Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.
Lin, Ching-Ho
2008-04-01
The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.
NASA Astrophysics Data System (ADS)
de Laat, Jos; van Weele, Michiel; van der A, Ronald
2015-04-01
An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a significant change in the distribution of ozone. The occurrence of extremely low ozone (near 100% ozone depletion) has been declining significantly in favor of the occurrence of low ozone (80-90% ozone depletion). Finally the potential for continuation of this attribution method in the light of the currently available and future planned satellite remote sensing capacity will be shortly addressed.
Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere
NASA Astrophysics Data System (ADS)
Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.
2014-04-01
There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.
ERIC Educational Resources Information Center
Hamers, Jeanne S.; Jacob, Anthony T.
This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…
A Total Ozone Dependent Ozone Profile Climatology Based on Ozone-Sondes and Aura MLS Data
NASA Astrophysics Data System (ADS)
Labow, G. J.; McPeters, R. D.; Ziemke, J. R.
2014-12-01
A new total ozone-based ozone profile climatology has been created for use in satellite and/or ground based ozone retrievals. This climatology was formed by combining data from the Microwave Limb Sounder (MLS) with data from balloon sondes and binned by zone and total ozone. Because profile shape varies with total column ozone, this climatology better captures the ozone variations than the previously used seasonal climatologies, especially near the tropopause. This is significantly different than ozone climatologies used in the past as there is no time component. The MLS instrument on Aura has excellent latitude coverage and measures ozone profiles daily from the upper troposphere to the lower mesosphere at ~3.5 km resolution. Almost a million individual MLS ozone measurements are merged with data from over 55,000 ozonesondes which are then binned as a function of total ozone. The climatology consists of average ozone profiles as a function of total ozone for six 30 degree latitude bands covering altitudes from 0-75 km (in Z* pressure altitude coordinates). This new climatology better represents the profile shape as a function of total ozone than previous climatologies and shows some remarkable and somewhat unexpected correlations between total ozone and ozone in the lower altitudes, particularly in the lower and middle troposphere. These data can also be used to infer biases and errors in either the MLS retrievals or ozone sondes.
Waldeck, Nathan; Burkey, Kent; Carter, Thomas; Dickey, David; Song, Qijian; Taliercio, Earl
2017-06-29
Ozone is an air pollutant widely known to cause a decrease in productivity in many plant species, including soybean (Glycine max (L.) Merr). While the response of cultivated soybean to ozone has been studied, very little information is available regarding the ozone response of its wild relatives. Ozone-resistant wild soybean accessions were identified by measuring the response of a genetically diverse group of 66 wild soybean (Glycine soja Zucc. and Sieb.) accessions to elevated ozone levels. RNA-Seq analyses were performed on leaves of different ages from selected ozone-sensitive and ozone-resistant accessions that were subjected to treatment with an environmentally relevant level of ozone. Many more genes responded to elevated ozone in the two ozone-sensitive accessions than in the ozone-resistant accessions. Analyses of the ozone response genes indicated that leaves of different ages responded differently to ozone. Older leaves displayed a consistent reduction in expression of genes involved in photosynthesis in response to ozone, while changes in expression of defense genes dominated younger leaf tissue in response to ozone. As expected, there is a substantial difference between the response of ozone-sensitive and ozone-resistant accessions. Genes associated with photosystem 2 were substantially reduced in expression in response to ozone in the ozone-resistant accessions. A decrease in peptidase inhibitors was one of several responses specific to one of the ozone resistant accessions. The decrease in expression in genes associated with photosynthesis confirms that the photosynthetic apparatus may be an early casualty in response to moderate levels of ozone. A compromise of photosynthesis would substantially impact plant growth and seed production. However, the resistant accessions may preserve their photosynthetic apparatus in response to the ozone levels used in this study. Older leaf tissue of the ozone-resistant accessions showed a unique down-regulation of genes associated with endopeptidase inhibitor activity. This study demonstrates the existence of significant diversity in wild soybean for ozone response. Wild soybean accessions characterized in this study can be used by soybean breeders to enhance ozone tolerance of this important food crop.
16 CFR 260.11 - Ozone-safe and ozone-friendly claims.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...
16 CFR 260.11 - Ozone-safe and ozone-friendly claims.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Ozone-safe and ozone-friendly claims. 260.11... THE USE OF ENVIRONMENTAL MARKETING CLAIMS § 260.11 Ozone-safe and ozone-friendly claims. It is... friendly to, the ozone layer or the atmosphere. Example 1: A product is labeled “ozone-friendly.” The claim...
Tropospheric and stratospheric ozone from assimilation of Aura data
NASA Technical Reports Server (NTRS)
Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawwson, S.; Froidevaux, L.; Livesey, N.; Bhartia, P. K.
2006-01-01
Ozone is an atmospheric trace gas with multiple impacts on the environment. Global ozone fields are needed for air quality predictions, estimation of the ultraviolet radiation reaching the surface, climate-radiation studies, and may also have an impact on longer-term weather predictions. We estimate global ozone fields in the stratosphere and troposphere by combining the data from EOS Aura satellite with an ozone model using data assimilation. Ozone exhibits a large temporal variability in the lower stratosphere. Our previous work showed that assimilation of satellite data from limb-sounding geometry helps constrain ozone profiles in that region. We assimilated ozone data from the Aura Microwave Limb Sounder (MLS) and the Ozone Monitoring Instrument (OMI) into the ozone system at NASA's Global Modeling and Assimilation Office (GMAO). Ozone is transported within a general circulation model (GCM) which includes parameterizations for stratospheric photochemistry, tropospheric chemistry, and a simple scheme for heterogeneous ozone loss. The focus of this study is on the representation of ozone in the lower stratosphere and tropospheric ozone columns. We plan to extend studies of tropospheric ozone distribution through assimilation of ozone data from the Tropospheric Emission Spectrometer (TES). Comparisons with ozone sondes and occultation data show that assimilation of Aura data reproduces ozone gradients and variability in the lower stratosphere well. We proceed by separating the contributions to temporal changes in the ozone field into those that are due to the model and those that are due to the assimilation of Aura data. The impacts of Aura data are illustrated and their role in the representation of ozone variability in the lower stratosphere and troposphere is shown.
... Offices Labs and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “ ... to ozone-depleting substances, and sun safety. Stratospheric Ozone Layer Basic Ozone Layer Science Health and Environmental ...
Annual and Seasonal Global Variation in Total Ozone and Layer-Mean Ozone, 1958-1987 (1991)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angell, J. K.; Korshover, J.; Planet, W. G.
For 1958 through 1987, this data base presents total ozone variations and layer mean ozone variations expressed as percent deviations from the 1958 to 1977 mean. The total ozone variations were derived from mean monthly ozone values published in Ozone Data for the World by the Atmospheric Environment Service in cooperation with the World Meteorological Organization. The layer mean ozone variations are derived from ozonesonde and Umkehr observations. The data records include year, seasonal and annual total ozone variations, and seasonal and annual layer mean ozone variations. The total ozone data are for four regions (Soviet Union, Europe, North America,more » and Asia); five climatic zones (north and south polar, north and south temperate, and tropical); both hemispheres; and the world. Layer mean ozone data are for four climatic zones (north and south temperate and north and south polar) and for the stratosphere, troposphere, and tropopause layers. The data are in two files [seasonal and year-average total ozone (13.4 kB) and layer mean ozone variations (24.2 kB)].« less
A Study on Generation Ice Containing Ozone
NASA Astrophysics Data System (ADS)
Yoshimura, Kenji; Koyama, Shigeru; Yamamoto, Hiromi
Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it changes back into oxygen. Recently, ice containing ozone is taken attention for the purpose of its conservation. The use of ice containing ozone seems to keep food fresher when we conserve and transport perishable foods due to effects of cooling and sterilization of ice containing ozone. In the present study, we investigated the influence of temperatures of water dissolving ozone on the timewise attenuations of ozone concentration in water. We also investigated the influence of cooling temperature, ice diameter, initial temperatures of water dissolving ozone and container internal pressure of the water dissolving ozone on ozone concentration in the ice. In addition, we investigated the influence of the ice diameter on the timewise attenuations of ozone concentration in the ice. It was confirmed that the solidification experimental data can be adjusted by a correlation between ozone concentration in the ice and solidification time.
The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990
NASA Technical Reports Server (NTRS)
Komhyr, W. D.; Oltmans, S. J.; Lathrop, J. A.; Kerr, J. B.; Matthews, W. A.
1994-01-01
Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values.
NASA Technical Reports Server (NTRS)
Stone, J. B.; Thompson, A. M.; Frolov, A. D.; Hudson, R. D.; Bhartia, P. K. (Technical Monitor)
2002-01-01
There are a number of published residual-type methods for deriving tropospheric ozone from TOMS (Total Ozone Mapping Spectrometer). The basic concept of these methods is that within a zone of constant stratospheric ozone, the tropospheric ozone column can be computed by subtracting stratospheric ozone from the TOMS Level 2 total ozone column, We used the modified-residual method for retrieving tropospheric ozone during SAFARI-2000 and found disagreements with in-situ ozone data over Africa in September 2000. Using the newly developed TDOT (TOMS-Direct-Ozone-in-Troposphere) method that uses TOMS radiances and a modified lookup table based on actual profiles during high ozone pollution periods, new maps were prepared and found to compare better to soundings over Lusaka, Zambia (15.5 S, 28 E), Nairobi and several African cities where MOZAIC aircraft operated in September 2000. The TDOT technique and comparisons are described in detail.
NASA Technical Reports Server (NTRS)
2002-01-01
Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.
Formation of Ozonic Compound and Used as Therapeutic Agent in Medicine
NASA Astrophysics Data System (ADS)
Zhu, Lei; Ye, Chunyong; Min, Xinmin
2018-03-01
It has some encouraging results to use ozone in medicine. However, as ozone is usually in gas state, unstable and strong oxidability, it is difficult to be stored and used commonly. Ozone, ethylene, acrylic acid and the ozonic compounds were calculated to study the interaction between ozone and carrier material to form ozonide. The stability of the ozonide, or the bond strength between ozone and ions of carrier are controlled felicitously to release ozone from the ozonide with proper velocity. Ozone antimicrobial has been composed on the above principle. It can be used conveniently, especially for common families. There are some characteristics of ozone antimicrobial or ozone, such as universal applicability, efficiency and rapidity, security, strong penetrability, no drug resistance and sterilization and treatment simultaneity.
Assimilation of MLS and OMI Ozone Data
NASA Technical Reports Server (NTRS)
Stajner, I.; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Froidevaux, L.; Livesey, N.
2005-01-01
Ozone data from Aura Microwave Limb Sounder (MLS) and Ozone Monitoring Instrument (OMI) were assimilated into the ozone model at NASA's Global Modeling and Assimilation Office (GMAO). This assimilation produces ozone fields that are superior to those from the operational GMAO assimilation of Solar Backscatter Ultraviolet (SBUV/2) instrument data. Assimilation of Aura data improves the representation of the "ozone hole" and the agreement with independent Stratospheric Aerosol and Gas Experiment (SAGE) III and ozone sonde data. Ozone in the lower stratosphere is captured better: mean state, vertical gradients, spatial and temporal variability are all improved. Inclusion of OMI and MLS data together, or separately, in the assimilation system provides a way of checking how consistent OMI and MLS data are with each other, and with the ozone model. We found that differences between OMI total ozone column data and model forecasts decrease after MLS data are assimilated. This indicates that MLS stratospheric ozone profiles are consistent with OMI total ozone columns. The evaluation of error characteristics of OMI and MLS ozone will continue as data from newer versions of retrievals becomes available. We report on the initial step in obtaining global assimilated ozone fields that combine measurements from different Aura instruments, the ozone model at the GMAO, and their respective error characteristics. We plan to use assimilated ozone fields in estimation of tropospheric ozone. We also plan to investigate impacts of assimilated ozone fields on numerical weather prediction through their use in radiative models and in the assimilation of infrared nadir radiance data from NASA's Advanced Infrared Sounder (AIRS).
Ozone: What Would It Be Like to Live in a World Where the Sun Was Dangerous?
ERIC Educational Resources Information Center
Clearing, 1992
1992-01-01
Defines ozone layer and the meaning, evidence, causes, and significance of ozone depletion. Summarizes solutions to the problem of ozone depletion and government action concerning the issue. Graphically depicts ozone depletion, global ozone loss, and how ozone is destroyed. Provides a lesson plan and listing for additional educational resources.…
NASA Technical Reports Server (NTRS)
Belmont, A. D.
1979-01-01
The problem of preventing cabin ozone from exceeding a given standard was investigated. Statistical analysis of vertical distribution of ozone is summarized. The cost, logistics, maintenance, ability to forecast ozone, and avoiding high ozone concentrations are presented. Filtering approaches and the requirements to remove ozone toxicity are discussed.
Ozonation of Canadian Athabasca asphaltene
NASA Astrophysics Data System (ADS)
Cha, Zhixiong
Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites. Two new solvent systems, a self-sustaining ozonation system and a cyclohexane/acetone/water or a cyclohexane/acetone/methanol system, were studied to overcome the drawback of using halogenated solvents. The self-sustaining ozonation process employed the final ozonation products as the reaction solvent. Compared to the self-sustaining ozonation, the cyclohexane solvent system showed higher ozone efficiency; however, it required dynamic adjustment of the solvent system during ozonation. An extensively ozonated asphaltene's weight would be doubled. Distillation of the products separated about 45% volatile products having biodiesel-style chemical structures. Compared to distillation, more than 90% of the ozonation products were extractable by acetone. The remaining acetone-insoluble part was further classified by dichloromethane and other solvents of different polarities. The separated ozonation products were good fuel additives or materials for other products.
Hoshika, Yasutomo; Watanabe, Makoto; Inada, Naoki; Koike, Takayoshi
2013-01-01
Background and Aims Resistance of plants to ozone stress can be classified as either avoidance or tolerance. Avoidance of ozone stress may be explained by decreased stomatal conductance during ozone exposure because stomata are the principal interface for entry of ozone into plants. In this study, a coupled photosynthesis–stomatal model was modified to test whether the presence of ozone can induce avoidance of ozone stress by stomatal closure. Methods The response of Siebold's beech (Fagus crenata), a representative deciduous tree species, to ozone was studied in a free-air ozone exposure experiment in Japan. Photosynthesis and stomatal conductance were measured under ambient and elevated ozone. An optimization model of stomata involving water, CO2 and ozone flux was tested using the leaf gas exchange data. Key Results The data suggest that there are two phases in the avoidance of ozone stress via stomatal closure for Siebold's beech: (1) in early summer ozone influx is efficiently limited by a reduction in stomatal conductance, without any clear effect on photosynthetic capacity; and (2) in late summer and autumn the efficiency of ozone stress avoidance was decreased because the decrease in stomatal conductance was small and accompanied by an ozone-induced decline of photosynthetic capacity. Conclusions Ozone-induced stomatal closure in Siebold's beech during early summer reduces ozone influx and allows the maximum photosynthetic capacity to be reached, but is not sufficient in older leaves to protect the photosynthetic system. PMID:23904447
Effect of an ozone injury-retardant chemical on isozyme profiles from alfalfa callus in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rier, J.P.; Sood, V.K.; Whitaker, A.
1983-01-01
Plant ozone injury retardant (EDU or ethylenediurea) at 1.0 ppm inhibited growth of callus of alfalfa cultivars Williamsburg (ozone-sensitive) and MSB-CW5An2(ozone-insensitive) germplasm of Medicago sative. The presence of EDU(0.1 ppm) in growth medium increased the number of protein and peroxidase isozyme bands in alfalfa cultivar stem callus and ozone modified their intensities. Protein profiles of MSB stem callus from media containing EDU or exposed to ozone were unchanged. Marked differences were observed between the peroxidase profiles of ozonated and control ozone-insensitive stem callus from media containing EDU. Protein profiles of ozonated ozone-insensitive leaf callus differed slightly from controls.
Tropical tropospheric ozone and biomass burning.
Thompson, A M; Witte, J C; Hudson, R D; Guo, H; Herman, J R; Fujiwara, M
2001-03-16
New methods for retrieving tropospheric ozone column depth and absorbing aerosol (smoke and dust) from the Earth Probe-Total Ozone Mapping Spectrometer (EP/TOMS) are used to follow pollution and to determine interannual variability and trends. During intense fires over Indonesia (August to November 1997), ozone plumes, decoupled from the smoke below, extended as far as India. This ozone overlay a regional ozone increase triggered by atmospheric responses to the El Niño and Indian Ocean Dipole. Tropospheric ozone and smoke aerosol measurements from the Nimbus 7 TOMS instrument show El Niño signals but no tropospheric ozone trend in the 1980s. Offsets between smoke and ozone seasonal maxima point to multiple factors determining tropical tropospheric ozone variability.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Eldering, A.; Neu, J. L.; Tang, Y.; McQueen, J.; Pinder, R. W.
2011-12-01
To help protect human health and ecosystems, regional-scale atmospheric chemistry models are used to forecast high ozone events and to design emission control strategies to decrease the frequency and severity of ozone events. Despite the impact that nighttime aloft ozone can have on surface ozone, regional-scale atmospheric chemistry models often do not simulate the nighttime ozone concentrations well and nor do they sufficiently capture the ozone transport patterns. Fully characterizing the importance of the nighttime ozone has been hampered by limited measurements of the vertical distribution of ozone and ozone-precursors. The main focus of this work is to begin to utilize remote sensing data sets to characterize the impact of nighttime aloft ozone to air quality events. We will describe our plans to use NASA satellite data sets, transport models and air quality models to study ozone transport, focusing primarily on nighttime ozone and provide initial results. We will use satellite and ozonesonde data to help understand how well the air quality models are simulating ozone in the lower free troposphere and attempt to characterize the impact of nighttime ozone to air quality events. Our specific objectives are: 1) Characterize nighttime aloft ozone using remote sensing data and sondes. 2) Evaluate the ability of the Community Multi-scale Air Quality (CMAQ) model and the National Air Quality Forecast Capability (NAQFC) model to capture the nighttime aloft ozone and its relationship to air quality events. 3) Analyze a set of air quality events and determine the relationship of air quality events to the nighttime aloft ozone. We will achieve our objectives by utilizing the ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the Aura mission (IONS), EPA AirNow ground station ozone data, the CMAQ continental-scale air quality model, and the National Air Quality Forecast model.
NASA Technical Reports Server (NTRS)
Attmannspacher, W.; Hartmannsgrubber, R.; Lang, P.
1984-01-01
Balloon sounding of the ozone in the Earth atmosphere was performed in order to determine the natural behavior of ozone and its recognizable deviations. The importance of ozone in the Earth atmosphere and the orographic situation of observatories and ozone sounding statistics since 1966 are explained. The physical processes governing the total amount of ozone, and the behavior of stratospheric ozone are described. Measurements in the upper stratosphere show a decrease of the ozone partial pressure above 26 km altitude since 1977. The behavior of tropospheric ozone is discussed. Data since 1977 show increasing ozone values in the troposphere, up to 50% to 70%. This increase is independent of the solar radiation intensity and the reinforced transport of stratospheric ozone into the troposphere. The increase in the troposphere cannot compensate the stratospheric decrease.
Ozone in the Atmosphere: II. The Lower Atmosphere.
ERIC Educational Resources Information Center
Phillips, Paul; Pickering, Pam
1991-01-01
Described are the problems caused by the increased concentration of ozone in the lower atmosphere. Photochemical pollution, mechanisms of ozone production, ozone levels in the troposphere, effects of ozone on human health and vegetation, ozone standards, and control measures are discussed. (KR)
Physicochemical patterns of ozone absorption by wood
NASA Astrophysics Data System (ADS)
Mamleeva, N. A.; Lunin, V. V.
2016-11-01
Results from studying aspen and pine wood ozonation are presented. The effect the concentration of ozone, the reagent residence time, and the content of water in a sample of wood has on ozone consumption rate and ozone demand are analyzed. The residence time is shown to determine the degree of ozone conversion degree and the depth of substrate destruction. The main patterns of ozone absorption by wood with different moisture content are found. Ways of optimizing the ozonation of plant biomass are outlined.
Stomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants.
Fares, S; Loreto, F; Kleist, E; Wildt, J
2008-01-01
Volatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.
NASA Astrophysics Data System (ADS)
Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.
2015-12-01
Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.
NASA Technical Reports Server (NTRS)
McPeters, Richard; Bhartia, P. K. (Technical Monitor)
2002-01-01
The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.
Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record
NASA Technical Reports Server (NTRS)
Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.
2014-01-01
The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.
Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations
NASA Technical Reports Server (NTRS)
Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.
2006-01-01
Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.
Effect of an ozone injury retardant chemical on isozyme profiles from alfalfa callus in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rier, J.P. Jr.; Sood, V.K.; Whitaker, A.
1983-01-01
Plant ozone injury retardant N-(2-(2-oxo-1-imidazolidinyl)-ethyl)-N'-phenylurea (EDU or ethylenediurea) at 1.0 ppm inhibited growth of callus of alfalfa cultivars Williamsburg (ozone-sensitive) and MSB-CW5An2 (ozone-insensitive) germplasm of Medicago sativa. The presence of EDU (0.1 ppm)in the growth medium increased the number of protein and peroxidase isozyme bands in alfalfa cultivar Williamsburg stem callus and ozone modified their intensities. Protein profiles of MSB stem callus from media containing EDU or exposed to ozone were unchanged. Marked differences were observed between the peroxidase profiles of ozonated and control ozone-insensitive stem callus from media containing EDU. Protein profiles of ozonated ozone-sensitive leaf callus differed slightlymore » from controls. The peroxidase profile of ozonated ozone-sensitive leaf callus was not altered when its growth medium contained EDU, but when it was absent, changes were observed in these profiles.« less
Impact of Ozone Radiative Feedbacks on Global Weather Forecasting
NASA Astrophysics Data System (ADS)
Ivanova, I.; de Grandpré, J.; Rochon, Y. J.; Sitwell, M.
2017-12-01
A coupled Chemical Data Assimilation system for ozone is being developed at Environment and Climate Change Canada (ECCC) with the goals to improve the forecasting of UV index and the forecasting of air quality with the Global Environmental Multi-scale (GEM) Model for Air quality and Chemistry (MACH). Furthermore, this system provides an opportunity to evaluate the benefit of ozone assimilation for improving weather forecasting with the ECCC Global Deterministic Prediction System (GDPS) for Numerical Weather Prediction (NWP). The present UV index forecasting system uses a statistical approach for evaluating the impact of ozone in clear-sky and cloudy conditions, and the use of real-time ozone analysis and ozone forecasts is highly desirable. Improving air quality forecasting with GEM-MACH further necessitates the development of integrated dynamical-chemical assimilation system. Upon its completion, real-time ozone analysis and ozone forecasts will also be available for piloting the regional air quality system, and for the computation of ozone heating rates, in replacement of the monthly mean ozone distribution currently used in the GDPS. Experiments with ozone radiative feedbacks were run with the GDPS at 25km resolution and 84 levels with a lid at 0.1 hPa and were initialized with ozone analysis that has assimilated total ozone column from OMI, OMPS, and GOME satellite instruments. The results show that the use of prognostic ozone for the computation of the heating/cooling rates has a significant impact on the temperature distribution throughout the stratosphere and upper troposphere regions. The impact of ozone assimilation is especially significant in the tropopause region, where ozone heating in the infrared wavelengths is important and ozone lifetime is relatively long. The implementation of the ozone radiative feedback in the GDPS requires addressing various issues related to model biases (temperature and humidity) and biases in equilibrium state (ozone mixing ratio, air temperature and overhead column ozone) used for the calculation of the linearized photochemical production and loss of ozone. Furthermore the radiative budget in the tropopause region is strongly affected by water vapor cooling, which impact requires further evaluation for the use in chemically coupled operational NWP systems.
Source Attribution of Tropospheric Ozone using a Global Model
NASA Astrophysics Data System (ADS)
Coates, J.; Lupascu, A.; Butler, T. M.; Zhu, S.
2016-12-01
Tropospheric ozone is both a short-lived climate forcing pollutant and a radiatively active greenhouse gas. Ozone is not directly emitted into the troposphere but photochemically produced from chemical reactions involving nitrogen oxides (NOx) and volatile organic compounds (VOCs). Emissions of ozone precursors (NOx and VOCs) have both natural and anthropogenic sources and may be transported away from their sources to produce ozone downwind. Also, transport of ozone from the stratosphere into the troposphere also influences tropospheric ozone levels in some regions. Attributing ozone concentrations to the contributions from different sources would indicate the effects of locally emitted or transported precursors on ozone levels in specific regions. This information could be used to inform the emission reduction strategies of ozone precursors by indicating which emission sources could be targeted for effective reductions thus reducing the burden of ozone pollution. We use a "tagging" approach within the CESM global model to attribute ozone levels to their source emissions. We use different tags to quantify the impact from natural (soils, lightning, stratospheric transport) and anthropogenic (aircraft, biomass burning) sources of NOx and VOCs (including methane) on ozone levels. These source sectors of different global regions are assigned based on the global emissions specified by HTAPv2.2. Using these results, we develop a transboundary source-receptor relationship of ozone concentration to its precursor emission regions. Additionally, the transport of ozone precursors from regional anthropogenic sources is analysed to illustrate the extent to which mitigation strategies of regional emissions aid in mitigating global ozone levels.
Analysis of Ozone in Cloudy Versus Clear Sky Conditions
NASA Technical Reports Server (NTRS)
Strode, Sarah; Douglass, Anne; Ziemke, Jerald
2016-01-01
Convection impacts ozone concentrations by transporting ozone vertically and by lofting ozone precursors from the surface, while the clouds and lighting associated with convection affect ozone chemistry. Observations of the above-cloud ozone column (Ziemke et al., 2009) derived from the OMI instrument show geographic variability, and comparison of the above-cloud ozone with all-sky tropospheric ozone columns from OMI indicates important regional differences. We use two global models of atmospheric chemistry, the GMI chemical transport model (CTM) and the GEOS-5 chemistry climate model, to diagnose the contributions of transport and chemistry to observed differences in ozone between areas with and without deep convection, as well as differences in clean versus polluted convective regions. We also investigate how the above-cloud tropospheric ozone from OMI can provide constraints on the relationship between ozone and convection in a free-running climate simulation as well as a CTM.
Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.
2017-01-01
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744
NASA Astrophysics Data System (ADS)
Ran, L.; Zhao, C.; Xu, W.; Geng, F.; Lu, X.; Han, M.; Lin, W.; Xu, X.
2011-12-01
As one of the most widespread and stubborn environmental issues, the ozone problem has been of particular concern for many years, given the potential adverse effects of high ozone concentrations on public health and agricultural productivity. In the past decades, rapid urbanization and industrialization have given rise to a significant increase in ozone precursor emissions in many regions of China, especially in the densely populated megacities. Due to the highly nonlinear impacts of ozone precursors including nitrogen oxides (NOx) and various volatile organic compounds (VOCs) on ozone photochemistry, formation of ozone affected by different precursor emission patterns in those megacities has exhibited different characteristics. A comparative analysis of ozone photochemical production in the megacities of Tianjin and Shanghai has thus been carried out, using the data sets of surface ozone and its precursors measured respectively at an urban and a suburban site of the two megacities during the summertime. Observation-based analysis indicated an elevated ozone daily peak under photochemistry dominant conditions from the urban center to the suburb in both regions, nevertheless bearing different reasons. Ozone production was generally sensitive to VOCs in the Tianjin region, leading to a relatively higher level of ozone in the suburb where reactive VOCs were abundantly released from a number of industrial facilities, whereas a sensitivity of ozone production to NOx was found in Shanghai. The high level of NOx emitted mainly by motor vehicles in urban Shanghai largely inhibited ozone formation and resulted in a much more rapid decrease in ozone concentrations after reaching the daily maximum around midday compared with the other three areas. Ozone pollution in the megacity of Tianjin was more representative of the regional condition, implying that combined efforts would be needed to bring the ozone problem under control within this region. Improved understanding of ozone formation in the two megacities would be quite imperative and critical to provide a solid scientific basis for designing effective ozone control strategies.
2009-09-16
The annual ozone hole has started developing over the South Pole, and it appears that it will be comparable to ozone depletions over the past decade. This composite image from September 10 depicts ozone concentrations in Dobson units, with purple and blues depicting severe deficits of ozone. "We have observed the ozone hole again in 2009, and it appears to be pretty average so far," said ozone researcher Paul Newman of NASA's Goddard Space Flight Center in Greenbelt, Md. "However, we won't know for another four weeks how this year's ozone hole will fully develop." Scientists are tracking the size and depth of the ozone hole with observations from the Ozone Monitoring Instrument on NASA's Aura spacecraft, the Global Ozone Monitoring Experiment on the European Space Agency's ERS-2 spacecraft, and the Solar Backscatter Ultraviolet instrument on the National Oceanic and Atmospheric Administration's NOAA-16 satellite. The depth and area of the ozone hole are governed by the amount of chlorine and bromine in the Antarctic stratosphere. Over the southern winter, polar stratospheric clouds (PSCs) form in the extreme cold of the atmosphere, and chlorine gases react on the cloud particles to release chlorine into a form that can easily destroy ozone. When the sun rises in August after months of seasonal polar darkness, the sunlight heats the clouds and catalyzes the chemical reactions that deplete the ozone layer. The ozone hole begins to grow in August and reaches its largest area in late September to early October. Recent observations and several studies have shown that the size of the annual ozone hole has stabilized and the level of ozone-depleting substances has decreased by 4 percent since 2001. But since chlorine and bromine compounds have long lifetimes in the atmosphere, a recovery of atmospheric ozone is not likely to be noticeable until 2020 or later. Visit NASA's Ozone Watch page for current imagery and data: ozonewatch.gsfc.nasa.gov/index.html
ERIC Educational Resources Information Center
Jones, Anna E.
2008-01-01
Since the mid 1970s, the ozone layer over Antarctica has experienced massive destruction during every spring. In this article, we will consider the atmosphere, and what ozone and the ozone layer actually are. We explore the chemistry responsible for the ozone destruction, and learn about why conditions favour ozone destruction over Antarctica. For…
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Briehl, D.
1978-01-01
Recently, passengers and crew members on long-distance commercial flights have filed complaints after suffering symptoms of ozone sickness. Studies were conducted to determine the frequency and concentration of ozone in commercial jet transports. The airliner problem with ozone prompted NASA to determine the ozone concentrations that might be encountered in the cabin of a small business jet. Simultaneous measurements of atmospheric ozone levels and ozone levels in the cabins of jet aircraft were necessary because of the wide and rapid variability of atmospheric ozone in flight. It was found that the atmospheric ozone concentrations in the case of B-747 airliners vary widely during a flight. A constant difference, or ratio, between ozone concentrations outside and inside the cabin does not exist.
The efficacy of ozone therapy in neonatal rats with hypoxic ischemic brain injury.
Resitoglu, B; Celik, Y; Komur, M; Polat, A; Erdogan, S; Arslankoylu, A E; Beydagi, H
2018-01-01
This study is aimed to determine the effect of ozone therapy in neonatal rats with experimentally induced hypoxic ischemic brain injury (HIBI). The study included 7-d-old male Wistar rats that were randomized to the sham, control, ozone 1, and ozone 2 groups. All rats except those in the sham group were kept in a hypoxia chamber, and then the rats in the control group were given 0.5 mL of saline. Those in the ozone 1 group were given ozone 1 mg kg-1 intraperitoneally, and those in the ozone 2 group were given ozone 2 mg kg-1 intraperitoneally. There were significantly fewer apoptotic neurons in the right hemispheres of the rats in the ozone 1 and ozone 2 groups than in the control group (p < 0.001 and p < 0.001, respectively). There were significantly fewer apoptotic neurons in the right hemispheres of the rats in the ozone 2 group than in the ozone 1 group (p < 0.001). Morris Water Maze (MWM) test results were similar in the ozone 2 and sham groups. The present study's findings show that ozone therapy reduced neuronal apoptosis and improved cognitive function in neonatal rats with experimentally induced HIBI (Tab. 2, Ref. 30).
NASA Astrophysics Data System (ADS)
Hess, P.; Kinnison, D.; Tang, Q.
2015-03-01
Despite the need to understand the impact of changes in emissions and climate on tropospheric ozone, the attribution of tropospheric interannual ozone variability to specific processes has proven difficult. Here, we analyze the stratospheric contribution to tropospheric ozone variability and trends from 1953 to 2005 in the Northern Hemisphere (NH) mid-latitudes using four ensemble simulations of the free running (FR) Whole Atmosphere Community Climate Model (WACCM). The simulations are externally forced with observed time-varying (1) sea-surface temperatures (SSTs), (2) greenhouse gases (GHGs), (3) ozone depleting substances (ODS), (4) quasi-biennial oscillation (QBO), (5) solar variability (SV) and (6) stratospheric sulfate surface area density (SAD). A detailed representation of stratospheric chemistry is simulated, including the ozone loss due to volcanic eruptions and polar stratospheric clouds. In the troposphere, ozone production is represented by CH4-NOx smog chemistry, where surface chemical emissions remain interannually constant. Despite the simplicity of its tropospheric chemistry, at many NH measurement locations, the interannual ozone variability in the FR WACCM simulations is significantly correlated with the measured interannual variability. This suggests the importance of the external forcing applied in these simulations in driving interannual ozone variability. The variability and trend in the simulated 1953-2005 tropospheric ozone from 30 to 90° N at background surface measurement sites, 500 hPa measurement sites and in the area average are largely explained on interannual timescales by changes in the 30-90° N area averaged flux of ozone across the 100 hPa surface and changes in tropospheric methane concentrations. The average sensitivity of tropospheric ozone to methane (percent change in ozone to a percent change in methane) from 30 to 90° N is 0.17 at 500 hPa and 0.21 at the surface; the average sensitivity of tropospheric ozone to the 100 hPa ozone flux (percent change in ozone to a percent change in the ozone flux) from 30 to 90° N is 0.19 at 500 hPa and 0.11 at the surface. The 30-90° N simulated downward residual velocity at 100 hPa increased by 15% between 1953 and 2005. However, the impact of this on the 30-90° N 100 hPa ozone flux is modulated by the long-term changes in stratospheric ozone. The ozone flux decreases from 1965 to 1990 due to stratospheric ozone depletion, but increases again by approximately 7% from 1990 to 2005. The first empirical orthogonal function of interannual ozone variability explains from 40% (at the surface) to over 80% (at 150 hPa) of the simulated ozone interannual variability from 30 to 90° N. This identified mode of ozone variability shows strong stratosphere-troposphere coupling, demonstrating the importance of the stratosphere in an attribution of tropospheric ozone variability. The simulations, with no change in emissions, capture almost 50% of the measured ozone change during the 1990s at a variety of locations. This suggests that a large portion of the measured change is not due to changes in emissions, but can be traced to changes in large-scale modes of ozone variability. This emphasizes the difficulty in the attribution of ozone changes, and the importance of natural variability in understanding the trends and variability of ozone. We find little relation between the El Niño-Southern Oscillation (ENSO) index and large-scale tropospheric ozone variability over the long-term record.
Increasing springtime ozone mixing ratios in the free troposphere over western North America.
Cooper, O R; Parrish, D D; Stohl, A; Trainer, M; Nédélec, P; Thouret, V; Cammas, J P; Oltmans, S J; Johnson, B J; Tarasick, D; Leblanc, T; McDermid, I S; Jaffe, D; Gao, R; Stith, J; Ryerson, T; Aikin, K; Campos, T; Weinheimer, A; Avery, M A
2010-01-21
In the lowermost layer of the atmosphere-the troposphere-ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA's compliance with its ozone air quality standard.
Increasing Springtime Ozone Mixing Ratios in the Free Troposphere Over Western North America
NASA Technical Reports Server (NTRS)
Cooper, O. R.; Parrish, D. D.; Stohl, A.; Trainer, M.; Nedelec, P.; Thouret, V.; Cammas, J. P.; Oltmans, S. J.; Johnson, B. J.; Tarasick, D.;
2010-01-01
In the lowermost layer of the atmosphere - the troposphere - ozone is an important source of the hydroxyl radical, an oxidant that breaks down most pollutants and some greenhouse gases. High concentrations of tropospheric ozone are toxic, however, and have a detrimental effect on human health and ecosystem productivity1. Moreover, tropospheric ozone itself acts as an effective greenhouse gas. Much of the present tropospheric ozone burden is a consequence of anthropogenic emissions of ozone precursors resulting in widespread increases in ozone concentrations since the late 1800s. At present, east Asia has the fastest-growing ozone precursor emissions. Much of the springtime east Asian pollution is exported eastwards towards western North America. Despite evidence that the exported Asian pollution produces ozone, no previous study has found a significant increase in free tropospheric ozone concentrations above the western USA since measurements began in the late 1970s. Here we compile springtime ozone measurements from many different platforms across western North America. We show a strong increase in springtime ozone mixing ratios during 1995-2008 and we have some additional evidence that a similar rate of increase in ozone mixing ratio has occurred since 1984. We find that the rate of increase in ozone mixing ratio is greatest when measurements are more heavily influenced by direct transport from Asia. Our result agrees with previous modelling studies, which indicate that global ozone concentrations should be increasing during the early part of the twenty-first century as a result of increasing precursor emissions, especially at northern mid-latitudes, with western North America being particularly sensitive to rising Asian emissions. We suggest that the observed increase in springtime background ozone mixing ratio may hinder the USA s compliance with its ozone air quality standard.
Fate of return activated sludge after ozonation: an optimization study for sludge disintegration.
Demir, Ozlem; Filibeli, Ayse
2012-09-01
The effects of ozonation on sludge disintegration should be investigated before the application of ozone during biological treatment, in order to minimize excess sludge production. In this study, changes in sludge and supernatant after ozonation of return activated sludge were investigated for seven different ozone doses. The optimum ozone dose to avoid inhibition of ozonation and high ozone cost was determined in terms of disintegration degree as 0.05 g O3/gTS. Suspended solid and volatile suspended solid concentrations of sludge decreased by 77.8% and 71.6%, respectively, at the optimum ozone dose. Ozonation significantly decomposed sludge flocs. The release of cell contents was proved by the increase of supernatant total nitrogen (TN) and phosphorus (TP). While TN increased from 7 mg/L to 151 mg/L, TP increased from 8.8 to 33 mg/L at the optimum ozone dose. The dewaterability and filterability characteristics of the ozonated sludge were also examined. Capillary suction time increased with increasing ozone dosage, but specific resistance to filtration increased to a specific value and then decreased dramatically. The particle size distribution changed significantly as a result of floc disruption at an optimum dose of 0.05 gO3/gTS.
[The two ozone problems: too much in the troposphere, too little in the stratosphere].
Staehelin, J
1992-03-10
Trends analysis based on the long-term Swiss ozone measurements from Arosa and Payerne operationally performed by the Swiss Meteorological Institute are presented. These measurement include stratospheric ozone (approximately 90% of total ozone) and tropospheric ozone. The total ozone measurements from Arosa, the world longest series started at 1926, indicate, that total ozone has declined since about 1970 by approximately 5%. The ozone balloon soundings, operationally performed at Payerne since 1969 (2-3 ascents per week) show, that stratospheric ozone has decreased strongly in the last 20 years, whereas tropospheric ozone, remarkably has increased during this period. The relative change was strongest in the troposphere (more than 10% per decade, 3-4% increase per year during 1982-1988). However, on an absolute scale, changes in the stratosphere were strongest (relative decrease: 6 to 7% per decade at 20-22 km). The present scientific theories of the two ozone problems are reviewed: stratospheric ozone decrease was caused by the anthropogenic emissions of fluorochlorocarbons and other compounds mainly released from the earth surface. Tropospheric ozone has increased due to photochemical production of mainly anthropogenically emitted nitrogen oxides, volatile organic compounds and CO.
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Holdeman, J. D.; Gauntner, D. J.
1978-01-01
Simultaneous measurements of atmospheric (outside) ozone concentration and ozone levels in the cabin of the B747-100 and B747-SP airliners were made by NASA to evaluate the aircraft cabin ozone contamination problem. Instrumentation on these aircraft measured ozone from an outside probe and at one point in the cabin. Average ozone in the cabin of the B747-100 was 39 percent of the outside. Ozone in the cabin of the B747-SP measured 82 percent of the outside, before corrective measures. Procedures to reduce the ozone in this aircraft included changes in the cabin air circulation system, use of the high-temperature 15th stage compressor bleed, and charcoal filters in the inlet cabin air ducting, which as separate actions reduced the ozone to 58, 19 and 5 percent, respectively. The potential for the NASA instrumented B747 aircraft to encounter high levels of cabin ozone was derived from atmospheric oxone measurements on these aircraft. Encounter frequencies for two B747-100's were comparable even though the route structures were different. The B747-SP encountered high ozone than did the B747-100's.
NASA Astrophysics Data System (ADS)
Tai, A. P. K.
2016-12-01
Surface ozone is an air pollutant of significant concerns due to its harmful effects on human health, vegetation and crop productivity. Chronic ozone exposure is shown to reduce photosynthesis and interfere with gas exchange in plants, thereby influencing surface energy balance and biogeochemical fluxes with important ramifications for climate and atmospheric composition, including possible feedbacks onto ozone itself that are not well understood. Ozone damage on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to the effects of ozone-vegetation coupling on air quality, ecosystems and agriculture. Using the Community Earth System Model (CESM), we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is enhanced by up to 6 ppbv North America, Europe and East Asia. This strong positive feedback on ozone air quality via ozone-vegetation coupling arises mainly from reduced stomatal conductance, which induces two feedback pathways: 1) reduced dry deposition and ozone uptake; and 2) reduced evapotranspiration that enhances vegetation temperature and thus isoprene emission. Using the same ozone-vegetation scheme in a crop model within CESM, we further examine the impacts of historical ozone exposure on global crop production. We contrast our model results with a separate statistical analysis designed to characterize the spatial variability of crop-ozone-temperature relationships and account for the confounding effect of ozone-temperature covariation, using multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures. We find that several crops (especially C4 crops such as maize) exhibit stronger sensitivities to ozone than found by field studies or in CESM simulations. We also find a strong anticorrelation between crop sensitivities and average ozone levels, reflecting biological adaptive ozone resistance that is not accounted for in current generation of crop models. Our results show that a more complete understanding of ozone-vegetation interactions is necessary to derive more realistic future projections of climate, air quality, ecosystem functions and food security.
Surface ozone in China: present-day distribution and long-term changes
NASA Astrophysics Data System (ADS)
Xu, X.; Lin, W.; Xu, W.
2017-12-01
Reliable knowledge of spatio-temporal variations of surface ozone is highly needed to assess the impacts of ozone on human health, ecosystem and climate. Although regional distributions and trends of surface ozone in European and North American countries have been well characterized, little is known about the variability of surface ozone in many other countries, including China, where emissions of ozone precursors have been changing rapidly in recent decades. Here we present the first comprehensive description of present-day (2013-2017) distribution and long-term changes of surface ozone in mainland China. Recent ozone measurements from China's air quality monitoring network (AQMN) are analyzed to show present-day distributions of a few ozone exposure metrics for urban environment. Long-term measurements of ozone at six background sites, a rural site and an urban are used to study the trends of ozone in background, rural and urban air, respectively. The average levels of ozone at the AQMN sites (mainly urban) are close to those found at many European and North American sites. However, ozone at most of the sites shows very large diurnal and seasonal variations so that ozone nonattainment can occur in many cities, particularly those in the North China Plain (NCP), the south of Northeast China (NEC), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin-Chongqing region (SCB). In all these regions, particularly in the NCP, the maximum daily 8-h average (MDA8) ozone concentration can significantly exceed the national limit (75 ppb). High annual sum of ozone means over 35 ppb (SOMO35) exist mainly in the NCP, NEC and YRD, with regional averages over 4000 ppb·d. Surface ozone has significantly increased at Waliguan (a baseline site in western China) and Shangdianzi (a background site in the NCP), and decreased in winter and spring at Longfengshan (a background site in Northeast China). No clear trend can be derived from long-term measurements of ozone at other sites. Further attention should be paid to future changes of ozone in populated regions of China. Actions are urgently needed to control ozone pollution in the NCP and YRD.
Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China
NASA Astrophysics Data System (ADS)
Gao, Jinhui; Zhu, Bin; Xiao, Hui; Kang, Hanqing; Pan, Chen; Wang, Dongdong; Wang, Honglei
2018-05-01
As an important solar radiation absorbing aerosol, the effect of black carbon (BC) on surface ozone, via reducing photolysis rate, has been widely discussed by offline
model studies. However, BC-boundary layer (BL) interactions also influence surface ozone. Using the online
model simulations and process analysis, we demonstrate the significant impact of BC-BL interaction on surface ozone in Nanjing. The absorbing effect of BC heats the air above the BL and suppresses and delays the development of the BL, which eventually leads to a change in surface ozone via a change in the contributions from chemical and physical processes (photochemistry, vertical mixing and advection). For chemical processes, the suppression of the BL leads to large amounts of ozone precursors being confined below the BL which has an increased effect on ozone chemical production and offsets the decrease caused by the reduction of the photolysis rate, thus enhancing ozone chemical formation from 10:00 to 12:00 LT. Furthermore, changes in physical processes, especially the vertical mixing process, show a more significant influence on surface ozone. The weakened turbulence, caused by the suppressed BL, entrains much less ozone aloft down to the surface. Finally, summing-up the changes in the processes, surface ozone reduces before noon and the maximum reduction reaches 16.4 ppb at 12:00 LT. In the afternoon, the changes in chemical process are small which inconspicuously influence surface ozone. However, change in the vertical mixing process still influences surface ozone significantly. Due to the delayed development of the BL, there are obvious ozone gradients around the top of BL. Therefore, high concentrations of ozone aloft can still be entrained down to the surface which offsets the reduction of surface ozone. Comparing the changes in the processes, the change in vertical mixing plays the most important role in impacting surface ozone. Our results highlight the great impacts BC-BL interactions have on surface ozone by influencing the ozone contribution from physical process. This suggests that more attention should be paid to the mechanism of aerosol-BL interactions when controlling ozone pollution.
NASA Astrophysics Data System (ADS)
Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.
2009-04-01
Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newchurch, M.
The objectives of this research were to: (1) examine empirically the aerosol effect on Umkehr ozone profiles using SAGE II aerosol and ozone data; (2) examine theoretically the aerosol effect on Umkehr ozone profiles; (3) examine the differences between SAGE II ozone profiles and both old- and new-format Umkehr ozone profiles for ozone-trend information; (4) reexamine SAGE I-Umkehr ozone differences with the most recent version of SAGE I data; and (5) contribute to the SAGE II science team.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-06
... Scientific Advisory Committee (CASAC) Ozone Review Panel AGENCY: Environmental Protection Agency (EPA... the CASAC Ozone Review Panel to conduct a peer review of EPA's Integrated Science Assessment for Ozone... Assessment for Ozone--First External Review Draft (July 2012), Welfare Risk and Exposure Assessment for Ozone...
Understanding Ozone: Exploring the Good and Bad Facets of a Famous Gas.
ERIC Educational Resources Information Center
Hanif, Muhammad
1995-01-01
Presents activities that help students distinguish between the beneficial layer of stratospheric ozone and the dangerous ground-level or tropospheric ozone, understand the chemical processes of ozone breakdown in the stratosphere, find the sources of ground-level ozone, and explore the differences in the patterns of ozone concentration over the…
NASA Astrophysics Data System (ADS)
Buysse, C. E.; Pusede, S.; Kotsakis, A.
2016-12-01
Sequoia National Park (SNP) has the worst ozone air pollution of any National Park in the United States. Ozone pollution levels in SNP are high enough to exert damaging impacts on humans, animals, and vegetation. The major source of ozone to SNP is chemical production within the nearby and ozone-polluted San Joaquin Valley (SJV), which is then transported out of the valley into the park. Emission controls to reduce ozone in the SJV have been in place for the last two decades and these controls should have had the effect of altering ozone levels within SNP. This work has two aims. First, we investigate the chemistry driving trends in ozone in SNP and link these changes to trends in ozone in the SJV. Second, we consider both the metrics and time frames that best capture ozone trends contributing to vegetative damage, as these are not well represented in assessments of human health-based ambient air quality standards over an entire ozone season.
Ozone trends over the United States at different times of day
NASA Astrophysics Data System (ADS)
Yan, Yingying; Lin, Jintai; He, Cenlin
2018-01-01
In the United States, the decline of summertime daytime peak ozone in the last 20 years has been clearly connected to reductions in anthropogenic emissions. However, questions remain about how and through what mechanisms ozone at other times of day have changed over recent decades. Here we analyze the interannual variability and trends of ozone at different hours of day, using observations from about 1000 US sites during 1990-2014. We find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes. Interannual climate variability has mainly been associated with the detrended fluctuation in the US annual daytime ozone over 1990-2014, with a much smaller effect on the nighttime ozone. Reductions in anthropogenic emissions of nitrogen oxides have led to substantial growth in the US annual average nighttime ozone due to reduced ozone titration, while the summertime daytime ozone has declined. Environmental policymaking might consider further improvements to reduce ozone levels at night and other non-peak hours.
de la Torre, Daniel
2008-01-01
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid. PMID:19082416
de la Torre, Daniel
2008-12-14
The daily variations in cellular and apoplastic ascorbic acid and dehydroascorbic acid levels in a Mediterranean durum wheat cultivar (Triticum durum Desf. cv. Camacho) were analyzed in order to relate them to ambient ozone exposure and to subsequent stomatally absorbed ozone fluxes. The aim of this study is to prove the effectiveness and accuracy of a computer model (SODA) to calculate the mesophyll resistance (rm) to ozone uptake, the percentage of ozone detoxification by apoplastic ascorbic acid, and the ozone flux to the plasmalemma (Fm) in a Mediterranean durum wheat cultivar. These calculated factors were related to apoplastic ascorbic acid levels and to ambient ozone concentrations. These relationships were obtained with a view to explaining the detoxification of ozone by apoplastic ascorbic acid. Ozone detoxifications of up to 52% were found at midday, when maximum ozone concentrations and maximum apoplastic ascorbic acid are seen. Mesophyll resistance was minimum at this time, and ozone flux to the plasmalemma was reduced because of the reaction of ozone with apoplastic ascorbic acid.
NASA Astrophysics Data System (ADS)
Zhou, L. B.; Akiyoshi, H.; Kawahira, K.
2003-10-01
The year-to-year ozone variation over the subtropical western Pacific region is studied, especially the ozone lows in the 1996/1997, 1998/1999, and 2001/2002 winters, using the Earth Probe Total Ozone Mapping Spectrometer (EP_TOMS) ozone data from August 1996 to July 2002. Regression analyses show that dynamical signals, such as the quasi-biennial oscillation, play an important role in determining total ozone variation. A nudging chemical transport model (CTM) is used to simulate the year-to-year ozone variation and explain the mechanism for producing ozone lows in a three-dimensional distribution of ozone. The CTM was developed using the Center for Climate System Research/National Institute for Environmental Studies (CCSR/NIES) atmospheric general circulation model and introducing a nudging process for temperature and horizontal wind velocity. The year-to-year ozone variation, especially the winter ozone low, is well simulated by the model excluding heterogeneous reaction processes between 45°S and 45°N latitude. Results show that the year-to-year ozone variation is mainly controlled by dynamical transport processes.
Ozone trends over the United States at different times of day
NASA Astrophysics Data System (ADS)
Lin, J.; Yan, Y.
2017-12-01
In the United States, the decline of summertime daytime peak ozone in the last 20 years has been clearly connected to reductions in anthropogenic emissions. Yet questions remain on how and through what mechanisms ozone at other times of day have changed over the recent decades. Here we analyze the interannual variability and trends of ozone at different hours of day, using observations from about 1000 US sites during 1990-2014. We find a clear diurnal cycle both in the magnitude of ozone trends and in the relative importance of climate variability versus anthropogenic emissions to ozone changes. Interannual climate variability has mainly been associated with the de-trended fluctuation in the US annual daytime ozone over 1990-2014, with a much smaller effect on the nighttime ozone. Reductions in anthropogenic emissions of nitrogen oxides have led to substantial growth in the US annual average nighttime ozone due to reduced ozone titration, while the summertime daytime ozone has declined. Environmental policymaking might consider further improvements to reduce ozone levels at night and other non-peak hours.
Ozone, ozone production rates and NO observations on the outskirts of Quito, Ecuador
NASA Astrophysics Data System (ADS)
Cazorla, M.
2014-12-01
Air quality measurements of ambient ozone, ozone production rates and nitrogen oxides, in addition to baseline meterology observations, are being taken at a recently built roof-top facility on the campus of Universidad San Francisco de Quito, in Ecuador. The measurement site is located in Cumbayá, a densely populated valley adjacent to the city of Quito. Time series of ozone and NO are being obtained with commercial air quality monitors. Rush-hour peaks of NO, above 100 ppb, have been observed, while daytime ozone levels are low. In addition, ozone production rates are being measured with the Ecuadorian version of the MOPS, Measurement of Ozone Production Sensor, originally built at Penn State University in 2010. NO and ozone observations and test results of measured ozone production rates will be presented.
NASA Astrophysics Data System (ADS)
Liu, Ningwei; Ren, Wanhui; Li, Xiaolan; Ma, Xiaogang; Zhang, Yunhai; Li, Bingkun
2018-03-01
Hourly mixing ratio data of ground-level ozone and its main precursors at ambient air quality monitoring sites in Shenyang during 2013-2015 were used to survey spatiotemporal variations in ozone. Then, the transport of ozone and its precursors among urban, suburban, and rural sites was examined. The correlations between ozone and some key meteorological factors were also investigated. Ozone and O x mixing ratios in Shenyang were higher during warm seasons and lower during cold ones, while ozone precursors followed the opposite cycle. Ozone mixing ratios reached maximum and minimum values in the afternoon and morning, respectively, reflecting the significant influence of photochemical production during daytime and depletion via titration during nighttime. Compared to those in downtown Shenyang, ozone mixing ratios were higher and the occurrence of peak values were later in suburban and rural areas downwind of the prevailing wind. The differences were most significant in summer, when the ozone mixing ratios at one suburban downwind site reached a maximum value of 35.6 ppb higher than those at the downtown site. This suggests that photochemical production processes were significant during the transport of ozone precursors, particularly in warm seasons with sufficient sunlight. Temperature, total radiation, and wind speed all displayed positive correlations with ozone concentration, reflecting their important role in accelerating ozone formation. Generally, the correlations between ozone and meteorological factors were slightly stronger at suburban sites than in urban areas, indicating that ozone levels in suburban areas were more sensitive to these meteorological factors.
Climate change impacts on projections of excess mortality at ...
We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f
NASA Astrophysics Data System (ADS)
Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.
2017-12-01
Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.
NASA Astrophysics Data System (ADS)
Rim, Donghyun; Gall, Elliott T.; Maddalena, Randy L.; Nazaroff, William W.
2016-01-01
Elevated tropospheric ozone concentrations are associated with increased morbidity and mortality. Indoor ozone chemistry affects human exposure to ozone and reaction products that also may adversely affect health and comfort. Reactive uptake of ozone has been characterized for many building materials; however, scant information is available on how diurnal variation of ambient ozone influences ozone reaction with indoor surfaces. The primary objective of this study is to investigate ozone-surface reactions in response to a diurnally varying ozone exposure for three common building materials: ceiling tile, painted drywall, and carpet tile. A secondary objective is to examine the effects of air temperature and humidity. A third goal is to explore how conditioning of materials in an occupied office building might influence subsequent ozone-surface reactions. Experiments were performed at bench-scale with inlet ozone concentrations varied to simulate daytime (ozone elevated) and nighttime (ozone-free in these experiments) periods. To simulate office conditions, experiments were conducted at two temperatures (22 °C and 28 °C) and three relative humidity values (25%, 50%, 75%). Effects of indoor surface exposures were examined by placing material samples in an occupied office and repeating bench-scale characterization after exposure periods of 1 and 2 months. Deposition velocities were observed to be highest during the initial hour of ozone exposure with slow decrease in the subsequent hours of simulated daytime conditions. Daily-average ozone reaction probabilities for fresh materials are in the respective ranges of (1.7-2.7) × 10-5, (2.8-4.7) × 10-5, and (3.0-4.5) × 10-5 for ceiling tile, painted drywall, and carpet tile. The reaction probability decreases by 7%-47% across the three test materials after two 8-h periods of ozone exposure. Measurements with the samples from an occupied office reveal that deposition velocity can decrease or increase with time. Influence of temperature and humidity on ozone-surface reactivity was not strong.
Children's and adults' knowledge and models of reasoning about the ozone layer and its depletion
NASA Astrophysics Data System (ADS)
Leighton, Jacqueline P.; Bisanz, Gay L.
2003-01-01
As environmental concepts, the ozone layer and ozone hole are important to understand because they can profoundly influence our health. In this paper, we examined: (a) children's and adults' knowledge of the ozone layer and its depletion, and whether this knowledge increases with age' and (b) how the 'ozone layer' and 'ozone hole' might be structured as scientific concepts. We generated a standardized set of questions and used it to interview 24 kindergarten students, 48 Grade 3 students, 24 Grade 5 students, and 24 adults in university, in Canada. An analysis of participants' responses revealed that adults have more knowledge than children about the ozone layer and ozone hole, but both adults and children exhibit little knowledge about protecting themselves from the ozone hole. Moreover, only some participants exhibited 'mental models' in their conceptual understanding of the ozone layer and ozone hole. The implications of these results for health professionals, educators, and scientists are discussed.
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Briel, D.
1978-01-01
The average amount of ozone measured in the cabins of two B-747 airliners varied from 40 percent to 80 percent of the atmospheric concentrations without special ozone destruction systems. A charcoal filter in the cabin air inlet system of one B-747 reduced the ozone to about 5 percent of the atmospheric concentration. A Learjet 23 was also instrumented with monitors to measure simultaneously the atmospheric and ozone concentrations. Results indicate that a significant portion of the atmospheric ozone is not destroyed in the pressurization system and remains in the aircraft cabin of the Learjet. For the two cabin configurations tested, the ozone retentions were 63 and 41 percent of the atmospheric ozone concentrations. Ozone concentrations measured in the cabin near the conditioned-air outlets were reduced only slightly from atmospheric ozone concentrations. It is concluded that a constant difference between ozone concentrations inside and outside the cabin does not exist.
Ozone-initiated disinfection kinetics of Escherichia coli in water.
Zuma, Favourite; Lin, Johnson; Jonnalagadda, Sreekanth B
2009-01-01
The effect of ozonation on the rate of disinfection of Escherichia coli was investigated as a function of ozone concentration, ozonation duration and flow rates. Ozone was generated in situ using Corona discharge method using compressed oxygen stream and depending on the oxygen flux the ozone concentrations ranged from 0.91-4.72 mg/L. The rate of disinfection of all the three microbes followed pseudo-first-order kinetics with respect to the microbe count and first order with respect to ozone concentration. The influence of pH and temperature the aqueous systems on the rate of ozone initiated disinfection of the microbe was investigated. The inactivation was faster at lower pH than at basic pH. Molecular ozone is found more effective in disinfection than hydroxyl radicals. Two reported mechanisms for antimicrobial activity of ozone in water systems from the literature are discussed. Based on the experimental findings a probable rate law and mechanism are proposed. Ozonation of natural waters significantly decreased the BOD levels of the control and microbe contaminated waters.
The Application of TOMS Ozone, Aerosol and UV-B Data to Madagascar Air Quality Determination
NASA Technical Reports Server (NTRS)
Aikin, A.C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Total Ozone Mapping Spectrometer (TOMS) data products for the area of Madagascar are presented. In addition to total ozone, aerosols and UV-B tropospheric ozone results are shown from 1979 to the present. Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods. The potential of TOMS and other space data for use in public education and research on Madagascar air quality is demonstrated.
The Transition of Atmospheric Infrared Sounder Total Ozone Products to Operations
NASA Technical Reports Server (NTRS)
Berndt, E. B.; Zavodsky, B. T.; Jedlovec, G. J.
2014-01-01
The National Aeronautics and Space Administration Short-term Prediction Research and Transition Center (NASA SPoRT) has transitioned a total column ozone product from the Atmospheric Infrared Sounder (AIRS) retrievals to the Weather Prediction Center and Ocean Prediction Center. The total column ozone product is used to diagnose regions of warm, dry, ozone-rich, stratospheric air capable of descending to the surface to create high-impact non-convective winds. Over the past year, forecasters have analyzed the Red, Green, Blue (RGB) Air Mass imagery in conjunction with the AIRS total column ozone to aid high wind forecasts. One of the limitations of the total ozone product is that it is difficult for forecasters to determine whether elevated ozone concentrations are related to stratospheric air or climatologically high values of ozone in certain regions. During the summer of 2013, SPoRT created an AIRS ozone anomaly product which calculates the percent of normal ozone based on a global stratospheric ozone mean climatology. With the knowledge that ozone values 125 percent of normal and greater typically represent stratospheric air; the anomaly product can be used with the total column ozone product to confirm regions of stratospheric air. This paper describes the generation of these products along with forecaster feedback concerning the use of the AIRS ozone products in conjunction with the RGB Air Mass product to access the utility and transition of the products.
Development of KRISS standard reference photometer (SRP) for ambient ozone measurement
NASA Astrophysics Data System (ADS)
Lee, S.; Lee, J.
2014-12-01
Surface ozone has adverse impacts on human health and ecosystem. Accurate measurement of ambient ozone concentration is essential for developing effective mitigation strategies and understanding atmospheric chemistry. Korea Research Institute of Standards and Science (KRISS) has developed new ozone standard reference photometers (SRPs) for the calibration of ambient ozone instruments. The basic principle of the KRISS ozone SRPs is to determine the absorption of ultraviolet radiation at a specific wavelength, 253.7 nm, by ozone in the atmosphere. Ozone concentration is calculated by converting UV transmittance through the Beer-Lambert Law. This study introduces the newly developed ozone SRPs and characterizes their performance through uncertainty analysis and comparison with BIPM (International Bureau of Weights and Measures) SRP.
Development of Compact Ozonizer with High Ozone Output by Pulsed Power
NASA Astrophysics Data System (ADS)
Tanaka, Fumiaki; Ueda, Satoru; Kouno, Kanako; Sakugawa, Takashi; Akiyama, Hidenori; Kinoshita, Youhei
Conventional ozonizer with a high ozone output using silent or surface discharges needs a cooling system and a dielectric barrier, and therefore becomes a large machine. A compact ozonizer without the cooling system and the dielectric barrier has been developed by using a pulsed power generated discharge. The wire to plane electrodes made of metal have been used. However, the ozone output was low. Here, a compact and high repetition rate pulsed power generator is used as an electric source of a compact ozonizer. The ozone output of 6.1 g/h and the ozone yield of 86 g/kWh are achieved at 500 pulses per second, input average power of 280 W and an air flow rate of 20 L/min.
NASA Astrophysics Data System (ADS)
Zhou, S.; Tai, A. P. K.; Lombardozzi, D.
2016-12-01
Apart from being an important greenhouse gas, tropospheric ozone is a significant air pollutant that is shown to have harmful effects both on human health and vegetation. Ozone damages vegetation mainly through reducing plant photosynthesis and stomatal conductance. Meanwhile, ozone is also strongly dependent on vegetation via various biogeochemical and physical processes. These interdependences between ozone and vegetation would constitute feedback mechanisms that can potentially alter ozone concentration itself, and should be considered in future climate and air quality projections. In this study, we first implement an empirical scheme for ozone damage on vegetation in the Community Land Model (CLM), and simulate the relative changes in leaf area indices (LAI) and stomatal conductance for three plant groups (consolidated from 15 plant functional types) at various prescribed ozone levels (from 0 ppb to 100 ppb). We find that all plant groups suffer the greatest decreases in LAI and stomatal conductance in regions with their greatest abundance, and grasses and crops show the most severe damage from ozone exposure compared with broadleaf and needleleaf groups, with an LAI reduction of as much as 50% in some areas even at an ozone level of 30 ppb. Using the CLM-simulated results, we develop a semi-empirical parameterization scheme to link prescribed ozone levels to the spatially varying simulated relative changes in LAI and stomatal conductance at model steady state. We implement the scheme in the GEOS-Chem chemical transport model so that ozone-vegetation chemical coupling via ozone dry deposition and biogenic volatile organic compound (VOC) emissions can be simulated online. Model simulations indicate that ozone effect on stomatal conductance (which modifies dry deposition) appears to be the dominant feedback pathway influencing surface ozone, whereas ozone-mediated LAI changes (which affects biogenic VOC emissions) appear to play a lesser role. This work is the first attempt to account for online ozone-vegetation coupling in a chemical transport model, with important ramifications for more realistic assessment of ozone air quality under a constantly evolving climate and land cover.
NASA Astrophysics Data System (ADS)
Huang, Guanyu
We investigate the interaction between the free troposphere (FT) and planetary boundary layer (PBL) using multiple measurements and Dutch Atmospheric Large Eddy Simulation (DALES) coupled with a chemical module. A residual layer (RL) storing high ozone concentrations can significantly influence ground ozone concentration through the entrainment process whereby the RL aloft is incorporated into the growing convective boundary layer (CBL) during the morning transition. We use DALES model coupled with a chemical module to simultaneously study the dynamical and chemical impacts of a RL (200-1200 m above ground level (AGL)) on ground-level (0-200 m AGL) ozone concentrations. Four numerical experiments test these interactions: 1) a RL with high ozone (100 ppb); 2) a RL with low ozone (50 ppb); 3) no RL with high ozone above the NBL (100 ppb from 200-1200 m AGL); and 4) no RL with low ozone above the NBL (50 ppb). The results indicate that ozone stored in the RL can contribute up to 86% of the ozone concentration in the CBL during the following day in Case 1. Even in Case 2, 64% of the ozone in the developed CBL results from intrusions from the RL. Additionally, a RL also increases the enhancement rate of ozone in the CBL. Furthermore, we investigate the ozone diurnal variation on September 6, 2013 in Huntsville AL. The ozone variation in the CBL is mainly caused by local emissions due to the weather conditions being controlled by an anticyclonic system. The local chemical production contributes over 67% of the ozone enhancement in the CBL. The dynamical processes contribute the rest. The numerical experiments show good agreement with our ozone lidar observations. However, our simulation results and ozone lidar observations fail to reproduce a declining trend of surface ozone measured by an Environment Protection Agency (EPA) surface monitoring station that is 6 km south of our facilities, which is very likely due to the large ozone horizontal variation and the diurnal variation of ozone dry deposition under urban environment.
[Effect of ozone on membrane fouling in water and wastewater treatment: a research review].
Zhu, Hong-tao; Wen, Xiang-hua; Huang, Xia
2009-01-01
As a high efficient water and wastewater treatment technology, membrane filtration has been mainly used in wastewater treatment as membrane bioreactor, in reclaiming secondary effluent,treating surface water and potable water, and etc. Membrane fouling is a main obstacle to the wide application of membrane technology. Ozone has strong oxidizing power and has been utilized widely in water and wastewater treatment. In recent years, researches on combined process of ozone-membrane filtration are increasing. This paper does reviews and analysis of these researches. It is noticed that there has been a few of researches on the ozone treatment plus MBR process. Pre-ozonation of feed to MBR and slight ozonation of the mixed liquid in MBR may be used to relieve membrane fouling.Combined processes of ozone-membrane filtration can be divided into three classes in terms of the function of ozone and the system configuration: (1) cleaning the fouled membrane with ozone; (2) separate ozone-membrane filtration process; (3) integrated ozone-membrane filtration process. Although most reports supported that ozonation can control membrane fouling development,there were contrary results. At present, researches on the mechanisms of ozone's effect on membrane fouling control concentrated on the change of organic composition of the filtration influent under ozonation, however, particulate substances, microbial and inorganic substances may also be affected and then play roles in membrane fouling, depending on source water quality and process configuration. Moreover, there have not been common parameters to evaluate the ozone diffusion equipment and efficiency. The authors suggest that further researches should emphasize on integrated ozone-membrane process, and more attention should be paid to the cost-effectiveness of the combined process.
A cloud-ozone data product from Aura OMI and MLS satellite measurements
NASA Astrophysics Data System (ADS)
Ziemke, Jerald R.; Strode, Sarah A.; Douglass, Anne R.; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D.; Liu, Junhua; Strahan, Susan E.; Bhartia, Pawan K.; Haffner, David P.
2017-11-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low-troposphere/boundary-layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30° S and 30° N for October 2004-April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ˜ 10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intraseasonal/Madden-Julian oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary-layer pollution and elevated ozone inside thick clouds over landmass regions including southern Africa and India/east Asia.
Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.
2014-01-01
Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.
NASA Astrophysics Data System (ADS)
Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val
2017-02-01
Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.
Kim, Jae H; Lee, H J; Lee, S H
2006-07-01
This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.
Passive ozone network of Dallas: a modeling opportunity with community involvement. 2.
Sather, M E; Varns, J L; Mulik, J D; Glen, G; Smith, L; Stallings, C
2001-11-15
Attaining the current lower tropospheric U.S. ozone standards continues to be a difficult task for many areas in the U.S. Concentrations of ozone above the standards negatively affects human health, agricultural crops, forests, and other ecosystem elements. This paper describes year two (1999) of a regional networking of passive and continuous ozone monitoring sites in the Dallas-Fort Worth (DFW) Metroplex region. The objectives of the second year of study were to (1) validate conclusions of the 1998 Passive Ozone Network of Dallas (POND) I study, (2) define the value of taking 12-h diurnal samples in addition to 24-h samples, and (3) add to the scientific knowledge base of rural/urban ozone comparison studies. Results of the POND II (1999) study demonstrated that ozone concentrations exceeding the new 8-h ozone standard could be recorded at least 130 km, or 80 miles, from the DFW Metroplex core in more rural areas. In addition, results of the POND II study indicated that ozone concentrations exceeding the 8-h standard probably occurred in areas recording a 12-h daytime ozone concentration above 60 parts per billion (ppb). The 12-h passive ozone data from POND II also suggests the relative magnitude of anthropogenic pollution influence could be assessed for rural passive ozone sites. The data from the POND II study provide modelers a rich database for future photochemical subgrid development for the DFW ozone nonattainment area. Indeed, the POND database provides a great amount of additional ozone ambient data covering 26 8-h and 13 1-h ozone standard exceedance days over an approximate 25000 km2 region. These data should help decrease uncertainties derived from future DFW ozone model exercises.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Frolov, A. D.; Hudson, R. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)
2000-01-01
Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method [("TDOT" = TOMS Direct Ozone in the Troposphere; Frolov et al., 2000] represents a new algorithm that uses TOMS radiances directly (i.e., not previously processed for TOMS ozone) to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution. These events tend to occur in certain meteorological regimes. For example, mid-latitude pollution usually occurs on the backside of subtropical fronts, as low pv, usually moist air intrudes to the extra-tropics. July 1999 was a month characterized by robust pollution in the eastern US, with high ozone, as detected by TOMS, originating over south central states and moving up the Atlantic seaboard. This corresponds to 50-80 DU in tropospheric ozone column depth. In most cases, further transport occurred to the North Atlantic, with ozone plumes traveling to western Europe in 4-5 days. Examples of high ozone and transit across boundaries within the US, as well as US->Europe, give a regional context for model results and field measurements taken in the SE US during the Nashville-1999 campaign period. Validation of the TDOT maps is made with ozonesondes taken during that time. TDOT maps also show ozone pollution from Asia traveling to the western US in July 1999.
A Cloud-Ozone Data Product from Aura OMI and MLS Satellite Measurements.
Ziemke, Jerald R; Strode, Sarah A; Douglass, Anne R; Joiner, Joanna; Vasilkov, Alexander; Oman, Luke D; Liu, Junhua; Strahan, Susan E; Bhartia, Pawan K; Haffner, David P
2017-01-01
Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H 2 O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30°S to 30°N for October 2004 - April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.
Verhein, Kirsten C; Hazari, Mehdi S; Moulton, Bart C; Jacoby, Isabella W; Jacoby, David B; Fryer, Allison D
2011-02-01
Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M(2) muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK(1) and NK(2) receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK(2) receptors was independent of ozone, the NK(1) receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK(1) receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone.
Verhein, Kirsten C.; Hazari, Mehdi S.; Moulton, Bart C.; Jacoby, Isabella W.; Jacoby, David B.
2011-01-01
Ozone causes persistent airway hyperreactivity in humans and animals. One day after ozone exposure, airway hyperreactivity is mediated by release of eosinophil major basic protein that inhibits neuronal M2 muscarinic receptors, resulting in increased acetylcholine release and increased smooth muscle contraction in guinea pigs. Three days after ozone, IL-1β, not eosinophils, mediates ozone-induced airway hyperreactivity, but the mechanism at this time point is largely unknown. IL-1β increases NGF and the tachykinin substance P, both of which are involved in neural plasticity. These experiments were designed to test whether there is a role for NGF and tachykinins in sustained airway hyperreactivity following a single ozone exposure. Guinea pigs were exposed to filtered air or ozone (2 parts per million, 4 h). In anesthetized and vagotomized animals, ozone potentiated vagally mediated airway hyperreactivity 24 h later, an effect that was sustained over 3 days. Pretreatment with antibody to NGF completely prevented ozone-induced airway hyperreactivity 3 days, but not 1 day, after ozone and significantly reduced the number of substance P-positive airway nerve bundles. Three days after ozone, NK1 and NK2 receptor antagonists also blocked this sustained hyperreactivity. Although the effect of inhibiting NK2 receptors was independent of ozone, the NK1 receptor antagonist selectively blocked vagal hyperreactivity 3 days after ozone. These data confirm mechanisms of ozone-induced airway hyperreactivity change over time and demonstrate 3 days after ozone that there is an NGF-mediated role for substance P, or another NK1 receptor agonist, that enhances acetylcholine release and was not present 1 day after ozone. PMID:21056958
NASA Astrophysics Data System (ADS)
Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.; Heald, C. L.
2015-12-01
Surface ozone is one of the most significant air pollutants due to its damaging effects not only on human health, but also on vegetation and crop productivity. Chronic ozone exposure has been shown to reduce photosynthesis and interfere with gas exchange in plants, which in turn affect the surface energy balance, carbon sink and other biogeochemical fluxes. Ozone damage on vegetation can thus have major ramifications on climate and atmospheric composition, including possible feedbacks onto ozone itself (see figure) that are not well understood. The damage of ozone on crops has been well documented, but a mechanistic understanding is not well established. Here we present several results pertaining to ozone-vegetation interaction. Using the Community Earth System Model, we find that inclusion of ozone damage on plants reduces the global land carbon sink by up to 5%, while simulated ozone is modified by -20 to +4 ppbv depending on the relative importance of competing mechanisms in different regions. We also perform a statistical analysis of multidecadal global datasets of crop yields, agroclimatic variables and ozone exposures to characterize the spatial variability of crop sensitivity to ozone and temperature extremes, specifically accounting for the confounding effect of ozone-temperature covariation. We find that several crops exhibit stronger sensitivity to ozone than found by previous field studies, with a strong anticorrelation between the sensitivity and average ozone levels that reflects biological adaptive ozone resistance. Our results show that a more complete understanding of ozone-vegetation interaction is necessary to derive more realistic future projections of climate, air quality and agricultural production, and thereby to formulate optimal strategies to safeguard public health and food security.
NASA Astrophysics Data System (ADS)
Ladd, I. H.; Fishman, J.; Pippin, M.; Sachs, S.; Skelly, J.; Chappelka, A.; Neufeld, H.; Burkey, K.
2006-05-01
Students around the world work cooperatively with their teachers and the scientific research community measuring local surface ozone levels using a hand-held optical scanner and ozone sensitive chemical strips. Through the GLOBE (Global Learning and Observations to Benefit the Environment) Program, students measuring local ozone levels are connected with the chemistry of the air they breathe and how human activity impacts air quality. Educational tools have been developed and correlated with the National Science and Mathematics Standards to facilitate integrating the study of surface ozone with core curriculum. Ozone air pollution has been identified as the major pollutant causing foliar injury to plants when they are exposed to concentrations of surface ozone. The inclusion of native and agricultural plants with measuring surface ozone provides an Earth system approach to understanding surface ozone. An implementation guide for investigating ozone induced foliar injury has been developed and field tested. The guide, Using Sensitive Plants as Bio-Indicators of Ozone Pollution, provides: the background information and protocol for implementing an "Ozone Garden" with native and agricultural plants; and, a unique opportunity to involve students in a project that will develop and increase their awareness of surface ozone air pollution and its impact on plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankelevich, Yu. A., E-mail: ymankelevich@mics.msu.su; Voronina, E. N.; Poroykov, A. Yu.
Plasmachemical and heterogeneous processes of generation and loss of ozone in the atmosphericpressure dielectric barrier discharge in oxygen are studied theoretically. Plasmachemical and electronic kinetics in the stage of development and decay of a single plasma filament (microdischarge) are calculated numerically with and without allowance for the effects of ozone vibrational excitation and high initial ozone concentration. The developed analytical approach is applied to determine the output ozone concentration taking into account ozone heterogeneous losses on the Al{sub 2}O{sub 3} dielectric surface. Using the results of quantummechanical calculations by the method of density functional theory, a multistage catalytic mechanism ofmore » heterogeneous ozone loss based on the initial passivation of a pure Al{sub 2}O{sub 3} surface by ozone and the subsequent interaction of O{sub 3} molecules with the passivated surface is proposed. It is shown that the conversion reaction 2O{sub 3} → 3O{sub 2} of a gas-phase ozone molecule with a physically adsorbed ozone molecule can result in the saturation of the maximum achievable ozone concentration at high specific energy depositions, the nonstationarity of the output ozone concentration, and its dependence on the prehistory of ozonizer operation.« less
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
NASA Astrophysics Data System (ADS)
Fernandez, Rafael Pedro; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso
2017-04-01
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14% when natural VSLBr are considered, in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affect the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by year 2070, and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.
NASA Astrophysics Data System (ADS)
Karamah, E. F.; Leonita, S.; Bismo, S.
2018-01-01
Synthetic wastewater containing phenols was treated using combination method of ozonation-adsorption with GAC (Granular Activated Carbon) in a packed bed rotating reactor. Ozone reacts quickly with phenol and activated carbon increases the oxidation process by producing hydroxyl radicals. Performance parameters evaluated are phenol removal percentage, the quantity of hydroxyl radical formed, changes in pH and ozone utilization, dissolved ozone concentration and ozone concentration in off gas. The performance of the combination method was compared with single ozonation and single adsorption. The influence of GAC dose and initial pH of phenols were evaluated in ozonation-adsorption method. The results show that ozonation-adsorption method generates more OH radicals than a single ozonation. Quantity of OH radical formation increases with increasing pH and quantity of the GAC. The combination method prove better performance in removing phenols. At the same operation condition, ozonation-adsorption method is capable of removing of 78.62% phenols as compared with single ozonation (53.15%) and single adsorption (36.67%). The increasing percentage of phenol removal in ozonation-adsorption method is proportional to the addition of GAC dose, solution pH, and packed bed rotator speed. Maximum percentage of phenol removal is obtained under alkaline conditions (pH 10) and 125 g of GAC
Ozone: Good Up High, Bad Nearby
... How Does the Depletion of “Good” Ozone Affect Human Health and the Environment? Ozone depletion can cause increased ... their original sources. How Does “Bad” Ozone Affect Human Health and the Environment? Breathing ozone can trigger a ...
Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.
Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei
2011-01-01
In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.
NASA Astrophysics Data System (ADS)
Brune, W. H.; Baier, B.; Miller, D. O.; Apel, E. C.; Wisthaler, A.; Fried, A.; Cantrell, C. A.; Blake, D. R.; Brown, S. S.; McDuffie, E. E.; Kaser, L.; Long, R.; Weinheimer, A. J.
2017-12-01
Ground level ozone pollution remains a health hazard in the United States despite dramatic reductions due to regulatory actions over the past three decades. The key to understanding the link between the ozone precursor gases, nitrogen oxides (NOx) and volatile organic compounds (VOCs), and ozone pollution is the ozone production rate. However, in air quality models, uncertainties in emissions and meteorology hide the true sensitivity of modeled ozone to the chemistry of the ozone production rate. A better way to understand the ozone production rate is to measure it directly. We devised a method for measuring the ozone production rate directly and have deployed it in a few field studies. In this presentation, we will discuss some fairly recent observations, the strengths and weaknesses of the current method, and a path toward routine monitoring of the ozone production rate.
Effect of ozonation on the reactivity of lignocellulose substrates in enzymatic hydrolyses to sugars
NASA Astrophysics Data System (ADS)
Ben'ko, E. M.; Manisova, O. R.; Lunin, V. V.
2013-07-01
The efficiency of pre-treatment of aspen wood with ozone for subsequent enzymatic hydrolysis into sugars is determined by the amount of absorbed ozone. The ozone absorption rate depended on the water content in the sample being ozonized and was maximum at a relative humidity of wood of ˜40%. As a result of ozone pre-treatment, the initial rate of the enzymatic hydrolysis of wood under the action of a cellulase complex increased eightfold, and the maximum yield of sugars increased tenfold depending on the ozone dose. The ozonation at ozone doses of more than 3 mol/PPU (phenylpropane structural unit of lignin) led to a decrease in the yield of sugars because of the oxidative destruction of cellulose and hemicellulose. The alkaline ozonation in 2 and 12% NaOH was inefficient because of the accompanying oxidation of carbohydrates and considerably decreased the yield of sugars.
NASA Astrophysics Data System (ADS)
Yoshimura, Kenji; Akiyama, Tomoaki; Hirofuji, Yushi; Koyama, Shigeru
Ozone has the capability of sterilization and deodorization due to high oxidation power. It is also effective for the conservation of perishable foods and purification of water. However, ozone has a disadvantage, that is, conservation of ozone is difficult because it reacts to oxygen. Recently, ozone-contained ice is taken attention for the purpose of its conservation. The use of ozone-contained ice seems to keep food fresher when we conserve and transport perishable foods due to the effects of cooling and sterilization of ozone-contained ice. In the present study, we have developed an ozone-contained ice making machine employing pressurized air tight containers with commercially available size. And the performance evaluation of the system is also carried out. Furthermore, we investigated the sterilization effect of ozone-contained ice on conservation of fish. It was seen that ozone-contained ice is effective for sterilization of surface of fish.
Local fluctuations of ozone from 16 km to 45 km deduced from in situ vertical ozone profile
NASA Technical Reports Server (NTRS)
Moreau, G.; Robert, C.
1994-01-01
A vertical ozone profile obtained by an in situ ozone sonde from 16 km to 45 km, has allowed to observe local ozone concentration variations. These variations can be observed, thanks to a fast measurement system based on a UV absorption KrF excimer laser beam in a multipass cell. Ozone standard deviation versus altitude calculated from the mean is derived. Ozone variations or fluctuations are correlated with the different dynamic zones of the stratosphere.
A Review of Atmospheric Ozone and Current Thinking on the Antarctic Ozone Hole.
1987-01-01
UNIVERSITY OF CALIFORNIA 0 A Review of Atmospheric ozone and Current Thinking on the Antartic Ozone Hole A thesis submitted in partial satisfaction of the...4. TI TLE (Pit 5,1tlfie) S. TYPE OF REPORT & PFRIOO COVERED A Review of Atmospheric Ozone and Current THESIS/DA/;J.At1AAU00 Thinking on the Antartic ...THESIS A Review of Atmospheric Ozone and Current Thinking on the Antartic Ozone Hole by Randolph Antoine Fix Master of Science in Atmospheric Science
Effect of Pulse Width on Oxygen-fed Ozonizer
NASA Astrophysics Data System (ADS)
Okada, Sho; Wang, Douyan; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori
Though general ozonizers based on silent discharge (barrier discharge) have been used to supply ozone at many industrial situations, there is still some problem, such as improvements of ozone yield. In this work, ozone was generated by pulsed discharge in order to improve the characteristics of ozone generation. It is known that a pulse width gives strong effect to the improvement of energy efficiency in exhaust gas processing. In this paper, the effect of pulse duration on ozone generation by pulsed discharge in oxygen would be reported.
Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery
NASA Technical Reports Server (NTRS)
Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John;
2018-01-01
Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.
California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements
NASA Astrophysics Data System (ADS)
Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.
2016-12-01
Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.
Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery
NASA Astrophysics Data System (ADS)
Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.
2018-02-01
Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer
around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.
40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR NOX...
40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR NOX...
40 CFR 97.521 - Recordation of TR NOX Ozone Season allowance allocations and auction results.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of TR NOX Ozone Season... SO2 TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.521 Recordation of TR NOX Ozone Season... Ozone Season source's compliance account the TR NOX Ozone Season allowances allocated to the TR NOX...
NASA Technical Reports Server (NTRS)
Aikin, A. C.; Ziemke, J. R.; Thorpe, A.; Einaudi, Franco (Technical Monitor)
2000-01-01
Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods.
NASA Technical Reports Server (NTRS)
Shimazaki, Tatsuo
1987-01-01
It is shown that the stratospheric ozone is effective in absorbing almost all radiation below 300 nm at heights below 300 km. The distribution of global ozone in the troposphere and the lower stratosphere, and the latitudinal variations of the total ozone column over four seasons are considered. The theory of the ozone layer production is discussed together with catalytic reactions for ozone loss and the mechanisms of ozone transport. Special attention is given to the anthropogenic perturbations, such as SST exhaust gases and freon gas from aerosol cans and refrigerators, that may cause an extensive destruction of the stratospheric ozone layer and thus have a profound impact on the world climate and on life.
Scientific assessment of stratospheric ozone: 1989, volume 1
NASA Technical Reports Server (NTRS)
1990-01-01
A scientific review is presented of the current understanding of stratospheric ozone. There have been highly significant advances in the understanding of the impact of human activities on the Earth's protective ozone layer. There are four major findings that each heighten the concern that chlorine and bromine containing chemicals can lead to a significant depletion of stratospheric ozone: (1) Antarctic ozone hole (the weight of evidence indicates that chlorinated and brominated chemicals are responsible for the ozone hole; (2) Perturbed arctic chemistry (the same potentially ozone destroying processes were identified in the Arctic stratosphere); (3) Long term ozone decreases; and (4) Model limitations (gaps in theoretical models used for assessment studies).
Inactivation of H1N1 viruses exposed to acidic ozone water
NASA Astrophysics Data System (ADS)
Uhm, Han S.; Lee, Kwang H.; Seong, Baik L.
2009-10-01
The inactivation of H1N1 viruses upon exposure to acidic ozone water was investigated using chicken allantoic fluids of different dilutions, pH values, and initial ozone concentrations. The inactivation effect of the acidic ozone water was found to be stronger than the inactivation effect of the ozone water combined with the degree of acidity, indicating a synergic effect of acidity on ozone decay in water. It is also shown that acidic ozone water with a pH value of 4 or less is very effective means of virus inactivation if provided in conjunction with an ozone concentration of 20 mg/l or higher.
The 1988 Antarctic ozone monitoring Nimbus-7 TOMS data atlas
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.
1989-01-01
Because of the great environmental significance of ozone and to support continuing research at McMurdo, Syowa, and other Southern Hemisphere stations, the development of the 1988 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 17, 1988. Although total ozone in mini-holes briefly dropped below 150 DU in late August, the main ozone hole is seen to be much less pronounced than in 1987. Minimum values, observed in late September and early October 1988, were seldom less than 175 DU. Compared with the same period in 1987, when a pronounced ozone hole whose minimum value of 109 Dobson Units (DU) was the lowest total ozone ever observed, the 1988 ozone hole is displaced from the South Pole, opposing a persistent maximum with values consistently above 500 DU. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1988 ozone distribution to that of other years.
Airliner cabin ozone: An updated review. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melton, C.E.
1989-12-01
The recent literature pertaining to ozone contamination of airliner cabins is reviewed. Measurements in airliner cabins without filters showed that ozone levels were about 50 percent of atmospheric ozone. Filters were about 90 percent effective in destroying ozone. Ozone (0.12 to 0.14 ppmv) caused mild subjective respiratory irritation in exercising men, but 0.20 to 0.30 ppmv did not have adverse effects on patients with chronic heart or lung disease. Ozone (1.0 to 2.0 ppmv) decreased survival time of influenza-infected rats and mice and suppressed the capacity of lung macrophages to destroy Listeria. Airway responses to ozone are divided into anmore » early parasympathetically mediated bronchoconstrictive phase and a later histamine-mediated congestive phase. Evidence indicates that intracellular free radicals are responsible for ozone damage and that the damage may be spread to other cells by toxic intermediate products: Antioxidants provide some protection to cells in vitro from ozone but dietary intake of antioxidant vitamins by humans has only a weak effect, if any. This review indicates that earlier findings regarding ozone toxicity do not need to be corrected. Compliance with existing FAA ozone standards appears to provide adequate protection to aircrews and passengers.« less
Understanding global tropospheric ozone and its impacts on human health
NASA Astrophysics Data System (ADS)
West, J. J.
2017-12-01
Ozone is an important air pollutant for human health, one that has proven difficult to manage locally, nationally, and globally. Here I will present research on global ozone and its impacts on human health, highlighting several studies from my lab over the past decade. I will discuss the drivers of global tropospheric ozone, and the importance of the equatorward shift of emissions over recent decades. I will review estimates of the global burden of ozone on premature mortality, the contributions of different emission sectors to that burden, estimates of how the ozone health burden will change in the future under the Representative Concentration Pathway scenarios, and estimates of the contribution of projected climate change to ozone-related deaths. I will also discuss the importance of the intercontinental transport of ozone, and of methane as a driver of global ozone, from the human health perspective. I will present estimates of trends in the ozone mortality burden in the United States since 1990. Finally, I will discuss our project currently underway to estimate global ozone concentrations at the surface based on data gathered by the Tropospheric Ozone Assessment Report, combined statistically with atmospheric modeling results.
The search for signs of recovery of the ozone layer.
Weatherhead, Elizabeth C; Andersen, Signe Bech
2006-05-04
Evidence of mid-latitude ozone depletion and proof that the Antarctic ozone hole was caused by humans spurred policy makers from the late 1980s onwards to ratify the Montreal Protocol and subsequent treaties, legislating for reduced production of ozone-depleting substances. The case of anthropogenic ozone loss has often been cited since as a success story of international agreements in the regulation of environmental pollution. Although recent data suggest that total column ozone abundances have at least not decreased over the past eight years for most of the world, it is still uncertain whether this improvement is actually attributable to the observed decline in the amount of ozone-depleting substances in the Earth's atmosphere. The high natural variability in ozone abundances, due in part to the solar cycle as well as changes in transport and temperature, could override the relatively small changes expected from the recent decrease in ozone-depleting substances. Whatever the benefits of the Montreal agreement, recovery of ozone is likely to occur in a different atmospheric environment, with changes expected in atmospheric transport, temperature and important trace gases. It is therefore unlikely that ozone will stabilize at levels observed before 1980, when a decline in ozone concentrations was first observed.
A reanalysis of ozone on Mars from assimilation of SPICAM observations
NASA Astrophysics Data System (ADS)
Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck
2018-03-01
We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.
Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data
NASA Technical Reports Server (NTRS)
Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven
2003-01-01
The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone distribution. Through the monitoring of statistical properties of the agreement between the data and the model, this approach also enables us to detect changes in the quality of ozone data retrieved from satellite-borne instrument measurements. This paper demonstrates that calculations of the changes in satellite data quality, and the impact these changes on the estimates of the global ozone distribution, can assist in maintaining the uniform quality of the satellite ozone data throughout the lifetime of these instruments, thus contributing to our understanding of long-term ozone change.
Near-ground ozone source attributions and outflow in central eastern China during MTX2006
NASA Astrophysics Data System (ADS)
Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Tanimoto, H.; Kanaya, Y.
2008-12-01
A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was used to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25° N, 117.10° E, 1534 m a.s.l.) in Central Eastern China (CEC) during the Mount Tai eXperiment 2006 (MTX2006). The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants, and it captured highly polluted and clean cases well. The simulated near-ground ozone level over CEC was 60-85 ppbv (parts per billion by volume), which was higher than values in Japan and over the North Pacific (20-50 ppbv). The simulated tagged tracer data indicated that the regional-scale transport of chemically produced ozone over other areas in CEC contributed to the greatest fraction (49%) of the near-ground mean ozone at Mt. Tai in June; in situ photochemistry contributed only 12%. Due to high anthropogenic and biomass burning emissions that occurred in the southern part of the CEC, the contribution to ground ozone levels from this area played the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai; values reached 59 ppbv (62%) on 6-7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various ozone production regions indicated that photochemical reactions controlled the spatial distribution of O3 over CEC. The regional-scale transport of pollutants also played an important role in the spatial and temporal distribution of ozone over CEC. Chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC; the mean contribution was 5-10 ppbv, and it reached 25 ppbv during high ozone events. Studies of the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries, revealed that the contribution of CEC ozone to mean ozone mixing ratios over the Korean Peninsula and Japan was 5-15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was produced locally by ozone precursors transported from CEC.
Spatial patterns of tropospheric ozone in the mount rainier region of the cascade mountains, USA
NASA Astrophysics Data System (ADS)
Brace, Sarah; Peterson, David L.
Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 -2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.
Spatial patterns of tropospheric ozone in the Mount Rainier region of the Cascade Mountains, USA
Brace, S.; Peterson, D.L.
1998-01-01
Few data exist on tropospheric ozone concentrations in rural and wildland areas of western Washington, U.S.A. We measured tropospheric ozone in Mount Rainier National Park and the Puget Sound region of Washington using electronic analyzers and passive samplers during the summers of 1994 and 1995. Electronic analyzers recorded hourly ozone concentrations from five locations between Seattle and Mount Rainier. Ozone concentrations generally increased with distance from Seattle, with maximum hourly concentrations recorded at Enumclaw (319 m elevation, 50 km SE of Seattle). Paradise (1650 m elevation, 100 km SE of Seattle) had the highest monthly mean concentration of all sites measured with analyzers. Diurnal patterns on high-ozone days indicate that concentrations at Paradise remain near 60 ppbv throughout the day, whereas ozone concentrations closer to Seattle had higher peaks during the afternoon but dropped to near zero at night. Passive ozone samplers were used to measure weekly average ozone exposures in four river drainages within Mount Rainier National Park, across an elevation gradient (420 a??2100 m). In most drainages, ozone levels increased with elevation, with highest average weekly ozone exposure (47 ppbv) recorded at 2100 m. Ozone concentrations are significantly higher in the western portion of the park, indicating that ozone exposure varies considerably over short distances. These data provide a reference point for air quality in western Washington and indicate that intensive sampling is necessary to quantify spatial patterns of tropospheric ozone in mountainous regions.
The efficacy of gaseous ozone against different forms of Candida albicans
Zargaran, M; Fatahinia, M; Zarei Mahmoudabadi, A
2017-01-01
Background and Purpose: Ozone is an inorganic molecule with effective antimicrobial properties. Clinical treatment of ozonated water was used for the elimination of Candida albicans, Enterococcus faecalis, endotoxins, and biofilms from root canals. In addition, its therapeutic effects for tinea pedis, ulcers, and leishmaniasis were investigated. The purpose of the present study was to evaluate the fungicidal effects of ozone on different forms of C. albicans. In addition, antifungal susceptibility profile of strains was assessed before and after exposure to ozone. Materials and Methods: Fifty strains of C. albicans were exposed to gaseous ozone at different times. Furthermore, biofilm formation and germ tube production were evaluated when yeast suspensions were exposed to ozone. In addition, antifungal susceptibility of ozone resistant colonies was investiagted as compared to controls. Results: Ozone was highly effective in killing C. albicans in yeast form and inhibition of germ tube formation during 210 and 180 s, respectively. Although with increasing exposure time biofilm production was considerably decreased, resistance to ozone was much higher among vaginal and nail isolates even after 60 min. All the strains were sensitive to fluconazole, caspofungin, and terbinafine pre- and post-ozone exposure. Resistance to amphotericin B was significantly enhanced after exposure to ozone. Conclusion: Although ozone was highly effective on the yeast form of C. albicans and it can inhibit the formation of germ tubes in C. albicans, the complete removal of biofilms did not happen even after 60 min. It seems that ozone therapy induces resistance to amphotericin B. PMID:29354778
NASA Astrophysics Data System (ADS)
Jung, H. C.; Moon, B. K.; Wie, J.
2017-12-01
Concentration of tropospheric ozone over South Korea has steadily been on the rise in the last decades, mainly due to rapid industrializing and urbanizing in the Eastern Asia. To identify the characteristics of tropospheric ozone in South Korea, we fitted a sine function to the surface ozone concentration data from 2005 to 2014. Based on fitted sine curves, we analyzed the shifts in the dates on which ozone concentration reached its peak in the calendar year. Ozone monitoring sites can be classified into type types: where the highest annual ozone concentration kept occurring sooner (Esites) and those that kept occurring later (Lsites). The seasonal analysis shows that the surface ozone had increased more rapidly in Esites than in Lsites in the past decade during springtime and vice-versa during summertime. We tried to find the reason for the different seasonal trends with the relationship between ozone and ozone precursors. As a result, it was found that the changes in the ground-level ozone concentration in the spring and summer times are considerably influenced by changes in nitrogen dioxide concentration, and this is closely linked to the destruction (production) process of ozone by nitrogen dioxide in spring (summer). The link between tropospheric ozone and nitrogen dioxide discussed in this study will have to be thoroughly examined through climate-chemistry modeling in the future. Acknowledgements This research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."
NASA Astrophysics Data System (ADS)
Li, J.; Wang, Z.; Akimoto, H.; Yamaji, K.; Takigawa, M.; Pochanart, P.; Liu, Y.; Kanaya, Y.
2008-07-01
A 3-D regional chemical transport model, the Nested Air Quality Prediction Model System (NAQPMS), with an on-line tracer tagging module was applied to study the source of the near-ground (<1.5 km above ground level) ozone at Mt. Tai (36.25°N, 117.10°E, 1534 m a.s.l.) in Central East China (CEC) during the Mount Tai eXperiment 2006 (MTX2006): regional ozone photochemistry and aerosol studies in Central East China in June, 2006. The model reproduced the temporal and spatial variations of near-ground ozone and other pollutants. In particular, the model captured highly polluted and clean cases well. The simulated near-ground ozone over CEC is 60 85 ppbv (parts per billion by volume), higher than those (20 50 ppbv) in Japan and over the North Pacific. The simulated tagged tracer indicates that the regional-scale transport of chemically produced ozone over other areas in CEC contributes to the most fractions (49%) of the near-ground mean ozone at Mt. Tai in June, rather than the in-situ photochemistry (12%). Due to high anthropogenic and biomass burning emissions, the contributions of the ground ozone from the southern part of CEC plays the most important role (32.4 ppbv, 37.9% of total ozone) in the monthly mean ozone concentration at Mt. Tai, which even reached 59 ppbv (62%) on 6 7 June 2006. The monthly mean horizontal distribution of chemically produced ozone from various source regions indicates that the spatial distribution of O3 over CEC is controlled by the photochemical reactions. In addition, the regional-scale transport of pollutants also plays an important role in the spatial and temporal distribution of ozone over CEC. The chemically produced ozone from the southern part of the study region can be transported northeastwardly to the northern rim of CEC. The mean contribution is 5 10 ppbv, and it can reach 25 ppbv during high ozone events. This work also studied the outflow of CEC ozone and its precursors, as well as their influences and contributions to the ozone level over adjacent regions/countries. It shows that the contribution of CEC ozone to mean ozone mixing ratios over Korea Peninsula and Japan is 5 15 ppbv, of which about half was due to the direct transport of ozone from CEC and half was contributed by the ozone produced locally by the transported ozone precursors from CEC.
Ozone layer depletion simulation in an Environmental Chemistry course.
NASA Astrophysics Data System (ADS)
Cano, G. S.; Gavilán, I. C.; Garcia-Reynoso, J. A.; Santos, E.; Mendoza, A.; Perea, B.
2015-12-01
The reactions taking place between the ozone (O3) and various compounds present in the stratosphere has been studied extensively. When the balance between these reactions breakdown, destruction of ozone is favored. Here we create an experiment for and Environmental Chemistry laboratory course where students evaluate the ozone behavior by comparing its reactivity to various physical and chemical conditions; and observe the destruction of ozone by the action of halogenated compounds by means of volumetric technic. The conditions used are: (1) Ozone vs. Time; (2) Ozone + UV vs. Time; (3) Ozone + halogenated compound vs. Time; and (4) Ozone + UV + halogenated compound vs. Time. The results show that the O3 breaks down rapidly within about 25 min (Fig). They also explain the chemical reactions that occur in the destruction and generation of the ozone layer and demonstrate ozone depletion through the presence of halogenated compounds. The aim of this work is to bring the knowledge gained from theory into practice and thus the possibility of developing a critical attitude towards various environmental problems that arise today.
Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone.
Hayes, F; Jones, M L M; Mills, G; Ashmore, M
2007-04-01
This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities.
NASA Technical Reports Server (NTRS)
Vukovich, F. M.; Fishman, J.; Browell, E. V.
1985-01-01
An analysis of available ozone data in the eastern two-thirds of the United States indicates that a substantial reservoir of ozone is present in the summertime. Five-year mean concentrations range from 40 to 65 ppbv. The reservoir covered an area of several million square kilometers and extends vertically from the surface to 1 to 2 km. The vertical distribution of ozone in the reservoir during midday supports a transport of additional ozone from the boundary layer to the free troposphere. Data are presented demonstrating the potential effect of transport by convective clouds and by the sea breeze circulation - mechanisms by which ozone may be transported out of the boundary layer into the free troposphere. The potential impact of this reservoir on the tropospheric ozone budget is discussed. It is shown that if less than half of the ozone mass in this reservoir is transported to the free troposphere, then the amount of ozone transported out of the boundary layer approximates the amount of ozone transported downward during a tropopause fold event.
NASA Astrophysics Data System (ADS)
Lapina, K.; Lombardozzi, D.
2014-12-01
High concentrations of ground-level ozone cause health problems in humans and a number of negative effects on plants, from reduced yield for major agricultural crops to reduced amounts of carbon stored in trees. The Denver Metro/Colorado Front Range is exceeding the National Ambient Air Quality Standard for ozone on a regular basis in summer and the efforts to reduce the ozone levels are hampered by the presence of diverse pollution sources and complex meteorology in the region. To raise public awareness of air quality in the Colorado Front Range and to educate all age groups about ground-level ozone, two ozone bioindicator gardens were planted in Boulder in Spring 2014. The gardens contain ozone-sensitive plants that develop a characteristic ozone injury when exposed to high levels of ozone. The ozone gardens are providing the general public with a real-life demonstration of the negative effects of ozone pollution through observable plant damage. Additionally, the gardens are useful in teaching students how to collect and analyze real-world scientific data.
40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...
40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...
40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...
40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...
40 CFR 97.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 97.388 Section 97.388 Protection of Environment... NOX AND SO2 TRADING PROGRAMS CAIR NOX Ozone Season Opt-in Units § 97.388 CAIR NOX Ozone Season...
Ozone contamination in aircraft cabins: Objectives and approach
NASA Technical Reports Server (NTRS)
Perkins, P. J.
1979-01-01
Three panels were developed to solve the problem of ozone contamination in aircraft cabins. The problem is defined from direct in-flight measurements of ozone concentrations inside and outside airliners in their normal operations. Solutions to the cabin ozone problem are discussed under two areas: (1) flight planning to avoid high ozone concentrations, and (2) ozone destruction techniques installed in the cabin air systems.
NASA Astrophysics Data System (ADS)
Tai, Amos P. K.; Val Martin, Maria
2017-11-01
Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation as well as ozone and climate change adaptation (e.g., selecting heat- and ozone-tolerant cultivars, irrigation) as possible strategies to enhance future food security in response to imminent environmental threats.
Traffic congestion and ozone precursor emissions in Bilbao, Spain.
Ibarra-Berastegi, Gabriel; Madariaga, Imanol
2003-01-01
In urban environments, the measured levels of ozone are the result of the interaction between emissions of precursors (mainly VOCs and NOx) and meteorological effects. In this work, time series of daily values of ozone, measured at three locations in Bilbao (Spain), have been built. Then, after removing meteorological effects from them, ozone and traffic data have been analyzed jointly. The goal was to identify traffic situations and link them to ozone levels in the area of Bilbao. To remove meteorological effects from the selected ozone time series, the technique developed by Rao and Zurbenko was used. This is a widely used technique and, after its application, the fraction obtained from a given ozone time series represents an ozone forming capability attributable to emissions of precursors. This fraction is devoid of any meteorological influence and includes only the apportion of periodicities above 1.7 years. In the case of Bilbao, the ozone fractions obtained at three locations have been compared on that time scale with traffic data from the area. For the 1993-1996 period, a regression analysis of the ozone and traffic fractions due to periodicities above 1.7 years (long-term fractions), shows that traffic is the main explanatory factor for ozone with R2 ranging from 0.916 to 0.996 at the three locations studied. Analysis of these longterm fractions has made it possible to identify two traffic regimes for the whole area, associated to different profiles of ozone forming capability. The first one favors low ozone forming capability, and is associated with a situation of fluent traffic. The second one shows high ozone forming capability and represents congestion. Joint analysis of raw data of ozone and traffic do not show any clear pattern due to the strong masking effects that seasonal-meteorological effects (mainly radiation) have on the measured ozone signal. If only immission data of ozone are available, as in this case, a comparison between ozone and traffic can only be made on the long-term time scale, since that is the only fraction embedded in the ozone time series that can exclusively be attributed to emissions of precursors. This fact stresses the need to study the different fractions embedded in the time series of ozone measured levels separately. Though the coefficients obtained in the regression are only valid for the 1993-1996 period, these traffic regimes represent long-term targets (congestion or fluent traffic) that can inspire policies for a joint management of the traffic and pollution by ozone in the area of Bilbao beyond that period. The results of this work show the need of a joint management of ozone and traffic in Bilbao. Since an accurate knowledge of traffic was not available, the use of emission factors to relate traffic and actual ozone levels has not been possible. For this reason, this study has focused on the long-term fractions of traffic and ozone. In the future, if a more accurate knowledge of traffic is available, it will be possible to find relationships between traffic and ozone on all time scales.
Wang, Yu-Hsiang; Chen, Kuan-Chung
2014-09-10
The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration.
Wang, Yu-Hsiang; Chen, Kuan-Chung
2014-01-01
The effects of synthetic goethite (α-FeOOH) used as the catalyst in catalytic ozonation for the degradation of disinfection by-product (DBP) precursors are investigated. A biofiltration column applied following the catalytic ozonation process is used to evaluate the efficiency of removing DBP precursors via biotreatment. Ozone can rapidly react with aromatic compounds and oxidize organic compounds, resulting in a decrease in the fluorescence intensity of dissolved organic matter (DOM). In addition, catalytic ozonation can break down large organic molecules, which causes a blue shift in the emission-excitation matrix spectra. Water treated with catalytic ozonation is composed of low-molecular structures, including soluble microbial products (SMPs) and other aromatic proteins (APs). The DOM in SMPs and APs is removed by subsequent biofiltration. Catalytic ozonation has a higher removal efficiency for dissolved organic carbon and higher ultraviolet absorbance at 254 nm compared to those of ozonation without a catalyst. The use of catalytic ozonation and subsequent biofiltration leads to a lower DBP formation potential during chlorination compared to that obtained using ozonation and catalytic ozonation alone. Regarding DBP species during chlorination, the bromine incorporation factor (BIF) of trihalomethanes and haloacetic acids increases with increasing catalyst dosage in catalytic ozonation. Moreover, the highest BIF is obtained for catalytic ozonation and subsequent biofiltration. PMID:25211774
Analysis of the breakdown of the Antarctic circumpolar vortex using TOMS ozone data
NASA Technical Reports Server (NTRS)
Bowman, Kenneth P.
1987-01-01
Climatological analysis of data from the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus 7 satellite has shown that the annual cycles of ozone are very different in the Arctic and Antarctic. The annual cycle in the Arctic is a relatively smooth annual sine wave; but in the Antarctic the circumpolar vortex breaks down rapidly during the Southern Hemisphere spring (September through November), producing a rapid rise in total ozone and a sawtooth-shaped annual cycle. The evolution of the Antarctic total ozone field during the vortex breakdown was studied by computing areally-integrated ozone amounts from the TOMS data. This technique avoids substantial difficulties with using zonally-averaged ozone amounts to study the asymmetric breakdown phenomenon. Variability of total ozone is found to be large both within an individual year and between different years. During the last decade monthly-mean total ozone values in the Antarctic during the springtime vortex breakdown period have decreased dramatically. The ozone-area statistics indicate that the decrease has resulted in part from changes in the timing of the vortex breakdown and resultant ozone increase, which have occurred later during recent years. Analysis of the spatial scales involved in the ozone transport and mixing that occur during the vortex breakdown is now underway. Reliable calculation of diagnostic quantities like areally-integrated ozone is possible only with the high-resolution, two-dimensional, daily coverage provided by the TOMS instrument.
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
NASA Astrophysics Data System (ADS)
Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso
2017-02-01
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ˜ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.
Scientific assessment of ozone depletion: 1991
NASA Technical Reports Server (NTRS)
1991-01-01
Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.
Marshall, Meghan; Yargeau, Viviane
2018-03-01
New treatment technologies and quality monitoring tools are needed for Contaminants of Emerging Concern (CECs) in wastewater. The purpose of this work was to assess the LuminoTox as a monitoring tool for CEC-associated toxicity in municipal wastewater during ozone treatment, and to evaluate the impact of different ozone feed concentrations at equivalent ozone doses for removing toxicity. The LuminoTox was sensitive at monitoring changes in toxicity of atrazine (ATZ) in synthetic wastewater (SWW) and in a 14 CECs mix in secondary effluent (SE) during ozone treatment. In both experiments, a decrease in toxicity was observed with increasing transferred ozone dose, which corresponded to a decrease in CEC concentration. For ATZ in SWW, a 5 ppm ozone feed showed better toxicity removal, up to 25% and 35% inhibition for LuminoTox algae biosensors SAPS I and SAPS II, respectively, for statistically equivalent ozone dose pairs of 43 mg (5 ppm ozone feed) and 36 mg (15 ppm ozone feed). The opposite was true for the 14 CECs in SE; the 15 ppm ozone feed showed better toxicity removal, up to a reduction of 37% and 40% for SAPS I and SAPS II inhibition, respectively, for statistically equivalent ozone dose pairs of 42 mg (5 ppm ozone feed) and 42 mg (15 ppm ozone feed). Different feed applications had an impact on the efficiency of toxicity removal for equivalent ozone doses; this efficiency appears to depend on the type of contaminants and/or wastewater matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.
On Relations Between the Ozonosphere and the General Atmospheric Circulation in Tropics
NASA Astrophysics Data System (ADS)
Kuznetsov, G. I.; Kramarova, N. A.
2006-05-01
The main features of temporal and spatial ozone distribution over tropics and their relations with peculiarities of the general atmospheric circulation are obtained using the total ozone data for the tropical region (Ozone Data for the World and TOMS (version 8)). Among the factors influencing ozone regime in tropics the properties of the region, like intertropical convergence zone and a structure of tropical tropopause, and processes such as stratosphere-troposphere exchange, migration of ozone equator, Quasi Biennial Oscillation are analyzed. To investigate the long term variability of tropical ozone detrended and de-seasonalized fields of TOMS observations are analyzed by means of EOF method. The first four EOFs explain about 75% of residual total ozone variability in tropical region. Spatial patterns of EOFs and corresponding time coefficients are closely connected with the Quasi-Biennial Oscillation (EOF-1), the 11-years Solar Cycle (EOF-2), the QBO-annual beat (EOF-3) and with the South Oscillation (EOF-4) correspondingly. The detailed analyses of temporal and spatial distribution of ozone EOF patterns reveals a distinct change of ozone fields to the both sides of equator at 10-15 latitude as well as at the zones of tropical tropopause break. A time delay of ozone QBO phase is observed while moving towards higher latitudes. Some features of the tropical ozone regime manifest themselves in the peculiarities of Antarctic Ozone Anomalies. A time variability of ozone QBO passes three months ahead of the Singapore 30 mbar zonal wind. Obtained relations let us to construct a linear regression model based on EOF decomposition to estimate total ozone monthly means over tropics. This model is successfully applied to predict 30 mbar zonal wind in dependence on tropical ozone behavior.
NASA Astrophysics Data System (ADS)
Krzycin, Janusz W.
2002-10-01
Decadal changes of ozone mini-hole event appearance over the Northern Hemisphere midlatitudes are examined based on daily total ozone data from seven stations having long records (four decades or more) of ozone observations. The various threshold methods for accepting and rejecting the ozone minima as mini-holes are examined. Mini-hole event activity is seen to be rather stable when averaged over a decadal time scale if the mini-holes are selected as large negative departures (exceeding 20%) relative to the moving long-term total ozone reference. The results are compared with a previous ozone mini-hole climatology derived from satellite data (TOMS measurements on board the Nimbus-7 satellite for the period 1978-93). A nonlinear statistical model (MARS), which takes into account various total ozone dynamical proxies (from NCEP-NCAR reanalysis), is used to study dynamical factors responsible for the ozone extremes over Arosa in the period 1950-99. The model explains as much as 95% of the total variance of the ozone extremes. The model-observation differences averaged over the decadal intervals are rather smooth throughout the whole period analysed. It is suggested that the short-term dynamical processes controlling the appearance of ozone extremes influenced the ozone field in a similar way before and after the onset of abrupt ozone depletion in the early 1980s. The analysis of the ozone profile and the tropopause pressure (from the ozonesondings over Hohenpeissenberg, 1966-99) during mini-hole events shows 60% ozone reduction in the lower stratosphere and an approximately 50 hPa upward shift of the thermal tropopause there.
Estimating the Tropospheric Ozone Distribution by the Assimilation of Satellite Data
NASA Technical Reports Server (NTRS)
Hayashi, Hiroo; Stajner, Ivanka; Winslow, Nathan; Jones, Dylan B. A.; Pawson, Steven; Thompson, Anne M.
2003-01-01
Tropospheric ozone is important to the environment, because it acts as a strong oxidant to control the concentrations of many reduced gases (methane, carbon monoxide, ... ), its radiative forcing plays a significant role in the greenhouse effect, and direct contact with ozone is harmful to human health. Tropospheric ozone, whose main sources are intrusion from the stratosphere and chemical production from source gases associated with urban pollution or biomass burning, varies on a wide range of spatial and temporal scales. Its transport and chemistry can be influenced by weather, seasonal, or multiannual variability. Despite the importance of tropospheric ozone, it contributes only about 10% of the total ozone loading in the atmosphere. Consequently, satellite instruments lose sensitivity below the stratospheric ozone peak, and provide little information about middle and lower tropospheric ozone. This talk will discuss recent modifications made to the satellite ozone data assimilation system at NASA's Data Assimilation Office (DAO) in order to provide better tropospheric ozone columns and profiles. We use a version of the system that assimilates only the data from the Solar Backscatter UltraViolet/2 (SBUV/2) instrument. The quality of the assimilated ozone in the tropical troposphere is evaluated by comparison with independent observations obtained from the Southern Hemispheric Additional Ozonesondes (SHADOZ) network. It is shown that the quality of ozone fields is sensitive to the winds used in the transport model. Increasing the vertical resolution of the model also has a beneficial impact. The assimilated ozone in the lower troposphere was substantially improved by inclusion of tropospheric ozone production, loss, and dry deposition rates from the Harvard GEOS-CHEM model. The mechanisms behind these results will be examined and the implications for our understanding of tropospheric ozone will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherburne, Carol; Osterberg, Paul; Johnson, Tom
The Savannah River Site, in conjunction with AREVA Federal services, has designed a process to treat dissolved radioactive waste solids with ozone. It is known that in this radioactive waste process, radionuclides radiolytically break down water into gaseous hydrogen and oxygen, which presents a well defined flammability hazard. Flammability limits have been established for both ozone and hydrogen separately; however, there is little information on mixtures of hydrogen and ozone. Therefore, testing was designed to provide critical flammability information necessary to support safety related considerations for the development of ozone treatment and potential scale-up to the commercial level. Since informationmore » was lacking on flammability issues at low levels of hydrogen and ozone, a testing program was developed to focus on filling this portion of the information gap. A 2-L vessel was used to conduct flammability tests at atmospheric pressure and temperature using a fuse wire ignition source at 1 percent ozone intervals spanning from no ozone to the Lower Flammable Limit (LFL) of ozone in the vessel, determined as 8.4%(v/v) ozone. An ozone generator and ozone detector were used to generate and measure the ozone concentration within the vessel in situ, since ozone decomposes rapidly on standing. The lower flammability limit of hydrogen in an ozone-oxygen mixture was found to decrease from the LFL of hydrogen in air, determined as 4.2 % (v/v) in this vessel. From the results of this testing, Savannah River was able to develop safety procedures and operating parameters to effectively minimize the formation of a flammable atmosphere.« less
NASA Astrophysics Data System (ADS)
Thompson, Anne M.; Witte, Jacquelyn C.; Sterling, Chance; Jordan, Allen; Johnson, Bryan J.; Oltmans, Samuel J.; Fujiwara, Masatomo; Vömel, Holger; Allaart, Marc; Piters, Ankie; Coetzee, Gert J. R.; Posny, Françoise; Corrales, Ernesto; Diaz, Jorge Andres; Félix, Christian; Komala, Ninong; Lai, Nga; Ahn Nguyen, H. T.; Maata, Matakite; Mani, Francis; Zainal, Zamuna; Ogino, Shin-ya; Paredes, Francisco; Penha, Tercio Luiz Bezerra; da Silva, Francisco Raimundo; Sallons-Mitro, Sukarni; Selkirk, Henry B.; Schmidlin, F. J.; Stübi, Rene; Thiongo, Kennedy
2017-12-01
The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%.
Use of AIRS, OMI, MLS, and TES Data in Assessing Forest Ecosystem Exposure to Ozone
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.
2007-01-01
Ground-level ozone at high levels poses health threats to exposed flora and fauna, including negative impacts to human health. While concern is common regarding depletion of ozone in the stratosphere, portions of the urban and rural United States periodically have high ambient levels of tropospheric ozone on the ground. Ozone pollution can cause a variety of impacts to susceptible vegetation (e.g., Ponderosa and Jeffrey pine species in the southwestern United States), such as stunted growth, alteration of growth form, needle or leaf chlorosis, and impaired ability to withstand drought-induced water stress. In addition, Southern Californian forests with high ozone exposures have been recently subject to multiyear droughts that have led to extensive forest overstory mortality from insect outbreaks and increased incidence of wildfires. Residual forests in these impacted areas may be more vulnerable to high ozone exposures and to other forest threats than ever before. NASA sensors collect a wealth of atmospheric data that have been used recently for mapping and monitoring regional tropospheric ozone levels. AIRS (Atmospheric Infrared Sounder), OMI (Ozone Monitoring Instrument), MLS (Microwave Limb Sounder), and TES (Tropospheric Emission Spectrometer) data could be used to assess forest ecosystem exposure to ozone. Such NASA data hold promise for providing better or at least complementary synoptic information on ground-level ozone levels that Federal agency partners can use to assess forest health trends and to mitigate the threats as needed in compliance with Federal laws and mandates. NASA data products on ozone concentrations may be able to aid applications of DSTs (decision support tools) adopted by the USDA FS (U.S. Department of Agriculture Forest Service) and by the NPS (National Park Service), such as the Ozone Calculator, in which ground ozone estimates are employed to assess ozone impacts to forested vegetation.
Wang, Tao; Xue, Likun; Brimblecombe, Peter; Lam, Yun Fat; Li, Li; Zhang, Li
2017-01-01
High concentrations of ozone in urban and industrial regions worldwide have long been a major air quality issue. With the rapid increase in fossil fuel consumption in China over the past three decades, the emission of chemical precursors to ozone-nitrogen oxides and volatile organic compounds-has increased sharply, surpassing that of North America and Europe and raising concerns about worsening ozone pollution in China. Historically, research and control have prioritized acid rain, particulate matter, and more recently fine particulate matter (PM 2.5 ). In contrast, less is known about ozone pollution, partly due to a lack of monitoring of atmospheric ozone and its precursors until recently. This review summarizes the main findings from published papers on the characteristics and sources and processes of ozone and ozone precursors in the boundary layer of urban and rural areas of China, including concentration levels, seasonal variation, meteorology conducive to photochemistry and pollution transport, key production and loss processes, ozone dependence on nitrogen oxides and volatile organic compounds, and the effects of ozone on crops and human health. Ozone concentrations exceeding the ambient air quality standard by 100-200% have been observed in China's major urban centers such as Jing-Jin-Ji, the Yangtze River delta, and the Pearl River delta, and limited studies suggest harmful effect of ozone on human health and agricultural corps; key chemical precursors and meteorological conditions conductive to ozone pollution have been investigated, and inter-city/region transport of ozone is significant. Several recommendations are given for future research and policy development on ground-level ozone. Copyright © 2016 Elsevier B.V. All rights reserved.
Tropospheric Ozone Near-Nadir-Viewing IR Spectral Sensitivity and Ozone Measurements from NAST-I
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Smith, William L.; Larar, Allen M.
2001-01-01
Infrared ozone spectra from near nadir observations have provided atmospheric ozone information from the sensor to the Earth's surface. Simulations of the NPOESS Airborne Sounder Testbed-Interferometer (NAST-I) from the NASA ER-2 aircraft (approximately 20 km altitude) with a spectral resolution of 0.25/cm were used for sensitivity analysis. The spectral sensitivity of ozone retrievals to uncertainties in atmospheric temperature and water vapor is assessed in order to understand the relationship between the IR emissions and the atmospheric state. In addition, ozone spectral radiance sensitivity to its ozone layer densities and radiance weighting functions reveals the limit of the ozone profile retrieval accuracy from NAST-I measurements. Statistical retrievals of ozone with temperature and moisture retrievals from NAST-I spectra have been investigated and the preliminary results from NAST-I field campaigns are presented.
NASA Technical Reports Server (NTRS)
Mccormick, M. P. (Editor); Lovill, J. E.
1982-01-01
The measurement of aerosols from space is discussed, taking into account the role of aerosols in climate, instrumentation and further measurement systems, retrieval procedures, measurements and observations, ground truth measurements, and effects on remote sensing and on climate. Aspects of ozone variability in the middle atmosphere are explored, giving attention to the quasi-biennial oscillation in equatorial stratospheric temperatures and total ozone, global pictures on the ozone field from high altitudes from DE-1, measurements of atmospheric ozone from aircraft and from balloons, a mesospheric ozone profile at sunset, periodic and aperiodic ozone variations in the middle and upper stratosphere, solar eclipse induced variations in mesospheric ozone concentrations, and solar UV and ozone balloon measurements. The determination of aerosol optical depth is considered along with a method for estimating cross radiance.
NASA Astrophysics Data System (ADS)
Haman, Christine Lanier
Houston, Texas frequently exceeds the standard for ground-level ozone during the spring and fall. The large commuting population and vast number of industrial sources provide the necessary ingredients for photochemical ozone production in the presence of favorable meteorological conditions. The lack of continuous boundary layer (BL) observations prevents a comprehensive understanding of its role in ozone evolution. In this study, almost two years of BL observations are utilized to investigate the impacts of synoptic and micrometeorological-scale forcings on ozone. Aerosol gradients derived from ceilometer backscatter retrievals are used to identify the BL and residual layers (RL). Overall agreement is found between ceilometer and sonde estimates of the RL and BL heights (BLH), but difficulty detecting the layers occurs during cloud periods or immediately following precipitation. Large monthly variability is present in the peak afternoon BLH (e.g. mean August and December peaks are ˜2000 and 1100 m, respectively). Monthly nocturnal BLHs display much smaller differences. The majority of ozone exceedances occur during large-scale subsidence and weak winds in a postfrontal environment. These conditions result in turbulent kinetic energy, mechanical mixing, and ventilation processes that are 2--3 times weaker on exceedance days, which inhibit morning BL growth by an average of ˜100 m·hr-1 compared to low ozone days. The spring has higher nocturnal ozone levels, which is likely attributable to longer day lengths (˜78 minutes), stronger winds (˜0.78 m·s -1), and higher background ozone (˜5 ppbv) compared to the fall. Boundary layer entrainment plays an important role in ozone evolution. Exceedance days show a characteristic early morning rapid rise of ozone. Vertical ozone profiles indicate the RL ozone peak is ˜60 ppbv on exceedance days, which is ˜25 ppbv (+/- 10 ppbv) greater than low ozone days. The Integrated Profile Mixing (IPM) and Photochemical Budget (PB) methods are used to quantify ozone transport and photochemical production. On low ozone days, both the IPM and PB methods indicate ozone entrainment is ˜3--4 ppbv·hr-1 in this low photochemical environment of ˜1--4 ppbv·hr-1. During the rapid early morning ozone rise on exceedance days, RL entrainment and photochemical ozone production rates are 5--10 and 10--15 ppbv·hr -1, respectively.
Antarctic ozone loss in 1989-2010: evidence for ozone recovery?
NASA Astrophysics Data System (ADS)
Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.
2012-04-01
We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB) stations. All GB observations show minimum ozone in the late September-early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August-September, peaks by the end of September-early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33-50% in 1989-1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004) is lower (37-46%) and in the colder winters (e.g. 2003, and 2006) is higher (52-55%). Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI), the Global Ozone Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and the Aura Microwave Limb Sounder (MLS), where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September-November vortex average GB and TOMS/OMI ozone show about -4 to -5.6 DU (Dobson Unit) yr-1 in 1989-1996 and about +1 DU yr-1 in 1997-2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997-2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9-10 yr to get the first detectable ozone recovery signal at the 95% confidence intervals with the current ozone trends in the Antarctic. Thus, this study reveals that the recovery of the Antarctic ozone is well on course.
Fundamentals of ISCO Using Ozone
In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...
ERIC Educational Resources Information Center
Monastersky, Richard
1989-01-01
Provides answers to questions regarding the ozone problem: (1) nature of ozone in the troposphere and stratosphere; (2) possibility of sending the excess ozone at ground level to the stratosphere; (3) possibility of producing pure ozone and carrying it to the stratosphere; and (4) banning chlorofluorocarbons. (YP)
2005-06-02
Images from the Ozone Monitoring Instrument onboard NASA Aura spacecraft shows the average total column ozone during the months of January and March, and the total column ozone on the single day of 11 March, 2005.
Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing
NASA Astrophysics Data System (ADS)
Qu, H.; Wang, Y.; Zhang, R.
2017-12-01
We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.
Noreen, Asma; Khokhar, Muhammad Fahim; Zeb, Naila; Yasmin, Naila; Hakeem, Khalid Rehman
2018-03-01
This study uses the tropospheric ozone data derived from combined observations of Ozone Monitoring Instrument/Microwave Limb Sounder instruments by using the tropospheric ozone residual method. The main objective was to study the spatial distribution and temporal evolution in the troposphere ozone columns over Pakistan during the time period of 2004 to 2014. Results showed an overall increase of 3.2 ± 1.1 DU in tropospheric ozone columns over Pakistan. Spatial distribution showed enhanced ozone columns in the Punjab and southern Sindh consistent to high population, urbanization, and extensive anthropogenic activities, and exhibited statistically significant temporal increase. Seasonal variations in tropospheric ozone columns are driven by various factors such as seasonality in UV-B fluxes, seasonality in ozone precursor gases such as NO x and volatile organic compounds (caused by temperature dependent biogenic emission) and agricultural fire activities in Pakistan. A strong correlation of 96% (r = 0.96) was found between fire events and tropospheric ozone columns in Pakistan.
Forests and ozone: productivity, carbon storage, and feedbacks.
Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T
2016-02-22
Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.
NASA Technical Reports Server (NTRS)
Lindner, Bernhard Lee
1992-01-01
Mariner 9 UV spectrometer data were reinverted for the ozone abundance, cloud abundance, dust abundance, and polar-cap albedo. The original reduction of the spectra ignored the presence of atmospheric dust and clouds, even though their abundance is substantial and can mask appreciable amounts of ozone if not accounted for (Lindner, 1988). The Mariner 9 ozone data has been used as a benchmark in all theoretical models of atmospheric composition, escape, and photochemistry. A second objective is to examine the data for the interrelationship of the ozone cycle, dust cycle, and cloud cycle, on an annual, inter-annual, and climatic basis, testing predictions by Lindner (1988). This also has implications for many terrestrial ozone studies, such as the ozone hole, acid rain, and ozone-smog. A third objective is to evaluate the efficacy of the reflectance spectroscopy technique at retrieving the ozone abundance on Mars. This would be useful for planning ozone observations on future Mars missions or the terrestrial troposphere.
Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters
NASA Technical Reports Server (NTRS)
Drdla, K.
2003-01-01
Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.
Using Ozone Lidar to Investigate Sources of High Ozone Concentrations in the Western United States
NASA Astrophysics Data System (ADS)
Senff, C. J.; Langford, A. O.; Alvarez, R. J.; Brewer, Wm. A.; Banta, R. M.; Marchbanks, R. D.; Sandberg, S. P.; Weickmann, A. M.; Holloway, J. S.; Williams, E. J.
2016-06-01
We have used NOAA's Tunable Optical Profiler for Aerosol and oZone (TOPAZ) ozone lidar to investigate the sources of high surface ozone concentrations in two different regions of the western United States (US): the Uintah Basin in northeast Utah and Clark County in southern Nevada, which includes the city of Las Vegas. The Uintah Basin is a booming oil and gas producing region that often suffers from very high wintertime ozone concentrations. Clark County experiences violations of the US ozone standard primarily in spring and early summer despite a lack of any major local pollution sources. TOPAZ lidar observations, in conjunction with surface in situ measurements and model results, provided strong evidence that the high wintertime ozone concentrations in the Uintah Basin are primarily driven by local emissions associated with oil and gas exploration, whereas the Clark County ozone exceedances are often caused by ozone-rich air that is transported from the lower stratosphere all the way down to the earth's surface.
Haiganoush K. Preisler; Shiyuan (Sharon) Zhong; Annie Esperanza; Timothy J. Brown; Andrzej Bytnerowicz; Leland Tarnay
2010-01-01
Data from four continuous ozone and weather monitoring sites operated by the National Park Service in Sierra Nevada, California, are used to develop an ozone forecasting model and to estimate the contribution of wildland fires on ambient ozone levels. The analyses of weather and ozone data pointed to the transport of ozone precursors from the Central Valley as an...
Assimilation of Satellite Ozone Observations
NASA Technical Reports Server (NTRS)
Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.
2003-01-01
This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ling; Harley, Robert A.; Brown, Nancy J.
Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less
NASA Astrophysics Data System (ADS)
Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine
2013-10-01
A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.
Characterization of ozone in the lower troposphere during the 2016 G20 conference in Hangzhou.
Su, Wenjing; Liu, Cheng; Hu, Qihou; Fan, Guangqiang; Xie, Zhouqing; Huang, Xin; Zhang, Tianshu; Chen, Zhenyi; Dong, Yunsheng; Ji, Xiangguang; Liu, Haoran; Wang, Zhuang; Liu, Jianguo
2017-12-12
Recently, atmospheric ozone pollution has demonstrated an aggravating tendency in China. To date, most research about atmospheric ozone has been confined near the surface, and an understanding of the vertical ozone structure is limited. During the 2016 G20 conference, strict emission control measures were implemented in Hangzhou, a megacity in the Yangtze River Delta, and its surrounding regions. Here, we monitored the vertical profiles of ozone concentration and aerosol extinction coefficients in the lower troposphere using an ozone lidar, in addition to the vertical column densities (VCDs) of ozone and its precursors in the troposphere through satellite-based remote sensing. The ozone concentrations reached a peak near the top of the boundary layer. During the control period, the aerosol extinction coefficients in the lower lidar layer decreased significantly; however, the ozone concentration fluctuated frequently with two pollution episodes and one clean episode. The sensitivity of ozone production was mostly within VOC-limited or transition regimes, but entered a NOx-limited regime due to a substantial decline of NOx during the clean episode. Temporary measures took no immediate effect on ozone pollution in the boundary layer; instead, meteorological conditions like air mass sources and solar radiation intensities dominated the variations in the ozone concentration.
Ozonation of oil sands process-affected water accelerates microbial bioremediation.
Martin, Jonathan W; Barri, Thaer; Han, Xiumei; Fedorak, Phillip M; El-Din, Mohamed Gamal; Perez, Leonidas; Scott, Angela C; Jiang, Jason Tiange
2010-11-01
Ozonation can degrade toxic naphthenic acids (NAs) in oil sands process-affected water (OSPW), but even after extensive treatment a residual NA fraction remains. Here we hypothesized that mild ozonation would selectively oxidize the most biopersistent NA fraction, thereby accelerating subsequent NA biodegradation and toxicity removal by indigenous microbes. OSPW was ozonated to achieve approximately 50% and 75% NA degradation, and the major ozonation byproducts included oxidized NAs (i.e., hydroxy- or keto-NAs). However, oxidized NAs are already present in untreated OSPW and were shown to be formed during the microbial biodegradation of NAs. Ozonation alone did not affect OSPW toxicity, based on Microtox; however, there was a significant acceleration of toxicity removal in ozonated OSPW following inoculation with native microbes. Furthermore, all residual NAs biodegraded significantly faster in ozonated OSPW. The opposite trend was found for ozonated commercial NAs, which are known to contain no significant biopersistent fraction. Thus, we suggest that ozonation preferentially degraded the most biopersistent OSPW NA fraction, and that ozonation is complementary to the biodegradation capacity of microbial populations in OSPW. The toxicity of ozonated OSPW to higher organisms needs to be assessed, but there is promise that this technique could be applied to accelerate the bioremediation of large volumes of OSPW in Northern Alberta, Canada.
Ozone from fireworks: Chemical processes or measurement interference?
Xu, Zheng; Nie, Wei; Chi, Xuguang; Huang, Xin; Zheng, Longfei; Xu, Zhengning; Wang, Jiaping; Xie, Yuning; Qi, Ximeng; Wang, Xinfeng; Xue, Likun; Ding, Aijun
2018-08-15
Fireworks have been identified as one ozone source by photolyzing NO 2 or O 2 and are believed to potentially be important for the nighttime ozone during firework events. In this study, we conducted both lab and field experiments to test two types of fireworks with low and high energy with the goal to distinguish whether the visible ozone signal during firework displays is real. The results suggest that previous understanding of the ozone formation mechanism during fireworks is misunderstood. Ultraviolet ray (UV)-based ozone monitors are interfered by aerosols and some specific VOCs. High-energy fireworks emit high concentrations of particular matters and low VOCs that the artificial ozone can be easily removed by an aerosol filter. Low-energy fireworks emit large amounts of VOCs mostly from the combustion of the cardboard from fireworks that largely interferes with the ozone monitor. Benzene and phenol might be major contributors to the artificial ozone signal. We further checked the nighttime ozone concentration in Jinan and Beijing, China, during Chinese New Year, a period with intense fireworks. A signal of 3-8ppbv ozone was detected and positively correlated to NO and SO 2 , suggesting a considerable influence of these chemicals in interfering with ambient ozone monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.
Ozone Quenching Properties of Isoprene and Its Antioxidant Role in Leaves1
Loreto, Francesco; Mannozzi, Michela; Maris, Christophe; Nascetti, Pamela; Ferranti, Francesco; Pasqualini, Stefania
2001-01-01
Isoprene is formed in and emitted by plants and the reason for this apparent carbon waste is still unclear. It has been proposed that isoprene stabilizes cell and particularly chloroplast thylakoid membranes. We tested if membrane stabilization or isoprene reactivity with ozone induces protection against acute ozone exposures. The reduction of visible, physiological, anatomical, and ultrastructural (chloroplast) damage shows that clones of plants sensitive to ozone and unable to emit isoprene become resistant to acute and short exposure to ozone if they are fumigated with exogenous isoprene, and that isoprene-emitting plants that are sensitive to ozone do not suffer damage when exposed to ozone. Isoprene-induced ozone resistance is associated with the maintenance of photochemical efficiency and with a low energy dissipation, as indicated by fluorescence quenching. This suggests that isoprene effectively stabilizes thylakoid membranes. However, when isoprene reacts with ozone within the leaves or in a humid atmosphere, it quenches the ozone concentration to levels that are less or non-toxic for plants. Thus, protection from ozone in plants fumigated with isoprene may be due to a direct ozone quenching rather than to an induced resistance at membrane level. Irrespective of the mechanism, isoprene is one of the most effective antioxidants in plants. PMID:11457950
NASA Technical Reports Server (NTRS)
Hung, R. J.; Liu, J. M.
1986-01-01
The distribution of atmospheric ozone is nonuniform both in space and time. Local ozone concentration vary with altitude, latitude, longitude, and season. Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations and 2.5 year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five American stations were used to study the relationship between the total ozone, vertical height distribution of the ozone mixing ratio, vertical height distribution of half total ozone, and the local tropopause height. The results show that there is a postive correlation between total ozone in Dobson Units and the tropopause height in terms of atmospheric pressure. This result suggests that local intrusion of the statosphere into the troposphere, or the local decreasing of tropopause height could occur if there is a local increasing of total ozone. A comparison of the vertical height distribution of the ozone mixing ratio, the modified pressure height of half total ozone and the tropopause height shows that the pressure height of an ozone mixing ratio of 0.3 micrograms/g, and the modified pressure height of half total ozone are very well correlated with the tropopause pressure height.
NASA Technical Reports Server (NTRS)
Ziemke, Jerald R.; Chandra, Sushil
2012-01-01
Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud Slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and for studying their long-term changes. Using this technique, we have produced a 32-yr (1979-2010) long record of tropospheric and stratospheric column ozone from the combined Total Ozone Mapping Spectrometer (TOMS) and OMI. Analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual variability of stratospheric ozone and is clearest in the Southern Hemisphere during the Aura time record with related inter-annual changes of 30- 40 Dobson Units. Tropospheric ozone for the long record also indicates a QBO signal in the tropics with peak-to-peak changes varying from 2 to 7 DU. The most important result from our study is that global stratospheric ozone indicates signature of a recovery occurring with ozone abundance now approaching the levels of year 1980 and earlier. The negative trends in stratospheric ozone in both hemispheres during the first 15 yr of the record are now positive over the last 15 yr and with nearly equal magnitudes. This turnaround in stratospheric ozone loss is occurring about 20 yr earlier than predicted by many chemistry climate models. This suggests that the Montreal Protocol which was first signed in 1987 as an international agreement to reduce ozone destroying substances is working well and perhaps better than anticipated.
NASA Astrophysics Data System (ADS)
Fares, S.; McKay, M.; Goldstein, A.
2008-12-01
Ecosystems remove ozone from the troposphere through both stomatal and non-stomatal deposition. The portion of ozone taken up through stomata has an oxidative effect causing damage. We used a multi-year dataset to assess the physiological controls over ozone deposition. Environmental parameters, CO2 and ozone fluxes were measured continuously from January 2001 to December 2006 above a ponderosa pine plantation near Blodgett Forest, Georgetown, California. We studied the dynamic of NEE (Net Ecosystem Exchange, -838 g C m-2 yr-1) and water evapotranspiration on an annual and daily basis. These processes are tightly coupled to stomatal aperture which also controlled ozone fluxes. High levels of ozone concentrations (~ 100 ppb) were observed during the spring-summer period, with corresponding high levels of ozone fluxes (~ 30 μmol m-2 h-1). During the summer season, a large portion of the total ozone flux was due to non-stomatal processes, and we propose that a plant physiological control, releasing BVOC (Biogenic Volatile Organic Compounds), is mainly responsible. We analyzed the correlations of common ozone exposure metrics based on accumulation of concentrations (AOT40 and SUM0) with ozone fluxes (total, stomatal and non-stomatal). Stomatal flux showed poorer correlation with ozone concentrations than non-stomatal flux during summer and fall seasons, which largely corresponded to the growing period. We therefore suggest that AOT40 and SUM0 are poor predictors of ozone damage and that a physiologically based metric would be more effective.
Zucker, Ines; Avisar, Dror; Mamane, Hadas; Jekel, Martin; Hübner, Uwe
2016-09-01
The use of kinetic models to predict oxidation performance in wastewater is limited due to fast ozone depletion during the first milliseconds of the reaction. This paper introduces the Quench Flow Module (QFM), a bench-scale experimental technique developed to measure the first 5-500 milliseconds of ozone depletion for accurate determination of ozone exposure in wastewater-ozonation processes. Calculated ozone exposure in QFM experiments was up to 24% lower than in standard batch experiments, strongly depending on the initial sampling point for measurement in batch experiments. However, oxidation rates of slowly- and moderately-reacting trace organic compounds (TrOCs) were accurately predicted from batch experiments based on integration of ozone depletion and removal of an ozone-resistant probe compound to calculate oxidant exposures. An alternative concept, where ozone and hydroxyl radical exposures are back-calculated from the removal of two probe compounds, was tested as well. Although the QFM was suggested to be an efficient mixing reactor, ozone exposure ranged over three orders of magnitude when different probe compounds reacting moderately with ozone were used for the calculation. These effects were beyond uncertainty ranges for apparent second order rate constants and consistently observed with different ozone-injection techniques, i.e. QFM, batch experiments, bubble columns and venturi injection. This indicates that previously suggested mixing effects are not responsible for the difference and other still unknown factors might be relevant. Results furthermore suggest that ozone exposure calculations from the relative residual concentration of a probe compound are not a promising option for evaluation of ozonation of secondary effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Schoeberl, M. R.; Kawa, S. R.; Browell, E. V.
2000-01-01
The processes which contribute to the ozone evolution in the high latitude northern lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS); the Polar Ozone and Aerosol Measurement (POAM II) solar occultation instrument. Time series for the different data sets are consistent with each other, and diverge from model time series during December and January. The model ozone in December and January is shown to be much less sensitive to the model photochemistry than to the model vertical transport, which depends on the model vertical motion as well as the model vertical gradient. We evaluate the dependence of model ozone evolution on the model ozone gradient by comparing simulations with different initial conditions for ozone. The modeled ozone throughout December and January most closely resembles observed ozone when the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. We make a quantitative estimate of the uncertainty in the vertical advection using diabatic trajectory calculations. The net transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The observed and modeled ozone time series during December and January are consistent when these transport uncertainties are taken into account.
Factors affecting ozone removal rates in a simulated aircraft cabin environment
NASA Astrophysics Data System (ADS)
Tamás, Gyöngyi; Weschler, Charles J.; Bakó-Biró, Zsolt; Wyon, David P.; Strøm-Tejsen, Peter
Ozone concentrations were measured concurrently inside a simulated aircraft cabin and in the airstream providing ventilation air to the cabin. Ozone decay rates were also measured after cessation of ozone injection into the supply airstream. By systematically varying the presence or absence of people, soiled T-shirts, aircraft seats and a used HEPA filter, we have been able in the course of 24 experiments to isolate the contributions of these and other factors to the removal of ozone from the cabin air. In the case of this simulated aircraft, people were responsible for almost 60% of the ozone removal occurring within the cabin and recirculation system; respiration can only have been responsible for about 4% of this removal. The aircraft seats removed about 25% of the ozone; the loaded HEPA filter, 7%; and the other surfaces, 10%. A T-shirt that had been slept in overnight removed roughly 70% as much ozone as a person, indicating the importance of skin oils in ozone removal. The presence of the used HEPA filter in the recirculated airstream reduced the perceived air quality. Over a 5-h period, the overall ozone removal rate by cabin surfaces decreased at ˜3% h -1. With people present, the measured ratio of ozone's concentration in the cabin versus that outside the cabin was 0.15-0.21, smaller than levels reported in the literature. The results reinforce the conclusion that the optimal way to reduce people's exposure to both ozone and ozone oxidation products is to efficiently remove ozone from the air supply system of an aircraft.
Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone.
Grulke, N E; Miller, P R; Scioli, D
1996-06-01
We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a height of 34 m. No visible symptoms of foliar ozone damage were apparent throughout the 61-day exposure period and none of the ozone treatments affected branch growth. Despite the similarity in ozone concentrations in the branch chambers within a treatment, the trees exhibited different physiological responses to increasing ozone uptake. Differences in diurnal and seasonal patterns of g(s) among the trees led to a 2-fold greater ozone uptake in tree No. 2 compared with trees Nos. 1 and 3. Tree No. 3 had significantly higher CER and g(s) at 0.25x ambient ozone than trees Nos. 1 and 2, and g(s) and CER of tree No. 3 declined with increasing ozone uptake. The y-intercept of the regression for dark respiration versus ozone uptake was significantly lower for tree No. 2 than for trees Nos. 1 and 3. In the 0.25x and 1x ozone treatments, the chlorophyll concentration of current-year foliage of trees Nos. 1 and 2 was significantly higher than that of current-year foliage of tree No. 3. Chlorophyll concentration of current-year foliage on tree No. 1 did not decline with increasing ozone uptake. In all trees, total needle water potential decreased with increasing ozone uptake, but turgor was constant. Although tree No. 2 had the greatest ozone uptake, g(s) was highest and foliar chlorophyll concentration was lowest in tree No. 3 in the 0.25x and 1x ambient atmospheric ozone treatments.
Arslan-Alaton, Idil; Seremet, Ozden
2004-01-01
Biotreated textile wastewater (CODo = 248 mg L(-1); TOCo = 58 mg L(-1); A620 = 0.007 cm(-1); A525 = 0.181 cm(-1); A436 = 0.198 cm(-1)) was subjected to advanced treatment with ozonation, granular activated carbon (GAC) adsorption in serial and simultaneous applications. Experiments were conducted to investigate the effects of applied ozone dose, ozone absorption rate, specific ozone absorption efficiency, GAC dose, and reaction pH on the treatment performance of the selected tertiary treatment scheme. In separate experiments, the impact of virgin GAC ozonation on its adsorptive capacity for biotreated and biotreated + ozonated textile effluent was also investigated. Ozonation appeared to be more effective for decolorization (kd = 0.15 min(-1) at pH = 3), whereas GAC adsorption yielded higher COD removal rates (54% at pH = 3). It was also found that GAC addition (4 g/L) at pH = 7 and 9 enhanced the COD abatement rate of the ozonation process significantly and that the sequential application of ozonation (at pH = 3-11, 675 mg L(-1) O3) followed by GAC adsorption (at pH = 3-7, 10 g L(-1) GAC) resulted in the highest treatment performances both in terms of color and COD reduction. Simultaneous application of GAC and ozone at acidic and alkaline pH seriously inhibited COD abatement rates as a consequence of competitive adsorption and partial oxidation of textile components and GAC. It could also be established that ozone absorption efficiency decreased after color removal was complete. Ozonation of biotreated textile wastewater with 113 mg L(-1) ozone resulted in an appreciable enhancement of GAC adsorptive capacity in terms of residual color removal. Ozonation of GAC at relatively low doses (= 10.8 mg/g GAC) did not improve its overall adsorption capacity.
NASA Astrophysics Data System (ADS)
von Schneidemesser, E.; Vieno, M.; Monks, P. S.
2014-01-01
Ground-level ozone is recognized to be a threat to human health (WHO, 2003), have a deleterious impact on vegetation (Fowler et al., 2009), is also an important greenhouse gas (IPCC, 2007) and key to the oxidative ability of the atmosphere (Monks et al., 2009). Owing to its harmful effect on health, much policy and mitigation effort has been put into reducing its precursors - the nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOCs). The non-linear chemistry of tropospheric ozone formation, dependent mainly on NOx and NMVOC concentrations in the atmosphere, makes controlling tropospheric ozone complex. Furthermore, the concentration of ozone at any given point is a complex superimposition of in-situ produced or destroyed ozone and transported ozone on the regional and hemispheric-scale. In order to effectively address ozone, a more detailed understanding of its origins is needed. Here we show that roughly half (5 μg m-3) of the observed increase in urban (London) ozone (10 μg m-3) in the UK from 1998 to 2008 is owing to factors of local origin, in particular, the change in NO : NO2 ratio, NMVOC : NOx balance, NMVOC speciation, and emission reductions (including NOx titration). In areas with previously higher large concentrations of nitrogen oxides, ozone that was previously suppressed by high concentrations of NO has now been "unmasked", as in London and other urban areas of the UK. The remaining half (approximately 5 μg m-3) of the observed ozone increase is attributed to non-local factors such as long-term transport of ozone, changes in background ozone, and meteorological variability. These results show that a two-pronged approach, local action and regional-to-hemispheric cooperation, is needed to reduce ozone and thereby population exposure, which is especially important for urban ozone.
Ozone risk for crops and pastures in present and future climates
NASA Astrophysics Data System (ADS)
Fuhrer, Jürg
2009-02-01
Ozone is the most important regional-scale air pollutant causing risks for vegetation and human health in many parts of the world. Ozone impacts on yield and quality of crops and pastures depend on precursor emissions, atmospheric transport and leaf uptake and on the plant’s biochemical defence capacity, all of which are influenced by changing climatic conditions, increasing atmospheric CO2 and altered emission patterns. In this article, recent findings about ozone effects under current conditions and trends in regional ozone levels and in climatic factors affecting the plant’s sensitivity to ozone are reviewed in order to assess implications of these developments for future regional ozone risks. Based on pessimistic IPCC emission scenarios for many cropland regions elevated mean ozone levels in surface air are projected for 2050 and beyond as a result of both increasing emissions and positive effects of climate change on ozone formation and higher cumulative ozone exposure during an extended growing season resulting from increasing length and frequency of ozone episodes. At the same time, crop sensitivity may decline in areas where warming is accompanied by drying, such as southern and central Europe, in contrast to areas at higher latitudes where rapid warming is projected to occur in the absence of declining air and soil moisture. In regions with rapid industrialisation and population growth and with little regulatory action, ozone risks are projected to increase most dramatically, thus causing negative impacts major staple crops such as rice and wheat and, consequently, on food security. Crop improvement may be a way to increase crop cross-tolerance to co-occurring stresses from heat, drought and ozone. However, the review reveals that besides uncertainties in climate projections, parameters in models for ozone risk assessment are also uncertain and model improvements are necessary to better define specific targets for crop improvements, to identify regions most at risk from ozone in a future climate and to set robust effect-based ozone standards.
Looking at Ozone From a New Angle: Shuttle Ozone Limb Sounding Experiment-2 (SOLSE-2)
NASA Technical Reports Server (NTRS)
McPeters, Richard; Hilsenrath, Ernest; Janz, Scott; Brown, Tammy (Technical Monitor)
2002-01-01
The ozone layer above Earth is our planet's fragile sunscreen, protecting people, vegetation, and wildlife. NASA has been measuring ozone for more than 20 years by looking down, but SOLSE-2 will show that more information is available by looking at ozone from the side, at Earth's limb or atmospheric boundary. When the ozone layer is compromised, increased ultraviolet (UV) levels from the sun cause health problems ranging from severe sunburns to skin cancer and cataracts. A concerted global effort has been made to reduce or eliminate the production of chemicals that deplete ozone, but the ozone layer is not expected to recover for many decades because these chemicals can remain active in the atmosphere for up to 100 years. We know now that ozone monitoring needs to be focused in the lower stratosphere. The discovery of the ozone hole in 1985 demonstrated that very large changes in ozone were occurring in the lower stratosphere near 20 km, instead of the upper stratosphere as first expected, and where current ozone instruments are focused. Measuring ozone from a tangential perspective that is centered at the limb provides ozone profiles concentrated in the lower stratosphere. The first flight of SOLSE proved that this technique achieves the accuracy and coverage of traditional measurements, and surpasses the altitude resolution and depth of retrieval of conventional techniques. Results from the first flight convinced the science community to design the next generation ozone monitoring satellite based on SOLSE. The Ozone Mapping and Profiling Suite (OMPS) is currently being built for the NPOESS satellite. The primary objective of SOLSE-2 is to confirm the promising results of the first flight over a wider range of viewing conditions and spectral wavelengths. Sometimes a really hard problem can be solved when you look at it from a different angle! While scientists conduct research, protect yourself by observing the UV index and spend less unprotected time outdoors.
Hubbard, H F; Coleman, B K; Sarwar, G; Corsi, R L
2005-12-01
The use of indoor ozone generators as air purifiers has steadily increased over the past decade. Many ozone generators are marketed to consumers for their ability to eliminate odors and microbial agents and to improve health. In addition to the harmful effects of ozone, recent studies have shown that heterogeneous and homogeneous reactions between ozone and some unsaturated hydrocarbons can be an important source of indoor secondary pollutants, including free radicals, carbonyls, carboxylic acids, and fine particles. Experiments were conducted in one apartment and two detached single-family dwellings in Austin, TX, to assess the effects of an ozone generator on indoor secondary organic aerosol concentrations in actual residential settings. Ozone was generated using a commercial ozone generator marketed as an air purifier, and particle measurements were recorded before, during, and after the release of terpenes from a pine oil-based cleaning product. Particle number concentration, ozone concentration, and air exchange rate were measured during each experiment. Particle number and mass concentrations increased when both terpenes and ozone were present at elevated levels. Experimental results indicate that ozone generators in the presence of terpene sources facilitate the growth of indoor fine particles in residential indoor atmospheres. Human exposure to secondary organic particles can be reduced by minimizing the intentional release of ozone, particularly in the presence of terpene sources. Past studies have shown that ozone-initiated indoor chemistry can lead to elevated concentrations of fine particulate matter, but have generally been completed in controlled laboratory environments and office buildings. We explored the effects of an explicit ozone generator marketed as an air purifier on the formation of secondary organic aerosol mass in actual residential indoor settings. Results indicate significant increases in number and mass concentrations for particles <0.7 microns in diameter, particularly when an ozone generator is used in the presence of a terpene source such as a pine oil-based cleaner. These results add evidence to the potentially harmful effects of ozone generation in residential environments.
NASA Technical Reports Server (NTRS)
Fusco, Andrew C.; Logan, Jennifer A.
2004-01-01
I ] The causes of trends in tropospheric ozone at Northern Hemisphere midlatitudes from 1970 to 1995 are investigated with the GEOS-CHEM model, a global three-dimensional model of the troposphere driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS). This model is used to investigate the sensitivity of tropospheric ozone with respect to (1) changes in the anthropogenic emission of nitrogen oxides and nonmethane hydrocarbons, (2) increases in methane concentrations, (3) variations in the stratospheric source of ozone, (4) changes in solar radiation resulting from stratospheric ozone depletion, and ( 5 ) increases in tropospheric temperatures. Model results indicate that local increases in NO, emissions have caused most of the increases seen in lower tropospheric ozone over Europe and Japan. Increases in methane are responsible for roughly one fifth of the anthropogenically induced increase in tropospheric ozone at northern midlatitudes. However, changes in ozone precursors do not adequately explain either the spatial differences in observed ozone trends across midlatitudes or the observed decreases in ozone over Canada throughout the troposphere. We argue that ozone depletion in the lowermost stratosphere is likely to have reduced the stratospheric source by as much as 30% from the early 1970s to the mid 1990s. Model simulations that account for such a reduction along with reported changes in anthropogenic emissions show steep declines of ozone in the upper troposphere and variable increases in the lower troposphere that are more consistent with observations. Differential temperature trends in summer between North America and Europe may account for at least some of the remaining spatial variation in tropospheric ozone trends. Increases in ultraviolet (UV) radiation due to stratospheric ozone depletion do not appear to significantly reduce tropospheric ozone, except at midlatitudes in the Southern Hemisphere following the breakup of the ozone hole.
Impacts of stratospheric sulfate geoengineering on tropospheric ozone
NASA Astrophysics Data System (ADS)
Xia, Lili; Nowack, Peer J.; Tilmes, Simone; Robock, Alan
2017-10-01
A range of solar radiation management (SRM) techniques has been proposed to counter anthropogenic climate change. Here, we examine the potential effects of stratospheric sulfate aerosols and solar insolation reduction on tropospheric ozone and ozone at Earth's surface. Ozone is a key air pollutant, which can produce respiratory diseases and crop damage. Using a version of the Community Earth System Model from the National Center for Atmospheric Research that includes comprehensive tropospheric and stratospheric chemistry, we model both stratospheric sulfur injection and solar irradiance reduction schemes, with the aim of achieving equal levels of surface cooling relative to the Representative Concentration Pathway 6.0 scenario. This allows us to compare the impacts of sulfate aerosols and solar dimming on atmospheric ozone concentrations. Despite nearly identical global mean surface temperatures for the two SRM approaches, solar insolation reduction increases global average surface ozone concentrations, while sulfate injection decreases it. A fundamental difference between the two geoengineering schemes is the importance of heterogeneous reactions in the photochemical ozone balance with larger stratospheric sulfate abundance, resulting in increased ozone depletion in mid- and high latitudes. This reduces the net transport of stratospheric ozone into the troposphere and thus is a key driver of the overall decrease in surface ozone. At the same time, the change in stratospheric ozone alters the tropospheric photochemical environment due to enhanced ultraviolet radiation. A shared factor among both SRM scenarios is decreased chemical ozone loss due to reduced tropospheric humidity. Under insolation reduction, this is the dominant factor giving rise to the global surface ozone increase. Regionally, both surface ozone increases and decreases are found for both scenarios; that is, SRM would affect regions of the world differently in terms of air pollution. In conclusion, surface ozone and tropospheric chemistry would likely be affected by SRM, but the overall effect is strongly dependent on the SRM scheme. Due to the health and economic impacts of surface ozone, all these impacts should be taken into account in evaluations of possible consequences of SRM.
40 CFR 52.930 - Control strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy: Ozone. 52.930 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.930 Control strategy: Ozone. (a) The VOC..., Campbell and Kenton Counties) ozone nonattainment area. The demonstration of attainment of the ozone...
40 CFR 52.1885 - Control strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Ozone. 52.1885...: Ozone. (a) Part D—Approval. The following portions of the Ohio plan are approved: (1) The ozone portions...: Akron, Canton, Cincinnati, Cleveland, Columbus, Dayton, Toledo and Youngstown. (4) The ozone...
40 CFR 52.2235 - Control strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Ozone. 52.2235... strategy: Ozone. (a) Determination—EPA is determining that, as of August 8, 1995, the Nashville ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.1885 - Control strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Ozone. 52.1885...: Ozone. (a) Part D—Approval. The following portions of the Ohio plan are approved: (1) The ozone portions...: Akron, Canton, Cincinnati, Cleveland, Columbus, Dayton, Toledo and Youngstown. (4) The ozone...
40 CFR 52.1885 - Control strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Ozone. 52.1885...: Ozone. (a) Part D—Approval. The following portions of the Ohio plan are approved: (1) The ozone portions...: Akron, Canton, Cincinnati, Cleveland, Columbus, Dayton, Toledo and Youngstown. (4) The ozone...
40 CFR 52.1885 - Control strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Ozone. 52.1885...: Ozone. (a) Part D—Approval. The following portions of the Ohio plan are approved: (1) The ozone portions...: Akron, Canton, Cincinnati, Cleveland, Columbus, Dayton, Toledo and Youngstown. (4) The ozone...
40 CFR 52.930 - Control strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Ozone. 52.930 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.930 Control strategy: Ozone. (a) The VOC..., Campbell and Kenton Counties) ozone nonattainment area. The demonstration of attainment of the ozone...
40 CFR 52.2235 - Control strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control strategy: Ozone. 52.2235... strategy: Ozone. (a) Determination—EPA is determining that, as of August 8, 1995, the Nashville ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
Field-Testing for Ozone: Analyzing Air Quality in Your Hometown.
ERIC Educational Resources Information Center
Lee, Judy; DeRulle, Joyce
1995-01-01
Describes a project designed to teach students how to measure ground-level ozone and determine ozone concentrations. Enables students to research the effects of ozone exposure and discuss ways to clean up the problem. Includes an activity based on the oxidation capability of ozone. (JRH)
40 CFR 52.930 - Control strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy: Ozone. 52.930 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.930 Control strategy: Ozone. (a) The VOC..., Campbell and Kenton Counties) ozone nonattainment area. The demonstration of attainment of the ozone...
40 CFR 52.1885 - Control strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Ozone. 52.1885...: Ozone. (a) Part D—Approval. The following portions of the Ohio plan are approved: (1) The ozone portions...: Akron, Canton, Cincinnati, Cleveland, Columbus, Dayton, Toledo and Youngstown. (4) The ozone...
40 CFR 52.1023 - Control strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Ozone. 52.1023...: Ozone. (a) Determination. EPA is determining that, as of July 21, 1995, the Lewiston-Auburn ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.1023 - Control strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Ozone. 52.1023...: Ozone. (a) Determination. EPA is determining that, as of July 21, 1995, the Lewiston-Auburn ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.1023 - Control strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Ozone. 52.1023...: Ozone. (a) Determination. EPA is determining that, as of July 21, 1995, the Lewiston-Auburn ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.2235 - Control strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control strategy: Ozone. 52.2235... strategy: Ozone. (a) Determination—EPA is determining that, as of August 8, 1995, the Nashville ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.930 - Control strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Ozone. 52.930 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.930 Control strategy: Ozone. (a) The VOC..., Campbell and Kenton Counties) ozone nonattainment area. The demonstration of attainment of the ozone...
40 CFR 52.2235 - Control strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Ozone. 52.2235... strategy: Ozone. (a) Determination—EPA is determining that, as of August 8, 1995, the Nashville ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.2235 - Control strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Ozone. 52.2235... strategy: Ozone. (a) Determination—EPA is determining that, as of August 8, 1995, the Nashville ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.1023 - Control strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Ozone. 52.1023...: Ozone. (a) Determination. EPA is determining that, as of July 21, 1995, the Lewiston-Auburn ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
40 CFR 52.930 - Control strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Ozone. 52.930 Section...) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Kentucky § 52.930 Control strategy: Ozone. (a) The VOC..., Campbell and Kenton Counties) ozone nonattainment area. The demonstration of attainment of the ozone...
40 CFR 52.1023 - Control strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Ozone. 52.1023...: Ozone. (a) Determination. EPA is determining that, as of July 21, 1995, the Lewiston-Auburn ozone nonattainment area has attained the ozone standard and that the reasonable further progress and attainment...
CONTRIBUTION TO INDOOR OZONE LEVELS OF AN OZONE GENERATOR
This report gives results of a study of a commonly used commercially available ozone generator, undertaken to determine its impact on indoor ozone levels. xperiment were conducted in a typical mechanically ventilated office and in a test house. he generated ozone and the in-room ...
Spatial regression analysis on 32 years of total column ozone data
NASA Astrophysics Data System (ADS)
Knibbe, J. S.; van der A, R. J.; de Laat, A. T. J.
2014-08-01
Multiple-regression analyses have been performed on 32 years of total ozone column data that was spatially gridded with a 1 × 1.5° resolution. The total ozone data consist of the MSR (Multi Sensor Reanalysis; 1979-2008) and 2 years of assimilated SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) ozone data (2009-2010). The two-dimensionality in this data set allows us to perform the regressions locally and investigate spatial patterns of regression coefficients and their explanatory power. Seasonal dependencies of ozone on regressors are included in the analysis. A new physically oriented model is developed to parameterize stratospheric ozone. Ozone variations on nonseasonal timescales are parameterized by explanatory variables describing the solar cycle, stratospheric aerosols, the quasi-biennial oscillation (QBO), El Niño-Southern Oscillation (ENSO) and stratospheric alternative halogens which are parameterized by the effective equivalent stratospheric chlorine (EESC). For several explanatory variables, seasonally adjusted versions of these explanatory variables are constructed to account for the difference in their effect on ozone throughout the year. To account for seasonal variation in ozone, explanatory variables describing the polar vortex, geopotential height, potential vorticity and average day length are included. Results of this regression model are compared to that of a similar analysis based on a more commonly applied statistically oriented model. The physically oriented model provides spatial patterns in the regression results for each explanatory variable. The EESC has a significant depleting effect on ozone at mid- and high latitudes, the solar cycle affects ozone positively mostly in the Southern Hemisphere, stratospheric aerosols affect ozone negatively at high northern latitudes, the effect of QBO is positive and negative in the tropics and mid- to high latitudes, respectively, and ENSO affects ozone negatively between 30° N and 30° S, particularly over the Pacific. The contribution of explanatory variables describing seasonal ozone variation is generally large at mid- to high latitudes. We observe ozone increases with potential vorticity and day length and ozone decreases with geopotential height and variable ozone effects due to the polar vortex in regions to the north and south of the polar vortices. Recovery of ozone is identified globally. However, recovery rates and uncertainties strongly depend on choices that can be made in defining the explanatory variables. The application of several trend models, each with their own pros and cons, yields a large range of recovery rate estimates. Overall these results suggest that care has to be taken in determining ozone recovery rates, in particular for the Antarctic ozone hole.
NASA Astrophysics Data System (ADS)
Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.
2015-01-01
Because tropospheric ozone is both a~greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change and stratospheric ozone recovery on the tropospheric ozone budget, in a~simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0. Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximises in the early 21st century at 23%. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70 year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally-averaged northern midlatitude ozone because of increasing emissions from Asia, together with the longevity of ozone in the troposphere. A~simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6 % increase in global-mean tropospheric ozone, and an 11% increase at northern midlatitudes. This increase maximises in the 2080s, and is mostly caused by methane, which maximises in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its influence on other VOCs and CO. Enhanced flux of ozone from the stratosphere to the troposphere as well as climate change-induced enhancements in lightning NOx emissions also increase the tropospheric ozone burden, although their impacts are relatively small. Overall, the results show that ozone in the future is governed largely by changes in methane and NOx; methane induces an increase in tropospheric ozone that is approximately one-third of that caused by NOx. Climate impacts on ozone through changes in tropospheric temperature, humidity and lightning NOx remain secondary compared with emission strategies relating to anthropogenic emissions of NOx, such as fossil fuel burning. Therefore, emission policies globally have a critical role to play in determining tropospheric ozone evolution through the 21st century.
NASA Astrophysics Data System (ADS)
Lu, Xiao; Zhang, Lin; Zhao, Yuanhong; Yue, Xu
2016-04-01
Wildfires are important sources of ozone by emitting large amounts of NOx and NMVOC, main ozone precursors at both global and regional scales. Their influences on ozone in the U.S. Intermountain West have recently received much interest because surface ozone concentrations over that region showed an increasing trend in the past two decades likely due to increasing wildfire emissions in a warming climate. Here we use the Lagrangian particle dispersion model (FLEXPART) as well as the GEOS-Chem chemical transport model to estimate wildfires' contribution on summer (June, July and August; JJA) ozone concentration variations, trends, and extremely high ozone events over the US Intermountain West for the past 22 years (1989-2010). We combine the resident time estimated from the FLEXPART 5-day backward trajectories and a high-resolution fire inventory to define a fire index representing the impact of wildfires on ozone concentration at a particular site for each day of summers 1989-2010. Over 26,000 FLEXPART back-trajectories are conducted for the whole time period and for 13 CASTNet surface monitoring sites. We build a stepwise multiple linear regression (SMLR) model of daily ozone concentrations using fire index and other meteorological variables for each site. The SMLR models explain 53% of the ozone variations (ranging from 12% to 68% for each site). We show that ozone produced from wildfires (calculated from SMLR model) are of high variability at daily scale (ranging from 0.1 ppbv to 20.7 ppbv), but are averaged to lower values of about 0.25-3.5 ppbv for summer mean. We estimate that wildfires magnify inter-annual variations of the regional mean summer ozone for about 32%, compared to the result with wildfires impact excluded from the SMLR model. Wildfire ozone enhancements increase at a rate of 0.04 ppbv per year, accouting for about 20% of the regional summer ozone trend during 1989-2010. Removing wildfires' impact would reduce 35% (46%) of the high-ozone days with measured daily ozone concentrations exceeding 65(75) ppbv, indicating their significant influence on ozone exceptional events. We further compare the wildfire ozone enhancements estimated by the statistical and Lagrangian approach with those estimated from a Eulerian model (GEOS-Chem). Despite highly-correlated results, GEOS-Chem largely overestimates wildfire ozone influences near the source regions and fails to capture ozone production from wildfires at long distance, reflecting deficiencies in current Eulerian models to capture small-scale emissions.
40 CFR 52.977 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Determination of Attainment. Effective March 12, 2010 EPA has determined the Baton Rouge 1-hour ozone nonattainment area has attained the 1-hour ozone National Ambient Air...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-11
...] Implementation of the 2008 National Ambient Air Quality Standards for Ozone: State Implementation Plan... Ambient Air Quality Standards for Ozone: State Implementation Plan Requirements'' which published in the... the 2008 ozone national ambient air quality standards (NAAQS) (the ``2008 ozone NAAQS'') that were...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
14 CFR 25.832 - Cabin ozone concentration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Cabin ozone concentration. 25.832 Section... Cabin ozone concentration. (a) The airplane cabin ozone concentration during flight must be shown not to... demonstrate that either— (1) The airplane cannot be operated at an altitude which would result in cabin ozone...
40 CFR 52.977 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Determination of Attainment. Effective March 12, 2010 EPA has determined the Baton Rouge 1-hour ozone nonattainment area has attained the 1-hour ozone National Ambient Air...
40 CFR 52.977 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Determination of Attainment. Effective March 12, 2010 EPA has determined the Baton Rouge 1-hour ozone nonattainment area has attained the 1-hour ozone National Ambient Air...
14 CFR 25.832 - Cabin ozone concentration.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cabin ozone concentration. 25.832 Section... Cabin ozone concentration. (a) The airplane cabin ozone concentration during flight must be shown not to... demonstrate that either— (1) The airplane cannot be operated at an altitude which would result in cabin ozone...
40 CFR 52.2037 - Control strategy plans for attainment and rate-of-progress: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and rate-of-progress: Ozone. 52.2037 Section 52.2037 Protection of Environment ENVIRONMENTAL... (CONTINUED) Pennsylvania § 52.2037 Control strategy plans for attainment and rate-of-progress: Ozone. (a... ozone nonattainment area has attained the ozone standard and that the reasonable further progress and...
40 CFR 52.977 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. Determination of Attainment. Effective March 12, 2010 EPA has determined the Baton Rouge 1-hour ozone nonattainment area has attained the 1-hour ozone National Ambient Air Quality...
40 CFR 52.282 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Attainment determination. EPA has determined that the Ventura County severe 1-hour ozone nonattainment area attained the 1-hour ozone NAAQS by the applicable attainment date...
48 CFR 52.223-11 - Ozone-Depleting Substances.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...
48 CFR 52.223-11 - Ozone-Depleting Substances.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...
48 CFR 52.223-11 - Ozone-Depleting Substances.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
40 CFR 52.282 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Attainment determination. EPA has determined that the Ventura County severe 1-hour ozone nonattainment area attained the 1-hour ozone NAAQS by the applicable attainment date...
14 CFR 25.832 - Cabin ozone concentration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Cabin ozone concentration. 25.832 Section... Cabin ozone concentration. (a) The airplane cabin ozone concentration during flight must be shown not to... demonstrate that either— (1) The airplane cannot be operated at an altitude which would result in cabin ozone...
Is the Ozone Hole over Your Classroom?
ERIC Educational Resources Information Center
Cordero, Eugene C.
2002-01-01
Reports on a survey of first year university science students regarding their understanding of the ozone layer, ozone depletion, and the effect of ozone depletion on Australia. Suggests that better teaching resources for environmental issues such as ozone depletion and global warming are needed before improvements in student understanding can be…
48 CFR 52.223-11 - Ozone-Depleting Substances.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...
14 CFR 25.832 - Cabin ozone concentration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Cabin ozone concentration. 25.832 Section... Cabin ozone concentration. (a) The airplane cabin ozone concentration during flight must be shown not to... demonstrate that either— (1) The airplane cannot be operated at an altitude which would result in cabin ozone...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
40 CFR 52.282 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Attainment determination. EPA has determined that the Ventura County severe 1-hour ozone nonattainment area attained the 1-hour ozone NAAQS by the applicable attainment date...
40 CFR 52.282 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Attainment determination. EPA has determined that the Ventura County severe 1-hour ozone nonattainment area attained the 1-hour ozone NAAQS by the applicable attainment date...
48 CFR 52.223-11 - Ozone-Depleting Substances.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...
14 CFR 25.832 - Cabin ozone concentration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Cabin ozone concentration. 25.832 Section... Cabin ozone concentration. (a) The airplane cabin ozone concentration during flight must be shown not to... demonstrate that either— (1) The airplane cannot be operated at an altitude which would result in cabin ozone...
40 CFR 52.282 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Attainment determination. EPA has determined that the Ventura County severe 1-hour ozone nonattainment area attained the 1-hour ozone NAAQS by the applicable attainment date...
40 CFR 52.1342 - Control strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Ozone. 52.1342...: Ozone. (a) Determination of attainment. EPA has determined, as of June 9, 2011, that the St. Louis (MO-IL) metropolitan 1997 8-hour ozone nonattainment area has attained the 1997 8-hour ozone NAAQS. This...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
40 CFR 52.1342 - Control strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Ozone. 52.1342...: Ozone. Determination of Attainment. EPA has determined, as of June 9, 2011, that the St. Louis (MO-IL) metropolitan 1997 8-hour ozone nonattainment area has attained the 1997 8-hour ozone NAAQS. This determination...
40 CFR 52.1342 - Control strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Ozone. 52.1342...: Ozone. (a) Determination of attainment. EPA has determined, as of June 9, 2011, that the St. Louis (MO-IL) metropolitan 1997 8-hour ozone nonattainment area has attained the 1997 8-hour ozone NAAQS. This...
40 CFR 52.977 - Control strategy and regulations: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy and regulations: Ozone... and regulations: Ozone. (a) Determination of Attainment. Effective March 12, 2010 EPA has determined the Baton Rouge 1-hour ozone nonattainment area has attained the 1-hour ozone National Ambient Air...
40 CFR 52.1342 - Control strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Ozone. 52.1342...: Ozone. (a) Determination of attainment. EPA has determined, as of June 9, 2011, that the St. Louis (MO-IL) metropolitan 1997 8-hour ozone nonattainment area has attained the 1997 8-hour ozone NAAQS. This...
40 CFR 52.2332 - Control Strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control Strategy: Ozone. 52.2332...: Ozone. Determinations—EPA is determining that, as of July 18, 1995, the Salt Lake and Davis Counties ozone nonattainment area has attained the ozone standard based on air quality monitoring data from 1992...
Global distribution of ozone for various seasons
NASA Technical Reports Server (NTRS)
Koprova, L. I.
1979-01-01
A technique which was used to obtain a catalog of the seasonal global distribution of ozone is presented. The technique is based on the simultaneous use of 1964-1975 data on the total ozone content from a worldwide network of ozonometric stations and on the vertical ozone profile from ozone sounding stations.
Efficient ozone generator for ozone layer enrichment from high altitude balloon
NASA Technical Reports Server (NTRS)
Filiouguine, Igor V.; Kostiouchenko, Sergey V.; Koudriavtsev, Nikolay N.; Starikovskaya, Svetlana M.
1994-01-01
The possibilities of ozone production at low gas pressures by nanosecond high voltage discharge has been investigated. The measurements of ozone synthesis in N2-O2 mixtures have been performed. The explanation of experimental results is suggested. The possible ways of ozone yield growth are analyzed.
The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...
Apparatus for treatment of soils contaminated with organic pollutants
Wickramanayake, Godage B.
1993-01-01
An apparatus for treating soil contaminated by organic compounds wherein an ozone containing gas is treated with acid to increase the stability of the ozone in the soil environment and the treated ozone applied to the contaminated soil in a manner adapted to decompose the organic compounds; one embodiment of the apparatus comprises a means to supply ozone as a gas-ozone mixture, a stability means to treat ozone obtained from the supply and distribution means to apply the stabilized gas-ozone to soil. The soil may be treated in situ or may be removed for treatment and refilled.
A feasibility study of methods for stopping the depletion of ozone over Antarctica
NASA Technical Reports Server (NTRS)
1988-01-01
Ways of stopping the ozone depletion in the ozone hole over Antarctica were studied. The basic objectives were: (1) to define and understand the phenomenon of the ozone hole; (2) to determine possible methods of stopping the ozone depletion; (3) to identify unknowns about the hole and possible solutions. Two basic ways of attacking the problem were identified. First is replenishment of ozone as it is being depleted. Second is elimination of ozone destroying agents from the atmosphere. The second method is a more permanent form of the solution. Elimination and replenishment methods are discussed in detail.
Ozone Depletion, UVB and Atmospheric Chemistry
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.
1999-01-01
The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.
Ozone pretreatment and fermentative hydrolysis of wheat straw
NASA Astrophysics Data System (ADS)
Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.
2017-11-01
Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.
Emergence of healing in the Antarctic ozone layer
NASA Astrophysics Data System (ADS)
Solomon, Susan; Ivy, Diane J.; Kinnison, Doug; Mills, Michael J.; Neely, Ryan R.; Schmidt, Anja
2016-07-01
Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.
Genes of innate immunity and the biological response to inhaled ozone
Li, Zhuowei; Tighe, Robert M.; Feng, Feifei; Ledford, Julie G.; Hollingsworth, John W.
2013-01-01
Ambient ozone has a significant impact on human health. We have made considerable progress in understanding the fundamental mechanisms that regulate the biological response to ozone. It is increasingly clear that genes of innate immunity play a central role in both infectious and non-infectious lung disease. The biological response to ambient ozone provides a clinically relevant environmental exposure that allows us to better understand the role of innate immunity in non-infectious airways disease. In this brief review, we focus on: (1) specific cell types in the lung modified by ozone; (2) ozone and oxidative stress; (3) the relationship between genes of innate immunity and ozone; (4) the role of extracellular matrix in reactive airways disease; and (5) the effect of ozone on the adaptive immune system. We summarize recent advances in understanding the mechanisms that ozone contributes to environmental airways disease. PMID:23169704
NASA Technical Reports Server (NTRS)
Hanser, F. A.
1977-01-01
An ultraviolet interference filter spectrophotometer was modified to use a photodiode and was flown on latitude survey flights in the fall of 1976. Comparison with Dobson station total ozone values shows agreement between UVS and Dobson total ozone of + or - 2 percent. The procedure used to convert UVS measured ozone above the aircraft altitude to total ozone above ground level introduces an additional 2 percent deviation for very high altitude UVS ozone data. Under stable aircraft operating conditions, the UVS derived ozone values have a variability, or reproducibility, of better than + or -1 percent. The UVS data from the latitude survey flights yield a detailed latitude profile of total ozone over the Pacific Ocean during November 1976. Significant latitudinal structure in total ozone is found at the middle latitudes (30 deg to 40 deg N and S).
Polar stratospheric clouds and ozone depletion
NASA Technical Reports Server (NTRS)
Toon, Owen B.; Turco, Richard P.
1991-01-01
A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.
NASA Technical Reports Server (NTRS)
Myers, R. H.
1976-01-01
The depletion of ozone in the stratosphere is examined, and causes for the depletion are cited. Ground station and satellite measurements of ozone, which are taken on a worldwide basis, are discussed. Instruments used in ozone measurement are discussed, such as the Dobson spectrophotometer, which is credited with providing the longest and most extensive series of observations for ground based observation of stratospheric ozone. Other ground based instruments used to measure ozone are also discussed. The statistical differences of ground based measurements of ozone from these different instruments are compared to each other, and to satellite measurements. Mathematical methods (i.e., trend analysis or linear regression analysis) of analyzing the variability of ozone concentration with respect to time and lattitude are described. Various time series models which can be employed in accounting for ozone concentration variability are examined.
NASA satellite helps airliners avoid ozone concentrations
NASA Technical Reports Server (NTRS)
1981-01-01
Results from a test to determine the effectiveness of satellite data for helping airlines avoid heavy concentrations of ozone are reported. Information from the Total Ozone Mapping Spectrometer, aboard the Nimbus-7 was transmitted, for use in meteorological forecast activities. The results show: (1) Total Ozone Mapping Spectrometer profile of total ozone in the atmosphere accurately represents upper air patterns and can be used to locate meteorological activity; (2) route forecasting of highly concentrated ozone is feasible; (3) five research aircraft flights were flown in jet stream regions located by the Total Ozone Mapping Spectrometer to determine winds, temperatures, and air composition. It is shown that the jet stream is coincides with the area of highest total ozone gradient, and low total ozone amounts are found where tropospheric air has been carried along above the tropopause on the anticyclonic side of the subtropical jet stream.
Borowiak, Klaudia; Wujeska, Agnieszka
2012-03-01
The cumulative ozone effect on morphological parameters (visible leaf injury, plant height and leaf growth, number of bean pods, petunia flowers and stalks) was examined in this study. Well-known ozonesensitive (Bel W3) and ozone-resistant (Bel B) tobacco cultivars as well as bean cv. Nerina and petunia cv. White cascade, both recognized as ozone sensitive, were used in the experiment. Investigations were carried out at two exposure sites varying in tropospheric ozone levels. Ozone negatively affected the leaf growth of both tobacco cultivars and bean. A negative relation was also found for ozone concentration and tobacco plant height. Number of petunia flowers and stalks and bean pods was positively correlated with ozone concentration. This could have been connected with earlier plant maturation due to faster generative development of plants in ozone-stress conditions.
When Will the Antarctic Ozone Hole Recover?
NASA Technical Reports Server (NTRS)
Newman, Paul A.
2006-01-01
The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. In this talk we will demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating 61 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area's variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.
When Will the Antarctic Ozone Hole Recover?
NASA Technical Reports Server (NTRS)
Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Stephen A.; Schauffler, Sue
2006-01-01
The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.
Inheritance of ozone resistance in tall fescue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, W.J.; Haaland, R.L.; Dickens, R.
Ozone is considered the most important air pollutant affecting vegetation. With progressive urbanization, ozone levels have steadily escalated. Reports suggest that ozone tolerance is a highly heritable characteristic and that the selection of resistant plants and breeding for ozone resistance should be possible. This study was undertaken to gain information on the inheritance of ozone resistance in tall fescue (Festuca arundinacea Schreb.).Progenies from a diallel among six tall fescue genotypes of diverse origin were evaluated for ozone resistance in a fumigation-chamber. Sixteen-day-old seedlings were exposed to 0.5 ppm ozone for 3 hours and scored for injury after 3 days. Generalmore » combining ability (GCA) and reciprocal effects were both highly significant; however, GCA constituted a major portion of the genotypic variation. Specific combining ability was not significant. The predominance of additive genetic variance observed indicates that breeding for ozone resistance in this tall fescue population should be possible.« less
Diagnostic analysis of two-dimensional monthly average ozone balance with Chapman chemistry
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.; Jackman, Charles H.; Kaye, Jack A.
1986-01-01
Chapman chemistry has been used in a two-dimensional model to simulate ozone balance phenomenology. The similarity between regions of ozone production and loss calculated using Chapman chemistry and those computed using LIMS and SAMS data with a photochemical equilibrium model indicate that such simplified chemistry is useful in studying gross features in stratospheric ozone balance. Net ozone production or loss rates are brought about by departures from the photochemical equilibrium (PCE) condition. If transport drives ozone above its PCE condition, then photochemical loss dominates production. If transport drives ozone below its PCE condition, then photochemical production dominates loss. Gross features of ozone loss/production (L/P) inferred for the real atmosphere from data are also simulated using only eddy diffusion. This indicates that one must be careful in assigning a transport scheme for a two-dimensional model that mimics only behavior of the observed ozone L/P.
The characterization of an air pollution episode using satellite total ozone measurements
NASA Technical Reports Server (NTRS)
Fishman, Jack; Shipham, Mark C.; Vukovich, Fred M.; Cahoon, Donald R.
1987-01-01
A case study is presented which demonstrates that measurements of total ozone from a space-based platform can be used to study a widespread air pollution episode over the southeastern U.S. In particular, the synoptic-scale distribution of surface-level ozone obtained from an independent analysis of ground-based monitoring stations appears to be captured by the synoptic-scale distribution of total ozone, even though about 90 percent of the total ozone is in the stratosphere. Additional analyses of upper air meteorological data, other satellite imagery, and in situ aircraft measurements of ozone likewise support the fact that synoptic-scale variability of tropospheric ozone is primarily responsible for the observed variability in total ozone under certain conditions. The use of the type of analysis discussed in this study may provide an important technique for understanding the global budget of tropospheric ozone.
Numerical simulation of ozone concentration profile and flow characteristics in paddy bulks.
Pandiselvam, Ravi; Chandrasekar, Veerapandian; Thirupathi, Venkatachalam
2017-08-01
Ozone has shown the potential to control stored product insect pests. The high reactivity of ozone leads to special problems when it passes though an organic medium such as stored grains. Thus, there is a need for a simulation study to understand the concentration profile and flow characteristics of ozone in stored paddy bulks as a function of time. Simulation of ozone concentration through the paddy grain bulks was explained by applying the principle of the law of conservation along with a continuity equation. A higher ozone concentration value was observed at regions near the ozone diffuser whereas a lower concentration value was observed at regions away from the ozone diffuser. The relative error between the experimental and predicted ozone concentration values for the entire bin geometry was less than 42.8%. The simulation model described a non-linear change of ozone concentration in stored paddy bulks. Results of this study provide a valuable source for estimating the parameters needed for effectively designing a storage bin for fumigation of paddy grains in a commercial scale continuous-flow ozone fumigation system. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Ozone kinetics in low-pressure discharges
NASA Astrophysics Data System (ADS)
Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine
2012-10-01
Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).
NASA Astrophysics Data System (ADS)
Wang, Pengxiang; Chen, Junhong
2009-02-01
The effect of electrode configuration on ozone production in the direct-current corona discharge of dry and humid air is studied by a numerical model that combines the electron distribution in the corona plasma, plasma chemistry and transport phenomena. Two electrode configurations are considered: wire-cylinder discharge with air flowing along the wire axis and wire-plate discharge with air flowing transverse to the wire. The ozone distributions in both types of discharges are compared. For both electrode configurations, the ozone production rate is higher in the negative corona than in the positive corona and it decreases with an increase in relative humidity. More importantly, the detailed ozone distribution in the neighbourhood of the discharge wire, together with the ozone kinetics, reveals the possible difference in the ozone production from the two discharges. With the same operating conditions and sufficiently short flow residence time, the ozone production rate is nearly the same for both electrode configurations. When the flow residence time is longer than the characteristic time for homogeneous ozone destruction, the net ozone production is higher in the wire-cylinder discharge than in the wire-plate discharge due to relatively less ozone destruction.
On the Effects of NOx Emission Control and Drought on an Ozone-Polluted Ecosystem
NASA Astrophysics Data System (ADS)
Pusede, S.; Geddes, J.; Buysse, C. E.; Esperanza, A.; Najacht, E.; Anderson, J. F.; Bailey, C. B.; Munyan, J.
2017-12-01
Regulatory emission controls are typically designed to reduce ozone when ozone is highest. However, high ozone concentrations are often asynchronous with periods of the greatest ozone harm to plants and ecosystems, particularly during drought. Because ozone production chemistry is nonlinear, emissions reductions designed to be effective in polluted cities may have a range of effects on downwind ecosystems. Here, we investigate the influence of regional NOx emission controls on ozone pollution in Sequoia National Park (SNP). First, we show that steep declines in NOx throughout the region have had smaller impacts in SNP than in cities upwind, and that these reductions have been least effective at times of day and year when plants are most sensitive to ozone. Second, in recent years (2012-2015), California experienced the worst drought in recorded history. We present observational evidence of the ozone response in SNP to drought conditions, finding that the drought altered the chemical sensitivity of local ozone production to NOx emissions and, hence, the effectiveness of NOx emission controls. We show that drought impacts on the ozone sensitivity to NOx have persisted at least two years since the drought ended.
NASA Technical Reports Server (NTRS)
Strode, Sarah A.; Douglass, Anne R.; Ziemke, Jerald R.; Manyin, Michael; Nielsen, J. Eric; Oman, Luke D.
2017-01-01
Satellite observations of in-cloud ozone concentrations from the Ozone Monitoring Instrument and Microwave Limb Sounder instruments show substantial differences from background ozone concentrations. We develop a method for comparing a free-running chemistry-climate model (CCM) to in-cloud and background ozone observations using a simple criterion based on cloud fraction to separate cloudy and clear-sky days. We demonstrate that the CCM simulates key features of the in-cloud versus background ozone differences and of the geographic distribution of in-cloud ozone. Since the agreement is not dependent on matching the meteorological conditions of a specific day, this is a promising method for diagnosing how accurately CCMs represent the relationships between ozone and clouds, including the lower ozone concentrations shown by in-cloud satellite observations. Since clouds are associated with convection as well as changes in chemistry, we diagnose the tendency of tropical ozone at 400 hPa due to chemistry, convection and turbulence, and large-scale dynamics. While convection acts to reduce ozone concentrations at 400 hPa throughout much of the tropics, it has the opposite effect over highly polluted regions of South and East Asia.
The study of international and interstate transport of ozone in Yuma, Arizona
NASA Astrophysics Data System (ADS)
Li, Y.; Sonenberg, M.; Wood, J. L.; Pearson, C. R.; Colson, H.; Malloy, J. W.; Pace, M.; Mao, F.; Paul, J.; Busby, B. R.; Parkey, B.; Drago, L.; Franquist, T. S.
2017-12-01
In October 2015, EPA reduced the National Ambient Air Quality Standards (NAAQS) for ozone from 75 parts per billion (ppb) to 70 ppb. Meeting the new standard may be extremely challenging for some areas, including rural Yuma County in the State of Arizona. Yuma County faces unique air quality challenges, since it borders the Mexican states of Baja California and Sonora, and the State of California. The present study investigates the contribution of international and interstate transport of ozone and ozone precursors to episodes of elevated ozone concentrations in Yuma. The Arizona Department of Environmental Quality (ADEQ) merged HYSPLIT modeling outputs with two years of hourly ground ozone monitor data to investigate the potential area contributions to ozone concentrations in Yuma County. This analysis found that elevated ozone concentrations in Yuma in 2014 and 2015 frequently coincided with back-trajectories over both California and Mexico, typically favoring Mexico during the spring. In May 2017, ADEQ installed a new ozone monitor in San Luis Rio Colorado, Sonora, Mexico (Latitude: 32.4665, Longitude: -114.7688), which is 29 km south of ozone site in Yuma County. We will present the first simultaneous observations of ozone seasons in Sonora, Mexico, eastern California, and Yuma.
Pisarenko, Aleksey N; Stanford, Benjamin D; Yan, Dongxu; Gerrity, Daniel; Snyder, Shane A
2012-02-01
An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV(254) absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Neu, J. L.; Eldering, A.; Pinder, R. W.; Tang, Y.; McQueen, J.
2012-12-01
At night, ozone can be transported long distances above the surface inversion layer without chemical destruction or deposition. As the boundary layer breaks up in the morning, this nocturnal ozone can be mixed down to the surface and rapidly increase ozone concentrations at a rate that can rival chemical ozone production. Most regional scale models that are used for air quality forecasts and ozone source attribution do not adequately capture nighttime ozone concentrations and transport. We combine ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the INTEX Ozonesonde Network Study (IONS), EPA AirNow ground station ozone data, the Community Multi-Scale Air Quality (CMAQ) model, and the National Air Quality Forecast Capability (NAQFC) model to examine air quality events during August 2006. We present both aggregated statistics and case-study analyses that assess the relationship between the models' ability to reproduce surface air quality events and their ability to capture the vertical distribution of ozone both during the day and at night. We perform the comparisons looking at the geospatial dependence in the differences between the measurements and models under different surface ozone conditions.
Sterilization of Microorganisms by Ozone and Ultrasound
NASA Astrophysics Data System (ADS)
Krasnyj, V. V.; Klosovskij, A. V.; Panasko, T. A.; Shvets, O. M.; Semenova, O. T.; Taran, V. S.; Tereshin, V. I.
2008-03-01
The results of recent experimental methods of sterilization of microorganisms with the use of ozone and ultrasound are presented. The main aim was to optimize the process of sterilization in water solution taking into account the ozone concentration, the power of ultrasonic emitter and the temperature of water. In the present work, the ultrasonic cavitation with simultaneous ozone generation has been used. The high ozone concentration in water solution was achieved by two-barrier glow discharge generated at atmospheric pressure and a cooling thermo-electric module. Such a sterilizer consists of ozone generator in a shape of flat electrodes covered with dielectric material and a high-voltage pulsed power supply of 250 W. The sterilization camera was equipped with ultrasonic source operated at 100 W. The experiments on the inactivation of bacteria of the Bacillus Cereus type were carried out in the distilled water saturated by ozone. The ozone concentration in the aqueous solution was 10 mg/1, whereas the ozone concentration at the output of ozone generator was 30 mg/1. The complete inactivation of spores took 15 min. Selection of the temperature of water, the ozone concentrations and ultrasonic power allowed to determine the time necessary for destroying the row of microorganisms.
NASA Astrophysics Data System (ADS)
Chu, Hone-Jay; Lin, Chuan-Yao; Liau, Churn-Jung; Kuo, Yi-Ming
2012-12-01
Kaohsiung City and the suburban region of southwestern Taiwan have suffered from severe air pollution since becoming the largest center of heavy industry in Taiwan. The complex process of ozone (O3) formation and its precursor compounds (the volatile organic compounds (VOCs) and nitrogen oxide (NOx) emissions), accompanied by meteorological conditions, make controlling ozone difficult. Using a decision tree is especially appropriate for analyzing time series data that contain ozone levels and meteorological and explanatory variables for ozone formation. Results show that dominant variables such as temperature, wind speed, VOCs, and NOx can play vital roles in describing ozone variations among observations. That temperature and wind speed are highly correlated with ozone levels indicates that these meteorological conditions largely affect ozone variability. The results also demonstrate that spatial heterogeneity of ozone patterns are in coastal and inland areas caused by sea-land breeze and pollutant sources during high ozone episodes over southwestern Taiwan. This study used a decision tree to obtain quantitative insight into spatial distributions of precursor compound emissions and effects of meteorological conditions on ozone levels that are useful for refining monitoring plans and developing management strategies.
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less
Future heat waves and surface ozone
NASA Astrophysics Data System (ADS)
Meehl, Gerald A.; Tebaldi, Claudia; Tilmes, Simone; Lamarque, Jean-Francois; Bates, Susan; Pendergrass, Angeline; Lombardozzi, Danica
2018-06-01
A global Earth system model is used to study the relationship between heat waves and surface ozone levels over land areas around the world that could experience either large decreases or little change in future ozone precursor emissions. The model is driven by emissions of greenhouse gases and ozone precursors from a medium-high emission scenario (Representative Concentration Pathway 6.0–RCP6.0) and is compared to an experiment with anthropogenic ozone precursor emissions fixed at 2005 levels. With ongoing increases in greenhouse gases and corresponding increases in average temperature in both experiments, heat waves are projected to become more intense over most global land areas (greater maximum temperatures during heat waves). However, surface ozone concentrations on future heat wave days decrease proportionately more than on non-heat wave days in areas where ozone precursors are prescribed to decrease in RCP6.0 (e.g. most of North America and Europe), while surface ozone concentrations in heat waves increase in areas where ozone precursors either increase or have little change (e.g. central Asia, the Mideast, northern Africa). In the stabilized ozone precursor experiment, surface ozone concentrations increase on future heat wave days compared to non-heat wave days in most regions except in areas where there is ozone suppression that contributes to decreases in ozone in future heat waves. This is likely associated with effects of changes in isoprene emissions at high temperatures (e.g. west coast and southeastern North America, eastern Europe).
Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century
Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois; ...
2017-02-03
Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less
Impact of parameterization choices on the restitution of ozone deposition over vegetation
NASA Astrophysics Data System (ADS)
Le Morvan-Quéméner, Aurélie; Coll, Isabelle; Kammer, Julien; Lamaud, Eric; Loubet, Benjamin; Personne, Erwan; Stella, Patrick
2018-04-01
Ozone is a potentially phyto-toxic air pollutant, which can cause leaf damage and drastically alter crop yields, causing serious economic losses around the world. The VULNOZ (VULNerability to OZone in Anthropised Ecosystems) project is a biology and modeling project that aims to understand how plants respond to the stress of high ozone concentrations, then use a set of models to (i) predict the impact of ozone on plant growth, (ii) represent ozone deposition fluxes to vegetation, and finally (iii) estimate the economic consequences of an increasing ozone background the future. In this work, as part of the VULNOZ project, an innovative representation of ozone deposition to vegetation was developed and implemented in the CHIMERE regional chemistry-transport model. This type of model calculates the average amount of ozone deposited on a parcel each hour, as well as the integrated amount of ozone deposited to the surface at the regional or country level. Our new approach was based on a refinement of the representation of crop types in the model and the use of empirical parameters specific to each crop category. The results obtained were compared with a conventional ozone deposition modeling approach, and evaluated against observations from several agricultural areas in France. They showed that a better representation of the distribution between stomatal and non-stomatal ozone fluxes was obtained in the empirical approach, and they allowed us to produce a new estimate of the total amount of ozone deposited on the subtypes of vegetation at the national level.
NASA Astrophysics Data System (ADS)
Bai, Kaixu; Chang, Ni-Bin; Shi, Runhe; Yu, Huijia; Gao, Wei
2017-07-01
A four-step adaptive ozone trend estimation scheme is proposed by integrating multivariate linear regression (MLR) and ensemble empirical mode decomposition (EEMD) to analyze the long-term variability of total column ozone from a set of four observational and reanalysis total ozone data sets, including the rarely explored ERA-Interim total ozone reanalysis, from 1979 to 2009. Consistency among the four data sets was first assessed, indicating a mean relative difference of 1% and root-mean-square error around 2% on average, with respect to collocated ground-based total ozone observations. Nevertheless, large drifts with significant spatiotemporal inhomogeneity were diagnosed in ERA-Interim after 1995. To emphasize long-term trends, natural ozone variations associated with the solar cycle, quasi-biennial oscillation, volcanic aerosols, and El Niño-Southern Oscillation were modeled with MLR and then removed from each total ozone record, respectively, before performing EEMD analyses. The resulting rates of change estimated from the proposed scheme captured the long-term ozone variability well, with an inflection time of 2000 clearly detected. The positive rates of change after 2000 suggest that the ozone layer seems to be on a healing path, but the results are still inadequate to conclude an actual recovery of the ozone layer, and more observational evidence is needed. Further investigations suggest that biases embedded in total ozone records may significantly impact ozone trend estimations by resulting in large uncertainty or even negative rates of change after 2000.
Impact of East Asian Summer Monsoon on Surface Ozone Pattern in China
NASA Astrophysics Data System (ADS)
Li, Shu; Wang, Tijian; Huang, Xing; Pu, Xi; Li, Mengmeng; Chen, Pulong; Yang, Xiu-Qun; Wang, Minghuai
2018-01-01
Tropospheric ozone plays a key role in regional and global atmospheric and climate systems. In East Asia, ozone can be affected both in concentration level and spatial pattern by typical monsoon climate. This paper uses three different indices to identify the strength of East Asian summer monsoon (EASM) and explores the possible impact of EASM intensity on the ozone pattern through synthetic and process analysis. The difference in ozone between three strong and three weak monsoon years was analyzed using the simulations from regional climate model RegCM4-Chem. It was found that EASM intensity can significantly influence the spatial distribution of ozone in the lower troposphere. When EASM is strong, ozone in the eastern part of China (28°N - 42° N) is reduced, but the inverse is detected in the north and south. The surface ozone difference ranges from -7 to 7 ppbv during the 3 months (June to August) of the EASM, with the most obvious difference in August. Difference of the 3 months' average ozone ranges from -3.5 to 4 ppbv. Process analysis shows that the uppermost factor controlling ozone level during summer monsoon seasons is the chemistry process. Interannual variability of EASM can impact the spatial distribution of ozone through wind in the lower troposphere, cloud cover, and downward shortwave radiation, which affect the transport and chemical formation of ozone. The phenomenon should be addressed when considering the interaction between ozone and the climate in East Asia region.
The impact of synoptic weather on UK surface ozone and implications for premature mortality
NASA Astrophysics Data System (ADS)
Pope, R. J.; Butt, E. W.; Chipperfield, M. P.; Doherty, R. M.; Fenech, S.; Schmidt, A.; Arnold, S. R.; Savage, N. H.
2016-12-01
Air pollutants, such as ozone, have adverse impacts on human health and cause, for example, respiratory and cardiovascular problems. In the United Kingdom (UK), peak surface ozone concentrations typically occur in the spring and summer and are controlled by emission of precursor gases, tropospheric chemistry and local meteorology which can be influenced by large-scale synoptic weather regimes. In this study we composite surface and satellite observations of summer-time (April to September) ozone under different UK atmospheric circulation patterns, as defined by the Lamb weather types. Anticyclonic conditions and easterly flows are shown to significantly enhance ozone concentrations over the UK relative to summer-time average values. Anticyclonic stability and light winds aid the trapping of ozone and its precursor gases near the surface. Easterly flows (NE, E, SE) transport ozone and precursor gases from polluted regions in continental Europe (e.g. the Benelux region) to the UK. Cyclonic conditions and westerly flows, associated with unstable weather, transport ozone from the UK mainland, replacing it with clean maritime (North Atlantic) air masses. Increased cloud cover also likely decrease ozone production rates. We show that the UK Met Office regional air quality model successfully reproduces UK summer-time ozone concentrations and ozone enhancements under anticyclonic and south-easterly conditions for the summer of 2006. By using established ozone exposure-health burden metrics, anticyclonic and easterly condition enhanced surface ozone concentrations pose the greatest public health risk.
Upper Tropospheric Ozone Between Latitudes 60S and 60N Derived from Nimbus 7 TOMS/THIR Cloud Slicing
NASA Technical Reports Server (NTRS)
Ziemke, Jerald R.; Chandra, Sushil; Bhartia, P. K.
2002-01-01
This study evaluates the spatial distributions and seasonal cycles in upper tropospheric ozone (pressure range 200-500 hPa) from low to high latitudes (60S to 60N) derived from the satellite retrieval method called "Cloud Slicing." Cloud Slicing is a unique technique for determining ozone profile information in the troposphere by combining co-located measurements of cloud-top, pressure and above-cloud column ozone. For upper tropospheric ozone, co-located measurements of Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) above-cloud column ozone, and Nimbus 7 Temperature Humidity Infrared Radiometer (THIR) cloud-top pressure during 1979-1984 were incorporated. In the tropics, upper tropospheric ozone shows year-round enhancement in the Atlantic region and evidence of a possible semiannual variability. Upper tropospheric ozone outside the tropics shows greatest abundance in winter and spring seasons in both hemispheres with largest seasonal and largest amounts in the NH. These characteristics are similar to lower stratospheric ozone. Comparisons of upper tropospheric column ozone with both stratospheric ozone and a proxy of lower stratospheric air mass (i.e., tropopause pressure) from National Centers for Environmental Prediction (NCEP) suggest that stratosphere-troposphere exchange (STE) may be a significant source for the seasonal variability of upper tropospheric ozone almost everywhere between 60S and 60N except in low latitudes around 10S to 25N where other sources (e.g., tropospheric transport, biomass burning, aerosol effects, lightning, etc.) may have a greater role.
An Assessment of the Ozone Loss During the 1999-2000 SOLVE Arctic Campaign
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Newman, Paul A.; Lait, Leslie R.; McGee, Thomas J.; Burris, John F.; Browell, Edward V.; Grant, William B.; Richard, Eric; VonderGathen, Peter; Bevilacqua, Richard;
2001-01-01
Ozone observations from ozonesondes, the lidars aboard the DC-8, in situ ozone measurements from the ER-2, and satellite ozone measurements from Polar Ozone and Aerosol Measurement III (POAM) were used to assess ozone loss during the Sage III Ozone Loss and Validation Experiment (SOLVE) 1999-2000 Arctic campaign. Two methods of analysis were used. In the first method a simple regression analysis is performed on the ozonesonde and POAM measurements within the vortex. In the second method, the ozone measurements from all available ozone data were injected into a free running diabatic trajectory model and carried forward in time from December 1 to March 15. Vortex ozone loss was then estimated by comparing the ozone values of those parcels initiated early in the campaign with those parcels injected later in the campaign. Despite the variety of observational techniques used during SOLVE, the measurements provide a fairly consistent picture. Over the whole vortex, the largest ozone loss occurs between 550 and 400 K potential temperatures (approximately 23-16 km) with over 1.5 ppmv lost by March 15, the end of the SOLVE mission period. An ozone loss rate of 0.04-0.05 ppmv/day was computed for March 15. Ozonesondes launched after March 15 suggest that an additional 0.5 ppmv or more ozone was lost between March 15 and April 1. The small disagreement between ozonesonde and POAM analysis of January ozone loss is found to be due to biases in vortex sampling. POAM makes most of its solar occultation measurements at the vortex edge during January 2000 which bias samples toward air parcels that have been exposed to sunlight and likely do experience ozone loss. Ozonesonde measurements and the trajectory technique use observations that are more distributed within the interior of the vortex. Thus the regression analysis of the POAM measurements tends to overestimate mid-winter vortex ozone loss. Finally, our loss calculations are broadly consistent with other loss computations using ER-2 tracer data and MLS satellite data, but we find no evidence for the 1992 high mid-January loss reported using the Match technique.
Interactive Ozone and Methane Chemistry in GISS-E2 Historical and Future Climate Simulations
NASA Technical Reports Server (NTRS)
Shindell, D. T.; Pechony, O.; Voulgarakis, A.; Faluvegi, G.; Nazarenko. L.; Lamarque, J.-F.; Bowman, K.; Milly, G.; Kovari, B.; Ruedy, R.;
2013-01-01
The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF) calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016W/sq. m. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18W/ sq. m higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in a slightly stronger response per unit forcing during later decades. Tropical precipitation shifts south during boreal summer from 1850 to 1970, but then shifts northward from 1970 to 2000, following upper tropospheric temperature gradients more strongly than those at the surface.
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Walden, V. P.; Oltmans, S. J.; Petropavlovskikh, I. V.; Kivi, R.; Thölix, L.
2017-12-01
The current trend and future concentrations of atmospheric ozone are active areas of research as the effect of the Montreal Protocol is realized. The trend of ozone is due to various chemical and dynamical parameters that create, destroy, and transport atmospheric ozone. These important parameters can be represented by different proxies, but their effects on ozone concentration are not completely understood. Previous studies show that proxies related to ozone have different contributions depending on latitude and altitude. In this study, we use vertical profiles of ozone derived from ozonesondes launched by the NOAA Global Monitoring Division at Summit Station, Greenland from 2005 to 2016. The effects of different proxies on ozone are investigated. Summit Station is located at 3,200 meters above sea level on the Greenland Ice Sheet and is a unique place in the Arctic. We use a stepwise multiple regression (MLR) technique to remove the seasonal cycle of ozone and investigate how the different proxies [solar flux (SF), the Quasi-Biennial Oscillation (QBO), the El Nino-Southern Oscillation index (ENSO), the Arctic Oscillation (AO), eddy heat flux (EHF), the volume of polar stratospheric clouds (VPSC), equivalent latitude (EL), and the tropopause pressure (TP)] affect the vertical distribution of ozone over Summit. The MLR is applied separately to total column ozone (TCO) as well as partial ozone columns (PCO) in the troposphere and the lower, middle, and upper stratosphere. Our results show that dynamical processes are important contributors to ozone concentrations over Summit Station. Tropospheric pressure and the QBO are effective predictors of ozone in the troposphere, lower and middle stratosphere, and to the TCO. The VPSC is an important contributor to changes in ozone in the middle stratosphere. AO explains part of low/mid stratospheric and TCO ozone cycle. A simulation model of ozone over Summit built from the MLR results explains the seasonal cycle and the trends in TCO over Summit with a correlation coefficient (R2) of 82% for TCO. Simulations of PCO in the lower and middle stratosphere range from R2 = 62% to 85%.
History of Ozone Research: From Schonbein to the Present
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.
1999-01-01
In 1840, C.F. Schonbein recognized that the smell generated in several different electrical and chemical processes was a single substance. He named this substance "ozein" from the Greek for "to smell". This substance we know today as ozone. Several periods can be distinguished in the continued development of our understanding of ozone. Throughout the late 19th century, the identity and properties of ozone were established and described. Ozone was recognized to be a constituent of normal air and tests were established to measure its concentration. Its disinfectant properties were recognized. New methods were developed for making ozone in the laboratory. In 1879, ultraviolet spectroscopic techniques were applied to the measurement of the solar spectrum and it was discovered by Comu that the spectrum was cut off at about 300 nm wavelength. Hartley suggested, based on laboratory measurements, that this cutoff was due to ozone in the atmosphere which he correctly asserted was somewhere in the upper atmosphere. This began the period of development of the amount and distribution of ozone throughout the atmosphere. In 1930, Chapman put forward the first theory of the formation and destruction of ozone. By the mid-1960s it was becoming obvious that the description of the chemical loss term was inadequate. By the early 1970s the chemical destruction of ozone by the oxides of hydrogen, nitrogen, chlorine, and bromine was recognized as an essential element in the chemical balance determining the ozone concentration. Today, ozone is a broad research project which crosses the boundaries of traditional disciplines. Stratospheric ozone loss due to chlorofluorocarbons is a newsworthy item. The Antarctic ozone hole opens up every spring. The provisions of the Montreal Protocol were agreed upon by countries around the world and promise to reduce the future levels of ozone-destroying chlorine in the stratosphere. Ozone concentrations in polluted cities are a subject of local and national regulations to limit its potential for causing health problems and corrosive effects on materials. A lot is known about ozone but many new questions are still being developed.
NASA Astrophysics Data System (ADS)
Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.
2015-12-01
During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen oxides to the observed ozone production in the boundary layer.
Tropospheric ozone fluxes in Norway spruce forest during the transition period from autumn to winter
NASA Astrophysics Data System (ADS)
Juran, Stanislav; Fares, Silvano; Zapletal, Miloš; Cudlín, Pavel; Večeřa, Zbyněk; Urban, Otmar
2017-04-01
Norway spruce exhibits seasonal variations in stomatal conductance and photosynthetic activity typical for overwintering plants, with a decline during autumn and a complete recovery during spring. We investigated ozone fluxes during this transient period (November 2016). Fluxes of tropospheric ozone, the major phytotoxic near-ground pollutant causing injuries to plant tissues, were measured at Bily Kriz experimental station in Beskydy Mountains, the Czech Republic. Dry chemiluminescence fast-response ozone sensor coupled with sonic anemometer was used to measure fast fluctuations in ozone concentration and three-dimensional wind speed, respectively. Apart from this eddy covariance technique, within-canopy ozone concentration gradient was simultaneously measured by UV-absorption based slow-response ozone analysers. Ozone fluxes were subsequently modelled by an Inverse Lagrangian Transport Model (ILTM). A comparison of measured and calculated fluxes is thus available. Moreover, stomatal ozone flux was calculated based on Evaporative/Resistive method assuming stomata are the most relevant sink in the spruce forest. The low NOx concentration throughout the year and low concentrations of volatile organic compounds (VOCs) during the transition period led to hypothesize that non-stomatal flux here estimated by difference between total ozone flux and stomatal ozone flux is represented mainly by dry soil deposition and wet deposition during the snow period. We discuss here the ILTM parameterisation with comparison to measured ozone fluxes. Correct estimation of stomatal ozone flux is essential, especially in transition periods, where main scientific emphasis is put rarely. In addition, this research should help to develop metrics for ozone-risk assessment and advance our knowledge in biosphere-atmosphere exchange over Norway spruce forest. Acknowledgement This work was supported by the Ministry of Education, Youth and Sports within the National Programme for Sustainability (grant No. LO1415) and project CzeCOS (grant No. LM2015061).
Key drivers of ozone change and its radiative forcing over the 21st century
NASA Astrophysics Data System (ADS)
Iglesias-Suarez, Fernando; Kinnison, Douglas E.; Rap, Alexandru; Maycock, Amanda C.; Wild, Oliver; Young, Paul J.
2018-05-01
Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm-2, (2) 163 ± 109 m Wm-2, and (3) 238 ± 113 m Wm-2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm-2 relative to year 2000 and 760 ± 230 m Wm-2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry-climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm-2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ˜ 50 % of the overall radiative forcing for the 2000-2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.
NASA Technical Reports Server (NTRS)
Peters, W.; Krol, M. C.; Fortuin, J. P. F.; Kelder, H. M.; Thompson, A. M.; Becker, C. R.; Lelieveld, J.; Crutzen, P. J.
2003-01-01
We present an analysis of 2.5 years of weekly ozone soundings conducted at a new monitoring station in Paramaribo, Surinam (6 deg N,55 deg W). This is currently one of only three ozone sounding stations in the northern hemisphere (NH) tropics, and the only one in the equatorial Atlantic region. Paramaribo is part of the Southern Hemisphere ADditional Ozone Sounding program (SHADOZ). Due to its position close to the equator, the Inter Tropical Convergence Zone (ITCZ) passes over Paramaribo twice per year, which results in a semi-annual seasonality of many parameters including relative humidity and ozone. The dataset from Paramaribo is used to: (1) evaluate ozone variability relative to precipitation, atmospheric circulation patterns and biomass burning; (2) contrast ozone at the NH equatorial Atlantic with that at nearby southern hemisphere (SH) stations Natal (6 deg S,35 deg W) and Ascension (8 deg S,14 deg W); (3) compare the seasonality of tropospheric ozone with a satellite-derived ozone product: Tropical Tropospheric Ozone Columns from the Modified Residual method (MR-TTOC). We find that Paramaribo is a distinctly Atlantic station. Despite its position north of the equator, it resembles nearby SH stations during most of the year. Transport patterns in the lower and middle troposphere during February and March differ from SH stations, which leads to a seasonality of ozone with two maxima. MR-TTOC over Paramaribo does not match the observed seasonality of ozone due to the use of a SH ozone sonde climatology in the MR method. The Paramaribo ozone record is used to suggest an improvement for northern hemisphere MR-TTOC retrievals. We conclude that station Paramaribo shows unique features in the region, and clearly adds new information to the existing SHADOZ record.
NASA Technical Reports Server (NTRS)
Bowman, Kevin W.; Shindell, Drew Todd; Worden, H. M.; Lamarque, J. F.; Young, P. J.; Stevenson, D. S.; Qu, Z.; delaTorre, M.; Bergmann, D.; Cameron-Smith, P. J.;
2013-01-01
We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5-20 ppb) in the Southern Hemisphere (SH) and modest high bias (5-10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005-2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120mW/ sq. m OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39+/- 41mW/ sq. m relative to TES data. We show that there is a correlation (Sq. R = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750-2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100mW/ sq. m. Removing these models leads to a mean ozone radiative forcing of 394+/- 42mW/ sq. m. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 +/- 60mW/ sq. m derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.
NASA Astrophysics Data System (ADS)
Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.
2017-12-01
Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.
Shelf life characteristics of bread produced from ozonated wheat flour.
Obadi, Mohammed; Zhu, Ke-Xue; Peng, Wei; Sulieman, Abdellatif A; Mahdi, Amer Ali; Mohammed, Khalid; Zhou, Hui-Ming
2017-11-13
The objective of this work was to study the effect of ozone treatment on the quality of bread and its shelf life. Flour was treated with ozone gas a rate of 5 L/min for 5, 15, 25, 35, and 45 min. Baking studies showed that bread made from flour treated with ozone for 15 min exhibited improved quality properties (in terms of specific volume, bread color, and crumb cell numbers). Exposure to ozone for shorter times did not cause obvious changes in the major volatile compounds of bread. A shelf life tests showed that ozone gas treatment influenced the extent of starch crystallinity. The relative starch crystallinity of bread made from flour treated with ozone for 15 min was lower than the control value, as were the hardness, springiness, and cohesiveness. Microscopic examination of crumb structure revealed remarkable differences between control and treated breads. Although ozone is a naturally occurring substance found in the atmosphere, ozone can also be produced synthetically. Recently, ozone has come to be regarded as a new treatment for flour. Especially in countries where the chlorination is forbidden, ozone treatment may be of a great interest if it were associated with significant and reliable changes in flour. Ozone treatment of wheat flour tends to improve bread shelf life and quality in terms of physiochemical, baking properties, X-ray diffraction data, volatile compound levels, crumb structure, and textural characteristics. Given such findings, desirable shelf life and bread qualities may be achieved when ozone is used as a flour oxidant prior to bread baking. Analyses of the effects of ozone gas on treatment of flour on bread shelf life and quality would aid the production of high quality and extend the shelf life of bread. © 2017 Wiley Periodicals, Inc.
Long-term performance of passive materials for removal of ozone from indoor air.
Cros, C J; Morrison, G C; Siegel, J A; Corsi, R L
2012-02-01
The health effects associated with exposure to ozone range from respiratory irritation to increased mortality. In this paper, we explore the use of three green building materials and an activated carbon (AC) mat that remove ozone from indoor air. We studied the effects of long-term exposure of these materials to real environments on ozone removal capability and pre- and post-ozonation emissions. A field study was completed over a 6-month period, and laboratory testing was intermittently conducted on material samples retrieved from the field. The results show sustained ozone removal for all materials except recycled carpet, with greatest ozone deposition velocity for AC mat (2.5-3.8 m/h) and perlite-based ceiling tile (2.2-3.2 m/h). Carbonyl emission rates were low for AC across all field sites. Painted gypsum wallboard and perlite-based ceiling tile had similar overall emission rates over the 6-month period, while carpet had large initial emission rates of undesirable by-products that decayed rapidly but remained high compared with other materials. This study confirms that AC mats and perlite-based ceiling tile are viable surfaces for inclusion in buildings to remove ozone without generating undesirable by-products. PRACTICAL IMPLICATIONS The use of passive removal materials for ozone control could decrease the need for, or even render unnecessary, active but energy consuming control solutions. In buildings where ozone should be controlled (high outdoor ozone concentrations, sensitive populations), materials specifically designed or selected for removing ozone could be implemented, as long as ozone removal is not associated with large emissions of harmful by-products. We find that activated carbon mats and perlite-based ceiling tiles can provide substantial, long-lasting, ozone control. © 2011 John Wiley & Sons A/S.
On Springtime Ozone Enhancements in the Lower Troposphere Over Beijing
NASA Astrophysics Data System (ADS)
Huang, J.; Liu, H.; Chan, C.; Crawford, J. H.; Considine, D. B.; Zhang, Y.; Zheng, X.; Oltmans, S. J.; Liu, S. C.; Thouret, V.
2012-12-01
Tropospheric ozone is an important greenhouse gas, the primary source of hydroxyl radical (OH) that controls the tropospheric oxidizing capacity, and a major air pollutant near the surface. Previous studies showed that ozone concentrations in the lower troposphere (LT) over Beijing have increased over the past two decades as a result of rapid industrialization in China. As part of an ozonesonde sounding campaign, called Transport of Air Pollutants and Tropospheric Ozone over China (TAPTO-China), intensive measurements of ozone vertical profiles (16 in total) were conducted in Beijing during April 11 - May 15, 2005. Thirteen vertical profiles were also sampled by the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program during April 3 - May 29, 2005. High ozone concentrations (up to 94.7 ppbv) were frequently observed in the LT (~1.5-2km) during this period. We evaluate here the capability of a 3-D chemical transport model (GEOS-Chem at 2°x2.5° resolution) to reproduce these ozone enhancements, and use the model to examine transport pathways for ozone pollution and quantify their sources. The model captures the occurrences but significantly underestimates the magnitude of ozone enhancements. By tagging ozone produced in different source regions and conducting sensitivity simulations with the model, we show that Asian troposphere and Asian anthropogenic pollution made the major contributions to those ozone enhancements. Contributions from European and North American troposphere and anthropogenic pollution reduced during these events, compared to those days without ozone enhancements. We find that most of the ozone enhancements observed in the LT occurred under southerly wind and warmer conditions. Their occurrence frequency appears to be related to the onset of Asian summer monsoon. The influence of regional transport from different source regions in East Asia will also be discussed.
A search for relativistic electron induced stratospheric ozone depletion
NASA Technical Reports Server (NTRS)
Aikin, Arthur C.
1994-01-01
Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.
A Review of the Properties and Applications of Ozone in Endodontics: An Update
Mohammadi, Zahed; Shalavi, Sousan; Soltani, Mohammad Karim; Asgary, Saeed
2013-01-01
Ozone is a triatomic molecule consisting of three oxygen atoms. It is applied to oral tissues in the forms of ozonated water, ozonated olive oil and oxygen/ozone gas. This paper presents a brief review on the chemistry of ozone as well as its medical and dental applications focusing on its use in endodontics. Ozone’s antimicrobial activity, its effect on dentin bonding, toxicity and contra-indications are also reviewed. PMID:23717326
"OZONE SOURCE APPORTIONMENT IN CMAQ' | Science ...
Ozone source attribution has been used to support various policy purposes including interstate transport (Cross State Air Pollution Rule) by U.S. EPA and ozone nonattainment area designations by State agencies. Common scientific applications include tracking intercontinental transport of ozone and ozone precursors and delineating anthropogenic and non-anthropogenic contribution to ozone in North America. As in the public release due in September 2013, CMAQ’s Integrated Source Apportionment Method (ISAM) attributes PM EC/OC, sulfate, nitrate, ammonium, ozone and its precursors NOx and VOC, to sectors/regions of users’ interest. Although the peroxide-to-nitric acid productions ratio has been the most common indicator to distinguish NOx-limited ozone production from VOC-limited one, other indicators are implemented in addition to allowing for an ensemble decision based on a total of 9 available indicator ratios. Moreover, an alternative approach of ozone attribution based on the idea of chemical sensitivity in a linearized system that has formed the basis of chemical treatment in forward DDM/backward adjoint tools has been implemented in CMAQ. This method does not require categorization into either ozone regime. In this study, ISAM will simulate the 2010 North America ozone using all of the above gas-phase attribution methods. The results are to be compared with zero-out difference out of those sectors in the host model runs. In addition, ozone contribution wil
Human Health and Economic Impacts of Ozone Reductions by Income Group.
Saari, Rebecca K; Thompson, Tammy M; Selin, Noelle E
2017-02-21
Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.
Tropospheric ozone in east Asia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadnis, M.J.
1996-12-31
An analysis of the observed data for the tropospheric ozone at mid latitudes in east Asia is done. There are three ways by which the tropospheric ozone is calculated, namely: (1) Ozonesonde measurements, (2) Fishman`s method of Residual Ozone and (3) TOMS measurements - an indirect method of calculating tropospheric ozone. In addition the surface ozone values at the network sites in Japan is also considered. The analysis of data is carried out for a period of twelve years from 1979 to 1991. In general it is observed that the tropospheric ozone is more in summer than winter, obviously becausemore » of the larger tropopause height in summer. On an average for the period of the analysis, the ozone values are at a high of about 60 DU (dobson units). While in winter the values go down to around 30 DU. Also a time series analysis shows an increasing trend in the values over the years. The ozonesonde values are correlated more to the TOMS tropospheric ozone values. For the stations analyzed in Japan, the TOMS tropospheric ozone values are generally greater than the ozonesonde values. The analysis of the average monthly surface ozone in Japan shows highs in spring and lows in summer. This can be attributed to movement of pollutant laden fronts towards Japan during spring. The highs for surface ozone are about 50 DU while the lows are around 20 DU.« less
Urban and Rural Ozone Pollution Over Lusaka (Zambia, 15.5S, 25E) During SAFARI-2000 (September 2000)
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Herman, J. R.; Witte, J. C.; Phahlane, A.; Coetzee, G. J. R.; Mukula, C.; Hudson, R. D.; Frolov, A. D.; Bhartia, P. K. (Technical Monitor)
2001-01-01
In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka during a six-day period in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, interspersed by a frontal passage that reduced boundary layer ozone by 30 percent. Smoke aerosol column variations aloft and total ozone were monitored by a sun photometer. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39- 54 Dobson Units (note 1.3 km elevation at the launch site). High ozone concentrations above the mixed and inversion layers were advected from rural burning regions in western Zambia where SAFARI aircraft and ground-based instruments observed intense biomass fires and elevated aerosol and trace gas amounts. TOMS tropospheric ozone and smoke aerosols products show the distribution of biomass burning and associated pollution throughout southern Africa in September 2000. Animations of satellite images and trajectories confirm pollutant recirculation over south central African fires, exit of ozone from Mozambique and Tanzania to the Indian Ocean and the characteristic buildup of tropospheric ozone over the Atlantic from western African outflow.
A Reduced Form Model for Ozone Based on Two Decades of ...
A Reduced Form Model (RFM) is a mathematical relationship between the inputs and outputs of an air quality model, permitting estimation of additional modeling without costly new regional-scale simulations. A 21-year Community Multiscale Air Quality (CMAQ) simulation for the continental United States provided the basis for the RFM developed in this study. Predictors included the principal component scores (PCS) of emissions and meteorological variables, while the predictand was the monthly mean of daily maximum 8-hour CMAQ ozone for the ozone season at each model grid. The PCS form an orthogonal basis for RFM inputs. A few PCS incorporate most of the variability of emissions and meteorology, thereby reducing the dimensionality of the source-receptor problem. Stochastic kriging was used to estimate the model. The RFM was used to separate the effects of emissions and meteorology on ozone concentrations. by running the RFM with emissions constant (ozone dependent on meteorology), or constant meteorology (ozone dependent on emissions). Years with ozone-conducive meteorology were identified, and meteorological variables best explaining meteorology-dependent ozone were identified. Meteorology accounted for 19% to 55% of ozone variability in the eastern US, and 39% to 92% in the western US. Temporal trends estimated for original CMAQ ozone data and emission-dependent ozone were mostly negative, but the confidence intervals for emission-dependent ozone are much
Fiber-Optic Coupled Lidar Receiver System to Measure Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Harper, David Brent; Elsayed-Ali, Hani
1998-01-01
The measurement of ozone in the atmosphere has become increasingly important over the past two decades. Significant increases of ozone concentrations in the lower atmosphere, or troposphere, and decreases in the upper atmosphere, or stratosphere, have been attributed to man-made causes. High ozone concentrations in the troposphere pose a health hazard to plants and animals and can add to global warming. On the other hand, ozone in the stratosphere serves as a protective barrier against strong ultraviolet (UV) radiation from the sun. Man-made CFC's (chlorofluorocarbons) act as a catalyst with a free oxygen atom and an ozone molecule to produce two oxygen molecules therefore depleting the protective layer of ozone in the stratosphere. The beneficial and harmful effects of ozone require the study of ozone creation and destruction processes in the atmosphere. Therefore, to provide an accurate model of these processes, an ozone lidar system must be able to be used frequently with as large a measurement range as possible. Various methods can be used to measure atmospheric ozone concentrations. These include different airborne and balloon measurements, solar occulation satellite techniques, and the use of lasers in lidar (high detection and ranging,) systems to probe the atmosphere. Typical devices such as weather balloons can only measure within the direct vicinity of the instrument and are therefore used infrequently. Satellites use solar occulation techniques that yield low horizontal and vertical resolution column densities of ozone.
NASA Astrophysics Data System (ADS)
Biswas, J.; Farooqui, Z.; Guttikunda, S. K.
2012-12-01
It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.
Snapshot of the Antarctic Ozone Hole 2010
2017-12-08
Image acquired September 12, 2010 The yearly depletion of stratospheric ozone over Antarctica – more commonly referred to as the “ozone hole” – started in early August 2010 and is now expanding toward its annual maximum. The hole in the ozone layer typically reaches its maximum area in late September or early October, though atmospheric scientists must wait a few weeks after the maximum to pinpoint when the trend of ozone depletion has slowed down and reversed. The hole isn’t literal; no part of the stratosphere — the second layer of the atmosphere, between 8 and 50 km (5 and 31 miles) — is empty of ozone. Scientists use "hole" as a metaphor for the area in which ozone concentrations drop below the historical threshold of 220 Dobson Units. Historical levels of ozone were much higher than 220 Dobson Units, according to NASA atmospheric scientist Paul Newman, so this value shows a very large ozone loss. Earth's ozone layer protects life by absorbing ultraviolet light, which damages DNA in plants and animals (including humans) and leads to skin cancer. The Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite acquired data for this map of ozone concentrations over Antarctica on September 12, 2010. OMI is a spectrometer that measures the amount of sunlight scattered by Earth’s atmosphere and surface, allowing scientists to assess how much ozone is present at various altitudes — particularly the stratosphere — and near the ground. So far in 2010, the size and depth of the ozone hole has been slightly below the average for 1979 to 2009, likely because of warmer temperatures in the stratosphere over the far southern hemisphere. However, even slight changes in the meteorology of the region this month could affect the rate of depletion of ozone and how large an area the ozone hole might span. You can follow the progress of the ozone hole by visiting NASA’s Ozone Hole Watch page. September 16 is the International Day for the Preservation of the Ozone Layer, a commemoration of the day in 1987 when nations commenced the signing of the Montreal Protocol to limit and eventually ban ozone-depleting substances such as chlorofluorocarbons (CFCs) and other chlorine and bromine-containing compounds. The ozone scientific assessment panel for the United Nations Environment Program, which monitors the effectiveness of the Montreal Protocol, is expected to release its latest review of the state of the world’s ozone layer by the end of 2010. (The last assessment was released in 2006.) Paul Newman is one of the four co-chairs of the assessment panel. NASA image courtesy Ozone Hole Watch. Caption by Michael Carlowicz. Instrument: Aura - OMI To learn more go to: ozonewatch.gsfc.nasa.gov/ Credit: NASA’s Earth Observatory NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe. Follow us on Twitter Join us on Facebook
40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to be...
Children's Models of the Ozone Layer and Ozone Depletion.
ERIC Educational Resources Information Center
Christidou, Vasilia; Koulaidis, Vasilis
1996-01-01
The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…
40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season allowance...
40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to be...
40 CFR 97.522 - Submission of TR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Submission of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.522 Submission of TR NOX Ozone Season allowance transfers. (a) An authorized account representative seeking recordation of a TR NOX Ozone Season allowance...
40 CFR 52.1683 - Control strategy: Ozone.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Control strategy: Ozone. 52.1683...: Ozone. (a) The State of New York has certified to the satisfaction of the EPA that no sources are... ozone nonattainment areas in New York listed below have attained the 1-hour ozone standard on the date...
40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance... Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under...
40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance... Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under...
40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance...
40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...
40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... State and Tribal 2008 Ozone Designation Recommendations; Extension of Public Comment Period AGENCY... and tribal ozone designation recommendations for the 2008 Ozone National Ambient Air Quality Standards... designation determinations for the 2008 ozone standards in spring 2012. DATES: Comments must be received on or...
40 CFR 97.525 - Compliance with TR NOX Ozone Season assurance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.525 Compliance with TR NOX Ozone Season assurance provisions. (a) Availability for deduction. TR NOX Ozone Season allowances are available to be deducted for...
40 CFR 97.523 - Recordation of TR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.523 Recordation of TR NOX Ozone Season allowance transfers... NOX Ozone Season allowance transfer that is correctly submitted under § 97.522, the Administrator will...
40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance...
40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season allowance...
40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance... Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under...
40 CFR 52.1683 - Control strategy: Ozone.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 4 2013-07-01 2013-07-01 false Control strategy: Ozone. 52.1683...: Ozone. (a) The State of New York has certified to the satisfaction of the EPA that no sources are... ozone nonattainment areas in New York listed below have attained the 1-hour ozone standard on the date...
40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...
40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...
40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false CAIR NOX Ozone Season allowance... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance...
40 CFR 52.1683 - Control strategy: Ozone.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 4 2014-07-01 2014-07-01 false Control strategy: Ozone. 52.1683...: Ozone. (a) The State of New York has certified to the satisfaction of the EPA that no sources are... that the 1-hour ozone nonattainment areas in New York listed below have attained the 1-hour ozone...
40 CFR 97.522 - Submission of TR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Submission of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.522 Submission of TR NOX Ozone Season allowance transfers. (a) An authorized account representative seeking recordation of a TR NOX Ozone Season allowance...
40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance...
40 CFR 97.522 - Submission of TR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Submission of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.522 Submission of TR NOX Ozone Season allowance transfers. (a) An authorized account representative seeking recordation of a TR NOX Ozone Season allowance...
40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season allowance...
40 CFR 96.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance... IMPLEMENTATION PLANS CAIR NOX Ozone Season Allowance Allocations § 96.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance...
40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season allowance...
40 CFR 97.341 - Timing requirements for CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for CAIR NOX Ozone... TRADING PROGRAMS CAIR NOX Ozone Season Allowance Allocations § 97.341 Timing requirements for CAIR NOX Ozone Season allowance allocations. (a) The Administrator will determine by order the CAIR NOX Ozone...
40 CFR 97.523 - Recordation of TR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.523 Recordation of TR NOX Ozone Season allowance transfers... NOX Ozone Season allowance transfer that is correctly submitted under § 97.522, the Administrator will...
40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false CAIR NOX Ozone Season allowance... Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under...
40 CFR 97.524 - Compliance with TR NOX Ozone Season emissions limitation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.524 Compliance with TR NOX Ozone Season emissions limitation. (a) Availability for deduction for compliance. TR NOX Ozone Season allowances are available to be...
40 CFR 97.360 - Submission of CAIR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Submission of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Transfers § 97.360 Submission of CAIR NOX Ozone Season allowance transfers. A CAIR authorized account representative seeking recordation of a CAIR NOX Ozone Season allowance...
40 CFR 97.523 - Recordation of TR NOX Ozone Season allowance transfers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.523 Recordation of TR NOX Ozone Season allowance transfers... NOX Ozone Season allowance transfer that is correctly submitted under § 97.522, the Administrator will...
40 CFR 97.525 - Compliance with TR NOX Ozone Season assurance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.525 Compliance with TR NOX Ozone Season assurance provisions. (a) Availability for deduction. TR NOX Ozone Season allowances are available to be deducted for...
40 CFR 52.1683 - Control strategy: Ozone.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 4 2012-07-01 2012-07-01 false Control strategy: Ozone. 52.1683...: Ozone. (a) The State of New York has certified to the satisfaction of the EPA that no sources are... ozone nonattainment areas in New York listed below have attained the 1-hour ozone standard on the date...
40 CFR 97.342 - CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance... Ozone Season Allowance Allocations § 97.342 CAIR NOX Ozone Season allowance allocations. (a)(1) The baseline heat input (in mmBtu) used with respect to CAIR NOX Ozone Season allowance allocations under...
40 CFR 97.525 - Compliance with TR NOX Ozone Season assurance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Compliance with TR NOX Ozone Season... TR NOX Ozone Season Trading Program § 97.525 Compliance with TR NOX Ozone Season assurance provisions. (a) Availability for deduction. TR NOX Ozone Season allowances are available to be deducted for...
Global Distribution and Trends of Tropospheric Ozone: An Observation-Based Review
NASA Technical Reports Server (NTRS)
Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.;
2014-01-01
Tropospheric ozone plays a major role in Earth's atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone's abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone's global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.
NASA Astrophysics Data System (ADS)
Wieser, G.; Emberson, L. D.
It is widely acknowledged that the possible impacts of ozone on forest trees are more closely related to ozone flux through the stomata than to external ozone exposure. However, the application of the flux approach on a European scale requires the availability of appropriate models, such as the European Monitoring and Evaluation Programme (EMEP) ozone deposition model, for estimating ozone flux and cumulative ozone uptake. Within this model stomatal conductance is the key variable, since it determines the amount of ozone absorbed by the leaves. This paper describes the suitability of the existing EMEP ozone deposition model parameterisation and formulation to represent stomatal behaviour determined from field measurements on adult Norway spruce ( Picea abies (L.) Karst.) trees in the Central European Alps. Parameters affecting maximum stomatal conductance (e.g. seasonal phenology, needle position, needle age, nutrient deficiency and ozone itself) and stomatal response functions to temperature, irradiance, vapour pressure deficit, and soil water content are investigated. Finally, current limitations and possible alterations of the EMEP model will be discussed with respect to spatial scales of available input data for future flux modelling.
Vertical ozone characteristics in urban boundary layer in Beijing.
Ma, Zhiqiang; Xu, Honghui; Meng, Wei; Zhang, Xiaoling; Xu, Jing; Liu, Quan; Wang, Yuesi
2013-07-01
Vertical ozone and meteorological parameters were measured by tethered balloon in the boundary layer in the summer of 2009 in Beijing, China. A total of 77 tethersonde soundings were taken during the 27-day campaign. The surface ozone concentrations measured by ozonesondes and TEI 49C showed good agreement, albeit with temporal difference between the two instruments. Two case studies of nocturnal secondary ozone maxima are discussed in detail. The development of the low-level jet played a critical role leading to the observed ozone peak concentrations in nocturnal boundary layer (NBL). The maximum of surface ozone was 161.7 ppbv during the campaign, which could be attributed to abundant precursors storage near surface layer at nighttime. Vertical distribution of ozone was also measured utilizing conventional continuous analyzers on 325-m meteorological observation tower. The results showed the NBL height was between 47 and 280 m, which were consistent with the balloon data. Southerly air flow could bring ozone-rich air to Beijing, and the ozone concentrations exceeded the China's hourly ozone standard (approximately 100 ppb) above 600 m for more than 12 h.
Extracellular polymers of ozonized waste activated sludge.
Liu, J C; Lee, C H; Lai, J Y; Wang, K C; Hsu, Y C; Chang, B V
2001-01-01
Effect of ozonation on characteristics of waste activated sludge was investigated in the current study. Concentrations of cell-bound extracellular polymers (washed ECPs) did not change much upon ozonation, whereas the sum of cell-bound and soluble extracellular polymers (unwashed ECPs) increased with increasing ozone dose. Washed ECPs in original sludge as divided by molecular weight distribution was 39% < 1,000 Da (low MW), 30% from 1,000 to 10,000 Da (medium MW), and 31% > 10,000 Da (high MW). It was observed that the low-MW fraction decreased, and the high-MW fraction increased in ozonized sludge. The unwashed ECPs were characterized as 44% in low MW, 30% in medium MW, and 26% in high MW. Both low-MW and medium-MW fractions of unwashed ECPs decreased while high-MW fraction increased in ozonized sludge. The dewaterability of ozonized sludge, assessed by capillary suction time (CST) and specific resistance to filtration (SRF), deteriorated with ozone dose. The optimal dose of cationic polyelectrolyte increased with increasing ozone dose. The production rate and the accumulated amount of methane gas of ozonized sludge were also higher.
Mesospheric ozone measurements by SAGE II
NASA Technical Reports Server (NTRS)
Chu, D. A.; Cunnold, D. M.
1994-01-01
SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.
Tropospheric Ozone from Assimilation of Aura Data using Different Definitions of the Tropopause
NASA Technical Reports Server (NTRS)
Stajner, Ivanka; Wargan, K.; Chang, L.-P.; Hayashi, H.; Pawson, S.; Pawson, Steven; Livesey, N.; Bhartia, P. K.
2006-01-01
Ozone data from Aura OMI and MLS instruments were assimilated into the general circulation model (GCM) constrained by assimilated meteorological fields from the Global Modeling and Assimilation Office at NASA Goddard. Properties of tropospheric ozone and their sensitivity to the definition of the tropopause are investigated. Three definitions of the tropopause are considered: (1) dynamical (using potential vorticity and potential temperature), (2) using temperature lapse rate, and (3) using a fixed ozone value. Comparisons of the tropospheric ozone columns using these tropopause definitions will be presented and evaluated against coincident profiles from ozone sondes. Assimilated ozone profiles are used to identify possible tropopause folding events, which are important for stratosphere-troposphere exchange. Each profile is searched for multiple levels at which ozone attains the value typical of the troposphere-stratosphere transition in order to identify possible tropopause folds. Constrained by the dynamics from a global model and by assimilation of Aura ozone data every 3-hours, this data set provides an opportunity to study ozone evolution in the upper troposphere and lower stratosphere with high temporal resolution.
Insights into Tropical Tropospheric Ozone from Satellite and Sonde Data
NASA Technical Reports Server (NTRS)
Thompson, Anne M.
2003-01-01
The first climatological overview of total, stratospheric and tropospheric ozone in the southern hemisphere tropical and subtropics is based on ozone sounding data from 10 sites comprising the Southern Hemisphere Additional OZonesondes (SHADOZ) network. Observations were made over: Ascension Island; Nairobi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil. The data reside at: http://code916.gsfc.nasa.gov/Data_services/shadoz. SHADOZ ozone time-series and profiles give a perspective on tropical total, stratospheric and tropospheric ozone. Prominent features are highly variable tropospheric ozone and a zonal wave-one pattern in total (and tropospheric) column ozone. Dynamical and chemical influences appear to be of comparable magnitude though model studies are needed to quantify this. In addition to leading the SHADOZ network, we have been producing near-real tropical tropospheric ozone ('TTO') data from the Total Ozone Mapping Spectrometer (TOMS) since 1997 with Prof. Hudson and students at the University of Maryland: http://metosrv2.umd.edu/tropo. Further perspective on the complexity of tropospheric ozone variability is shown using satellite observations.
Inter-Annual and Decadal Changes in Tropospheric and Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, Jr. R.; Chandra, S.
2011-01-01
Ozone data beginning October 2004 from the Aura Ozone Monitoring Instrument (OMI) and Aura Microwave Limb Sounder (MLS) are used to evaluate the accuracy of the Cloud slicing technique in effort to develop long data records of tropospheric and stratospheric ozone and studying their long-term changes. Using this technique, we have produced a 32-year (1979-2010) long record of tropospheric and stratospheric ozone from the combined Total Ozone Mapping Spectrometer (Toms) and OMI. The analyses of these time series suggest that the quasi-biennial oscillation (QBO) is the dominant source of inter-annual changes of 30-40 Dobson Units (DU). Tropospheric ozone also indicates a QBO signal in the peak to peak changes varying from 2 to 7 DU. Decadal changes in global stratospheric ozone indicate a turnaround in ozone loss around mid 1990's with most of these changes occurring in the Northern Hemisphere from the subtropics to high latitudes. The trend results are generally consistent with the prediction of chemistry climate models which include the reduction of ozone destroying substances beginning in the late 1980's mandated by the Montreal Protocol.
Urban and Rural Ozone Collect over Lusaka (Zambia, 15.5 S, 28 E) during SAFARI-2000 (September 2000)
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Witte, Jacquelyn C.; Freiman, M. Tai; Phalane, N. Agnes; Coetzee, Gert J. R.
2002-01-01
In early September, throughout south central Africa, seasonal clearing of dry vegetation and the production of charcoal for cooking leads to intense smoke haze and ozone formation. Ozone soundings made over Lusaka in early September 2000 recorded layers of high ozone (greater than 125 ppbv at 5 km) during two stagnant periods, broken by a frontal passage that reduced boundary layer ozone by 30%. During the 6-day measurement period, surface ozone concentrations ranged from 50-95 ppbv and integrated tropospheric ozone from the soundings was 39-54 Dobson Units (note 1.3 km elevation at the launch site). A stable layer of high ozone at 2-5 km was advected from rural burning regions in western Zambia and neighboring countries, making Lusaka a collection point for transboundary pollution. This is confirmed by trajectories that show ozone leaving Angola, Namibia, Botswana and South Africa before heading toward the Indian Ocean and returning to Lusaka via Mozambique and Zimbabwe. Ozone in the mixed layer at Lusaka is heavily influenced by local sources.
NASA Technical Reports Server (NTRS)
Frolov, A. D.; Thompson, A. M.; Hudson, R. D.; Browell, E. V.; Oltmans, S. J.; Witte, J. C.; Bhartia, P. K. (Technical Monitor)
2002-01-01
Over the past several years, we have developed two new tropospheric ozone retrievals from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) represents a new algorithm that uses TOMS radiances directly to extract tropospheric ozone in regions of constant stratospheric ozone. It is not geographically restricted, using meteorological regimes as the basis for classifying TOMS radiances and for selecting appropriate comparison data. TDOT is useful where tropospheric ozone displays high mixing ratios and variability characteristic of pollution. Some of these episodes were observed downwind of Asian biomass burning during the TRACE-P (Transport and Atmospheric Chemical Evolution-Pacific) field experiment in March 2001. This paper features comparisons among TDOT tropospheric ozone column depth, integrated uv-DIAL measurements made from NASA's DC-8, and ozonesonde data.
SMM mesospheric ozone measurements
NASA Technical Reports Server (NTRS)
Aikin, A. C.
1990-01-01
The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.
On the origin of regional spring time ozone episodes in the Western Mediterranean
NASA Astrophysics Data System (ADS)
Kalabokas, Pavlos; Hjorth, Jens; Foret, Gilles; Dufour, Gaëlle; Eremenko, Maxim; Siour, Guillaume; Cuesta, Juan; Beekmann, Matthias
2017-04-01
For the identification of regional spring time ozone episodes, rural EMEP ozone measurements from countries surrounding the Western Mediterranean (Spain, France, Switzerland, Italy, Malta) have been examined with emphasis on periods of high ozone, according to the daily variation of the afternoon (12:00 - 18:00) ozone. For two selected high ozone episodes in April-May 2008, composite NCEP/NCAR reanalysis maps of various meteorological parameters and/or their anomalies (geopotential height, specific humidity, vertical velocity omega, vector wind speed and temperature) at various tropospheric pressure levels have been examined together with the corresponding satellite IASI ozone measurements (at 3 and 10 km), CHIMERE simulations, vertical ozone soundings and HYSPLIT back trajectories (Kalabokas et al., 2016). The results show that high surface ozone is measured at several countries simultaneously over several days. Also, the examined spring ozone episodes in Western Mediterranean and Central Europe are linked to synoptic meteorological conditions very similar to those recently observed in summertime ozone episodes over the Eastern Mediterranean (Doche et al., 2014; Kalabokas et al., 2015 and references therein), where the transport of tropospheric ozone-rich air masses through atmospheric subsidence influences significantly the boundary layer and surface ozone concentrations. In particular, the geographic areas with observed tropospheric subsidence seem to be the transition regions between high pressure and low pressure systems. IASI satellite measurements show extended areas of high tropospheric ozone over the low pressure systems adjacent to the anticyclones, which influence significantly the boundary layer and surface ozone concentrations within the anticyclones by subsidence and advection, in addition to the photochemically produced ozone there, resulting to exceedances of the 60 ppb standard for human health protection over extended geographical areas. References Doche, C., Dufour, G., Foret, G., Eremenko, M., Cuesta, J., Beekmann, M., and Kalabokas, P., 2014. Summertime tropospheric-ozone variability over the Mediterranean basin observed with IASI, Atmos. Chem. Phys., 14, 10589-10600. Kalabokas P. D., Thouret V., Cammas J.-P., Volz-Τhomas A., Boulanger D., Repapis C.C., 2015. The geographical distribution of meteorological parameters associated with high and low summer ozone levels in the lower troposphere and the boundary layer over the eastern Mediterranean (Cairo case), Tellus B, 67, 27853, http://dx.doi.org/10.3402/tellusb.v67.27853. Kalabokas P., J. Hjorth, G. Foret, G. Dufour, M. Eremenko, G. Siour, J. Cuesta, M. Beekmann, 2016. An investigation on the origin of regional spring time ozone episodes in the Western Mediterranean and Central Europe. Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-615.
Ozone disinfection and color removal in waste water. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, H.B.
Various ozone contacting systems were evaluated. A sparger incorporated into a six-stage contacting system was found to be the most practical system. Over 80% ozone transfer efficiency was obtained in secondary effluent with an applied ozone dosage of 50 mg/l. Despite efficient mass transfer with the system, an ozone consumption in excess of 50 mg/l was found to be necessary to accomplish the disinfection goal of 2.2 MPN/100ml effluent. The color goal of 10 units was achieved at an ozone dose of 10 mg/l. The use of carbon filtration prior to ozonation reduced the ozone dosage required for adequate disinfectionmore » to as low as 1 mg/l. Pretreatment of the sand and carbon filters was also briefly investigated.« less
Analysis of Ozone And CO2 Profiles Measured At A Diary Facility
NASA Astrophysics Data System (ADS)
Ogunjemiyo, S. O.; Hasson, A. S.; Ashkan, S.; Steele, J.; Shelton, T.
2015-12-01
Ozone and carbon dioxide are both greenhouse gasses in the planetary boundary layer. Ozone is a harmful secondary pollutant in the troposphere produced mostly during the day when there is a photochemical reaction in which primary pollutant precursors such as nitrous oxide (NOx) or volatile organic compounds (VOC's) mix with sunlight. As with most pollutants in the lower troposphere, both ozone and carbon dioxide vary in spatial and temporal scale depending on sources of pollution, environmental conditions and the boundary layer dynamics. Among the several factors that influence ozone variation, the seasonal changes in meteorological parameters and availability of ozone precursors are crucial because they control ozone formation and decay. Understanding how the difference in emission sources affect vertical transport of ozone and carbon dioxide is considered crucial to the improvement of their regional inventory sources. The purpose of this study is to characterize vertical transport of ozone and carbon at a diary facility. The study was conducted in the summer of 2011 and 2012 at a commercial dairy facility in Central California and involved profile measurements of ozone and CO2 using electrochemical ozonesondes, meteorological sondes and CO2 probe tethered to a 9 cubic meters helium balloon. On each day of the data collection, multiple balloon launches were made over a period representing different stages of the boundary layer development. The results show ozone and CO2 profiles display different characteristics. Regardless of the time of the day, the CO2 concentration decreases with height with a sharp gradient near the surface that is strengthened by a stable atmospheric condition, a feature suggesting the surface as the source. On the other hand, ozone profiles show greater link to the evolution of the lower boundary layer. Ozone profiles display unique features indicating ozone destruction near the surface. This unusual near the surface, observed even in the afternoon when the boundary layer is fully developed, greatly contrast ozone profiles are typical of urban environment
Sánchez-Polo, M; von Gunten, U; Rivera-Utrilla, J
2005-09-01
Based on previous findings (Jans, U., Hoigné, J., 1998. Ozone Sci. Eng. 20, 67-87), the activity of activated carbon for the transformation of ozone into *OH radicals including the influence of operational parameters (carbon dose, ozone dose, carbon-type and carbon treatment time) was quantified. The ozone decomposition constant (k(D)) was increased by the presence of activated carbon in the system and depending on the type of activated carbon added, the ratio of the concentrations of *OH radicals and ozone, the R(ct) value ([*OH]/[O3]), was increased by a factor 3-5. The results obtained show that the surface chemical and textural characteristics of the activated carbon determines its activity for the transformation of ozone into *OH radicals. The most efficient carbons in this process are those with high basicity and large surface area. The obtained results show that the interaction between ozone and pyrrol groups present on the surface of activated carbon increase the concentration of O2*- radicals in the system, enhancing ozone transformation into *OH radicals. The activity of activated carbon decreases for extended ozone exposures. This may indicate that activated carbon does not really act as a catalyst but rather as a conventional initiator or promoter for the ozone transformation into *OH radicals. Ozonation of Lake Zurich water ([O3] = 1 mg/L) in presence of activated carbon (0.5 g/L) lead to an increase in the k(D) and R(ct) value by a factor of 10 and 39, respectively, thereby favouring the removal of ozone-resistant contaminants. Moreover, the presence of activated carbon during ozonation of Lake Zurich water led to a 40% reduction in the content of dissolved organic carbon during the first 60 min of treatment. The adsorption of low concentrations of dissolved organic matter (DOM) on activated carbon surfaces did not modify its capacity to initiate/promote ozone transformation into *OH radicals.
NASA Astrophysics Data System (ADS)
Banerjee, Antara; Maycock, Amanda C.; Pyle, John A.
2018-02-01
The ozone radiative forcings (RFs) resulting from projected changes in climate, ozone-depleting substances (ODSs), non-methane ozone precursor emissions and methane between the years 2000 and 2100 are calculated using simulations from the UM-UKCA chemistry-climate model (UK Met Office's Unified Model containing the United Kingdom Chemistry and Aerosols sub-model). Projected measures to improve air-quality through reductions in non-methane tropospheric ozone precursor emissions present a co-benefit for climate, with a net global mean ozone RF of -0.09 W m-2. This is opposed by a positive ozone RF of 0.05 W m-2 due to future decreases in ODSs, which is driven by an increase in tropospheric ozone through stratosphere-to-troposphere transport of air containing higher ozone amounts. An increase in methane abundance by more than a factor of 2 (as projected by the RCP8.5 scenario) is found to drive an ozone RF of 0.18 W m-2, which would greatly outweigh the climate benefits of non-methane tropospheric ozone precursor reductions. A small fraction (˜ 15 %) of the ozone RF due to the projected increase in methane results from increases in stratospheric ozone. The sign of the ozone RF due to future changes in climate (including the radiative effects of greenhouse gases, sea surface temperatures and sea ice changes) is shown to be dependent on the greenhouse gas emissions pathway, with a positive RF (0.05 W m-2) for RCP4.5 and a negative RF (-0.07 W m-2) for the RCP8.5 scenario. This dependence arises mainly from differences in the contribution to RF from stratospheric ozone changes. Considering the increases in tropopause height under climate change causes only small differences (≤ |0.02| W m-2) for the stratospheric, tropospheric and whole-atmosphere RFs.
IL-33 Drives Augmented Responses to Ozone in Obese Mice
Mathews, Joel A.; Krishnamoorthy, Nandini; Kasahara, David Itiro; Cho, Youngji; Wurmbrand, Allison Patricia; Ribeiro, Luiza; Smith, Dirk; Umetsu, Dale; Levy, Bruce D.; Shore, Stephanie Ann
2016-01-01
Background: Ozone increases IL-33 in the lungs, and obesity augments the pulmonary effects of acute ozone exposure. Objectives: We assessed the role of IL-33 in the augmented effects of ozone observed in obese mice. Methods: Lean wildtype and obese db/db mice were pretreated with antibodies blocking the IL-33 receptor, ST2, and then exposed to ozone (2 ppm for 3 hr). Airway responsiveness was assessed, bronchoalveolar lavage (BAL) was performed, and lung cells harvested for flow cytometry 24 hr later. Effects of ozone were also assessed in obese and lean mice deficient in γδ T cells and their wildtype controls. Results and Discussion: Ozone caused greater increases in BAL IL-33, neutrophils, and airway responsiveness in obese than lean mice. Anti-ST2 reduced ozone-induced airway hyperresponsiveness and inflammation in obese mice but had no effect in lean mice. Obesity also augmented ozone-induced increases in BAL CXCL1 and IL-6, and in BAL type 2 cytokines, whereas anti-ST2 treatment reduced these cytokines. In obese mice, ozone increased lung IL-13+ innate lymphoid cells type 2 (ILC2) and IL-13+ γδ T cells. Ozone increased ST2+ γδ T cells, indicating that these cells can be targets of IL-33, and γδ T cell deficiency reduced obesity-related increases in the response to ozone, including increases in type 2 cytokines. Conclusions: Our data indicate that IL-33 contributes to augmented responses to ozone in obese mice. Obesity and ozone also interacted to promote type 2 cytokine production in γδ T cells and ILC2 in the lungs, which may contribute to the observed effects of IL-33. Citation: Mathews JA, Krishnamoorthy N, Kasahara DI, Cho Y, Wurmbrand AP, Ribeiro L, Smith D, Umetsu D, Levy BD, Shore SA. 2017. IL-33 drives augmented responses to ozone in obese mice. Environ Health Perspect 125:246–253; http://dx.doi.org/10.1289/EHP272 PMID:27472835
Formation of N-nitrosodimethylamine (NDMA) by ozonation of dyes and related compounds.
Oya, Masami; Kosaka, Koji; Asami, Mari; Kunikane, Shoichi
2008-12-01
Formation of N-nitrosodimethylamine (NDMA) by ozonation of commercially available dyes and related compounds was investigated. Ozonation was conducted using a semi-batch type reactor, and ozone concentration in gas phase and the ozone gas flow were 10 mg L(-1) and 1.0 L min(-1), respectively. NDMA was formed by 15 min of ozonation of seven out of eight selected target compounds (0.05 mM) at pH 7. All the target compounds with N,N-dimethylamino functions were NDMA precursors in ozonation. The lowest and highest NDMA concentrations after ozonation of the target compounds were 13 ng L(-1) for N,N-dimethylformamide (DMF) and 1600 ng L(-1) for N,N-dimethyl-p-phenylenediamine (DMPD), respectively. NDMA concentrations after 15 min of ozonation of 0.05 mM methylene blue (MB) and DMPD increased with an increase in pH in its range of 6-8. The effects of coexisting compounds on NDMA concentrations after 15 min of ozonation of 0.05 mM MB and DMPD were examined at pH 7. NDMA concentrations after ozonation of MB and DMPD increased by the presence of 0.05 mM (0.7 mg L(-1) as N) nitrite (NO(2)(-)); 5000 ng L(-1) for MB and 4000 ng L(-1) for DMPD. NDMA concentration after MB ozonation decreased by the presence of 5mM tertiary butyl alcohol (TBA), a hydroxyl radical (HO.) scavenger, but that after DMPD ozonation was increased by the presence of TBA. NDMA concentrations after ozonation of MB and DMPD were not affected by the presence of 0.16 mM (5.3 mg L(-1)) hydrogen peroxide (H(2)O(2)). When 0.05 mM MB and DMPD were added to the Yodo and Tone river water samples, NDMA concentrations after 15 min of their ozonation at pH 7 increased compared with those in the case of addition to ultrapure water samples.
NASA Astrophysics Data System (ADS)
Petropavlovskikh, I. V.; Disterhoft, P.; Johnson, B. J.; Rieder, H. E.; Manney, G. L.; Daffer, W.
2012-12-01
This work attributes tropospheric ozone variability derived from the ground-based Dobson and Brewer Umkehr measurements and from ozone sonde data to local sources and transport. It assesses capability and limitations in both types of measurements that are often used to analyze long- and short-term variability in tropospheric ozone time series. We will address the natural and instrument-related contribution to the variability found in both Umkehr and sonde data. Validation of Umkehr methods is often done by intercomparisons against independent ozone measuring techniques such as ozone sounding. We will use ozone-sounding in its original and AK-smoothed vertical profiles for assessment of ozone inter-annual variability over Boulder, CO. We will discuss possible reasons for differences between different ozone measuring techniques and its effects on the derived ozone trends. Next to standard evaluation techniques we utilize a STL-decomposition method to address temporal variability and trends in the Boulder Umkehr data. Further, we apply a statistical modeling approach to the ozone data set to attribute ozone variability to individual driving forces associated with natural and anthropogenic causes. To this aim we follow earlier work applying a backward selection method (i.e., a stepwise elimination procedure out of a set of total 44 explanatory variables) to determine those explanatory variables which contribute most significantly to the observed variability. We will present also some results associated with completeness (sampling rate) of the existing data sets. We will also use MERRA (Modern-Era Retrospective analysis for Research and Applications) re-analysis results selected for Boulder location as a transfer function in understanding of the effects that the temporal sampling and vertical resolution bring into trend and ozone variability analysis. Analyzing intra-annual variability in ozone measurements over Boulder, CO, in relation to the upper tropospheric subtropical and polar jets, we will address the stratospheric and tropospheric intrusions in the middle latitude troposphere ozone field.
NASA Astrophysics Data System (ADS)
Song, Yushan; Lü, Daren; Li, Qian; Bian, Jianchun; Wu, Xue; Li, Dan
2016-02-01
In situ measurements of the vertical structure of ozone were made in Changchun (43.53°N, 125.13°E), China, by the Institute of Atmosphere Physics, in the summers of 2010-13. Analysis of the 89 validated ozone profiles shows the variation of ozone concentration in the upper troposphere and lower stratosphere (UTLS) caused by cut-off lows (COLs) over Changchun. During the COL events, an increase of the ozone concentration and a lower height of the tropopause are observed. Backward simulations with a trajectory model show that the ozone-rich airmass brought by the COL is from Siberia. A case study proves that stratosphere-troposphere exchange (STE) occurs in the COL. The ozone-rich air mass transported from the stratosphere to the troposphere first becomes unstable, then loses its high ozone concentration. This process usually happens during the decay stage of COLs. In order to understand the influence of COLs on the ozone in the UTLS, statistical analysis of the ozone profiles within COLs, and other profiles, are employed. The results indicate that the ozone concentrations of the in-COL profiles are significantly higher than those of the other profiles between ±4 km around the tropopause. The COLs induce an increase in UTLS column ozone by 32% on average. Meanwhile, the COLs depress the lapse-rate tropopause (LRT)/dynamical tropopause height by 1.4/1.7 km and cause the atmosphere above the tropopause to be less stable. The influence of COLs is durable because the increased ozone concentration lasts at least one day after the COL has passed over Changchun. Furthermore, the relative coefficient between LRT height and lower stratosphere (LS) column ozone is -0.62, which implies a positive correlation between COL strength and LS ozone concentration.
Source attribution of tropospheric ozone
NASA Astrophysics Data System (ADS)
Butler, T. M.
2015-12-01
Tropospheric ozone is a harmful pollutant with adverse effects on human health and ecosystems. As well as these effects, tropospheric ozone is also a powerful greenhouse gas, with an anthropogenic radiative forcing one quarter of that of CO2. Along with methane and atmospheric aerosol, tropospheric ozone belongs to the so-called Short Lived Climate forcing Pollutants, or SLCP. Recent work has shown that efforts to reduce concentrations of SLCP in the atmosphere have the potential to slow the rate of near-term climate change, while simultaneously improving public health and reducing crop losses. Unlike many other SLCP, tropospehric ozone is not directly emitted, but is instead influenced by two distinct sources: transport of air from the ozone-rich stratosphere; and photochemical production in the troposphere from the emitted precursors NOx (oxides of nitrogen), CO (Carbon Monoxide), and VOC (volatile organic compounds, including methane). Better understanding of the relationship between ozone production and the emissions of its precursors is essential for the development of targeted emission reduction strategies. Several modeling methods have been employed to relate the production of tropospheric ozone to emissions of its precursors; emissions perturbation, tagging, and adjoint sensitivity methods all deliver complementary information about modelled ozone production. Most studies using tagging methods have focused on attribution of tropospheric ozone production to emissions of NOx, even though perturbation methods have suggested that tropospheric ozone is also sensitive to VOC, particularly methane. In this study we describe the implementation into a global chemistry-climate model of a scheme for tagging emissions of NOx and VOC with an arbitrary number of labels, which are followed through the chemical reactions of tropospheric ozone production in order to perform attribution of tropospehric ozone to its emitted precursors. Attribution is performed to both geographical regions and to emission sectors. Source-receptor relationships are defined for intercontinental transport of ozone and its precursors, and the relative contributions of NOx, methane, CO, NMVOC, and stratosphere-troposphere exchange to tropospheric background ozone are determined.
Ozone contamination in aircraft cabins - Results from GASP data and analyses
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Nastrom, G. D.
1981-01-01
The paper reviews results from the NASA Global Atmospheric Sampling Program (GASP) pertaining to the problem of ozone contamination in commercial aircraft cabins. Specifically, analyses of GASP data have (1) confirmed the high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; (2) defined ambient ozone climatology at commercial aircraft cruise altitudes, including tabulation of encounter frequency data; and (3) outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data and verified these procedures against cabin measurements.
Ozone contamination in aircraft cabins: Results from GASP data and analyses
NASA Technical Reports Server (NTRS)
Holdeman, J. D.; Nastrom, G. D.
1981-01-01
The global atmospheric sampling program pertaining to the problem of ozone contamination in commercial airplane cabins is described. Specifically, analyses of GASP data have: confirmed the occurrence of high ozone levels in aircraft cabins and documented the ratio of ozone inside and outside the cabins of two B747 airliners, including the effects of air conditioning modifications on that ratio; defined ambient ozone climatology at commercial airplane cruise altitudes, including tabulation of encounter frequency data which were not available before GASP; and outlined procedures for estimating the frequency of flights encountering high cabin ozone levels using climatological ambient ozone data, and verified these procedures against cabin measurements.
External comparisons of reprocessed SBUV/TOMS ozone data
NASA Technical Reports Server (NTRS)
Wellemeyer, C. G.; Taylor, S. L.; Singh, R. R.; Mcpeters, R. D.
1994-01-01
Ozone Retrievals from the Solar Backscatter Ultraviolet (SBUV) Instrument on-board the Nimbus-7 Satellite have been reprocessed using an improved internal calibration. The resulting data set covering November, 1978 through January, 1987 has been archived at the National Space Science Data Center in Greenbelt, Maryland. The reprocessed SBUV total ozone data as well as recalibrated Total Ozone Mapping Spectrometer (TOMS) data are compared with total ozone measurements from a network of ground based Dobson spectrophotometers. The SBUV also measures the vertical distribution of ozone, and these measurements are compared with external measurements made by SAGE II, Umkehr, and Ozonesondes. Special attention is paid to long-term changes in ozone bias.
Effect of ozone on infection of wild strawberry by Xanthomonas fragariae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurence, J.A.; Wood, F.A.
1978-05-01
Interaction studies were conducted to determine the response of wild strawberry to ozone and the effects of ozone on the infection of wild strawberry by Xanthomonas fragariae. Data from the interaction studies showed that bacterial infection of wild strawberry was inhibited by ozone exposure at concentrations that caused visible injury to the plants. Since wild strawberry was sensitive to ozone exposure and the threshold for symptom development was higher than the current ambient air quality standard for ozone, the possible use of the plant as an indicator of ambient phytotoxic concentrations of ozone was suggested. (7 graphs, 1 photo, 18more » references)« less
Simulating climate change with interactive stratospheric ozone
NASA Astrophysics Data System (ADS)
Lin, P.; Ming, Y.
2017-12-01
We compare the simulated climate changes with and without interactive ozone in GFDL AM4. We also compare the simulations with a fully interactive stratospheric chemistry scheme versus those with a simplified scheme in which ozone is treated as a passive tracer. Despite its simplicity, the ozone tracer is sufficient to represent the ozone changes in response to changes in the stratospheric circulation as well as the zonally asymmetric distribution of ozone concentration. With interactive ozone, the model simulates a stronger cooling in the tropical lower stratosphere and less stratospheric moistening in response to surface warming. We further investigate how the different stratospheric response translate into different responses in the tropospheric circulations.
NASA Astrophysics Data System (ADS)
Revell, L. E.; Tummon, F.; Stenke, A.; Sukhodolov, T.; Coulon, A.; Rozanov, E.; Garny, H.; Grewe, V.; Peter, T.
2015-05-01
Because tropospheric ozone is both a greenhouse gas and harmful air pollutant, it is important to understand how anthropogenic activities may influence its abundance and distribution through the 21st century. Here, we present model simulations performed with the chemistry-climate model SOCOL, in which spatially disaggregated chemistry and transport tracers have been implemented in order to better understand the distribution and projected changes in tropospheric ozone. We examine the influences of ozone precursor emissions (nitrogen oxides (NOx), carbon monoxide (CO) and volatile organic compounds (VOCs)), climate change (including methane effects) and stratospheric ozone recovery on the tropospheric ozone budget, in a simulation following the climate scenario Representative Concentration Pathway (RCP) 6.0 (a medium-high, and reasonably realistic climate scenario). Changes in ozone precursor emissions have the largest effect, leading to a global-mean increase in tropospheric ozone which maximizes in the early 21st century at 23% compared to 1960. The increase is most pronounced at northern midlatitudes, due to regional emission patterns: between 1990 and 2060, northern midlatitude tropospheric ozone remains at constantly large abundances: 31% larger than in 1960. Over this 70-year period, attempts to reduce emissions in Europe and North America do not have an effect on zonally averaged northern midlatitude ozone because of increasing emissions from Asia, together with the long lifetime of ozone in the troposphere. A simulation with fixed anthropogenic ozone precursor emissions of NOx, CO and non-methane VOCs at 1960 conditions shows a 6% increase in global-mean tropospheric ozone by the end of the 21st century, with an 11 % increase at northern midlatitudes. This increase maximizes in the 2080s and is mostly caused by methane, which maximizes in the 2080s following RCP 6.0, and plays an important role in controlling ozone directly, and indirectly through its influence on other VOCs and CO. Enhanced flux of ozone from the stratosphere to the troposphere as well as climate change-induced enhancements in lightning NOx emissions also increase the tropospheric ozone burden, although their impacts are relatively small. Overall, the results show that under this climate scenario, ozone in the future is governed largely by changes in methane and NOx; methane induces an increase in tropospheric ozone that is approximately one-third of that caused by NOx. Climate impacts on ozone through changes in tropospheric temperature, humidity and lightning NOx remain secondary compared with emission strategies relating to anthropogenic emissions of NOx, such as fossil fuel burning. Therefore, emission policies globally have a critical role to play in determining tropospheric ozone evolution through the 21st century.
Investigation of isotope effects of ozone as a function of temperature
NASA Astrophysics Data System (ADS)
McMahon, Daniel J.
Ozone is an important oxidizer in the atmosphere and plays a crucial role as a cleanser, removing various compounds such NOx and SOx. It also is intriguing to those that study stable isotopes as it has a unique signature found in no other oxygen containing molecule. Ozone is observed to fractionate mass independently, which means it does not follow the typical delta 17O /delta18O = 0.52 ratio expected for molecules enriched with 17O and 18O. The magnitude of ozone's mass independent enrichment has been studied in laboratory experiments and atmospheric observations but its explanation is still incomplete. Symmetry of the isotopically substituted ozone is postulated to be the source of mass independent enrichment and this thesis will build on that explanation to examine the magnitude of isotopic enrichment as a function of temperature. Understanding of the kinetics of ozone formation has come a long way from early predictions of enrichments >200‰ However, while our ability to accurately model ozone's bulk isotopic enrichment has improved to include separate rates for the formation of asymmetric and symmetric ozone, rate experiments are sparse for 17O and of low precision. To improve our understanding of ozone's enrichment, this study presents a temperature dependent enrichment experiment and series of models to predict asymmetric mass independent fractionation. This also served to examine ozone's enrichment in the troposphere by using an open flow experimental setup which is in contrast to previous works examining ozone enrichment in a closed system. Our experimental observations show that under tropospheric conditions, ozone should have delta17O ≈ 75‰, delta18O ≈ 80‰, and delta 17O ≈ 33‰. The models were able to match experimental values, often within 1‰, and with minimal assumptions, predict asymmetric ozone to have delta17O=47.5‰. This value is important as ozone transfers its terminal atom to species it oxidizes and will be the starting point to using ozone as a tracer in atmospheric reactions. Modeling improves our understanding of ozone's enrichments but these predictions must be validated by atmospheric observations. Previous tropospheric ozone sampling studies produced data of low precision but still showed relatively good agreement with our laboratory observations. In order to obtain better isotopic data a proxy method for sampling ozone's terminal atom is needed. Reaction with nitrite in solution is promising as the reaction is rapid and efficient. However we were unable to obtain tropospheric ozone observations as nitrite processing methods could not be perfected to remove nitrate blank concentrations. We do present the merits of using nitrite to react with atmospheric ozone and the suggest purification steps that may allow this method to be successful in the future.
ERIC Educational Resources Information Center
Panofsky, Hans A.
1978-01-01
Included are (1) a discussion of ozone chemistry; (2) the effects of nitrogen fertilizers, fluorocarbons, and high level aircraft on the ozone layer; and (3) the possible results of a decreasing ozone layer. (MR)
Chemical Data Assimilation Estimates of Continental US Ozone and Nitrogen Budgets during INTEX-A
NASA Technical Reports Server (NTRS)
Pierce, Robert B.; Schaack, Todd K.; Al-Saadi, Jassim A.; Fairlie, T. Duncan; Kittaka, Chieko; Lingenfelser, Gretchen; Natarajan, Murali; Olson, Jennifer; Soja, Amber; Zapotocny, Tom;
2007-01-01
Global ozone analyses, based on assimilation of stratospheric profile and ozone column measurements, and NOy predictions from the Real-time Air Quality Modeling System (RAQMS) are used to estimate the ozone and NOy budget over the Continental US during the July-August 2004 Intercontinental Chemical Transport Experiment-North America (INTEX-A). Comparison with aircraft, satellite, surface, and ozonesonde measurements collected during the INTEX-A show that RAQMS captures the main features of the global and Continental US distribution of tropospheric ozone, carbon monoxide, and NOy with reasonable fidelity. Assimilation of stratospheric profile and column ozone measurements is shown to have a positive impact on the RAQMS upper tropospheric/lower stratosphere ozone analyses, particularly during the period when SAGE III limb scattering measurements were available. Eulerian ozone and NOy budgets during INTEX-A show that the majority of the Continental US export occurs in the upper troposphere/lower stratosphere poleward of the tropopause break, a consequence of convergence of tropospheric and stratospheric air in this region. Continental US photochemically produced ozone was found to be a minor component of the total ozone export, which was dominated by stratospheric ozone during INTEX-A. The unusually low photochemical ozone export is attributed to anomalously cold surface temperatures during the latter half of the INTEX-A mission, which resulted in net ozone loss during the first 2 weeks of August. Eulerian NOy budgets are shown to be very consistent with previously published estimates. The NOy export efficiency was estimated to be 24 percent, with NOx+PAN accounting for 54 percent of the total NOy export during INTEX-A.
Delgado-Roche, Livan; Riera-Romo, Mario; Mesta, Fernando; Hernández-Matos, Yanet; Barrios, Juan M; Martínez-Sánchez, Gregorio; Al-Dalaien, Said M
2017-09-15
Oxidative stress and inflammation play key roles in the pathogenesis of Multiple sclerosis (MS). Different drugs have been used in the clinical practice, however, there is not a completely effective treatment. Due to its potential therapeutic action, medical ozone represents a promising approach for neurodegenerative disorders. The aim of the present study was to address the role of ozone therapy on the cellular redox state in MS patients. Ozone (20μg/ml) was administered three times per week during a month by rectal insufflation. The effect of ozone therapy on biomarkers of oxidative stress and inflammation was addressed by spectrophotometric and immunoenzymatic assays. Furthermore, we investigated the action of ozone on CK2 expression and Nrf2 phosphorylation by western blotting analysis. Medical ozone significantly improved (P < 0.05) the activity of antioxidant enzymes and increased the levels of cellular reduced glutathione. In accordance, a significant reduction (P < 0.05) of oxidative damage on lipids and proteins was observed in ozone-treated patients. As well, the levels of pro-inflammatory cytokines TNFα and IL-1β were lower after ozone treatment. Ozone therapy incremented the CK2 expression together with Nrf2 phosphorylation in mononuclear cells of MS patients. These findings suggest that ozone´s antioxidant and anti-inflammatory effects might be partially associated with an induction of Nrf2 phosphorylation and activation. These results provide new insights on the molecular events modulated by ozone, and pointed out ozone therapy as a potential therapeutic alternative for MS patients. Copyright © 2017. Published by Elsevier B.V.
Li, Caihong; Song, Yanjie; Guo, Liyue; Gu, Xian; Muminov, Mahmud A; Wang, Tianzuo
2018-05-01
Accelerated industrialization has been increasing releases of chemical precursors of ozone. Ozone concentration has risen nowadays, and it's predicted that this trend will continue in the next few decades. The yield of many ozone-sensitive crops suffers seriously from ozone pollution, and there are abundant reports exploring the damage mechanisms of ozone to these crops, such as winter wheat. However, little is known on how to alleviate these negative impacts to increase grain production under elevated ozone. Nitric oxide, as a bioactive gaseous, mediates a variety of physiological processes and plays a central role in response to biotic and abiotic stresses. In the present study, the accumulation of endogenous nitric oxide in wheat leaves was found to increase in response to ozone. To study the functions of nitric oxide, its precursor sodium nitroprusside was spayed to wheat leaves under ozone pollution. Wheat leaves spayed with sodium nitroprusside accumulated less hydrogen peroxide, malondialdehyde and electrolyte leakage under ozone pollution, which can be accounted for by the higher activities of superoxide dismutase and peroxidase than in leaves treated without sodium nitroprusside. Consequently, net photosynthetic rate of wheat treated using sodium nitroprusside was much higher, and yield reduction was alleviated under ozone fumigation. These findings are important for our understanding of the potential roles of nitric oxide in responses of crops in general and wheat in particular to ozone pollution, and provide a viable method to mitigate the detrimental effects on crop production induced by ozone pollution, which is valuable for keeping food security worldwide. Copyright © 2018 Elsevier Ltd. All rights reserved.
Surface ozone characterization at Larsemann Hills and Maitri, Antarctica.
Ali, Kaushar; Trivedi, D K; Sahu, S K
2017-04-15
Data are analyzed in terms of daily average ozone, its diurnal variation and its relation with meteorological parameters like dry bulb temperature (T), wet bulb temperature (T w ), atmospheric pressure and wind speed based on measurement of these parameters at two Indian Antarctic stations (Larsemann Hills, and Maitri) during 28th Indian Scientific Expedition of Antarctica (ISEA) organized during Antarctic summer of the year 2008-09. The work has been carried out to investigate summer time ozone level and its day-to-day and diurnal variability at these coastal locations and to highlight possible mechanism of ozone production and destruction. The result of the analysis indicates that daily average ozone concentration at Larsemann Hills varied from ~13 and ~20ppb with overall average value of ~16ppb and at Maitri, it varied from ~16 and ~21ppb with overall average value of ~18ppb. Photochemistry is found to partially contribute occasionally to the surface layer ozone at both the stations. Lower concentration of ozone at Maitri during beginning of the observational days may be due to destruction of ozone through activated halogens, whereas higher ozone on latter days may be due to photochemistry and advective transport from east to south-east areas. Ozone concentration during blizzard episodes at both the stations is reduced due to slow photochemical production of ozone, its photochemical removal and removal through deposition of ozone molecules on precipitation particles. Diurnal variation of ozone at Larsemann Hills and Maitri has been found to be absent. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Qiulin; Tang, Minghui; Peng, Yaqi; Du, Cuicui; Lu, Shengyong
2018-05-01
Ozone assisted carbon nanotubes (CNTs) supported vanadium oxide/titanium dioxide (V/Ti-CNTs) or vanadium oxide-manganese oxide/titanium dioxide (V-Mn/Ti-CNTs) catalysts towards gaseous PCDD/Fs (polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans) catalytic oxidations at low temperature (150 °C) were investigated. The removal efficiency (RE) and decomposition efficiency (DE) of PCDD/Fs achieved with V-Mn/Ti-CNTs alone were 95% and 45% at 150 °C under a space velocity (SV) of 14000 h -1 ; yet, these values reached 99% and 91% when catalyst and low concentration (50 ppm) ozone were used in combined. The ozone promotion effect on catalytic activity was further enhanced with the addition of manganese oxide (MnO x ) and CNTs. Adding MnO x and CNTs in V/Ti catalysts facilitated the ozone decomposition (creating more active species on catalyst surface), thus, improved ozone utilization (demanding relatively lower ozone addition concentration). On the other hand, this study threw light upon ozone promotion mechanism based on the comparison of catalyst properties (i.e. components, surface area, surface acidity, redox ability and oxidation state) before and after ozone treatment. The experimental results indicate that a synergistic effect exists between catalyst and ozone: ozone is captured and decomposed on catalyst surface; meanwhile, the catalyst properties are changed by ozone in return. Reactive oxygen species from ozone decomposition and the accompanied catalyst properties optimization are crucial reasons for catalyst activation at low temperature. Copyright © 2018 Elsevier Ltd. All rights reserved.
A novel ozone sensor for various environmental applications
NASA Technical Reports Server (NTRS)
Guesten, H.; Heinrich, G.; Schmidt, R. W. H.; Schurath, U.
1994-01-01
A small, lightweight, and fast-response ozone sensor for various environmental applications is described. At a flow rate of 100 l/min(-1) the ozone sensor has a response time of significantly better than 0.1 s with a detection limit lower than 100 pptv. The ozone sensor was successfully tested in various environmental applications, i.e. in measuring directly the vertical ozone flux onto agricultural land utilizing the eddy correlation or covariance technique and in monitoring horizontal and vertical ozone profiles in the troposphere and stratosphere.
A Review of Microbubble and its Applications in Ozonation
NASA Astrophysics Data System (ADS)
Shangguan, Yufei; Yu, Shuili; Gong, Chao; Wang, Yue; Yang, Wangzhen; Hou, Li-an
2018-03-01
Ozonation has been demonstrated to be an effective technology for the oxidation of organic matters in water treatment. But the low solubility and low mass transfer efficiency limit the application. Microbubble technology has the potential of enhancing gas-liquid mass transfer efficiency, thus it can be applied in ozonation process. The applications of microbubble ozonation have shown advantages over macro bubble ozonation in mass transfer and reaction rate. Microbubble ozonation will be a promising treatment both in water and wastewater treatment.
Use of fluorescence spectroscopy to control ozone dosage in recirculating aquaculture systems.
Spiliotopoulou, Aikaterini; Martin, Richard; Pedersen, Lars-Flemming; Andersen, Henrik R
2017-03-15
The aim of this study was to investigate the potential of fluorescence spectroscopy to be used as an ozone dosage determination tool in recirculating aquaculture systems (RASs), by studying the relationship between fluorescence intensities and dissolved organic matter (DOM) degradation by ozone, in order to optimise ozonation treatment. Water samples from six different Danish facilities (two rearing units from a commercial trout RAS, a commercial eel RAS, a pilot RAS and two marine water aquariums) were treated with different O 3 dosages (1.0-20.0 mg/L ozone) in bench-scale experiments, following which fluorescence intensity degradation was eventually determined. Ozonation kinetic experiments showed that RAS water contains fluorescent organic matter, which is easily oxidised upon ozonation in relatively low concentrations (0-5 mg O 3 /L). Fluorescence spectroscopy has a high level of sensitivity and selectivity in relation to associated fluorophores, and it is able to determine accurately the ozone demand of each system. The findings can potentially be used to design offline or online sensors based on the reduction by ozone of natural fluorescent-dissolved organic matter in RAS. The suggested indirect determination of ozone delivered into water can potentially contribute to a safer and more adequate ozone-based treatment to improve water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.
Atmospheric Ozone Response to the Disrupted 2015-2016 Quasi-Biennial Oscillation
NASA Technical Reports Server (NTRS)
Kramarova, N. A.; Tweedy, O. V.; Strahan, S. E.; Newman, P. A.; Coy, L.; Randel, W. J.; Park, M.; Waugh, D. W.; Frith, S.
2017-01-01
The quasi-biennial oscillation (QBO) - a quasi-periodic alternation between easterly and westerly zonal winds in the tropical stratosphere - is a main driver of inter-annual ozone variability in the stratosphere. During the late-2015 through 2016 time period, the QBO experienced a major disruption unlike any observed since wind measurements began in 1953. We examined the ozone response to this QBO disruption using profile ozone measurements from the Aura Microwave Limb Sounder (MLS) and Ozone Mapping and Profiler Suite Limb Profiler and total column measurements from the Solar Backscatter Ultraviolet (SBUV) Merged Ozone Data Set (MOD). Positive anomalies in stratospheric equatorial O3 developed between 50 and 30 hPa in May-September of 2016, and negative ozone anomalies were observed in the subtropics of both hemispheres. As a consequence of this QBO disruption, extratropical total ozone values during the spring-summer 2016 were at or near seasonal record lows over the more than 40 years of the total ozone record, resulting in an increase of surface UV index during northern hemisphere summer. We found very consistent responses in all considered ozone observations in terms of time, amplitude and spatial patterns. We will show the ozone changes associated with this disrupted QBO throughout the winter and spring 2017.
NASA Technical Reports Server (NTRS)
Atkinson, Roger J.; Plumb, R. Alan
1994-01-01
In a previous observational analysis, Atkinson et al (1989) ascribed a sudden decrease in Southern Hemisphere midlatitude total ozone during December 1987 to an 'ozone dilution effect' brought about by the breakup of the polar stratospheric vortex at that time. A question alluded to but unanswered by that study was the degree to which the observed total ozone decrease might have been caused by the quasi-horizontal equatorward transport of 'ozone hold' air from within the vortex, and to what degree by the vertical advection from lower levels of air naturally low in ozone, a dynamical adjustment process which must accompany the equatorward outbreak of a discrete high-latitude airmass. In the present study, analyses of Ertel potential vorticity, TOMS total ozone, and SAGE and ozone sonde vertical profile data are employed using a novel technique to examine the 1987 event in greater detail, to answer this question. Recent progress is then reported in refining the technique and extending the investigation to examine the dynamical evolution of the austral spring stratosphere during other recent years, to shed more light on the precise nature, frequency, and severity of such 'ozone dilution' events, and the effect that this process may have on long term ozone behavior in the Southern Hemisphere.
An ozone episode over the Pearl River Delta in October 2008
NASA Astrophysics Data System (ADS)
Shen, Jin; Zhang, Yuanhang; Wang, Xuesong; Li, Jinfeng; Chen, Hao; Liu, Run; Zhong, Liuju; Jiang, Ming; Yue, Dingli; Chen, Duohong; Lv, Wei
2015-12-01
The north and east Pearl River Delta (PRD) is usually a clean, upwind area in autumn. Serious ozone pollution there in mid-late October 2008 was first discovered and then analyzed. Trajectory analysis, process analysis, ozone source apportionment technology, and sensitivity analysis were used to study this episode. Under the influence of a weak south wind, the precursors emitted in Guangzhou and Foshan were transported to the north and northeast PRD and formed ozone there, which resulted in high ozone concentration (>100 ppb). As the wind direction later transited to northerly, the precursors in the northeast PRD that originated from the central and west PRD were transported to the south, and caused severe ozone pollution in the southeast PRD. The ozone contributed by chemical processes reached >20 ppb/h in Jinguowan. More than 40 ppb ozone was contributed by the precursor emission in the central and west PRD during the episode. The ozone concentration was highly sensitive to the precursor emission in the PRD region in the high-ozone situations. This episode showed the complexity of regional pollution in the PRD. When the PRD is controlled by a low air pressure system and then cold air moves from northern China to the south, the risk of ozone pollution in the north and southeast PRD increases.
Quantitative characterization of the Antarctic ozone hole
NASA Technical Reports Server (NTRS)
Ito, T.; Sakoda, Y.; Matsubara, K.; Takao, T.; Akagi, K.; Watanabe, Y.; Shibata, S.; Naganuma, H.
1994-01-01
The long-term evolution of the Antarctic ozone hole is studied based on the TOMS data and the JMA data-set of stratospheric temperature in relation with the possible role of polar stratospheric clouds (PSC's). The effective mass of depleted ozone in the ozone hole at its annual mature stage reached a historical maximum of 55 Mt in 1991, 4.3 times larger than in 1981. The ozone depletion rate during 30 days before the mature ozone hole does not show any appreciable long-term trend but the interannual fluctuations do, ranging from 0.169 to 0.689 Mt/day with the average of 0.419 Mt/day for the period of 1979 - 1991. The depleted ozone mass has the highest correlation with the region below 195 K on the 30 mb surface in June, whereas the ozone depletion rate correlates most strongly with that in August. The present result strongly suggests that the long-term evolution of the mature ozone hole is caused both by the interannual change of the latitudinal coverage of the early PSC's, which may control the latitude and date of initiation of ozone decrease, and by that of the spatial coverage of the mature PSC's which may control the ozone depletion rate in the Antarctic spring.
Ozone-induced stomatal sluggishness changes carbon and water balance of temperate deciduous forests.
Hoshika, Yasutomo; Katata, Genki; Deushi, Makoto; Watanabe, Makoto; Koike, Takayoshi; Paoletti, Elena
2015-05-06
Tropospheric ozone concentrations have increased by 60-100% in the Northern Hemisphere since the 19(th) century. The phytotoxic nature of ozone can impair forest productivity. In addition, ozone affects stomatal functions, by both favoring stomatal closure and impairing stomatal control. Ozone-induced stomatal sluggishness, i.e., a delay in stomatal responses to fluctuating stimuli, has the potential to change the carbon and water balance of forests. This effect has to be included in models for ozone risk assessment. Here we examine the effects of ozone-induced stomatal sluggishness on carbon assimilation and transpiration of temperate deciduous forests in the Northern Hemisphere in 2006-2009 by combining a detailed multi-layer land surface model and a global atmospheric chemistry model. An analysis of results by ozone FACE (Free-Air Controlled Exposure) experiments suggested that ozone-induced stomatal sluggishness can be incorporated into modelling based on a simple parameter (gmin, minimum stomatal conductance) which is used in the coupled photosynthesis-stomatal model. Our simulation showed that ozone can decrease water use efficiency, i.e., the ratio of net CO2 assimilation to transpiration, of temperate deciduous forests up to 20% when ozone-induced stomatal sluggishness is considered, and up to only 5% when the stomatal sluggishness is neglected.
Spatial distribution of tropospheric ozone in western Washington, USA
Cooper, S.M.; Peterson, D.L.
2000-01-01
We quantified the distribution of tropospheric ozone in topographically complex western Washington state, USA (total area a??6000 km2), using passive ozone samplers along nine river drainages to measure ozone exposure from near sea level to high-elevation mountain sites. Weekly average ozone concentrations were higher with increasing distance from the urban core and at higher elevations, increasing a mean of 1.3 ppbv per 100 m elevation gain for all mountain transects. Weekly average ozone concentrations were generally highest in Cascade Mountains drainages east and southeast of Seattle (maximum=55a??67 pbv) and in the Columbia River Gorge east of Portland (maximum=59 ppbv), and lowest in the western Olympic Peninsula (maximum=34 ppbv). Higher ozone concentrations in the Cascade Mountains and Columbia River locations downwind of large cities indicate that significant quantities of ozone and ozone precursors are being transported eastward toward rural wildland areas by prevailing westerly winds. In addition, temporal (week to week) variation in ozone distribution is synchronous within and between all drainages sampled, which indicates that there is regional coherence in air pollution detectable with weekly averages. These data provide insight on large-scale spatial variation of ozone distribution in western Washington, and will help regulatory agencies optimize future monitoring networks and identify locations where human health and natural resources could be at risk.
Garcia, Gabriel; Allen, Andrew George; Cardoso, Arnaldo Alves
2010-06-01
A new sampling and analytical design for measurement of ambient ozone is presented. The procedure is based on ozone absorption and decoloration (at 600 nm) of indigotrisulfonate dye, where ozone adds itself across the carbon-carbon double bond of the indigo. A mean relative standard deviation of 8.6% was obtained using samplers exposed in triplicate, and a correlation coefficient (r) of 0.957 was achieved in parallel measurements using the samplers and a commercial UV ozone instrument. The devices were evaluated in a measurement campaign, mapping spatial and temporal trends of ozone concentrations in a region of southeast Brazil strongly influenced by seasonal agricultural biomass burning, with associated emissions of ozone precursors. Ozone concentrations were highest in rural areas and lowest at an urban site, due to formation during downwind transport and short-term depletion due to titration with nitric oxide. Ozone concentrations showed strong seasonal trends, due to the influences of precursor emissions, relative humidity and solar radiation intensity. Advantages of the technique include ease and speed of use, the ready availability of components, and excellent sensitivity. Achievable temporal resolution of ozone concentrations is 8 hours at an ambient ozone concentration of 3.8 ppb, or 2 hours at a concentration of 15.2 ppb.
Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso
2015-08-04
Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.
NASA Technical Reports Server (NTRS)
Witte, Jacquelyn C.; Thompson, Anne M.; Ziemke, Jerald R.; Wargan, Krzysztof
2014-01-01
The Ozone Mapping Profile Suite (OMPS) was launched October 28, 2011 on-board the Suomi NPP satellite (http://npp.gsfc.nasa.gov). OMPS is the next generation total column ozone mapping instrument for monitoring the global distribution of stratospheric ozone. OMPS includes a limb profiler to measure the vertical structure of stratosphere ozone down to the mid-troposphere. This study uses tropical ozonesonde profile measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ, http://croc.gsfc.nasa.gov/shadoz) archive to evaluate total column ozone retrievals from OMPS and concurrent measurements from the Aura Ozone Monitoring Instrument (OMI), the predecessor of OMPS with a data record going back to 2004. We include ten SHADOZ stations that contain data overlapping the OMPS time period (2012-2013). This study capitalizes on the ozone profile measurements from SHADOZ to evaluate OMPS limb profile retrievals. Finally, we use SHADOZ sondes and OMPS retrievals to examine the agreement with the GEOS-5 Ozone Assimilation System (GOAS). The GOAS uses data from the OMI and the Microwave Limb Sounder (MLS) to constrain the total column and stratospheric profiles of ozone. The most recent version of the assimilation system is well constrained to the total column compared with SHADOZ ozonesonde data.
NASA Technical Reports Server (NTRS)
Hofmann, D. J.; Oltmans, S. J.; Komhyr, W. D.; Harris, J. M.; Lathrop, J. A.; Langford, A. O.; Deshler, T.; Johnson, B. J.; Torres, A.; Matthews, W. A.
1994-01-01
Ozone profiles obtained at Boulder, Colorado and Wallops Island, Virginia indicate that ozone was about 25% below normal during the winter and spring of 1992-93 in the 12-22 km region. This large ozone reduction in the lower stratosphere, though sometimes partially compensated by higher than normal ozone above 24 km, was responsible for the low total column ozone values observed across the United States during this period. Normal temperatures throughout the low ozone region suggest that transport-related effects are probably not the most important cause of the ozone deficits. This region of low ozone at Boulder corresponds closely with the location of the enhanced H2SO4/H2O aerosol from the Pinatubo eruption of 1991 as measured near Boulder and at Laramie, Wyoming. Trajectory analyses suggest that except at low altitudes in spring, air parcels on the days of the ozone measurements generally arrived at Boulder from higher latitude, although seldom higher than 60 deg N, and hence may have been subjected to heterogeneous chemical processing on the surface of Pinatubo aerosol droplets resulting in chlorine-catalyzed ozone destruction, a process which is believed to be more effective under the lower winter temperatures and sunlight levels of higher latitudes.
Ozone reaction with clothing and its initiated VOC emissions in an environmental chamber.
Rai, A C; Guo, B; Lin, C-H; Zhang, J; Pei, J; Chen, Q
2014-02-01
Human health is adversely affected by ozone and the volatile organic compounds (VOCs) produced from its reactions in the indoor environment. Hence, it is important to characterize the ozone-initiated reactive chemistry under indoor conditions and study the influence of different factors on these reactions. This investigation studied the ozone reactions with clothing through a series of experiments conducted in an environmental chamber under various conditions. The study found that the ozone reactions with a soiled (human-worn) T-shirt consumed ozone and generated VOCs. The ozone removal rate and deposition velocity for the T-shirt increased with the increasing soiling level and air change rate, decreased at high ozone concentrations, and were relatively unaffected by the humidity. The deposition velocity for the soiled T-shirt ranged from 0.15 to 0.29 cm/s. The ozone-initiated VOC emissions included C6-C10 straight-chain saturated aldehydes, acetone, and 4-OPA (4-oxopentanal). The VOC emissions were generally higher at higher ozone, humidity, soiling of T-shirt, and air change rate. The total molar yield was approximately 0.5 in most cases, which means that for every two moles of ozone removed by the T-shirt surface, one mole of VOCs was produced. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Marston, Kathryn; Khouryieh, Hanna; Aramouni, Fadi
2015-12-01
Commercially milled food-grade sorghum flour was subjected to ozone at the rate of 0.06 L/min for 15, 30, and 45 min. The pH of ozone-treated flour decreased as exposure time increased. The L* (lightness) values of sorghum flour significantly increased (p < 0.05), while the b* (yellowness) values significantly decreased as ozone exposure time increased. Peak viscosity significantly increased as time of ozonation increased from 0 to 45 min. Results showed that gluten-free cake volume significantly increased as ozonation time increased. Additionally, longer ozonation exposure times increased cells per slice area, lightness, and slice brightness values in gluten-free cakes while reducing crumb firmness. Despite improving lightness and slice brightness values, ozonation did not significantly increase the specific volume of gluten-free batter-based bread. While ozonation improved the volume and texture in cakes, it did not have the same positive effects on gluten-free bread. Bread made from ozonated sorghum flour had an open ragged structure with equivalent volume to the control flour. In both applications, the increased brightness and lightness values due to ozone exposure is recommended to increase the acceptability of sorghum products. © The Author(s) 2014.
Ozone Variability and Anomalies Observed During SENEX and SEAC4RS Campaigns in 2013
NASA Astrophysics Data System (ADS)
Kuang, Shi; Newchurch, Michael J.; Thompson, Anne M.; Stauffer, Ryan M.; Johnson, Bryan J.; Wang, Lihua
2017-10-01
Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anticorrelated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to midtroposphere are within 3.0-4.1 ppbv K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August, and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52 ± 33% (35 ± 24 ppbv) with a mean minimum relative humidity of 2.3 ± 1.7%.
Ozone induces glucose intolerance and systemic metabolic effects in young and aged brown Norway rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, V.; Gordon, C.J.; Jarema, K.A.
Air pollutants have been associated with increased diabetes in humans. We hypothesized that ozone would impair glucose homeostasis by altering insulin signaling and/or endoplasmic reticular (ER) stress in young and aged rats. One, 4, 12, and 24 month old Brown Norway (BN) rats were exposed to air or ozone, 0.25 or 1.0 ppm, 6 h/day for 2 days (acute) or 2 d/week for 13 weeks (subchronic). Additionally, 4 month old rats were exposed to air or 1.0 ppm ozone, 6 h/day for 1 or 2 days (time-course). Glucose tolerance tests (GTT) were performed immediately after exposure. Serum and tissue biomarkersmore » were analyzed 18 h after final ozone for acute and subchronic studies, and immediately after each day of exposure in the time-course study. Age-related glucose intolerance and increases in metabolic biomarkers were apparent at baseline. Acute ozone caused hyperglycemia and glucose intolerance in rats of all ages. Ozone-induced glucose intolerance was reduced in rats exposed for 13 weeks. Acute, but not subchronic ozone increased α{sub 2}-macroglobulin, adiponectin and osteopontin. Time-course analysis indicated glucose intolerance at days 1 and 2 (2 > 1), and a recovery 18 h post ozone. Leptin increased day 1 and epinephrine at all times after ozone. Ozone tended to decrease phosphorylated insulin receptor substrate-1 in liver and adipose tissues. ER stress appeared to be the consequence of ozone induced acute metabolic impairment since transcriptional markers of ER stress increased only after 2 days of ozone. In conclusion, acute ozone exposure induces marked systemic metabolic impairments in BN rats of all ages, likely through sympathetic stimulation. - Highlights: • Air pollutants have been associated with increased diabetes in humans. • Acute ozone exposure produces profound metabolic alterations in rats. • Age influences metabolic risk factors in aging BN rats. • Acute metabolic effects are reversible and repeated exposure reduces these effects. • Ozone metabolic effects are only slightly exacerbated in geriatric rats.« less
Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance
NASA Astrophysics Data System (ADS)
Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas
2018-05-01
Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery
of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa site, due to the unique length of the observational record. This paper presents the evolution of the ozone layer, the history of international ozone research, and discusses the justification for the measurements in the past, present and into future.
NASA Astrophysics Data System (ADS)
Meul, Stefanie; Langematz, Ulrike; Kröger, Philipp; Oberländer-Hayn, Sophie; Jöckel, Patrick
2018-06-01
Using a state-of-the-art chemistry-climate model we investigate the future change in stratosphere-troposphere exchange (STE) of ozone, the drivers of this change, as well as the future distribution of stratospheric ozone in the troposphere. Supplementary to previous work, our focus is on changes on the monthly scale. The global mean annual influx of stratospheric ozone into the troposphere is projected to increase by 53 % between the years 2000 and 2100 under the RCP8.5 greenhouse gas scenario. The change in ozone mass flux (OMF) into the troposphere is positive throughout the year with maximal increase in the summer months of the respective hemispheres. In the Northern Hemisphere (NH) this summer maximum STE increase is a result of increasing greenhouse gas (GHG) concentrations, whilst in the Southern Hemisphere(SH) it is due to equal contributions from decreasing levels of ozone depleting substances (ODS) and increasing GHG concentrations. In the SH the GHG effect is dominating in the winter months. A large ODS-related ozone increase in the SH stratosphere leads to a change in the seasonal breathing term which results in a future decrease of the OMF into the troposphere in the SH in September and October. The resulting distributions of stratospheric ozone in the troposphere differ for the GHG and ODS changes due to the following: (a) ozone input occurs at different regions for GHG- (midlatitudes) and ODS-changes (high latitudes); and (b) stratospheric ozone is more efficiently mixed towards lower tropospheric levels in the case of ODS changes, whereas tropospheric ozone loss rates grow when GHG concentrations rise. The comparison between the moderate RCP6.0 and the extreme RCP8.5 emission scenarios reveals that the annual global OMF trend is smaller in the moderate scenario, but the resulting change in the contribution of ozone with stratospheric origin (O3s) to ozone in the troposphere is of comparable magnitude in both scenarios. This is due to the larger tropospheric ozone precursor emissions and hence ozone production in the RCP8.5 scenario.
Ozone Climatology for Portsmouth, NH 1978-2002
NASA Astrophysics Data System (ADS)
Wake, C. P.; Miller, S. T.
2003-12-01
Hourly ozone mixing ratios have been monitored in Portsmouth, NH since 1978 for the typical "summer" ozone season (April to October) by the New Hampshire Department of Environmental Services. This 25 year record provides the basis to investigate seasonal variability in daily summertime ozone levels in Portsmouth NH and evaluate the relationship between ozone mixing ratios, temperature, precipitation, and the state of El Niño/Southern Oscillation. The overall goal of this research is to identify significant relationships between high ozone days and a suite of climate variables. The mean daily ozone mixing ratio in Portsmouth from 1977 through 2002 was 40 ppbv (sd 17 ppbv) with a mean of 6 days per summer when maxiumum 8 hour ozone levels exceed the 80 ppbv level. The highest ozone levels usually occur during June, July and August (with a peak in July), but high ozone days also occur May and September. April and October rarely experience high ozone. High ozone in coastal New Hampshire (and for most of New England) occurs predominantly on days when maximum temperatures are above 85 oF, although there are also may hot days when ozone levels do not reach elevated levels. Analysis of the relationship between number of days per year when 8 hour ozone is greater than 80 ppbv and maximum temperatures are greater than 85 oF indicates that there is a positive correlation (r = 0.60). Surprisingly, there is not a strong inverse relationship between ozone days and precipitation. For example, over the last 25 years, 1988 clearly stands out with 20 days with maximum 8 hour ozone above 80 ppbv. However, 1988 also experienced considerable precipitation in July and August (14.1 inches compared to the climatological mean of 6.7 inches) and relatively few days without precipitation (38 compared to the climatological mean of 44). There are differences in temperature, precipitation, and ozone levels in Portsmouth during years that are classified as El Ni¤o and neutral, compared to La Nina years. However, we have only experienced one strong La Nina year in the past 25 years, so the results must be viewed with caution. The La Nina year (1988) experience high ozone and more frequent hot days, as well as double the average precipitation. El Niño years experience slightly warmer, dryer and experience more frequent ozone days, although they are not significantly different from neutral years. Our results indicate that hot summers are indeed related to higher than average ozone levels, although there is considerable variability in this relationship. There does not appear to be a consistent ozone - precipitation relationship. Further work is needed to define these relationships for a larger number of stations throughout New England and also for comparison to broader synoptic to hemispheric circulation patterns and sea surface temperatures.
40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season...
40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may withdraw...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...
40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...
40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may withdraw...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ozone. 184.1563 Section 184.1563 Food and Drugs....1563 Ozone. (a) Ozone (O3, CAS Reg. No. 10028-15-6) is an unstable blue gas with a pungent... maximum residual level at the time of bottling of 0.4 milligram of ozone per liter of bottled water...
40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season...
40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may withdraw...
40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season...
40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may withdraw...
40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the control...
40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Specific Usage Additives § 173.368 Ozone. Ozone (CAS Reg... defined in § 170.3(o)(2) of this chapter. (c) The additive meets the specifications for ozone in the Food...
40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in each...
40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...
40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...
40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season...
40 CFR 97.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Withdrawal from CAIR NOX Ozone Season... CAIR NOX Ozone Season Opt-in Units § 97.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season opt-in unit may withdraw...
40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the control...
40 CFR 96.386 - Withdrawal from CAIR NOX Ozone Season Trading Program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Withdrawal from CAIR NOX Ozone Season... STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.386 Withdrawal from CAIR NOX Ozone Season Trading Program. Except as provided under paragraph (g) of this section, a CAIR NOX Ozone Season...
40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in each...
40 CFR 97.353 - Recordation of CAIR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Recordation of CAIR NOX Ozone Season... CAIR NOX Ozone Season Allowance Tracking System § 97.353 Recordation of CAIR NOX Ozone Season allowance allocations. (a) By September 30, 2007, the Administrator will record in the CAIR NOX Ozone Season sources...
40 CFR 97.512 - TR NOX Ozone Season allowance allocations to new units.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false TR NOX Ozone Season allowance... TR NOX Ozone Season Trading Program § 97.512 TR NOX Ozone Season allowance allocations to new units. (a) For each control period in 2012 and thereafter and for the TR NOX Ozone Season units in each...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...
40 CFR 97.511 - Timing requirements for TR NOX Ozone Season allowance allocations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Timing requirements for TR NOX Ozone... TRADING PROGRAMS TR NOX Ozone Season Trading Program § 97.511 Timing requirements for TR NOX Ozone Season allowance allocations. (a) Existing units. (1) TR NOX Ozone Season allowances are allocated, for the control...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ozone. 173.368 Section 173.368 Food and Drugs FOOD... Additives § 173.368 Ozone. Ozone (CAS Reg. No. 10028-15-6) may be safely used in the treatment, storage, and... specifications for ozone in the Food Chemicals Codex, 4th ed. (1996), p. 277, which is incorporated by reference...
Evildoer or Do-Gooder: Getting the Goods on Ozone
ERIC Educational Resources Information Center
Fisher, Diane K.
2008-01-01
This article describes the differences of good ozone and bad ozone. Good ozone, which is found in the stratosphere, protects people and other living things from the bad things UV can do, such skin cancer, cataracts, and other problems. However, lower in the atmosphere, at the top of the troposphere (around 12 miles up), ozone acts like a…
A modeling study of the impact of urban trees on ozone
David J. Nowak; Kevin L. Civerolo; S. Trivikrama Rao; Gopal Sistla; Christopher J. Luley; Daniel E. Crane
2000-01-01
Modeling the effects of increased urban tree cover on ozone concentrations (July 13-15, 1995) from Washington, DC, to central Massachusetts reveals that urban trees generally reduce ozone concentrations in cities, but tend to increase average ozone concentrations in the overall modeling domain. During the daytime, average ozone reductions in urban areas (1 ppb) were...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-20
... 1997 ozone NAAQS which revised the health-based NAAQS for ozone by setting the NAAQS at 0.08 parts per... evidence demonstrating that ozone causes adverse health effects at lower ozone concentrations and over... determined that the 1997 ozone NAAQS would be more protective of human health, especially for children and...
Previously, we reported interference due to several ozone-scavenging reagents (OSRs) in the quantitation of aldehydes using 0-(2,3,4,5,6-pentafluorobenzyl)oxylamine (PFBOA) in the analysis of ozonated waters. Scavenging ozone is essential if ozonation byproduct concentrations ar...
Ozone in the Atmosphere: I. The Upper Atmosphere.
ERIC Educational Resources Information Center
Phillips, Paul S.
1990-01-01
Research concerning the role of stratospheric ozone and the effect of chlorofluorocarbons on stratospheric ozone are discussed. The consequences of global ozone depletion are projected. The Montreal Protocol is reviewed. (CW)
Potential of Aqueous Ozone to Control Aflatoxigenic Fungi in Brazil Nuts
Morales-Valle, Héctor; Venâncio, Armando
2013-01-01
This study aimed to verify the use of aqueous ozone as alternative technology for fungal control. Brazil nuts sterilized were inoculated with either 1 × 106 or 1 × 107 conidia mL−1 of Aspergillus flavus (MUM 9201) to determine optimal treatment parameters and different aqueous ozone contact times. These assays showed that the effect of ozone is almost immediate against A. flavus, and the optimum ozone concentration depended on the number of initial viable spores on the shell. The remaining viable spores in the ozone solution were recorded, and the rate of inactivation for each treatment was determined by assessing the ratio between the cfu of each treatment and the control. The ozonized nuts were also cultured to recover the fungal population. Aqueous ozone was effective in reducing the conidia of A. flavus and the natural fungal population associated with Brazil nuts. Aqueous ozone presented a great potential to reduce microorganisms counts in Brazil nuts with a great potential use in packing houses for decontamination step. PMID:25937982
Buffle, Marc-Olivier; Schumacher, Jochen; Salhi, Elisabeth; Jekel, Martin; von Gunten, Urs
2006-05-01
Due to a lack of adequate experimental techniques, the kinetics of the first 20s of ozone decomposition in natural water and wastewater is still poorly understood. Introducing a continuous quench-flow system (CQFS), measurements starting 350 ms after ozone addition are presented for the first time. Very high HO. to O3 exposures ratios (Rct=integralHO.dt/integralO3dt) reveal that the first 20s of ozonation present oxidation conditions that are similar to ozone-based advanced oxidation processes (AOP). The oxidation of carbamazepine could be accurately modeled using O3 and HO. exposures measured with CQFS during wastewater ozonation. These results demonstrate the applicability of bench scale determined second-order rate constants for wastewater ozonation. Important degrees of pharmaceutical oxidation and microbial inactivation are predicted, indicating that a significant oxidation potential is available during wastewater ozonation, even when ozone is entirely decomposed in the first 20s.
NASA Technical Reports Server (NTRS)
Schmidlin, F. J.; Thompson, A. M.; Holdren, D. H.; Northam, E. T.; Witte, J. C.; Oltmans, S. J.; Hoegger, B.; Levrat, G. M.; Kirchhoff, V.
2000-01-01
Vertical ozone profiles between the Equator and 10 S latitude available from the Southern Hemisphere Additional Ozone (SHADOZ) program provide consistent data Ozone sets from up to 10 sounding locations. SHADOZ designed to provide independent ozone profiles in the tropics for evaluation of satellite ozone data and models has made available over 600 soundings over the period 1998-1999. These observations provide an ideal data base for the detailed description of ozone and afford differential comparison between sites. TOMS total ozone when compared with correlative integrated total ozone overburden from the sondes is found to be negatively biased when using the classical constant mixing ratio procedure to determine residual ozone. On the other hand, the climatological method proposed by McPeters and Labow appears to give consistent results but is positively biased. The longer then two years series of measurements also was subjected to harmonic analysis to examine data cycles. These will be discussed as well.
Ozone-induced changes in natural organic matter (NOM) structure
Westerhoff, P.; Debroux, J.; Aiken, G.; Amy, G.
1999-01-01
Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US fiver systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.Hydrophobic organic acids (combined humic and fulvic acids), obtained from an Antarctic Lake with predominantly microbially derived organic carbon sources and two US river systems with terrestrial organic carbon sources, were ozonated. Several analyses, including 13C-NMR, UV absorbance, fluorescence, hydrophobic/transphilic classification, and potentiometric titrations, were performed before and after ozonation. Ozonation reduced aromatic carbon content, selectively reducing phenolic carbon content. Ozonation of the samples resulted in increased aliphatic, carboxyl, plus acetal and ketal anomeric carbon content and shifted towards less hydrophobic compounds.
The World Already Avoided: Quantifying the Ozone Benefits Achieved by the Montreal Protocol
NASA Astrophysics Data System (ADS)
Chipperfield, Martyn; Dhomse, Sandip; Feng, Wuhu; McKenzie, Richard; Velders, Guus; Pyle, John
2015-04-01
Chlorine and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic Ozone Hole expected to disappear by ~2050. However, we show that by 2014 the Montreal Protocol has already achieved significant benefits for the ozone layer. Using an off-line 3-D atmospheric chemistry model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with benefits for surface UV and climate. A deep Arctic Ozone Hole, with column values <120 DU, would have occurred given the meteorological conditions in 2011. The Antarctic Ozone Hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The ozone decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.
NASA Technical Reports Server (NTRS)
Deshler, Terry; Hofmann, David J.
1994-01-01
Vertical profiles of ozone and temperature have been measured at McMurdo Station, Antarctica, during the springs of 1986 to 1991, roughly every two days from 25 August to 31 October. Comparisons of temporal histories and average vertical structure for these years reveals some striking consistency in the ozone depletion process. Ozone depletion generally begins in early September, and with a half-life of 20-30 days, reaches its maximum in mid-October. The depletion occurs almost exclusively between 12 and 20 km. At the time of maximum depletion total ozone has been decreased roughly 40 percent while ozone between 12 and 20 km has been reduced 80 percent. Recovery generally begins in late October with the influx, above 20 km, of ozone rich air from the lower latitudes. From this record the worst years for ozone depletion were 1987, 1989, and 1990. A new region of ozone depletion, below 12 km, was observed in 1991, coinciding with the entrainment of a volcanic cloud into the polar vortex.
Nimbus-7 TOMS Antarctic ozone atlas: August through November, 1989
NASA Technical Reports Server (NTRS)
Krueger, Arlin J.; Penn, Lanning M.; Larko, David E.; Doiron, Scott D.; Guimaraes, Patricia T.
1990-01-01
Because of the great environmental significance of ozone and to support continuing research at the Antarctic and other Southern Hemisphere stations, the development of the 1989 ozone hole was monitored using data from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) instrument, produced in near-real-time. This Atlas provides a complete set of daily polar orthographic projections of the TOMS total ozone measurements over the Southern Hemisphere for the period August 1 through November 30, 1989. The 1989 ozone hole developed in a manner similar to that of 1987, reaching a comparable depth in early October. This was in sharp contrast to the much weaker hole of 1988. The 1989 ozone hole remained at polar latitudes as it filled in November, in contrast to other recent years when the hole drifted to mid-latitudes before disappearing. Daily ozone values above selected Southern Hemisphere stations are presented, along with comparisons of the 1989 ozone distribution to that of other years.
Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia
NASA Technical Reports Server (NTRS)
Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg
2016-01-01
The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.
NASA Technical Reports Server (NTRS)
Hollandsworth, Stacey M.; Schoeberl, Mark R.; Morris, Gary A.; Long, Craig; Zhou, Shuntai; Miller, Alvin J.
1999-01-01
In this study we utilize potential vorticity - isentropic (PVI) coordinate transformations as a means of combining ozone data from different sources to construct daily, synthetic three-dimensional ozone fields. This methodology has been used successfully to reconstruct ozone maps in particular regions from aircraft data over the period of the aircraft campaign. We expand this method to create high-resolution daily global maps of profile ozone data, particularly in the lower stratosphere, where high-resolution ozone data are sparse. Ozone climatologies in PVI-space are constructed from satellite-based SAGE II and UARS/HALOE data, both of which-use solar occultation techniques to make high vertical resolution ozone profile measurements, but with low spatial resolution. A climatology from ground-based balloonsonde data is also created. The climatologies are used to establish the relationship between ozone and dynamical variability, which is defined by the potential vorticity (in the form of equivalent latitude) and potential temperature fields. Once a PVI climatology has been created from data taken by one or more instruments, high-resolution daily profile ozone field estimates are constructed based solely on the PVI fields, which are available on a daily basis from NCEP analysis. These profile ozone maps could be used for a variety of applications, including use in conjunction with total ozone maps to create a daily tropospheric ozone product, as input to forecast models, or as a tool for validating independent ozone measurements when correlative data are not available. This technique is limited to regions where the ozone is a long-term tracer and the flow is adiabatic. We evaluate the internal consistency of the technique by transforming the ozone back to physical space and comparing to the original profiles. Biases in the long-term average of the differences are used to identify regions where the technique is consistently introducing errors. Initial results show the technique is useful in the lower stratosphere at most latitudes throughout the year,and in the winter hemisphere in the middle stratosphere. The results are problematic in the summer hemisphere middle stratosphere due to increased ozone photochemistry and weak PV gradients. Alternate techniques in these regions will be discussed. An additional limitation is the quality and resolution of the meteorological data.
Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent.
Lee, Yunho; Kovalova, Lubomira; McArdell, Christa S; von Gunten, Urs
2014-11-01
Determining optimal ozone doses for organic micropollutant elimination during wastewater ozonation is challenged by the presence of a large number of structurally diverse micropollutants for varying wastewater matrice compositions. A chemical kinetics approach based on ozone and hydroxyl radical (·OH) rate constant and measurements of ozone and ·OH exposures is proposed to predict the micropollutant elimination efficiency. To further test and validate the chemical kinetics approach, the elimination efficiency of 25 micropollutants present in a hospital wastewater effluent from a pilot-scale membrane bioreactor (MBR) were determined at pH 7.0 and 8.5 in bench-scale experiments with ozone alone and ozone combined with H2O2 as a function of DOC-normalized specific ozone doses (gO3/gDOC). Furthermore, ozone and ·OH exposures, ·OH yields, and ·OH consumption rates were determined. Consistent eliminations as a function of gO3/gDOC were observed for micropollutants with similar ozone and ·OH rate constants. They could be classified into five groups having characteristic elimination patterns. By increasing the pH from 7.0 to 8.5, the elimination levels increased for the amine-containing micropollutants due to the increased apparent second-order ozone rate constants while decreased for most micropollutants due to the diminished ozone or ·OH exposures. Increased ·OH quenching by effluent organic matter and carbonate with increasing pH was responsible for the lower ·OH exposures. Upon H2O2 addition, the elimination levels of the micropollutants slightly increased at pH 7 (<8%) while decreased considerably at pH 8.5 (up to 31%). The elimination efficiencies of the selected micropollutants could be predicted based on their ozone and ·OH rate constants (predicted or taken from literature) and the determined ozone and ·OH exposures. Reasonable agreements between the measured and predicted elimination levels were found, demonstrating that the proposed chemical kinetics method can be used for a generalized prediction of micropollutant elimination during wastewater ozonation. Out of 67 analyzed micropollutants, 56 were present in the tested hospital wastewater effluent. Two-thirds of the present micropollutants were found to be ozone-reactive and efficiently eliminated at low ozone doses (e.g., >80% for gO3/gDOC = 0.5). Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Martini, Matus Novak
We analyze the contribution of North American (NA) lightning and anthropogenic emissions to summertime ozone concentrations, radiative forcing, and exports from North America using the global University of Maryland chemistry transport model (UMD-CTM) and the regional scale Weather Research and Forecasting model with chemistry (WRF-Chem). Lightning NO contributes by 15--20 ppbv to upper tropospheric ozone concentrations over the United States with the effects of NA lightning on ozone seen as far east as North Africa and Europe. Using the UMD-CTM, we compare changes in surface and column ozone amounts due to the NOx State Implementation Plan (SIP) Call with the natural variability in ozone due to changes in meteorology and lightning. Comparing early summer 2004 with 2002, surface ozone decreased by up to 5 ppbv due to the NO x SIP Call while changes in meteorology and lightning resulted in a 0.3--1.4 ppbv increase in surface ozone. Ozone column variability was driven primarily by changes in lightning NO emissions, especially over the North Atlantic. As part of our WRF-Chem analysis, we modify the radiation schemes to use model-calculated ozone (interactive ozone) instead of climatological ozone profiles and conduct multiple 4-day simulations of July 2007. We found that interactive ozone increased the outgoing longwave radiation (OLR) by 3 W m-2 decreasing the bias with respect to remotely sensed OLR. The improvement is due to a high bias in the climatological ozone profiles. The interactive ozone had a small impact on mean upper troposphere temperature (-0.15°C). The UMD-CTM simulations indicate that NA anthropogenic emissions are responsible for more ozone export but less ozone radiative forcing than lightning NO emissions. Over the North Atlantic, NA anthropogenic emissions contributed 0.15--0.30 W m-2 to the net downward radiative flux at the tropopause while NA lightning contributed 0.30--0.50 W m-2. The ozone export from anthropogenic emissions was almost twice as large as that from lightning emissions. The WRF-Chem simulations show that the export of reactive nitrogen was 23%--28% of the boundary layer emissions and 26%--38% of the total emissions including lightning NO.
NASA Technical Reports Server (NTRS)
Thompson, Anne M.; Hudson, Robert D.; Frolov, Alexander D.; Witte, Jacquelyn C.; Kucsera, Tom L.; Einaudi, Franco (Technical Monitor)
2000-01-01
New products from the TOMS (Total Ozone Mapping Spectrometer) >satellite instrument can resolve pollution events in tropical and mid-latitudes, Over the past several years, we have developed tropospheric ozone data sets by two methods. The modified-residual technique [Hudson and Thompson, 1998; Thompson and Hudson, 1999] uses v. 7 TOMS total ozone and is applicable to tropical regimes in which the wave-one pattern in total ozone is observed. The TOMSdirect method [Hudson et at., 2000] represents a new algorithm that uses TOMS radiances to extract tropospheric ozone in regions of constant stratospheric ozone and tropospheric ozone displaying high mixing ratios and variability characteristic of pollution, Absorbing aerosols (dust and smoke; Herman et at., 1997 Hsu et al., 1999), a standard TOMS product, provide transport and/or source marker information to interpret tropospheric ozone. For the Nimbus 7/TOMS observing period (1979-1992), modified-residual TTO (tropical tropospheric ozone) appears as two maps/month at I-degree latitude 2-degree longitude resolution at a homepage and digital data are available (20S to 20N) by ftp at http://metosrv2. umd.edu/tropo/ 14y_data.d. Preliminary modified-residual TTO data from the operational Earth-Probe/TOMS (1996- present) are posted in near-real-time at the same website. Analyses with the new tropospheric ozone and aerosol data are illustrated by the following (I)Signals in tropical tropospheric ozone column and smoke amount during ENSO (El Nino-Southern Oscillation) events, e.g. 1982-1983 and the intense ENSO induced biomass fires of 1997-1998 over the Indonesian region [Thompson et a[, 2000a, Thompson and Hudson, 1999]. (2) Trends in tropospheric ozone and smoke aerosols in various tropical regions (Atlantic, Pacific, Africa, Brazil). No significant trends were found for ozone from1980-1990 [Thompson and Hudson, 19991 although smoke aerosols increased during the period [Hsu et al.,1999]. (3) Temporal and spatial offsets ("paradoxes") in tropical tropospheric ozone and smoke aerosol in regions of greatest tropical biomass burning [Thompson et at., 1996;2000b]. (4) Trans-boundary pollution tracking. With an air parcel (trajectory) model, smoke aerosol and ozone and dust plumes can be tracked across oceans (e.g., Asia to North America; North America to Europe) and national boundaries, e.g. Indonesia to Singapore and Malaysia during the 1997 ENSO fires.
Report of the International Ozone Trends Panel 1988, volume 1
NASA Technical Reports Server (NTRS)
1989-01-01
Chapters on the following topics are presented: spacecraft instrument calibration and stability; information content of ozone retrieval algorithms; trends in total column ozone measurements; and trends in ozone profile measurement.
NASA Astrophysics Data System (ADS)
Kotsakis, A.; Choi, Y.; Souri, A.; Jeon, W.; Flynn, J. H., III
2017-12-01
From the years 2000 to 2014, Dallas-Fort Worth (DFW) has seen a decrease in ozone exceedances due to decreased emissions of ozone precursors. In this study, a wind pattern analysis was done to gain a better understanding of the meteorological patterns that have historically contributed to ozone exceedances over the DFW area. Long-term trends in ozone and the seasonal distribution of ozone exceedances were analyzed using surface monitoring data. Using a clustering algorithm called self-organizing maps, characteristic regional wind patterns from 2000-2014 were determined. For each of the wind pattern clusters, the frequency over the last 15 years and average ozone from monitors across DFW was analyzed. Finally, model simulations were performed to determine if pollution transported out of Houston affected incoming background ozone into DFW.
NASA Technical Reports Server (NTRS)
Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.
1994-01-01
An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.
NASA Technical Reports Server (NTRS)
Thompson, A. M.; Witte, J. C.; Chatfield, R. B.; Guam, H.
2003-01-01
There has been interest in the connection between tropical fires and ozone since about 1980. Photochemically reactive gases released by fires (e.g. NO, CO, volatile organic carbon) interact as they do in an urban environment to form ozone. Interacting with chemical sources, tropical meteorology plays a part in tropospheric ozone distributions in the tropics, through large-scale circulation, deep convection, and regional phenomena like the West African and Asian monsoons. An overview of observations, taken from satellite and from ozone soundings, illustrates regional influences and intercontinental- range ozone transport in the tropics. One of the most striking findings is evidence for impacts of Indian Ocean pollution on the south Atlantic ozone maximum referred to as the "ozone paradox" [Thompson et al., GRL, 2000; JGR, 2003; Chatfield et al., GRL, 20031.
Emergence of healing in the Antarctic ozone layer.
Solomon, Susan; Ivy, Diane J; Kinnison, Doug; Mills, Michael J; Neely, Ryan R; Schmidt, Anja
2016-07-15
Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption. Copyright © 2016, American Association for the Advancement of Science.
A Madden-Julian Oscillation in Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Ziemke, J. R.; Chandra, S.
2003-01-01
This is the first study to indicate a Madden-Julian Oscillation (MJO) in tropospheric ozone. Tropospheric ozone is derived using differential measurements of total column ozone and stratospheric column ozone measured from total ozone mapping spectrometer (TOMS) and microwave limb sounder (MLS) instruments. Two broad regions of significant MJO signal are identified in the tropics, one in the western Pacific and the other in the eastern Pacific. Over both regions, MJO variations in tropospheric ozone represent 5-10 Dobson Unit (DU) peak-to-peak anomalies. These variations are significant compared to mean background amounts of 20 DU or less over most of the tropical Pacific. MJO signals of this magnitude would need to be considered when investigating and interpreting particular pollution events since ozone is a precursor of the hydroxyl (OH) radical, the main oxidizing agent of pollutants in the lower atmosphere.
NASA Technical Reports Server (NTRS)
Hoegy, Walter R.; McGee, Thomas J.; Burris, John F.; Heaps, William; Silbert, Donald; Sumnicht, Grant; Twigg, Laurence; Neuber, Roland
2000-01-01
The AROTEL instrument, deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss and Validation Experiment (SOLVE), flew over the NDSC station operated by the Alfred Wegner Institute at Ny Aalesund, Spitsbergen. AROTEL ozone and temperature measurements made during near overflights of Ny Aalesund are compared with sonde ozone and temperature, and lidar ozone measurements from the NDSC station. Nine of the seventeen science flights during the December through March measurement period overflew near Ny Aalesund. Agreement of AROTEL with the ground-based temperature and ozone values at altitudes from just above the aircraft to about 30 km gives strong confidence in using AROTEL temperature and ozone mixing ratio to study the mechanisms of ozone loss in the winter arctic polar region.
User's guide for SBUV/TOMS ozone derivative products
NASA Technical Reports Server (NTRS)
Fleig, A. J.; Wellemeyer, C.; Oslik, N.; Lee, D.; Miller, J.; Magatani, R.
1984-01-01
A series of products are available derived from the total-ozone and ozone vertical profile results for the Solar Backscattered Ultraviolet/Total-Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus-7 operation. Products available are (1) orbital height-latitude cross sections of the SBUV profile data, (2) daily global total ozone contours in polar coordinates, (3) daily averages of total ozone in global 5x5 degree latitude-longitude grid, (4) daily, monthly and quarterly averages of total ozone and profile data in 10 degree latitude zones, (5) tabular presentation of zonal means, (6) daily global total ozone and profile contours in polar coordinates. The ""Derivative Products User's Guide'' describes each of these products in detail, including their derivation and presentation format. Information is provided on how to order the tapes and microfilm from the National Space Science Data Center.
Effect of Ventilation Strategies on Residential Ozone Levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Iain S.; Sherman, Max H.
Elevated outdoor ozone levels are associated with adverse health effects. Because people spend the vast majority of their time indoors, reduction in indoor levels of ozone of outdoor origin would lower population exposures and might also lead to a reduction in ozone-associated adverse health effects. In most buildings, indoor ozone levels are diminished with respect to outdoor levels to an extent that depends on surface reactions and on the degree to which ozone penetrates the building envelope. Ozone enters buildings from outdoors together with the airflows that are driven by natural and mechanical means, including deliberate ventilation used to reducemore » concentrations of indoor-generated pollutants. When assessing the effect of deliberate ventilation on occupant health one should consider not only the positive effects on removing pollutants of indoor origin but also the possibility that enhanced ventilation might increase indoor levels of pollutants originating outdoors. This study considers how changes in residential ventilation that are designed to comply with ASHRAE Standard 62.2 might influence indoor levels of ozone. Simulation results show that the building envelope can contribute significantly to filtration of ozone. Consequently, the use of exhaust ventilation systems is predicted to produce lower indoor ozone concentrations than would occur with balanced ventilation systems operating at the same air-exchange rate. We also investigated a strategy for reducing exposure to ozone that would deliberately reduce ventilation rates during times of high outdoor ozone concentration while still meeting daily average ventilation requirements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Videla, H.A.; Guiamet, P.S.; Mele, M.F.L. de
1999-11-01
Two aspects of ozone utilization as sole chemical treatment for cooling water demand a better understanding: (a) the effect of dissolved ozone on the corrosion behavior of heat exchanger structural materials and (b) the biocidal action of ozone on bacterial biofilms. To assess the effect of ozone dissolved in synthetic cooling water on the corrosion behavior of different structural materials (stainless steel; 70:30 copper-nickel; aluminum brass and titanium), voltamperometric experiments and corrosion potential vs. time measurements were made at ozone concentrations between 0.1 and 1.2 ppm. Present results show that the passive behavior of stainless steel and titanium is notmore » affected by dissolved ozone whereas copper alloys are susceptible to corrosion in the presence of ozone. To study the biocidal action of various concentrations of dissolved ozone against planktonic and sessile bacteria, liquid cultures and biofilms of Pseudomonas fluorescense, formed on different structural materials, were used at different contact times. The results show that dissolved ozone is an effective biocide for controlling planktonic cells but its effectiveness decreases in the presence of sessile bacteria and the extracellular polymeric matrix of the biofilm. It is suggested that the penetration of ozone through the biofilm depends on the simultaneous diffusion and reaction of the biocide with the biofilm matrix which may exhibit local differences in biomass distribution and hydrodynamic conditions.« less
The application of ozone in dentistry: a systematic review of literature.
Azarpazhooh, Amir; Limeback, Hardy
2008-02-01
(1) To systematically review the clinical application and remineralization potentials of ozone in dentistry; (2) To summarize the available in vitro applications of ozone in dentistry. Ovid MEDLINE, CINAHL, etc. (up to April 2007). In vitro or in vivo English language publications, original studies, and reviews were included. Conference papers, abstracts, and posters were excluded. In vitro: Good evidence of ozone biocompatibility with human oral epithelial cells, gingival fibroblast, and periodontal cells; Conflicting evidence of antimicrobial efficacy of ozone but some evidence that ozone is effective in removing the microorganisms from dental unit water lines, the oral cavity, and dentures; Conflicting evidence for the application of ozone in endodontics; Insufficient evidence for the application of ozone in oral surgery and implantology; Good evidence of the prophylactic application of ozone in restorative dentistry prior to etching and the placement of dental sealants and restorations. In vivo: Despite the promising in vitro evidence, the clinical application of ozone in dentistry (so far in management of dental and root caries) has not achieved a strong level of efficacy and cost-effectiveness. While laboratory studies suggest a promising potential of ozone in dentistry, this has not been fully realised in clinical studies to date. More well designed and conducted double-blind randomised clinical trials with adequate sample size, limited or no loss to follow up, and carefully standardised methods of measurement and analyses are needed to evaluate the possible use of ozone as a treatment modality in dentistry.
Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.
2014-01-01
Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.
Control of the red tide dinoflagellate Cochlodinium polykrikoides by ozone in seawater.
Shin, Minjung; Lee, Hye-Jin; Kim, Min Sik; Park, Noh-Back; Lee, Changha
2017-02-01
The inactivation of C. polykrikoides, a red tide dinoflagellate, by ozonation was investigated in seawater by monitoring numbers of viable and total cells. Parameters affecting the inactivation efficacy of C. polykrikoides such as the ozone dose, initial cell concentration, pH, and temperature were examined. The viable cell number rapidly decreased in the initial stage of the reaction (mostly in 1-2 min), whereas the decrease in total cell number was relatively slow and steady. Increasing ozone dose and decreasing initial cell concentration increased the inactivation efficacy of C. polykrikoides, while increasing pH and temperature decreased the cell inactivation efficacy. The addition of humic acid (a promoter for the ozone decomposition) inhibited the inactivation of C. polykrikoides, whereas bicarbonate ion (an inhibitor for the ozone decomposition) accelerated the C. polykrikoides inactivation. Observations regarding the effects of pH, temperature, humic acid, and bicarbonate ion collectively indicate that the inactivation of C. polykrikoides by ozonation is mainly attributed to oxidative cell damages by molecular ozone, rather than by hydroxyl radical, produced during the ozone decomposition. At high ozone dose (e.g., 5 mg/L), hypobromous acid formed by the reaction of bromide with ozone may partially contribute to cell inactivation. The use of ozone of less than 1 mg/L produced 0.75-2.03 μg/L bromate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying isentropic stratosphere-troposphere exchange of ozone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Huang; Chen, Gang; Tang, Qi
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
Quantifying isentropic stratosphere-troposphere exchange of ozone
Yang, Huang; Chen, Gang; Tang, Qi; ...
2016-03-25
There is increased evidence that stratosphere-troposphere exchange (STE) of ozone has a significant impact on tropospheric chemistry and radiation. Traditional diagnostics of STE consider the ozone budget in the lowermost stratosphere (LMS) as a whole. However, this can only render the hemispherically integrated ozone flux and therefore does not distinguish the exchange of ozone into low latitudes from that into high latitudes. The exchange of ozone at different latitudes may have different tropospheric impacts. This present study extends the traditional approach from the entire LMS to individual isentropic layers in the LMS and therefore gives the meridional distribution of STEmore » by the latitudes where each isentropic surface intersects the tropopause. The specified dynamics version of the Whole Atmosphere Community Climate Model is used to estimate the STE ozone flux on each isentropic surface. It is found that net troposphere-to-stratosphere ozone transport occurs in low latitudes along the 350–380 K isentropic surfaces and that net stratosphere-to-troposphere ozone transport takes place in the extratropics along the 280–350 K isentropes. Particularly, the seasonal cycle of extratropical STE ozone flux in the Northern Hemisphere displays a maximum in late spring and early summer, following the seasonal migration of the upper tropospheric jet and associated isentropic mixing. Moreover, differential diabatic heating and isentropic mixing tend to induce STE ozone fluxes in opposite directions, but the net effect results in a spatiotemporal pattern similar to the STE ozone flux associated with isentropic mixing.« less
NASA Technical Reports Server (NTRS)
Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.
2012-01-01
Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.
Efficacy and fumigation characteristics of ozone in stored maize.
Kells, S A.; Mason, L J.; Maier, D E.; Woloshuk, C P.
2001-10-01
This study evaluated the efficacy of ozone as a fumigant to disinfest stored maize. Treatment of 8.9tonnes (350bu) of maize with 50ppm ozone for 3d resulted in 92-100% mortality of adult red flour beetle, Tribolium castaneum (Herbst), adult maize weevil, Sitophilus zeamais (Motsch.), and larval Indian meal moth, Plodia interpunctella (Hübner) and reduced by 63% the contamination level of the fungus Aspergillus parasiticus Speare on the kernel surface. Ozone fumigation of maize had two distinct phases. Phase 1 was characterized by rapid degradation of the ozone and slow movement through the grain. In Phase 2, the ozone flowed freely through the grain with little degradation and occurred once the molecular sites responsible for ozone degradation became saturated. The rate of saturation depended on the velocity of the ozone/air stream. The optimum apparent velocity for deep penetration of ozone into the grain mass was 0.03m/s, a velocity that is achievable in typical storage structures with current fans and motors. At this velocity 85% of the ozone penetrated 2.7m into the column of grain in 0.8d during Phase 1 and within 5d a stable degradation rate of 1ppm/0.3m was achieved. Optimum velocity for Phase 2 was 0.02m/s. At this velocity, 90% of the ozone dose penetrated 2.7m in less than 0.5d. These data demonstrate the potential usefulness of using ozone in managing stored maize and possibly other grains.
NASA Astrophysics Data System (ADS)
Gaudel, A.; Cooper, O. R.; Barret, B.; Boynard, A.; Clerbaux, C.; Pierre-Francois, C.; Huang, G.; Hurtmans, D.; Kerridge, B. J.; Latter, B.; Le Flochmoen, E.; Liu, X.; Neu, J. L.; Siddans, R.; Wespes, C.; Worden, H. M.; Ziemke, J. R.
2017-12-01
Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone have shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, has left scientists unable to answer the most basic questions: Is ozone continuing to decline in nations with strong emission controls? To what extent is ozone increasing in the developing world? IGAC's Tropospheric Ozone Assessment Report (TOAR) has been designed to answer these questions and this presentation will show the results from the TOAR-Climate initiative, focusing on the present-day distribution and trends of global tropospheric ozone from satellite observations. Five satellite products based on OMI (2 products using two different retrieval methods) and IASI (also 2 products using two different retrieval methods) and the OMI/MLS combined product were intercompared. An important result is the close agreement among the five products regarding the quantification of the total mass of all tropospheric ozone, the so called tropospheric ozone burden (TOB). The mean estimate for TOB between 60° N and 60° S is 296 Tg, with all products agreeing within ± 4%. However, on a regional basis the five satellite products have notable differences and there is no agreement in terms of ozone trends over the past decade. Continuing work is exploring the causes of these differences.
What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?
NASA Astrophysics Data System (ADS)
Newman, P. A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.; Velders, G. J.
2008-12-01
Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs) has been firmly established with laboratory measurements, atmospheric observations, and modeling research. The nations of the world implemented the Montreal Protocol (and amendments) which stopped ODS production in 1992. In this presentation we use a fully coupled radiation- chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally average column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet (UV) radiation increases, tripling the erythemal (sunburn) radiation in the northern summer mid-latitudes by 2065.
Tropospheric Enhancement of Ozone over the UAE
NASA Astrophysics Data System (ADS)
Abbasi, Naveed Ali; Majeed, Tariq; Iqbal, Mazhar; Kaminski, Jacek; Struzewska, Joanna; Durka, Pawel; Tarasick, David; Davies, Jonathan
2015-04-01
We use the Global Environmental Multiscale - Air Quality (GEM-AQ) model to interpret the vertical profiles of ozone acquired with ozone sounding experiments at the meteorological site located at the Abu Dhabi airport. The purpose of this study is to gain insight into the chemical and dynamical structures in the atmosphere of this unique subtropical location (latitude 24.45N; longitude 54.22E). Ozone observations for years 2012 - 2013 reveal elevated ozone abundances in the range from 70 ppbv to 120 ppbv near 500-400 hPa during summer. The ozone abundances in other seasons are much lower than these values. The preliminary results indicate that summertime enhancement in ozone is associated with the Arabian anticyclones centered over the Zagros Mountains in Iran and the Asir and Hijaz Mountain ranges in Saudi Arabia, and is consistent with TES observations of deuterated water. The model also shows considerable seasonal variation in the tropospheric ozone which is transported from the stratosphere by dynamical processes. The domestic production of ozone in the middle troposphere is estimated and compared GEM-AQ model. It is estimated that about 40-50% of ozone in the UAE is transported from the neighbouring petrochemical industries in the Gulf region. We will present ozone sounding data and GEM-AQ results including a discussion on the high levels of the tropospheric ozone responsible for contaminating the air quality in the UAE. This work is supported by National Research Foundation, UAE.
Shadkami, F; Helleur, R J; Cox, R M
2007-07-01
Plant secondary metabolites have an important role in defense responses against herbivores and pathogens, and as a chemical barrier to elevated levels of harmful air pollutants. This study involves the rapid chemical profiling of phenolic and diterpene resin acids in needles of two (ozone-tolerant and ozone-sensitive) white pine (Pinus strobus) clones, fumigated with different ozone levels (control, and daily events peaking at 80 and 200 ppb) for 40 days. The phenolic and resin acids were measured using thermally assisted hydrolysis and methylation (THM) gas chromatography/mass spectrometry. Short-term fumigation affected the levels of two phenolic acids, i.e., 3-hydroxybenzoic and 3,4-dihydroxybenzoic acids, in that both showed a substantial decrease in concentration with increased ozone dose. The decrease in concentration of these THM products may be caused by inhibition of the plant's shikimate biochemical pathway caused by ozone exposure. The combined occurrence of these two ozone-sensitive indicators has a role in biomonitoring of ozone levels and its impact on forest productivity. In addition, chromatographic profile differences in the major diterpene resin acid components were observed between ozone-tolerant and ozone-sensitive clones. The resin acids anticopalic, 3-oxoanticopalic, 3beta-hydroxyanticopalic, and 3,4-cycloanticopalic acids were present in the ozone-sensitive pine; however, only anticopalic acid was present in the ozone-tolerant clone. This phenotypic variation in resin acid composition may be useful in distinguishing populations that are differentially adapted to air pollutants.
Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.
Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian
2011-10-01
The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.
An evaluation of ozone exposure metrics for a seasonally drought-stressed ponderosa pine ecosystem.
Panek, Jeanne A; Kurpius, Meredith R; Goldstein, Allen H
2002-01-01
Ozone stress has become an increasingly significant factor in cases of forest decline reported throughout the world. Current metrics to estimate ozone exposure for forest trees are derived from atmospheric concentrations and assume that the forest is physiologically active at all times of the growing season. This may be inaccurate in regions with a Mediterranean climate, such as California and the Pacific Northwest, where peak physiological activity occurs early in the season to take advantage of high soil moisture and does not correspond to peak ozone concentrations. It may also misrepresent ecosystems experiencing non-average climate conditions such as drought years. We compared direct measurements of ozone flux into a ponderosa pine canopy with a suite of the most common ozone exposure metrics to determine which best correlated with actual ozone uptake by the forest. Of the metrics we assessed, SUM0 (the sum of all daytime ozone concentrations > 0) best corresponded to ozone uptake by ponderosa pine, however the correlation was only strong at times when the stomata were unconstrained by site moisture conditions. In the early growing season (May and June). SUM0 was an adequate metric for forest ozone exposure. Later in the season, when stomatal conductance was limited by drought. SUM0 overestimated ozone uptake. A better metric for seasonally drought-stressed forests would be one that incorporates forest physiological activity, either through mechanistic modeling, by weighting ozone concentrations by stomatal conductance, or by weighting concentrations by site moisture conditions.
NASA Astrophysics Data System (ADS)
Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.
2014-05-01
This paper evaluates the performance of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3 year period between September 2009 and September 2012. Ozone analyses produced by four different chemistry transport models and data assimilation techniques are examined: the ECMWF Integrated Forecast System (IFS) coupled to MOZART-3 (IFS-MOZART), the BIRA-IASB Belgian Assimilation System for Chemical ObsErvations (BASCOE), the DLR/RIU Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA), and the KNMI Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system: SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. The stratospheric ozone analyses are compared to independent ozone observations from ground-based instruments, ozone sondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. All analyses show total column values which are generally in good agreement with groundbased observations (biases <5%) and a realistic seasonal cycle. The only exceptions are found for BASCOE which systematically underestimates total ozone in the Tropics with about 7-10% at Chengkung (Taiwan, 23.1° N/121.365° E), resulting from the fact that BASCOE does not include any tropospheric processes, and for SACADA which overestimates total ozone in the absence of UV observations for the assimilation. Due to the large weight given to column observations in the assimilation procedure, IFS-MOZART is able to reproduce total column observations very well, but alternating positive and negative biases compared to ozonesonde and ACE-FTS satellite data are found in the vertical as well as an overestimation of 30 to 60% in the polar lower stratosphere during ozone depletion events. The assimilation of near real-time (NRT) Microwave Limb Sounder (MLS) profiles which only go down to 68 hPa is not able to correct for the deficiency of the underlying MOZART model, which may be related to the applied meteorological fields. Biases of BASCOE compared to ozonesonde or ACE-FTS ozone profiles do not exceed 10% over the entire vertical stratospheric range, thanks to the good performance of the model in ozone hole conditions and the assimilation of offline MLS profiles going down to 215 hPa. TM3DAM provides very realistic total ozone columns, but is not designed to provide information on the vertical distribution of ozone. Compared to ozonesondes and ACE-FTS satellite data, SACADA performs best in the Arctic, but shows large biases (>50%) for ozone in the lower stratosphere in the Tropics and in the Antarctic, especially during ozone hole conditions. This study shows that ozone analyses with realistic total ozone column densities do not necessarily yield good agreement with the observed ozone profiles. It also shows the large benefit obtained from the assimilation of a single limb-scanning instrument (Aura MLS) with a high density of observations. Hence even state-of-the-art models of stratospheric chemistry still require the assimilation of limb observations for a correct representation of the vertical distribution of ozone in the stratosphere.
Largest-ever Ozone Hole over Antarctica
NASA Technical Reports Server (NTRS)
2002-01-01
A NASA instrument has detected an Antarctic ozone 'hole' (what scientists call an 'ozone depletion area') that is three times larger than the entire land mass of the United States-the largest such area ever observed. The 'hole' expanded to a record size of approximately 11 million square miles (28.3 million square kilometers) on Sept. 3, 2000. The previous record was approximately 10.5 million square miles (27.2 million square km) on Sept. 19, 1998. The ozone hole's size currently has stabilized, but the low levels in its interior continue to fall. The lowest readings in the ozone hole are typically observed in late September or early October each year. 'These observations reinforce concerns about the frailty of Earth's ozone layer. Although production of ozone-destroying gases has been curtailed under international agreements, concentrations of the gases in the stratosphere are only now reaching their peak. Due to their long persistence in the atmosphere, it will be many decades before the ozone hole is no longer an annual occurrence,' said Dr. Michael J. Kurylo, manager of the Upper Atmosphere Research Program, NASA Headquarters, Washington, DC. Ozone molecules, made up of three atoms of oxygen, comprise a thin layer of the atmosphere that absorbs harmful ultraviolet radiation from the Sun. Most atmospheric ozone is found between approximately six miles (9.5 km) and 18 miles (29 km) above the Earth's surface. Scientists continuing to investigate this enormous hole are somewhat surprised by its size. The reasons behind the dimensions involve both early-spring conditions, and an extremely intense Antarctic vortex. The Antarctic vortex is an upper-altitude stratospheric air current that sweeps around the Antarctic continent, confining the Antarctic ozone hole. 'Variations in the size of the ozone hole and of ozone depletion accompanying it from one year to the next are not unexpected,' said Dr. Jack Kaye, Office of Earth Sciences Research Director, NASA Headquarters. 'At this point we can only wait to see how the ozone hole will evolve in the coming few months and see how the year's hole compares in all respects to those of previous years.' 'Discoveries like these demonstrate the value of our long-term commitment to providing key observations to the scientific community,' said Dr. Ghassem Asrar, Associate Administrator for NASA's Office of Earth Sciences at Headquarters. 'We will soon launch QuickTOMS and Aura, two spacecraft that will continue to gather these important data.' The measurements released today were obtained using the Total Ozone Mapping Spectrometer (TOMS) instrument aboard NASA's Earth Probe (TOMS-EP) satellite. NASA instruments have been measuring Antarctic ozone levels since the early 1970s. Since the discovery of the ozone 'hole' in 1985, TOMS has been a key instrument for monitoring ozone levels over the Earth. TOMS ozone data and more pictures are available at: http://toms.gsfc.nasa.gov/ TOMS-EP and other ozone-measurement programs are important parts of a global environmental effort of NASA's Earth Science enterprise, a long-term research program designed to study Earth's land, oceans, atmosphere, ice and life as a total integrated system. For more information about ozone and ozone loss, visit: Ozone in the Stratosphere. Image courtesy the TOMS science team and and the Scientific Visualization Studio, NASA GSFC
Evaluation of the potential of ozone as a power plant biocide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattice, J.S.; Trabalka, J.R.; Adams, S.M.
1978-09-01
A review of the literature on the chemistry and biological effects of ozone was conducted to evaluate the potential of ozone to function as a power plant biocide. Evaluation of this potential is dependent upon determining the ability of ozone to maintain the integrity of both the condenser cooling system and the associated ecosystem. The well-known bactericidal capacity of ozone and the limited biofouling control studies conducted thus far suggest that ozone can control both slime and macroinvertebrate fouling at power plants. However, full-scale demonstrations of the minimum levels of ozone required and of solution of the practical aspects ofmore » application have not been performed.« less
Ozone damage detection in cantaloupe plants
NASA Technical Reports Server (NTRS)
Gausman, H. W.; Escobar, D. E.; Rodriguez, R. R.; Thomas, C. E.; Bowen, R. L.
1978-01-01
Ozone causes up to 90 percent of air pollution injury to vegetation in the United States; excess ozone affects plant growth and development and can cause undetected decrease in yields. Laboratory and field reflectance measurements showed that ozone-damaged cantaloupe (Cucumis melo L.) leaves had lower water contents and higher reflectance than did nondamaged leaves. Cantaloupe plants which were lightly, severely, and very severely ozone-damaged were distinguishable from nondamaged plants by reflectance measurements in the 1.35- to 2.5 micron near-infrared water absorption waveband. Ozone-damaged leaf areas were detected photographically 16 h before the damage was visible. Sensors are available for use with aircraft and spacecraft that possibly could be used routinely to detect ozone-damaged crops.
Tropical Tropospheric Ozone: New Insights from Remote Sensing and Field Studies
NASA Technical Reports Server (NTRS)
Thompson, Anne
1999-01-01
This talk will summarize our recent research in tropical tropospheric ozone studies in the field and from space. New tropospheric ozone and aerosol products from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument will be highlighted (Hudson and Thompson, 1998; Thompson and Hudson, 1999). These are suitable for studying processes like ozone pollution resulting from biomass fires, seasonal and interannual variations and trends. Archived maps of tropospheric ozone over the tropics, from the Nimbus 7 observing period (1979-1992) are available in digital form at our website. Real-time processing of TOMS data has produced images of tropical tropospheric ozone (TTO) since early 1997, using Earth-Probe TOMS; these maps are also available on the homepage.
USDA-ARS?s Scientific Manuscript database
Increased mixing ratios of ground-level ozone threaten individual plants, plant communities and ecosystems. In this sense, ozone biomonitoring is of great interest. The ozone-sensitive S156 and the ozone-tolerant R123 genotypes of snap bean (Phaseolus vulgaris L.) have been proposed as a potential t...
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ozone. 184.1563 Section 184.1563 Food and Drugs... Substances Affirmed as GRAS § 184.1563 Ozone. (a) Ozone (O3, CAS Reg. No. 10028-15-6) is an unstable blue gas... manufacturing practice results in a maximum residual level at the time of bottling of 0.4 milligram of ozone per...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-23
... Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air Conditioning... hydrofluoroolefin (HFO)-1234yf (2,3,3,3-tetrafluoroprop-1-ene), a substitute for ozone- depleting substances (ODSs... EPA's Stratospheric Ozone Web site at http://www.epa.gov/ozone/snap/regs . The full list of SNAP...
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ozone. 184.1563 Section 184.1563 Food and Drugs... Substances Affirmed as GRAS § 184.1563 Ozone. (a) Ozone (O3, CAS Reg. No. 10028-15-6) is an unstable blue gas... manufacturing practice results in a maximum residual level at the time of bottling of 0.4 milligram of ozone per...
40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388 CAIR...
USDA-ARS?s Scientific Manuscript database
Ozone (O3) is a natural antimicrobial agent with potential applications in food industry. In this study, inactivation of Bacillus cereus and Salmonella enterica Typhimurium by aqueous ozone was evaluated. Ozone gas was generated using a domestic ozone generator with an output of 200 mg/hr (approx. 0...
40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388 CAIR...
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ozone. 184.1563 Section 184.1563 Food and Drugs... Substances Affirmed as GRAS § 184.1563 Ozone. (a) Ozone (O3, CAS Reg. No. 10028-15-6) is an unstable blue gas... manufacturing practice results in a maximum residual level at the time of bottling of 0.4 milligram of ozone per...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ozone. 184.1563 Section 184.1563 Food and Drugs... Substances Affirmed as GRAS § 184.1563 Ozone. (a) Ozone (O3, CAS Reg. No. 10028-15-6) is an unstable blue gas... manufacturing practice results in a maximum residual level at the time of bottling of 0.4 milligram of ozone per...
40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO 2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388 CAIR...
40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388 CAIR...
40 CFR 96.388 - CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false CAIR NOX Ozone Season allowance allocations to CAIR NOX Ozone Season opt-in units. 96.388 Section 96.388 Protection of Environment... SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR NOX Ozone Season Opt-in Units § 96.388 CAIR...
Ozone climatology series. Volume 1: Atlas of total ozone, April 1970 - December 1976
NASA Technical Reports Server (NTRS)
Heath, D. F.; Fleig, A. J.; Miller, A. J.; Rogers, T. G.; Nagatani, R. M.; Bowman, H. D., II; Kaveeshwar, V. G.; Klenk, K. F.; Bhartia, P. K.; Lee, K. D.
1982-01-01
Contours and gridded values are given for seven years of monthly mean total ozone data derived from observations with the Backscattered Ultraviolet instrument on Nimbus-4 for the Northern and Southern Hemispheres. The instrument, algorithm, uncertainties in derived ozone and systematic changes in the bias with respect to the international groundbased ozone network of Dobson instruments, are discussed.
Swami, Saurabh; Muzammil, Raunaq; Saha, Supradip; Shabeer, Ahammed; Oulkar, Dasharath; Banerjee, Kaushik; Singh, Shashi Bala
2016-05-01
Ozonated water dip technique was evaluated for the detoxification of six pesticides, i.e., chlorpyrifos, cypermethrin, azoxystrobin, hexaconazole, methyl parathion, and chlorothalonil from apple fruits. Results revealed that ozonation was better than washing alone. Ozonation for 15 min decreased residues of the test pesticides in the range of from 26.91 to 73.58%, while ozonation for 30 min could remove the pesticide residues by 39.39-95.14 % compared to 19.05-72.80 % by washing. Cypermethrin was the least removed pesticide by washing as well as by ozonation. Chlorothalonil, chlorpyrifos, and azoxystrobin were removed up to 71.45-95.14 % in a 30-min ozonation period. In case of methyl parathion removal, no extra advantage could be obtained by ozonation. The HPLC analysis indicated that ozonation also affected adversely the ascorbic acid and cyanidin-3-glucoside content of apples. However, 11 polyphenols studied showed a mixed trend. Gallic acid, 3,4-dihydroxybenzoic acid, catechin, epicatechin, p-coumaric acid, quercetin-3-O-glucoside, quercetin, and kaempferol were found to decrease while syringic acid, rutin, and resveratrol were found to increase in 30-min ozonation.
Enhanced near-surface ozone under heatwave conditions in a Mediterranean island.
Pyrgou, Andri; Hadjinicolaou, Panos; Santamouris, Mat
2018-06-15
Near-surface ozone is enhanced under particular chemical reactions and physical processes. This study showed the seasonal variation of near-surface ozone in Nicosia, Cyprus and focused in summers when the highest ozone levels were noted using a seven year hourly dataset from 2007 to 2014. The originality of this study is that it examines how ozone levels changed under heatwave conditions (defined as 4 consecutive days with daily maximum temperature over 39 °C) with emphasis on specific air quality and meteorological parameters with respect to non-heatwave summer conditions. The influencing parameters had a medium-strong positive correlation of ozone with temperature, UVA and UVB at daytime which increased by about 35% under heatwave conditions. The analysis of the wind pattern showed a small decrease of wind speed during heatwaves leading to stagnant weather conditions, but also revealed a steady diurnal cycle of wind speed reaching a peak at noon, when the highest ozone levels were noted. The negative correlation of NOx budget with ozone was further increased under heatwave conditions leading to steeper lows of ozone in the morning. In summary, this research encourages further analysis into the persistent weather conditions prevalent during HWs stimulating ozone formation for higher temperatures.
TOMS Tropical Tropospheric Ozone Data Sets at the University of Maryland Website
NASA Technical Reports Server (NTRS)
Kochhar, A. K.; Thompson, A. M.; Hudson, R. D.; Frolov, A. D.; Witte, J. C.; Einaudi, Franco (Technical Monitor)
2001-01-01
Since 1997, shortly after the launch of the Earth-Probe TOMS (Total Ozone Mapping Spectrometer) satellite instrument, we have been processing data in near-real time to post maps of tropical tropospheric ozone at a website: metosrv2.umd.edu/-tropo. Daily, 3-day and 9-day averages of tropical tropospheric ozone column depth (TTO) are viewable from 10N to 10S. Data can be downloaded (running 9-day means) from 20N-30S. Pollution events are trackable along with dynamically-induced variations in tropospheric ozone column. TOMS smoke aerosol (toms.gsfc.nasa.gov) can be used to interpret biomass burning ozone, as for example, during the extreme ozone and smoke pollution period during the ENSO-related fires of August November 1997. During that time plumes of ozone and smoke were frequently decoupled and ozone from Indonesian fires and from Africa merged in one large feature by late October 1997. In addition to the Earth-Probe TOMS record, data as half-month averages and as daily 9-day means from the Nimbus 7 TOMS instrument are at the metosrv2.umd.edu/-tropo website. A guide to the website and examples of ozone time-series and maps will be shown.
NASA Technical Reports Server (NTRS)
Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong
2016-01-01
Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.
Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.
Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca
2009-04-01
The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.
Ozone Climatological Profiles for Version 8 TOMS and SBUV Retrievals
NASA Technical Reports Server (NTRS)
McPeters, R. D.; Logan, J. A.; Labow, G. J.
2003-01-01
A new altitude dependent ozone climatology has been produced for use with the latest Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter Ultraviolet (SBUV) retrieval algorithms. The climatology consists of monthly average profiles for ten degree latitude zones covering from 0 to 60 km. The climatology was formed by combining data from SAGE II (1988 to 2000) and MLS (1991-1999) with data from balloon sondes (1988-2002). Ozone below about 20 km is based on balloons sondes, while ozone above 30 km is based on satellite measurements. The profiles join smoothly between 20 and 30 km. The ozone climatology in the southern hemisphere and tropics has been greatly enhanced in recent years by the addition of balloon sonde stations under the SHADOZ (Southern Hemisphere Additional Ozonesondes) program. A major source of error in the TOMS and SBUV retrieval of total column ozone comes from their reduced sensitivity to ozone in the lower troposphere. An accurate climatology for the retrieval a priori is important for reducing this error on the average. The new climatology follows the seasonal behavior of tropospheric ozone and reflects its hemispheric asymmetry. Comparisons of TOMS version 8 ozone with ground stations show an improvement due in part to the new climatology.
NASA Technical Reports Server (NTRS)
Hassler, B.; Petropavlovskikh, I.; Staehelin, J.; August, T.; Bhartia, P. K.; Clerbaux, C.; Degenstein, D.; Maziere, M. De; Dinelli, B. M.; Dudhia, A.;
2014-01-01
Peak stratospheric chlorofluorocarbon (CFC) and other ozone depleting substance (ODS) concentrations were reached in the mid- to late 1990s. Detection and attribution of the expected recovery of the stratospheric ozone layer in an atmosphere with reduced ODSs as well as efforts to understand the evolution of stratospheric ozone in the presence of increasing greenhouse gases are key current research topics. These require a critical examination of the ozone changes with an accurate knowledge of the spatial (geographical and vertical) and temporal ozone response. For such an examination, it is vital that the quality of the measurements used be as high as possible and measurement uncertainties well quantified. In preparation for the 2014 United Nations Environment Programme (UNEP)/World Meteorological Organization (WMO) Scientific Assessment of Ozone Depletion, the SPARC/IO3C/IGACO-O3/NDACC (SI2N) Initiative was designed to study and document changes in the global ozone profile distribution. This requires assessing long-term ozone profile data sets in regards to measurement stability and uncertainty characteristics. The ultimate goal is to establish suitability for estimating long-term ozone trends to contribute to ozone recovery studies. Some of the data sets have been improved as part of this initiative with updated versions now available. This summary presents an overview of stratospheric ozone profile measurement data sets (ground and satellite based) available for ozone recovery studies. Here we document measurement techniques, spatial and temporal coverage, vertical resolution, native units and measurement uncertainties. In addition, the latest data versions are briefly described (including data version updates as well as detailing multiple retrievals when available for a given satellite instrument). Archive location information for each data set is also given.
NASA Astrophysics Data System (ADS)
Romanovskii, O. A.; Burlakov, V. D.; Dolgii, S. I.; Nevzorov, A. A.; Nevzorov, A. V.; Kharchenko, O. V.
2016-12-01
Prediction of atmospheric ozone layer, which is the valuable and irreplaceable geo asset, is currently the important scientific and engineering problem. The relevance of the research is caused by the necessity to develop laser remote methods for sensing ozone to solve the problems of controlling the environment and climatology. The main aim of the research is to develop the technique for laser remote ozone sensing in the upper troposphere - lower stratosphere by differential absorption method for temperature and aerosol correction and analysis of measurement results. The report introduces the technique of recovering profiles of ozone vertical distribution considering temperature and aerosol correction in atmosphere lidar sounding by differential absorption method. The temperature correction of ozone absorption coefficients is introduced in the software to reduce the retrieval errors. The authors have determined wavelengths, promising to measure ozone profiles in the upper troposphere - lower stratosphere. We present the results of DIAL measurements of the vertical ozone distribution at the Siberian lidar station in Tomsk. Sensing is performed according to the method of differential absorption at wavelength pair of 299/341 nm, which are, respectively, the first and second Stokes components of SRS conversion of 4th harmonic of Nd:YAG laser (266 nm) in hydrogen. Lidar with receiving mirror 0.5 m in diameter is used to implement sensing of vertical ozone distribution in altitude range of 6-18 km. The recovered ozone profiles were compared with IASI satellite data and Kruger model. The results of applying the developed technique to recover the profiles of ozone vertical distribution considering temperature and aerosol correction in the altitude range of 6-18 km in lidar atmosphere sounding by differential absorption method confirm the prospects of using the selected wavelengths of ozone sensing 341 and 299 nm in the ozone lidar.
An Autonomous Ozone Instrument for Atmospheric Measurements from Ocean Buoys
NASA Astrophysics Data System (ADS)
Hintsa, E. J.; Rawlins, W. T.; Sholkovitz, E. R.; Hosom, D. S.; Allsup, G. P.; Purcell, M. J.; Scott, D. R.; Mulhall, P.
2002-05-01
Tropospheric ozone is an oxidant, a greenhouse gas, and a pollutant. Because of its adverse health effects, there are numerous monitoring stations on land but none over the oceans. We have built an ozone instrument for deployment anywhere at sea from ocean buoys, to study ozone chemistry over the oceans, intercontinental transport of pollution, diurnal and seasonal cycles of ozone, and to make baseline and long-term time series measurements of ozone in remote locations. The instrument uses direct (Beer's Law) absorption of UV radiation in a dual-path cell, with ambient and ozone-free air alternately switched between the two paths, to measure ozone. Ozone can be measured at a rate of 1 Hz, with a precision of about 1 ppb at sea level. The air inlet and outlet have valves which close automatically under high wind conditions or rain to protect the ozone sensor. The instrument has been packaged for deployment at sea, and tested on a 3-meter discus buoy with other instruments in coastal waters in fall 2001. It can operate autonomously or be controlled via line-of-sight modem or a satellite link. We will present the details of the instrument, and laboratory and buoy test data from its first deployment, including a comparison with a nearby ozone monitoring station on land. We will also present an evaluation of the instrument's performance and describe plans for improvements. In summer 2002, the ozone measurement system will be operated at the Martha's Vineyard Coastal Observatory; in the future we anticipate deploying on the Bermuda Testbed Mooring, followed by use on the open ocean to measure long-range transport of ozone.
Effect of gaseous ozone on Enterococcus faecalis biofilm-an in vitro study.
Boch, Tanja; Tennert, Christian; Vach, Kirstin; Al-Ahmad, Ali; Hellwig, Elmar; Polydorou, Olga
2016-09-01
The aim of this study was to evaluate the antimicrobial effect of gaseous ozone compared to conventional methods against Enterococcus faecalis. One hundred twenty-five teeth were infected by E. faecalis and were incubated for 72 h to form biofilm. Teeth were distributed among five groups. In the first group, ozone was used; in the second group, teeth were rinsed with 20 % ethylenediaminetetraacetic acid (EDTA); in the third group, with 3 % sodium hypochlorite (NaOCl). Group 4 combined 20 % EDTA with ozone. NaOCl and ozone were combined in group 5. After treatment, the samples with paper points were taken, followed by dentin samples taken with K-file, and cultured for 24 h. Then bacterial colonies were counted. All treatments reduced significantly (p < 0.05) the bacteria. Paper points' samples showed 85.38 % reduction after ozone. The highest reduction was observed in NaOCl group (99.98 %). EDTA reduced bacteria by 80.64 %. Combination of NaOCl and ozone eradicated 99.95 % of the bacteria. Combination of EDTA and ozone reduced E. faecalis up to 91.33 %. The dentin chips showed the following: the highest CFU counts were observed in EDTA group, followed by ozone and NaOCl group. The lowest CFU counts were found in NaOCl-ozone group and EDTA-ozone group. Ozone reduced E. faecalis, even organised in a biofilm, however, lower than NaOCl. No treatment reduced totally the bacteria. Used as an adjuvant, ozone can increase the efficacy of conventional rinsing like EDTA and presents an alternative treatment when NaOCl cannot be used e.g. in teeth with a wide-open apical foramen.
Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis
NASA Technical Reports Server (NTRS)
Wargan, Krzysztof; Pawson, Steven; Labow, Gordon; Frith, Stacey M.; Livesey, Nathaniel; Partyka, Gary
2017-01-01
The assimilated ozone product from the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), produced at NASAs Global Modeling and Assimilation Office (GMAO) is summarized. The reanalysis begins in 1980 with the use of retrieved partial-column ozone concentrations from a series of Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft. Beginning in October 2004, retrieved ozone profiles from the Microwave Limb Sounder (MLS) and total column ozone from the Ozone Monitoring Instrument (OMI) on NASAs EOS Aura satellite are assimilated. While this change in data streams does lead to a discontinuity in the assimilated ozone fields in MERRA-2, making it not useful for studies in decadal (secular) trends in ozone, this choice was made to prioritize demonstrating the value NASAs high-quality research data in the reanalysis context. The MERRA-2 ozone is compared with independent satellite and ozonesonde data, focusing on the representation of the spatial and temporal variability of stratospheric and upper-tropospheric ozone. The comparisons show agreement within 10 (standard deviation of the difference) between MERRA-2 profiles and independent satellite data in most of the stratosphere. The agreement improves after 2004, when EOS Aura data are assimilated. The standard deviation of the differences between the lower-stratospheric and upper-tropospheric MERRA-2 ozone and ozonesondes is 11.2 and 24.5, respectively, with correlations of 0.8 and above. This is indicative of a realistic representation of the UTLS ozone variability in MERRA-2. After 2004, the upper tropospheric ozone in MERRA-2 shows a low bias compared to the sondes, but the covariance with independent observations is improved compared to earlier years. Case studies demonstrate the integrity of MERRA-2 analyses in representing important features such as tropopause folds.
Detoxification of zearalenone and ochratoxin A by ozone and quality evaluation of ozonised corn.
Qi, Lijun; Li, Yulin; Luo, Xiaohu; Wang, Ren; Zheng, Ruihang; Wang, Li; Li, Yongfu; Yang, Dan; Fang, Wenmiao; Chen, Zhengxing
2016-11-01
Zearalenone (ZEN) and ochratoxin A (OTA) are secondary toxic metabolites of fungi that can contaminate a wide range of food and feedstuff. In this study, the effects of ozone treatment on ZEN and OTA and the quality of ozonised corn are investigated. Ozone significantly affects ZEN and OTA solutions. ZEN was undetectable 5 s after being treated with 10 mg l -1 ozone. However, OTA was resistant to ozonation with a degradation rate of 65.4% after 120 s of treatment. Moreover, ZEN and OTA solutions were difficult to degrade after being dried by a nitrogen stream. Results showed that ozone effectively degraded ZEN and OTA in corn. The degradation rates of ZEN and OTA in corn increased with ozone concentration and treatment time. The degradation of ZEN and OTA at different ozone concentrations appropriately conformed to first-order kinetics with an R 2 value > 0.8749. Furthermore, under the same conditions, corn with increased moisture content (MC) (19.6%) was more sensitive to ozone than corn with a low MC (14.1%). When treated with 100 mg l -1 ozone for 180 min, ZEN and OTA in corn with 19.6% MC decreased by 90.7% and 70.7%, respectively. To evaluate the quality of ozonised corn, subsequent quality experiments were conducted using corn samples treated at different times with 100 mg l -1 ozone. The MC of corn decreased after ozone treatment. The whiteness and yellowness of the corn increased and decreased with increasing time, respectively. The fatty acid value of the corn increased significantly (p ≤ 0.05) after 180 min of treatment. This study verified that ozone can effectively degrade ZEN and OTA in corn, but slightly affected corn quality.
Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs
Jacoby, David B.
2017-01-01
Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. PMID:28258108
Analysis of Ozone Levels from 2006 to 2016 in the Atlanta-Sandy Springs-Roswell Metropolitan Area
NASA Astrophysics Data System (ADS)
Dickinson, E.
2016-12-01
Ozone is a significant component of smog that persists in many large urban areas. Ozone is regulated by the U.S Environmental Protection Agency (EPA) as a criteria pollutant, and can lead to a variety of respiratory problems in sensitive groups. This study examines ozone concentrations in Atlanta-Sandy Springs- Roswell (Atlanta) metropolitan area, one of the largest urban areas in the Southeastern United States. Photochemical reactions involving oxides of nitrogen (NOx) and a variety of volatile organic compounds (VOCs) lead to ozone formation. The rate of ozone formation is exacerbated by Atlanta's hot and humid climate during the summers. Using data from EPA's Air Quality Systems database, this study analyzes ozone concentration data from regulatory monitoring sites in several counties that are in the metropolitan statistical area of Atlanta-Sandy Springs-Roswell, over a ten-year period (2006-2016). The study also looks at the meteorological conditions (such as temperature, wind speed, and humidity) over the same ten-year period (2006-2016) using data from the National Weather Service's Regional Airport Observations at Hartsfield-Jackson Airport in Atlanta. Based on a preliminary analysis of the ozone data, there is a downward trend in maximum daily 8-hour ozone concentration at all Atlanta-Sandy Springs-Roswell sites from 2006-2016. The decrease of ozone concentrations corresponds to three successively stricter National Ambient Air Quality Standards (NAAQS) for ozone (1997, 2008, and 2015) during the ten-year period of this study. The Atlanta area will be classified based on the 2015 ozone NAAQS, of 70 parts per billion, in the next few years. With EPA's upcoming attainment determination, this study looks at the recent trends in ozone concentrations and meteorology in the Atlanta area.
Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.
Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf
2015-09-15
Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.
Foreign and Domestic Contributions to Springtime Ozone Pollution over China
NASA Astrophysics Data System (ADS)
Ni, R.; Lin, J.; Yan, Y.; Lin, W.; Chen, H.
2017-12-01
Ozone is a critical air pollutant that damages human health and vegetation. Previous studies for the United States and Europe have shown large influences of foreign emissions on domestic ozone levels, whereas the relative contributions of foreign versus domestic emissions are much less clear for China. Here, we use a global-regional two-way coupled model system based on GEOS-Chem to quantify the contributions to springtime ozone over China from anthropogenic emissions in major source regions across the globe. Our results indicate considerable influences of foreign anthropogenic pollution on China's ozone pollution. Together, foreign anthropogenic emissions enhance springtime surface ozone over China by 3 12 ppb. Of all ozone over China produced by global anthropogenic emissions, foreign emissions contribute 40% near the surface, and the contribution increases with altitude until a value of 80% in the upper troposphere. Impact from Japan and Korea is 1 2 ppb over east coastal regions, and negligible in inland. Anthropogenic emissions of South and South-East Asia increase ozone over Tibet and the Yunnan-Guizhou Plateau by up to 5 ppb, and their contribution increases with height due to strong vertical transport. Pollution from North America and Europe mainly accompanies strong westerly winds and frequent cyclonic activities that are favorable to long-range transport. European anthropogenic pollution enhances surface ozone by 1 3 ppb over West and North China. Despite a much longer transport distance, the contribution from North America is greater than European contribution due to the nearly doubled amount of anthropogenic NMVOC emissions. The high percentage contribution of foreign anthropogenic emissions to China's ozone pollution can be partly explained by excessive domestic NOx emissions that suppress ozone production efficiency and even destroy ozone. Our study is relevant to Chinese ozone pollution control and global environmental protection collaboration.
Results of ozone measurements in Northern Germany: A case study
NASA Technical Reports Server (NTRS)
Schmidt, Manfred
1994-01-01
At most of the German ozone recording stations which have records over a sufficiently long period, the results of the summer months of 1989 showed the highest values since the beginning of the measurements. One of the reasons for this phenomenon was the high duration of sunshine in that summer; for example, in Potsdam near Berlin in May 1989 the sunshine duration was the highest in May since the beginning of the records in 1893. For that reason we selected this summer for a case study. The basis for the study was mainly the ozone measuring stations of the network of Lower Saxony and the Federal Office of Environment (Umweltbundesamt). The results of these summer measurements point to intense sources of ozone, probably in form of gaseous precursors, in the Middle German industrial areas near Leipzig and Halle and in Northwestern Czechoslovakia, with coal-mining, chemical and petrochemical industries, coking plants and others. The maps of average ozone concentrations, number or days with high ozone maxima, ozone-windroses of the stations, etc., suggest that these areas could be a main source of precursors and of photochemical ozone production in summer smog episodes in Central Europe. Stations on the North Sea coast, at which early ozone measurements were made by our institute in 1973/74 are compared with similarly located stations of the Lower Saxon network in 1989 and the results show a reversal of the ozone-windroses. In 1973/74, the highest ozone concentrations were correlated with wind directions from the sea while in 1989 these concentrations were correlated with directions from the continent. In the recent years, photochemical ozone production on the continent is probably predominant, while in former years the higher ozone content of the maritime subpolar air masses has been explained by stratospheric-tropospheric exchange.
NASA Technical Reports Server (NTRS)
Brinksma, E. J.; Meijer, Y. J.; Connor, B. J.; Manney, G. L.; Bergwerff, J. B.; Bodeker, G. E.; Boyd, I. S.; Liley, J. B.; Hogervorst, W.; Hovenier, J. W.;
1998-01-01
During early August 1997, the ozone column density measured over Lauder was unusually low, with a minimum value of 222 Dobson Units (DU) at August 10. These observations are striking since in August, during the Austral winter, the ozone column density should be heading towards its yearly maximum; The August mean ozone column density measured over Lauder between 1987 and 1996 was 348(+/-28) DU, the lowest monthly average in these ten years was 255 DU. Regular altitude profile measurements of ozone, performed at Network for the Detection of Stratospheric Change (NDSC) station Lauder, make it possible to do a detailed, altitude-resolved, study of the low ozone observations. The measurements show ozone poor air in two altitude regions of the stratosphere: A 'high region', extending from the 600 K to the 1050 K isentrope (25 to 34 km), and a 'low region', below about 550 K (22 km). High resolution reverse trajectory maps of potential vorticity (PV) and ozone mixing ratio, based on the assumption of passive advection by the large-scale three-dimensional winds, show that in the 'high region' the ozone poor air was part of the polar vortex, which was centered off the pole and extended over Lauder for several days, while in the 'low region' the ozone poor air was mixed in from low latitudes. A rapid recovery of the ozone column density, by more than 110 DU within 24 hours, was observed when in the low region an ozone rich filament of the polar vortex moved over Lauder, while in the high region the (ozone poor) high part of the vortex moved away.
Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.
NASA Astrophysics Data System (ADS)
Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.
2009-04-01
The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic Research Foundation (project No. 07-05-00428).
Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926-1996
NASA Astrophysics Data System (ADS)
Staehelin, Johannes; Kegel, Rainer; Harris, Neil R. P.
1998-04-01
Total ozone measurements have been made at Arosa, Switzerland (47°N), from 1926 through the present day, forming the longest total ozone series in the world. The record has been recently homogenized. Ozone trends are calculated to be -(2.3±0.6)% per decade for annual means (larger losses are found in winter and spring, approximately -4% per decade for trends in January, February, and March) when a simple linear change from 1970 to 1996 is assumed. In addition, total ozone trends are calculated using multiple regression models involving combinations of explanatory variables for the 11-year solar cycle, local meteorological conditions (the Mount Säntis high-altitude temperature record), stratospheric aerosol loading from volcanoes, and stratospheric chlorine loading. When the terms for the solar cycle, the stratospheric aerosol loading and the high mountain temperature record were included, the annually averaged ozone trends were found to be -(1.9±0.6)% per decade. While a statistically significant relation is found between total ozone and indices of aerosol loadings of the stratosphere, the recent decrease in total ozone cannot be accounted for by the higher average aerosol content in the second half of the century. Finally, the decrease in ozone in the stratosphere is estimated to be approximately 30% larger than that found for total ozone, when a crude estimate of the increase in tropospheric ozone is included. The acceleration observed in total ozone trends between the 1970s and the 1980s over northern midlatitudes [e.g., Harris et al., 1997] might be partially attributed to the larger increase in tropospheric ozone in the 1970s.
Adame, José A; Lozano, Antonio; Bolívar, Juan P; De la Morena, Benito A; Contreras, Juan; Godoy, Francisca
2008-01-01
In order to improve our knowledge of the surface ozone in the south of the Iberian Peninsula, annual, monthly, weekly and daily ozone concentrations have been closely monitored in the Seville metropolitan area highlighting those episodes that exceed the European Ozone Directive. A three-year period (2003-2005) and eight ozone stations were used; five of them located in the city's busiest areas and the rest in adjacent zones ( approximately 25km). In addition, the wind regime was also studied in order to understand the main characteristics of the surface atmospheric dynamics. The lowest ozone concentrations 17-33microgm(-3) took place in January while the highest 57-95microgm(-3) occurred in June. The ozone concentration week-weekend differences from May to September indicate that this phenomenon does not affect the ozone stations analysed. Daily cycles show minimum values between 7:00 and 8:00 UTC and maximum at noon, exceeding 90microgm(-3) during summer months. From March to October the ozone concentrations were above the target value for the protection of human health, especially during the summer months, with values up to 30% over the limit. The information threshold has been exceeded at all ozone stations studied but with greater frequency in the stations far from the city centre. In addition, at these latter stations the alert threshold was also exceeded on six occasions. This study in the city of Seville indicates that the high ozone levels are due to local atmospheric effects, mainly since the ozone air masses may undergo recirculation processes. The ozone is transported to the city from the S-SW, having a major impact in the NE areas.
NASA Astrophysics Data System (ADS)
Virolainen, Y. A.; Timofeyev, Y. M.; Smyshlyaev, S. P.; Motsakov, M. A.; Kirner, O.
2017-12-01
A comparison between the numerical simulation results of ozone fields with different experimental data makes it possible to estimate the quality of models for their further use in reliable forecasts of ozone layer evolution. We analyze time series of satellite (SBUV) measurements of the total ozone column (TOC) and the ozone partial columns in two atmospheric layers (0-25 and 25-60 km) and compare them with the results of numerical simulation in the chemistry transport model (CTM) for the low and middle atmosphere and the chemistry climate model EMAC. The daily and monthly average ozone values, short-term periods of ozone depletion, and long-term trends of ozone columns are considered; all data sets relate to St. Petersburg and the period between 2000 and 2014. The statistical parameters (means, standard deviations, variations, medians, asymmetry parameter, etc.) of the ozone time series are quite similar for all datasets. However, the EMAC model systematically underestimates the ozone columns in all layers considered. The corresponding differences between satellite measurements and EMAC numerical simulations are (5 ± 5)% and (7 ± 7)% and (1 ± 4)% for the ozone column in the 0-25 and 25-60 km layers, respectively. The correspondent differences between SBUV measurements and CTM results amount to (0 ± 7)%, (1 ± 9)%, and (-2 ± 8)%. Both models describe the sudden episodes of the ozone minimum well, but the EMAC accuracy is much higher than that of the CTM, which often underestimates the ozone minima. Assessments of the long-term linear trends show that they are close to zero for all datasets for the period under study.
Wu, Z.-X.; Barker, J. S.; Batchelor, T. P.; Dey, R.D.
2008-01-01
Exposure to ozone induces airway hyperresponsiveness (AHR) mediated partly by SP released from nerve terminals of intrinsic airway neurons. Our recent studies showed that IL-1, an important multifunctional proinflammatory cytokine, increases synthesis and release of SP from intrinsic airway neurons. The purpose of this study is to investigate the possible involvement of endogenous IL-1 in modulating neural responses associated with ozone-enhanced airway responsiveness. Ferrets were exposed to 2 ppm ozone or filtered air for 3 hrs. IL-1 in the bronchoalveolar lavage (BAL) fluid was significantly increased in ozone-exposed animals and responses of tracheal smooth muscle to methacholine (MCh) and electrical field stimulation (EFS) were elevated significantly. Both the SP nerve fiber density in tracheal smooth muscle and the number of SP-containing neurons in airway ganglia were significantly increased following ozone exposure. Pretreatment with IL-1 receptor antagonist (IL-1 Ra) significantly diminished ozone-enhanced airway responses to EFS as well as ozone-increased SP in the airway. To selectively investigate intrinsic airway neurons, segments of ferret trachea were maintained in culture conditions for 24 hrs to eliminate extrinsic contributions from sensory nerves. The segments were then exposed to 2 ppm ozone in vitro for 3 hrs. The changes of ozone-induced airway responses to MCh and EFS, and the SP levels in airway neurons paralleled those observed with in vivo ozone exposure. The ozone-enhanced airway responses and neuronal SP levels were inhibited by pretreatment with IL-1 Ra. These findings show that IL-1 is released during ozone exposure enhances airway responsiveness by modulating SP expression in airway neurons. PMID:18718561
NASA Technical Reports Server (NTRS)
Bowman, K. W.; Jones, D.; Logan, J.; Worden, H.; Boersma, F.; Chang, R.; Kulawik, S.; Osterman, G.; Worden, J.
2008-01-01
The chemical and dynamical processes governing the zonal variability of tropical tropospheric ozone and carbon monoxide are investigated for November 2004 using satellite observations, in-situ measurements, and chemical transport models in conjunction with inverse-estimated surface emissions. Vertical ozone profile estimates from the Tropospheric Emission Spectrometer (TES) and ozone sonde measurements from the Southern Hemisphere Additional Ozonesondes (SHADOZ) network show the so called zonal 'wave-one' pattern, which is characterized by peak ozone concentrations (70-80 ppb) centered over the Atlantic, as well as elevated concentrations of ozone over Indonesia and Australia (60-70 ppb) in the lower troposphere. Observational evidence from TES CO vertical profiles and Ozone Monitoring Instrument (OMI) NO2 columns point to regional surface emissions as an important contributor to the elevated ozone over Indonesia. This contribution is investigated with the GEOS-Chem chemistry and transport model using surface emission estimates derived from an optimal inverse model, which was constrained by TES and Measurements Of Pollution In The Troposphere (MOPITT) CO profiles (Jones et al., 2007). These a posteriori estimates, which were over a factor of 2 greater than climatological emissions, reduced differences between GEOS-Chem and TES ozone observations by 30-40% and led to changes in GEOS-Chem upper tropospheric ozone of up to 40% over Indonesia. The remaining residual differences can be explained in part by upper tropospheric ozone produced from lightning NOx in the South Atlantic. Furthermore, model simulations from GEOS-Chem indicate that ozone over Indonesian/Australian is more sensitive to changes in surface emissions of NOx than ozone over the tropical Atlantic.
Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.
Wicher, Sarah A; Jacoby, David B; Fryer, Allison D
2017-06-01
Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright © 2017 the American Physiological Society.
Dynamical variability in the modelling of chemistry-climate interactions.
Pyle, J A; Braesicke, P; Zeng, G
2005-01-01
We have used a version of the Met Office's climate model, into which we have introduced schemes for atmospheric chemistry, to study chemistry-dynamics-climate interactions. We have considered the variability of the stratospheric polar vortex, whose behaviour influences stratospheric ozone loss and will affect ozone recovery. In particular, we analyse the dynamical control of high latitude ozone in a model version which includes an assimilation of the equatorial quasi-biennial oscillation (QBO), demonstrating the stability of the linear relation between vortex strength and high latitude ozone. We discuss the effect of interactive model ozone on polar stratospheric cloud (PSC) area/volume and winter-spring stratospheric ozone loss in the northern hemisphere. In general we find larger polar ozone losses calculated in those model integrations in which modelled ozone is used interactively in the radiation scheme, even though we underestimate the slope of the ozone loss per PSC volume relation derived from observations. We have also looked at the influence of changing stratosphere-to-troposphere exchange on the tropospheric oxidizing capacity and, in particular, have considered the variability of tropospheric composition under different climate regimes (El Niño/La Niña, etc.). Focusing on the UT/LS, we show the response of ozone to El Niño in two different model set-ups (tropospheric/ stratospheric). In the stratospheric model set-up we find a distinct signal in the lower tropical stratosphere, which shows an anti-correlation between the Niño 3 index and the ozone column amount. In contrast ozone generally increases in the upper troposphere of the tropospheric model set-up after an El Niño. Understanding future trends in stratospheric ozone and tropospheric oxidizing capacity requires an understanding of natural variability, which we explore here.