltration could be a good strategy to maintain the pH and the steady state of the system under high ILs and for long periods of operation.
A 15-year climatology of wind pattern impacts on surface ozone in Houston, Texas
NASA Astrophysics Data System (ADS)
Souri, Amir Hossein; Choi, Yunsoo; Li, Xiangshang; Kotsakis, Alexander; Jiang, Xun
2016-06-01
Houston is recognized for its large petrochemical industrial facilities providing abundant radicals for tropospheric ozone formation. Fortunately, maximum daily 8-h average (MDA8) surface ozone concentrations have declined in Houston (- 0.6 ± 0.3 ppbv yr- 1) during the summers (i.e., May to September) of 2000 to 2014, possibly due to the reductions in precursor emissions by effective control policies. However, it is also possible that changes in meteorological variables have affected ozone concentrations. This study focused on the impact of long-term wind patterns which have the highest impact on ozone in Houston. The analysis of long-term wind patterns can benefit surface ozone studies by 1) providing wind patterns that distinctly changed ozone levels, 2) investigating the frequency of patterns and the respective changes and 3) estimating ozone trends in specific wind patterns that local emissions are mostly involved, thus separating emissions impacts from meteorology to some extent. To this end, the 900-hPa flow patterns in summers of 2000 to 2014 were clustered in seven classes (C1-C7) by deploying an unsupervised partitioning method. We confirm the characteristics of the clusters from a backward trajectory analysis, monitoring networks, and a regional chemical transport model simulation. The results indicate that Houston has experienced a statistically significant downward trend (- 0.6 ± 0.4 day yr- 1) of the cluster of weak easterly and northeasterly days (C4), when the highest fraction of ozone exceedances (MDA8 > 70 ppbv) occurred. This suggests that the reduction in ozone precursors was not the sole reason for the decrease in ozone exceedance days (- 1.5 ± 0.6 day yr- 1). Further, to examine the efficiency of control policies intended to reduce the amount of ozone, we estimated the trend of MDA8 ozone in C4 and C5 (weak winds) days when local emissions are primarily responsible for high ambient ozone levels. Both C4 and C5 show a large reduction in the 95th percentile and summertime trends mainly due to effective control strategies. Based on the 5th percentile daytime ozone for C1 (strong southeasterly wind) in coastal sites, this study found that the cleanest air masses that Houston received became more polluted during the summer of 2000-2014 by 1-3 ppbv. Though this study focused on Houston, the analysis method presented could generally be used to estimate ozone trends in other regions where surface ozone is dominantly influenced by both wind patterns and local emissions.
NASA Astrophysics Data System (ADS)
Cho, Hye Youn
Ozone is a principal oxidant air pollutant in photochemical smog. Epithelial cells lining the centriacinar region of lung and the proximal aspects of nasal passage are primary target sites for ozone-induced injury in laboratory animals. Acute exposure of rats to high ambient concentrations of ozone (e.g., 0.5 ppm) results in neutrophilic inflammation, epithelial hyperplasia and mucous cell metaplasia (MCM) in the nasal transitional epithelium (NTE) lining the proximal nasal airways. The principal purpose of the present study was to investigate the role of pre-metaplastic cellular responses, especially neutrophilic inflammation, in the pathogenesis of ozone-induced MCM in rat NTE. For this purpose, three specific hypotheses-based whole-animal inhalation studies were conducted. Male F344/N rats were exposed in whole-body inhalation chambers to 0 (filtered air) or 0.5 ppm ozone for 1-3 days (8 h/day). Histochemical, immunochemical, molecular and morphometric techniques were used to investigate the ozone-induced cellular and molecular events in the NTE. Two in vitro studies were also conducted to examine the effects of ozone-inducible cytokines (i.e., tumor necrosis factor-alpha; TNF- a, and interleukin-6; IL-6) on mucin gene (rMuc-5AC) expression. Ozone induced a rapid increase of rMuc-5AC mRNA in nasal tissues within hours after the start of exposure. It preceded the appearance of MCM, and persisted with MCM. Ozone-induced neutrophilic inflammation accompanied the mucin gene upregulation, but was resolved when MCM first appeared in the NTE. Antibody-mediated depletion of circulating neutrophils attenuated ozone-induced MCM, although it did not affect the ozone-induced epithelial hyperplasia and mucin mRNA upregulation. In another study, it was found that preexisting neutrophilic rhinitis induced by endotoxin augmented the ozone-induced MCM. However, pre-existing rhinitis did not alter the severity of ozone-induced epithelial hyperplasia and mucin gene upregulation. Ozone also induced rapid increases in TNF-a and IL-6 mRNAs in nasal tissues. In addition, exogenous TNF-α and IL- 6 induced increases in mucin mRNA in nasal tissues in vitro. In conclusion, though ozone alone is sufficient to induce epithelial proliferation and mucin gene upregulation which are early NTE cell events prior to the development of MCM, neutrophilic inflammation is essential for full phenotypic expression of MCM. TNF-α and IL-6 may be putative mediators of the ozone-induced upregulation of mucin mRNA in the NTE.
Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A
2014-09-02
Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouchi, Isamu; Toyama, Susumu
To compare the effects of ozone and peroxyacetyl nitrate (PAN) on leaf lipids, fatty acids and malondialdehyde (MDA), morning glory (Pharbitis nil Choisy cv Scarlet O'Hara) and kidney bean (Phaseolus vulgaris L. cv Gintebo) plants were exposed to either ozone (0.15 microliter per liter for 8 hours) or PAN (0.10 microliter per liter for up to 8 hours). Ozone increased phospholipids in morning glory and decreased in kidney bean at the initial stage (2-4 hours) of exposure, while it scarcely changed glycolipids, the unsaturated fatty acids, and MDA in both plants. A large reduction of glycolipids occurred 1 day aftermore » ozone exposure in both plants. PAN caused marked drops in phospholipids and glycolipids in kidney bean at relatively late stage (6-8 hours) of exposure, while it increased phosphatidic acid and decreased the unsaturated fatty acids, an increase which was accompanied by a large increase in MDA. These results suggest that ozone may not directly oxidize unsaturated fatty acids at the initial stage of exposure, but may alter polar lipid metabolism, particularly phospholipids. On the other hand, PAN may abruptly and considerably degrade phospholipids and glycolipids by peroxidation or hydrolysis at the late stage of exposure. The present study shows that ozone and PAN affect polar lipids in different manners.« less
Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon
NASA Astrophysics Data System (ADS)
Asgari, Ghorban; Samiee, Fateme; Ahmadian, Mohammad; Poormohammadi, Ali; solimanzadeh, Bahman
2017-03-01
The efficiency of granular activated carbon (GAC) was investigated in this study as a catalyst for the elimination of pentachlorophenol (PCP) from contaminated streams in a laboratory-scale semi-batch reactor. The influence of important parameters including solution pH (2-10), radical scavenger (tert-butanol, 0.04 mol/L), catalyst dosage (0.416-8.33 g/L), initial PCP concentration (100-1000 mg/L) and ozone flow rate (2.3-12 mg/min) was examined on the efficiency of the catalytic ozonation process (COP) in degradation and mineralization of PCP in aqueous solution. The experimental results showed that catalytic ozonation with GAC was most effective at pH of 8 with ozone flow rate of 12 mg/min and a GAC dosage of 2 g. Compared to the sole ozonation process (SOP), the removal levels of PCP and COP were, 98, and 79 %, respectively. The degradation rate of kinetics was also investigated. The results showed that using a GAC catalyst in the ozonation of PCP produced an 8.33-fold increase in rate kinetic compared to the SOP under optimum conditions. Tert-butanol alcohol (TBA) was used as a radical scavenger. The results demonstrated that COP was affected less by TBA than by SOP. These findings suggested that GAC acts as a suitable catalyst in COP to remove refractory pollutants from aqueous solution.
Croze, Marine L; Zimmer, Luc
2018-01-01
Atmospheric pollution is a well-known environmental hazard, especially in developing countries where millions of people are exposed to airborne pollutant levels above safety standards. Accordingly, several epidemiological and animal studies confirmed its role in respiratory and cardiovascular pathologies and identified a strong link between ambient air pollution exposure and adverse health outcomes such as hospitalization and mortality. More recently, the potential deleterious effect of air pollution inhalation on the central nervous system was also investigated and mounting evidence supports a link between air pollution exposure and neurodegenerative pathologies, especially Alzheimer's disease (AD). The focus of this review is to highlight the possible link between ozone air pollution exposure and AD incidence. This review's approach will go from observational and epidemiological facts to the proposal of molecular mechanisms. First, epidemiological and postmortem human study data concerning residents of ozone-severely polluted megacities will be presented and discussed. Then, the more particular role of ozone air pollution in AD pathology will be described and evidenced by toxicological studies in rat or mouse with ozone pollution exposure only. The experimental paradigms used to reproduce in rodent the human exposure to ozone air pollution will be described. Finally, current insights into the molecular mechanisms through which ozone inhalation can affect the brain and play a role in AD development or progression will be recapitulated.
The Impact of Warm Pool El Nino Events on Antarctic Ozone
NASA Technical Reports Server (NTRS)
Hurwitz, Margaret M.; Newman, P. A.; Song, In-Sun; Frith, Stacey M.
2011-01-01
Warm pool El Nino (WPEN) events are characterized by positive sea surface temperature (SST) anomalies in the central equatorial Pacific in austral spring and summer. Previous work found an enhancement in planetary wave activity in the South Pacific in austral spring, and a warming of 3-5 K in the Antarctic lower stratosphere during austral summer, in WPEN events as compared with ENSO neutral. In this presentation, we show that weakening of the Antarctic vortex during WPEN affects the structure and magnitude of high-latitude total ozone. We use total ozone data from TOMS and OMI, as well as station data from Argentina and Antarctica, to identify shifts in the longitudinal location of the springtime ozone minimum from its climatological position. In addition, we examine the sensitivity of the WPEN-related ozone response to the phase of the quasi-biennial oscillation (QBO). We then compare the observed response to WPEN events with Goddard Earth Observing System chemistry-climate model, version 2 (GEOS V2 CCM) simulations. Two, 50-year time-slice simulations are forced by annually repeating SST and sea ice climatologies, one set representing observed WPEN events and the second set representing neutral ENSO events, in a present-day climate. By comparing the two simulations, we isolate the impact of WPEN events on lower stratospheric ozone, and furthermore, examine the sensitivity of the WPEN ozone response to the phase of the QBO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsunoda, Ryoichi; Ozawa, Takayoshi; Ando, Junichi
1998-09-15
Characteristics of the adsorption iostherms of water vapor on active carbons from coal and coffee grounds and those ozonized ones from the surface fractal dimension analysis are discussed. The upswing of the adsorption isotherms in the low relative pressure of coffee grounds-based active carbon, of which isotherms were not scarcely affected on ozonization, was attributed to the adsorption of water molecules on the metallic oxides playing the role of oxygen-surface complexes, which formed the corrugated surfaces on the basal planes of micropore walls with the surface fractal dimension D{sub s} > 2. On the other hand, coal-based active carbon withmore » D{sub s} < 2, which indicated the flat surfaces of micropore walls, showed little effect on the upswing even on ozonization, even though the adsorption amounts of water vapor were increased in the low relative pressure.« less
Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits.
Han, Qiang; Gao, Haiyan; Chen, Hangjun; Fang, Xiangjun; Wu, Weijie
2017-04-15
Mulberry (Morus spp.) fruits are delicious and nutritious, but they are highly perishable and have a very short shelf-life for sale in the market. This study investigated the effect and mechanisms of 2ppm ozone and precooling treatments on the postharvest quality of mulberry fruit during refrigerated storage. The results revealed that mulberry fruit subjected to ozone and precooling treatment had higher levels of titratable acidity and total soluble solids content, better retention in firmness and color, and lower decay rate, respiratory intensity, and polyphenol oxidase activity compared to the control. From the analysis of cell ultrastructure and cell wall components of fruit, ozone and precooling treatments also induced shrinkage of the stomata in the epidermis, inhibited bacteria invasion, reduced water transpiration, and delayed the decomposition of the cell walls and the degradation of epidermal tissues. Copyright © 2016. Published by Elsevier Ltd.
Cullen, Anthony P
2011-07-01
To describe he role played by the United Nations Environmental Effects Panel with respect to the ocular effects of stratospheric ozone depletion and present the essence of the Health Chapter of the 2010 Assessment. A consideration of solar ultraviolet radiation (UVR) at the Earth's surface as it is affected by atmospheric changes and how these influence sunlight-related eye diseases. A review of the current Assessment with emphasis on pterygium, cataract, ocular melanoma, and age-related macular degeneration. Although the ozone layer is projected to recover slowly in the coming decades, continuing vigilance is required regarding exposure to the sun. Evidence implicating solar UVR, especially UVB, in every tissue of the eye continues to be amassed. The need for ocular UV protection existed before the discovery of the depletion of the ozone layer and will continue even when the layer fully recovers in approximately 2100.
Schlüter-Vorberg, Lisa; Knopp, Gregor; Cornel, Peter; Ternes, Thomas; Coors, Anja
2017-05-01
Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures. Copyright © 2017 Elsevier B.V. All rights reserved.
Tropical circulation and precipitation response to ozone depletion and recovery
NASA Astrophysics Data System (ADS)
Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke
2017-06-01
Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.
Ozonation of exhausted dark shade reactive dye bath for reuse.
Sundrarajan, M; Vishnu, G; Joseph, Kurian
2006-10-01
Exhausted reactive dye bath of dark shades were collected from cotton knit wear dyeing units in Tirupur. Ozonation was conducted in a column reactor system fed with ozone at the rate of 0.16 g/min to assess its efficiency in reducing the color, chemical oxygen demand and total organic carbon. The potential of the decolorized dye bath for its repeated reuse was also analyzed. The results from the reusability studies indicate that the dyeing quality was not affected by the reuse of decolorized dye bath for two successive cycles. Complete decolorization of the effluent was achieved in 60 minutes contact time at an ozone consumption of 183 mg/L for Red, 175 for Navy Blue and 192 for Green shades respectively. The corresponding COD removal was 60%, 54% and 63% for the three shades while TOC removal efficiency was 59%, 55% and 62% respectively. It is concluded that ozonation is efficient in decolorization of exhausted dye bath effluents containing conventional reactive dyes. However, the corresponding removal of COD from the textile effluent was not significant.
Shynkaryk, Mykola V; Pyatkovskyy, Taras; Mohamed, Hussein M; Yousef, Ahmed E; Sastry, Sudhir K
2015-12-01
Produce safety has received much recent attention, with the emphasis being largely on discovery of how microbes invade produce. However, the sanitization operation deserves more attention than it has received. The ability of a sanitizer to reach the site of pathogens is a fundamental prerequisite for efficacy. This work addresses the transport processes of ozone (gaseous and liquid) sanitizer for decontamination of leafy greens. The liquid sanitizer was ineffective against Escherichia coli K-12 in situations where air bubbles may be trapped within cavities. A model was developed for diffusion of sanitizer into the interior of produce. The reaction rate of ozone with the surface of a lettuce leaf was determined experimentally and was used in a numerical simulation to evaluate ozone concentrations within the produce and to determine the time required to reach different locations. For aqueous ozone, the penetration depth was limited to several millimeters by ozone self-decomposition due to the significant time required for diffusion. In contrast, gaseous sanitizer was able to reach a depth of 100 mm in several minutes without depletion in the absence of reaction with surfaces. However, when the ozone gas reacted with the produce surface, gas concentration was significantly affected. Simulation data were validated experimentally by measuring ozone concentrations at the bottom of a cylinder made of lettuce leaf. The microbiological test confirmed the relationship between ozone transport, its self-decomposition, reaction with surrounding materials, and the degree of inactivation of E. coli K-12. Our study shows that decontamination of fresh produce, through direct contact with the sanitizer, is more feasible with gaseous than with aqueous sanitizers. Therefore, sanitization during a high-speed washing process is effective only for decontaminating the wash water.
Pollastrini, Martina; Luchi, Nicola; Michelozzi, Marco; Gerosa, Giacomo; Marzuoli, Riccardo; Bussotti, Filippo; Capretti, Paolo
2015-03-01
The presence of the American root-rot disease fungus Heterobasidion irregulare Garbel. & Otrosina was detected in Italian coastal pine forests (Pinus pinea L.) in addition to the common native species Heterobasidion annosum (Fries) Brefeld. High levels of tropospheric ozone (O3) as an atmospheric pollutant are usually experienced in Mediterranean pine forests. To explore the effect of interaction between the two Heterobasidion species and ozone pollution on P. pinea, an open-top chamber (OTC) experiment was carried out. Five-year-old P. pinea seedlings were inoculated with the fungal species considered (H. irregulare, H. annosum and mock-inoculation as control), and then exposed in charcoal-filtered open-top chambers (CF-OTC) and non-filtered ozone-enriched chambers (NF+) from July to the first week of August 2010 at the experimental facilities of Curno (North Italy). Fungal inoculation effects in an ozone-enriched environment were assessed as: (i) the length of the inoculation lesion; (ii) chlorophyll a fluorescence (ChlF) responses; and (iii) analysis of resin terpenes. Results showed no differences on lesion length between fungal and ozone treatments, whereas the short-term effects of the two stress factors on ChlF indicate an increased photosynthetic efficiency, thus suggesting the triggering of compensation/repair processes. The total amount of resin terpenes is enhanced by fungal infection of both species, but depressed by ozone to the levels observed in mock-inoculated plants. Variations in terpene profiles were also induced by stem base inoculations and ozone treatment. Ozone might negatively affect terpene defences making plants more susceptible to pathogens and insects. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.
2011-11-01
Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOxratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOxoxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.
NASA Astrophysics Data System (ADS)
Pollack, I. B.; Ryerson, T. B.; Trainer, M.; Parrish, D. D.; Andrews, A. E.; Atlas, E. L.; Blake, D. R.; Brown, S. S.; Commane, R.; Daube, B. C.; de Gouw, J. A.; Dubé, W. P.; Flynn, J.; Frost, G. J.; Gilman, J. B.; Grossberg, N.; Holloway, J. S.; Kofler, J.; Kort, E. A.; Kuster, W. C.; Lang, P. M.; Lefer, B.; Lueb, R. A.; Neuman, J. A.; Nowak, J. B.; Novelli, P. C.; Peischl, J.; Perring, A. E.; Roberts, J. M.; Santoni, G.; Schwarz, J. P.; Spackman, J. R.; Wagner, N. L.; Warneke, C.; Washenfelder, R. A.; Wofsy, S. C.; Xiang, B.
2012-02-01
Airborne and ground-based measurements during the CalNex (California Research at the Nexus of Air Quality and Climate Change) field study in May/June 2010 show a weekend effect in ozone in the South Coast Air Basin (SoCAB) consistent with previous observations. The well-known and much-studied weekend ozone effect has been attributed to weekend reductions in nitrogen oxide (NOx = NO + NO2) emissions, which affect ozone levels via two processes: (1) reduced ozone loss by titration and (2) enhanced photochemical production of ozone due to an increased ratio of non-methane volatile organic compounds (VOCs) to NOx. In accord with previous assessments, the 2010 airborne and ground-based data show an average decrease in NOx of 46 ± 11% and 34 ± 4%, respectively, and an average increase in VOC/NOx ratio of 48 ± 8% and 43 ± 22%, respectively, on weekends. This work extends current understanding of the weekend ozone effect in the SoCAB by identifying its major causes and quantifying their relative importance from the available CalNex data. Increased weekend production of a VOC-NOx oxidation product, peroxyacetyl nitrate, compared to a radical termination product, nitric acid, indicates a significant contribution from increased photochemical production on weekends. Weekday-to-weekend differences in the products of NOx oxidation show 45 ± 13% and 42 ± 12% more extensive photochemical processing and, when compared with odd oxygen (Ox = O3 + NO2), 51 ± 14% and 22 ± 17% greater ozone production efficiency on weekends in the airborne and ground-based data, respectively, indicating that both contribute to higher weekend ozone levels in the SoCAB.
Shukla, K; Srivastava, Prashant K; Banerjee, T; Aneja, Viney P
2017-01-01
Ozone dynamics in two urban background atmospheres over middle Indo-Gangetic Plain (IGP) were studied in two contexts: total columnar and ground-level ozone. In terms of total columnar ozone (TCO), emphases were made to compare satellite-based retrieval with ground-based observation and existing trend in decadal and seasonal variation was also identified. Both satellite-retrieved (Aura Ozone Monitoring Instrument-Differential Optical Absorption Spectroscopy (OMI-DOAS)) and ground-based observations (IMD-O 3 ) revealed satisfying agreement with OMI-DOAS observation over predicting TCO with a positive bias of 7.24 % under all-sky conditions. Minor variation between daily daytime (r = 0.54; R 2 = 29 %; n = 275) and satellite overpass time-averaged TCO (r = 0.58; R 2 = 34 %; n = 208) was also recognized. A consistent and clear seasonal trend in columnar ozone (2005-2015) was noted with summertime (March-June) maxima (Varanasi, 290.9 ± 8.8; Lucknow, 295.6 ± 9.5 DU) and wintertime (December-February) minima (Varanasi, 257.4 ± 10.1; Lucknow, 258.8 ± 8.8 DU). Seasonal trend decomposition based on locally weighted regression smoothing technique identified marginally decreasing trend (Varanasi, 0.0084; Lucknow, 0.0096 DU year -1 ) especially due to reduction in monsoon time minima and summertime maxima. In continuation to TCO, variation in ground-level ozone in terms of seasonality and precursor gases were also analysed from September 2014 to August 2015. Both stations registered similar pattern of variation with Lucknow representing slightly higher annual mean (44.3 ± 30.6; range, 1.5-309.1 μg/m 3 ) over Varanasi (38.5 ± 17.7; range, 4.9-104.2 μg/m 3 ). Variation in ground-level ozone was further explained in terms water vapour, atmospheric boundary layer height and solar radiation. Ambient water vapour content was found to associate negatively (r = -0.28, n = 284) with ground-level ozone with considerable seasonal variation in Varanasi. Implication of solar radiation on formation of ground-level ozone was overall positive (Varanasi, 0.60; Lucknow, 0.26), while season-specific association was recorded in case of atmospheric boundary layer.
Airmass dependence of the Dobson total ozone measurements
NASA Technical Reports Server (NTRS)
Degorska, M.; Rajewska-Wiech, B.
1994-01-01
For many years the airmass dependence of total ozone measurements at Belsk has been observed to vary noticeably from one day to another. Series of AD wavelength pairs measurements taken out to high airmass were analyzed and compared with the two parameter stray light model presented by Basher. The analysis extended to the series of CD measurements indicates the role of atmospheric attenuation in appearing the airmass dependence. The minor noon decline of total ozone has been observed in the CD measurement series similarly as in those of the AD wavelength pairs. Such errors may seriously affect the accuracy of CD measurements at high latitude stations and the observations derived in winter at middle latitude stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickler, R.A.; Fox, S.A.
The mission of the SGCP is to conduct research and monitoring in the southern region of the US; to determine the interactive responses among forest ecosystems, atmospheric pollution, and climate change; and to use this knowledge to manage and protect forest ecosystems. The first 5 years of research have emphasized the interactions and impacts of five stresses: CO{sub 2}, ozone, temperature, moisture, and nutrients in pine ecosystems. Hierarchial research approaches include correlational studies, experimental field and lab studies, and modeling Across individual-tree to regional levels. The results from 36 projects suggest: elevated CO{sub 2} increases carbon gain and suppress respirationmore » across site-resource conditions; genotypes are differentially affected by climate events; and competition and reproductive biology are likely to be impacted by climate change. An overview of five years of research results will be discussed.« less
Ozone and Other Air Quality Related Variables Affecting Visibility in the Southeast United States
1997-07-11
potential for convective mixing of precursor pollutants. Subsidence impedes the formation of clouds which in turn increases the solar radiation... fact that visibility is not directly related to atmospheric loading by pollutants and aerosols, to nonuniform or nonideal range conditions , and to...ozone levels are most likely to occur during the summer during periods of peak incoming solar radiation. O’Conner (1996) concluded that the best time to
Changes in tropospheric composition and air quality due to stratospheric ozone depletion.
Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F
2003-01-01
Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the chemical composition of the atmosphere including aerosols will also have an impact. For example, tropospheric OH is the 'cleaning' agent of the troposphere. While increased UV-B increases the OH concentration, increases in concentration of gases like methane, carbon monoxide and volatile organic compounds will act as sinks for OH in troposphere and hence change air quality and chemical composition in the troposphere. Also, changes in the aerosol content of the atmosphere resulting from global climate change may affect ozone photolysis rate coefficients and hence reduce or increase tropospheric ozone concentrations.
Snapshot of the Antarctic Ozone Hole 2010
2017-12-08
Image acquired September 12, 2010 The yearly depletion of stratospheric ozone over Antarctica – more commonly referred to as the “ozone hole” – started in early August 2010 and is now expanding toward its annual maximum. The hole in the ozone layer typically reaches its maximum area in late September or early October, though atmospheric scientists must wait a few weeks after the maximum to pinpoint when the trend of ozone depletion has slowed down and reversed. The hole isn’t literal; no part of the stratosphere — the second layer of the atmosphere, between 8 and 50 km (5 and 31 miles) — is empty of ozone. Scientists use "hole" as a metaphor for the area in which ozone concentrations drop below the historical threshold of 220 Dobson Units. Historical levels of ozone were much higher than 220 Dobson Units, according to NASA atmospheric scientist Paul Newman, so this value shows a very large ozone loss. Earth's ozone layer protects life by absorbing ultraviolet light, which damages DNA in plants and animals (including humans) and leads to skin cancer. The Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite acquired data for this map of ozone concentrations over Antarctica on September 12, 2010. OMI is a spectrometer that measures the amount of sunlight scattered by Earth’s atmosphere and surface, allowing scientists to assess how much ozone is present at various altitudes — particularly the stratosphere — and near the ground. So far in 2010, the size and depth of the ozone hole has been slightly below the average for 1979 to 2009, likely because of warmer temperatures in the stratosphere over the far southern hemisphere. However, even slight changes in the meteorology of the region this month could affect the rate of depletion of ozone and how large an area the ozone hole might span. You can follow the progress of the ozone hole by visiting NASA’s Ozone Hole Watch page. September 16 is the International Day for the Preservation of the Ozone Layer, a commemoration of the day in 1987 when nations commenced the signing of the Montreal Protocol to limit and eventually ban ozone-depleting substances such as chlorofluorocarbons (CFCs) and other chlorine and bromine-containing compounds. The ozone scientific assessment panel for the United Nations Environment Program, which monitors the effectiveness of the Montreal Protocol, is expected to release its latest review of the state of the world’s ozone layer by the end of 2010. (The last assessment was released in 2006.) Paul Newman is one of the four co-chairs of the assessment panel. NASA image courtesy Ozone Hole Watch. Caption by Michael Carlowicz. Instrument: Aura - OMI To learn more go to: ozonewatch.gsfc.nasa.gov/ Credit: NASA’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions.
Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing
2016-01-01
Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat would reach 50% under elevated ozone concentrations and reduced solar irradiance as determined in T1, and 30% under conditions as determined in T2. Results from this study suggest that a combination of elevated ozone concentrations and reduced solar irradiance could result in substantial dry matter loss in the Chinese wheat-growing regions. PMID:26760509
Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y
2015-01-01
UV radiation is an essential driver for the formation of photochemical smog, which includes ground-level ozone and particulate matter (PM). Recent analyses support earlier work showing that poor outdoor air quality is a major environmental hazard as well as quantifying health effects on regional and global scales more accurately. Greater exposure to these pollutants has been linked to increased risks of cardiovascular and respiratory diseases in humans and is associated globally with several million premature deaths per year. Ozone also has adverse effects on yields of crops, leading to loss of billions of US dollars each year. These detrimental effects also may alter biological diversity and affect the function of natural ecosystems. Future air quality will depend mostly on changes in emission of pollutants and their precursors, but changes in UV radiation and climate will contribute as well. Significant reductions in emissions, mainly from the energy and transportation sectors, have already led to improved air quality in many locations. Air quality will continue to improve in those cities/states that can afford controls, and worsen where the regulatory infrastructure is not available. Future changes in UV radiation and climate will alter the rates of formation of ground-level ozone and photochemically-generated particulate matter and must be considered in predictions of air quality. The decrease in UV radiation associated with recovery of stratospheric ozone will, according to recent global atmospheric model simulations, lead to increases in ground-level ozone at most locations. If correct, this will add significantly to future ground-level ozone trends. However, the spatial resolution of these global models is insufficient to inform policy at this time, especially for urban areas. UV radiation affects the atmospheric concentration of hydroxyl radicals, ˙OH, which are responsible for the self-cleaning of the atmosphere. Recent measurements confirm that, on a local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels.
Zeleznik, P; Hrenko, M; Then, C; Koch, N; Grebenc, T; Levanic, T; Kraigher, H
2007-03-01
Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital mycorrhizal root tips, fine root (mass) density, root tip density per surface, root area index, concentration of Zn, and Ca/Al ratio. Due to the general reduction in root growth indices and nutrient cycling in ozone-fumigated plants, alterations in soil carbon pools could be predicted.
NASA Technical Reports Server (NTRS)
Browell, Edward V.; Butler, Carolyn F.; Fenn, Marta A.; Grant, William B.; Ismail, Syed; Carter, Arlen F.
1994-01-01
The NASA Langley airborne differential absorption lidar system was operated from the NASA Ames DC-8 aircraft during the 1992 Airborne Arctic Stratospheric Expedition to investigate the distribution of stratospheric aerosols and ozone (O3) across the Arctic vortex from January to March 1992. Aerosols from the Mt. Pinatubo eruption were found outside and inside the Arctic vortex with distinctly different scattering characteristics and spatial distributions in the two regions. The aerosol and O3 distributions clearly identified the edge of the vortex and provided additional information on vortex dynamics and transport processes. Few polar stratospheric clouds were observed during the AASE-2; however, those that were found had enhanced scattering and depolarization over the background Pinatubo aerosols. The distribution of aerosols inside the vortex exhibited relatively minor changes during the AASE-2. Ozone depletion inside the vortex as limited to less than or equal to 20 percent in the altitude region from 15-20 km.
Flight tests of a range-resolved airborne dial with two min-tea CO2 lasers
NASA Technical Reports Server (NTRS)
Itabe, T.; Ishizu, M.; Aruga, T.; Igarashi, T.; Asai, K.
1986-01-01
It is important to measure regional distributions of ozone concentrations in a short time for understanding a mechanism of photo-chemical smog development. An airborne Differential Absorption Lidar (DIAL) system with two low-power mini-TEA CO2 lasers was developed for measuring three-dimensional distributions of ozone in the lower troposphere. The CO2 DIAL is a nadir-looking system and is designed to measure ozone profiles between ground and airplane by using atmospheric aerosols as a distributed radar target. First flight test with a single laser were conducted in February 1985 over the Tokyo area. The system was operated at an altitude of 5000 ft. Results of the first flight tests show that the height profiles of the received power in the boundary layer were different between over land and ocean. The received power has to be inverted to an expression of a single optical parameter to see real aerosol distributions. Inversion of the lidar signal to the aerosol extinction was performed by using Klett's solution.
Year-round measurements of ozone at 66 deg S with a visible spectrometer
NASA Technical Reports Server (NTRS)
Roscoe, Howard K.; Oldham, Derek J.; Squires, James A. C.; Pommereau, Jean-Pierre; Goutail, Florence; Sarkissian, Alain
1994-01-01
In March 1990, a zenith-sky UV-visible spectrometer of the design 'Systeme Automatique d'Obervation Zenithal' (SAOZ) was installed at Faraday in Antarctica (66.3 deg S, 64.3 deg W). SAOZ records spectra between 290 and 600 nm during daylight. Its analysis program fits laboratory spectra of constituents, at various wavelengths, to the differential of the ratio of the observed spectrum and a reference spectrum. The least-squares fitting procedure minimizes the sum-of-squares of residuals. Ozone is deduced from absorption in its visible bands between 500 and 560 nm. The fortunate colocation of this SAOZ with the well-calibrated Dobson at Faraday has allowed us to examine the calibration of the zero of the SAOZ, difficult at visible wavelengths because of the small depth of absorption. Here we describe recent improvements and limitations to this calibration, and discuss SAOZ measurements of ozone during winter in this important location at the edge of the Antarctic vortex.
Fann, Neal; Nolte, Christopher G; Dolwick, Patrick; Spero, Tanya L; Brown, Amanda Curry; Phillips, Sharon; Anenberg, Susan
2015-05-01
In this United States-focused analysis we use outputs from two general circulation models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change. We conduct multiyear simulations to account for interannual variability and characterize the near-term influence of a changing climate on tropospheric ozone-related health impacts near the year 2030, which is a policy-relevant time frame that is subject to fewer uncertainties than other approaches employed in the literature. We adopt a 2030 emissions inventory that accounts for fully implementing anthropogenic emissions controls required by federal, state, and/or local policies, which is projected to strongly influence future ozone levels. We quantify a comprehensive suite of ozone-related mortality and morbidity impacts including emergency department visits, hospital admissions, acute respiratory symptoms, and lost school days, and estimate the economic value of these impacts. Both GCMs project average daily maximum temperature to increase by 1-4°C and 1-5 ppb increases in daily 8-hr maximum ozone at 2030, though each climate scenario produces ozone levels that vary greatly over space and time. We estimate tens to thousands of additional ozone-related premature deaths and illnesses per year for these two scenarios and calculate an economic burden of these health outcomes of hundreds of millions to tens of billions of U.S. dollars (2010$). Near-term changes to the climate have the potential to greatly affect ground-level ozone. Using a 2030 emission inventory with regional climate fields downscaled from two general circulation models, we project mean temperature increases of 1 to 4°C and climate-driven mean daily 8-hr maximum ozone increases of 1-5 ppb, though each climate scenario produces ozone levels that vary significantly over space and time. These increased ozone levels are estimated to result in tens to thousands of ozone-related premature deaths and illnesses per year and an economic burden of hundreds of millions to tens of billions of U.S. dollars (2010$).
Ozone dose-response relationships for spring oilseed rape and broccoli
NASA Astrophysics Data System (ADS)
De Bock, Maarten; Op de Beeck, Maarten; De Temmerman, Ludwig; Guisez, Yves; Ceulemans, Reinhart; Vandermeiren, Karine
2011-03-01
Tropospheric ozone is an important air pollutant with known detrimental effects for several crops. Ozone effects on seed yield, oil percentage, oil yield and 1000 seed weight were examined for spring oilseed rape ( Brassica napus cv. Ability). For broccoli ( Brassica oleracea L. cv. Italica cv. Monaco) the effects on fresh marketable weight and total dry weight were studied. Current ozone levels were compared with an increase of 20 and 40 ppb during 8 h per day, over the entire growing season. Oilseed rape seed yield was negatively correlated with ozone dose indices calculated from emergence until harvest. This resulted in an R2 of 0.24 and 0.26 ( p < 0.001) for the accumulated hourly O 3 exposure over a threshold of 40 ppb (AOT40) and the phytotoxic ozone dose above a threshold of 6 nmol m -2 s -1 (POD 6) respectively. Estimated critical levels, above which 5% yield reduction is expected, were 3.7 ppm h and 4.4 mmol m -2 respectively. Our results also confirm that a threshold value of 6 nmol s -1 m -2 projected leaf area, as recommended for agricultural crops (UNECE, Mills, 2004), can indeed be applied for spring oilseed rape. The reduction of oilseed rape yield showed the highest correlation with the ozone uptake during the vegetative growth stage: when only the first 47 days after emergence were used to calculate POD 6, R2 values increased up to 0.476 or even 0.545 when the first 23 days were excluded. The highest ozone treatments, corresponding to the future ambient level by 2100 (IPCC, Meehl et al., 2007), led to a reduction of approximately 30% in oilseed rape seed yield in comparison to the current ozone concentrations. Oil percentage was also significantly reduced in response to ozone ( p < 0.001). As a consequence oil yield was even more severely affected by elevated ozone exposure compared to seed yield: critical levels for oil yield dropped to 3.2 ppm h and 3.9 mmol m -2. For broccoli the applied ozone doses had no effect on yield.
Interannual variability in tropical tropospheric ozone and OH: The role of lightning
NASA Astrophysics Data System (ADS)
Murray, Lee T.; Logan, Jennifer A.; Jacob, Daniel J.
2013-10-01
Nitrogen oxide radicals (NOx) produced by lightning are natural precursors for the production of the dominant tropospheric oxidants, OH and ozone. Observations of the interannual variability (IAV) of tropical ozone and of global mean OH (from the methyl chloroform proxy) offer a window for understanding the sensitivity of ozone and OH to environmental factors. We present the results of simulations for 1998-2006 using the GEOS-Chem chemical transport model (CTM) with IAV in tropical lightning constrained by satellite observations from the Lightning Imaging Sensor. We find that this imposed IAV in lightning NOx improves the ability of the model to reproduce observed IAV in tropical ozone and OH. Lightning is far more important than biomass burning in driving the IAV of tropical ozone, even though the IAV of NOx emissions from fires is greater than that from lightning. Our results indicate that the IAV in tropospheric OH is highly sensitive to lightning relative to other emissions and suggest that lightning contributes an important fraction of the observed IAV in OH inferred from the methyl chloroform proxy. Lightning affects OH through the HO2+ NO reaction, an effect compounded by positive feedback from the resulting increase in ozone production and in CO loss. We can account in the model for the observed increase in OH in 1998-2004 and for its IAV, but the model fails to explain the OH decrease in 2004-2006. We find that stratospheric ozone plays little role in driving IAV in OH during 1998-2006, in contrast to previous studies that examined earlier periods.
Stratospheric processes: Observations and interpretation
NASA Technical Reports Server (NTRS)
Brune, William H.; Cox, R. Anthony; Turco, Richard; Brasseur, Guy P.; Matthews, W. Andrew; Zhou, Xiuji; Douglass, Anne; Zander, Rudi J.; Prendez, Margarita; Rodriguez, Jose M.
1991-01-01
Explaining the observed ozone trends discussed in an earlier update and predicting future trends requires an understanding of the stratospheric processes that affect ozone. Stratospheric processes occur on both large and small spatial scales and over both long and short periods of time. Because these diverse processes interact with each other, only in rare cases can individual processes be studied by direct observation. Generally the cause and effect relationships for ozone changes were established by comparisons between observations and model simulations. Increasingly, these comparisons rely on the developing, observed relationships among trace gases and dynamical quantities to initialize and constrain the simulations. The goal of this discussion of stratospheric processes is to describe the causes for the observed ozone trends as they are currently understood. At present, we understand with considerable confidence the stratospheric processes responsible for the Antarctic ozone hole but are only beginning to understand the causes of the ozone trends at middle latitudes. Even though the causes of the ozone trends at middle latitudes were not clearly determined, it is likely that they, just as those over Antarctica, involved chlorine and bromine chemistry that was enhanced by heterogeneous processes. This discussion generally presents only an update of the observations that have occurred for stratospheric processes since the last assessment (World Meteorological Organization (WMO), 1990), and is not a complete review of all the new information about stratospheric processes. It begins with an update of the previous assessment of polar stratospheres (WMO, 1990), followed by a discussion on the possible causes for the ozone trends at middle latitudes and on the effects of bromine and of volcanoes.
A passive ozone sampler based on a reaction with nitrite.
Koutrakis, P; Wolfson, J M; Bunyaviroch, A; Froehlich, S
1994-02-01
Standard ozone monitoring techniques utilize large, heavy, and expensive instruments that are not easily adapted for personal or microenvironmental monitoring. For large-scale monitoring projects that examine spatial variations of a pollutant and human exposure assessments, passive sampling devices can provide the methodology to meet monitoring and statistical goals. Recently, we developed a coated filter for ozone collection that we used in a commercially available passive sampling device. Successful preliminary results merited further validation tests, which are presented in this report. The passive ozone sampler used in field and laboratory experiments consists of a badge clip supporting a barrel-shaped body that contains two coated glass fiber filters. The principle component of the coating is nitrite ion, which in the presence of ozone is oxidized to nitrate ion on the filter medium (NO2- + O3 produces NO3- + O2). After sample collection, the filters were extracted with ultrapure water and analyzed for nitrate ion by ion chromatography. The results from laboratory and field validation tests indicated excellent agreement between the passive method and standard ozone monitoring techniques. We determined that relative humidity (ranging from 10% to 80%) and temperature (ranging from 0 degrees C to 40 degrees C) at typical ambient ozone levels (40 to 100 parts per billion) do not influence sampler performance. Face velocity and sampler orientation with respect to wind direction were found to affect the sampler's collection rate of ozone. Using a protective cup, which acts as both a wind screen and a rain cover, we were able to obtain a constant collection rate over a wide range of wind speeds.
Huang, Ji Qing; Zheng, You Fei; Xu, Jing Xin; Zhao, Hui; Yuan, Yue; Chu, Zhong Fang
2016-10-01
In this study, the concentration of O 3 and its deposition flux over a bare soil in Nanjing in autumn were observed by using an eddy covariance system with rapid ozone analyzer. We analyzed the correlation of ozone concentration, deposition flux, and meteorological conditions in order to explore the characteristics of the variations in ozone deposition flux and deposition velocity. We also compared flux and velocity by using modeled soil resistance with observations. The results showed that the diurnal variation of ozone concentration exhibited a single peak distribution, and it increased due to radiation enhancement from September 25th to October 28th, 2015. Ozone deposition flux over a bare soil in autumn was mainly affected by its concentration, with diurnal average values varying from -31.4 to -156.8 ng·s -1 ·m -2 (the negative sign indicated that the deposition direction was toward the ground). As a result of non-vegetation over a bare soil, the ozone deposition flux was significantly influenced by environmental factors. Diurnal average of deposition velocities varied in the range of 0.09-0.30 cm·s -1 . The turbulence exchange played a major role in the atmosphere transportation of ozone, and underlying surface condition was particularly important to O 3 dry deposition over the bare soil. Soil resistance (R s ) increased exponentially with air relative humidity (RH), and the equation was R s =89.981e 0.0246 RH . The parameterized ozone deposition velocities and fluxes were in good agreement with the measured values.
NDSC and JPL stratospheric lidars
NASA Technical Reports Server (NTRS)
McDermid, I. Stuart
1995-01-01
The Network for the Detection of Stratospheric Change is an international cooperation providing a set of high-quality, remote-sensing instruments at observing stations around the globe. A brief description of the NDSC and its goals is presented. Lidar has been selected as the NDSC instrument for measurements of stratospheric profiles of ozone, temperature, and aerosol. The Jet Propulsion Laboratory has developed and implemented two stratospheric lidar systems for NDSC. These are located at Table Mountain, California, and at Mauna Loa, Hawaii. These systems, which utilize differential absorption lidar, Rayleigh lidar, raman lidar, and backscatter lidar, to measure ozone, temperature, and aerosol profiles in the stratosphere are briefly described. Examples of results obtained for both long-term and individual profiles are presented.
Piemontese, Luca; Messia, Maria Cristina; Marconi, Emanuele; Falasca, Luisa; Zivoli, Rosanna; Gambacorta, Lucia; Perrone, Giancarlo; Solfrizzo, Michele
2018-04-01
Deoxynivalenol (DON) is an important mycotoxin produced by several species of Fusarium. It occurs often in wheat grain and is frequently associated with significant levels of its modified form DON-3-glucoside (DON-3-Glc). Ozone (O 3 ) is a powerful disinfectant and oxidant, classified as GRAS (Generally Recognised As Safe), that reacts easily with specific compounds including the mycotoxins aflatoxins, ochratoxin A, trichothecenes and zearalenone. It degrades DON in aqueous solution and can be effective for decontamination of grain. This study reports the efficacy of gaseous ozone treatments in reducing DON, DON-3-Glc, bacteria, fungi and yeasts in naturally contaminated durum wheat. A prototype was used to dispense ozone continuously and homogeneously at different concentrations and exposure time, in 2 kg aliquots of durum wheat. The optimal conditions, which do not affect chemical and rheological parameters of durum wheat, semolina and pasta, were identified (55 g O 3 h -1 for 6 h). The measured mean reductions of DON and DON-3-Glc in ozonated wheat were 29% and 44%, respectively. Ozonation also produced a significant (p < 0.05) reduction of total count (CFU/g) of bacteria, fungi and yeasts in wheat grains.
Kanter, Ulrike; Heller, Werner; Durner, Jörg; Winkler, J. Barbro; Engel, Marion; Behrendt, Heidrun; Holzinger, Andreas; Braun, Paula; Hauser, Michael; Ferreira, Fatima; Mayer, Klaus; Pfeifer, Matthias; Ernst, Dieter
2013-01-01
Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms. PMID:23637846
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hildebrand, E.; Skelly, J.M.
1993-02-01
To assess the extent of foliar symptoms due to ozone on sensitive hardwoods in the Shenandoah National Park in Virginia, three species were sampled and evaluated at sites of differing elevations adjacent to 3 ozone monitors in 1991 and 1992: black cherry, yellow poplar, and white ash. All foliar samples were evaluated to precent of symptomatic leaves on each branch and average precent leaf area affected. The Horsfall-Barratt rating scale was used to estimate the precent leaf area symptomatic. Ozone symptoms were manifested as stipple on the adazial leaf surface. In the preliminary 1991 sampling, 40, 87, and 7% ofmore » black cherry trees sampled were found to be symptomatic at the 3 sites; 63 and 67% of yellow poplar trees sampled were found to be symptomatic at sites 1 and 3, as were 43 and 63% of the white ash at sites 1 and 2 (3 complete sets were not found in 1991). In 1992, the sampling and rating of injury were repeated. Symptoms of ozone injury appeared on 23, 88, and 10% of black cherry, on 17, 7, and 80% of yellow poplar, and 27, 40, and 40% of white ash. Elevation and ozone exposure will be discussed.« less
Esposito, Jéssica Bordotti Nobre; Esposito, Breno Pannia; Azevedo, Ricardo Antunes; Cruz, Luciano Soares; da Silva, Luzimar Campos; de Souza, Silvia Ribeiro
2015-04-01
This study aimed to investigate the effects of the Mn complex (Mn(III)-desferrioxamine B (MnDFB)) on oxidative stress in the Brazilian soybean cultivar Glycine max "Sambaiba" following exposure to ozone and acid rain. We determined the suitable dose of MnDFB to apply to G. max seedlings using a dose-response curve. The highest superoxide dismutase (SOD) activity and Mn content in leaves were found upon the application of 8 μM MnDFB. Thus, G. max seedlings pretreated with 8 μM MnDFB were individually exposed to ozone and acid rain simulated. Pretreatment with MnDFB reduced lipid peroxidation upon ozone exposure and increased SOD activity in leaves; it did not alter the metal content in any part of the plant. Conversely, following acid rain exposure, neither the metal content in leaves nor SOD enzyme activity were directly affected by MnDFB, unlike pH. Our findings demonstrated that exogenous MnDFB application before ozone exposure may modulate the MnSOD, Cu/ZnSOD, and FeSOD activities to combat the ROS excess in the cell. Here, we demonstrated that the applied dose of MnDFB enhances antioxidative defenses in soybean following exposure to acid rain and especially to ozone.
Ozone impacts of natural gas development in the Haynesville Shale.
Kemball-Cook, Susan; Bar-Ilan, Amnon; Grant, John; Parker, Lynsey; Jung, Jaegun; Santamaria, Wilson; Mathews, Jim; Yarwood, Greg
2010-12-15
The Haynesville Shale is a subsurface rock formation located beneath the Northeast Texas/Northwest Louisiana border near Shreveport. This formation is estimated to contain very large recoverable reserves of natural gas, and during the two years since the drilling of the first highly productive wells in 2008, has been the focus of intensive leasing and exploration activity. The development of natural gas resources within the Haynesville Shale is likely to be economically important but may also generate significant emissions of ozone precursors. Using well production data from state regulatory agencies and a review of the available literature, projections of future year Haynesville Shale natural gas production were derived for 2009-2020 for three scenarios corresponding to limited, moderate, and aggressive development. These production estimates were then used to develop an emission inventory for each of the three scenarios. Photochemical modeling of the year 2012 showed increases in 2012 8-h ozone design values of up to 5 ppb within Northeast Texas and Northwest Louisiana resulting from development in the Haynesville Shale. Ozone increases due to Haynesville Shale emissions can affect regions outside Northeast Texas and Northwest Louisiana due to ozone transport. This study evaluates only near-term ozone impacts, but the emission inventory projections indicate that Haynesville emissions may be expected to increase through 2020.
NASA Technical Reports Server (NTRS)
Swartz, W. H.; Stolarski, R. S.; Oman, L. D.; Fleming, E. L.; Jackman, C. H.
2012-01-01
The 11-year solar cycle in solar spectral irradiance (SSI) inferred from measurements by the SOlar Radiation & Climate Experiment (SORCE) suggests a much larger variation in the ultraviolet than previously accepted. We present middle atmosphere ozone and temperature responses to the solar cycles in SORCE SSI and the ubiquitous Naval Research Laboratory (NRL) SSI reconstruction using the Goddard Earth Observing System chemistry-climate model (GEOS CCM). The results are largely consistent with other recent modeling studies. The modeled ozone response is positive throughout the stratosphere and lower mesosphere using the NRL SSI, while the SORCE SSI produces a response that is larger in the lower stratosphere but out of phase with respect to total solar irradiance above 45 km. The modeled responses in total ozone are similar to those derived from satellite and ground-based measurements, 3-6 Dobson Units per 100 units of 10.7-cm radio flux (F10.7) in the tropics. The peak zonal mean tropical temperature response 50 using the SORCE SSI is nearly 2 K per 100 units 3 times larger than the simulation using the NRL SSI. The GEOS CCM and the Goddard Space Flight Center (GSFC) 2-D coupled model are used to examine how the SSI solar cycle affects the atmosphere through direct solar heating and photolysis processes individually. Middle atmosphere ozone is affected almost entirely through photolysis, whereas the solar cycle in temperature is caused both through direct heating and photolysis feedbacks, processes that are mostly linearly separable. Further, the net ozone response results from the balance of ozone production at wavelengths less than 242 nm and destruction at longer wavelengths, coincidentally corresponding to the wavelength regimes of the SOLar STellar Irradiance Comparison Experiment (SOLSTICE) and Spectral Irradiance Monitor (SIM) on SORCE, respectively. A higher wavelength-resolution analysis of the spectral response could allow for a better prediction of the atmospheric response to arbitrary SSI variations.
Wang, Chengjin; Klamerth, Nikolaus; Messele, Selamawit Ashagre; Singh, Arvinder; Belosevic, Miodrag; Gamal El-Din, Mohamed
2016-09-01
The efficiency of three different oxidation processes, UV/H2O2 oxidation, ferrate(VI) oxidation, and ozonation with and without hydroxyl radical (OH) scavenger tert-butyl alcohol (TBA) on the removal of organic compounds from oil sands process-affected water (OSPW) was investigated and compared. The removal of aromatics and naphthenic acids (NAs) was explored by synchronous fluorescence spectra (SFS), ion mobility spectra (IMS), proton and carbon nuclear magnetic resonance ((1)H and (13)C NMR), and ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC TOF-MS). UV/H2O2 oxidation occurred through radical reaction and photolysis, transforming one-ring, two-ring, and three-ring fluorescing aromatics simultaneously and achieving 42.4% of classical NAs removal at 2.0 mM H2O2 and 950 mJ/cm(2) UV dose provided with medium pressure mercury lamp. Ferrate(VI) oxidation exhibited high selectivity, preferentially removing two-ring and three-ring fluorescing aromatics, sulfur-containing NAs (NAs + S), and NAs with high carbon and high hydrogen deficiency. At 2.0 mM Fe(VI), 46.7% of classical NAs was removed. Ozonation achieved almost complete removal of fluorescing aromatics, NAs + S, and classical NAs (NAs with two oxygen atoms) at the dose of 2.0 mM O3. Both molecular ozone reaction and OH reaction were important pathways in transforming the organics in OSPW as supported by ozonation performance with and without TBA. (1)H NMR analyses further confirmed the removal of aromatics and NAs both qualitatively and quantitatively. All the three oxidation processes reduced the acute toxicity towards Vibrio fischeri and on goldfish primary kidney macrophages (PKMs), with ozonation being the most efficient. Copyright © 2016 Elsevier Ltd. All rights reserved.
Leitao, Louis; Maoret, Jean-José; Biolley, Jean-Philippe
2007-01-01
We quantified the ozone impact on levels of Zea mays L. cv. Chambord mRNAs encoding C4-phosphoenolpyruvate carboxylase (C4-PEPc), ribulose-l,5-bisphosphate carboxylase/oxygenase small and large subunits (Rubisco-SSU and Rubisco-LSU, respectively) and Rubisco activase (RCA) using real-time RT-PCR. Foliar pigment content, PEPc and Rubisco protein amounts were simultaneously determined. Two experiments were performed to study the ozone response of the 5th and the 10th leaf. For each experiment, three ozone concentrations were tested in open-top chambers: non-filtered air (NF, control) and non-filtered air containing 40 (+40) and 80 nL L-1 (+80) ozone. Regarding the 5th leaf, +40 atmosphere induced a loss in pigmentation, PEPc and Rubisco activase mRNAs. However, it was unable to notably depress carboxylase protein amounts and mRNAs encoding Rubisco. Except for Rubisco mRNAs, all other measured parameters from 5th leaf were depressed by +80 atmosphere. Regarding the 10th leaf, +40 atmosphere increased photosynthetic pigments and transcripts encoding Rubisco and Rubisco activase. Rubisco and PEPc protein amounts were not drastically changed, even if they tended to be increased. Level of C4-PEPc mRNA remained almost stable. In response to +80 atmosphere, pigments and transcripts encoding PEPc were notably decreased. Rubisco and PEPc protein amounts also declined to a lesser extent. Conversely, the level of transcripts encoding both Rubisco subunits and Rubisco activase that were not consistently disturbed tended to be slightly augmented. So, the present study suggests that maize leaves can respond differentially to a similar ozone stress.
Continuation of SAGE and MLS High-Resolution Ozone Profiles with the Suomi NPP OMPS Limb Profiler
NASA Astrophysics Data System (ADS)
Kramarova, N. A.; Bhartia, P. K.; Moy, L.; Chen, Z.; Frith, S. M.
2015-12-01
The Ozone Mapper and Profiler Suite (OMPS) Limb Profiler (LP) onboard the Suomi NPP satellite is design to measure ozone profiles with a high vertical resolution (~2 km) and dense spatial sampling (~1° latitude). The LP sensor represents a new generation of the US ozone profile instruments with the plan for a follow-up limb instrument onboard the Joint Polar Satellite System 2 (JPSS-2) in 2021. In this study we will examine the suitability of using LP profiles to continue the EOS climate ozone profile record from the SAGE and MLS datasets. First of all, we evaluate the accuracy in determining the LP tangent height by analyzing measured and calculated radiances. The accurate estimation of the tangent height is critical for limb observations. Several methods were explored to estimate the uncertainties in the LP tangent height registration, and the results will be briefly summarized in this presentation. Version 2 of LP data, released in May 2014, includes a static adjustment of ~1.5 km and a dynamic tangent height adjustment within each orbit. A recent analysis of Version 2 Level 1 radiances revealed a 100 m step in the tangent height that occurred on 26 April 2013, due to a switch to two star trackers in determining spacecraft position. In addition, a ~200 m shift in the tangent height along each orbit was detected. These uncertainties in tangent height registrations can affect the stability of the LP ozone record. Therefore, the second step in our study includes a validation of LP ozone profiles against correlative satellite ozone measurements (Aura MLS, ACE-FTS, OSIRIS, and SBUV) with the focus on time-dependent changes. We estimate relative drifts between OMPS LP and correlative ozone records to evaluate stability of the LP measurements. We also test the tangent height corrections found in the internal analysis of Version 2 measurements to determine their effect on the long-term stability of the LP ozone record.
Castro, Francine D; Bassin, João Paulo; Dezotti, Márcia
2017-03-01
In this study, an aqueous solution containing the azo dye Reactive Orange 16 (RO16) was subjected to two sequential treatment processes, namely: ozonation and biological treatment in a moving-bed biofilm reactor (MBBR). The most appropriate ozonation pretreatment conditions for the biological process and the toxicity of the by-products resulting from RO16 ozone oxidation were evaluated. The results showed that more than 97 % of color removal from the dye solutions with RO16 concentrations ranging from 25 to 100 mg/L was observed in 5 min of ozone exposure. However, the maximum total organic carbon removal achieved by ozonation was only 48 %, indicating partial mineralization of the dye. Eleven intermediate organic compounds resulting from ozone treatment of RO16 solution were identified by LC/MS analyses at different contact times. The toxicity of the dye-containing solution decreased after 2 min of ozonation, but increased at longer contact times. The results further demonstrated that the ozonolysis products did not affect the performance of the subsequent MBBR, which achieved an average chemical oxygen demand (COD) and ammonium removal of 93 ± 1 and 97 ± 2 %, respectively. A second MBBR system fed with non-ozonated dye-containing wastewater was run in parallel for comparison purposes. This reactor also showed an appreciable COD (90 ± 1 %) and ammonium removal (97 ± 2 %), but was not effective in removing color, which remained practically invariable over the system. The use of short ozonation times (5 min) and a compact MBBR has shown to be effective for the treatment of the simulated textile wastewater containing the RO16 azo dye.
Ozone Production in Global Tropospheric Models: Quantifying Errors due to Grid Resolution
NASA Astrophysics Data System (ADS)
Wild, O.; Prather, M. J.
2005-12-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the Western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes at a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63 and T106 resolution is likewise monotonic but still indicates large errors at 120~km scales, suggesting that T106 resolution is still too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over East Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution, but subsequent ozone production in the free troposphere is less significantly affected.
Global tropospheric ozone modeling: Quantifying errors due to grid resolution
NASA Astrophysics Data System (ADS)
Wild, Oliver; Prather, Michael J.
2006-06-01
Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quantifying the errors in regional and global budgets. The sensitivity to vertical mixing through the parameterization of boundary layer turbulence is also examined. We find less ozone production in the boundary layer at higher resolution, consistent with slower chemical production in polluted emission regions and greater export of precursors. Agreement with ozonesonde and aircraft measurements made during the NASA TRACE-P campaign over the western Pacific in spring 2001 is consistently better at higher resolution. We demonstrate that the numerical errors in transport processes on a given resolution converge geometrically for a tracer at successively higher resolutions. The convergence in ozone production on progressing from T21 to T42, T63, and T106 resolution is likewise monotonic but indicates that there are still large errors at 120 km scales, suggesting that T106 resolution is too coarse to resolve regional ozone production. Diagnosing the ozone production and precursor transport that follow a short pulse of emissions over east Asia in springtime allows us to quantify the impacts of resolution on both regional and global ozone. Production close to continental emission regions is overestimated by 27% at T21 resolution, by 13% at T42 resolution, and by 5% at T106 resolution. However, subsequent ozone production in the free troposphere is not greatly affected. We find that the export of short-lived precursors such as NOx by convection is overestimated at coarse resolution.
Effects of Volcanic Eruptions on Stratospheric Ozone Recovery
NASA Technical Reports Server (NTRS)
Rosenfield, Joan E.
2002-01-01
The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.
Comparison of scientific findings from major ozone field studies in North America and Europe
NASA Astrophysics Data System (ADS)
Solomon, Paul; Cowling, Ellis; Hidy, George; Furiness, Cari
During the past decade, nearly 600 million dollars were invested in more than 30 major field studies in North America and Europe examining tropospheric ozone chemistry, meteorology, precursor emissions, and modeling. Most of these studies were undertaken to provide new or refined knowledge about ozone accumulation and to assist in the development of economical and effective emissions management practices for ozone. In this paper, we describe a selection of field research programs conducted under a wide range of geographical and climatological conditions in North America and Europe. The designs of these studies were generally similar, employing a combination of ground-based observation networks, upper-air sampling, and meteorological observations. Analysis and interpretation of the resulting data were combined with improved inventories of ozone precursor emissions and air quality modeling to develop new or enhanced knowledge about photochemical processes under various tropospheric conditions. The scientific results from these studies contained few surprises; in fact, they generally affirmed the conclusions in the review by the US National Research Council (NRC, 1999). Key findings include: (1) reaffirmation that tropospheric ozone is a multi-scale phenomenon extending to continental boundaries; (2) aerometric conditions aloft are important to ground-level ozone; (3) biogenic sources make important contributions to VOC and NO x emissions in parts of eastern North America and southern Europe; (4) emissions estimates are among the more uncertain components of predictive models for ozone; (5) recirculating flow over complex terrain and large water bodies are universally important factors affecting accumulation of ozone at the ground; (6) nonlinearities in ozone response to precursor changes create important degrees of freedom in management strategies - VOC and NO x sensitivities vary extensively in urban and rural areas, making decisions about emissions management complicated; (7) measurement methods for many precursors, intermediates, and products of photochemical reactions have improved greatly; and (8) additional analysis and interpretation of existing data from many of these field studies should pay handsome dividends at relatively modest cost.
Ozone and stratospheric height waves for opposite phases of the QBO
NASA Technical Reports Server (NTRS)
Mo, Kingtse C.; Nogues-Paegle, Julia
1994-01-01
The stratospheric quasi-biennial oscillation (QBO) provides an important source of interannual variations in the Northern Hemisphere. O'sullivan and Salby (1990) related extra-tropical eddy transport with the phase of the tropical QBO. When the tropical wind is easterly, the zero wind line is shifted into the winter hemisphere. Enhanced wave activity in middle latitudes acts to weaken the polar vortex. When the tropical wind is in the westerly phase the situation reverses. Heights at 30 mb and ozone configurations are contrasted in this paper for these two QBO phases. When the winter vortex deforms due to the amplification of planetary waves 1 and 2, extends westward and equatorward, the complementary band of low vorticity air spirals in toward the pole from lower latitudes. Sometimes, these planetary waves break (Juckes and McIntyre, 1987) and an irreversible mixing of air takes place between high and mid-latitudes. Global ozone patterns, as obtained form satellite observations, appear to be affected by planetary wave breaking (Leovy et al. 1985). This mixing results on regions with uniform ozone and potential vorticity. In the Southern Hemisphere (SH), Newman and Randel (1988) using Total Ozone Mapping Spectrometer (TOMS) data and the NMC analyses have found strong spatial correlation between the October mean temperature in the lower stratosphere and total ozone for the 1979 through 1986 years. Recently Nogues-Paegle et al.(1992) analyzed SH ozone and height data from 1986 to 1989. They found that leading empirical orthogonal functions (EOFs) for both ozone and 50 mb heights exhibit zonal wave 1 and 2 and that the correlations between ozone and 50 mb principal components (PCs) are high. The results were found to be consistent with a linear planetary wave advecting a passive tracer. In this paper, the dominant patterns of variability for 30 mb NMC heights and TOMS total ozone are obtained for the winter to summer transition (January to May) in the Northern Hemisphere (NH) for the years 1987-1990.
Elevated Ozone in the Troposphere over the Atlantic and Pacific Oceans in the Northern Hemisphere
NASA Technical Reports Server (NTRS)
Chandra, S.; Ziemke, J. R.; Tie, Xuexi
2003-01-01
Tropospheric column ozone (TCO) is derived from differential measurements of total column ozone from Nimus-7 and Earth Probe TOMS, and stratospheric column ozone from the Microwave Limb Sounder instrument on the Upper Atmospheric Research Satellite. It is shown that TCO during summer months over the Atlantic and Pacific Oceans at northern mid-latitudes is about the same (50-60 Dobson Units) as over the continents of North America, Europe and Asia, where surface emissions of nitrogen oxides from industrial sources, biomass and biofuel burning and biogenic emissions are significantly larger. This nearly uniform zonal variation in TCO is modulated by surface topography of the Rocky and Himalayan mountains and Tibetan Plateau where TCO is reduced by 20-30 Dobson Units. The zonal characteristics of TCO derived from satellite measurements are well simulated by a global chemical transport model called MOZART-2 (Model of Ozone and Related Chemical Tracers, version 2). The model results are analyzed to delineate the relative importance of various processes contributing to observed zonal characteristics of TCO, and they are shown that the surface emission of NOx contributes about 50% of the TCO at northern mid-latitudes, especially over the continents of North America, Europe and Asia. The result of TCO derived from TOMS and the analysis from MOZART-2 indicate that TCO is a very useful tool to study tropospheric O3 pollution resulting from surface emissions of pollutants.
Investigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China
Zhao, Heng; Wang, Shanshan; Wang, Wenxin; Liu, Rui; Zhou, Bin
2015-01-01
Differential Optical Absorption Spectroscopy (DOAS) was used for the long-term observation of ground-level ozone (O3) from March 2010 to March 2013 over Shanghai, China. The 1-hour average concentration of O3 was 27.2 ± 17.0 ppbv. O3 level increased during spring, reached the peak in late spring and early summer, and then decreased in autumn and finally dropped to the bottom in winter. The highest monthly average O3 concentration in June (41.1 ppbv) was nearly three times as high as the lowest level recorded in December (15.2 ppbv). In terms of pollution episodes, 56 hourly samples (on 14 separate days) in 2010 exceeded the 1-hour ozone limit of 200 μg/m3 specified by the Grade II of the Chinese Ambient Air Quality Standards (CAAQS, revised GB 3095-2012). Utilizing the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the primary contribution to high ozone days (HODs) was identified as the regional transportation of volatile organic compounds (VOC) and high concentrations of O3 from the chemical industrial zone in the Jinshan district of Shanghai. HODs showed higher concentrations of HONO and NO2 than non-episode conditions, implying that HONO at high concentration during HODs was capable of increasing the O3 concentration. The photolysis rate of HONO was estimated, suggesting that the larger number of OH radicals resulting from high concentrations of HONO have a considerable impact on ozone concentrations. PMID:26121146
SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone
Ahmad, Shama; Nichols, David P.; Strand, Matthew; Rancourt, Raymond C.; Randell, Scott H.; White, Carl W.; Ahmad, Aftab
2011-01-01
Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target. PMID:22096575
NASA Astrophysics Data System (ADS)
Ward, P. L.
2016-12-01
Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during March and April to 285 DU in October. Removing this seasonal change to calculate ozone anomaly and plotting against temperature anomaly, and climate oscillation indices such as NAM, NAO, ENSO, and SAM gives insight into the influence of volcanic eruptions on regional temperatures, pressures, winds, weather, and climate. WhyClimateChanges.com
Robinson, Sharon A; Erickson, David J
2015-02-01
Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion. © 2014 John Wiley & Sons Ltd.
The Use of Regulatory Air Quality Models to Develop Successful Ozone Attainment Strategies
NASA Astrophysics Data System (ADS)
Canty, T. P.; Salawitch, R. J.; Dickerson, R. R.; Ring, A.; Goldberg, D. L.; He, H.; Anderson, D. C.; Vinciguerra, T.
2015-12-01
The Environmental Protection Agency (EPA) recently proposed lowering the 8-hr ozone standard to between 65-70 ppb. Not all regions of the U.S. are in attainment of the current 75 ppb standard and it is expected that many regions currently in attainment will not meet the future, lower surface ozone standard. Ozone production is a nonlinear function of emissions, biological processes, and weather. Federal and state agencies rely on regulatory air quality models such as the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) to test ozone precursor emission reduction strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe various model scenarios that simulate how future limits on emission of ozone precursors (i.e. NOx and VOCs) from sources such as power plants and vehicles will affect air quality. These scenarios are currently being developed by states required to submit a State Implementation Plan to the EPA. Projections from these future case scenarios suggest that strategies intended to control local ozone may also bring upwind states into attainment of the new NAAQS. Ground based, aircraft, and satellite observations are used to ensure that air quality models accurately represent photochemical processes within the troposphere. We will highlight some of the improvements made to the CMAQ and CAMx model framework based on our analysis of NASA observations obtained by the OMI instrument on the Aura satellite and by the DISCOVER-AQ field campaign.
Studies on Stratospheric Moistening and Its Effect on Ozone Depletion in Global Perspective
NASA Astrophysics Data System (ADS)
Saha, Upal; Maitra, Animesh; Adhikari, Arpita
2012-07-01
Stratospheric moistening is the water vapor intrusion in the stratosphere which affects ozone, surface climate and stratospheric temperatures. Increased stratospheric water vapor can be an important cause of global warming as it acts to cool the stratosphere but warms the underlying troposphere. Stratospheric moistening is controlled by the transport through the tropopause region and the oxidation of methane within the stratosphere. In this article, variations of stratospheric moistening and stratospheric ozone over the whole Globe, equatorial region, mid latitudinal region, polar region are reported during the years from 2004 to 2011 using the Aura's Microwave Limb Sounder (MLS) water vapor data and Earth Probe TOMS ozone data. Maximum stratospheric moistening over the Globe is found to occur during boreal summer months although it is high during boreal winter months. The stratospheric ozone over Globe remains high during the pre-boreal summer months and decreases during the boreal winter. The mid latitudinal region has the maximum contribution of stratospheric moistening and stratospheric ozone over the Globe. Northern and southern poles have somewhat less contribution of stratospheric moistening. Stratospheric moistening over North Polar and mid latitudinal region is high during boreal summer months but over South Polar and mid latitudinal region it is high during boreal winter months. It is also found that stratospheric moistening has increased since 2004 and correspondingly stratospheric ozone concentration also decreased. This shows an anti-correlation between stratospheric moistening and stratospheric ozone, which indicates the dominance of prevailing photochemical reactions occurring in the stratosphere. Stratospheric moistening over the Indian and South Asian Monsoon regions has a global contribution of about 0.46% and 0.78% respectively. Latitudinal variation of stratospheric moistening and stratospheric ozone shows a good global inter-relation between them with a significant correlation. Atomic and molecular oxygen are produced due to photo-dissociation of the H2O molecule in the stratosphere. The stratospheric hydroxyl free radicals are responsible to deplete stratospheric ozone into oxygen via combination-recombination reaction. A decrease in stratospheric ozone concentration caused by the OH radical is predominant in the lower stratosphere but this process also extends to troposphere. Thus a decrease of ozone concentration is expected in Indian and South Asian Monsoon region, which will indicate an overview of ozone depletion in global perspective due to stratospheric moistening.
Ozone affects pollen viability and NAD(P)H oxidase release from Ambrosia artemisiifolia pollen.
Pasqualini, Stefania; Tedeschini, Emma; Frenguelli, Giuseppe; Wopfner, Nicole; Ferreira, Fatima; D'Amato, Gennaro; Ederli, Luisa
2011-10-01
Air pollution is frequently proposed as a cause of the increased incidence of allergy in industrialised countries. We investigated the impact of ozone (O(3)) on reactive oxygen species (ROS) and allergen content of ragweed pollen (Ambrosia artemisiifolia). Pollen was exposed to acute O(3) fumigation, with analysis of pollen viability, ROS and nitric oxide (NO) content, activity of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase, and expression of major allergens. There was decreased pollen viability after O(3) fumigation, which indicates damage to the pollen membrane system, although the ROS and NO contents were not changed or were only slightly induced, respectively. Ozone exposure induced a significant enhancement of the ROS-generating enzyme NAD(P)H oxidase. The expression of the allergen Amb a 1 was not affected by O(3), determined from the mRNA levels of the major allergens. We conclude that O(3) can increase ragweed pollen allergenicity through stimulation of ROS-generating NAD(P)H oxidase. Copyright © 2011 Elsevier Ltd. All rights reserved.
Protective Effect of Ozone against Hemiscorpius lepturus Envenomation in Mice.
Naserzadeh, Parvaneh; Shahi, Farshad; Shahbazzadeh, Delavar; Ghanei, Mostafa; Ashtari, Khadijeh; Panahi, Yoones; Hosseini, Mir-Jamal; Izadi, Morteza
2017-08-01
Scorpion (Hemiscorpius lepturus) stings are a public health concern in Iran, particularly in south and southwestern regions of Iran. The gold standard for the treatment of a scorpion sting is anti-venom therapy. However, immunotherapy can have serious side effects, such as anaphylactic shock (which can sometimes even lead to death). The aim of the current study was to demonstrate the protective effect of ozone against toxicity induced by Hemiscorpius lepturus (H. lepturus) venom in mice. Eight hours after the injection of ozone to the experimental design groups, the male mice were decapitated and mitochondria were isolated from five different tissues (liver, kidney, heart, brain, and spinal cord) using differential ultracentrifugation. Then, assessment of mitochondrial parameters including mitochondrial reactive oxidative species (ROS) production, mitochondrial membrane potential (MMP), ATP level, and the release of cytochrome c from the mitochondria was performed. Our results showed that H. lepturus venom-induced oxidative stress is related to ROS production and MMP collapse, which is correlated with cytochrome c release and ATP depletion, indicating the predisposition to the cell death signaling. In general, ozone therapy in moderate dose can be considered as clinically effective for the treatment of H. lepturus sting as a protective and antioxidant agent. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
CONTEXT: N02 and 03 are ubiquitous air toxicants capable of inducing lung damage to the respiratory epithelium. Due to their oxidizing capabilities, these pollutants have been proposed to target specific biological pathways, but few publications have compared the pathways activat...
Rationale. Large differences exist in the sensitivity of people to O3, a principal component of urban smog. Those that are particularly sensitive are known as “responders" because acute exposure induces rapid, shallow breathing and decreased forced expiratory volumes. ...
Islam, M Shahinoor; Zhang, Yanyan; McPhedran, Kerry N; Liu, Yang; Gamal El-Din, Mohamed
2015-06-15
The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>10(9) gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Islam, M. Shahinoor; Zhang, Yanyan; McPhedran, Kerry N.
2015-01-01
The development of biodegradation treatment processes for oil sands process-affected water (OSPW) has been progressing in recent years with the promising potential of biofilm reactors. Previously, the granular activated carbon (GAC) biofilm process was successfully employed for treatment of a large variety of recalcitrant organic compounds in domestic and industrial wastewaters. In this study, GAC biofilm microbial development and degradation efficiency were investigated for OSPW treatment by monitoring the biofilm growth on the GAC surface in raw and ozonated OSPW in batch bioreactors. The GAC biofilm community was characterized using a next-generation 16S rRNA gene pyrosequencing technique that revealed that the phylum Proteobacteria was dominant in both OSPW and biofilms, with further in-depth analysis showing higher abundances of Alpha- and Gammaproteobacteria sequences. Interestingly, many known polyaromatic hydrocarbon degraders, namely, Burkholderiales, Pseudomonadales, Bdellovibrionales, and Sphingomonadales, were observed in the GAC biofilm. Ozonation decreased the microbial diversity in planktonic OSPW but increased the microbial diversity in the GAC biofilms. Quantitative real-time PCR revealed similar bacterial gene copy numbers (>109 gene copies/g of GAC) for both raw and ozonated OSPW GAC biofilms. The observed rates of removal of naphthenic acids (NAs) over the 2-day experiments for the GAC biofilm treatments of raw and ozonated OSPW were 31% and 66%, respectively. Overall, a relatively low ozone dose (30 mg of O3/liter utilized) combined with GAC biofilm treatment significantly increased NA removal rates. The treatment of OSPW in bioreactors using GAC biofilms is a promising technology for the reduction of recalcitrant OSPW organic compounds. PMID:25841014
Influence of Ar addition on ozone generation in a non-thermal plasma—a numerical investigation
NASA Astrophysics Data System (ADS)
Chen, Hsin Liang; Lee, How Ming; Chen, Shiaw Huei; Wei, Ta Chin; Been Chang, Moo
2010-10-01
A numerical model based on a dielectric barrier discharge is developed in this study to investigate the influence of Ar addition on ozone generation. The simulation results show good agreement with the experimental data, confirming the validity of the numerical model. The mechanisms regarding how the Ar addition affects ozone generation are investigated with the assistance of a numerical simulation by probing into the following two questions, (1) why the ozone concentration just slightly decreases in the low specific input energy (SIE, the ratio of discharge power to gas flow rate) region even if the inlet O2 concentration is substantially decreased and (2) why the variation of the increased rate of ozone concentration with SIE (i.e. the variation in the slope of ozone concentration versus SIE) is more significant for an O2/Ar mixture plasma. As SIE is relatively low, ozone decomposition through electron-impact and radical attack reactions is less significant because of low ozone concentration and gas temperature. Therefore, the ozone concentration depends mainly on the amount of oxygen atoms generated. The simulation results indicate that the amount of oxygen atoms generated per electronvolt for Ar concentrations of 0%, 10%, 30%, 50% and 80% are 0.178, 0.174, 0.169, 0.165 and 0.166, respectively, explaining why the ozone concentration does not decrease linearly with the inlet O2 concentration in the low SIE region. On the other hand, the simulation results show that increasing Ar concentration would lead to a lower reduced field and a higher gas temperature. The former would lead to an increase in the rate constant of e + O3 → e + O + O2 while the latter would result in a decrease in the rate constant of O + O2 + M → O3 + M and an increase in that of O3 + O → 2O2. The changes in the rate constants of these reactions would have a negative effect on ozone generation, which is the rationale for the second question.
Development of an OClO Slant Column Product for the GOME-2 Sensors
NASA Astrophysics Data System (ADS)
Richter, Andreas; Wittrock, Folkard; Burrows, John P.
2016-04-01
Stratospheric ozone depletion by catalytic reactions involving halogens is one of the most prominent examples of anthropogenic impacts on the atmosphere. In spite of the rapid and successful international action to reduce emissions of CFCs and other ozone depleting substances leading to the Montreal Protocol and its amendments, ozone depletion in polar spring is still observed in both hemispheres on a regular basis. For the coming years, slow ozone recovery is expected but individual years will still see very low ozone columns depending on meteorology and possible interactions with climate change. Monitoring of both ozone and ozone depleting substances in the stratosphere remains a priority to ensure that the predicted reduction in halogen levels and recovery of ozone columns is taking place as predicted. One way to observe stratospheric chlorine activation is by measurements of OClO which can be detected by UV/visible remote sensing from the ground and from satellite. While the link between OClO levels and chlorine activation is complicated by the fact that a) OClO is not directly involved in ozone depletion but is produced by reaction of BrO and ClO and b) is rapidly photolysed at daylight, the long existing data series from both ground-based and satellite observations makes it an interesting tracer of chlorine activation. The GOME-2 instruments on the MetOp series of satellites are nadir viewing UV/vis spectrometers having the spectral coverage and resolution needed for Differential Optical Absorption Spectroscopy retrievals of OClO. With their combined lifetime of more than 15 years, they can provide a long-term data set. However, previous attempts to create an OClO product for GOME-2 suffered from large scatter in the OClO data and time-dependent offsets. Here we present an improved OClO slant column retrieval for the two instruments GOME2-A and GOME2-B. The data is shown to be of similar quality as for earlier instruments such as SCIAMACHY, and is consistent between the instruments. The time series from the two instruments nicely reproduces the large interannual variability in chlorine activation in both hemispheres. Validation with ground-based DOAS zenith-sky observations in Ny-Ålesund shows very good agreement in NH spring. Some baseline drift remains in the GOME2-A data which could be further reduced by application of an offset correction.
NASA Astrophysics Data System (ADS)
Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.
2015-10-01
The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of <10 %. This new and optimized vertical-resolution scheme retains the ability to resolve fluctuations in the known ozone profile, but it now allows near-field signals to be more appropriately smoothed. With these revisions to the previous TROPOZ retrieval, the optimized TROPOZ retrieval algorithm (TROPOZopt) has been effective in retrieving nearly 200 m lower to the surface. Also, as compared to the previous version of the retrieval, the TROPOZopt had an overall mean improvement of 3.5 %, and large improvements (upwards of 10-15 % as compared to the previous algorithm) were apparent between 4.5 and 9 km. Finally, to ensure the TROPOZopt retrieval algorithm is robust enough to handle actual lidar return signals, a comparison is shown between four nearby ozonesonde measurements. The ozonesondes are mostly within the TROPOZopt retrieval uncertainty bars, which implies that this exercise was quite successful.
Verstraeten, Ingrid M.; Thurman, E.M.; Lindsey, M.E.; Lee, E.C.; Smith, R.D.
2002-01-01
The changes in triazine and acetamide concentrations in water during natural and artificial treatment by bank filtration, ozonation, filtration, and chlorination were measured at the well field and drinking water treatment plant of Lincoln, Nebraska, USA. The city's groundwater supply is affected by induced infiltration and transport of triazines and acetamide herbicides from the Platte River in late spring and early summer. The objective of the study was to evaluate the effect of infiltration and treatment on the presence of triazines and acetamides in drinking water. Samples of river water, well water, and public supply water at various stages of water treatment were collected from 1997-1999 during spring-runoff when the presence of herbicides in the Platte River is largest. In 1999, parent compounds were reduced by 76% of the concentration present in river water (33% by bank filtration, 41% by ozonation, and 1.5% by chlorination). Metabolites of herbicides for which analytical techniques existed were reduced by 21% (plus 26% by bank filtration, minus 23% by ozonation, and minus 24% by chlorination). However, increases in concentrations of specific metabolite compounds were identified after bank filtration and ozonation. After bank filtration, increases in cyanazine amide, cyanazine acid, and deethylcyanazine acid were identified. After ozonation, concentrations of deisopropylatrazine, deethylatrazine, didealkylatrazine, atrazine amide-I, hydroxydeethylatrazine, hydroxydeisopopylatrazine, deethylcyanazine acid, and deethylcyanazine increased. Concentrations of cyanazine acid and ethanesulfonic and oxanilic acids of acetamides decreased during ozonation. Our findings suggest that bank filtration and ozonation of water in part can shift the assessment of risk to human health associated with the consumption of the water from the parent compounds to their degradation products.
NASA Technical Reports Server (NTRS)
Strahan, Susan; Stolarski, Richard; Douglass, Anne; Steenrod, Stephen
2005-01-01
Our industrial society has performed an experiment on the stratospheric ozone layer over the last several decades. The initial part of this experiment was the rapidly increasing release of halogen-containing compounds that carry chlorine and bromine to the stratosphere where they can cause a loss of ozone. The present part of this experiment is the implementation of the Montreal Protocol, which has led to a leveling off of these halogen compounds and the beginning of their slow removal from the atmosphere. The observation and attribution of ozone response to the halogens has been a particularly important and difficult task because of the impact of solar cycle uv variation, two major volcanic eruptions (El Chichon and Pinatubo), and interannual dynamic variability of the stratosphere. We have run 3 different simulations of the chemistry and transport of ozone and the minor constituents that affect ozone to help evaluate our understanding of the causes of ozone change and to assess our ability to predict ozone recovery with the removal of halogens from the stratosphere. One simulation, using the Goddard chemical transport model (CTM), had interannual variability in the dynamics for the entire 50 years of simulation, which included the past 3 decades (1974-2004) and the next 2 decades to 2022. The other two simulations used the Global Modeling Initiative (GMI) CTM with no dynamical variability: one used a the winds and temperatures from a repeating warm Arctic winter and the other used a repeating cold Arctic winter. All simulations included the effects of aerosol surfaces from volcanic eruptions on chemical reactions as well as the variation in UV over the 11-year solar cycle.
NASA Astrophysics Data System (ADS)
Sharma, Sumit; Khare, Mukesh
2017-02-01
This study simulates ground level ozone concentrations in a heavily populated and polluted National Capital Region (NCR- Delhi) in India. Multi-sectoral emission inventories of ozone precursors are prepared at a high resolution of 4 × 4 km2 for the whole region covering the capital city of Delhi along with other surrounding towns and rural regions in NCR. Emission inventories show that transport sector accounts for 55% of the total NOx emissions, followed by power plants (23%) and diesel generator sets (7%). In NMVOC inventories, transport sector again accounts for 33%, followed by evaporative emissions released from solvent use and fuel handling activities (30%), and agricultural residue burning (28%). Refuse burning contributes to 73% of CO emissions mainly due to incomplete combustion, followed by agricultural residue burning (14%). These emissions are spatially and temporally distributed across the study domain and are fed into the WRF-CMAQ models to predict ozone concentrations for the year 2012. Model validations are carried out with the observed values at different monitoring stations in Delhi. The performance of the models over various metrics used for evaluation was found to be satisfactory. Summers and post-monsoon seasons were better simulated than monsoon and winter seasons. Simulations have shown higher concentrations of ozone formation during summers and lesser during winters and monsoon seasons, mainly due to varying solar radiation affecting photo-chemical activities. Ozone concentrations are observed lower at those locations where NOx emissions are higher, and concentrations increase close to the boundary of study domain when compared to the center of Delhi city. Downwind regions to Delhi are influenced by the ozone formed due to plume of precursor emissions released from Delhi. Considering significant background contributions, regional scale controls are required for reducing ozone in NCR.
Lightning and Other Influences On Tropical Tropospheric Ozone: Empirical Studies of Covariation
NASA Technical Reports Server (NTRS)
Chatfield, Robert B.; Guan, Hong; Hudson, Robert D.; Witte, Jacquelyne C.
2003-01-01
Tropical and subtropical tropospheric ozone are important radiatively active species, with particularly large effects in the upper third of the troposphere. Temporal variability of O3 has proved difficult to simulate day by day in process models. Thus, individual roles of lightning, biomass burning, and other pollution in providing precursor NO(x), radicals, and chain carriers (CO, hydrocarbons) remain unquantified by simulation, and it is theoretically reasonable that individual roles are magnified by a joint synergy. We use wavelet analysis and Burg-algorithm maximum entropy spectral analyses to describe time-scales and correlation of ozone with proxies for processes controlling its concentration. Our empirical studies link time variations apparent in several datasets: the SHADOZ (Southern Hemisphere Additional Ozonesondes) network stations (Nairobi, Fiji), and auxiliary series with power to explain ozone-determining processes, with some interpretation based on the TTO (Tropical Tropospheric Ozone) product derived from TOMS (the Total Ozone Mapping Spectrometer). The auxiliary series are The OTD/LIS(Optical Transient Detector/Lightning Imaging Sensor) measurements of the lightning NO(x) source, the OLR (Outgoing Longwave Radiation)measurement of high-topped clouds, and standard meteorological variables from the United States NCEP (National Centers for Environmental Prediction) and Data Assimilation Office analyses. Concentrating on equatorial ozone, we compare the statistical evidence on the variability of tropospheric ozone. Important variations occur on approximately two-week, two-month (Madden-Julian Oscillation) and annual scales, and relations with OLR suggest controls associated with continental clouds. Hence we are now using the Lightning Imaging Sensor data set to indicate NO(x) sources. We report initial results defining relative roles of the process mentioned affecting O3 using their covariance properties.
Hua, Wenyi; Bennett, Erin R; Letcher, Robert J
2006-07-01
The depletion and degradation of pharmacologically active compounds (PhACs) and pesticides as a function of ozonation in drinking water treatment processes is not well studied. The A.H. Weeks drinking water treatment plant (DWTP) serves the City of Windsor, Ontario Canada, and incorporates ozone treatment into the production of drinking water. This DWTP also operates a real-time, scaled down pilot plant, which has two parallel streams, conventional and ozone plus conventional treatments. In this study water samples were collected from key points in the two streams of the pilot plant system to determine the depletion and influence of seasonal changes in water processing parameters on eighteen major PhACs (and metabolites) and seven s-triazines herbicides. However, only carbamazepine (antiepileptic), caffeine (stimulant), cotinine (metabolite of nicotine) and atrazine were consistently detectable in the raw water intake (low to sub-ng/L level). Regardless of the seasonality, the flocculation-coagulation and dual media filtration steps without ozone treatment resulted in no decrease in analyte concentrations, while decreases of 66-100% (undetectable, method detection limits 0.05-1 ng/L) of the analyte concentrations were observed when ozone treatment was part of the water processing. These findings demonstrate that ozone treatment is highly effective in depleting carbamazepine, caffeine, cotinine, and atrazine, and thus is highly influential in the fate of these compounds in drinking water treatment regardless of the seasonal time frame. Currently very few Canadian DWTPs incorporate ozonation into conventional treatment, which suggests that human exposure to these compounds via drinking water consumption may be an issue in affected communities.
Effects of ozone on the cholinergic secretory responsiveness of ferret tracheal glands
DOE Office of Scientific and Technical Information (OSTI.GOV)
McBride, R.K.; Oberdoerster, G.; Marin, M.G.
1991-06-01
Oxidant air pollutants exacerbate several pulmonary diseases. Inhalation of ozone has been shown to induce airway smooth muscle hyperresponsiveness. Oxidant injury could also affect airway secretory mechanisms. The authors postulated that oxidant exposure would alter the glycoconjugate secretory function of airway submucosal glands. To test this hypothesis they examined the effects of in vivo ozone exposure on the in vitro secretory responsiveness of ferret tracheal glands. Ferrets were exposed to 1 ppm ozone, 24 hr/day for 3 or 7 days. Following exposure, glandular explants, denuded of surface epithelial cells, were prepared and incubated in medium containing 3H-glucosamine for 18 hr.more » Basal secretion of labeled glycoconjugates was significantly increased 31% following 3 days of ozone exposure (P less than or equal to 0.05) and remained elevated 11% after 7 days of exposure compared to the air-exposed group. After 3 or 7 days of exposure to ozone, tracheal gland responsiveness to carbachol was increased as indicated by significantly lower EC50 values (log molar concentration) of -6.43 {plus minus} 0.04 (n = 6) and -6.50 {plus minus} 0.11 (n = 5), respectively; compared to -6.20 {plus minus} 0.08 (n = 6) for the air-exposed group. There was no difference in carbachol EC50 values for air and 7-day ozone-exposed animals treated with dexamethasone. Dexamethasone did not attenuate the ozone-induced increase in basal secretion. Tracheal gland responsiveness to {alpha}- or {beta}-adrenergic agonists was not changed by oxidant exposure. These experiments suggest that oxidant injury not only increases basal secretion of respiratory glycoconjugates but also increases tracheal gland sensitivity to a cholinergic agonist.« less
The development and preliminary application of an invariant coupled diffusion and chemistry model
NASA Technical Reports Server (NTRS)
Hilst, G. R.; Donaldson, C. DUP.; Teske, M.; Contiliano, R.; Freiberg, J.
1973-01-01
In many real-world pollution chemical reaction problems, the rate of reaction problems, the rate of reaction may be greatly affected by unmixedness. An approximate closure scheme for a chemical kinetic submodel which conforms to the principles of invariant modeling and which accounts for the effects of inhomogeneous mixing over a wide range of conditions has been developed. This submodel has been coupled successfully with invariant turbulence and diffusion models, permitting calculation of two-dimensional diffusion of two reacting (isothermally) chemical species. The initial calculations indicate the ozone reactions in the wake of stratospheric aircraft will be substantially affected by the rate of diffusion of ozone into the wake, and in the early wake, by unmixedness.
Ozone oxidation of oestrogenic active substances in wastewater and drinking water.
Baig, S; Hansmann, G; Paolini, B
2008-01-01
Ozone oxidation is proven to be an effective solution for the degradation of selected oestrogenic active substances detected in secondary wastewaters such as beta-oestradiol, oestrone, oestriol, 17-alpha-ethinyloestradiol, mestranol, daidzeine, beta-sitosterol, bisphenol A, norethisterone, 4-tert-octylphenol and 4-iso-nonylphenol, up to their limit of detection. The matrix-effect of wastewater was investigated performing ozone experiments under batch mode and continuous mode using drinking water and a wastewater issued from a local plant both spiked with the non-detected substances. The results obtained indicate that the wastewater matrix greatly affects the kinetics of ozone reaction with these substances but does not really change the related reactivity scale. The ozone dose corresponding to the full conversion of target EDCs consequently increases as their oxidation takes place competing with reactions of background pollutants represented by the COD and DOC content. However, a usual dose close to 12 mg/L was found sufficient to provide high degradation yields for all substances studied while 35% of COD was removed. This is a contribution to the numerous current works focused on technologies able to improve the quality of water discharged from wastewater treatment plants, both considering conventional parameters and emerging contaminants. IWA Publishing 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zittel, P.F.
1994-09-10
The solid-fuel rocket motors of large space launch vehicles release gases and particles that may significantly affect stratospheric ozone densities along the vehicle's path. In this study, standard rocket nozzle and flowfield computer codes have been used to characterize the exhaust gases and particles through the afterburning region of the solid-fuel motors of the Titan IV launch vehicle. The models predict that a large fraction of the HCl gas exhausted by the motors is converted to Cl and Cl2 in the plume afterburning region. Estimates of the subsequent chemistry suggest that on expansion into the ambient daytime stratosphere, the highlymore » reactive chlorine may significantly deplete ozone in a cylinder around the vehicle track that ranges from 1 to 5 km in diameter over the altitude range of 15 to 40 km. The initial ozone depletion is estimated to occur on a time scale of less than 1 hour. After the initial effects, the dominant chemistry of the problem changes, and new models are needed to follow the further expansion, or closure, of the ozone hole on a longer time scale.« less
NASA Technical Reports Server (NTRS)
Butler, C. F.; Shipley, S. T.; Allen, R. J.
1981-01-01
The NASA multipurpose differential absorption lidar (DIAL) system uses two high conversion efficiency dye lasers which are optically pumped by two frequency-doubled Nd:YAG lasers mounted rigidly on a supporting structure that also contains the transmitter, receiver, and data system. The DIAL system hardware design and data acquisition system are described. Timing diagrams, logic diagrams, and schematics, and the theory of operation of the control electronics are presented. Success in obtaining remote measurements of ozone profiles with an airborne systems is reported and results are analyzed.
Bertanza, G; Papa, M; Pedrazzani, R; Repice, C; Dal Grande, M
2013-01-01
Wastewater treatment plant (WWTP) effluents are considered to be a major source for the release in the aquatic environment of endocrine-disrupting compounds (EDCs). Ozone has proved to be a suitable solution for polishing secondary domestic effluents. In this work, the performance of a full-scale ozonation plant was investigated in order to assess the removal efficiency of four target EDCs: nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and bisphenol A. The studied system was the tertiary treatment stage of a municipal WWTP which receives an important industrial (textile) load. Chemical analyses showed that the considered substances occurred with a significant variability, typical of real wastewaters; based on this, ozonation performance was carefully evaluated and it appeared to be negatively affected by flow-rate increase (during rainy days, with consequent contact time reduction). Moreover, EDCs' measured removal efficiency was lower than what could be predicted based on literature data, because of the relatively high residual content of biorefractory compounds still present after biological treatment.
Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Juno; Prather, Michael J.
Stratosphere-troposphere exchange (STE) of ozone (O 3) is key in the budget of tropospheric O 3, in turn affecting climate forcing and global air quality. We compare three commonly used diagnostics meant to quantify cross-tropopause O 3 fluxes with a Chemistry-Transport Model driven by two distinct European Centre forecast fields. Here, our reference case calculates accurate, geographically resolved net transport across an isosurface in artificial tracer e90 representing the tropopause. Hemispheric fluxes derived from the ozone mass budget of the lowermost stratosphere yield similar results. Use of the Brewer-Dobson residual vertical velocity as a scaled proxy for ozone flux, however,more » fails to capture the interannual variability. Thus, the common notion that the strength of stratospheric overturning circulation is a good measure for global STE does not apply to O 3. Finally, climatic variability in the modeled O 3 flux needs to be diagnosed directly rather than indirectly through the overturning circulation.« less
Is the residual vertical velocity a good proxy for stratosphere-troposphere exchange of ozone?
Hsu, Juno; Prather, Michael J.
2014-12-20
Stratosphere-troposphere exchange (STE) of ozone (O 3) is key in the budget of tropospheric O 3, in turn affecting climate forcing and global air quality. We compare three commonly used diagnostics meant to quantify cross-tropopause O 3 fluxes with a Chemistry-Transport Model driven by two distinct European Centre forecast fields. Here, our reference case calculates accurate, geographically resolved net transport across an isosurface in artificial tracer e90 representing the tropopause. Hemispheric fluxes derived from the ozone mass budget of the lowermost stratosphere yield similar results. Use of the Brewer-Dobson residual vertical velocity as a scaled proxy for ozone flux, however,more » fails to capture the interannual variability. Thus, the common notion that the strength of stratospheric overturning circulation is a good measure for global STE does not apply to O 3. Finally, climatic variability in the modeled O 3 flux needs to be diagnosed directly rather than indirectly through the overturning circulation.« less
Effect of catalysts on dc corona discharge poisoning
NASA Astrophysics Data System (ADS)
Pekárek, S.
2011-02-01
The processes of ozone generation in non-thermal plasma produced by an electrical discharge in air at atmospheric pressure are burdened by the presence of nitrogen oxides, which on the one hand contribute to ozone generation and on the other hand are responsible for unpleasant discharge poisoning. The term discharge poisoning refers to the situation when the discharge ozone formation completely breaks down. Discharge poisoning can be affected by placing a catalyst in the discharge chamber. For the dc hollow needle to mesh corona discharge enhanced by the flow of air through the needle electrode we studied the effect of titanium dioxide TiO2, ZSM-5 zeolite or Cu++ZSM-5 zeolite on discharge poisoning by monitoring the ozone, nitrogen monoxide and nitrogen dioxide discharge production. We found that placing globules of any of these catalysts on the mesh decreases the energy density of the onset of discharge poisoning, and this energy density is smallest for a discharge with globules of a TiO2 on the mesh.
NASA Technical Reports Server (NTRS)
Shettle, E. P.; Green, A. E. S.
1974-01-01
An investigation is conducted regarding the increase in the UV radiation as a function of wavelength due to changes in the amounts of ozone and various other parameters affecting the radiation in the atmosphere. Attention is given to the methods that can be used to solve the problem of the transfer of radiation through an absorbing and scattering atmosphere which includes aerosols. The multiple channel solution reported by Mudgett and Richards' (1971) is extended to vertically inhomogeneous atmospheres.
Fu, Ywu-Jang; Qui, Hsuan-zhi; Liao, Kuo-Sung; Lue, Shingjiang Jessie; Hu, Chien-Chieh; Lee, Kueir-Rarn; Lai, Juin-Yih
2010-03-16
A thin SiO(x) selective surface layer was formed on a series of cross-linked poly(dimethylsiloxane) (PDMS) membranes by exposure to ultraviolet light at room temperature in the presence of ozone. The conversion of the cross-linked polysiloxane to SiO(x) was monitored by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray (EDX) microanalysis, contact angle analysis, and atomic force microscopy (AFM). The conversion of the cross-linked polysiloxane to SiO(x) increased with UV-ozone exposure time and cross-linking agent content, and the surface possesses highest conversion. The formation of a SiO(x) layer increased surface roughness, but it decreased water contact angle. Gas permeation measurements on the UV-ozone exposure PDMS membranes documented interesting gas separation properties: the O(2) permeability of the cross-linked PDMS membrane before UV-ozone exposure was 777 barrer, and the O(2)/N(2) selectivity was 1.9; after UV-ozone exposure, the permeability decreased to 127 barrer while the selectivity increased to 5.4. The free volume depth profile of the SiO(x) layer was investigated by novel slow positron beam. The results show that free volume size increased with the depth, yet the degree of siloxane conversion to SiO(x) does not affect the amount of free volume.
NASA Astrophysics Data System (ADS)
Petkov, Boyan; Vitale, Vito; Tomasi, Claudio; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo; Busetto, Maurizio
2014-01-01
Variations in total ozone column and sun exposures able to cause erythema and damage the DNA molecules were observed by the narrow-band filter radiometer UV-RAD in Bologna, Italy from 2005 to 2010. The ozone columns determined from the UV-RAD measurements were found to be close to those provided by the satellite Ozone Monitoring Instrument (OMI) showing an average discrepancy of 1 % with standard deviation of ± 6 %. Analysis of the data highlights a well-marked annual cycle of the ozone column variations while the oscillations with periods of 8, 18 and 34 months present much smaller amplitudes. The influence of the frequency of solar irradiance measurements on the accuracy of the evaluated daily exposure dose has been studied and it was found that time intervals no longer than 5-10 min between the measurements of erythema and DNA damage effective UV irradiances provide a satisfactory assessment of the corresponding daily exposures. The latter do not present significant year-to-year variations for the period under study, while their annual distributions show slight changes likely due to the specific cloud cover and ozone column variability for different years. The annual erythemal exposure dose for 2007-2010 varied between 603.7 and 638.1 kJ m-2, while the corresponding sun exposure affecting DNA changed from 6.38 to 7.91 kJ m-2.
Visible ozone injury on mature black cherry in two Class I wilderness areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chappelka, A.; Skelly, J.; Hildebrand, E.
1995-12-31
During the summer of 1991--1993, the incidence and severity of foliar symptoms due to ambient ozone exposures were documented on mature black cherry (Prunus serotina) in two Class 1 areas in the Appalachian mountains of the eastern US: Great Smoky Mountains National Park (GRSM) and Shenandoah National Park (SHEN). Three plots in each park containing 30 trees each (Big Meadows in SHEN had 60 trees evaluated each year) with 90 and 120 trees evaluated per GRSM and SHEN, respectively. Plots were established adjacent to ozone monitoring stations at different elevations. Samples of foliage from trees were collected by tree climbersmore » and three exposed branches from the upper crown and three branches form the mid-to-lower crown were evaluated for symptoms of foliar injury due to ozone. Incidence was the greatest in 1991 at both locations; 45% and 60% for SHEN and GRSM, respectively. In 1992 and 1993, incidence was very similar in both parks, with approximately 33% of the trees affected. Black cherry at the highest elevations exhibited the greatest amount of symptoms in both parks all three years of investigation. These sites also exhibited the highest levels of ozone. The results indicate that visible injury due to ambient ozone is prevalent in Class 1 areas in the eastern US, indicative of the nature of this regional phytotoxicant.« less
NASA Astrophysics Data System (ADS)
Ji, Meng; Cohan, Daniel S.; Bell, Michelle L.
2011-04-01
Ozone is associated with health impacts including respiratory outcomes; however, results differ across studies. Meta-analysis is an increasingly important approach to synthesizing evidence across studies. We conducted meta-analysis of short-term ozone exposure and respiratory hospitalizations to evaluate variation across studies and explore some of the challenges in meta-analysis. We identified 136 estimates from 96 studies and investigated how estimates differed by age, ozone metric, season, lag, region, disease category, and hospitalization type. Overall results indicate associations between ozone and various kinds of respiratory hospitalizations; however, study characteristics affected risk estimates. Estimates were similar, but higher, for the elderly compared to all ages and for previous day exposure compared to same day exposure. Comparison across studies was hindered by variation in definitions of disease categories, as some (e.g., asthma) were identified through >= 3 different sets of ICD codes. Although not all analyses exhibited evidence of publication bias, adjustment for publication bias generally lowered overall estimates. Emergency hospitalizations for total respiratory disease increased by 4.47% (95% interval: 2.48, 6.50%) per 10 ppb 24 h ozone among the elderly without adjustment for publication bias and 2.97% (1.05, 4.94%) with adjustment. Comparison of multi-city study results and meta-analysis based on single-city studies further suggested publication bias.
Comparison of ozone profiles obtained with NIES DIAL and SAGE II measurements
NASA Technical Reports Server (NTRS)
Nakane, Hideaki; Sasano, Yasuhiro; Hayashida-Amano, Sachiko; Sugimoto, Nobuo; Matsui, Ichiro; Minato, Atsushi; Mccormick, M. P.
1993-01-01
Ozone profiles obtained with the Differential Absorption Lidar (DIAL) system at the National Institute for Environmental Studies (NIES) (Tsukuba, Japan) were compared with data provided by the satellite sensor SAGE II. The SAGE II data were selected based on criteria of spatial and temporal differences between the DIAL and the SAGE II measurements: five degrees in latitude and 15 degrees in longitude, within a latitudinal band from 31 deg to 41 deg N, and within one, three and five days after or before the DIAL measurements. Results show very good agreement for the individual and the zonal-mean profiles. The average mean difference between the DIAL and the SAGE II measurements over the altitudes 15-50 km was about 10 percent.
Decadal-Scale Responses in Middle and Upper Stratospheric Ozone From SAGE II Version 7 Data
NASA Technical Reports Server (NTRS)
Remsberg, E. E.
2014-01-01
Stratospheric Aerosol and Gas Experiment (SAGE II) version 7 (v7) ozone profiles are analyzed for their decadal-scale responses in the middle and upper stratosphere for 1991 and 1992-2005 and compared with those from its previous version 6.2 (v6.2). Multiple linear regression (MLR) analysis is applied to time series of its ozone number density vs. altitude data for a range of latitudes and altitudes. The MLR models that are fit to the time series data include a periodic 11 yr term, and it is in-phase with that of the 11 yr, solar UV (Ultraviolet)-flux throughout most of the latitude/ altitude domain of the middle and upper stratosphere. Several regions that have a response that is not quite in-phase are interpreted as being affected by decadal-scale, dynamical forcings. The maximum minus minimum, solar cycle (SClike) responses for the ozone at the low latitudes are similar from the two SAGE II data versions and vary from about 5 to 2.5% from 35 to 50 km, although they are resolved better with v7. SAGE II v7 ozone is also analyzed for 1984-1998, in order to mitigate effects of end-point anomalies that bias its ozone in 1991 and the analyzed results for 1991-2005 or following the Pinatubo eruption. Its SC-like ozone response in the upper stratosphere is of the order of 4%for 1984-1998 vs. 2.5 to 3%for 1991-2005. The SAGE II v7 results are also recompared with the responses in ozone from the Halogen Occultation Experiment (HALOE) that are in terms of mixing ratio vs. pressure for 1991-2005 and then for late 1992- 2005 to avoid any effects following Pinatubo. Shapes of their respective response profiles agree very well for 1992-2005. The associated linear trends of the ozone are not as negative in 1992-2005 as in 1984-1998, in accord with a leveling off of the effects of reactive chlorine on ozone. It is concluded that the SAGE II v7 ozone yields SC-like ozone responses and trends that are of better quality than those from v6.2.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Balashov, Nikolay V.; Witte, J. C.; Coetzee, J. G. R.; Thouret, V.; Posny, F.
2014-01-01
Increases in free-tropospheric (FT) ozone based on ozonesonde records from the early 1990s through 2008 over two subtropical stations, Irene (near Pretoria, South Africa) and Réunion (21 deg. S, 55 deg. E; approx. 2800 km NE of Irene in the Indian Ocean), have been reported. Over Irene a large increase in the urban-influenced boundary layer (BL, 1.5-4 km) was also observed during the 18-year period, equivalent to 30%decade-1. Here we show that the Irene BL trend is at least partly due to a gradual change in the sonde launch times from early morning to the midday period. The FT ozone profiles over Irene in 1990-2007 are re-examined, filling in a 1995-1999 gap with ozone profiles taken during the Measurements of Ozone by Airbus In-service Aircraft (MOZAIC) project over nearby Johannesburg. A multivariate regression model that accounts for the annual ozone cycle, El Niño-Southern Oscillation (ENSO) and possible tropopause changes was applied to monthly averaged Irene data from 4 to 11 km and to 1992-2011 Réunion sonde data from 4 to 15 km. Statistically significant trends appear predominantly in the middle and upper troposphere (UT; 4-11 km over Irene, 4-15 km over Réunion) in winter (June-August), with increases 1 ppbv yr(exp. -1) over Irene and approx. 2 ppbv yr(exp. -1) over Réunion. These changes are equivalent to approx. 25 and 35-45%decade( exp. -1), respectively. Both stations also display smaller positive trends in summer, with a 45%decade(exp. -1) ozone increase near the tropopause over Réunion in December. To explain the ozone increases, we investigated a time series of dynamical markers, e.g., potential vorticity (PV) at 330-350 K. PV affects UT ozone over Irene in November-December but displays little relationship with ozone over Réunion. A more likely reason for wintertime FT ozone increases over Irene and Réunion appears to be long-range transport of growing pollution in the Southern Hemisphere. The ozone increases are consistent with trajectory origins of air parcels sampled by the sondes and with recent NOx emissions trends estimated for Africa, South America and Madagascar. For Réunion trajectories also point to sources from the eastern Indian Ocean and Asia.
Disinfection of model indicator organisms in a drinking water pilot plant by using PEROXONE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, R.L.; Stewart, M.H.; Liang, S.
PEROXONE is an advanced oxidation process generated by combining ozone and hydrogen peroxide. This process stimulates the production of hydroxyl radicals, which have been shown to be superior to ozone for the destruction of some organic contaminants. In this study, pilot-scale experiments were conducted to evaluate the microbicidal effectiveness of PEROXONE and ozone against three model indicator groups. Escherichia coli and MS2 coliphage were seeded into the influent to the preozonation contactors of a pilot plant simulating conventional water treatment and were exposed to four ozone dosages, four hydrogen peroxide/ozone weight ratios, and four contact times in two source waters--Coloradomore » River water and state project water--of different quality. The removal of heterotrophic plate count bacteria was also monitored. Results of the study indicated that the microbicidal activity of PEROXONE was greatly affected by the applied ozone dose, H2O2/O3 ratio, contact time, source water quality, and type of microorganism tested. At contact times of 5 min or less, ozone alone was a more potent bactericide than PEROXONE at all H2O2/O3 ratios tested. However, this decrease in the bactericidal potency of PEROXONE was dramatic only as the H2O2/O3 ratio was increased from 0.5 to 0.8. The fact that the bactericidal activity of PEROXONE generally decreased with increasing H2O2/O3 ratios was thought to be related to the lower ozone residuals produced. The viricidal activity of PEROXONE and ozone was comparable at all of the H2O2/O3 ratios. Heterotrophic plate count bacteria were the most resistant group of organisms. Greater inactivation of E. coli and MS2 was observed in Colorado River water than in state project water and appeared to result from differences in the turbidity and alkalinity of the two waters. Regardless of source water, greater than 4.5 log10 of E.« less
Surface morphology and morphometry of rat alveolar macrophages after ozone exposure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dormans, J.A.; Rombout, P.J.; van Loveren, H.
1990-09-01
As the ultrastructural data on the effects of ozone on pulmonary alveolar macrophages (PAM) are lacking, transmission (TEM) and scanning (SEM) electron microscopy were performed on rat PAM present in alveolar lavages following exposure to ozone. Rats were continuously exposed for 7 d to ozone concentrations ranging from 0.25 to 1.50 mg/m3 for 7 d followed by a 5-d recovery period. Additionally, morphometry on lung sections was performed to quantitate PAM. In a second experiment rats were continuously exposed to 1.50 mg O3/m3 for 1, 3, 5, or 7 d. To study the influence of concurrent ozone exposure and lungmore » infection, due to Listeria monocytogenes, rats were exposed for 7 d to 1.50 mg O3/m3 after a Listeria infection. The surface area of lavaged control PAM was uniformly covered with ruffles as shown by SEM and TEM. Exposure to 0.5 mg ozone/m3 for 7 d resulted in cells partly covered with microvilli and blebs in addition to normal ruffles. The number of large size PAM increased with an increase in ozone concentration. After 1 d of exposure, normal-appearing as well as many small macrophages with ruffles and scattered lymphocytes were seen. Lavage samples taken after 5 or 7 d of exposure showed an identical cell composition to that taken after 3 d of exposure. After Listeria infection alone, lavage samples consisted of mainly lymphocytes and some macrophages. Small quantitative changes, such as an increase in the number of polymorphonuclear neutrophils and large-size PAM, occurred in lavages after ozone exposure and infection with L. monocytogenes. Morphometric examination of lung sections revealed a concentration-related increase in the number of PAM, even in animals exposed to 0.25 mg ozone/m3 for 7 d. Centriacinar regions were more severely affected than other regions of lung tissue.« less
NASA Astrophysics Data System (ADS)
Hu, Lu; Jacob, Daniel J.; Liu, Xiong; Zhang, Yi; Zhang, Lin; Kim, Patrick S.; Sulprizio, Melissa P.; Yantosca, Robert M.
2017-10-01
The global budget of tropospheric ozone is governed by a complicated ensemble of coupled chemical and dynamical processes. Simulation of tropospheric ozone has been a major focus of the GEOS-Chem chemical transport model (CTM) over the past 20 years, and many developments over the years have affected the model representation of the ozone budget. Here we conduct a comprehensive evaluation of the standard version of GEOS-Chem (v10-01) with ozone observations from ozonesondes, the OMI satellite instrument, and MOZAIC-IAGOS commercial aircraft for 2012-2013. Global validation of the OMI 700-400 hPa data with ozonesondes shows that OMI maintained persistent high quality and no significant drift over the 2006-2013 period. GEOS-Chem shows no significant seasonal or latitudinal bias relative to OMI and strong correlations in all seasons on the 2° × 2.5° horizontal scale (r = 0.88-0.95), improving on previous model versions. The most pronounced model bias revealed by ozonesondes and MOZAIC-IAGOS is at high northern latitudes in winter-spring where the model is 10-20 ppbv too low. This appears to be due to insufficient stratosphere-troposphere exchange (STE). Model updates to lightning NOx, Asian anthropogenic emissions, bromine chemistry, isoprene chemistry, and meteorological fields over the past decade have overall led to gradual increase in the simulated global tropospheric ozone burden and more active ozone production and loss. From simulations with different versions of GEOS meteorological fields we find that tropospheric ozone in GEOS-Chem v10-01 has a global production rate of 4960-5530 Tg a-1, lifetime of 20.9-24.2 days, burden of 345-357 Tg, and STE of 325-492 Tg a-1. Change in the intensity of tropical deep convection between these different meteorological fields is a major factor driving differences in the ozone budget.
NASA Astrophysics Data System (ADS)
Pausata, F.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; Cavalli, F.; Dentener, F. J.
2013-12-01
Ozone pollution and particulate matter (PM) represent a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, PM is of main concern during winter. Both pollutants can be influenced nt only by local scale processes but also by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone and PM concentrations over Europe. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980-2005, that with regard to ozone the North Atlantic Oscillation (NAO) does affect surface ozone concentrations - on a monthly timescale, over 10 ppbv in southwestern, central and northern Europe - during all seasons except fall. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. Given the NAO forecasting skill at intraseasonal time scale, the first Principal Component of the SLP field could be used as an indicator to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing positive phase of the NAO in that period. With regard to PM, our study shows that in winter the NAO modulates surface PM concentrations accounting in average up to 30% of the total PM variability. During positive NAO phases, positive PM anomalies occur over southern Europe, and negative anomalies in central-northern Europe. A positve shift of the NAO mean states, hence, leads to an increase in cardiac and resipratory morbidity related to PM exposure in the Mediterranean countries with up to over 5000 more deaths per 20 million people for a 2000 emission inventory.
NASA Astrophysics Data System (ADS)
Yang, Eun-Su
2001-07-01
A new statistical approach is used to analyze Dobson Umkehr layer-ozone measurements at Arosa for 1979-1996 and Total Ozone Mapping Spectrometer (TOMS) Version 7 zonal mean ozone for 1979-1993, accounting for stratospheric aerosol optical depth (SAOD), quasi-biennial oscillation (QBO), and solar flux effects. A stepwise regression scheme selects statistically significant periodicities caused by season, SAOD, QBO, and solar variations and filters them out. Auto-regressive (AR) terms are included in ozone residuals and time lags are assumed for the residuals of exogenous variables. Then, the magnitudes of responses of ozone to the SAOD, QBO, and solar index (SI) series are derived from the stationary time series of the residuals. These Multivariate Auto-Regressive Combined Harmonics (MARCH) processes possess the following significant advantages: (1)the ozone trends are estimated more precisely than the previous methods; (2)the influences of the exogenous SAOD, QBO, and solar variations are clearly separated at various time lags; (3)the collinearity of the exogenous variables in the regression is significantly reduced; and (4)the probability of obtaining misleading correlations between ozone and exogenous times series is reduced. The MARCH results indicate that the Umkehr ozone response to SAOD (not a real ozone response but rather an optical interference effect), QBO, and solar effects is driven by combined dynamical radiative-chemical processes. These results are independently confirmed using the revised Standard models that include aerosol and solar forcing mechanisms with all possible time lags but not by the Standard model when restricted to a zero time lag in aerosol and solar ozone forcings. As for Dobson Umkehr ozone measurements at Arosa, the aerosol effects are most significant in layers 8, 7, and 6 with no time lag, as is to be expected due to the optical contamination of Umkehr measurements by SAOD. The QBO and solar UV effects appear in all layers 4-8, and in total ozone. In order to account for annual modulation of the equatorial winds that affects ozone at midlatitudes, a new QBO proxy is selected and applied to the Dobson Umkehr measurements at Arosa. The QBO proxy turns out to be more effective to filter the modulated ozone signals at midlatitudes than the mostly used QBO proxy, the Singapore winds at 30 mb. A statistically significant negative phase relationship is found between solar UV variation and ozone response, especially in layer 4, implying dynamical effects of solar variations on ozone at midlatitudes. Linear negative trends in ozone of -7.8 +/- 1.1 and -5.2 +/- 1.4 [%/decade +/- 2σ] are calculated in layers 7 (~35 km) and 8 (~40 km), respectively, for the period of 1979-1996, with smaller trends of -2.2 +/- 1.0, 1.8 +/- 0.9, and -1.4 +/- 1.1 in layers 6 (~30 km), 5 (~25 km), and 4 (~20 km), respectively. A trend in total ozone (layers 1 through 10) of -2.9 +/- 1.2 [%/decade +/- 2σ] is found over this same period. The aerosol effects obtained from the TOMS zonal means become significant at midlatitudes. QBO ozone contributes to the TOMS zonal means by +/-2 to 4% of their means. The negative solar ozone responses are also found at midlatitudes from the TOMS measurements. The most negative trends from TOMS zonal means are about -6.3 +/- 0.6%/decade at 40-50°N.