Sample records for p-glycoprotein transport activity

  1. PPAR-α, a lipid-sensing transcription factor, regulates blood–brain barrier efflux transporter expression

    PubMed Central

    More, Vijay R; Campos, Christopher R; Evans, Rebecca A; Oliver, Keith D; Chan, Gary NY; Miller, David S

    2016-01-01

    Lipid sensor peroxisome proliferator-activated receptor alpha (PPAR-α) is the master regulator of lipid metabolism. Dietary release of endogenous free fatty acids, fibrates, and certain persistent environmental pollutants, e.g. perfluoroalkyl fire-fighting foam components, are peroxisome proliferator-activated receptor alpha ligands. Here, we define a role for peroxisome proliferator-activated receptor alpha in regulating the expression of three ATP-driven drug efflux transporters at the rat and mouse blood–brain barriers: P-glycoprotein (Abcb1), breast cancer resistance protein (Bcrp/Abcg2), and multidrug resistance-associated protein 2 (Mrp2/Abcc2). Exposing isolated rat brain capillaries to linoleic acid, clofibrate, or PKAs increased the transport activity and protein expression of the three ABC transporters. These effects were blocked by the PPAR-α antagonist, GW6471. Dosing rats with 20 mg/kg or 200 mg/kg of clofibrate decreased the brain accumulation of the P-glycoprotein substrate, verapamil, by 50% (in situ brain perfusion; effects blocked by GW6471) and increased P-glycoprotein expression and activity in capillaries ex vivo. Fasting C57Bl/6 wild-type mice for 24 h increased both serum lipids and brain capillary P-glycoprotein transport activity. Fasting did not alter P-glycoprotein activity in PPAR-α knockout mice. These results indicate that hyperlipidemia, lipid-lowering fibrates and exposure to certain fire-fighting foam components activate blood–brain barrier peroxisome proliferator-activated receptor alpha, increase drug efflux transporter expression and reduce drug delivery to the brain. PMID:27193034

  2. Celastraceae sesquiterpenes as a new class of modulators that bind specifically to human P-glycoprotein and reverse cellular multidrug resistance.

    PubMed

    Muñoz-Martínez, Francisco; Lu, Peihua; Cortés-Selva, Fernando; Pérez-Victoria, José María; Jiménez, Ignacio A; Ravelo, Angel G; Sharom, Frances J; Gamarro, Francisco; Castanys, Santiago

    2004-10-01

    Overexpression of ABCB1 (MDR1) P-glycoprotein, a multidrug efflux pump, is one mechanism by which tumor cells may develop multidrug resistance (MDR), preventing the successful chemotherapeutic treatment of cancer. Sesquiterpenes from Celastraceae family are natural compounds shown previously to reverse MDR in several human cancer cell lines and Leishmania strains. However, their molecular mechanism of reversion has not been characterized. In the present work, we have studied the ability of 28 dihydro-beta-agarofuran sesquiterpenes to reverse the P-glycoprotein-dependent MDR phenotype and elucidated their molecular mechanism of action. Cytotoxicity assays using human MDR1-transfected NIH-3T3 cells allowed us to select the most potent sesquiterpenes reversing the in vitro resistance to daunomycin and vinblastine. Flow cytometry experiments showed that the above active compounds specifically inhibited drug transport activity of P-glycoprotein in a saturable, concentration-dependent manner (K(i) down to 0.24 +/- 0.01 micromol/L) but not that of ABCC1 (multidrug resistance protein 1; MRP1), ABCC2 (MRP2), and ABCG2 (breast cancer resistance protein; BCRP) transporters. Moreover, sesquiterpenes inhibited at submicromolar concentrations the P-glycoprotein-mediated transport of [(3)H]colchicine and tetramethylrosamine in plasma membrane from CH(R)B30 cells and P-glycoprotein-enriched proteoliposomes, supporting that P-glycoprotein is their molecular target. Photoaffinity labeling in plasma membrane and fluorescence spectroscopy experiments with purified protein suggested that sesquiterpenes interact with transmembrane domains of P-glycoprotein. Finally, sesquiterpenes modulated P-glycoprotein ATPase-activity in a biphasic, concentration-dependent manner: they stimulated at very low concentrations but inhibited ATPase activity as noncompetitive inhibitors at higher concentrations. Sesquiterpenes from Celastraceae are promising P-glycoprotein modulators with potential applications in cancer chemotherapy because of their MDR reversal potency and specificity for P-glycoprotein.

  3. P-glycoprotein substrate transport assessed by comparing cellular and vesicular ATPase activity.

    PubMed

    Nervi, Pierluigi; Li-Blatter, Xiaochun; Aänismaa, Päivi; Seelig, Anna

    2010-03-01

    We compared the P-glycoprotein ATPase activity in inside-out plasma membrane vesicles and living NIH-MDR1-G185 cells with the aim to detect substrate transport. To this purpose we used six substrates which differ significantly in their passive influx through the plasma membrane. In cells, the cytosolic membrane leaflet harboring the substrate binding site of P-glycoprotein has to be approached by passive diffusion through the lipid membrane, whereas in inside-out plasma membrane vesicles, it is accessible directly from the aqueous phase. Compounds exhibiting fast passive influx compared to active efflux by P-glycoprotein induced similar ATPase activity profiles in cells and inside-out plasma membrane vesicles, because their concentrations in the cytosolic leaflets were similar. Compounds exhibiting similar influx as efflux induced in contrast different ATPase activity profiles in cells and inside-out vesicles. Their concentration was significantly lower in the cytosolic leaflet of cells than in the cytosolic leaflet of inside-out membrane vesicles, indicating that P-glycoprotein could cope with passive influx. P-glycoprotein thus transported all compounds at a rate proportional to ATP hydrolysis (i.e. all compounds were substrates). However, it prevented substrate entry into the cytosol only if passive influx of substrates across the lipid bilayer was in a similar range as active efflux. Copyright 2009 Elsevier B.V. All rights reserved.

  4. Activation of PKC isoform beta(I) at the blood-brain barrier rapidly decreases P-glycoprotein activity and enhances drug delivery to the brain.

    PubMed

    Rigor, Robert R; Hawkins, Brian T; Miller, David S

    2010-07-01

    P-glycoprotein is an ATP (adenosine triphosphate)-driven drug efflux transporter that is highly expressed at the blood-brain barrier (BBB) and is a major obstacle to the pharmacotherapy of central nervous system diseases, including brain tumors, neuro-AIDS, and epilepsy. Previous studies have shown that P-glycoprotein transport activity in rat brain capillaries is rapidly reduced by the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha) acting through protein kinase C (PKC)-dependent signaling. In this study, we used isolated rat brain capillaries to show that the TNF-alpha-induced reduction of P-glycoprotein activity was prevented by a PKCbeta(I/II) inhibitor, LY333531, and mimicked by a PKCbeta(I/II) activator, 12-deoxyphorbol-13-phenylacetate-20-acetate (dPPA). Western blotting of brain capillary extracts with phospho-specific antibodies showed that dPPA activated PKCbeta(I), but not PKCbeta(II). Moreover, in intact rats, intracarotid infusion of dPPA potently increased brain accumulation of the P-glycoprotein substrate, [(3)H]-verapamil without compromising tight junction integrity. Thus, PKCbeta(I) activation selectively reduced P-glycoprotein activity both in vitro and in vivo. Targeting PKCbeta(I) at the BBB may prove to be an effective strategy for enhancing the delivery of small molecule therapeutics to the brain.

  5. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    PubMed Central

    Nabekura, Tomohiro

    2010-01-01

    Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized. PMID:22069634

  6. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong

    2014-01-15

    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity andmore » multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein inhibitors. • The accumulation of HZ08 increased via gene interference targeting P-glycoprotein. • HZ08 competitively bound to P-glycoprotein under the presence of verapamil.« less

  7. HG-829 Is a Potent Noncompetitive Inhibitor of the ATP-Binding Cassette Multidrug Resistance Transporter ABCB1

    PubMed Central

    Caceres, Gisela; Robey, Robert W.; Sokol, Lubomir; McGraw, Kathy L.; Clark, Justine; Lawrence, Nicholas J.; Sebti, Said M.; Wiese, Michael; List, Alan F.

    2015-01-01

    Transmembrane drug export mediated by the ATP-binding cassette (ABC) transporter P-glycoprotein contributes to clinical resistance to antineoplastics. In this study, we identified the substituted quinoline HG-829 as a novel, noncompetitive, and potent P-glycoprotein inhibitor that overcomes in vitro and in vivo drug resistance. We found that nontoxic concentrations of HG-829 restored sensitivity to P-glycoprotein oncolytic substrates. In ABCB1-overexpressing cell lines, HG-829 significantly enhanced cytotoxicity to daunorubicin, paclitaxel, vinblastine, vincristine, and etoposide. Coadministration of HG-829 fully restored in vivo antitumor activity of daunorubicin in mice without added toxicity. Functional assays showed that HG-829 is not a Pgp substrate or competitive inhibitor of Pgp-mediated drug efflux but rather acts as a noncompetitive modulator of P-glycoprotein transport function. Taken together, our findings indicate that HG-829 is a potent, long-acting, and noncompetitive modulator of P-glycoprotein export function that may offer therapeutic promise for multidrugresistant malignancies. PMID:22761337

  8. Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter.

    PubMed

    Romsicki, Y; Sharom, F J

    2001-06-12

    The P-glycoprotein multidrug transporter acts as an ATP-powered efflux pump for a large variety of hydrophobic drugs, natural products, and peptides. The protein is proposed to interact with its substrates within the hydrophobic interior of the membrane. There is indirect evidence to suggest that P-glycoprotein can also transport, or "flip", short chain fluorescent lipids between leaflets of the membrane. In this study, we use a fluorescence quenching technique to directly show that P-glycoprotein reconstituted into proteoliposomes translocates a wide variety of NBD lipids from the outer to the inner leaflet of the bilayer. Flippase activity depended on ATP hydrolysis at the outer surface of the proteoliposome, and was inhibited by vanadate. P-Glycoprotein exhibited a broad specificity for phospholipids, and translocated phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and sphingomyelin. Lipid derivatives that were flipped included molecules with long, short, unsaturated, and saturated acyl chains and species with the NBD group covalently linked to either acyl chains or the headgroup. The extent of lipid translocation from the outer to the inner leaflet in a 20 min period at 37 degrees C was directly estimated, and fell in the range of 0.36-1.83 nmol/mg of protein. Phospholipid flipping was inhibited in a concentration-dependent, saturable fashion by various substrates and modulators, including vinblastine, verapamil, and cyclosporin A, and the efficiency of inhibition correlated well with the affinity of binding to Pgp. Taken together, these results suggest that P-glycoprotein carries out both lipid translocation and drug transport by the same path. The transporter may be a generic flippase for hydrophobic molecules with the correct steric attributes that are present within the membrane interior.

  9. Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity.

    PubMed

    Ellens, Harma; Meng, Zhou; Le Marchand, Sylvain J; Bentz, Joe

    2018-06-01

    In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.

  10. Increased Expression of P-Glycoprotein Is Associated With Chlorpyrifos Resistance in the German Cockroach (Blattodea: Blattellidae).

    PubMed

    Hou, Weiyuan; Jiang, Chu; Zhou, Xiaojie; Qian, Kun; Wang, Lei; Shen, Yanhui; Zhao, Yan

    2016-12-01

    A principal method for control of the German cockroach, Blattella germanica (L.), is the broad-spectrum organophosphorus insecticide, chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate); however, extensive and repeated application has resulted in the development of resistance to chlorpyrifos in this insect. Evidence suggests that ATP-binding cassette protein transporters, including P-glycoprotein, are involved in insecticide resistance. However, little is known of the role of P-glycoprotein in insecticide resistance in the German cockroach. Here, we developed a chlorpyrifos-resistant strain of German cockroach and investigated the relationship between P-glycoprotein and chlorpyrifos resistance using toxicity assays; inhibition studies with two P-glycoprotein inhibitors, verapamil and quinine; P-glycoprotein-ATPase activity assays; and western blotting analysis. After 23 generations of selection from susceptible strain cockroaches, we obtained animals with high resistance to chlorpyrifos. When P-glycoprotein-ATPase activity was inhibited by verapamil and quinine, we observed enhanced susceptibility to chlorpyrifos in both control and chlorpyrifos-resistant cockroaches. No significant alterations of P-glycoprotein expression or ATPase activity were observed in cockroaches acutely exposed to LD50 doses of chlorpyrifos for 24 h, while P-glycoprotein expression and ATPase activity were clearly elevated in the chlorpyrifos-resistant cockroach strain. Thus, we conclude that P-glycoprotein is associated with chlorpyrifos resistance in the German cockroach and that elevated levels of P-glycoprotein expression and ATPase activity may be an important mechanism of chlorpyrifos resistance in the German cockroach. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Contribution of tumor endothelial cells to drug resistance: anti-angiogenic tyrosine kinase inhibitors act as p-glycoprotein antagonists.

    PubMed

    Bani, MariaRosa; Decio, Alessandra; Giavazzi, Raffaella; Ghilardi, Carmen

    2017-05-01

    Tumor endothelial cells (TEC) differ from the normal counterpart, in both gene expression and functionality. TEC may acquire drug resistance, a characteristic that is maintained in vitro. There is evidence that TEC are more resistant to chemotherapeutic drugs, substrates of ATP-binding cassette (ABC) transporters. TEC express p-glycoprotein (encoded by ABCB1), while no difference in other ABC transporters was revealed compared to normal endothelia. A class of tyrosine kinase inhibitors (TKI), used as angiostatic compounds, interferes with the ATPase activity of p-glycoprotein, thus impairing its functionality. The exposure of ovarian adenocarcinoma TEC to the TKIs sunitinib or sorafenib was found to abrogate resistance (proliferation and motility) to doxorubicin and paclitaxel in vitro, increasing intracellular drug accumulation. A similar effect has been reported by the p-glycoprotein inhibitor verapamil. No beneficial effect was observed in combination with cytotoxic drugs that are not p-glycoprotein substrates. The current paper reviews the mechanisms of TEC chemoresistance and shows the role of p-glycoprotein in mediating such resistance. Inhibition of p-glycoprotein by anti-angiogenic TKI might contribute to the beneficial effect of these small molecules, when combined with chemotherapy, in counteracting acquired drug resistance.

  12. Arabidopsis P-glycoprotein19 participates in the inhibition of gravitropism by gravacin.

    PubMed

    Rojas-Pierce, Marcela; Titapiwatanakun, Boosaree; Sohn, Eun Ju; Fang, Fang; Larive, Cynthia K; Blakeslee, Joshua; Cheng, Yan; Cutler, Sean R; Cuttler, Sean; Peer, Wendy A; Murphy, Angus S; Raikhel, Natasha V

    2007-12-01

    ATP-binding cassette (ABC) transporters have been implicated in a multitude of biological pathways. In plants, some ABC transporters are involved in the polar transport of the plant hormone auxin and the gravitropic response. We previously identified Gravacin as a potent inhibitor of gravitropism in Arabidopsis thaliana. We demonstrate that P-glycoprotein19 (PGP19) is a target for Gravacin and participates in its inhibition of gravitropism. Gravacin inhibited the auxin transport activity of PGP19 and PGP19-PIN complexes. Furthermore, we identified E1174 as an important residue for PGP19 activity and its ability to form active transport complexes with PIN1. Gravacin is an auxin transport inhibitor that inhibits PGPs, particularly PGP19, which can be used to further dissect the role of PGP19 without the inhibition of other auxin transporters, namely PIN proteins.

  13. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein.

    PubMed

    von Moltke, Lisa L; Weemhoff, James L; Perloff, Michael D; Hesse, Leah M; Harmatz, Jerold S; Roth-Schechter, Barbara F; Greenblatt, David J

    2002-12-01

    The influence of high concentrations of zolpidem (100 microM, corresponding to approximately 200 times maximum therapeutic concentrations) on the activity of six human Cytochrome P450 (CYP) enzymes was evaluated in a model system using human liver microsomes. Zolpidem produced negligible or weak inhibition of human CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. Transport of rhodamine 123, presumed to be mediated mainly by the energy-dependent efflux transport protein P-glycoprotein, was studied in a cell culture system using a human intestinal cell line. High concentrations of zolpidem (100 microM), exceeding the usual therapeutic range by more than 100-fold, produced only modest impairment of rhodamine 123 transport. The findings indicate that zolpidem is very unlikely to cause clinical drug interactions attributable to impairment of CYP activity or P-gp mediated transport. Copyright 2002 John Wiley & Sons, Ltd.

  14. The permeability P-glycoprotein: a focus on enantioselectivity and brain distribution.

    PubMed

    Choong, Eva; Dobrinas, Maria; Carrupt, Pierre-Alain; Eap, Chin B

    2010-08-01

    The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies.

  15. Interaction of forskolin with the P-glycoprotein multidrug transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming s, D.I.; Seamon, K.B.; Speicher, L.A.

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labelingmore » the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.« less

  16. P-glycoprotein interactions of novel psychoactive substances - stimulation of ATP consumption and transport across Caco-2 monolayers.

    PubMed

    Meyer, Markus R; Wagmann, Lea; Schneider-Daum, Nicole; Loretz, Brigitta; de Souza Carvalho, Cristiane; Lehr, Claus-Michael; Maurer, Hans H

    2015-04-01

    In contrast to drugs for therapeutic use, there are only few data available concerning interactions between P-glycoprotein (P-gp) and drugs of abuse (DOA). In this work, interactions between structurally diverse DOA and P-gp were investigated using different strategies. First, the effect on the P-gp ATPase activity was studied by monitoring of ATP consumption after addition to recombinant, human P-gp. Second, DOA showing an increased ATP consumption were further characterized regarding their transport across filter grown Caco-2- monolayers. Analyses were performed by luminescence and liquid chromatography-mass spectrometry, respectively. Among the nine DOA initially screened, benzedrone, diclofensine, glaucine, JWH-200, MDBC, WIN-55,212-2 showed an increase of ATP consumption in the ATPase stimulation assay. In Caco-2 transport studies, Glaucine, JWH-200, mitragynine, WIN-55,212-2 could moreover be identified as non-transported substrates, but inhibitors of P-gp activity. Thus, drug-drug or drug-food interactions should be very likely for these compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Bypassing P-Glycoprotein Drug Efflux Mechanisms: Possible Applications in Pharmacoresistant Schizophrenia Therapy

    PubMed Central

    Hoosain, Famida G.; Choonara, Yahya E.; Tomar, Lomas K.; Tyagi, Charu; du Toit, Lisa C.

    2015-01-01

    The efficient noninvasive treatment of neurodegenerative disorders is often constrained by reduced permeation of therapeutic agents into the central nervous system (CNS). A vast majority of bioactive agents do not readily permeate into the brain tissue due to the existence of the blood-brain barrier (BBB) and the associated P-glycoprotein efflux transporter. The overexpression of the MDR1 P-glycoprotein has been related to the occurrence of multidrug resistance in CNS diseases. Various research outputs have focused on overcoming the P-glycoprotein drug efflux transporter, which mainly involve its inhibition or bypassing mechanisms. Studies into neurodegenerative disorders have shown that the P-glycoprotein efflux transporter plays a vital role in the progression of schizophrenia, with a noted increase in P-glycoprotein function among schizophrenic patients, thereby reducing therapeutic outcomes. In this review, we address the hypothesis that methods employed in overcoming P-glycoprotein in cancer and other disease states at the level of the BBB and intestine may be applied to schizophrenia drug delivery system design to improve clinical efficiency of drug therapies. In addition, the current review explores polymers and drug delivery systems capable of P-gp inhibition and modulation. PMID:26491671

  18. P-glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents

    PubMed Central

    O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2013-01-01

    Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590

  19. Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein.

    PubMed Central

    Bain, L J; McLachlan, J B; LeBlanc, G A

    1997-01-01

    The multixenobiotic resistance phenotype is characterized by the reduced accumulation of xenobiotics by cells or organisms due to increased efflux of the compounds by P-glycoprotein (P-gp) or related transporters. An extensive xenobiotic database, consisting primarily of pesticides, was utilized in this study to identify molecular characteristics that render a xenobiotic susceptible to transport by or inhibition of P-gp. Transport substrates were differentiated by several molecular size/shape parameters, lipophilicity, and hydrogen bonding potential. Electrostatic features differentiated inhibitory ligands from compounds not catagorized as transport substrates and that did no interact with P-gp. A two-tiered system was developed using the derived structure-activity relationships to identify P-gp transport substrates and inhibitory ligands. Prediction accuracy of the approach was 82%. We then validated the system using six additional pesticides of which tow were predicted to be P-gp inhibitors and four were predicted to be noninteractors, based upon the structure-activity analyses. Experimental determinations using cells transfected with the human MDR1 gene demonstrated that five of the six pesticides were properly catagorized by the structure-activity analyses (83% accuracy). Finally, structure-activity analyses revealed that among P-gp inhibitors, relative inhibitory potency can be predicted based upon the surface area or volume of the compound. These results demonstrate that P-gp transport substrates and inhibitory ligands can be distinguished using molecular characteristics. Molecular characteristics of transport substrates suggest that P-gp may function in the elimination of hydroxylated metabolites of xenobiotics. Images Figure 1. A Figure 1. B Figure 1. C Figure 1. D Figure 1. E Figure 1. F Figure 1. G Figure 1. H Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 2. Figure 3. A Figure 3. B PMID:9347896

  20. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers

    PubMed Central

    Melchior, Donald L.; Sharom, Frances J.; Evers, Raymond; Wright, George E.; Chu, Joseph W.K.; Wright, Stephen E.; Chu, Xiaoyan; Yabut, Jocelyn

    2012-01-01

    Introduction P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. Methods Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. Results Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2 = 0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. Discussion This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 minutes, and requires minimal quantities of test drug. The method is amenable to robotics and offers a cost advantage relative to conventional cell-based assays. The well-defined nature of this assay also obviates many of the inherent complications and ambiguities of cell-based systems. PMID:22394995

  1. Determining P-glycoprotein-drug interactions: evaluation of reconstituted P-glycoprotein in a liposomal system and LLC-MDR1 polarized cell monolayers.

    PubMed

    Melchior, Donald L; Sharom, Frances J; Evers, Raymond; Wright, George E; Chu, Joseph W K; Wright, Stephen E; Chu, Xiaoyan; Yabut, Jocelyn

    2012-03-01

    P-Glycoprotein (ABCB1, MDR1) is a multidrug efflux pump that is a member of the ATP-binding cassette (ABC) superfamily. Many drugs in common clinical use are either substrates or inhibitors of this transporter. Quantitative details of P-glycoprotein inhibition by pharmaceutical agents are essential for assessment of their pharmacokinetic behavior and prevention of negative patient reactions. Cell-based systems have been widely used for determination of drug interactions with P-glycoprotein, but they suffer from several disadvantages, and results are often widely variable between laboratories. We aimed to demonstrate that a novel liposomal system employing contemporary biochemical methodologies could measure the ability of clinically used drugs to inhibit the P-glycoprotein pump. To accomplish this we compared results with those of cell-based approaches. Purified transport-competent hamster Abcb1a P-glycoprotein was reconstituted into a unilamellar liposomal system, Fluorosome-trans-pgp, whose aqueous interior contains fluorescent drug sensors. This provides a well-defined system for measuring P-glycoprotein transport inhibition by test drugs in real time using rapid fluorescence-based technology. Inhibition of ATP-driven transport by Fluorosome-trans-pgp employed a panel of 46 representative drugs. Resulting IC50 values correlated well (r2=0.80) with Kd values for drug binding to purified P-glycoprotein. They also showed a similar trend to transport inhibition data obtained using LLC-MDR1 cell monolayers. Fluorosome-trans-pgp IC50 values were in agreement with published results of digoxin drug-drug interaction studies in humans. This novel approach using a liposomal system and fluorescence-based technology is shown to be suitable to study whether marketed drugs and drug candidates are P-glycoprotein inhibitors. The assay is rapid, allowing a 7-point IC50 determination in <6 min, and requires minimal quantities of test drug. The method is amenable to robotics and offers a cost advantage relative to conventional cell-based assays. The well-defined nature of this assay also obviates many of the inherent complications and ambiguities of cell-based systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Single photon emission computed tomography and positron emission tomography imaging of multi-drug resistant P-glycoprotein--monitoring a transport activity important in cancer, blood-brain barrier function and Alzheimer's disease.

    PubMed

    Piwnica-Worms, David; Kesarwala, Aparna H; Pichler, Andrea; Prior, Julie L; Sharma, Vijay

    2006-11-01

    Overexpression of multi-drug resistant P-glycoprotein (Pgp) remains an important barrier to successful chemotherapy in cancer patients and impacts the pharmacokinetics of many important drugs. Pgp is also expressed on the luminal surface of brain capillary endothelial cells wherein Pgp functionally comprises a major component of the blood-brain barrier by limiting central nervous system penetration of various therapeutic agents. In addition, Pgp in brain capillary endothelial cells removes amyloid-beta from the brain. Several single photon emission computed tomography and positron emission tomography radiopharmaceutical have been shown to be transported by Pgp, thereby enabling the noninvasive interrogation of Pgp-mediated transport activity in vivo. Therefore, molecular imaging of Pgp activity may enable noninvasive dynamic monitoring of multi-drug resistance in cancer, guide therapeutic choices in cancer chemotherapy, and identify transporter deficiencies of the blood-brain barrier in Alzheimer's disease.

  3. In vitro effects of standardized extract of Bacopa monniera and its five individual active constituents on human P-glycoprotein activity.

    PubMed

    Singh, Rajbir; Rachumallu, Ramakrishna; Bhateria, Manisha; Panduri, Jagadeesh; Bhatta, Rabi Sankar

    2015-01-01

    1. For centuries Bacopa monniera (BM) has been used as an herbal drug for the treatment of various mental ailments. A chemically standardized alcoholic extract of BM is clinically available over the counter herbal remedy for memory enhancement in children and adults. Consumption of herbal preparations has been reported to alter the function of membrane transporters, especially P-glycoprotein (P-gp), ATP-dependent drug efflux transporter responsible for the development of herb-drug interactions. 2. In the present study, we evaluated the in vitro effect of BM extract and its five individual active constituents (namely, bacopaside I, bacopaside II and bacopasaponin C, bacoside A and bacoside A3) on P-gp function using luminescent P-gp ATPase assay and Rh123 transport assay across human MDR1 gene transfected LLC-GA5-COL150 cell line. 3. It was observed that BM extract and its five individual constituents inhibited both basal activity as well as verapamil-stimulated ATPase activity, suggesting their affinity towards P-gp. Further, BM and its five active constituents inhibited the rhodamine 123 (Rh123) transport across LLC-GA5-COL150 cell monolayer with bacopaside II being the most potent inhibitor of P-gp, which decreased P-gp efflux ratio of Rh123 by fourfold in comparison to control. 4. Our finding may prove beneficial in predicting the potential herb-drug interactions of BM on concomitant medication with P-gp substrate drugs in clinical settings.

  4. Genuine functions of P-glycoprotein (ABCB1).

    PubMed

    Mizutani, Takaharu; Masuda, Masatoshi; Nakai, Emi; Furumiya, Kenji; Togawa, Hiroshi; Nakamura, Yutaka; Kawai, Yuko; Nakahira, Keiko; Shinkai, Shigeko; Takahashi, Kazuhiko

    2008-02-01

    P-glycoprotein (P-gp, ABCB1, MDR1) was recognized as a drug-exporting protein from cancer cells three decade ago. Apart from the multidrug transporter side effects of P-gp, normal physiological functions of P-gp have been reported. P-gp could be responsible for translocating platelet-activating factor (PAF) across the plasma membrane and PAF inhibited drug transport mediated by P-gp in cancer cells. P-gp regulated the translocation of sphingomyelin (SM) and GlcCer, and short chain C(6)-NBD-GlcCer was found in the apical medium of P-gp cells exclusively and not in the basolateral membrane. SM plays an important role in the esterification of cholesterol. High expression of P-gp prevents stem-cell differentiation, leading to the proliferation and amplification of this cell repertoire, and functional P-gp plays a fundamental role in regulating programmed cell death, apoptosis. The transporter function of P-gp is therefore necessary to protect cells from death. P-gp can translocate both C(6)-NBD-PC and C(6)-NBD-PE across the apical membrane. This PC translocation was also confirmed with [(3)H]choline radioactivity. Progesterone is not transported by P-gp, but blocks P-gp-mediated efflux of other drugs and P-gp can mediate the transport of a variety of steroids. Cells transfected with human P-gp esterified more cholesterol. P-gp might also be involved in the transport of cytokines, particularly IL-1beta, IL-2, IL-4 and IFNgamma, out of activated normal lymphocytes into the surrounding medium. P-gp expression is also associated with a volume-activated chloride channel, thus P-gp is bifunctional with both transport and channel regulators. We also present information about P-gp polymorphism and new structural concepts, "gate" and "twist", of the P-gp structure.

  5. Improvement of Transmembrane Transport Mechanism Study of Imperatorin on P-Glycoprotein-Mediated Drug Transport.

    PubMed

    Liao, Zheng-Gen; Tang, Tao; Guan, Xue-Jing; Dong, Wei; Zhang, Jing; Zhao, Guo-Wei; Yang, Ming; Liang, Xin-Li

    2016-11-24

    P-glycoprotein (P-gp) affects the transport of many drugs; including puerarin and vincristine. Our previous study demonstrated that imperatorin increased the intestinal absorption of puerarin and vincristine by inhibiting P-gp-mediated drug efflux. However; the underlying mechanism was not known. The present study investigated the mechanism by which imperatorin promotes P-gp-mediated drug transport. We used molecular docking to predict the binding force between imperatorin and P-gp and the effect of imperatorin on P-gp activity. P-gp efflux activity and P-gp ATPase activity were measured using a rhodamine 123 (Rh-123) accumulation assay and a Pgp-Glo™ assay; respectively. The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess cellular membrane fluidity in MDCK-MDR1 cells. Western blotting was used to analyze the effect of imperatorin on P-gp expression; and P-gp mRNA levels were assessed by qRT-PCR. Molecular docking results demonstrated that the binding force between imperatorin and P-gp was much weaker than the force between P-gp and verapamil (a P-gp substrate). Imperatorin activated P-gp ATPase activity; which had a role in the inhibition of P-gp activity. Imperatorin promoted Rh-123 accumulation in MDCK-MDR1 cells and decreased cellular membrane fluidity. Western blotting demonstrated that imperatorin inhibited P-gp expression; and qRT-PCR revealed that imperatorin down-regulated P-gp (MDR1) gene expression. Imperatorin decreased P-gp-mediated drug efflux by inhibiting P-gp activity and the expression of P-gp mRNA and protein. Our results suggest that imperatorin could down-regulate P-gp expression to overcome multidrug resistance in tumors.

  6. The role of turmerones on curcumin transportation and P-glycoprotein activities in intestinal Caco-2 cells.

    PubMed

    Yue, Grace G L; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K M; Hon, Po-Ming; Lee, Mavis Y H; Kennelly, Edward J; Deng, Gary; Yeung, Simon K; Cassileth, Barrie R; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B S

    2012-03-01

    The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases.

  7. The Role of Turmerones on Curcumin Transportation and P-Glycoprotein Activities in Intestinal Caco-2 Cells

    PubMed Central

    Yue, Grace G.L.; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K.M.; Hon, Po-Ming; Lee, Mavis Y.H.; Kennelly, Edward J.; Deng, Gary; Yeung, Simon K.; Cassileth, Barrie R.; Fung, Kwok-Pui; Leung, Ping-Chung

    2012-01-01

    Abstract The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases. PMID:22181075

  8. Inhibition of p38 mitogen-activated protein kinase signaling reduces multidrug transporter activity and anti-epileptic drug resistance in refractory epileptic rats.

    PubMed

    Shao, Yiye; Wang, Cuicui; Hong, Zhen; Chen, Yinghui

    2016-03-01

    It is widely recognized that P-glycoprotein (P-gp) mediates drug resistance in refractory epilepsy. However, the molecular mechanism underlying the up-regulation of P-gp expression remains unclear. Our previous studies have demonstrated that p38 mitogen-activated protein kinase (MAPK) regulates P-gp expression in cultured K562 cells. However, a lack of in vivo research leaves unanswered questions regarding whether p38MAPK regulates P-gp expression or drug resistance in refractory epilepsy. This in vivo study examined the effects of p38MAPK on the expression of P-gp and mdr1 in the rat brain and quantified antiepileptic drug (AED) concentrations in the hippocampal extracellular fluid. In addition, the role of p38MAPK in electrical and behavioral activity in a rat epilepsy model was studied. The results indicated that p38MAPK inhibition by SB202190 reduced P-gp expression, while increasing AED concentration in the hippocampal extracellular fluid in refractory epileptic rats. SB202190 also reduced the resistance to AEDs in drug-resistant rats and significantly reduced the severity of seizure activity. These results suggest that p38MAPK could participate in drug resistance in refractory epilepsy through the regulation of P-gp. We show that the specific inhibitor of p38MAPK could down-regulate the expression of multidrug transporter (P-glycoprotein) in blood-brain barrier, increase the concentration of antiepileptic drugs in the hippocampal extracellular fluid and reduce anti-epileptic drug resistance in refractory epileptic rats. We propose that the p38MAPK signaling pathway participates in drug resistance in refractory epilepsy through the regulation of P-glycoprotein expression. © 2015 International Society for Neurochemistry.

  9. ABC multidrug transporters: target for modulation of drug pharmacokinetics and drug-drug interactions.

    PubMed

    Marquez, Béatrice; Van Bambeke, Françoise

    2011-05-01

    Nine proteins of the ABC superfamily (P-glycoprotein, 7 MRPs and BCRP) are involved in multidrug transport. Being localised at the surface of endothelial or epithelial cells, they expel drugs back to the external medium (if located at the apical side [P-glycoprotein, BCRP, MRP2, MRP4 in the kidney]) or to the blood (if located at the basolateral side [MRP1, MRP3, MRP4, MRP5]), modulating thereby their absorption, distribution, and elimination. In the CNS, most transporters are oriented to expel drugs to the blood. Transporters also cooperate with Phase I/Phase II metabolism enzymes by eliminating drug metabolites. Their major features are (i) their capacity to recognize drugs belonging to unrelated pharmacological classes, and (ii) their redundancy, a single molecule being possibly substrate for different transporters. This ensures an efficient protection of the body against invasion by xenobiotics. Competition for transport is now characterized as a mechanism of interaction between co-administered drugs, one molecule limiting the transport of the other, potentially affecting bioavailability, distribution, and/or elimination. Again, this mechanism reinforces drug interactions mediated by cytochrome P450 inhibition, as many substrates of P-glycoprotein and CYP3A4 are common. Induction of the expression of genes coding for MDR transporters is another mechanism of drug interaction, which could affect all drug substrates of the up-regulated transporter. Overexpression of MDR transporters confers resistance to anticancer agents and other therapies. All together, these data justify why studying drug active transport should be part of the evaluation of new drugs, as recently recommended by the FDA.

  10. Differential modulation of P-glycoprotein expression and activity by non-nucleoside HIV-1 reverse transcriptase inhibitors in cell culture.

    PubMed

    Störmer, Elke; von Moltke, Lisa L; Perloff, Michael D; Greenblatt, David J

    2002-07-01

    This study investigated the effects of the non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTI) nevirapine (NVR), efavirenz (EFV), and delavirdine (DLV) on P-glycoprotein (P-gp) activity and expression to anticipate P-gp related drug-drug interactions associated with combination therapy. NNRTIs were evaluated as P-gp substrates by measuring differential transport across Caco-2 cell monolayers. Inhibition of P-gp mediated rhodaminel23 (Rh123) transport in Caco-2 cells was used to assess P-gp inhibition by NNRTIs. Induction of P-gp expression and activity in LS180V cells following 3-day exposure to NNRTIs was measured by western blot analysis and cellular Rh123 uptake, respectively. The NNRTIs showed no differential transport between the basolateral to apical and apical to basolateral direction. NNRTI transport in either direction was not affected by the P-gp inhibitor verapamil. DLV inhibited Rh123 transport, causing a reduction to 15% of control at 100 microM (IC50 = 30 microM). NVR caused a concentration-dependent induction of P-gp expression in LS180V cells resulting in a 3.5-fold increase in immunoreactive P-gp at 100 microM NVR. Induction attributable to EFV and DLV was quantitatively smaller. NVR significantly reduced cellular uptake of Rh123 into LS180V cells, indicating increased drug efflux due to induced P-gp activity; effects of EFV and DLV were smaller. Acute DLV treatment of LS180V cells previously induced with NVR or ritonavir did not reverse the decreased Rh123 cell accumulation. NNRTIs show differential effects on P-gp activity and expression in vitro. Clinical studies are required to elucidate the clinical importance of potential drug interactions.

  11. Alkyl-Lysophospholipid Resistance in Multidrug-Resistant Leishmania tropica and Chemosensitization by a Novel P-Glycoprotein-Like Transporter Modulator

    PubMed Central

    Pérez-Victoria, José M.; Pérez-Victoria, F. Javier; Parodi-Talice, Adriana; Jiménez, Ignacio A.; Ravelo, Angel G.; Castanys, Santiago; Gamarro, Francisco

    2001-01-01

    Drug resistance has emerged as a major impediment in the treatment of leishmaniasis. Alkyl-lysophospholipids (ALP), originally developed as anticancer drugs, are considered to be the most promising antileishmanial agents. In order to anticipate probable clinical failure in the near future, we have investigated possible mechanisms of resistance to these drugs in Leishmania spp. The results presented here support the involvement of a member of the ATP-binding cassette (ABC) superfamily, the Leishmania P-glycoprotein-like transporter, in the resistance to ALP. (i) First, a multidrug resistance (MDR) Leishmania tropica line overexpressing a P-glycoprotein-like transporter displays significant cross-resistance to the ALP miltefosine and edelfosine, with resistant indices of 9.2- and 7.1-fold, respectively. (ii) Reduced expression of P-glycoprotein in the MDR line correlates with a significant decrease in ALP resistance. (iii) The ALP were able to modulate the P-glycoprotein-mediated resistance to daunomycin in the MDR line. (iv) We have found a new inhibitor of this transporter, the sesquiterpene C-3, that completely sensitizes MDR parasites to ALP. (v) Finally, the MDR line exhibits a lower accumulation than the wild-type line of bodipy-C5-PC, a fluorescent analogue of phosphatidylcholine that has a structure resembling that of edelfosine. Also, C-3 significantly increases the accumulation of the fluorescent analogue to levels similar to those of wild-type parasites. The involvement of the Leishmania P-glycoprotein-like transporter in resistance to drugs used in the treatment of leishmaniasis also supports the importance of developing new specific inhibitors of this ABC transporter. PMID:11502516

  12. In vitro and in vivo evaluations of the P-glycoprotein-mediated efflux of dibenzoylhydrazines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyata, Ken-ichi, E-mail: Miyata.Kenichi@otsuka.jp; Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0182; Nakagawa, Yoshiaki

    2016-05-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter family. It actively transports a wide variety of compounds out of cells to protect humans from xenobiotics. Thus, determining whether chemicals are substrates and/or inhibitors of P-gp is important in risk assessments of pharmacokinetic interactions among chemicals because P-gp-mediated transport processes play a significant role in their absorption and disposition. We previously reported that dibenzoylhydrazines (DBHs) such as tebufenozide and methoxyfenozide (agrochemicals) stimulated P-gp ATPase activity. However, it currently remains unclear whether these derivatives are transport substrates of P-gp and inhibit transport of other chemicals by P-gp. In the presentmore » study, in order to evaluate the interactions of DBHs with other chemicals in humans, we determined whether DBHs are P-gp transport substrates using both the in vitro bidirectional transport assay and the in vivo study of rats. In the in vivo study, we investigated the influence of P-gp inhibitors on the brain to plasma ratio of methoxyfenozide in rats. We also examined the inhibitory effects of DBHs on quinidine (a P-gp substrate) transport by P-gp in order to ascertain whether these derivatives are inhibitors of P-gp. Based on the results, DBHs were concluded to be weak P-gp transport substrates and moderate P-gp inhibitors. However, the risk of DBHs caused by interaction with other chemicals including drugs was considered to be low by considering the DBHs' potential as the substrates and inhibitors of P-gp as well as their plasma concentrations as long as DBHs are properly used. - Highlights: • Transport of DBHs by P-gp was not detected in in vitro bidirectional transport assay. • DBHs were weak P-gp transport substrates based on in vivo studies in rats. • The in vivo studies are useful methods for evaluating P-gp transport substrates. • DBHs inhibit quinidine transport by P-gp in in vitro bidirectional transport assay.« less

  13. High-Affinity Binding of Silybin Derivatives to the Nucleotide-Binding Domain of a Leishmania tropica P-Glycoprotein-Like Transporter and Chemosensitization of a Multidrug-Resistant Parasite to Daunomycin

    PubMed Central

    Pérez-Victoria, José M.; Pérez-Victoria, F. Javier; Conseil, Gwenaëlle; Maitrejean, Mathias; Comte, Gilles; Barron, Denis; Di Pietro, Attilio; Castanys, Santiago; Gamarro, Francisco

    2001-01-01

    In order to overcome the multidrug resistance mediated by P-glycoprotein-like transporters in Leishmania spp., we have studied the effects produced by derivatives of the flavanolignan silybin and related compounds lacking the monolignol unit on (i) the affinity of binding to a recombinant C-terminal nucleotide-binding domain of the L. tropica P-glycoprotein-like transporter and (ii) the sensitization to daunomycin on promastigote forms of a multidrug-resistant L. tropica line overexpressing the transporter. Oxidation of the flavanonol silybin to the corresponding flavonol dehydrosilybin, the presence of the monolignol unit, and the addition of a hydrophobic substituent such as dimethylallyl, especially at position 8 of ring A, considerably increased the binding affinity. The in vitro binding affinity of these compounds for the recombinant cytosolic domain correlated with their modulation of drug resistance phenotype. In particular, 8-(3,3-dimethylallyl)-dehydrosilybin effectively sensitized multidrug-resistant Leishmania spp. to daunomycin. The cytosolic domains are therefore attractive targets for the rational design of inhibitors against P-glycoprotein-like transporters. PMID:11158738

  14. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    PubMed

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  15. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    PubMed Central

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-01-01

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy. PMID:20957096

  16. Marine Natural Products with P-Glycoprotein Inhibitor Properties

    PubMed Central

    Lopez, Dioxelis; Martinez-Luis, Sergio

    2014-01-01

    P-glycoprotein (P-gp) is a protein belonging to the ATP-binding cassette (ABC) transporters superfamily that has clinical relevance due to its role in drug metabolism and multi-drug resistance (MDR) in several human pathogens and diseases. P-gp is a major cause of drug resistance in cancer, parasitic diseases, epilepsy and other disorders. This review article aims to summarize the research findings on the marine natural products with P-glycoprotein inhibitor properties. Natural compounds that modulate P-gp offer great possibilities for semi-synthetic modification to create new drugs and are valuable research tools to understand the function of complex ABC transporters. PMID:24451193

  17. Effects of a detergent micelle environment on P-glycoprotein (ABCB1)-ligand interactions

    PubMed Central

    Shukla, Suneet; Abel, Biebele; Chufan, Eduardo E.; Ambudkar, Suresh V.

    2017-01-01

    P-glycoprotein (P-gp) is a multidrug transporter that uses energy from ATP hydrolysis to export many structurally dissimilar hydrophobic and amphipathic compounds, including anticancer drugs from cells. Several structural studies on purified P-gp have been reported, but only limited and sometimes conflicting information is available on ligand interactions with the isolated transporter in a dodecyl-maltoside detergent environment. In this report we compared the biochemical properties of P-gp in native membranes, detergent micelles, and when reconstituted in artificial membranes. We found that the modulators zosuquidar, tariquidar, and elacridar stimulated the ATPase activity of purified human or mouse P-gp in a detergent micelle environment. In contrast, these drugs inhibited ATPase activity in native membranes or in proteoliposomes, with IC50 values in the 10–40 nm range. Similarly, a 30–150-fold decrease in the apparent affinity for verapamil and cyclic peptide inhibitor QZ59-SSS was observed in detergent micelles compared with native or artificial membranes. Together, these findings demonstrate that the high-affinity site is inaccessible because of either a conformational change or binding of detergent at the binding site in a detergent micelle environment. The ligands bind to a low-affinity site, resulting in altered modulation of P-gp ATPase activity. We, therefore, recommend studying structural and functional aspects of ligand interactions with purified P-gp and other ATP-binding cassette transporters that transport amphipathic or hydrophobic substrates in a detergent-free native or artificial membrane environment. PMID:28283574

  18. Opioid analgesics and P-glycoprotein efflux transporters: a potential systems-level contribution to analgesic tolerance.

    PubMed

    Mercer, Susan L; Coop, Andrew

    2011-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationships to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation.

  19. ITC commentary on the prediction of digoxin clinical drug-drug interactions from in vitro transporter assays.

    PubMed

    Lee, C A; Kalvass, J C; Galetin, A; Zamek-Gliszczynski, M J

    2014-09-01

    The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.

  20. Blonanserin, a novel atypical antipsychotic agent not actively transported as substrate by P-glycoprotein.

    PubMed

    Inoue, Tomoko; Osada, Kenichi; Tagawa, Masaaki; Ogawa, Yuriko; Haga, Toshiaki; Sogame, Yoshihisa; Hashizume, Takanori; Watanabe, Takashi; Taguchi, Atsushi; Katsumata, Takashi; Yabuki, Masashi; Yamaguchi, Noboru

    2012-10-01

    Although blonanserin, a novel atypical antipsychotic agent with dopamine D(2)/serotonin 5-HT(2A) antagonistic properties, displays good brain distribution, the mechanism of this distribution has not been clarified. P-glycoprotein [(P-gp) or multidrug resistance protein 1 (MDR1)] is an efflux transporter expressed in the brain and plays an important role in limiting drug entry into the central nervous system (CNS). In particular, P-gp can affect the pharmacokinetics and efficacy of antipsychotics, and exacerbate or soothe their adverse effects. In this study, we conducted in vitro and in vivo experiments to determine whether blonanserin is a P-gp substrate. Risperidone and its active metabolite 9-hydroxyrisperidone, both of which are P-gp substrates, were used as reference drugs. Affinity of blonanserin, risperidone, and 9-hydroxyrisperidone for P-gp was evaluated by in vitro transcellular transport across LLC-PK1, human MDR1 cDNA-transfected LLC-PK1 (LLC-MDR1), and mouse Mdr1a cDNA-transfected LLC-PK1 (LLC-Mdr1a). In addition, pharmacokinetic parameters in the brain and plasma (B/P ratio) of test compounds were measured in mdr1a/1b knockout (KO) and wild-type (WT) mice. The results of in vitro experiments revealed that P-gp does not actively transport blonanserin as a substrate in humans or mice. In addition, blonanserin displayed comparable B/P ratios in KO and WT mice, whereas B/P ratios of risperidone and 9-hydroxyrisperidone differed markedly in these animals. Our results indicate that blonanserin is not a P-gp substrate and therefore its brain distribution is unlikely to be affected by this transporter. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Expression and functional activity of P-glycoprotein in passaged primary human nasal epithelial cell monolayers cultured by the air-liquid interface method for nasal drug transport study.

    PubMed

    Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2011-03-01

    P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.

  2. Molecular mechanisms of the naringin low uptake by intestinal Caco-2 cells.

    PubMed

    Tourniaire, Franck; Hassan, Meryl; André, Marc; Ghiringhelli, Odette; Alquier, Christian; Amiot, Marie-Josèphe

    2005-10-01

    Naringin, the main flavanone of grapefruit, was reported to display numerous biological effects: antioxidant, hypocholesteremic, anti-atherogenic and favoring drug absorption. Naringin absorption mechanisms were studied in Caco-2 cells (TC7 clone). We investigated the possible involvement of several membrane transporters implicated in polyphenolic compounds intestinal transport (sodium-dependent glucose transporter 1, monocarboxylate transporter, multidrug-associated resistance proteins 1 and 2, and P-glycoprotein). Naringin was poorly absorbed by Caco-2 cells, according to its low value of apparent permeability coefficient (P(app) = 8.1 +/- 0.9 x 10(-8) cm/s). In the presence of verapamil, a specific inhibitor of P-glycoprotein, cellular uptake was increased by almost threefold after 5 min, and P(app) was doubled after 30 min. Our results indicated the involvement of P-glycoprotein, an ATP-driven efflux pump, capable of transporting naringin from the Caco-2 cell to the apical side. This phenomenon could explain, at least in part, the low absorption of this flavanone at the upper intestinal level.

  3. Drug-protein hydrogen bonds govern the inhibition of the ATP hydrolysis of the multidrug transporter P-glycoprotein.

    PubMed

    Chufan, Eduardo E; Kapoor, Khyati; Ambudkar, Suresh V

    2016-02-01

    P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter superfamily. This multidrug transporter utilizes energy from ATP hydrolysis for the efflux of a variety of hydrophobic and amphipathic compounds including anticancer drugs. Most of the substrates and modulators of P-gp stimulate its basal ATPase activity, although some inhibit it. The molecular mechanisms that are in play in either case are unknown. In this report, mutagenesis and molecular modeling studies of P-gp led to the identification of a pair of phenylalanine-tyrosine structural motifs in the transmembrane region that mediate the inhibition of ATP hydrolysis by certain drugs (zosuquidar, elacridar and tariquidar), with high affinity (IC50's ranging from 10 to 30nM). Upon mutation of any of these residues, drugs that inhibit the ATPase activity of P-gp switch to stimulation of the activity. Molecular modeling revealed that the phenylalanine residues F978 and F728 interact with tyrosine residues Y953 and Y310, respectively, in an edge-to-face conformation, which orients the tyrosines in such a way that they establish hydrogen-bond contacts with the inhibitor. Biochemical investigations along with transport studies in intact cells showed that the inhibitors bind at a high affinity site to produce inhibition of ATP hydrolysis and transport function. Upon mutation, they bind at lower affinity sites, stimulating ATP hydrolysis and only poorly inhibiting transport. These results also reveal that screening chemical compounds for their ability to inhibit the basal ATP hydrolysis can be a reliable tool to identify modulators with high affinity for P-gp. Published by Elsevier Inc.

  4. Synthesis and P-glycoprotein induction activity of colupulone analogs.

    PubMed

    Bharate, Jaideep B; Batarseh, Yazan S; Wani, Abubakar; Sharma, Sadhana; Vishwakarma, Ram A; Kaddoumi, Amal; Kumar, Ajay; Bharate, Sandip B

    2015-05-21

    Brain amyloid-beta (Aβ) plaques are one of the primary hallmarks associated with Alzheimer's disease (AD) pathology. Efflux pump proteins located at the blood-brain barrier (BBB) have been reported to play an important role in the clearance of brain Aβ, among which the P-glycoprotein (P-gp) efflux transporter pump has been shown to play a crucial role. Thus, P-gp has been considered as a potential therapeutic target for treatment of AD. Colupulone, a prenylated phloroglucinol isolated from Humulus lupulus, is known to activate pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. In the present work, we aimed to synthesize and identify analogs of colupulone that are potent P-gp inducer(s) with an ability to enhance Aβ transport across the BBB. A series of colupulone analogs were synthesized by modifications at both prenyl as well as acyl domains. All compounds were screened for P-gp induction activity using a rhodamine 123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein all compounds showed significant P-gp induction activity at 5 μM. In the western blot studies in LS-180 cells, compounds 3k and 5f were able to induce P-gp as well as LRP1 at 1 μM. The effect of compounds on the Aβ uptake and transport was then evaluated. Among all tested compounds, diprenylated acyl phloroglucinol displayed a significant increase (29%) in Aβ transport across bEnd3 cells grown on inserts as a BBB model. The results presented here suggest the potential of this scaffold to enhance clearance of brain Aβ across the BBB and thus its promise for development as a potential anti-Alzheimer agent.

  5. Insights into the molecular mechanism of action of Celastraceae sesquiterpenes as specific, non-transported inhibitors of human P-glycoprotein.

    PubMed

    Muñoz-Martínez, Francisco; Reyes, Carolina P; Pérez-Lomas, Antonio L; Jiménez, Ignacio A; Gamarro, Francisco; Castanys, Santiago

    2006-01-01

    Dihydro-beta-agarofuran sesquiterpenes from Celastraceae have been recently shown to bind to human P-glycoprotein (Pgp), functioning as specific, mixed-type inhibitors of its drug transport activity, as well as multidrug resistance (MDR) modulators in vitro. However, nothing is known about whether such compounds are themselves transported by Pgp, or whether they affect Pgp expression as well as its activity, or about the location of their binding site within the protein. We performed transport experiments with a newly synthesized fluorescent sesquiterpene derivative, which retains the anti-Pgp activity of its natural precursor. This probe was poorly transported by Pgp, MRP1, MRP2 and BCRP transporters, compared with classical MDR substrates. Moreover, Pgp did not confer cross-resistance to the most potent dihydro-beta-agarofurans, which did not affect Pgp expression levels in several MDR cell lines. Finally, we observed competitive and non-competitive interactions between one of such dihydro-beta-agarofurans (Mama12) and classical Pgp modulators such as cyclosporin A, verapamil, progesterone, vinblastine and GF120918. These findings suggest that multidrug ABC transporters do not confer resistance to dihydro-beta-agarofurans and could not affect their absorption and biodistribution in the body. Moreover, we mapped their binding site(s) within Pgp, which may prove useful for the rational design of improved modulators based on the structure of dihydro-beta-agarofurans.

  6. Characterization of anti-Toxoplasma activity of SDZ 215-918, a cyclosporin derivative lacking immunosuppressive and peptidyl-prolyl-isomerase-inhibiting activity: possible role of a P glycoprotein in Toxoplasma physiology.

    PubMed Central

    Silverman, J A; Hayes, M L; Luft, B J; Joiner, K A

    1997-01-01

    The immunosuppressive agent cyclosporin A (CsA) also possesses broad-spectrum antimicrobial activity. Previous investigators have reported that the obligate intracellular protozoan Toxoplasma gondii is sensitive to CsA. We have measured the sensitivity of Toxoplasma to 26 CsA derivatives that maintain only a subset of the parent compound's activity. We identified one compound, SDZ 215-918, that is a particularly potent inhibitor of parasite invasion and replication, with a 50% inhibitory concentration of 0.45 microg/ml, which is 10-fold lower than that of CsA. Kinetic studies demonstrate that activity has a rapid onset (half-life, < or = 20 min) and is initially reversible, although long-term exposure (> 24 h) to 5 microg/ml is lethal; in contrast, this concentration had no effect on host cell protein synthesis or cell division. SDZ 215-918 acts directly on the parasite, as demonstrated by inhibition of macromolecular synthesis in host-free extracellular parasites. Inhibition of invasion is due to a reduction in parasite motility. SDZ 215-918 does not bind to cyclophilins, the ubiquitous cyclosporin-binding proteins, but is a potent inhibitor of the mammalian P glycoprotein, a member of the ATP binding cassette transporter superfamily and the pump responsible for multidrug resistance in cancer and parasite cell lines. SDZ 215-918 blocks the efflux of rhodamine 123 from extracellular parasites, consistent with inhibition of a P glycoprotein-like pump. We suggest that a P glycoprotein or a related transporter plays a crucial role in the biology of Toxoplasma and may be a novel target for antiparasitic compounds. Preliminary studies with animals indicate that SDZ 215-918 inhibits parasite growth in vivo; its relationship to CsA may make it suitable for clinical development. PMID:9303374

  7. Ammonia transport in the kidney by Rhesus glycoproteins

    PubMed Central

    Verlander, Jill W.

    2014-01-01

    Renal ammonia metabolism is a fundamental element of acid-base homeostasis, comprising a major component of both basal and physiologically altered renal net acid excretion. Over the past several years, a fundamental change in our understanding of the mechanisms of renal epithelial cell ammonia transport has occurred, replacing the previous model which was based upon diffusion equilibrium for NH3 and trapping of NH4+ with a new model in which specific and regulated transport of both NH3 and NH4+ across renal epithelial cell membranes via specific membrane proteins is required for normal ammonia metabolism. A major advance has been the recognition that members of a recently recognized transporter family, the Rhesus glycoprotein family, mediate critical roles in renal and extrarenal ammonia transport. The erythroid-specific Rhesus glycoprotein, Rh A Glycoprotein (Rhag), was the first Rhesus glycoprotein recognized as an ammonia-specific transporter. Subsequently, the nonerythroid Rh glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), were cloned and identified as ammonia transporters. They are expressed in specific cell populations and membrane domains in distal renal epithelial cells, where they facilitate ammonia secretion. In this review, we discuss the distribution of Rhbg and Rhcg in the kidney, the regulation of their expression and activity in physiological disturbances, the effects of genetic deletion on renal ammonia metabolism, and the molecular mechanisms of Rh glycoprotein-mediated ammonia transport. PMID:24647713

  8. Co-treatment with grapefruit juice inhibits while chronic administration activates intestinal P-glycoprotein-mediated drug efflux.

    PubMed

    Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L

    2005-12-01

    P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.

  9. Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May

    There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of onlymore » 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ► Systemic corticosteroids are weak P-gp inducers. ► Mineralocorticoids not affected by P-gp mediated efflux.« less

  10. Acetaminophen Modulates P-Glycoprotein Functional Expression at the Blood-Brain Barrier by a Constitutive Androstane Receptor–Dependent Mechanism

    PubMed Central

    Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.

    2013-01-01

    Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224

  11. Cell Surface Expression of Biologically Active Influenza C Virus HEF Glycoprotein Expressed from cDNA

    PubMed Central

    Pekosz, Andrew; Lamb, Robert A.

    1999-01-01

    The hemagglutinin, esterase, and fusion (HEF) glycoprotein of influenza C virus possesses receptor binding, receptor destroying, and membrane fusion activities. The HEF cDNAs from influenza C/Ann Arbor/1/50 (HEF-AA) and influenza C/Taylor/1223/47 (HEF-Tay) viruses were cloned and expressed, and transport of HEF to the cell surface was monitored by susceptibility to cleavage by exogenous trypsin, indirect immunofluorescence microscopy, and flow cytometry. Previously it has been found in studies with the C/Johannesburg/1/66 strain of influenza C virus (HEF-JHB) that transport of HEF to the cell surface is severely inhibited, and it is thought that the short cytoplasmic tail, Arg-Thr-Lys, is involved in blocking HEF cell surface expression (F. Oeffner, H.-D. Klenk, and G. Herrler, J. Gen. Virol. 80:363–369, 1999). As the cytoplasmic tail amino acid sequences of HEF-AA and HEF-Tay are identical to that of HEF-JHB, the data indicate that cell surface expression of HEF-AA and HEF-Tay is not inhibited by this amino acid sequence. Furthermore, the abundant cell surface transport of HEF-AA and HEF-Tay indicates that their cell surface expression does not require coexpression of another viral protein. The HEF-AA and HEF-Tay HEF glycoproteins bound human erythrocytes, promoted membrane fusion in a low-pH and trypsin-dependent manner, and displayed esterase activity, indicating that the HEF glycoprotein alone mediates all three known functions at the cell surface. PMID:10482635

  12. The guinea-pig expresses functional CYP2C and P-glycoprotein: further validation of its usefulness in drug biotransformation/transport studies.

    PubMed

    Hasibu, Ibrahim; Patoine, Dany; Pilote, Sylvie; Drolet, Benoit; Simard, Chantale

    2015-04-01

    The guinea-pig is an excellent animal model for studying cardiopulmonary physiology/pharmacology. Interestingly, it also possesses a number of drug-metabolizing enzymes found in humans, such as CYP1A, CYP2D and CYP3A. To evaluate the hypothesis that the guinea-pig also expresses a functional CYP2C drug-metabolizing enzyme and the P-glycoprotein (P-gp) drug transporter in various tissues. cDNAs encoding CYP2C and P-gp were obtained from guinea-pig liver or small intestine and sequenced. Western blotting was performed to confirm the expression of CYP2C and P-gp. The functional enzymatic activity of guinea-pig CYP2C was evaluated with microsomal preparations using diclofenac and tolbutamide as specific drug substrates in HPLC analyses. To further study both P-gp and CYP2C functional activities, the guinea-pig ABCB1/MDR1 and CYP2C genes were cloned. The recombinant plasmids were then transfected in HEK293 (human embryonic kidney) cells and either calcein-acetoxymethyl ester (AM) accumulation assays or 14,15-EET/DHET formation experiments were performed to evaluate either P-gp transport activity or CYP2C epoxygenase activity, respectively. The guinea-pig tissue distribution of P-gp was studied by Western blotting. Functional expression of CYP2C was demonstrated in guinea-pig liver microsomal preparations. CYP2C-mediated biotransformation of diclofenac and tolbutamide were shown. Expression of P-gp protein was detected in guinea-pig liver and small intestine. Functional activity of guinea-pig P-gp was demonstrated in ABCB1/MDR1-transfected cells. GP-CYP2C-transfected cells also showed functional epoxygenase activity. The guinea-pig expresses functional CYP2C and P-gp, thus suggesting its usefulness for further validating data obtained with other animal models in drug biotransformation/transport studies. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Functional studies of P-glycoprotein in inside-out plasma membrane vesicles derived from murine erythroleukemia cells overexpressing MDR 3. Properties and kinetics of the interaction of vinblastine with P-glycoprotein and evidence for its active mediated transport.

    PubMed

    Schlemmer, S R; Sirotnak, F M

    1994-12-09

    Active [3H]vinblastine (VBL) transport (efflux) was documented for inside-out plasma membrane vesicles from murine erythroleukemia cells (MEL/VCR-6) resistant to vinca alkaloids and overexpressing MDR 3 P-glycoprotein (P-gp) 80-fold. Uptake of [3H]VBL at 37 degrees C by these inside-out vesicles, but not rightside-out vesicles or inside-out vesicles from wild-type cells, was obtained in the form of a rapid, initial phase (0-1 min) and a slower, later phase (> 1 min). The rapidity of each phase correlated with relative P-gp content among different MEL/VCR cell lines. The initial MDR-specific phase was temperature- and pH-dependent (optimum at pH 7), osmotically insensitive, and did not require ATP. The second MDR-specific phase was temperature-dependent, osmotically sensitive, and strictly dependent upon the presence of ATP (Km = 0.37 +/- 0.04 mM). Although other triphosphate nucleotides were partially effective in replacing ATP, the nonhydrolyzable analogue ATP gamma S (adenosine 5'-O-(thiotriphosphate)) was ineffective. This time course appears to represent tandem binding of [3H]VBL by P-gp and its mediated transport, with the latter process representing the rate-limiting step. In support of this conclusion, both binding and transport were inhibited by verapamil, quinidine, and reserpine, all known to be inhibitors of photoaffinity labeling of P-gp, but only transport was inhibited by C219 anti-P-gp antibody or orthovanadate. Although the rate of transport of [3H]VBL was 7-7.5-fold lower than the rate of binding (Vmax = 104 +/- 15 pmol/min/mg protein, Kon = 1.5 - 2 x 10(5) mol-1 s-1) to P-gp, each phase exhibited saturation kinetics and values for apparent Km and KD for each process were approximately the same (215 +/- 35 and 195 +/- 30 nM). Intravesicular accumulation of [3H]VBL was almost completely eliminated by high concentrations of nonradioactive VBL, suggesting that simple diffusion does not contribute appreciably to total accumulation of [3H]VBL in this vesicle system. This could be at least partially explained by the fact that these inside-out vesicles under the conditions employed did not maintain a P-gp mediated pH gradient. However, ATP-dependent, intravesicular accumulation of osmotically sensitive [3H]VBL occurred against a substantial permeant concentration gradient in both a time- and concentration-dependent manner consistent with an active, saturable process.

  14. Opioid Analgesics and P-glycoprotein Efflux Transporters: A Potential Systems-Level Contribution to Analgesic Tolerance

    PubMed Central

    Mercer, Susan L.; Coop, Andrew

    2012-01-01

    Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationship development to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation. PMID:21050174

  15. Evaluation of the endothelin receptor antagonists ambrisentan, darusentan, bosentan, and sitaxsentan as substrates and inhibitors of hepatobiliary transporters in sandwich-cultured human hepatocytes.

    PubMed

    Hartman, J Craig; Brouwer, Kenneth; Mandagere, Arun; Melvin, Lawrence; Gorczynski, Richard

    2010-06-01

    To evaluate potential mechanisms of clinical hepatotoxicity, 4 endothelin receptor antagonists (ERAs) were examined for substrate activity and inhibition of hepatic uptake and efflux transporters in sandwich-cultured human hepatocytes. The 4 transporters studied were sodium-dependent taurocholate cotransporter (NTCP), organic anion transporter (OATP), bile salt export pump (BSEP), and multidrug resistance-associated protein 2 (MRP2). ERA transporter inhibition was examined using the substrates taurocholate (for NTCP and BSEP), [(3)H]estradiol-17beta-D-glucuronide (for OATP), and [2-D-penicillamine, 5-D-penicillamine]enkephalin (for MRP2). ERA substrate activity was evaluated using probe inhibitors ritonavir (OATP and BSEP), bromosulfalein (OATP), erythromycin (P-glycoprotein), probenecid (MRP2 and OATP), and cyclosporin (NTCP). ERAs were tested at 2, 20, and 100 micromol*L-1 for inhibition and at 2 micromol*L-1 as substrates. OATP, NTCP, or BSEP transport activity was not reduced by ambrisentan or darusentan. Bosentan and sitaxsentan attenuated NTCP transport at higher concentrations. Only sitaxsentan decreased OATP transport (52%), and only bosentan reduced BSEP transport (78%). MRP2 transport activity was unaltered. OATP inhibitors decreased influx of all ERAs. Darusentan influx was least affected (84%-100% of control), whereas bosentan was most affected (32%-58% of control). NTCP did not contribute to influx of ERAs. Only bosentan and darusentan were shown as substrates for both BSEP and P-glycoprotein efflux. All ERAs tested were substrates for at least one hepatic transporter. Bosentan and sitaxsentan, but not ambrisentan and darusentan, inhibited human hepatic transporters, which provides a potential mechanism for the increased hepatotoxicity observed for these agents in the clinical setting.

  16. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions.

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp; MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  17. P-glycoprotein Inhibition by the Agricultural Pesticide Propiconazole and Its Hydroxylated Metabolites: Implications for Pesticide-Drug Interactions

    EPA Science Inventory

    The human efflux transporter P-glycoprotein (P-gp, MDR1) functions an important cellular defense system against a variety of xenobiotics; however, little information exists on whether environmental chemicals interact with P-gp. Conazoles provide a unique challenge to exposure ass...

  18. P-glycoprotein (ABCB1) inhibited network of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum by systems-theoretical analysis.

    PubMed

    Lin, Hong; Wang, Lin; Jiang, Minghu; Huang, Juxiang; Qi, Lianxiu

    2012-10-01

    We constructed the significant low-expression P-glycoprotein (ABCB1) inhibited transport and signal network in chimpanzee compared with high-expression (fold change ≥2) the human left cerebrum in GEO data set, by using integration of gene regulatory activated and inhibited network inference method with gene ontology (GO) analysis. Our result showed that ABCB1 transport and signal upstream network RAB2A inhibited ABCB1, and downstream ABCB1-inhibited SMAD1_2, NCK2, SLC25A46, GDF10, RASGRP1, EGFR, LRPPRC, RASSF2, RASA4, CA2, CBLB, UBR5, SLC25A16, ITGB3BP, DDIT4, PDPN, RAB2A in chimpanzee left cerebrum. We obtained that the different biological processes of ABCB1 inhibited transport and signal network repressed carbon dioxide transport, ER to Golgi vesicle-mediated transport, folic acid transport, mitochondrion transport along microtubule, water transport, BMP signaling pathway, Ras protein signal transduction, transforming growth factor beta receptor signaling pathway in chimpanzee compared with the inhibited network of the human left cerebrum, as a result of inducing inhibition of mitochondrion transport along microtubule and BMP signal-induced cell shape in chimpanzee left cerebrum. Our hypothesis was verified by the same and different biological processes of ABCB1 inhibited transport and signal network of chimpanzee compared with the corresponding activated network of chimpanzee and the human left cerebrum, respectively. Copyright © 2012 John Wiley & Sons, Ltd.

  19. Inhibition mechanism of P-glycoprotein mediated efflux by mPEG-PLA and influence of PLA chain length on P-glycoprotein inhibition activity.

    PubMed

    Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong

    2014-01-06

    The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.

  20. Providing a molecular mechanism for P-glycoprotein; why would I bother?

    PubMed Central

    Callaghan, Richard

    2015-01-01

    It is almost 40 years since the drug efflux pump P-glycoprotein (permeability glycoprotein or P-gp) was shown to confer multi-drug resistance in cancer cells. This protein has been one of the most extensively investigated transport proteins due to its intriguing mechanism and its affect in oncology. P-gp is known to interact with over 300 compounds and the ability to achieve this has not yet been revealed. Following the binding of substrate and nucleotide, a complex series of conformational changes in the membrane and cytosolic domains translocates substrate across the membrane. Despite over 30 years of biochemical investigation, the availability of structural data and a plethora of chemical tools to modulate its function, the molecular mechanism remains a mystery. In addition, overcoming its activity in resistant cancer cells has not been achieved in the clinic, thereby garnering some degree of pessimism in the field. This review highlights the progress that has been achieved in understanding this complex protein and the value of undertaking molecular studies. PMID:26517914

  1. Inhibition of P-glycoprotein enhances transport of imipramine across the blood-brain barrier: microdialysis studies in conscious freely moving rats.

    PubMed

    O'Brien, F E; Clarke, G; Fitzgerald, P; Dinan, T G; Griffin, B T; Cryan, J F

    2012-06-01

    Recent studies indicate that efflux of antidepressants by the multidrug resistance transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) may contribute to treatment-resistant depression (TRD) by limiting intracerebral antidepressant concentrations. In addition, clinical experience shows that adjunctive treatment with the P-gp inhibitor verapamil may improve the clinical outcome in TRD. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of the tricyclic antidepressant imipramine and its active metabolite desipramine across the BBB. Intracerebral microdialysis in rats was used to monitor brain levels of imipramine and desipramine following i.v. imipramine administration, with or without pretreatment with one of the P-gp inhibitors verapamil or cyclosporin A (CsA). Plasma drug levels were also determined at regular intervals. Pretreatment with either verapamil or CsA resulted in significant increases in imipramine concentrations in the microdialysis samples, without altering imipramine plasma pharmacokinetics. Furthermore, pretreatment with verapamil, but not CsA, led to a significant elevation in plasma and brain levels of desipramine. The present study demonstrated that P-gp inhibition enhanced the intracerebral concentration of imipramine , thus supporting the hypothesis that P-gp activity restricts brain levels of certain antidepressants, including imipramine. These findings may help to explain reports of a beneficial response to adjunctive therapy with verapamil in TRD. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  2. Differential effects of the organochlorine pesticide DDT and its metabolite p,p'-DDE on p-glycoprotein activity and expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shabbir, Arsalan; DiStasio, Susan; Zhao, Jingbo

    1,1-Bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) is an organochlorine pesticide. Its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)-ethene (p,p'-DDE) is a persistent environmental contaminant and both compounds accumulate in animals. Because multidrug resistance transporters, such as p-glycoprotein, function as a defense against xenobiotic exposure, we analyzed the ability of DDT and p,p'-DDE to act as efflux modulators. Using a competitive intact cell assay based on the efflux of the fluorescent dye rhodamine 123, we found that DDT, but not p,p'-DDE, stimulated dye retention. Subsequent studies using verapamil as competitor suggested that DDT is a weak p-glycoprotein inhibitor. Further studies addressed the ability of DDT and p,p'-DDE to induce MDR1,more » the gene encoding p-glycoprotein. In HepG2 cells, we found that both compounds induced MDR1 by twofold to threefold. Similar results were observed in mouse liver after a single dose of p,p'-DDE, although some gender-specific induction differences were noted. By contrast, p,p'-DDE failed to induce MDR1 in HeLa cells, indicating some cell-specific effects for induction. Further expression studies demonstrated increased levels of the endoplasmic reticulum molecular chaperone, Bip, in response to DDT, but not p,p'-DDE. These results suggest that DDT, but not p,p'-DDE, induces an endoplasmic reticulum stress response.« less

  3. P-glycoprotein limits oral availability, brain penetration, and toxicity of an anionic drug, the antibiotic salinomycin.

    PubMed

    Lagas, Jurjen S; Sparidans, Rolf W; van Waterschoot, Robert A B; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2008-03-01

    Salinomycin is a polyether organic anion that is extensively used as a coccidiostatic antibiotic in poultry and commonly fed to ruminant animals to improve feed efficiency. However, salinomycin also causes severe toxicity when accidentally fed to animals in high doses. In addition, humans are highly sensitive to salinomycin and severe toxicity has been reported. Multidrug efflux transporters like P-glycoprotein (P-gp), BCRP, and MRP2 are highly expressed in the intestine and can restrict the oral uptake and tissue penetration of xenobiotics. The purpose of this study was to investigate whether the anionic drug salinomycin is a substrate for one or more of these efflux pumps. Salinomycin was actively transported by human MDR1 P-gp expressed in polarized MDCK-II monolayers but not by the known organic anion transporters human MRP2 and murine Bcrp1. Using P-gp-deficient mice, we found a marked increase in plasma salinomycin concentrations after oral administration and decreased plasma clearance after intravenous administration. Furthermore, absence of P-gp resulted in significantly increased brain penetration. P-gp-deficient mice also displayed clearly increased susceptibility to salinomycin toxicity. Thus far, P-gp was thought to affect mainly hydrophobic, positively charged or neutral drugs in vivo. Our data show that P-gp can also be a major determinant of the pharmacokinetic behavior and toxicity of an organic anionic drug. Variation in P-gp activity might thus directly affect the effective exposure to salinomycin and possibly to other anionic drugs and toxin substrates. Individuals with reduced or absent P-gp activity could therefore be more susceptible to salinomycin toxicity.

  4. P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers

    PubMed Central

    Cario, Elke

    2017-01-01

    The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD. PMID:28321153

  5. P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers.

    PubMed

    Cario, Elke

    2017-03-07

    The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD.

  6. An automated method measures variability in P-glycoprotein and ABCG2 densities across brain regions and brain matter.

    PubMed

    Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan

    2017-06-01

    Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.

  7. Effects of Zuccagnia punctata extracts and their flavonoids on the function and expression of ABCB1/P-glycoprotein multidrug transporter.

    PubMed

    Chieli, Elisabetta; Romiti, Nadia; Catiana Zampini, Iris; Garrido, Gabino; Inés Isla, María

    2012-12-18

    Zuccagnia punctata extracts (ZpE) are used in ethnomedicine as antimicrobial and anti-inflammatory drugs. The pharmacological properties of ZpE and their polyphenolic components suggest that they may be used as potential modulators on the P-glycoprotein (P-gp) multidrug transporter. P-gp is well known for its role in the acquired drug resistance by tumors following chemotherapy, causing a low drug bioavailability by extruding them out of the cells. To evaluate the effects of ZpE and three of their phenolic components: 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2',4'-dihydroxychalcone (DHC) on P-gp activity and expression. The effects of natural products on ABCB1/P-gp function and expression were evaluated by R-123 accumulation assay and western blot analysis using HK-2 cells as experimental model. The ABCB1 mRNA content was determined by SQRT-PCR. The accumulation of R-123 in HK-2 cells was significantly increased by ZpE and DHF, and to a lesser extent by DHC, indicating their roles on the efflux transporter activity. However, HF did not show any effect. HK-2 cells maintained in the presence of ZpE or DHF for 72 h, showed an increase in P-gp expression whereas activity was unchanged or decreased. No changes were observed in ABCB1 mRNA content. Furthermore, in these assay conditions, more sensibility of HK-2 cells to the cytotoxic action of cyclosporine A (P-gp substrate) was observed. These results may suggest an impact of Zuccagnia punctata and some of its components on the pharmacokinetics of drugs that are P-gp substrates, as well as a potential role on multidrug resistance modulation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. The role of the polymorphic efflux transporter P-glycoprotein on the brain accumulation of d-methylphenidate and d-amphetamine.

    PubMed

    Zhu, Hao-Jie; Wang, Jun-Sheng; DeVane, C Lindsay; Williard, Robin L; Donovan, Jennifer L; Middaugh, Lawrence D; Gibson, Brian B; Patrick, Kennerly S; Markowitz, John S

    2006-07-01

    The psychostimulant medications methylphenidate (MPH) and amphetamine (AMP), available in various ratios or enantiopure formulations of their respective active dextrorotary isomers, constitute the majority of agents used in the treatment of attention-deficit/hyperactivity disorder (ADHD). Substantial interindividual variability occurs in their pharmacokinetics and tolerability. Little is known regarding the potential role of drug transporters such as P-glycoprotein (P-gp) in psychostimulant pharmacokinetics and response. Therefore, experiments were carried out in P-gp knockout (KO) mice versus wild-type (WT) mice after intraperitoneal dosing (2.5 mg/kg) of d-MPH or (3.0 mg/kg) of d-AMP. After the administration of each psychostimulant, locomotor activity was assessed at 30-min intervals for 2 h. Total brain-to-plasma drug concentration ratios were determined at 10-, 30-, and 80-min postdosing time-points. The results showed no statistically supported genotypic difference in d-AMP-induced locomotor activity stimulation or in brain-to-plasma ratio of d-AMP. As for d-MPH, the P-gp KO mice had 33% higher brain concentrations (p < 0.05) and 67.5% higher brain-to-plasma ratios (p < 0.01) than WT controls at the 10-min postdosing timepoint. However, in spite of elevated brain concentrations, d-MPH-induced locomotor activity increase was attenuated for P-gp compared with that for WT mice. These data indicate that P-gp has no apparent effect on the pharmacokinetics and pharmacodynamics of d-AMP. In addition, d-MPH is a relatively weak P-gp substrate, and its entry into the brain may be limited by P-gp. Furthermore, the mechanism by which d-MPH-induced locomotor activity was attenuated in P-gp KO mice remains to be elucidated.

  9. Combination of Suboptimal Doses of Inhibitors Targeting Different Domains of LtrMDR1 Efficiently Overcomes Resistance of Leishmania spp. to Miltefosine by Inhibiting Drug Efflux

    PubMed Central

    Pérez-Victoria, José M.; Cortés-Selva, Fernando; Parodi-Talice, Adriana; Bavchvarov, Boris I.; Pérez-Victoria, F. Javier; Muñoz-Martínez, Francisco; Maitrejean, Mathias; Costi, M. Paola; Barron, Denis; Di Pietro, Attilio; Castanys, Santiago; Gamarro, Francisco

    2006-01-01

    Miltefosine (hexadecylphosphocholine) is the first orally active drug approved for the treatment of leishmaniasis. We have previously shown the involvement of LtrMDR1, a P-glycoprotein-like transporter belonging to the ATP-binding cassette superfamily, in miltefosine resistance in Leishmania. Here we show that overexpression of LtrMDR1 increases miltefosine efflux, leading to a decrease in drug accumulation in the parasites. Although LtrMDR1 modulation might be an efficient way to overcome this resistance, a main drawback associated with the use of P-glycoprotein inhibitors is related to their intrinsic toxicity. In order to diminish possible side effects, we have combined suboptimal doses of modulators targeting both the cytosolic and transmembrane domains of LtrMDR1. Preliminary structure-activity relationships have allowed us to design a new and potent flavonoid derivative with high affinity for the cytosolic nucleotide-binding domains. As modulators directed to the transmembrane domains, we have selected one of the most potent dihydro-β-agarofuran sesquiterpenes described, and we have also studied the effects of two of the most promising, latest-developed modulators of human P-glycoprotein, zosuquidar (LY335979) and elacridar (GF120918). The results show that this combinatorial strategy efficiently overcomes P-glycoprotein-mediated parasite miltefosine resistance by increasing intracellular miltefosine accumulation without any side effect in the parental, sensitive, Leishmania line and in different mammalian cell lines. PMID:16940108

  10. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?

    PubMed

    Abdullahi, Wazir; Davis, Thomas P; Ronaldson, Patrick T

    2017-07-01

    Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.

  11. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis.

    PubMed

    Tsujimura, Shizuyo; Saito, Kazuyoshi; Nakayamada, Shingo; Tanaka, Yoshiya

    2010-04-01

    P-glycoprotein (P-gp) on activated lymphocytes is an adenosine triphosphate (ATP)-binding cassette transporter that causes drug resistance by exclusion of intracellular drugs in patients with active rheumatoid arthritis (RA). However, infliximab with methotrexate (MTX) can overcome P-gp-mediated drug resistance. We encounter patients who cannot continue infliximab or MTX. Here we tested how etanercept affected P-gp-mediated drug resistance in such intractable RA patients. Peripheral lymphocytes of 11 RA patients (3 switched from infliximab and 8 who could not be treated with MTX) were analyzed for P-gp expression by flow cytometry and for drug exclusion using radioisotope-labeled dexamethasone. Activated lymphocytes of RA patients overexpressed P-gp and coexpressed CD69. Incubation of these lymphocytes with dexamethasone in vitro reduced intracellular dexamethasone levels. Two-week etanercept therapy significantly reduced P-gp expression and eliminated such P-gp- and CD69-high-expressing subgroup. The reduction in P-gp resulted in recovery of intracellular dexamethasone levels in lymphocytes and improvement of disease activity, thus allowing tapering of corticosteroids. None of the patients experienced any severe adverse effects. Etanercept is useful for overcoming P-gp-mediated treatment resistance in intractable RA patients who have to discontinue infliximab or are intolerant to MTX.

  12. P-glycoprotein retains function when reconstituted into a sphingolipid- and cholesterol-rich environment.

    PubMed

    Modok, Szabolcs; Heyward, Catherine; Callaghan, Richard

    2004-10-01

    P-glycoprotein (P-gp) appears to be associated within specialized raftlike membrane microdomains. The activity of P-gp is sensitive to its lipid environment, and a functional association in raft microdomains will require that P-gp retains activity in the microenvironment. Purified hamster P-gp was reconstituted in liposomes comprising sphingomyelin and cholesterol, both highly enriched in membrane microdomains and known to impart a liquid-ordered phase to bilayers. The activity of P-gp was compared with that of proteoliposomes composed of crude egg phosphatidylcholine (unsaturated) or dipalmitoyl phosphatidylcholine (saturated) in the presence or absence of cholesterol. The maximal rate of ATP hydrolysis was not significantly altered by the nature of the lipid species. However, the potencies of nicardipine and XR9576 to modulate the ATPase activity of P-gp were increased in the sphingolipid-based proteoliposomes. The drug-P-gp interaction was investigated by measurement of the rates of [(3)H]XR9576 association and dissociation from the transporter. The lipid environment of P-gp did not affect these kinetic parameters of drug binding. In summary, P-gp retains function in liquid-ordered cholesterol and sphingolipid model membranes in which the communication between the transmembrane and the nucleotide binding domains after drug binding to the protein is more efficient.

  13. Enhanced transport of P-glycoprotein substrate saquinavir in presence of thiolated chitosan.

    PubMed

    Föger, Florian; Kafedjiiski, Krum; Hoyer, Herbert; Loretz, Brigitta; Bernkop-Schnürch, Andreas

    2007-02-01

    It was the aim of this study to investigate the effect of chitosan-4-thiobutylamidine (Ch-TBA) and reduced glutathione (GSH) on the absorption of P-glycoprotein (P-gp) and multidrug resistance protein (MRP) substrate saquinavir in vitro and in vivo. Bidirectional transport studies were performed with Caco-2 cell monolayers and additionally with freshly excised rat small intestinal mucosa mounted in Ussing type chambers. Furthermore, a delivery system based on Ch-TBA and GSH was evaluated in vivo in rats. The functional activity of the efflux pumps in Caco-2 cells and rat intestinal mucosa during the experiment was proven by the efflux ratio of saquinavir, which was 6.4 for Caco-2 cells and 2.1 for rat intestinal mucosa, respectively. Ch-TBA and particularly the combination of Ch-TBA with GSH enhanced apical (AP) absorption and decreased the secretory transport of saquinavir. In presence of 0.5% Ch-TBA and 0.5% GSH, the uptake of saquinavir was 1.6-fold improved in Caco-2 monolayer and 2.1-fold improved in rat intestinal mucosa. In vivo, the area under the plasma concentration time curve (AUC) of saquinavir was 1.4-fold and Cmax 1.6-fold increased, in comparison with control. Results of this study showed that Ch-TBA in combination with GSH can be an interesting tool for increasing the oral bioavailability of actively secreted compounds.

  14. Characterisation of P-glycoprotein-9.1 in Haemonchus contortus.

    PubMed

    Godoy, Pablo; Che, Hua; Beech, Robin N; Prichard, Roger K

    2016-01-28

    The existence nematodes of veterinary importance such as Haemonchus contortus resistant to anthelmintic drugs, including the macrocyclic lactones, has become a major concern in animal health. Macrocyclic lactone resistance in H. contortus seems to be multigenic including the active efflux of these drugs by P-glycoproteins, members of the ABC transporter family, present in this parasite. The goals of the present work were to determine the activity of H. contortus P-glycoprotein 9.1 (Hco-PGP-9.1) and its interaction with the avermectins, ivermectin, abamectin, and also the milbemycin, moxidectin. Additionally, the localisation of Hco-PGP-9.1 was sought in adult worms. Hco-Pgp-9.1 was cloned and expressed in mammalian cells and its expression profile was determined at the transcriptional and protein level by qRT-PCR and Western-blot, respectively. The nematode transport activity was assessed using the tracer dye Rhodamine 123. A ligand competition assay between different macrocyclic lactones and Rhodamine 123 was used to establish whether or not there was interaction between Hco-PGP-9.1 and the avermectins (abamectin and ivermectin) or moxidectin. In addition, immunostaining was carried out to localise Hco-PGP-9.1 expression in the transgenic cells and in adult female parasites. Hco-PGP-9.1 was expressed in the cell membrane of the transfected host cells and was able to extrude Rhodamine 123. Ivermectin and abamectin, but not moxidectin, had a pronounced inhibitory effect on the ability of Hco-PGP-9.1 to transport Rhodamine 123. Antibodies raised against Hco-PGP-9.1 epitopes localised to the uterus of adult female H. contortus. These results suggest a strong interaction of the avermectins with Hco-PGP-9.1. However, possibly due to its physico-chemical properties, moxidectin had markedly less effect on Hco-PGP-9.1. Because of the greater interaction of the avermectins than moxidectin with this transporter, it is more likely to contribute to avermectin resistance than to moxidectin resistance in H. contortus. Possible over expression of Hco-PGP-9.1 in the female reproductive system in resistant worms could reduce paralysis of the uterus by macrocyclic lactones, allowing continued egg release in drug challenged resistant worms.

  15. P-glycoprotein regulates blood–testis barrier dynamics via its effects on the occludin/zonula occludens 1 (ZO-1) protein complex mediated by focal adhesion kinase (FAK)

    PubMed Central

    Su, Linlin; Mruk, Dolores D.; Lui, Wing-Yee; Lee, Will M.; Cheng, C. Yan

    2011-01-01

    The blood–testis barrier (BTB), one of the tightest blood–tissue barriers in the mammalian body, creates an immune-privileged site for postmeiotic spermatid development to avoid the production of antibodies against spermatid-specific antigens, many of which express transiently during spermiogenesis and spermiation. However, the BTB undergoes extensive restructuring at stage VIII of the epithelial cycle to facilitate the transit of preleptotene spermatocytes and to prepare for meiosis. This action thus prompted us to investigate whether this stage can be a physiological window for the delivery of therapeutic and/or contraceptive drugs across the BTB to exert their effects at the immune-privileged site. Herein, we report findings that P-glycoprotein, an ATP-dependent efflux drug transporter and an integrated component of the occludin/zonula occludens 1 (ZO-1) adhesion complex at the BTB, structurally interacted with focal adhesion kinase (FAK), creating the occludin/ZO-1/FAK/P-glycoprotein regulatory complex. Interestingly, a knockdown of P-glycoprotein by RNAi was found to impede Sertoli cell BTB function, making the tight junction (TJ) barrier “leaky.” This effect was mediated by changes in the protein phosphorylation status of occludin via the action of FAK, thereby affecting the endocytic vesicle-mediated protein trafficking events that destabilized the TJ barrier. However, the silencing of P-glycoprotein, although capable of impeding drug transport across the BTB and TJ permeability barrier function, was not able to induce the BTB to be “freely” permeable to adjudin. These findings indicate that P-glycoprotein is involved in BTB restructuring during spermatogenesis but that P-glycoprotein–mediated restructuring does not “open up” the BTB to make it freely permeable to drugs. PMID:22106313

  16. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruel, Nancy; Zago, Anna; Spear, Patricia G.

    2006-03-01

    Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutantmore » forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.« less

  17. Drug transport by reconstituted P-glycoprotein in proteoliposomes. Effect of substrates and modulators, and dependence on bilayer phase state.

    PubMed

    Lu, P; Liu, R; Sharom, F J

    2001-03-01

    The P-glycoprotein multidrug transporter (Pgp) is an active efflux pump for chemotherapeutic drugs, natural products and hydrophobic peptides. Pgp is envisaged as a 'hydrophobic vacuum cleaner', and drugs are believed to gain access to the substrate binding sites from within the membrane, rather than from the aqueous phase. The intimate association of both Pgp and its substrates with the membrane suggests that its function may be regulated by the biophysical properties of the lipid bilayer. Using the high affinity fluorescent substrate tetramethylrosamine (TMR), we have monitored, in real time, transport in proteoliposomes containing reconstituted Pgp. The TMR concentration gradient generated by Pgp was collapsed by the addition of either the ATPase inhibitor, vanadate, or Pgp modulators. TMR transport by Pgp obeyed Michaelis--Menten kinetics with respect to both of its substrates. The Km for ATP was 0.48 mM, close to the K(m) for ATP hydrolysis, and the K(m) for TMR was 0.3 microM. TMR transport was inhibited in a concentration-dependent fashion by verapamil and cyclosporin A, and activated (probably by a positive allosteric effect) by the transport substrate colchicine. TMR transport by Pgp reconstituted into proteoliposomes composed of two synthetic phosphatidylcholines showed a highly unusual biphasic temperature dependence. The rate of TMR transport was relatively high in the rigid gel phase, reached a maximum at the melting temperature of the bilayer, and then decreased in the fluid liquid crystalline phase. This pattern of temperature dependence suggests that the rate of drug transport by Pgp may be dominated by partitioning of drug into the bilayer.

  18. In vitro activity of commercial valerian root extracts against human cytochrome P450 3A4.

    PubMed

    Lefebvre, Tania; Foster, Brian C; Drouin, Cathy E; Krantis, Anthony; Livesey, John F; Jordan, Scott A

    2004-08-12

    Valerian root ( Valeriana officinalis L.) has been used since antiquity as a medicinal herb. Recent studies have found that certain herbal products used concomitantly with conventional therapeutic products can markedly affect drug disposition. The in vitro effect of aliquots from 14 commercially available single-entity and blended products containing valerian root on cytochrome P450 CYP3A4-mediated metabolism and P-glycoprotein transport has been determined with aqueous, ethanol and acetonitrile extracts. Hydroxyvalerenic acid, acetoxyvalerenic acid and valerenic acid content was analyzed and wide variation was found between samples and compared to the concentrations noted on the product labels. Valerian extracts from the products tested also exhibited a marked capacity to inhibit cytochrome P450 3A4-mediated metabolism and P-glycoprotein transport based upon the ATPase assay. There is wide variation between commercially available samples of valerian root. The findings from this study suggest that valerian root may have an initial inhibitory effect when taken with therapeutic products. Further work is warranted to determine whether valerian root can affect other CYP450 isozymes and how the results of this in vitro investigation can be extrapolated to in vivo situations.

  19. β-casein nanovehicles for oral delivery of chemotherapeutic Drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells.

    PubMed

    Bar-Zeev, Maya; Assaraf, Yehuda G; Livney, Yoav D

    2016-04-26

    Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer.

  20. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  1. Pro-inflammatory and anti-inflammatory compounds exert similar effects on P-glycoprotein in blood-brain barrier endothelial cells.

    PubMed

    Torres-Vergara, Pablo; Penny, Jeffrey

    2018-06-01

    The effects of anti-inflammatory glucocorticoids dexamethasone (DX) and hydrocortisone (HC), pro-inflammatory cytokine interleukin-1β (IL-1β) and dietary long-chain polyunsaturated fatty acids (PUFAs) on expression and activity of the ATP-binding cassette transporter P-glycoprotein (P-GP) were studied in porcine brain endothelial cells (PBECs). Primary PBECs were treated for 24 h with glucocorticoids, IL-1β and long-chain PUFAs. P-GP activity was determined by measuring intracellular calcein accumulation and P-GP expression by Western blotting. The effect of PUFAs on membrane fluidity was assessed by fluorescence recovery after photobleaching (FRAP). Dexamethasone, HC and IL-1β significantly increased P-GP expression and activity. The effect of IL-1β was attenuated by the IL-1 receptor antagonist (IL-1RA). This is the first report of the combined actions of IL-1β and IL-1RA on P-GP expression and the first evidence of glucocorticoid-mediated P-GP up-regulation in PBECs. Arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentenoic acid (EPA) significantly decreased P-GP activity without affecting expression or membrane fluidity. AA, DHA and EPA counteracted IL-1β-mediated increases in P-GP activity, while AA and EPA, but not DHA, counteracted glucocorticoid-mediated increase in P-GP activity. While glucocorticoids and IL-1β possess opposing actions in inflammation, they demonstrate functional consistency by increasing P-GP expression and activity in PBECs. © 2018 Royal Pharmaceutical Society.

  2. Reversal effect of a macrocyclic bisbibenzyl plagiochin E on multidrug resistance in adriamycin-resistant K562/A02 cells.

    PubMed

    Shi, Yan-Qiu; Qu, Xian-Jun; Liao, Yong-Xiang; Xie, Chun-Feng; Cheng, Yan-Na; Li, Song; Lou, Hong-Xiang

    2008-04-14

    Plagiochin E is a new macrocyclic bisbibenzyl compound isolated from Marchantia polymorpha. In the previous studies, we reported that when combined with fluconazole, plagiochin E had synergetic effects against the resistant strain of Candida albicans. Herein, we examined the reversal effect of plagiochin E on multidrug resistance in adriamycin-induced resistant K562/A02 cells and the parental K562 cells. Its cytotoxicity and reversal effects on multidrug resistance were assessed by MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyl-tetrazolium bromide) assay. Apoptosis percentage of cells was obtained from Annexin V/fluorescein isothiocyanate (FITC) and propridium iodide (PI) double-staining. The effects of plagiochin E on P-glycoprotein activity were evaluated by measuring rhodamine 123 (Rh123)-associated mean fluorescence intensity and P-glycoprotein expression on the basis of the flow cytometric technology, respectively. The results showed that plagiochin E ranging from 2 to 12 mug/ml had little cytotoxicity against K562/A02 cells. When combined with adriamycin, it significantly promoted the sensitivity of K562/A02 cells toward adriamycin through increasing intracellular accumulation of adriamycin in a dose-dependent manner. Further study demonstrated that the inhibitory effect of plagiochin E on P-glycoprotein activity was the major cause of increased stagnation of adriamycin inside K562/A02 cells, indicating that plagiochin E, as a new class of mutidrug resistance inhibitor, may effectively reverse the multidrug resistance in K562/A02 cells via inhibiting expression and drug-transport function of P-glycoprotein.

  3. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3

    PubMed Central

    Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen

    2016-01-01

    P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779

  4. Anaplasia and drug selection-independent overexpression of the multidrug resistance gene, MDR1, in Wilms' tumor.

    PubMed

    Re, G G; Willingham, M C; el Bahtimi, R; Brownlee, N A; Hazen-Martin, D J; Garvin, A J

    1997-02-01

    One reason for the failure of chemotherapy is the overexpression of the multidrug resistance gene, MDR1. The product of this gene is the multidrug transporter P-glycoprotein, an ATP-dependent pump that extrudes drugs from the cytoplasm. Some tumors inherently express P-glycoprotein, whereas others acquire the ability to do so after exposure to certain chemotherapeutic agents, often by the mechanism of gene amplification. Classical Wilms' tumors (nephroblastoma) typically respond to therapy and have a good prognosis. On the contrary, anaplastic Wilms' tumors are generally refractory to chemotherapy. These anaplastic variants are rare (4.5% of all Wilms' tumors reported in the United States), aggressive, and often fatal forms of tumor, which are commonly thought to result from the progression of classical Wilms' tumors. To investigate the basis for this differential response to therapy, we examined a number of classical and anaplastic Wilms' tumors for the expression of the MDR1 gene by immunohistochemical and mRNA analysis. Classical Wilms' tumors consistently did not express P-glycoprotein except in areas of tubular differentiation, as in normal kidney. Similarly, two of three anaplastic tumors failed to show P-glycoprotein expression. In contrast, cultured cells derived from a third anaplastic tumor, W4, exhibited strong P-glycoprotein expression and were drug resistant in vitro. Southern analysis revealed that W4 cells contained a single copy of the MDR1 gene per haploid genome similar to normal cells, demonstrating that the overexpression of MDR1 was not caused by gene amplification. Transcriptional activation of the MDR1 gene would be in keeping with the concept that p53 might act as a transcriptional repressor of the MDR1 gene.

  5. Mechanisms of ammonia and ammonium transport by rhesus-associated glycoproteins

    PubMed Central

    Caner, Tolga; Abdulnour-Nakhoul, Solange; Brown, Karen; Islam, M. Toriqul; Hamm, L. Lee

    2015-01-01

    In this study we characterized ammonia and ammonium (NH3/NH4+) transport by the rhesus-associated (Rh) glycoproteins RhAG, Rhbg, and Rhcg expressed in Xenopus oocytes. We used ion-selective microelectrodes and two-electrode voltage clamp to measure changes in intracellular pH, surface pH, and whole cell currents induced by NH3/NH4+ and methyl amine/ammonium (MA/MA+). These measurements allowed us to define signal-specific signatures to distinguish NH3 from NH4+ transport and to determine how transport of NH3 and NH4+ differs among RhAG, Rhbg, and Rhcg. Our data indicate that expression of Rh glycoproteins in oocytes generally enhanced NH3/NH4+ transport and that cellular changes induced by transport of MA/MA+ by Rh proteins were different from those induced by transport of NH3/NH4+. Our results support the following conclusions: 1) RhAG and Rhbg transport both the ionic NH4+ and neutral NH3 species; 2) transport of NH4+ is electrogenic; 3) like Rhbg, RhAG transport of NH4+ masks NH3 transport; and 4) Rhcg is likely to be a predominantly NH3 transporter, with no evidence of enhanced NH4+ transport by this transporter. The dual role of Rh proteins as NH3 and NH4+ transporters is a unique property and may be critical in understanding how transepithelial secretion of NH3/NH4+ occurs in the renal collecting duct. PMID:26354748

  6. Influence of intestinal efflux pumps on the absorption and transport of furosemide

    PubMed Central

    Al-Mohizea, Abdullah M.

    2010-01-01

    Purpose Furosemide is a commonly used diuretic which is used in the treatment of edema, congestive heart failure, hypertension and renal failure. Its absorption exhibits inter- and intra-subject variability that can be attributed to many factors including the intestinal efflux pumps such as the P-glycoprotein (P-gp). This study was done due to the great disagreement between what is published in the literature regarding the influence of P-gp on furosemide and at the same time due to the importance of this drug in the treatment of different conditions as described above. In addition, an investigation of the effect of two of the commonly used pharmaceutical excipients (hydroxypropyl β-cyclodextrin [HPβCD] and Tween 80) and also a P-gp inhibitor (verapamil hydrochloride) on the intestinal absorption of this drug were also done. Methods The study utilized the everted intestinal sacs technique to investigate both the effect of the efflux transporter (P-gp) on furosemide absorption and also the effect of the chosen excipients. Results The absorption of furosemide was significantly influenced by the P-gp as confirmed by the everted vis the non-everted sacs together with the verapamil study in which the transport of furosemide was inhibited by verapamil. In addition, Tween 80 was also shown to inhibit the P-gp pump whereas the HPβCD did not significantly influence the efflux of furosemide in this study. Conclusions P-glycoprotein and some of the used excipients in the formulation play a very important role in the transport of furosemide and other drugs. Thus excipients that affect the activity of P-gp should be avoided when formulating drugs that are substrate for the P-gp or other efflux pumps. PMID:23960725

  7. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    PubMed

    Clay, Adam T; Lu, Peihua; Sharom, Frances J

    2015-11-03

    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.

  8. Interaction of pyridostigmine bromide and N,N-diethyl-m-toluamide alone and in combination with P-glycoprotein expressed in Escherichia coli leaky mutant.

    PubMed

    El-Masry, Eman M; Abou-Donia, Mohamed B

    2006-05-01

    P-glycoprotein (P-gp), the most extensively studied ATP-binding transporter, functions as a biological barrier by extruding toxic substances and xenobiotics out of the cell. This study was carried out to determine the effect of N,N-diethyl-m-toluamide (DEET) and pyridostigmine bromide (PB), alone and in combination, on P-gp expression using Escherichia coli leaky mutant transformed with Mdr1 gene (pT5-7/mdr1), which codes for P-gp or lactose permease (pT5-7/lacY) as negative control. Also, daunomycin (a known P-gp sustrate) was used as a positive control and reserpine (a known P-gp inhibitor) served as a negative control. An in vitro cell-resistant assay was used to monitor the potential of test compounds to interact with P-gp. Following exposure of the cells to pyridostigmine bromide or daunomycin, P-gp conferred significant resistance against both compounds, while reserpine and DEET significantly inhibited the glycoprotein. Cells were grown in the presence of noncytotoxic concentrations of daunomycin, pyridostigmine bromide, reserpine, or DEET, and membrane fractions were examined by Western immunoblotting for expression of P-gp. Daunomycin induced P-gp expression quantitatively more than pyridostigmine bromide, while reserpine and DEET significantly inhibited P-gp expression in cells harboring mdr1. Photoaffinity labeling experiment performed with the P-gp ligand [125I]iodoarylazidoprazosin demonstrated that compounds that induced or inhibited P-gp transport activity also bound to P-gp. DEET was also found to be a potent inhibitor of P-gp-mediated ATPase activity, whereas pyridostigmine bromide increased P-gp ATPase activity. Cells expressing P-gp or lac permease were exposed to pyridostigmine bromide and DEET, alone and in combination. Noncytotoxic concentrations of DEET significantly inhibited P-gp-mediated resistance against pyridostigmine bromide, resulting in a reduction of the number of effective drug interactions with biological targets. An explanation of these results might be that DEET is a third-generation inhibitor of P-gp; it has high potency and specificity for P-gp, it inhibits hydrolysis of ATP, it exerts no appreciable impact on cytochrome P-450 3A4, and it prevents transport of xenobiotics, such as pyridostigmine bromide, out of the cell. This conclusion explains, at least in part, the increased toxicity and bioavailability of pyridostigmine bromide following combined administration with DEET. This study improves our understanding of the basis of chemical interactions with DEET by defining the ability of drugs to interact with P-gp either as inhibitors or substrates, which may in turn lead to altered efficacy or toxicity.

  9. Differences in the expression of endogenous efflux transporters in MDR1-transfected versus wildtype cell lines affect P-glycoprotein mediated drug transport

    PubMed Central

    Kuteykin-Teplyakov, Konstantin; Luna-Tortós, Carlos; Ambroziak, Kamila; Löscher, Wolfgang

    2010-01-01

    Background and purpose: P-glycoprotein (Pgp) efflux assays are widely used to identify Pgp substrates. The kidney cell lines Madin-Darby canine kidney (MDCK)-II and LLC-PK1, transfected with human MDR1 (ABCB1) are used to provide recombinant models of drug transport. Endogenous transporters in these cells may contribute to the activities of recombinant transporters, so that drug transport in MDR1-transfected cells is often corrected for the transport obtained in parental (wildtype) cells. However, expression of endogenous transporters may vary between transfected and wildtype cells, so that this correction may cause erroneous data. Here, we have measured the expression of endogenous efflux transporters in transfected and wildtype MDCK-II or LLC cells and the consequences for Pgp-mediated drug transport. Experimental approach: Using quantitative real-time RT-PCR, we determined the expression of endogenous Mdr1 mRNA and other efflux transporters in wildtype and MDR1-transfected MDCK-II and LLC cells. Transcellular transport was measured with the test substrate vinblastine. Key results: In MDR1-transfected MDCK cells, expression of endogenous (canine) Mdr1 and Mrp2 (Abcc2) mRNA was markedly lower than in wildtype cells, whereas MDR1-transfected LLC cells exhibited comparable Mdr1 but strikingly higher Mrp2 mRNA levels than wildtype cells. As a consequence, transport of vinblastine by human Pgp in efflux experiments was markedly underestimated when transport in MDR1-transfected MDCK cells was corrected for transport obtained in wildtype cells. This problem did not occur in LLC cells. Conclusions and implications: Differences in the expression of endogenous efflux transporters between transfected and wildtype MDCK cells provide a potential bias for in vitro studies on Pgp-mediated drug transport. PMID:20590635

  10. Intercellular transfer of P-glycoprotein from the drug resistant human bladder cancer cell line BIU-87 does not require cell-to-cell contact.

    PubMed

    Zhou, Hui-liang; Zheng, Yong-jun; Cheng, Xiao-zhi; Lv, Yi-song; Gao, Rui; Mao, Hou-ping; Chen, Qin

    2013-09-01

    The efflux activity of transmembrane P-glycoprotein prevents various therapeutic drugs from reaching lethal concentrations in cancer cells, resulting in multidrug resistance. We investigated whether drug resistant bladder cancer cells could transfer functional P-glycoprotein to sensitive parental cells. Drug sensitive BIU-87 bladder cancer cells were co-cultured for 48 hours with BIU-87/ADM, a doxorubicin resistant derivative of the same cell line, in a Transwell® system that prevented cell-to-cell contact. The presence of P-glycoprotein in recipient cell membranes was established using fluorescein isothiocyanate, laser scanning confocal microscopy and Western blot. P-glycoprotein mRNA levels were compared between cell types. Rhodamine 123 efflux assay was done to confirm that P-glycoprotein was biologically active. The amount of P-glycoprotein protein in BIU-87 cells co-cultured with BIU-87/ADM was significantly higher than in BIU-87 cells (0.44 vs 0.25) and BIU-87/H33342 cells (0.44 vs 0.26, each p <0.001), indicating P-glycoprotein transfer. P-glycoprotein mRNA expression was significantly higher in BIU-87/ADM cells than in co-cultured BIU-87 cells (1.28 vs 0.30), BIU-87/H33342 (0.28) and BIU-87 cells (0.25, each p <0.001), ruling out a genetic mechanism. After 30 minutes of efflux, rhodamine 123 fluorescence intensity was significantly lower in BIU-87/ADM cells (5.55 vs 51.45, p = 0.004) and co-cultured BIU-87 cells than in BIU-87 cells (14.22 vs 51.45, p <0.001), indicating that P-glycoprotein was functional. Bladder cancer cells can acquire functional P-glycoprotein through a nongenetic mechanism that does not require direct cell contact. This mechanism is consistent with a microparticle mediated process. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. Mucoadhesive properties and interaction with P-glycoprotein (P-gp) of thiolated-chitosans and -glycol chitosans and corresponding parent polymers: a comparative study.

    PubMed

    Trapani, Adriana; Palazzo, Claudio; Contino, Marialessandra; Perrone, Maria Grazia; Cioffi, Nicola; Ditaranto, Nicoletta; Colabufo, Nicola Antonio; Conese, Massimo; Trapani, Giuseppe; Puglisi, Giovanni

    2014-03-10

    The aim of the present work was to compare the mucoadhesive and efflux pump P-glycoprotein (P-gp) interacting properties of chitosan (CS)- and glycolchitosan (GCS)-based thiomers and corresponding unmodified parent polymers. For this purpose, the glycol chitosan-N-acetyl-cysteine (GCS-NAC) and glycol chitosan-glutathione (GCS-GSH) thiomers were prepared under simple and mild conditions. Their mucoadhesive characteristics were studied by turbidimetric and zeta potential measurements. The P-gp interacting properties were evaluated measuring the effects of thiolated- and unmodified-polymers on the bidirectional transport (BA/AB) of rhodamine-123 across Caco-2 cells as well as in the calcein-AM and ATPase activity assays. Although all the thiomers and unmodified polymers showed optimal-excellent mucoadhesive properties, the best mucoadhesive performances have been obtained by CS and CS-based thiomers. Moreover, it was found that the pretreatment of Caco-2 cell monolayer with GCS-NAC or GCS restores Rho-123 cell entrance by inhibiting P-gp activity. Hence, GCS-NAC and GCS may constitute new biomaterials useful for improving the bioavailability of P-gp substrates.

  12. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.

  13. The effect of P-glycoprotein on methadone hydrochloride flux in equine intestinal mucosa.

    PubMed

    Linardi, R L; Stokes, A M; Andrews, F M

    2013-02-01

    Methadone is an effective analgesic opioid that may have a place for the treatment of pain in horses. However, its absorption seems to be impaired by the presence of a transmembrane protein, P-glycoprotein, present in different tissues including the small intestine in other species. This study aims to determine the effect of the P-glycoprotein on methadone flux in the equine intestinal mucosa, as an indicator of in vivo drug absorption. Jejunum tissues from five horses were placed into the Ussing chambers and exposed to methadone solution in the presence or absence of Rhodamine 123 or verapamil. Electrical measurements demonstrated tissue viability for 120 min, and the flux of methadone across the jejunal membrane (mucosal to submucosal direction) was calculated based on the relative drug concentration measured by ELISA. The flux of methadone was significantly higher only in the presence of verapamil. P-glycoprotein was immunolocalized in the apical membrane of the jejunal epithelial cells (enterocytes), mainly located in the tip of the villi compared to cells of the crypts. P-glycoprotein is present in the equine jejunum and may possibly mediate the intestinal transport of methadone. This study suggests that P-glycoprotein may play a role in the poor intestinal absorption of methadone in vivo. © 2012 Blackwell Publishing Ltd.

  14. Heterogeneous transport of digitalis-like compounds by P-glycoprotein in vesicular and cellular assays.

    PubMed

    Gozalpour, Elnaz; Wilmer, Martijn J; Bilos, Albert; Masereeuw, Rosalinde; Russel, Frans G M; Koenderink, Jan B

    2016-04-01

    Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Transfected MDCK cell line with enhanced expression of CYP3A4 and P-glycoprotein as a model to study their role in drug transport and metabolism.

    PubMed

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K

    2012-07-02

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drug of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and Western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The Vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be 10- and 3-fold lower in MMC as compared to MDCK-WT and MDCK-MDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT, indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined activities of CYP3A4 and P-gp. Transport of cortisol increased 5-fold in the presence of naringin in MMC and doubled in MDCK-MDR1. Cortisol transport in MMC was significantly lower than that in MDCK-WT in the presence of naringin. The permeability increased 3-fold in the presence of morphine, which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in the presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes toward drug-drug interactions.

  16. TRANSFECTED MDCK CELL LINE WITH ENHANCED EXPRESSION OF CYP3A4 AND P-GLYCOPROTEIN AS A MODEL TO STUDY THEIR ROLE IN DRUG TRANSPORT AND METABOLISM

    PubMed Central

    Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.

    2012-01-01

    The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be ten and three fold lower in MMC as compared to WT and MDCKMDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined metabolic activities of CYP3A4 and P-gp. Transport of cortisol increased fivefold in presence of naringin in MMC and doubled in MDCKMDR1. Cortisol transport in MMC was significantly lower than that in WT in presence of naringin. The permeability increased three fold in presence of morphine which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes towards drug-drug interactions. PMID:22676443

  17. Alkamides from Echinacea angustifolia Interact with P-glycoprotein of primary brain capillary endothelial cells isolated from porcine brain blood vessels.

    PubMed

    Mahringer, Anne; Ardjomand-Woelkart, Karin; Bauer, Rudolf; Fricker, Gert; Efferth, Thomas

    2013-03-01

    The blood-brain barrier prevents the passage of toxic compounds from blood circulation into brain tissue. Unfortunately, drugs for the treatment of neurodegenerative diseases, brain tumors, and other diseases also do not cross the blood-brain barrier. In the present investigation, we used isolated porcine brain capillary endothelial cells and a flow cytometric calcein-AM assay to analyze inhibition of P-glycoprotein, a major constituent of the blood-brain barrier. We tested 8 alkamides isolated from Echinacea angustifolia and found that four of them inhibited P-glycoprotein-mediated calcein transport in porcine brain capillary endothelial cells. Georg Thieme Verlag KG Stuttgart · New York.

  18. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity.

    PubMed

    Silva, Renata; Palmeira, Andreia; Carmo, Helena; Barbosa, Daniel José; Gameiro, Mariline; Gomes, Ana; Paiva, Ana Mafalda; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remião, Fernando

    2015-10-01

    The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.

  19. Induction of P-glycoprotein expression and activity by Aconitum alkaloids: Implication for clinical drug–drug interactions

    PubMed Central

    Wu, Jinjun; Lin, Na; Li, Fangyuan; Zhang, Guiyu; He, Shugui; Zhu, Yuanfeng; Ou, Rilan; Li, Na; Liu, Shuqiang; Feng, Lizhi; Liu, Liang; Liu, Zhongqiu; Lu, Linlin

    2016-01-01

    The Aconitum species, which mainly contain bioactive Aconitum alkaloids, are frequently administered concomitantly with other herbal medicines or chemical drugs in clinics. The potential risk of drug–drug interactions (DDIs) arising from co-administration of Aconitum alkaloids and other drugs against specific targets such as P-glycoprotein (P-gp) must be evaluated. This study focused on the effects of three representative Aconitum alkaloids: aconitine (AC), benzoylaconine (BAC), and aconine, on the expression and activity of P-gp. We observed that Aconitum alkaloids increased P-gp expression in LS174T and Caco-2 cells in the order AC > BAC > aconine. Nuclear receptors were involved in the induction of P-gp. AC and BAC increased the P-gp transport activity. Strikingly, intracellular ATP levels and mitochondrial mass also increased. Furthermore, exposure to AC decreased the toxicity of vincristine and doxorubicin towards the cells. In vivo, AC significantly up-regulated the P-gp protein levels in the jejunum, ileum, and colon of FVB mice, and protected them against acute AC toxicity. Taken together, the findings of our in vitro and in vivo experiments indicate that AC can induce P-gp expression, and that co-administration of AC with P-gp substrate drugs may cause DDIs. Our findings have important implications for Aconitum therapy in clinics. PMID:27139035

  20. In vitro P-glycoprotein activity does not completely explain in vivo efficacy of novel centrally effective oxime acetylcholinesterase reactivators.

    PubMed

    Dail, Mary Beth; Meek, Edward Caldwell; Chambers, Howard Wayne; Chambers, Janice Elaine

    2018-05-03

    Novel-substituted phenoxyalkyl pyridinium oxime acetylcholinesterase (AChE) reactivators (US patent 9,227,937) that showed convincing evidence of penetration into the brains of intact rats were developed by our laboratories. The oximes separated into three groups based on their levels of brain AChE reactivation following exposure of rats to the sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP). P-glycoprotein (P-gp) is a major blood-brain barrier (BBB) transporter and requires ATP for efflux. To determine if P-gp affinity screening could be used to reduce animal use, we measured in vitro oxime-stimulated ATPase activity to see if the in vivo reactivation efficacies related to the oximes' functions as P-gp substrates. High efficacy oximes were expected to be poor P-gp substrates, thus remaining in the brain longer. The high efficacy oximes (24-35% brain AChE reactivation) were worse P-gp substrates than the low efficacy oximes (0-7% brain AChE reactivation). However, the oxime group with medium in vivo reactivation of 10-17% were even worse P-gp substrates than the high efficacy group so their reactivation ability was not reflected by P-gp export. The results suggest that in vitro P-gp ATPase activity can remove the low efficacy oximes from in vivo testing, but is not sufficient to differentiate between the top two tiers.

  1. Ketoconazole and the modulation of multidrug resistance-mediated transport in Caco-2 and MDCKII-MDR1 drug transport models.

    PubMed

    Fan, Y; Rodriguez-Proteau, R

    2008-02-01

    The hypothesis tested was that ketoconazole can modulate P-glycoprotein, thereby altering cellular uptake and apparent permeability (P(app)) of multidrug-resistant substrates, such as cyclosporin A (CSA) and digoxin, across Caco-2, MDCKII-MDR1, and MDCKII wild-type cell transport models. (3)H-CSA/(3)H-digoxin transport experiments were performed with and without co-exposure to ketoconazole, and (3)H-ketoconzole transport experiments were performed with and without co-exposure to dietary flavonoids, epigallocatechin-3-gallate, and xanthohumol. Ketoconazole (3 microM) reduced the P(app) efflux of CSA and digoxin from 5.07 x 10(-6) to 2.91 x 10(-6) cm s(-1) and from 2.60 x 10(-6) to 1.41 x 10(-6) cm s(-1), respectively, in Caco-2 cells. In the MDCKII-MDR1 cells, ketoconazole reduced the P(app) efflux of CSA and increased the P(app) absorption of digoxin. Cellular uptake of ketoconazole in the Caco-2 cells was significantly inhibited by CSA and digoxin, whereas epigallocatechin-3-gallate and xanthohumol exhibited biphasic responses. In conclusion, ketoconazole modulates the P(app) of P-glycoprotein substrates by interacting with MDR1 protein. Epigallocatechin-3-gallate and xanthohumol modulate the transport and uptake of ketoconazole.

  2. Chiral Thioxanthones as Modulators of P-glycoprotein: Synthesis and Enantioselectivity Studies.

    PubMed

    Lopes, Ana; Martins, Eva; Silva, Renata; Pinto, Madalena M M; Remião, Fernando; Sousa, Emília; Fernandes, Carla

    2018-03-10

    Recently, thioxanthone derivatives were found to protect cells against toxic P-glycoprotein (P-gp) substrates, acting as potent inducers/activators of this efflux pump. The study of new P-gp chiral modulators produced from thioxanthone derivatives could clarify the enantioselectivity of this ABC transporter towards this new class of modulators. The aim of this study was to evaluate the P-gp modulatory ability of four enantiomeric pairs of new synthesized chiral aminated thioxanthones (ATxs) 1 - 8 , studying the influence of the stereochemistry on P-gp induction/ activation in cultured Caco-2 cells. The data displayed that all the tested compounds (at 20 μM) significantly decreased the intracellular accumulation of a P-gp fluorescent substrate (rhodamine 123) when incubated simultaneously for 60 min, demonstrating an increased activity of the efflux, when compared to control cells. Additionally, all of them except ATx 3 (+), caused similar results when the accumulation of the P-gp fluorescent substrate was evaluated after pre-incubating cells with the test compounds for 24 h, significantly reducing the rhodamine 123 intracellular accumulation as a result of a significant increase in P-gp activity. However, ATx 2 (-) was the only derivative that, after 24 h of incubation, significantly increased P-gp expression. These results demonstrated a significantly increased P-gp activity, even without an increase in P-gp expression. Therefore, ATxs 1 - 8 were shown to behave as P-gp activators. Furthermore, no significant differences were detected in the activity of the protein when comparing the enantiomeric pairs. Nevertheless, ATx 2 (-) modulates P-gp expression differently from its enantiomer, ATx 1 (+). These results disclosed new activators and inducers of P-gp and highlight the existence of enantioselectivity in the induction mechanism.

  3. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance.

    PubMed

    Seebacher, Nicole; Lane, Darius J R; Richardson, Des R; Jansson, Patric J

    2016-07-01

    Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. ABC Transporters and Isothiocyanates: Potential for Pharmacokinetic Diet–Drug Interactions

    PubMed Central

    Telang, Urvi; Ji, Yan; Morris, Marilyn E.

    2013-01-01

    Isothiocyanates, a class of anti-cancer agents, are derived from cruciferous vegetables such as broccoli, cabbage and watercress, and have demonstrated chemopreventive activity in a number of cancer models and epidemiologic studies. Due to public interest in cancer prevention and alternative therapies in cancer, the consumption of herbal supplements and vegetables containing these compounds is widespread and increasing. Isothiocyanates interact with ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, MRP1, MRP2 and BCRP, and may influence the pharmacokinetics of substrates of these transporters. This review discusses the pharmacokinetic properties of isothiocyanates, their interactions with ABC transporters, and presents some data describing the potential for isothiocyanate-mediated diet–drug interactions. PMID:19623673

  5. Fluoroquinolone (ciprofloxacin) secretion by human intestinal epithelial (Caco-2) cells

    PubMed Central

    Cavet, M E; West, M; Simmons, N L

    1997-01-01

    Human intestinal epithelial Caco-2 cells were used to investigate the mechanistic basis of transepithelial secretion of the fluoroquinolone antibiotic ciprofloxacin. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to competitive inhibition by sulphate, thiosulphate, oxalate, succinate and para-amino hippurate, probenecid (10 mM), taurocholate (100 μM) or bromosulphophthalein (100 μM). Similarly tetraethylammonium and N-′methylnicotinamide (10 mM) were without effect. Net secretion of ciprofloxacin was inhibited by the organic exchange inhibitor 4,4′-diisothiocyanostilbene-2-2′-disulphonic acid (DIDS, 400 μM). Net secretion of ciprofloxacin was partially inhibited by 100 μM verapamil, whilst net secretion of the P-glycoprotein substrate vinblastine was totally abolished under these conditions. Ciprofloxacin secretion was unaltered after preincubation of cells with two anti-P-glycoprotein antibodies (UIC2 and MRK16), which both significantly reduced secretory vinblastine flux (measured in the same cell batch). Ciprofloxacin (3 mM) failed to inhibit vinblastine net secretion in Caco-2 epithelia, and was not itself secreted by the P-glycoprotein expressing and vinblastine secreting dog kidney cell line, MDCK. Net secretion and cellular uptake of ciprofloxacin (at 0.1 mM) were not subject to alterations of either cytosolic or medium pH, or dependent on the presence of medium Na+, Cl− or K+ in the bathing media. The substrate specificity of the ciprofloxacin secretory transport in Caco-2 epithelia is distinct from both the renal organic anion and cation transport. A role for P-glycoprotein in ciprofloxacin secretion may also be excluded. A novel transport mechanism, sensitive to both DIDS and verapamil mediates secretion of ciprofloxacin by human intestinal Caco-2 epithelia. PMID:9283689

  6. Analgesic effects of glycoproteins from Panax ginseng root in mice.

    PubMed

    Wang, Ying; Chen, Yinghong; Xu, Hong; Luo, Haoming; Jiang, Ruizhi

    2013-07-30

    The root of Panax ginseng C.A. Mey has various beneficial pharmacological effects. The present study aimed to evaluate the analgesic activities of glycoproteins from the root of Panax ginseng C.A. Mey in mice. Glycoproteins were isolated and purified from the root of Panax ginseng C.A. Mey. Physicochemical properties and molecular mass were determined by chemical assay and HPLC. Acetic acid-induced writhing and hot-plate tests were employed to study the analgesic effect of glycoproteins and compared with that of aspirin or morphine. The locomotor activity was tested in mice by using actophometer. Four glycoproteins were obtained. The glycoproteins which protein content was the highest (73.04%) displayed dose-dependent analgesic effect. In writhing test, the glycoproteins significantly inhibited writhes (P<0.001) at the dose of 20 mg/kg by intraperitoneal injection. In hot-plate test, only at the dose of 20 mg/kg prolong the hot-plate latency (P<0.05, at 30 min). In the locomotor activity test, the glycoproteins were significant decrease of motility counts at the dose of 20 and 40 mg/kg. These findings collectively indicate that the glycoproteins from the root of Panax ginseng C.A. Mey exhibited significant analgesic activities and the proteins were the active site, providing evidence for its pharmacal use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Inhibition of Glutathione Peroxidase Mediates the Collateral Sensitivity of Multidrug-resistant Cells to Tiopronin*

    PubMed Central

    Hall, Matthew D.; Marshall, Travis S.; Kwit, Alexandra D. T.; Miller Jenkins, Lisa M.; Dulcey, Andrés E.; Madigan, James P.; Pluchino, Kristen M.; Goldsborough, Andrew S.; Brimacombe, Kyle R.; Griffiths, Gary L.; Gottesman, Michael M.

    2014-01-01

    Multidrug resistance (MDR) is a major obstacle to the successful chemotherapy of cancer. MDR is often the result of overexpression of ATP-binding cassette transporters following chemotherapy. A common ATP-binding cassette transporter that is overexpressed in MDR cancer cells is P-glycoprotein, which actively effluxes drugs against a concentration gradient, producing an MDR phenotype. Collateral sensitivity (CS), a phenomenon of drug hypersensitivity, is defined as the ability of certain compounds to selectively target MDR cells, but not the drug-sensitive parent cells from which they were derived. The drug tiopronin has been previously shown to elicit CS. However, unlike other CS agents, the mechanism of action was not dependent on the expression of P-glycoprotein in MDR cells. We have determined that the CS activity of tiopronin is mediated by the generation of reactive oxygen species (ROS) and that CS can be reversed by a variety of ROS-scavenging compounds. Specifically, selective toxicity of tiopronin toward MDR cells is achieved by inhibition of glutathione peroxidase (GPx), and the mode of inhibition of GPx1 by tiopronin is shown in this report. Why MDR cells are particularly sensitive to ROS is discussed, as is the difficulty in exploiting this hypersensitivity to tiopronin in the clinic. PMID:24930045

  8. Multidrug efflux pumps: the structures of prokaryotic ATP-binding cassette transporter efflux pumps and implications for our understanding of eukaryotic P-glycoproteins and homologues.

    PubMed

    Kerr, Ian D; Jones, Peter M; George, Anthony M

    2010-02-01

    One of the Holy Grails of ATP-binding cassette transporter research is a structural understanding of drug binding and transport in a eukaryotic multidrug resistance pump. These transporters are front-line mediators of drug resistance in cancers and represent an important therapeutic target in future chemotherapy. Although there has been intensive biochemical research into the human multidrug pumps, their 3D structure at atomic resolution remains unknown. The recent determination of the structure of a mouse P-glycoprotein at subatomic resolution is complemented by structures for a number of prokaryotic homologues. These structures have provided advances into our knowledge of the ATP-binding cassette exporter structure and mechanism, and have provided the template data for a number of homology modelling studies designed to reconcile biochemical data on these clinically important proteins.

  9. Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines.

    PubMed

    Ceballos, María Paula; Decándido, Giulia; Quiroga, Ariel Darío; Comanzo, Carla Gabriela; Livore, Verónica Inés; Lorenzetti, Florencia; Lambertucci, Flavia; Chazarreta-Cifre, Lorena; Banchio, Claudia; Alvarez, María de Luján; Mottino, Aldo Domingo; Carrillo, María Cristina

    2018-06-01

    Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Fitting the Elementary Rate Constants of the P-gp Transporter Network in the hMDR1-MDCK Confluent Cell Monolayer Using a Particle Swarm Algorithm

    PubMed Central

    Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe

    2011-01-01

    P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID:22028772

  11. Treatment strategy based on targeting P-glycoprotein on peripheral lymphocytes in patients with systemic autoimmune disease.

    PubMed

    Tsujimura, Shizuyo; Tanaka, Yoshiya

    2012-02-01

    Although corticosteroids, immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) are widely used in the treatment of various systemic autoimmune diseases such as systemic lupus erythematosus (SLE), we often experience patients with systemic autoimmune diseases who are resistant to these treatments. P-glycoprotein (P-gp) of membrane transporters, a product of the multiple drug resistance (MDR)-1 gene, is known to play a pivotal role in the acquisition of drug resistance to chemotherapy in malignancy. However, the relevance of MDR-1 and P-gp to resting and activated lymphocytes, which are the major target in the treatment of systemic autoimmune diseases, remains unclear. Studies from our laboratories found surface expression of P-gp on peripheral lymphocytes in patients with SLE and a significant correlation between the expression level and disease activity. Such expression is induced not only by genotoxic stresses but also by various stimuli including cytokines, resulting in active efflux of drugs from the cytoplasm of lymphocytes, resulting in drug-resistance and high disease activity. However, the use of both P-gp antagonists (e.g., cyclosporine) and inhibition of P-gp synthesis with intensive immunosuppressive therapy successfully reduces the efflux of corticosteroids from lymphocytes in vitro, suggesting that P-gp antagonists and P-gp synthesis inhibitors could be used to overcome drug-resistance in vivo and improve outcome. In conclusion, lymphocytes activated by various stimuli in patients with highly active disease apparently acquire MDR-1-mediated multidrug resistance against corticosteroids and probably some DMARDs, which are substrates of P-gp. Inhibition/reduction of P-gp could overcome such drug resistance. The expression of P-gp on lymphocytes is a promising marker of drug resistance and a suitable target to combat drug resistance in patients with active systemic autoimmune diseases.

  12. P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery.

    PubMed

    Davis, Thomas P; Sanchez-Covarubias, Lucy; Tome, Margaret E

    2014-01-01

    The primary function of the blood-brain barrier (BBB)/neurovascular unit is to protect the central nervous system (CNS) from potentially harmful xenobiotic substances and maintain CNS homeostasis. Restricted access to the CNS is maintained via a combination of tight junction proteins as well as a variety of efflux and influx transporters that limits the transcellular and paracellular movement of solutes. Of the transporters identified at the BBB, P-glycoprotein (P-gp) has emerged as the transporter that is the greatest obstacle to effective CNS drug delivery. In this chapter, we provide data to support intracellular protein trafficking of P-gp within cerebral capillary microvessels as a potential target for improved drug delivery. We show that pain-induced changes in P-gp trafficking are associated with changes in P-gp's association with caveolin-1, a key scaffolding/trafficking protein that colocalizes with P-gp at the luminal membrane of brain microvessels. Changes in colocalization with the phosphorylated and nonphosphorylated forms of caveolin-1, by pain, are accompanied by dynamic changes in the distribution, relocalization, and activation of P-gp "pools" between microvascular endothelial cell subcellular compartments. Since redox-sensitive processes may be involved in signaling disassembly of higher-order structures of P-gp, we feel that manipulating redox signaling, via specific protein targeting at the BBB, may protect disulfide bond integrity of P-gp reservoirs and control trafficking to the membrane surface, providing improved CNS drug delivery. The advantage of therapeutic drug "relocalization" of a protein is that the physiological impact can be modified, temporarily or long term, despite pathology-induced changes in gene transcription. © 2014 Elsevier Inc. All rights reserved.

  13. Intracellular localization of varicella-zoster virus ORF39 protein and its functional relationship to glycoprotein K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govero, Jennifer; Hall, Susan; Heineman, Thomas C.

    2007-02-20

    Varicella-zoster virus (VZV) encodes two multiply inserted membrane proteins, open reading frame (ORF) 39 protein (ORF39p) and glycoprotein K (gK). The HSV-1 homologs of these proteins are believed to act in conjunction with each other during viral egress and cell-cell fusion, and they directly influence each other's intracellular trafficking. However, ORF39p and VZV gK have received very limited study largely due to difficulties in producing antibodies to these highly hydrophobic proteins. To overcome this obstacle, we introduced epitope tags into both ORF39p and gK and examined their intracellular distributions in transfected and infected cells. Our data demonstrate that both ORF39pmore » and gK accumulate predominately in the ER of cultured cells when expressed in the absence of other VZV proteins or when coexpressed in isolation from other VZV proteins. Therefore, the transport of VZV ORF39p and gK does not exhibit the functional interdependence seen in their HSV-1 homologs. However, during infection, the primary distributions of ORF39p and gK shift from the ER to the Golgi, and they are also found in the plasma membrane indicating that their intracellular trafficking during infection depends on other VZV-encoded proteins. During infection, ORF39p and gK tightly colocalize with VZV envelope glycoproteins B, E and H; however, the coexpression of ORF39p or gK with other individual viral glycoproteins is insufficient to alter the transport of either ORF39p or gK.« less

  14. Polymethoxylated flavones and other phenolic derivates from citrus in their inhibitory effects on P-glycoprotein-mediated transport of talinolol in Caco-2 cells.

    PubMed

    Mertens-Talcott, Susanne U; De Castro, Whocely Victor; Manthey, John A; Derendorf, Hartmut; Butterweck, Veronika

    2007-04-04

    Many studies investigating drug interactions with citrus compounds focus on the major grapefruit furanocoumarins bergamottin, dihydroxybergamottin, and the flavonoid naringenin. This study evaluated the influence of polymethoxylated flavones (PMFs), tangeretin, nobiletin, 3,5,6,7,8,3,4'-heptamethoxyflavone, and sinensetin, as well as other minor occurring citrus phenols, hesperetin, limettin, 7-OH-coumarin, 7-geranyloxycoumarin, and eriodictyol, on P-glycoprotein-mediated transport of the beta-blocker talinolol using the Caco-2 cell monolayer model and was used to determine the structure-function aspects of the interaction. The transport of talinolol across Caco-2 cells monolayers was determined in the absence and presence of distinct concentrations of the calcium-channel blocker verapamil (a known inhibitor of P-glycoprotein) and citrus compounds. A sigmoid dose-response model was used to fit the data and to estimate the IC50 values of the potential inhibitors. Results from this study show that PMFs significantly decreased talinolol transport from the basolateral to apical side, where tangeretin had the lowest IC50 of 3.2 micromol/L, followed by nobiletin, heptamethoxyflavone, and sinensetin with IC50 values of 3.5, 3.8, and 3.9 micromol/L, respectively. However, the efficacy of the compounds did not appear to be dependent on the number of methoxy groups. Other citrus compounds did not have any significant effect on the transport of talinolol. This study suggests that PMFs have a high potential in the interaction with P-gp-mediated talinolol transport in Caco-2 cells. Based on their relatively low concentrations (< or =3 microg/mL) in citrus, the clinical relevance of these interactions needs to be further elucidated in in vivo studies.

  15. Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors

    NASA Astrophysics Data System (ADS)

    Tan, Wen; Mei, Hu; Chao, Li; Liu, Tengfei; Pan, Xianchao; Shu, Mao; Yang, Li

    2013-12-01

    P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter. The over expression of P-gp leads to the development of multidrug resistance (MDR), which is a major obstacle to effective treatment of cancer. Thus, designing effective P-gp inhibitors has an extremely important role in the overcoming MDR. In this paper, both ligand-based quantitative structure-activity relationship (QSAR) and receptor-based molecular docking are used to predict P-gp inhibitors. The results show that each method achieves good prediction performance. According to the results of tenfold cross-validation, an optimal linear SVM model with only three descriptors is established on 857 training samples, of which the overall accuracy (Acc), sensitivity, specificity, and Matthews correlation coefficient are 0.840, 0.873, 0.813, and 0.683, respectively. The SVM model is further validated by 418 test samples with the overall Acc of 0.868. Based on a homology model of human P-gp established, Surflex-dock is also performed to give binding free energy-based evaluations with the overall accuracies of 0.823 for the test set. Furthermore, a consensus evaluation is also performed by using these two methods. Both QSAR and molecular docking studies indicate that molecular volume, hydrophobicity and aromaticity are three dominant factors influencing the inhibitory activities.

  16. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less

  17. Cyclosporine-inhibitable Cerebral Drug Transport Does not Influence Clinical Methadone Pharmacodynamics

    PubMed Central

    Meissner, Konrad; Blood, Jane; Francis, Amber M.; Yermolenka, Viktar; Kharasch, Evan D.

    2015-01-01

    Background Interindividual variability and drug interaction studies suggest that blood-brain barrier drug transporters mediate human methadone brain biodistribution. In vitro and animal studies suggest that methadone is a substrate for the efflux transporter P-glycoprotein, and that P-glycoprotein-mediated transport influences brain access and pharmacologic effect. This investigation tested whether methadone is a transporter substrate in humans. Methods Healthy volunteers received oral (N=16) or IV (N=12) methadone in different crossover protocols after nothing (control) or the validated P-glycoprotein inhibitor cyclosporine (4.5 mg/kg orally twice daily for 4 days, or 5 mg/kg IV over 2 hr). Plasma and urine methadone and metabolite concentrations were measured by mass spectrometry. Methadone effects were measured by miosis and thermal analgesia (maximally tolerated temperature and verbal analog scale rating of discreet temperatures). Results Cyclosporine marginally but significantly decreased methadone plasma concentrations and apparent oral clearance, but had no effect on methadone renal clearance or on hepatic N-demethylation. Cyclosporine had no effect on miosis, or on R-methadone concentration-miosis relationships after either oral or IV methadone. Peak miosis was similar in controls and cyclosporine-treated subjects after oral methadone (1.4 ± 0.4 and 1.3 ± 0.5 mm/mg, respectively) and IV methadone (3.1 ± 1.0 and 3.2 ± 0.8 mm respectively). Methadone increased maximally tolerated temperature, but analgesia testing was confounded by cyclosporine-related pain. Conclusions Cyclosporine did not affect methadone pharmacodynamics. This result does not support a role for cyclosporine-inhibitable transporters mediating methadone brain access and biodistribution. PMID:25072223

  18. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance.

    PubMed

    Joshi, Anand A; Vaidya, Soniya S; St-Pierre, Marie V; Mikheev, Andrei M; Desino, Kelly E; Nyandege, Abner N; Audus, Kenneth L; Unadkat, Jashvant D; Gerk, Phillip M

    2016-12-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy.

  19. Placental ABC Transporters: Biological Impact and Pharmaceutical Significance

    PubMed Central

    Joshi, Anand A.; Vaidya, Soniya S.; St-Pierre, Marie V.; Mikheev, Andrei M.; Desino, Kelly E.; Nyandege, Abner N.; Audus, Kenneth L.; Unadkat, Jashvant D.; Gerk, Phillip M.

    2017-01-01

    The human placenta fulfills a variety of essential functions during prenatal life. Several ABC transporters are expressed in the human placenta, where they play a role in the transport of endogenous compounds and may protect the fetus from exogenous compounds such as therapeutic agents, drugs of abuse, and other xenobiotics. To date, considerable progress has been made toward understanding ABC transporters in the placenta. Recent studies on the expression and functional activities are discussed. This review discusses the placental expression and functional roles of several members of ABC transporter subfamilies B, C, and G including MDR1/P-glycoprotein, the MRPs, and BCRP, respectively. Since placental ABC transporters modulate fetal exposure to various compounds, an understanding of their functional and regulatory mechanisms will lead to more optimal medication use when necessary in pregnancy. PMID:27644937

  20. Reversion of multidrug resistance in the P-glycoprotein-positive human pancreatic cell line (EPP85-181RDB) by introduction of a hammerhead ribozyme.

    PubMed Central

    Holm, P. S.; Scanlon, K. J.; Dietel, M.

    1994-01-01

    A major problem in cytostatic treatment of many tumours is the development of multidrug resistance (MDR4). This is most often accompanied by the overexpression of a membrane transport protein, P-glycoprotein, and its encoding mRNA. In order to reverse the resistant phenotype in cell cultures, we constructed a specific hammerhead ribozyme possessing catalytic activity that cleaves the 3'-end of the GUC sequence in codon 880 of the mdr1 mRNA. We demonstrated that the constructed ribozyme is able to cleave a reduced substrate mdr1 mRNA at the GUC position under physiological conditions in a cell-free system. A DNA sequence encoding the ribozyme gene was then incorporated into a mammalian expression vector (pH beta APr-1 neo) and transfected into the human pancreatic carcinoma cell line EPP85-181RDB, which is resistant to daunorubicin and expresses the MDR phenotype. The expressed ribozyme decreased the level of mdr1 mRNA expression, inhibited the formation of P-glycoprotein and reduced the cell's resistance to daunorubicin dramatically; this means that the resistant cells were 1,600-fold more resistant than the parental cell line (EPP85-181P), whereas those cell clones that showed ribozyme expression were only 5.3-fold more resistant than the parental cell line. Images Figure 1 Figure 3 Figure 2 PMID:7914421

  1. Different regulation of P-glycoprotein function between Caco-2 and Caki-1 cells by ezrin, radixin and moesin proteins.

    PubMed

    Yano, Kentaro; Otsuka, Kyoma; Kato, Yuko; Kawabata, Hideaki; Ohmori, Shinya; Arakawa, Hiroshi; Ogihara, Takuo

    2016-03-01

    P-glycoprotein (P-gp) mediates efflux of many xenobiotics, including therapeutic drugs, from normal and tumour tissues, and its functional localization on the plasma membrane of cells is regulated by scaffold proteins, such as ezrin, radixin and moesin (ERM proteins). We previously reported that radixin is involved in post-translational regulation of P-gp in hepatocellular carcinoma HepG2 cells and mouse small intestine, but not in mouse kidney. Here, we investigated whether the role of ERM proteins in regulation of P-gp transport activity in cancers is the same as that in the corresponding normal tissues, using human colon adenocarcinoma (Caco-2) cells and renal carcinoma (Caki-1) cells. In Caco-2 cells, radixin silencing alone reduced the P-gp-mediated intracellular accumulation of rhodamine123 (Rho123), while the mRNA level of P-gp was unchanged. Thus, it appears that only radixin among the ERMs regulates P-gp activity in Caco-2 cells. On the other hand, none of the ERM proteins influenced P-gp activity in Caki-1 cells. The regulation of P-gp by ERM proteins is different between Caco-2 and Caki-1 cells. Moreover, these regulatory properties are the same as those of the corresponding normal tissues, and suggest that tissue-specific differences in the regulation of P-gp by ERM proteins are retained in cancerous tissues. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.

  2. TTI-237: a novel microtubule-active compound with in vivo antitumor activity.

    PubMed

    Beyer, Carl F; Zhang, Nan; Hernandez, Richard; Vitale, Danielle; Lucas, Judy; Nguyen, Thai; Discafani, Carolyn; Ayral-Kaloustian, Semiramis; Gibbons, James J

    2008-04-01

    5-Chloro-6-[2,6-difluoro-4-[3-(methylamino)propoxy]phenyl]-N-[(1S)-2,2,2-trifluoro-1-methylethyl]-[1,2,4]triazolo[1,5-a]pyrimidin-7-amine butanedioate (TTI-237) is a microtubule-active compound of novel structure and function. Structurally, it is one of a class of compounds, triazolo[1,5a]pyrimidines, previously not known to bind to tubulin. Functionally, TTI-237 inhibited the binding of [(3)H]vinblastine to tubulin, but it caused a marked increase in turbidity development that more closely resembled the effect observed with docetaxel than that observed with vincristine. The morphologic character of the presumptive polymer is unknown at present. When applied to cultured human tumor cells at concentrations near its IC(50) value for cytotoxicity (34 nmol/L), TTI-237 induced multiple spindle poles and multinuclear cells, as did paclitaxel, but not vincristine or colchicine. Flow cytometry experiments revealed that, at low concentrations (20-40 nmol/L), TTI-237 produced sub-G(1) nuclei and, at concentrations above 50 nmol/L, it caused a strong G(2)-M block. The compound was a weak substrate of multidrug resistance 1 (multidrug resistance transporter or P-glycoprotein). In a cell line expressing a high level of P-glycoprotein, the IC(50) of TTI-237 increased 25-fold whereas those of paclitaxel and vincristine increased 806-fold and 925-fold, respectively. TTI-237 was not recognized by the MRP or MXR transporters. TTI-237 was active in vivo in several nude mouse xenograft models of human cancer, including LoVo human colon carcinoma and U87-MG human glioblastoma, when dosed i.v. or p.o. Thus, TTI-237 has a set of properties that distinguish it from other classes of microtubule-active compounds.

  3. Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure

    PubMed Central

    Nicklisch, Sascha C. T.; Rees, Steven D.; McGrath, Aaron P.; Gökirmak, Tufan; Bonito, Lindsay T.; Vermeer, Lydia M.; Cregger, Cristina; Loewen, Greg; Sandin, Stuart; Chang, Geoffrey; Hamdoun, Amro

    2016-01-01

    The world’s oceans are a global reservoir of persistent organic pollutants to which humans and other animals are exposed. Although it is well known that these pollutants are potentially hazardous to human and environmental health, their impacts remain incompletely understood. We examined how persistent organic pollutants interact with the drug efflux transporter P-glycoprotein (P-gp), an evolutionarily conserved defense protein that is essential for protection against environmental toxicants. We identified specific congeners of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers that inhibit mouse and human P-gp, and determined their environmental levels in yellowfin tuna from the Gulf of Mexico. In addition, we solved the cocrystal structure of P-gp bound to one of these inhibitory pollutants, PBDE (polybrominated diphenyl ether)–100, providing the first view of pollutant binding to a drug transporter. The results demonstrate the potential for specific binding and inhibition of mammalian P-gp by ubiquitous congeners of persistent organic pollutants present in fish and other foods, and argue for further consideration of transporter inhibition in the assessment of the risk of exposure to these chemicals. PMID:27152359

  4. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    PubMed

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions. 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular level of ATP and HK-II bioactivity, the inhibition of ATPase activity, and the slight decrease in P-glycoprotein expression in MCF-7/ADR cells.

  5. The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

    PubMed Central

    Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer’s instructions. Results 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. Conclusion We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular level of ATP and HK-II bioactivity, the inhibition of ATPase activity, and the slight decrease in P-glycoprotein expression in MCF-7/ADR cells. PMID:25372840

  6. Multiple Drug Transport Pathways through human P-Glycoprotein(†)

    PubMed Central

    McCormick, James W.; Vogel, Pia D.; Wise, John G.

    2015-01-01

    P-glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11 to 12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methyl-pyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar is presented that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp. PMID:26125482

  7. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    PubMed

    McCormick, James W; Vogel, Pia D; Wise, John G

    2015-07-21

    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  8. Jatrophane diterpenoids from Euphorbia sororia as potent modulators against P-glycoprotein-based multidrug resistance.

    PubMed

    Hu, Rui; Gao, Jie; Rozimamat, Rushangul; Aisa, Haji Akber

    2018-02-25

    Five new (1-5) and ten known (6-15) jatrophane diterpenoids were isolated from the fructus of Euphorbia sororia and their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of compounds 1 and 4 were confirmed by X-ray crystallographic analysis. Cytotoxicity and anti-multidrug resistance effects of these jatrophane diterpenoids were evaluated in multidrug-resistant MCF-7/ADR breast cancer cells with an overexpression of P-glycoprotein (P-gp). Eight compounds (1, 2, 4, 6, 8, 10, 11, and 15) showed promising chemoreversal abilities compared to verapamil (VRP). The most potent compound, Euphosorophane A (1), possessed many advantages, including (1) high potency (EC 50  = 92.68 ± 18.28 nM) in reversing P-gp-mediated resistance to doxorubicin (DOX), low cytotoxicity, and a high therapeutic index, (2) potency in reversing resistance to other cytotoxic agents associated with MDR, and (3) inhibition of P-gp-mediated Rhodamine123 (Rh123) efflux function in MCF-7/ADR cells. The results of the Western blot analysis indicated that the multidrug resistance (MDR) reversal induced by 1 was not due to the inhibiton of P-gp expression. Compound 1 stimulated P-gp-ATPase activity and caused the dose-dependent inhibition of DOX transport activity. Lineweaver-Burk and Dixon plots implied that 1 was a competitive inhibitor to DOX in the binding site of P-gp with a Ki of 0.49-0.50 μM. Our data suggested that 1 had a high binding affinity toward the DOX recognition site of P-gp. This resulted in inhibiting DOX transport, increasing intracellular DOX concentration, and finally resensitizing MCF-7/ADR to DOX. In addition, we discussed some added contents in the structure-activity relationship (SAR) of jatrophane diterpenoids. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Interaction of BDE-47 and its Hydroxylated Metabolite 6-OH-BDE-47 with the Human ABC Efflux Transporters P-gp and BCRP: Considerations for Human Exposure and Risk Assessment

    EPA Science Inventory

    ATP binding cassette (ABC) transporters, including P-glycoprotein (P-gp; also known as MDR1, ABCB1) and breast cancer resistance protein (BCRP; also known as ABCG2), are membrane-bound proteins that mediate the cellular efflux of xenobiotics as an important defense against chemic...

  10. The Effect of Chronic Renal Failure on Drug Metabolism and Transport

    PubMed Central

    Dreisbach, Albert W; Lertora, Juan JL

    2009-01-01

    Background Chronic renal failure (CRF) has been shown to significantly reduce the nonrenal clearance and alter bioavailability of drugs predominantly metabolized by the liver and intestine. Objectives The purpose of this article is to review all significant animal and clinical studies dealing with the effect of CRF on drug metabolism and transport. Methods The National Library of Medicine PubMed was utilized with the search terms ‘chronic renal failure, cytochrome P450, liver metabolism, efflux drug transport and uptake transport’ including relevant articles back to 1969. Results Animal studies in CRF have shown a major downregulation (40-85%) of hepatic and intestinal cytochrome P450 (CYP) metabolism. High levels of parathyroid hormone, cytokines, and uremic toxins have been shown to reduce CYP activity. Phase II reactions and drug transporters such as P-glycoprotein (Pgp) and organic anion transporting polypeptide (OATP) are also affected. Conclusion CRF alters intestinal, renal, and hepatic drug metabolism and transport producing a clinically significant impact on drug disposition and increasing the risk for adverse drug reactions. PMID:18680441

  11. P-Glycoprotein in skin contributes to transdermal absorption of topical corticosteroids.

    PubMed

    Hashimoto, Naoto; Nakamichi, Noritaka; Yamazaki, Erina; Oikawa, Masashi; Masuo, Yusuke; Schinkel, Alfred H; Kato, Yukio

    2017-04-15

    ATP binding cassette transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed in skin, but their involvement in transdermal absorption of clinically used drugs remains unknown. Here, we examined their role in transdermal absorption of corticosteroids. Skin and plasma concentrations of dexamethasone after dermal application were reduced in P-gp and BCRP triple-knockout (Mdr1a/1b/Bcrp -/- ) mice. The skin concentration in Mdr1a/1b/Bcrp -/- mice was reduced in the dermis, but not in the epidermis, indicating that functional expression of these transporters in skin is compartmentalized. Involvement of these transporters in dermal transport of dexamethasone was also supported by the observation of a higher epidermal concentration in Mdr1a/1b/Bcrp -/- than wild-type mice during intravenous infusion. Transdermal absorption after dermal application of prednisolone, but not methylprednisolone or ethinyl estradiol, was also lower in Mdr1a/1b/Bcrp -/- than in wild-type mice. Transport studies in epithelial cell lines transfected with P-gp or BCRP showed that dexamethasone and prednisolone are substrates of P-gp, but are minimally transported by BCRP. Thus, our findings suggest that P-gp is involved in transdermal absorption of at least some corticosteroids in vivo. P-gp might be available as a target for inhibition in order to deliver topically applied drugs and cosmetics in a manner that minimizes systemic exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?

    PubMed

    Callaghan, Richard; Luk, Frederick; Bebawy, Mary

    2014-04-01

    P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.

  13. ¹⁸FDG a PET tumor diagnostic tracer is not a substrate of the ABC transporter P-glycoprotein.

    PubMed

    Krasznai, Zoárd T; Trencsényi, György; Krasznai, Zoltán; Mikecz, Pál; Nizsalóczki, Enikő; Szalóki, Gábor; Szabó, Judit P; Balkay, László; Márián, Teréz; Goda, Katalin

    2014-11-20

    2-[(18)F]fluoro-2-deoxy-d-glucose ((18)FDG) is a tumor diagnostic radiotracer of great importance in both diagnosing primary and metastatic tumors and in monitoring the efficacy of the treatment. P-glycoprotein (Pgp) is an active transporter that is often expressed in various malignancies either intrinsically or appears later upon disease progression or in response to chemotherapy. Several authors reported that the accumulation of (18)FDG in P-glycoprotein (Pgp) expressing cancer cells (Pgp(+)) and tumors is different from the accumulation of the tracer in Pgp nonexpressing (Pgp(-)) ones, therefore we investigated whether (18)FDG is a substrate or modulator of Pgp pump. Rhodamine 123 (R123) accumulation experiments and ATPase assay were used to detect whether (18)FDG is substrate for Pgp. The accumulation and efflux kinetics of (18)FDG were examined in two different human gynecologic (A2780/A2780AD and KB-3-1/KB-V1) and a mouse fibroblast (3T3 and 3T3MDR1) Pgp(+) and Pgp(-) cancer cell line pairs both in cell suspension and monolayer cultures. We found that (18)FDG and its derivatives did not affect either the R123 accumulation in Pgp(+) cells or the basal and the substrate stimulated ATPase activity of Pgp supporting that they are not substrates or modulators of the pump. Measuring the accumulation and efflux kinetics of (18)FDG in different Pgp(+) and Pgp(-) cell line pairs, we have found that the Pgp(+) cells exhibited significantly higher (p⩽0.01) (18)FDG accumulation and slightly faster (18)FDG efflux kinetics compared to their Pgp(-) counterparts. The above data support the idea that expression of Pgp may increase the energy demand of cells resulting in higher (18)FDG accumulation and faster efflux. We concluded that (18)FDG and its metabolites are not substrates of Pgp. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. P-glycoprotein in autoimmune rheumatic diseases.

    PubMed

    García-Carrasco, M; Mendoza-Pinto, C; Macias Díaz, S; Vera-Recabarren, M; Vázquez de Lara, L; Méndez Martínez, S; Soto-Santillán, P; González-Ramírez, R; Ruiz-Arguelles, A

    2015-07-01

    P-glycoprotein (Pgp) is a transmembrane protein of 170 kD encoded by the multidrug resistance 1 (MDR-1) gene, localized on chromosome 7. More than 50 polymorphisms of the MDR-1 gene have been described; a subset of these has been shown to play a pathophysiological role in the development of inflammatory bowel disease, femoral head osteonecrosis induced by steroids, lung cancer and renal epithelial tumors. Polymorphisms that have a protective effect on the development of conditions such as Parkinson disease have also been identified. P-glycoprotein belongs to the adenosine triphosphate binding cassette transporter superfamily and its structure comprises a chain of approximately 1280 aminoacid residues with an N-C terminal structure, arranged as 2 homologous halves, each of which has 6 transmembrane segments, with a total of 12 segments with 2 cytoplasmic nucleotide binding domains. Many cytokines like interleukin 2 and tumor necrosis factor alpha increase Pgp expression and activity. Pgp functions as an efflux pump for a variety of toxins in order to protect particular organs and tissues as the central nervous system. Pgp transports a variety of substrates including glucocorticoids while other drugs such as tacrolimus and cyclosporine A act as modulators of this protein. The most widely used method to measure Pgp activity is flow cytometry using naturally fluorescent substrates such as anthracyclines or rhodamine 123. The study of drug resistance and its association to Pgp began with the study of resistance to chemotherapy in the treatment of cancer and antiretroviral therapy for human immunodeficiency virus; however, the role of Pgp in the treatment of systemic lupus erythematosus, rheumatoid arthritis and psoriatic arthritis has been a focus of study lately and has emerged as an important mechanism by which treatment failure occurs. The present review analyzes the role of Pgp in these autoimmune diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cross-functioning between the extraneuronal monoamine transporter and multidrug resistance protein 1 in the uptake of adrenaline and export of 5-(glutathion-S-yl)adrenaline in rat cardiomyocytes.

    PubMed

    Costa, Vera Marisa; Ferreira, Lusa Maria; Branco, Paula Srio; Carvalho, Flix; Bastos, Maria Lourdes; Carvalho, Rui Albuquerque; Carvalho, Mrcia; Remio, Fernando

    2009-01-01

    Isolated heart cells are highly susceptible to the toxicity of catecholamine oxidation products, namely, to catecholamine-glutathione adducts. Although cellular uptake and/or efflux of these products may constitute a crucial step, the knowledge about the involvement of transporters is still very scarce. This work aimed to contribute to the characterization of membrane transport mechanisms, namely, extraneuronal monoamine transporter (EMT), the multidrug resistant protein 1 (MRP1), and P-glycoprotein (P-gp) in freshly isolated cardiomyocytes from adult rats. These transporters may be accountable for uptake and/or efflux of adrenaline and an adrenaline oxidation product, 5-(glutathion-S-yl)adrenaline, in cardiomyocyte suspensions. Our results showed that 5-(glutathion-S-yl)adrenaline efflux was mediated by MRP1. Additionally, we demonstrated that the adduct formation occurs within the cardiomyocytes, since EMT inhibition reduced the intracellular adduct levels. The classical uptake2 transport in rat myocardial cells was inhibited by the typical EMT inhibitor, corticosterone, and surprisingly was also inhibited by low concentrations of another drug, a well-known P-gp inhibitor, GF120918. The P-gp activity was absent in the cells since P-gp-mediated efflux of quinidine was not blocked by GF120918. In conclusion, this work showed that freshly isolated cardiomyocytes from adult rats constitute a good model for the study of catecholamines and catecholamines metabolites membrane transport. The cardiomyocytes maintain EMT and MRP1 fully active, and these transporters contribute to the formation and efflux of 5-(glutathion-S-yl)adrenaline. In the present experimental conditions, P-gp activity is absent in the isolated cardiomyocytes.

  16. Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level.

    PubMed

    Choi, Min-Koo; Song, Im-Sook

    2016-03-01

    This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2-75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.

  17. Blockade of P-Glycoprotein Decreased the Disposition of Phenformin and Increased Plasma Lactate Level

    PubMed Central

    Choi, Min-Koo; Song, Im-Sook

    2016-01-01

    This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2–75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level. PMID:26797108

  18. Saint John's wort: An in vitro analysis of P-glycoprotein induction due to extended exposure

    PubMed Central

    Perloff, Michael D; von Moltke, Lisa L; Störmer, Elke; Shader, Richard I; Greenblatt, David J

    2001-01-01

    Chronic use of Saint John's wort (SJW) has been shown to lower the bioavailability for a variety of co-administered drugs including indinavir, cyclosporin, and digoxin. Decreases in intestinal absorption through induction of the multidrug resistance transporter, P-glycoprotein (P-gp), may explain decreased bioavailability. The present study characterized the response of P-gp to chronic and acute exposure of SJW and hypericin (HYP, a presumed active moiety within SJW) in an in vitro system. Experiments were performed with 3 to 300 μg ml−1 of methanol-extracted SJW and 0.03 to 3 μM HYP, representing low to high estimates of intestinal concentrations. In induction experiments, LS-180 intestinal carcinoma cells were exposed for 3 days to SJW, HYP, vehicle or a positive control (ritonavir). P-gp was quantified using Western blot analysis. P-gp expression was strongly induced by SJW (400% increase at 300 μg ml−1) and by HYP (700% at 3 μM) in a dose-dependent fashion. Cells chronically treated with SJW had decreased accumulation of rhodamine 123, a P-gp substrate, that was reversed with acute verapamil, a P-gp inhibitor. Fluorescence microscopy of intact cells validated these findings. In Caco-2 cell monolayers, SJW and HYP caused moderate inhibition of P-gp-attributed transport at the maximum concentrations tested. SJW and HYP significantly induced P-gp expression at low, clinically relevant concentrations. Similar effects occurring in vivo may explain the decreased bioavailability of P-gp substrate drugs when co-administered with SJW. PMID:11739235

  19. Effect of bisphenol A on drug efflux in BeWo, a human trophoblast-like cell line.

    PubMed

    Jin, H; Audus, K L

    2005-04-01

    Bisphenol A (BPA) is a monomer of polycarbonate plastics that has estrogenic activities and has been shown to be a substrate for multidrug resistant efflux mechanisms, specifically, P-glycoprotein. Since the natural hormone estrogen reverses multidrug resistance in some cell types, we hypothesized that BPA might have a similar activity in trophoblasts. We have used BeWo cells as an in vitro model for human trophoblasts and calcein AM as a substrate for drug efflux mechanism to characterize BPA interactions with placental P-glycoprotein. We found that chronic exposure of BeWo cells to BPA did not alter intracellular calcein accumulation in a fashion that would be reflective of changes in P-glycoprotein expression. Immunoblots affirmed that BPA had small effects on P-glycoprotein expression. However, BeWo cells acutely exposed to BPA pretreatment were observed to have a significantly decreased calcein accumulation. Addition of cyclosporin A, a P-glycoprotein inhibitor and substrate, completely reversed BPA's effects on calcein accumulation and resulted in a net increase, relative to controls, in calcein accumulation by the BeWo cells. BPA was found not to stimulate P-gp ATPase or alter intracellular esterases mediating calcein release from calcein AM. Therefore, our results suggested that BPA stimulated drug efflux by BeWo cells probably by direct effects on P-glycoprotein.

  20. LysoTracker and MitoTracker Red are transport substrates of P-glycoprotein: implications for anticancer drug design evading multidrug resistance.

    PubMed

    Zhitomirsky, Benny; Farber, Hodaya; Assaraf, Yehuda G

    2018-04-01

    LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP-driven efflux transporter P-glycoprotein (P-gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above-mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P-gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P-gp-overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P-gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P-gp transport substrates, and therefore, P-gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P-gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P-gp-overexpressing cells may facilitate the identification of potent P-gp transport inhibitors (i.e. chemosensitizers). © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Rhodamine Inhibitors of P-glycoprotein: An Amide/Thioamide “Switch” for ATPase Activity

    PubMed Central

    Gannon, Michael K.; Holt, Jason J.; Bennett, Stephanie M.; Wetzel, Bryan R.; Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.; Sawada, Geri A.; Higgins, J. William; Tombline, Gregory; Raub, Thomas J.; Detty, Michael R.

    2012-01-01

    We have examined 46 tetramethylrosamine/rhodamine derivatives with structural diversity in the heteroatom of the xanthylium core, the amino substituents of the 3- and 6-positions, and the alkyl, aryl, or heteroaryl group at the 9-substituent. These compounds were examined for affinity and ATPase stimulation in isolated MDR3 CL P-gp and human P-gp-His10, for their ability to promote uptake of calcein AM and vinblastine in multidrug-resistant MDCKII-MDR1 cells, and for transport in monolayers of MDCKII-MDR1 cells. Thioamide 31-S gave KM of 0.087 μM in human P-gp. Small changes in structure among this set of compounds affected affinity as well as transport rate (or flux) even though all derivatives examined were substrates for P-gp. With isolated protein, tertiary amide groups dictate high affinity and high stimulation while tertiary thioamide groups give high affinity and inhibition of ATPase activity. In MDCKII-MDR1 cells, the tertiary thioamide-containing derivatives promote uptake of calcein AM and have very slow passive, absorptive, and secretory rates of transport relative to transport rates for tertiary amide-containing derivatives. Thioamide 31-S promoted uptake of calcein AM and inhibited efflux of vinblastine with IC50’s of ~2 μM in MDCKII-MDR1 cells. PMID:19402665

  2. Age-dependent changes at the blood-brain barrier. A Comparative structural and functional study in young adult and middle aged rats.

    PubMed

    Bors, Luca; Tóth, Kinga; Tóth, Estilla Zsófia; Bajza, Ágnes; Csorba, Attila; Szigeti, Krisztián; Máthé, Domokos; Perlaki, Gábor; Orsi, Gergely; Tóth, Gábor K; Erdő, Franciska

    2018-05-01

    Decreased beta-amyloid clearance in Alzheimer's disease and increased blood-brain barrier permeability in aged subjects have been reported in several articles. However, morphological and functional characterization of blood-brain barrier and its membrane transporter activity have not been described in physiological aging yet. The aim of our study was to explore the structural changes in the brain microvessels and possible functional alterations of P-glycoprotein at the blood-brain barrier with aging. Our approach included MR imaging for anatomical orientation in middle aged rats, electronmicroscopy and immunohistochemistry to analyse the alterations at cellular level, dual or triple-probe microdialysis and SPECT to test P-glycoprotein functionality in young and middle aged rats. Our results indicate that the thickness of basal lamina increases, the number of tight junctions decreases and the size of astrocyte endfeet extends with advanced age. On the basis of microdialysis and SPECT results the P-gp function is reduced in old rats. With our multiparametric approach a complex regulation can be suggested which includes elements leading to increased permeability of blood-brain barrier by enhanced paracellular and transcellular transport, and factors working against it. To verify the role of P-gp pumps in brain aging further studies are warranted. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Digoxin net secretory transport in bronchial epithelial cell layers is not exclusively mediated by P-glycoprotein/MDR1.

    PubMed

    Hutter, Victoria; Chau, David Y S; Hilgendorf, Constanze; Brown, Alan; Cooper, Anne; Zann, Vanessa; Pritchard, David I; Bosquillon, Cynthia

    2014-01-01

    The impact of P-glycoprotein (MDR1, ABCB1) on drug disposition in the lungs as well as its presence and activity in in vitro respiratory drug absorption models remain controversial to date. Hence, we characterised MDR1 expression and the bidirectional transport of the common MDR1 probe (3)H-digoxin in air-liquid interfaced (ALI) layers of normal human bronchial epithelial (NHBE) cells and of the Calu-3 bronchial epithelial cell line at different passage numbers. Madin-Darby Canine Kidney (MDCKII) cells transfected with the human MDR1 were used as positive controls. (3)H-digoxin efflux ratio (ER) was low and highly variable in NHBE layers. In contrast, ER=11.4 or 3.0 were measured in Calu-3 layers at a low or high passage number, respectively. These were, however, in contradiction with increased MDR1 protein levels observed upon passaging. Furthermore, ATP depletion and the two MDR1 inhibitory antibodies MRK16 and UIC2 had no or only a marginal impact on (3)H-digoxin net secretory transport in the cell line. Our data do not support an exclusive role of MDR1 in (3)H-digoxin apparent efflux in ALI Calu-3 layers and suggest the participation of an ATP-independent carrier. Identification of this transporter might provide a better understanding of drug distribution in the lungs. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Reliability of in vitro and in vivo methods for predicting P-glycoprotein effect on antidepressants delivery to the brain

    PubMed Central

    Zheng, Yi; Chen, Xijing; Benet, Leslie Z.

    2017-01-01

    As P-glycoprotein (P-gp) transport on antidepressant delivery has been extensively evaluated using in vitro cellular and in vivo rodent models, an increasing number of publications addressed the effect of P-gp in limiting brain penetration of antidepressants and causing treatment-resistant depression in current clinical therapies. However, contradictory results were observed in different systems. It is of vital importance to understand the potential for drug interactions related to P-gp at the blood-brain barrier (BBB), and whether co-administration of a P-gp inhibitor together with an antidepressant is a good clinical strategy for dosing of patients with treatment-resistant depression. In this review, the complicated construction of the BBB, the transport mechanisms for compounds that cross the BBB, and the basic characteristics of antidepressants are illustrated. Further, the reliability of different systems related to antidepressant brain delivery, including in vitro bidirectional transport cell lines, in vivo Mdr1 knock-out mice, and chemical inhibition studies in rodents are analyzed, supporting a low possibility that P-gp affects currently marketed antidepressants when these results are extrapolated to human BBB. These findings can also be applied to other central nervous system drugs. PMID:26293617

  5. Evaluation of Memory Enhancing Clinically Available Standardized Extract of Bacopa monniera on P-Glycoprotein and Cytochrome P450 3A in Sprague-Dawley Rats

    PubMed Central

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp. PMID:24015255

  6. Evaluation of memory enhancing clinically available standardized extract of Bacopa monniera on P-glycoprotein and cytochrome P450 3A in Sprague-Dawley rats.

    PubMed

    Singh, Rajbir; Panduri, Jagadeesh; Kumar, Devendra; Kumar, Deepak; Chandsana, Hardik; Ramakrishna, Rachumallu; Bhatta, Rabi Sankar

    2013-01-01

    Bacopa monniera is a traditional Ayurvedic herbal medicine used to treat various mental ailments from ancient times. Recently, chemically standardized alcoholic extract of Bacopa monniera (BM) has been developed and currently available as over the counter herbal remedy for memory enhancement in children and adults. However, the consumption of herbal drugs has been reported to alter the expression of drug metabolizing enzymes and membrane transporters. Present study in male Sprague-Dawley rat was performed to evaluate the effect of memory enhancing standardized extract of BM on hepatic and intestinal cytochrome P450 3A and P-glycoprotein expression and activity. The BM (31 mg/kg/day) was orally administered for one week in BM pre-treated group while the control group received the same amount of vehicle for the same time period. The BM treatment decreased the cytochrome P450 3A (CYP3A) mediated testosterone 6β-hydroxylation activity of the liver and intestine by 2 and 1.5 fold, respectively compared to vehicle treated control. Similarly pretreatment with BM extract decreased the expression of intestinal P-glycoprotein (Pgp) as confirmed by Western blot analysis but did not alter the expression of hepatic Pgp. To investigate whether this BM pretreatment mediated decrease in activity of CYP3A and Pgp would account for the alteration of respective substrate or not, pharmacokinetic study with carbamazepine and digoxin was performed in BM pre-treated rats and vehicle treated rats. Carbamazepine and digoxin were used as CYP3A and Pgp probe drugs, respectively. Significant increase in AUC and Cmax of carbamazepine (4 and 1.8 fold) and digoxin (1.3 and 1.2 fold), respectively following the BM pre-treatment confirmed the down regulation of CYP3A and Pgp.

  7. Intestinal Transport Characteristics and Metabolism of C-Glucosyl Dihydrochalcone, Aspalathin.

    PubMed

    Bowles, Sandra; Joubert, Elizabeth; de Beer, Dalene; Louw, Johan; Brunschwig, Christel; Njoroge, Mathew; Lawrence, Nina; Wiesner, Lubbe; Chibale, Kelly; Muller, Christo

    2017-03-30

    Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1-150 µM had an apparent rate of permeability (P app ) typical of poorly absorbed compounds (1.73 × 10 -6 cm/s). Major glucose transporters, sodium glucose linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), and efflux protein (P-glycoprotein, PgP) (1.84 × 10 -6 cm/s; efflux ratio: 1.1) were excluded as primary transporters, since the P app of aspalathin was not affected by the presence of specific inhibitors. The P app of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM), which decreased the P app value to 2.9 × 10 -7 cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated) were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly.

  8. Exposure of LS-180 Cells to Drugs of Diverse Physicochemical and Therapeutic Properties Up-regulates P-glycoprotein Expression and Activity

    PubMed Central

    Abuznait, Alaa H.; Patrick, Shawn G.; Kaddoumi, Amal

    2011-01-01

    Purpose Drug transporters are increasingly recognized as important determinants of variability in drug disposition and therapeutic response, both in pre-clinical and clinical stages of drug development process. The role P-glycoprotein (P-gp) plays in drug interactions via its inhibition is well established. However, much less knowledge is available about drugs effect on P-gp up-regulation. The objective of this work was to in vitro investigate and rank commonly used drugs according to their potencies to up-regulate P-gp activity utilizing the same experimental conditions. Methods The in vitro potencies of several drugs of diverse physicochemical and therapeutic properties including rifampicin, dexamethasone, caffeine, verapamil, pentylenetetrazole, hyperforin, and β-estradiol over broad concentration range to up-regulate P-gp expression and activity were examined. For dose-response studies, LS-180 cells were treated with different concentrations of the selected drugs followed by P-gp protein and gene expressions analyses. P-gp functionality was determined by uptake studies with rhodamine 123 as a P-gp substrate, followed by Emax/EC50 evaluation. Results The results demonstrated a dose-dependent increase in P-gp expression and activity following treatments. At 50 μM concentration (hyperforin, 0.1 μM), examined drugs increased P-gp protein and gene expressions by up to 5.5 and 6.2-fold, respectively, while enhanced P-gp activity by 1.8–4-fold. The rank order of these drugs potencies to up-regulate P-gp activity was as following: hyperforin ⋙ dexamethasone ≈ β-estradiol > caffeine > rifampicin ≈ pentylenetetrazole > verapamil. Conclusions These drugs have the potential to be involved in drug interactions when administered with other drugs that are P-gp substrates. Further studies are needed to in vivo evaluate these drugs and verify the consequences of such induction on P-gp activity for in vitro-in vivo correlation purposes. PMID:21733412

  9. Quantification and in situ localisation of abcb1 and abcc9genes in toxicant-exposed sea urchin embryos.

    PubMed

    Bošnjak, Ivana; Pleić, Ivana Lepen; Borra, Marco; Mladineo, Ivona

    2013-12-01

    A multixenobiotic resistance (MXR) mechanism mediated by ABC binding cassette (ABC) transport proteins is an efficient chemical defence mechanism in sea urchin embryos. The aim of our work was to evidence whether exposure to sub-lethal doses of specific contaminants (oxybenzone (OXI), mercuric chloride (HgCl2) and trybutiltin (TBT)) would induce MXR transporter activity during embryonic development (from zygote to blastula stage) in purple sea urchin (Paracentrotus lividus) embryos. Further, we present data on molecular identification, transport function, expression levels and gene localisation of two ABC efflux transporters-P-glycoprotein (ABCB1/P-gp) and sulfonylurea-receptor-like protein (ABCC9/SUR-like). Partial cDNA sequences of abcb1 and abcc9 were identified and quantitative PCR (qPCR) evidenced an increase in mRNA transcript levels of both ABC transporters during the two-cell, as well as an overall decrease during the blastulae stage. Calcein-AM efflux activity assay indicated the activation of multidrug resistance-associated protein/ABCC-like transport in the presence of HgCl2 and TBT in exposed blastulae. The in situ hybridisation of the two-cell and blastula stages showed ubiquitous localisation of both transcripts within cells, supporting qPCR data. In conclusion, ABCB1 and ABCC9 are constitutive, as are HgCl2, TBT and OXI-inducible ABC membrane transporters, coexpressed in the zygote, two-cell and blastula stages of the P. lividus. Their ubiquitous cell localisation further fortifies their protective role in early embryonic development.

  10. Multiple molecular mechanisms for multidrug resistance transporters.

    PubMed

    Higgins, Christopher F

    2007-04-12

    The acquisition of multidrug resistance is a serious impediment to improved healthcare. Multidrug resistance is most frequently due to active transporters that pump a broad spectrum of chemically distinct, cytotoxic molecules out of cells, including antibiotics, antimalarials, herbicides and cancer chemotherapeutics in humans. The paradigm multidrug transporter, mammalian P-glycoprotein, was identified 30 years ago. Nonetheless, success in overcoming or circumventing multidrug resistance in a clinical setting has been modest. Recent structural and biochemical data for several multidrug transporters now provide mechanistic insights into how they work. Organisms have evolved several elegant solutions to ridding the cell of such cytotoxic compounds. Answers are emerging to questions such as how multispecificity for different drugs is achieved, why multidrug resistance arises so readily, and what chance there is of devising a clinical solution.

  11. Triorganotin Derivatives Induce Cell Death Effects on L1210 Leukemia Cells at Submicromolar Concentrations Independently of P-glycoprotein Expression.

    PubMed

    Bohacova, Viera; Seres, Mario; Pavlikova, Lucia; Kontar, Szilvia; Cagala, Martin; Bobal, Pavel; Otevrel, Jan; Brtko, Julius; Sulova, Zdena; Breier, Albert

    2018-05-01

    The acceleration of drug efflux activity realized by plasma membrane transporters in neoplastic cells, particularly by P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family), represents a frequently observed molecular cause of multidrug resistance (MDR). This multiple resistance represents a real obstacle in the effective chemotherapy of neoplastic diseases. Therefore, identifying cytotoxic substances that are also effective in P-gp overexpressing cells may be useful for the rational design of substances for the treatment of malignancies with developed MDR. Here, we showed that triorganotin derivatives—tributyltin-chloride (TBT-Cl), tributyltin-bromide (TBT-Br), tributyltin-iodide (TBT-I) and tributyltin-isothiocyanate (TBT-NCS) or triphenyltin-chloride (TPT-Cl) and triphenyltin-isothiocyanate (TPT-NCS)—could induce the death of L1210 mice leukemia cells at a submicromolar concentration independently of P-gp overexpression. The median lethal concentration obtained for triorganotin derivatives did not exceed 0.5 µM in the induction of cell death of either P-gp negative or P-gp positive L1210 cells. Apoptosis related to regulatory pathway of Bcl-2 family proteins seems to be the predominant mode of cell death in either P-gp negative or P-gp positive L1210 cells. TBT-Cl and TBT-Br were more efficient with L1210 cells overexpressing P-gp than with their counterpart P-gp negative cells. In contrast, TBT-I and TPT-NCS induced a more pronounced cell death effect on P-gp negative cells than on P-gp positive cells. Triorganotin derivatives did not affect P-gp efflux in native cells measured by calcein retention within the cells. Taken together, we assumed that triorganotin derivatives represent substances suitable for suppressing the viability of P-gp positive malignant cells.

  12. Cytotoxicity of the indole alkaloid reserpine from Rauwolfia serpentina against drug-resistant tumor cells.

    PubMed

    Abdelfatah, Sara A A; Efferth, Thomas

    2015-02-15

    The antihypertensive reserpine is an indole alkaloid from Rauwolfia serpentina and exerts also profound activity against cancer cells in vitro and in vivo. The present investigation was undertaken to investigate possible modes of action to explain its activity toward drug-resistant tumor cells. Sensitive and drug-resistant tumor cell lines overexpressing P-glycoprotein (ABCB1/MDR1), breast cancer resistance protein (ABCG2/BCRP), mutation-activated epidermal growth factor receptor (EGFR), wild-type and p53-knockout cells as well as the NCI panel of cell lines from different tumor origin were analyzed. Reserpine's cytotoxicity was investigated by resazurin and sulforhodamine assays, flow cytometry, and COMPARE and hierarchical cluster analyses of transcriptome-wide microarray-based RNA expressions. P-glycoprotein- or BCRP overexpressing tumor cells did not reveal cross-resistance to reserpine. EGFR-overexpressing cells were collateral sensitive and p53- Knockout cells cross-resistant to this drug compared to their wild-type parental cell lines. Reserpine increased the uptake of doxorubicin in P-glycoprotein-overexpressing cells, indicating that reserpine inhibited the efflux function of P-glycoprotein. Using molecular docking, we found that reserpine bound with even higher binding energy to P-glycoprotein and EGFR than the control drugs verapamil (P-glycoprotein inhibitor) and erlotinib (EGFR inhibitor). COMPARE and cluster analyses of microarray data showed that the mRNA expression of a panel of genes predicted the sensitivity or resistance of the NCI tumor cell line panel with statistical significance. The genes belonged to diverse pathways and biological functions, e.g. cell survival and apoptosis, EGFR activation, regulation of angiogenesis, cell mobility, cell adhesion, immunological functions, mTOR signaling, and Wnt signaling. The lack of cross-resistance to most resistance mechanisms and the collateral sensitivity in EGFR-transfectants compared to wild-type cells speak for a promising role of reserpine in cancer chemotherapy. Reserpine deserves further consideration for cancer therapy in the clinical setting. Copyright © 2015 Elsevier GmbH. All rights reserved.

  13. Effects of nelfinavir and its M8 metabolite on lymphocyte P-glycoprotein activity during antiretroviral therapy.

    PubMed

    Donahue, John P; Dowdy, David; Ratnam, Krishna K; Hulgan, Todd; Price, James; Unutmaz, Derya; Nicotera, Janet; Raffanti, Steven; Becker, Mark; Haas, David W

    2003-01-01

    The efflux pump P-glycoprotein decreases drug penetration into cells and tissues. To determine whether nelfinavir or its metabolites inhibit P-glycoprotein in lymphocytes from a healthy volunteer, whole blood cells from human immunodeficiency virus-negative donors were incubated either in human plasma to which nelfinavir or its M8 metabolite were added ex vivo or in plasma from human immunodeficiency virus-positive patients receiving nelfinavir. The 50% P-glycoprotein inhibitory concentrations of purified nelfinavir and M8 were 10.9 micromol/L and 29.5 micromol/L, respectively, for CD4(+) T cells and 19.3 micromol/L and >48 micromol/L, respectively, for CD8(+) T cells. Significant inhibitory activity was present in plasma from 27 of 46 patients (59%) receiving nelfinavir. Plasma nelfinavir concentrations correlated with percent inhibition on CD4(+) (rho = 0.85, P <.0001) and CD8(+) (rho = 0.83, P <.0001) T cells. The M8 concentrations correlated weakly with both inhibition and nelfinavir concentrations. On the basis of our findings in lymphocytes from a healthy volunteer exposed to plasma from human immunodeficiency virus-positive patients, we believe it is likely that CD4(+) and CD8(+) lymphocytes in patients receiving nelfinavir as therapy for human immunodeficiency virus may have P-glycoprotein inhibited by plasma concentrations of nelfinavir.

  14. Identification of P-Glycoprotein and Transport Mechanism of Paclitaxel in Syncytiotrophoblast Cells

    PubMed Central

    Lee, Na-Young; Lee, Ha-Eun; Kang, Young-Sook

    2014-01-01

    When chemotherapy is administered during pregnancy, it is important to consider the fetus chemotherapy exposure, because it may lead to fetal consequences. Paclitaxel has become widely used in the metastatic and adjuvant settings for woman with cancer including breast and ovarian cancer. Therefore, we attempted to clarify the transport mechanisms of paclitaxel through blood-placenta barrier using rat conditionally immortalized syncytiotrophoblast cell lines (TR-TBTs). The uptake of paclitaxel was time- and temperature-dependent. Paclitaxel was eliminated about 50% from the cells within 30 min. The uptake of paclitaxel was saturable with Km of 168 μM and 371 μM in TR-TBT 18d-1 and TR-TBT 18d-2, respectively. [3H]Paclitaxel uptake was markedly inhibited by cyclosporine and verapamil, well-known substrates of P-glycoprotein (P-gp) transporter. However, several MRP substrates and organic anions had no effect on [3H]paclitaxel uptake in TR-TBT cells. These results suggest that P-gp may be involved in paclitaxel transport at the placenta. TR-TBT cells expressed mRNA of P-gp. These findings are important for therapy of breast and ovarian cancer of pregnant women, and should be useful data in elucidating teratogenicity of paclitaxel during pregnancy. PMID:24596624

  15. Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides.

    PubMed

    Aljancić, Ivana S; Pesić, Milica; Milosavljević, Slobodan M; Todorović, Nina M; Jadranin, Milka; Milosavljević, Goran; Povrenović, Dragan; Banković, Jasna; Tanić, Nikola; Marković, Ivanka D; Ruzdijić, Sabera; Vajs, Vlatka E; Tesević, Vele V

    2011-07-22

    From the Montenegrin spurge Euphorbia dendroides, seven new diterpenoids [jatrophanes (1-6) and a tigliane (7)] were isolated and their structures elucidated by spectroscopic techniques. The biological activity of the new compounds was studied against four human cancer cell lines. The most effective jatrophane-type compound (2) and its structurally closely related derivative (1) were evaluated for their interactions with paclitaxel and doxorubicin using a multi-drug-resistant cancer cell line. Both compounds exerted a strong reversal potential resulting from inhibition of P-glycoprotein transport.

  16. Natural Products based P-glycoprotein Activators for Improved β-amyloid Clearance in Alzheimer's Disease: An in silico Approach.

    PubMed

    Shinde, Pravin; Vidyasagar, Nikhil; Dhulap, Sivakami; Dhulap, Abhijeet; Hirwani, Raj

    2015-01-01

    Alzheimer's disease is an age related disorder and is defined to be progressive, irreversible neurodegenerative disease. The potential targets which are associated with the Alzheimer's disease are cholinesterases, N-methyl-D-aspartate receptor, Beta secretase 1, Pregnane X receptor (PXR) and P-glycoprotein (Pgp). P-glycoprotein is a member of the ATP binding cassette (ABC) transporter family, which is an important integral of the blood-brain, blood-cerebrospinal fluid and the blood-testis barrier. Reports from the literature provide evidences that the up-regulation of the efflux pump is liable for a decrease in β -amyloid intracellular accumulation and is an important hallmark in Alzheimer's disease (AD). Thus, targeting β-amyloid clearance by stimulating Pgp could be a useful strategy to prevent Alzheimer's advancement. Currently available drugs provide limited effectiveness and do not assure to cure Alzheimer's disease completely. On the other hand, the current research is now directed towards the development of synthetic or natural based therapeutics which can delay the onset or progression of Alzheimer's disease. Since ancient time medicinal plants such as Withania somnifera, Bacopa monieri, Nerium indicum have been used to prevent neurological disorders including Alzheimer's disease. Till today around 125 Indian medicinal plants have been screened on the basis of ethnopharmacology for their activity against neurological disorders. In this paper, we report bioactives from natural sources which show binding affinity towards the Pgp receptor using ligand based pharmacophore development, virtual screening, molecular docking and molecular dynamics simulation studies for the bioactives possessing acceptable ADME properties. These bioactives can thus be useful to treat Alzheimer's disease.

  17. The Interactions of P-Glycoprotein with Antimalarial Drugs, Including Substrate Affinity, Inhibition and Regulation

    PubMed Central

    Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew

    2016-01-01

    The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516

  18. Activation of P-glycoprotein and CYP 3A by Coptidis Rhizoma in vivo: Using cyclosporine as a probe substrate in rats.

    PubMed

    Yu, Chung-Ping; Huang, Ching-Ya; Lin, Shiuan-Pey; Hou, Yu-Chi

    2018-04-01

    Coptidis Rhizoma (CR), the rhizome of Coptis chinensis FRANCH, is a popular Chinese herb. CR contains plenty of isoquinoline alkaloids such as berberine, coptisine and palmatine. Cyclosporine (CSP), an important immunosuppressant with narrow therapeutic window, is employed as a probe substrate of P-glycoprotein (P-gp) and CYP3A4 in order to investigate the in vivo modulation effect of CR on P-gp and CYP3A4. Three groups of rats were orally administered CSP without and with single dose or repeated dosing of CR in a parallel design. Blood samples were collected at specific time points and the blood CSP concentration was determined by a specific monoclonal fluorescence polarization immunoassay. The results showed that a single dose (1.0 g/kg) and the 7th dose (1.0 g/kg) of CR significantly decreased the C max of CSP by 56.9% and 70.4%, and reduced the AUC 0-540 by 56.4% and 68.7%, respectively. Cell study indicated that CR decoction, berberine, coptisine, palmatine all activated the efflux transport of P-gp. Ex-vivo study showed that the serum metabolites of CR activated CYP 3A4. In conclusion, through using CSP as an in vivo probe substrate, we have verified that oral intake of CR activated the functions of P-gp and CYP3A based on in vivo and in vitro studies. Copyright © 2017. Published by Elsevier B.V.

  19. P-Glycoprotein (ABCB1) limits the brain distribution of YQA-14, a novel dopamine D3 receptor antagonist.

    PubMed

    Liu, Fei; Wang, Xiaoqing; Li, Zheng; Li, Jin; Zhuang, Xiaomei; Zhang, Zhenqing

    2015-01-01

    YQA-14 is a promising agent for treating addiction to cocaine and opioids. However, previous studies have showed there is marked contrast between the relatively small differences in pharmacological action in vivo and the large differences in their respective receptor binding properties in vitro. We hypothesized that the conflict between the in vivo and in vitro outcomes was attributable to poor brain exposure to YQA-14 caused by drug efflux transporters. To address this issue, we investigated the directional flux of YQA-14 across Caco-2 cells at 37°C or 4°C and the bidirectional transport in the presence and absence of transporter chemical inhibitors. These phenomena were further investigated by an in vivo determination of the brain and blood pharmacokinetics (PK) profile of YQA-14 following intraperitoneal administration with and without inhibitor. The efflux ratio of YQA-14 on Caco-2 cell monolayers was 2.39 and the efflux was temperature-dependent. When co-incubated with GF120918 or LY335979, the efflux of YQA-14 was markedly decreased. However, there was no significant difference in the permeability of YQA-14 when the cells were treated with Ko143. In vivo experiments showed that the brain-to-plasma ratio increased by more than 75-fold and 20-fold with co-administration of GF120918 and LY335979, respectively. Use of Ko143 did not change the brain-to-blood ratio of YQA-14. The results indicate that the brain distribution of YQA-14 was restricted because of active efflux transport at the blood brain barrier. In addition, P-glycoprotein (P-gp) played a dominant role in limiting the distribution of YQA-14 to the brain.

  20. Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET.

    PubMed

    Bankstahl, Jens P; Kuntner, Claudia; Abrahim, Aiman; Karch, Rudolf; Stanek, Johann; Wanek, Thomas; Wadsak, Wolfgang; Kletter, Kurt; Müller, Markus; Löscher, Wolfgang; Langer, Oliver

    2008-08-01

    The multidrug efflux transporter P-glycoprotein (P-gp) is expressed in high concentrations at the blood-brain barrier (BBB) and is believed to be implicated in resistance to central nervous system drugs. We used small-animal PET and (R)-11C-verapamil together with tariquidar, a new-generation P-gp modulator, to study the functional activity of P-gp at the BBB of rats. To enable a comparison with human PET data, we performed kinetic modeling to estimate the rate constants of radiotracer transport across the rat BBB. A group of 7 Wistar Unilever rats underwent paired (R)-11C-verapamil PET scans at an interval of 3 h: 1 baseline scan and 1 scan after intravenous injection of tariquidar (15 mg/kg, n = 5) or vehicle (n = 2). After tariquidar administration, the distribution volume (DV) of (R)-11C-verapamil was 12-fold higher than baseline (3.68 +/- 0.81 vs. 0.30 +/- 0.08; P = 0.0007, paired t test), whereas the DVs were essentially the same when only vehicle was administered. The increase in DV could be attributed mainly to an increased influx rate constant (K1) of (R)-11C-verapamil into the brain, which was about 8-fold higher after tariquidar. A dose-response assessment with tariquidar provided an estimated half-maximum effect dose of 8.4 +/- 9.5 mg/kg. Our data demonstrate that (R)-11C-verapamil PET combined with tariquidar administration is a promising approach to measure P-gp function at the BBB.

  1. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-07-08

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  2. Golgi Glycosylation

    PubMed Central

    Stanley, Pamela

    2011-01-01

    Glycosylation is a very common modification of protein and lipid, and most glycosylation reactions occur in the Golgi. Although the transfer of initial sugar(s) to glycoproteins or glycolipids occurs in the ER or on the ER membrane, the subsequent addition of the many different sugars that make up a mature glycan is accomplished in the Golgi. Golgi membranes are studded with glycosyltransferases, glycosidases, and nucleotide sugar transporters arrayed in a generally ordered manner from the cis-Golgi to the trans-Golgi network (TGN), such that each activity is able to act on specific substrate(s) generated earlier in the pathway. The spectrum of glycosyltransferases and other activities that effect glycosylation may vary with cell type, and thus the final complement of glycans on glycoconjugates is variable. In addition, glycan synthesis is affected by Golgi pH, the integrity of Golgi peripheral membrane proteins, growth factor signaling, Golgi membrane dynamics, and cellular stress. Knowledge of Golgi glycosylation has fostered the development of assays to identify mechanisms of intracellular vesicular trafficking and facilitated glycosylation engineering of recombinant glycoproteins. PMID:21441588

  3. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Joanne; Agnihothram, Sudhakar S.; Romanowski, Victor

    2005-12-20

    The G2 fusion subunit of the Junin virus envelope glycoprotein GP-C contains two hydrophobic heptad-repeat regions that are postulated to form a six-helix bundle structure required for the membrane fusion activity of Class I viral fusion proteins. We have investigated the role of these heptad-repeat regions and, specifically, the importance of the putative interhelical a and d position sidechains by using alanine-scanning mutagenesis. All the mutant glycoproteins were expressed and transported to the cell surface. Proteolytic maturation at the subtilisin kexin isozyme-1/site-1-protease (SKI-1/S1P) cleavage site was observed in all but two of the mutants. Among the adequately cleaved mutant glycoproteins,more » four positions in the N-terminal region (I333, L336, L347 and L350) and two positions in the C-terminal region (R392 and W395) were shown to be important determinants of cell-cell fusion. Taken together, our results indicate that {alpha}-helical coiled-coil structures are likely critical in promoting arenavirus membrane fusion. These findings support the inclusion of the arenavirus GP-C among the Class I viral fusion proteins and suggest pharmacologic and immunologic strategies for targeting arenavirus infection and hemorrhagic fever.« less

  4. Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay

    PubMed Central

    Jouan, Elodie; Le Vée, Marc; Mayati, Abdullah; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier

    2016-01-01

    In vitro evaluation of P-glycoprotein (P-gp) inhibitory potential is now a regulatory issue during drug development, in order to predict clinical inhibition of P-gp and subsequent drug–drug interactions. Assays for this purpose, commonly based on P-gp-expressing cell lines and digoxin as a reference P-gp substrate probe, unfortunately exhibit high variability, raising thus the question of developing alternative or complementary tests for measuring inhibition of P-gp activity. In this context, the present study was designed to investigate the use of the fluorescent dye rhodamine 123 as a reference P-gp substrate probe for characterizing P-gp inhibitory potential of 16 structurally-unrelated drugs known to interact with P-gp. 14/16 of these P-gp inhibitors were found to increase rhodamine 123 accumulation in P-gp-overexpressing MCF7R cells, thus allowing the determination of their P-gp inhibitory potential, i.e., their half maximal inhibitor concentration (IC50) value towards P-gp-mediated transport of the dye. These IC50 values were in the range of variability of previously reported IC50 for P-gp and can be used for the prediction of clinical P-gp inhibition according to Food and Drug Administration (FDA) criteria, with notable sensitivity (80%). Therefore, the data demonstrated the feasibility of the use of rhodamine 123 for evaluating the P-gp inhibitory potential of drugs. PMID:27077878

  5. Expression and localization of p-glycoprotein, multidrug resistance protein 4, and breast cancer resistance protein in the female lower genital tract of human and pigtailed macaque.

    PubMed

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa

    2014-11-01

    Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.

  6. Involvement of P-glycoprotein and multidrug resistance associated protein 1 in the transport of tanshinone IIB, a primary active diterpenoid quinone from the roots of Salvia miltiorrhiza, across the blood-brain barrier.

    PubMed

    Zhou, Zhi-Wei; Chen, Xiao; Liang, Jun; Yu, Xi-Yong; Wen, Jing-Yuan; Zhou, Shu-Feng

    2007-08-01

    Tanshinone IIB (TSB) is a major constituent of Salvia miltiorrhiza, which is widely used in treatment of cardiovascular and central nervous system (CNS) diseases such as coronary heart disease and stroke. This study aimed to investigate the role of various drug transporters in the brain penetration of TSB using several in vitro and in vivo mouse and rat models. The uptake and efflux of TSB in rat primary microvascular endothelial cells (RBMVECs) were ATP-dependent and significantly altered in the presence of a P-glycoprotein (P-gp) or multidrug resistance associated protein (Mrp1/2) inhibitor. A polarized transport of TSB was found in RBMVEC monolayers with facilitated efflux from the abluminal to luminal side. Addition of a P-gp inhibitor (e.g. verapamil) in both abluminal and luminal sides attenuated the polarized transport. In an in situ rat brain perfusion model, TSB crossed the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier at a greater rate than that for sucrose, and the brain penetration was increased in the presence of a P-gp or Mrp1/2 inhibitor. The brain levels of TSB were only about 30% of that in the plasma and it could be increased to up to 72% of plasma levels when verapamil, quinidine, or probenecid was co-administered in rats. The entry of TSB to CNS increased by 67-97% in rats subjected to middle cerebral artery occlusion or treatment with the neurotoxin, quinolinic acid, compared to normal rats. Furthermore, The brain levels of TSB in mdr1a(-/-) and mrp1(-/-) mice were 28- to 2.6-fold higher than those in the wild-type mice. TSB has limited brain penetration through the BBB due to the contribution of P-gp and to a lesser extent of Mrp1 in rodents. Further studies are needed to confirm whether these corresponding transporters in humans are involved in limiting the penetration of TSB across the BBB and the clinical relevance.

  7. Transport governs flow-enhanced cell tethering through L-selectin at threshold shear.

    PubMed

    Yago, Tadayuki; Zarnitsyna, Veronika I; Klopocki, Arkadiusz G; McEver, Rodger P; Zhu, Cheng

    2007-01-01

    Flow-enhanced cell adhesion is a counterintuitive phenomenon that has been observed in several biological systems. Flow augments L-selectin-dependent adhesion by increasing the initial tethering of leukocytes to vascular surfaces and by strengthening their subsequent rolling interactions. Tethering or rolling might be influenced by physical factors that affect the formation or dissociation of selectin-ligand bonds. We recently demonstrated that flow enhanced rolling of L-selectin-bearing microspheres or neutrophils on P-selectin glycoprotein ligand-1 by force decreased bond dissociation. Here, we show that flow augmented tethering of these microspheres or cells to P-selectin glycoprotein ligand-1 by three transport mechanisms that increased bond formation: sliding of the sphere bottom on the surface, Brownian motion, and molecular diffusion. These results elucidate the mechanisms for flow-enhanced tethering through L-selectin.

  8. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    PubMed

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Evaluation of the first cytostatically active 1-aza-9-oxafluorenes as novel selective CDK1 inhibitors with P-glycoprotein modulating properties.

    PubMed

    Brachwitz, Kristin; Voigt, Burkhardt; Meijer, Laurent; Lozach, Olivier; Schächtele, Christoph; Molnár, Josef; Hilgeroth, Andreas

    2003-02-27

    The first series of synthetic 1-aza-9-oxafluorenes with cytostatic activities in the micromolar range was evaluated as cyclin-dependent kinase (CDK1) inhibitors. Activity was found to be selective in comparison to the inhibition of other kinases within the CDK family. Compounds were shown to inhibit the membrane-efflux pump P-glycoprotein responsible for multidrug resistance in cancer cells. First structure-activity relationships are discussed.

  10. ATP-binding cassette exporters: structure and mechanism with a focus on P-glycoprotein and MRP1.

    PubMed

    Arana, Maite Rocío; Altenberg, Guillermo

    2017-10-12

    The majority of proteins that belong to the ATP-binding cassette (ABC) superfamily are transporters that mediate the efflux of substrates from cells. These exporters include multidrug resistance proteins of the ABCB and ABCC subfamilies, such as P-glycoprotein (Pgp) and MRP1, respectively. These proteins are not only involved in the resistance of cancer to cytotoxic agents, but also in the protection from endo and xenobiotics, and the determination of drug pharmacokinetics, as well as in the pathophysiology of a variety of disorders. Here, we present a review of the information available on ABC exporters, with a focus on Pgp, MRP1 and related proteins. We describe tissue localization and function of these transporters in health and disease, and discuss the mechanisms of substrate transport. We also correlate recent structural information with the function of the exporters, and discuss details of their molecular mechanism with a focus on the nucleotide-binding domains. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Role of Carbohydrate in Glycoprotein Traffic and Secretion

    DTIC Science & Technology

    1988-01-01

    synthesized in normal amounts but accumu- lated intracellularly, with transport to the cell surface being greatly de - layed. Glycoprotein E2 isolated from...UNcLA ,F E 2 Role of Carbohydrate in Glycoprotein Traffic and Secretion JAMES B. PARENT I. Introduction I!. Evidence for Intracellular Transport Signals...Ill. Oligosaccharide Biosynthesis IV. Role of Carbohydrate in Protein Solubility. Structure, and Stability V. Evidence for Carbohydrate Transport

  12. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  13. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    PubMed Central

    2012-01-01

    Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma. PMID:22475227

  14. Structures of the carbohydrate recognition domain of Ca2+-independent cargo receptors Emp46p and Emp47p.

    PubMed

    Satoh, Tadashi; Sato, Ken; Kanoh, Akira; Yamashita, Katsuko; Yamada, Yusuke; Igarashi, Noriyuki; Kato, Ryuichi; Nakano, Akihiko; Wakatsuki, Soichi

    2006-04-14

    Emp46p and Emp47p are type I membrane proteins, which cycle between the endoplasmic reticulum (ER) and the Golgi apparatus by vesicles coated with coat protein complexes I and II (COPI and COPII). They are considered to function as cargo receptors for exporting N-linked glycoproteins from the ER. We have determined crystal structures of the carbohydrate recognition domains (CRDs) of Emp46p and Emp47p of Saccharomyces cerevisiae, in the absence and presence of metal ions. Both proteins fold as a beta-sandwich, and resemble that of the mammalian ortholog, p58/ERGIC-53. However, the nature of metal binding is distinct from that of Ca(2+)-dependent p58/ERGIC-53. Interestingly, the CRD of Emp46p does not bind Ca(2+) ion but instead binds K(+) ion at the edge of a concave beta-sheet whose position is distinct from the corresponding site of the Ca(2+) ion in p58/ERGIC-53. Binding of K(+) ion to Emp46p appears essential for transport of a subset of glycoproteins because the Y131F mutant of Emp46p, which cannot bind K(+) ion fails to rescue the transport in disruptants of EMP46 and EMP47 genes. In contrast the CRD of Emp47p binds no metal ions at all. Furthermore, the CRD of Emp46p binds to glycoproteins carrying high mannosetype glycans and the is promoted by binding not the addition of Ca(2+) or K(+) ion in These results suggest that Emp46p can be regarded as a Ca(2+)-independent intracellular lectin at the ER exit sites.

  15. The effect of polyoxyethylene polymers on the transport of ranitidine in Caco-2 cell monolayers.

    PubMed

    Ashiru-Oredope, Diane A I; Patel, Nilesh; Forbes, Ben; Patel, Rajesh; Basit, Abdul W

    2011-05-16

    Previous in vivo studies using PEG 400 showed an enhancement in the bioavailability of ranitidine. This study investigated the effect of PEG 200, 300 and 400 on ranitidine transport across Caco-2 cells. The effect of PEG polymers (20%, v/v) on the bi-directional flux of (3)H-ranitidine across Caco-2 cell monolayers was measured. The concentration dependence of PEG 400 effects on ranitidine transport was also studied. A specific screen for P-glycoprotein (P-gp) activity was used to test for an interaction between PEG and P-gp. In the absence of PEG, ranitidine transport showed over 5-fold greater flux across Caco-2 monolayers in the secretory than the absorptive direction; efflux ratio 5.38. PEG 300 and 400 significantly reduced this efflux ratio (p<0.05), whereas PEG 200 had no effect (p>0.05). In concordance, PEG 300 and 400 showed an interaction with the P-gp transporter, whereas PEG 200 did not. Interestingly, with PEG 400 a non-linear concentration dependence was seen for the inhibition of the efflux ratio of ranitidine, with a maxima at 1%, v/v (p<0.05). The inhibition of ranitidine efflux by PEG 300 and 400 which interact with P-gp provides a mechanism that may account for the observations of ranitidine absorption enhancement by PEG 400 in vivo. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Opioid transport by ATP-binding cassette transporters at the blood-brain barrier: implications for neuropsychopharmacology.

    PubMed

    Tournier, Nicolas; Declèves, Xavier; Saubaméa, Bruno; Scherrmann, Jean-Michel; Cisternino, Salvatore

    2011-01-01

    Some of the ATP-binding cassette (ABC) transporters like P-glycoprotein (P-gp; ABCB1, MDR1), BCRP (ABCG2) and MRPs (ABCCs) that are present at the blood-brain barrier (BBB) influence the brain pharmacokinetics (PK) of their substrates by restricting their uptake or enhancing their clearance from the brain into the blood, which has consequences for their CNS pharmacodynamics (PD). Opioid drugs have been invaluable tools for understanding the PK-PD relationships of these ABC-transporters. The effects of morphine, methadone and loperamide on the CNS are modulated by P-gp. This review examines the ways in which other opioid drugs and some of their active metabolites interact with ABC transporters and suggests new mechanisms that may be involved in the variability of the response of the CNS to these drugs like carrier-mediated system belonging to the solute carrier (SLC) superfamily. Exposure to opioids may also alter the expression of ABC transporters. P-gp can be overproduced during morphine treatment, suggesting that the drug has a direct or, more likely, an indirect action. Variations in cerebral neurotransmitters during exposure to opioids and the release of cytokines during pain could be new endogenous stimuli affecting transporter synthesis. This review concludes with an analysis of the pharmacotherapeutic and clinical impacts of the interactions between ABC transporters and opioids.

  17. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity.

    PubMed

    Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.

  18. In vitro Effects of Four Native Brazilian Medicinal Plants in CYP3A4 mRNA Gene Expression, Glutathione Levels, and P-Glycoprotein Activity

    PubMed Central

    Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.

    2016-01-01

    Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838

  19. An in vitro evaluation of cytochrome P450 inhibition and P-glycoprotein interaction with goldenseal, Ginkgo biloba, grape seed, milk thistle, and ginseng extracts and their constituents.

    PubMed

    Etheridge, Amy S; Black, Sherry R; Patel, Purvi R; So, James; Mathews, James M

    2007-07-01

    Drug-herb interactions can result from the modulation of the activities of cytochrome P450 (P450) and/or drug transporters. The effect of extracts and individual constituents of goldenseal, Ginkgo biloba (and its hydrolyzate), grape seed, milk thistle, and ginseng on the activities of cytochrome P450 enzymes CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 in human liver microsomes were determined using enzyme-selective probe substrates, and their effect on human P-glycoprotein (Pgp) was determined using a baculovirus expression system by measuring the verapamil-stimulated, vanadate-sensitive ATPase activity. Extracts were analyzed by HPLC to standardize their concentration(s) of constituents associated with the pharmacological activity, and to allow comparison of their effects on P450 and Pgp with literature values. Many of the extracts/constituents exerted > or = 50 % inhibition of P450 activity. These include those from goldenseal (normalized to alkaloid content) inhibiting CYP2C8, CYP2D6, and CYP3A4 at 20 microM, ginkgo inhibiting CYP2C8 at 10 microM, grape seed inhibiting CYP2C9 and CYP3A4 at 10 microM, milk thistle inhibiting CYP2C8 at 10 microM, and ginsenosides F1 and Rh1 (but not ginseng extract) inhibiting CYP3A4 at 10 microM. Goldenseal extracts/constituents (20 microM, particularly hydrastine) and ginsenoside Rh1 stimulated ATPase at about half of the activity of the model substrate, verapamil (20 microM). The data suggest that the clearance of a variety of drugs may be diminished by concomitant use of these herbs via inhibition of P450 enzymes, but less so by Pgp-mediated effects.

  20. Co-assembly of Viral Envelope Glycoproteins Regulates Their Polarized Sorting in Neurons

    PubMed Central

    Mardones, Gonzalo A.; Bonifacino, Juan S.

    2014-01-01

    Newly synthesized envelope glycoproteins of neuroinvasive viruses can be sorted in a polarized manner to the somatodendritic and/or axonal domains of neurons. Although critical for transneuronal spread of viruses, the molecular determinants and interregulation of this process are largely unknown. We studied the polarized sorting of the attachment (NiV-G) and fusion (NiV-F) glycoproteins of Nipah virus (NiV), a paramyxovirus that causes fatal human encephalitis, in rat hippocampal neurons. When expressed individually, NiV-G exhibited a non-polarized distribution, whereas NiV-F was specifically sorted to the somatodendritic domain. Polarized sorting of NiV-F was dependent on interaction of tyrosine-based signals in its cytosolic tail with the clathrin adaptor complex AP-1. Co-expression of NiV-G with NiV-F abolished somatodendritic sorting of NiV-F due to incorporation of NiV-G•NiV-F complexes into axonal transport carriers. We propose that faster biosynthetic transport of unassembled NiV-F allows for its proteolytic activation in the somatodendritic domain prior to association with NiV-G and axonal delivery of NiV-G•NiV-F complexes. Our study reveals how interactions of viral glycoproteins with the host's transport machinery and between themselves regulate their polarized sorting in neurons. PMID:24831812

  1. Blood-brain barrier permeation and efflux exclusion of anticholinergics used in the treatment of overactive bladder.

    PubMed

    Chancellor, Michael B; Staskin, David R; Kay, Gary G; Sandage, Bobby W; Oefelein, Michael G; Tsao, Jack W

    2012-04-01

    Overactive bladder (OAB) is a common condition, particularly in the elderly. Anticholinergic agents are the mainstay of pharmacological treatment of OAB; however, many anticholinergics can cross the blood-brain barrier (BBB) and may cause central nervous system (CNS) effects, including cognitive deficits, which can be especially detrimental in older patients. Many anticholinergics have the potential to cause adverse CNS effects due to muscarinic (M(1)) receptor binding in the brain. Of note, permeability of the BBB increases with age and can also be affected by trauma, stress, and some diseases and medications. Passive crossing of a molecule across the BBB into the brain is dependent upon its physicochemical properties. Molecular characteristics that hinder passive BBB penetration include a large molecular size, positive or negative ionic charge at physiological pH, and a hydrophilic structure. Active transport across the BBB is dependent upon protein-mediated transporter systems, such as that of permeability-glycoprotein (P-gp), which occurs only for P-gp substrates, such as trospium chloride, darifenacin and fesoterodine. Reliance on active transport can be problematic since genetic polymorphisms of P-gp exist, and many commonly used drugs and even some foods are P-gp inhibitors or are substrates themselves and, due to competition, can reduce the amount of the drug that is actively transported out of the CNS. Therefore, for drugs that are preferred not to cross into the CNS, such as potent anticholinergics intended for the bladder, it is optimal to have minimal passive crossing of the BBB, although it may also be beneficial for the drug to be a substrate for an active efflux transport system. Anticholinergics demonstrate different propensities to cross the BBB. Darifenacin, fesoterodine and trospium chloride are substrates for P-gp and, therefore, are actively transported away from the brain. In addition, trospium chloride has not been detected in cerebrospinal fluid assays and does not appear to have significant CNS penetration. This article reviews the properties of anticholinergics that affect BBB penetration and active transport out of the CNS, discusses issues of increased BBB permeability in patients with OAB, and examines the clinical implications of BBB penetration on adverse events associated with anticholinergics.

  2. A novel individual-cell-based mathematical model based on multicellular tumour spheroids for evaluating doxorubicin-related delivery in avascular regions.

    PubMed

    Liu, Jiali; Yan, Fangrong; Chen, Hongzhu; Wang, Wenjie; Liu, Wenyue; Hao, Kun; Wang, Guangji; Zhou, Fang; Zhang, Jingwei

    2017-09-01

    Effective drug delivery in the avascular regions of tumours, which is crucial for the promising antitumour activity of doxorubicin-related therapy, is governed by two inseparable processes: intercellular diffusion and intracellular retention. To accurately evaluate doxorubicin-related delivery in the avascular regions, these two processes should be assessed together. Here we describe a new approach to such an assessment. An individual-cell-based mathematical model based on multicellular tumour spheroids was developed that describes the different intercellular diffusion and intracellular retention kinetics of doxorubicin in each cell layer. The different effects of a P-glycoprotein inhibitor (LY335979) and a hypoxia inhibitor (YC-1) were quantitatively evaluated and compared, in vitro (tumour spheroids) and in vivo (HepG2 tumours in mice). This approach was further tested by evaluating in these models, an experimental doxorubicin derivative, INNO 206, which is in Phase II clinical trials. Inhomogeneous, hypoxia-induced, P-glycoprotein expression compromised active transport of doxorubicin in the central area, that is, far from the vasculature. LY335979 inhibited efflux due to P-glycoprotein but limited levels of doxorubicin outside the inner cells, whereas YC-1 co-administration specifically increased doxorubicin accumulation in the inner cells without affecting the extracellular levels. INNO 206 exhibited a more effective distribution profile than doxorubicin. The individual-cell-based mathematical model accurately evaluated and predicted doxorubicin-related delivery and regulation in the avascular regions of tumours. The described framework provides a mechanistic basis for the proper development of doxorubicin-related drug co-administration profiles and nanoparticle development and could avoid unnecessary clinical trials. © 2017 The British Pharmacological Society.

  3. [In vitro absorption mechanism of strychnine and the transport interaction with liquiritin in Caco-2 cell monolayer model].

    PubMed

    Wang, Jun-jun; Liao, Xiao-huan; Ye, Min; Chen, Yong

    2010-09-01

    To study the effect of liquiritin (Liq) on the transport of strychnine (Str) in Caco-2 cell monolayer model, the transport parameters of Str, such as apparent permeability coefficient (P app (B-->A) and P app (A-->B)) and cumulative transport amount (TRcum), were determined and comparatively analyzed when Str was used solely and co-used with Liq. The effect of drug concentrations, conveying times, P-glycoprotein (P-gp) inhibitor verapamil and conveying liquor pH values on the transport of Str were also investigated. The results indicated that the absorption of Str in Caco-2 cell monolayer model was well and the passive transference was the main intestinal absorption mechanism of Str in the Caco-2 monolayer model, along with the excretion action mediated by P-gp. Liq enhanced the absorption of Str. Meanwhile, conveying liquor pH value had significant influence on the excretion transport of Str.

  4. Modulation of P-glycoprotein activity by novel synthetic curcumin derivatives in sensitive and multidrug-resistant T-cell acute lymphoblastic leukemia cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ooko, Edna

    Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC{sub 50} values and binding energies. Results: The compounds displayed IC{sub 50} values between 0.7more » ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing multidrug resistance (MDR) • Biological and Insilco assays to assess effect on P-glycoprotein (P-gp) • Curcumin synthetic derivatives as possible lead compound against multidrug resistant cancer.« less

  5. Relationship between structure and P-glycoprotein inhibitory activity of dimeric peptides related to the Dmt-Tic pharmacophore.

    PubMed

    Ambo, Akihiro; Ohkatsu, Hiromichi; Minamizawa, Motoko; Watanabe, Hideko; Sugawara, Shigeki; Nitta, Kazuo; Tsuda, Yuko; Okada, Yoshio; Sasaki, Yusuke

    2012-03-15

    To develop novel inhibitors of P-glycoprotein (P-gp), dimeric peptides related to an opioid peptide containing the Dmt-Tic pharmacophore were synthesized and their P-gp inhibitory activities were analyzed. Of the 30 analogs synthesized, N(α),N(ε)-[(CH(3))(2)Mle-Tic](2)Lys-NH(2) and its D-Lys analog were found to exhibit potent P-gp inhibitory activity, twice that of verapamil, in doxorubicin-resistant K562 cells. Structure-activity studies indicated that the correct hydrophobicity and spacer length between two aromatic rings are important structural elements in this series of analogs for inhibition of P-gp. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Comparison of In Vitro Assays in Selecting Radiotracers for In Vivo P-Glycoprotein PET Imaging

    PubMed Central

    Savolainen, Heli; Cantore, Mariangela; van de Steeg, Evita; Colabufo, Nicola A.; Elsinga, Philip H.; Windhorst, Albert D.

    2017-01-01

    Positron emission tomography (PET) imaging of P-glycoprotein (P-gp) in the blood-brain barrier can be important in neurological diseases where P-gp is affected, such as Alzheimer´s disease. Radiotracers used in the imaging studies are present at very small, nanomolar, concentration, whereas in vitro assays where these tracers are characterized, are usually performed at micromolar concentration, causing often discrepant in vivo and in vitro data. We had in vivo rodent PET data of [11C]verapamil, (R)-N-[18F]fluoroethylverapamil, (R)-O-[18F]fluoroethyl-norverapamil, [18F]MC225 and [18F]MC224 and we included also two new molecules [18F]MC198 and [18F]KE64 in this study. To improve the predictive value of in vitro assays, we labeled all the tracers with tritium and performed bidirectional substrate transport assay in MDCKII-MDR1 cells at three different concentrations (0.01, 1 and 50 µM) and also inhibition assay with P-gp inhibitors. As a comparison, we used non-radioactive molecules in transport assay in Caco-2 cells at a concentration of 10 µM and in calcein-AM inhibition assay in MDCKII-MDR1 cells. All the P-gp substrates were transported dose-dependently. At the highest concentration (50 µM), P-gp was saturated in a similar way as after treatment with P-gp inhibitors. Best in vivo correlation was obtained with the bidirectional transport assay at a concentration of 0.01 µM. One micromolar concentration in a transport assay or calcein-AM assay alone is not sufficient for correct in vivo prediction of substrate P-gp PET ligands. PMID:29036881

  7. Breast Cancer Resistance Protein and P-glycoprotein in Brain Cancer: Two Gatekeepers Team Up

    PubMed Central

    Agarwal, Sagar; Hartz, Anika M.S.; Elmquist, William F.; Bauer, Björn

    2012-01-01

    Brain cancer is a devastating disease. Despite extensive research, treatment of brain tumors has been largely ineffective and the diagnosis of brain cancer remains uniformly fatal. Failure of brain cancer treatment may be in part due to limitations in drug delivery, influenced by the ABC drug efflux transporters P-gp and BCRP at the blood-brain and blood-tumor barriers, in brain tumor cells, as well as in brain tumor stem-like cells. P-gp and BCRP limit various anti-cancer drugs from entering the brain and tumor tissues, thus rendering chemotherapy ineffective. To overcome this obstacle, two strategies – targeting transporter regulation and direct transporter inhibition – have been proposed. In this review, we focus on these strategies. We first introduce the latest findings on signaling pathways that could potentially be targeted to down-regulate P-gp and BCRP expression and/or transport activity. We then highlight in detail the new paradigm of P-gp and BCRP working as a “cooperative team of gatekeepers” at the blood-brain barrier, discuss its ramifications for brain cancer therapy, and summarize the latest findings on dual P-gp/BCRP inhibitors. Finally, we provide a brief summary with conclusions and outline the perspectives for future research endeavors in this field. PMID:21827403

  8. Pregnane X Receptor and P-glycoprotein: a connexion for Alzheimer's disease management.

    PubMed

    Jain, Sumit; Rathod, Vijay; Prajapati, Rameshwar; Nandekar, Prajwal P; Sangamwar, Abhay T

    2014-11-01

    The translational failure between preclinical animal models and clinical outcome has alarmed us to search for a new strategy in the treatment of Alzheimer's disease (AD). Interlink between Pregnane X Receptor (PXR) and P-glycoprotein (Pgp) at the blood brain barrier (BBB) has raised hope toward a new disease modifying therapy in AD. Pgp is a major efflux transporter for beta amyloid (Aβ) at human BBB. A literature survey reveals diminished expression of Pgp transporter at the BBB in AD patients. Pregnane X Receptor is a major transcriptional regulator of Pgp. Restoration of Pgp at the BBB enhances the elimination of the Aβ from brain alongside and inhibits the apical to basolateral movement of Aβ from the circulatory blood. This review concentrates on in vitro, in vivo, and in silico advancements on the study of the PXR in context to Pgp and discusses the substrate and inhibitor specificity between PXR and Pgp.

  9. Efficacy of Intravenous Cyclophosphamide Pulse Therapy for P-Glycoprotein-expressing B Cell-associated Active True Renal Lupus Vasculitis in Lupus Nephritis

    PubMed Central

    Kawabe, Akio; Tsujimura, Shizuyo; Saito, Kazuyoshi; Tanaka, Yoshiya

    2017-01-01

    True renal lupus vasculitis (TRLV), a vascular lesion usually associated with proliferative lupus nephritis (LN), is resistant to conventional treatments. The expression of P-glycoprotein (P-gp) on activated lymphocytes causes drug resistance. We herein report a patient with TRLV, minimal change LN, overexpression of P-gp on peripheral B cells, and accumulation of P-gp+ B cells at the site of TRLV. High-dose corticosteroids combined with intravenous cyclophosphamide pulse therapy resulted in clinical remission and the long-term normal renal function. PMID:28626187

  10. Saturable active efflux by p-glycoprotein and breast cancer resistance protein at the blood-brain barrier leads to nonlinear distribution of elacridar to the central nervous system.

    PubMed

    Sane, Ramola; Agarwal, Sagar; Mittapalli, Rajendar K; Elmquist, William F

    2013-04-01

    The study objective was to investigate factors that affect the central nervous system (CNS) distribution of elacridar. Elacridar inhibits transport mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and has been used to study the influence of transporters on brain distribution of chemotherapeutics. Adequate distribution of elacridar across the blood-brain barrier (BBB) and into the brain parenchyma is necessary to target tumor cells in the brain that overexpress transporters and reside behind an intact BBB. We examined the role of P-gp and Bcrp on brain penetration of elacridar using Friend leukemia virus strain B wild-type, Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)Bcrp1(-/-) mice. Initially, the mice were administered 2.5 mg/kg of elacridar intravenously, and the plasma and brain concentrations were determined. The brain-to-plasma partition coefficient of elacridar in the wild-type mice was 0.82, as compared with 3.5 in Mdr1a/b(-/-) mice, 6.6 in Bcrp1(-/-) mice, and 15 in Mdr1a/b(-/-)Bcrp1(-/-) mice, indicating that both P-gp and Bcrp limit the brain distribution of elacridar. The four genotypes were then administered increasing doses of elacridar, and the CNS distribution of elacridar was determined. The observed and model predicted maximum brain-to-plasma ratios (Emax) at the highest dose were not significantly different in all genotypes. However, the ED50 was lower for Mdr1a/b(-/-) mice compared with Bcrp1(-/-) mice. These findings correlate with the relative expression of P-gp and Bcrp at the BBB in these mice and demonstrate the quantitative enhancement in elacridar CNS distribution as a function of its dose. Overall, this study provides useful concepts for future applications of elacridar as an adjuvant therapy to improve targeting of chemotherapeutic agents to tumor cells in the brain parenchyma.

  11. Biomimetic RNA-silencing nanocomplexes: overcoming multidrug resistance in cancer cells.

    PubMed

    Wang, Zhongliang; Wang, Zhe; Liu, Dingbin; Yan, Xuefeng; Wang, Fu; Niu, Gang; Yang, Min; Chen, Xiaoyuan

    2014-02-10

    RNA interference (RNAi) is an RNA-dependent gene silencing approach controlled by an RNA-induced silencing complex (RISC). Herein, we present a synthetic RISC-mimic nanocomplex, which can actively cleave its target RNA in a sequence-specific manner. With high enzymatic stability and efficient self-delivery to target cells, the designed nanocomplex can selectively and potently induce gene silencing without cytokine activation. These nanocomplexes, which target multidrug resistance, are not only able to bypass the P-glycoprotein (Pgp) transporter, due to their nano-size effect, but also effectively suppress Pgp expression, thus resulting in successful restoration of drug sensitivity of OVCAR8/ADR cells to Pgp-transportable cytotoxic agents. This nanocomplex approach has the potential for both functional genomics and cancer therapy. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Transport characteristics of mammalian Rh and Rh glycoproteins expressed in heterologous systems.

    PubMed

    Westhoff, C M; Wylie, D E

    2006-01-01

    The development and use of heterologous expression systems is critical for deciphering the function of mammalian Rh and Rh-glycoproteins. The studies here use Xenopus oocytes, well known for their ability to readily traffic and express difficult membrane proteins, and S. cerevisiae wild-type strains and mutants that are defective in ammonium transport. Data obtained in both of these expression systems revealed that mammalian Rh-glycoprotein-mediated transport (RhAG, RhBG, and RhCG) is an electroneutral process that is driven by the NH4+ concentration and the transmembrane H+ gradient, effectively exchanging NH4+ for H+ in a process that results in transport of net NH3. Homology modeling and functional studies suggest that the more recently evolved erythrocyte blood group proteins, RhCE and RhD, may not function directly in ammonia transport and may be evolving a new function in the RBC membrane. The relationship of Rh and Rh-glycoproteins to the Amt/Mep ammonium transporters is substantiated with functional transport data and structural modeling.

  13. UNDERSTANDING POLYSPECIFICITY WITHIN THE SUBSTRATE-BINDING CAVITY OF THE HUMAN MULTIDRUG RESISTANCE P-GLYCOPROTEIN

    PubMed Central

    Martinez, Lorena; Arnaud, Ophélie; Henin, Emilie; Tao, Houchao; Chaptal, Vincent; Doshi, Rupak; Andrieu, Thibaud; Dussurgey, Sébastien; Tod, Michel; Di Pietro, Attilio; Zhang, Qinghai; Chang, Geoffrey; Falson, Pierre

    2015-01-01

    Human P-glycoprotein (P-gp) controls drugs bioavailability by pumping out of the cells many structurally-unrelated drugs. The x-ray structure of the mouse P-gp ortholog was solved with two SSS- and one RRR-enantiomers of the selenohexapeptide inhibitor QZ59, found within the putative drug-binding pocket of the membrane domain outer leaflet. This offered the first opportunity to localize the well-known H- and R- drug-substrate sites in light of QZ59 inhibition mechanisms that were characterized here in cellulo and modelled towards Hoechst 33342 and daunorubicin transport. We found that QZ59-SSS competes efficiently with both substrates, displaying KI,app values of 0.15 and 0.3 μM, respectively 13 and 2 times lower than corresponding Km,app. In contrast, QZ59-RRR non-competitively inhibited daunorubicin transport with moderate efficacy (KI,app = 1.9 μM) and displayed a mixed-type inhibition towards Hoechst 33342 transport, resulting from a mainly non-competitive (Ki2,app = 1.6 μM) and a poor but significant competitive tendency (Ki1,app = 5 μM). These results suppose a positional overlap of QZ59 – drug-transport sites, total for the SSS enantiomer and partial for the RRR one. Crystal structures analysis suggests that the H site overlaps both QZ59-SSS locations while the R-site overlaps the most embedded one. PMID:24219411

  14. Drug Metabolism and Transport During Pregnancy: How Does Drug Disposition Change during Pregnancy and What Are the Mechanisms that Cause Such Changes?

    PubMed Central

    Thummel, Kenneth E.

    2013-01-01

    There is increasing evidence that pregnancy alters the function of drug-metabolizing enzymes and drug transporters in a gestational-stage and tissue-specific manner. In vivo probe studies have shown that the activity of several hepatic cytochrome P450 enzymes, such as CYP2D6 and CYP3A4, is increased during pregnancy, whereas the activity of others, such as CYP1A2, is decreased. The activity of some renal transporters, including organic cation transporter and P-glycoprotein, also appears to be increased during pregnancy. Although much has been learned, significant gaps still exist in our understanding of the spectrum of drug metabolism and transport genes affected, gestational age–dependent changes in the activity of encoded drug metabolizing and transporting processes, and the mechanisms of pregnancy-induced alterations. In this issue of Drug Metabolism and Disposition, a series of articles is presented that address the predictability, mechanisms, and magnitude of changes in drug metabolism and transport processes during pregnancy. The articles highlight state-of-the-art approaches to studying mechanisms of changes in drug disposition during pregnancy, and illustrate the use and integration of data from in vitro models, animal studies, and human clinical studies. The findings presented show the complex inter-relationships between multiple regulators of drug metabolism and transport genes, such as estrogens, progesterone, and growth hormone, and their effects on enzyme and transporter expression in different tissues. The studies provide the impetus for a mechanism- and evidence-based approach to optimally managing drug therapies during pregnancy and improving treatment outcomes. PMID:23328895

  15. In Silico Screening for Inhibitors of P-Glycoprotein That Target the Nucleotide Binding Domains

    PubMed Central

    Brewer, Frances K.; Follit, Courtney A.; Vogel, Pia D.

    2014-01-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. PMID:25270578

  16. Inhibition of the Human ABC Efflux Transporters P-gp and ...

    EPA Pesticide Factsheets

    High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.

  17. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    PubMed

    Loo, Tip W; Clarke, David M

    2016-04-01

    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. P-glycoprotein, but not Multidrug Resistance Protein 4, Plays a Role in the Systemic Clearance of Irinotecan and SN-38 in Mice

    PubMed Central

    Tagen, Michael; Zhuang, Yanli; Zhang, Fan; Harstead, K. Elaine; Shen, Jun; Schaiquevich, Paula; Fraga, Charles H.; Panetta, John C.; Waters, Christopher M.; Stewart, Clinton F.

    2015-01-01

    The ATP-binding cassette transporters P-glycoprotein (ABCB1, MDR1) and multidrug resistance protein 4 (MRP4) efflux irinotecan and its active metabolite SN-38 in vitro, and thus may contribute to system clearance of these compounds. Mdr1a/b−/−, Mrp4−/−, and wild-type mice were administered 20 or 40 mg/kg irinotecan, and plasma samples were collected for 6 hours. Irinotecan and SN-38 lactone and carboxylate were quantitated and data were analyzed with nonlinear mixed-effects modeling. Mdr1a/b genotype was a significant covariate for the clearance of both irinotecan lactone and SN-38 lactone. Exposures to irinotecan lactone and SN-38 lactone after a 40 mg/kg dose were 1.6-fold higher in Mdr1a/b−/− mice compared to wild-type mice. Plasma concentrations of irinotecan lactone, irinotecan carboxylate, and SN-38 lactone in Mrp4−/− mice were similar to the wild-type controls. These results suggest that P-gp plays a role in irinotecan and SN-38 elimination, but Mrp4 does not affect irinotecan or SN-38 plasma pharmacokinetics. PMID:20583968

  19. P-glycoprotein expression in Ehrlich ascites tumour cells after in vitro and in vivo selection with daunorubicin.

    PubMed Central

    Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.

    1998-01-01

    Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176

  20. P-glycoprotein mediated efflux in Caco-2 cell monolayers: the influence of herbals on digoxin transport.

    PubMed

    Oga, Enoche F; Sekine, Shuichi; Shitara, Yoshihisa; Horie, Toshiharu

    2012-12-18

    Several herbal medicines are concomitantly used with conventional medicines with a resultant increase in the recognition of herb-drug interactions. The phytomedicines Vernonia amygdalina Delile (VA), family Asteraceae; Azadiractha indica A. Juss (NL), family Meliaceae; Morinda lucida Benth (MLB), family Rubiaceae; Cymbopogon citratus Stapf (LG), family Poaceae; Curcuma longa L. (CUR), family Zingiberaceae; Carica papaya L. (CP), family Caricaceae and Tapinanthus sessilifolius Blume (ML), family Loranthaceae are used in African traditional medicine for the treatment of malaria. They are also used in several regions world over in managing other ailments like cancer and diabetes. This study investigated their interaction with digoxin (DIG) with a view to predict the potential of P-glycoprotein (p-gp) mediated drug-herb interactions occurring with p-gp substrate drugs. To assess p-gp mediated transport and inhibition, bidirectional transport studies were carried out on Caco-2 cell monolayers using digoxin (DIG) as a model p-gp substrate. Cell functionality was demonstrated using the determinations of transepithelial electric resistance (TEER), cell cytotoxicity testing utilizing the MTT assay as well as the inclusion of inhibition controls. Under the conditions of this study, extracts of ML, VA and CP showed significant inhibition to (3)H-Digoxin basolateral-to-apical (B-A) transport at 0.02-20mg/mL; the concentrations examined. Their apical-to-basolateral (A-B) transport was further investigated. Increases in the mean A-B transport and significant decreases in the B-A transport and efflux ratio values were observed. The apparent permeability coefficient and efflux ratio were computed providing an estimate of drug absorption. The findings show that extracts of ML, VA and CP significantly inhibit p-gp in vitro and interactions with conventional p-gp substrate drugs are likely to occur on co-administration which may result in altered therapeutic outcomes. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition.

    PubMed

    Hanna, Imad; Alexander, Natalya; Crouthamel, Matthew H; Davis, John; Natrillo, Adrienne; Tran, Phi; Vapurcuyan, Arpine; Zhu, Bing

    2018-03-01

    1. The potential for drug-drug interactions of LCZ696 (a novel, crystalline complex comprising sacubitril and valsartan) was investigated in vitro. 2. Sacubitril was shown to be a highly permeable P-glycoprotein (P-gp) substrate and was hydrolyzed to the active anionic metabolite LBQ657 by human carboxylesterase 1 (CES1b and 1c). The multidrug resistance-associated protein 2 (MRP2) was shown to be capable of LBQ657 and valsartan transport that contributes to the elimination of either compound. 3. LBQ657 and valsartan were transported by OAT1, OAT3, OATP1B1 and OATP1B3, whereas no OAT- or OATP-mediated sacubitril transport was observed. 4. The contribution of OATP1B3 to valsartan transport (73%) was appreciably higher than that by OATP1B1 (27%), Alternatively, OATP1B1 contribution to the hepatic uptake of LBQ657 (∼70%) was higher than that by OATP1B3 (∼30%). 5. None of the compounds inhibited OCT1/OCT2, MATE1/MATE2-K, P-gp, or BCRP. Sacubitril and LBQ657 inhibited OAT3 but not OAT1, and valsartan inhibited the activity of both OAT1 and OAT3. Sacubitril and valsartan inhibited OATP1B1 and OATP1B3, whereas LBQ657 weakly inhibited OATP1B1 but not OATP1B3. 6. Drug interactions due to the inhibition of transporters are unlikely due to the redundancy of the available transport pathways (LBQ657: OATP1B1/OAT1/3 and valsartan: OATP1B3/OAT1/3) and the low therapeutic concentration of the LCZ696 analytes.

  2. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo.

    PubMed

    Lu, Wei-Dong; Qin, Yong; Yang, Chuang; Li, Lei; Fu, Zhong-Xue

    2013-05-01

    To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo.

  3. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo

    PubMed Central

    Lu, Wei-Dong; Qin, Yong; Yang, Chuang; Li, Lei

    2013-01-01

    OBJECTIVE: To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. METHODS: In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. RESULTS: Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. CONCLUSION: Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo. PMID:23778405

  4. Partial purification and characterization of a mannosyl transferase involved in O -linked mannosylation of glycoproteins in Candida albicans.

    PubMed

    Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo

    2004-04-01

    Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.

  5. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer

    PubMed Central

    Mohana, S; Ganesan, M; Agilan, B; Karthikeyan, R; Srithar, G; Beaulah Mary, R; Ananthakrishnan, D; Velmurugan, D; Rajendra Prasad, N; Ambudkar, Suresh V.

    2016-01-01

    P-glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various approaches of virtual screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and significantly reduced resistance in cytotoxicity assay to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer. PMID:27216424

  6. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer.

    PubMed

    Mohana, S; Ganesan, M; Agilan, B; Karthikeyan, R; Srithar, G; Beaulah Mary, R; Ananthakrishnan, D; Velmurugan, D; Rajendra Prasad, N; Ambudkar, Suresh V

    2016-07-19

    P-Glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and they significantly reduced resistance in cytotoxicity assays to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer.

  7. In vitro screening of dual flavonoid combinations for reversing P-glycoprotein-mediated multidrug resistance: Focus on antiepileptic drugs.

    PubMed

    Ferreira, Ana; Santos, Adriana O; Falcão, Amílcar; Alves, Gilberto

    2018-01-01

    The combined use of different P-glycoprotein (P-gp) inhibitors may be a relevant approach to the synergistic and safer inhibition of the P-gp-mediated drug efflux. Herein, we aimed to explore dual combinations of the flavonoids baicalein, (-)-epigallocatechin gallate, kaempferol, quercetin and silymarin to reverse the interference of P-gp on the intracellular accumulation of antiepileptic drugs (AEDs). The intracellular accumulation of rhodamine 123 (a classic P-gp substrate) and of several commonly used AEDs (carbamazepine, phenytoin, oxcarbazepine) or their metabolites (carbamazepine-10,11-epoxide and licarbazepine) was evaluated in MDCK-MDR1 cells in the presence and absence of individual flavonoids and their combinations. A selected flavonoid combination [(-)-epigallocatechin gallate/silymarin] was also evaluated in transepithelial transport experiments using licarbazepine (active metabolite of oxcarbazepine) as a model compound. Most flavonoid combinations increased rhodamine 123 intracellular uptake in a greater extent than their additive individual effects at similar concentrations. Moreover, selected (-)-epigallocatechin gallate/silymarin and kaempferol/baicalein combinations also enhanced the intracellular accumulation of all AEDs and metabolites. Overall, the combination of (-)-epigallocatechin gallate/silymarin was the most promising one. Thus, dual flavonoid combinations may be useful to overcome the P-gp-mediated efflux of AEDs and their metabolites, making their association to AED therapy a potentially valuable approach to circumvent pharmacoresistance in epilepsy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy.

    PubMed

    Hartz, Anika M S; Pekcec, Anton; Soldner, Emma L B; Zhong, Yu; Schlichtiger, Juli; Bauer, Bjoern

    2017-04-03

    A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.

  9. Expert panel report on a study of Splenda in male rats.

    PubMed

    Brusick, David; Borzelleca, Joseph F; Gallo, Michael; Williams, Gary; Kille, John; Wallace Hayes, A; Xavier Pi-Sunyer, F; Williams, Christine; Burks, Wesley

    2009-10-01

    A recent study in rats investigated the retail sweetener product, Granulated SPLENDA No Calorie Sweetener (Splenda) (Abou-Donia et al., 2008. Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. J. Toxicol. Environ. Health A, 71, 1415-1429), which is composed of (by dry weight) maltodextrin ( approximately 99%) and sucralose ( approximately 1%). The investigators reported that Splenda increased body weight, decreased beneficial intestinal bacteria, and increased the expression of certain cytochrome P450 (CYP450) enzymes and the transporter protein, P-glycoprotein (P-gp), the latter of which was considered evidence that Splenda or sucralose might interfere with the absorption of nutrients and drugs. The investigators indicated that the reported changes were attributable to the sucralose present in the product tested. An Expert Panel conducted a rigorous evaluation of this study. In arriving at its conclusions, the Expert Panel considered the design and conduct of the study, its outcomes and the outcomes reported in other data available publicly. The Expert Panel found that the study was deficient in several critical areas and that its results cannot be interpreted as evidence that either Splenda, or sucralose, produced adverse effects in male rats, including effects on gastrointestinal microflora, body weight, CYP450 and P-gp activity, and nutrient and drug absorption. The study conclusions are not consistent with published literature and not supported by the data presented.

  10. The Elementary Mass Action Rate Constants of P-gp Transport for a Confluent Monolayer of MDCKII-hMDR1 Cells

    PubMed Central

    Tran, Thuy Thanh; Mittal, Aditya; Aldinger, Tanya; Polli, Joseph W.; Ayrton, Andrew; Ellens, Harma; Bentz, Joe

    2005-01-01

    The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms. Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The experimental system we use is a confluent monolayer of MDCKII-hMDR1 cells that overexpress P-gp. It is a physiologically relevant model system, and transport is measured without biochemical manipulations of P-gp. The Michaelis-Menten mass action reaction is used to model P-gp transport. Without imposing the steady-state assumptions, this reaction depends upon several parameters that must be simultaneously fitted. An exhaustive fitting of transport data to find all possible parameter vectors that best fit the data was accomplished with a reasonable computation time using a hierarchical algorithm. For three P-gp substrates (amprenavir, loperamide, and quinidine), we have successfully fitted the elementary rate constants, i.e., drug association to P-gp from the apical membrane inner monolayer, drug dissociation back into the apical membrane inner monolayer, and drug efflux from P-gp into the apical chamber, as well as the density of efflux active P-gp. All three drugs had overlapping ranges for the efflux active P-gp, which was a benchmark for the validity of the fitting process. One novel finding was that the association to P-gp appears to be rate-limited solely by drug lateral diffusion within the inner monolayer of the plasma membrane for all three drugs. This would be expected if P-gp structure were open to the lipids of the apical membrane inner monolayer, as has been suggested by recent structural studies. The fitted kinetic parameters show how P-gp efflux of a wide range of xenobiotics has been maximized. PMID:15501934

  11. Evidence That P-glycoprotein Inhibitor (Elacridar)-Loaded Nanocarriers Improve Epidermal Targeting of an Anticancer Drug via Absorptive Cutaneous Transporters Inhibition.

    PubMed

    Giacone, Daniela V; Carvalho, Vanessa F M; Costa, Soraia K P; Lopes, Luciana B

    2018-02-01

    Because P-glycoprotein (P-gp) plays an absorptive role in the skin, its pharmacological inhibition represents a strategy to promote cutaneous localization of anticancer agents that serve as its substrates, improving local efficacy while reducing systemic exposure. Here, we evaluated the ability of a nanoemulsion (NE) coencapsulating a P-gp inhibitor (elacridar) with the antitumor drug paclitaxel to promote epidermal targeting. Loaded NE displayed a nanometric size (45.2 ± 4.0 nm) and negative zeta potential (-4.2 ± 0.8 mV). Elacridar improved NE ability to inhibit verapamil-induced ATPase activity of P-gp; unloaded NE-inhibited P-gp when used at a concentration of 1500 μM, while elacridar encapsulation decreased this concentration by 3-fold (p <0.05). Elacridar-loaded NE reduced paclitaxel penetration into the dermis of freshly excised mice skin and its percutaneous permeation by 1.5- and 1.7-fold (p <0.05), respectively at 6 h, whereas larger drug amounts (1.4-fold, p <0.05) were obtained in viable epidermis. Assessment of cutaneous distribution of a fluorescent paclitaxel derivative confirmed the smaller delivery into the dermis at elacridar presence. In conclusion, we have provided novel evidence that NE containing elacridar exhibited a clear potential for P-gp inhibition and enabled epidermal targeting of paclitaxel, which in turn, can potentially reduce adverse effects associated with systemic exposure to anticancer therapy. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion

    PubMed Central

    Saw, Wan Ting; Eisenberg, Roselyn J.; Cohen, Gary H.

    2016-01-01

    ABSTRACT Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1 and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. PMID:27630245

  13. Molecular mechanisms of multidrug resistance in cancer chemotherapy.

    PubMed

    Nooter, K; Stoter, G

    1996-07-01

    The occurrence of multidrug resistance (MDR) is one of the main obstacles in the successful chemotherapeutic treatment of cancer. MDR cell lines are resistant to the so-called naturally occurring anti-cancer drugs, such as anthracyclines, Vinca alkaloids and epipodophyllotoxins, but are not cross-resistant to alkylating agents, antimetabolites and cisplatin. So far, three separate forms of MDR have been characterized in more detail: classical MDR, non-Pgp MDR and atypical MDR. Although all three MDR phenotypes have much in common with respect to cross-resistance patterns, the underlying mechanisms certainly differ. Atypical MDR is associated with quantitative and qualitative alterations in topoisomerase II alpha, a nuclear enzyme that actively participates in the lethal action of cytotoxic drugs. Atypical MDR cells do not overexpress P-glycoprotein, and are unaltered in their ability to accumulate drugs. In this review we will focus on classical and non-Pgp MDR. The molecular mechanism of classical and non-Pgp MDR is transcriptional activation of membrane-bound transport proteins. These transport proteins belong to the ATP-binding cassette (ABC) superfamily of transport systems. The classical MDR phenotype is characterized by a reduced ability to accumulate drugs, due to activity of an energy-dependent uni-directional, membrane-bound, drug-efflux pump with broad substrate specificity. The classical MDR drug pump is composed of a transmembrane glycoprotein (P-glyco-protein-Pgp) with a molecular weight of 170 kD, and is, in man, encoded by the so-called multidrug resistance (MDR1) gene. Typically, non-Pgp MDR has no P-gly-coprotein expression, yet has about the same cross-resistance pattern as classical MDR. This non-Pgp MDR phenotype is caused by overexpression of the multidrug resistance-associated protein (MRP) gene, which encodes a 190 kD membrane-bound glycoprotein (MRP). MRP probably works by direct extrusion of cytotoxic drugs from the cell and/or by mediating sequestration of the drugs into intracellular compartments, both leading to a reduction in effective intracellular drug concentrations. For the classical MDR phenotype, evidence is accumulating that it plays a role indeed, in clinical drug resistance, especially in some hematological malignancies (acute myeloid leukemia, multiple myeloma and non-Hodgkin's lymphoma) and solid tumors (soft tissue sarcomas and neuroblastoma). The association of MRP with clinical drug resistance has not been elaborated, yet, and studies on MRP expression in human cancer have just begun. We found that overexpression of MRP, as determined by RNase protection assay as well as by immunohistochemistry, occurs in several human cancers, among which are cancer of the lung, esophagus, breast and ovary, and leukemias. Further studies are indicated to establish whether elevated MRP expression at diagnosis is an unfavorable prognostic factor for clinical outcome of chemotherapy.

  14. P-glycoprotein (Mdr1a/1b) and breast cancer resistance protein (Bcrp) decrease the uptake of hydrophobic alkyl triphenylphosphonium cations by the brain

    PubMed Central

    Porteous, Carolyn M.; Menon, David K.; Aigbirhio, Franklin I.; Smith, Robin A.J.; Murphy, Michael P.

    2013-01-01

    Background Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs. Methods To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp. Results There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls. Conclusion Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver. General significance These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain. PMID:23454352

  15. RBE4 cells are highly resistant to paraquat-induced cytotoxicity: studies on uptake and efflux mechanisms.

    PubMed

    Vilas-Boas, V; Silva, R; Guedes-de-Pinho, P; Carvalho, F; Bastos, M L; Remião, F

    2014-09-01

    Paraquat (PQ) is a widely used, highly toxic and non-selective contact herbicide, which has been associated with central neurotoxic effects, namely the development of Parkinson's disease, but whose effects to the blood-brain barrier (BBB) itself have rarely been studied. This work studied the mechanisms of PQ uptake and efflux in a rat's BBB cell model, the RBE4 cells. PQ is believed to enter cells using the basic or neutral amino acid or polyamine transport systems or through the choline-uptake system. In contrast, PQ efflux from cells is reported to be mediated by P-glycoprotein. Therefore, we evaluated PQ-induced cytotoxicity and the effect of some substrates/blockers of these transporters (such as arginine, L-valine, putrescine, hemicholinium-3 and GF120918) on such cytotoxicity. RBE4 cells were shown to be extremely resistant to PQ after 24 h of exposure; even at concentrations as high as 50 mM approximately 45% of the cells remained viable. Prolonging exposure until 48 h elicited significant cytotoxicity only for PQ concentrations above 5 mM. Although hemicholinium-3, a choline-uptake system inhibitor, significantly protected cells against PQ-induced toxicity, none of the effects were observed for arginine, L-valine or putrescine. Meanwhile, inhibiting the efflux pump P-glycoprotein using GF120918 significantly enhanced PQ-induced cytotoxicity. In conclusion, PQ used the choline-uptake system, instead of the transporters for the basic or neutral amino acids or for the polyamines, to enter RBE4 cells. P-glycoprotein extrudes PQ back to the extracellular medium. However, this efflux mechanism only partially explains the observed RBE4 resistance to PQ. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua.

    PubMed

    Zuo, Y-Y; Huang, J-L; Wang, J; Feng, Y; Han, T-T; Wu, Y-D; Yang, Y-H

    2018-02-01

    P-glycoprotein [P-gp or the ATP-binding cassette transporter B1 (ABCB1)] is an important participant in multidrug resistance of cancer cells, yet the precise function of this arthropod transporter is unknown. The aim of this study was to determine the importance of P-gp for susceptibility to insecticides in the beet armyworm (Spodoptera exigua) using clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) gene-editing technology. We cloned an open reading frame (ORF) encoding the S. exigua P-gp protein (SeP-gp) predicted to display structural characteristics common to P-gp and other insect ABCB1 transporters. A knockout line with a frame shift deletion of four nucleotides in the SeP-gp ORF was established using the CRISPR/Cas9 gene-editing system to test its potential role in determining susceptibility to chemical insecticides or insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Results from comparative bioassays demonstrate that knockout of SeP-gp significantly increases susceptibility of S. exigua by around threefold to abamectin and emamectin benzoate (EB), but not to spinosad, chlorfenapyr, beta-cypermethrin, carbosulfan indoxacarb, chlorpyrifos, phoxim, diafenthiuron, chlorfluazuron, chlorantraniliprole or two Bt toxins (Cry1Ca and Cry1Fa). Our data support an important role for SeP-gp in susceptibility of S. exigua to abamectin and EB and imply that overexpression of SeP-gp may contribute to abamectin and EB resistance in S. exigua. © 2017 The Royal Entomological Society.

  17. In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.

    PubMed

    Brewer, Frances K; Follit, Courtney A; Vogel, Pia D; Wise, John G

    2014-12-01

    Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein.

    PubMed

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo

    2016-08-05

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of bisphenol A on P-glycoprotein-mediated efflux and ultrastructure of the sea urchin embryo.

    PubMed

    Bošnjak, Ivana; Borra, Marco; Iamunno, Franco; Benvenuto, Giovanna; Ujević, Ivana; Bušelić, Ivana; Roje-Busatto, Romana; Mladineo, Ivona

    2014-11-01

    Usage of bisphenol A (BPA) in production of polycarbonate plastics has resulted in global distribution of BPA in the environment. These high concentrations cause numerous negative effects to the aquatic biota, among which the most known is the induction of endocrine disruption. The focus of this research was to determine the effects of two experimentally determined concentrations of BPA (100nM and 4μM) on cellular detoxification mechanisms during the embryonic development (2-cell, pluteus) of the rocky sea urchin (Paracentrotus lividus), primarily the potential involvement of multidrug efflux transport in the BPA intercellular efflux. The results of transport assay, measurements of the intracellular BPA and gene expression surveys, for the first time indicate the importance of P-glycoprotein (P-gp/ABCB1) in defense against BPA. Cytotoxic effects of BPA, validated by the immunohistochemistry (IHC) and the transmission electron microscopy (TEM), induced the aberrant karyokinesis, and consequently, the impairment of embryo development through the first cell division and retardation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Modulatory effect of phytoglycoprotein (38 kDa) on cyclin D1/CDK4 in BNL CL.2 cells induced by N-methyl-N'-nitro-N-nitrosoguanidine.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2012-02-01

    In the developmental stages of cancer, cell transformation occurs after the promotion stage and is a marker of cancer progression. This cell transformation is related to abnormal proliferation during the cancer initiation stage. The purpose of this study was to evaluate the effect of Styrax japonica Siebold et al. Zuccarin (SJSZ) glycoprotein on cell transformation in murine embryonic liver cells (BNL CL.2) following N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. To determine abnormal proliferation during the initiation stage, intracellular reactive oxygen species (ROS), phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), activities of cell cycle-related factors [cyclin D1/cyclin dependent kinase (CDK) 4], cell cycle inhibitors (p53, p21, and p27), nuclear factor (NF)-κB, and proliferating cell nuclear antigen (PCNA) were evaluated using Western blot analysis and real-time PCR. Our study demonstrated that SJSZ glycoprotein (50 μg/ml) reduces foci formation with combined treatment [MNNG and 12-O-tetradecanoyl phorbol-13-acetate] of BNL CL.2 cells. With regard to proliferation-related signals, our finding indicated that SJSZ glycoprotein (50 μg/ml) diminished the production of intracellular ROS, activity of phosphorylated ERK, p38 MAPK, NF-κB (p50 and p65), PCNA, and cyclin D1/CDK4 in MNNG-induced BNL CL.2 cells. Taken together, these results lead us to speculate that SJSZ glycoprotein can inhibit abnormal cell proliferation at the initiation stage of hepatocarcinogenesis.

  1. Structural Characterization of Two Metastable ATP-Bound States of P-Glycoprotein

    PubMed Central

    O’Mara, Megan L.; Mark, Alan E.

    2014-01-01

    ATP Binding Cassette (ABC) transporters couple the binding and hydrolysis of ATP to the transport of substrate molecules across the membrane. The mechanism by which ATP binding and/or hydrolysis drives the conformational changes associated with substrate transport has not yet been characterized fully. Here, changes in the conformation of the ABC export protein P-glycoprotein on ATP binding are examined in a series of molecular dynamics simulations. When one molecule of ATP is placed at the ATP binding site associated with each of the two nucleotide binding domains (NBDs), the membrane-embedded P-glycoprotein crystal structure adopts two distinct metastable conformations. In one, each ATP molecule interacts primarily with the Walker A motif of the corresponding NBD. In the other, the ATP molecules interacts with both Walker A motif of one NBD and the Signature motif of the opposite NBD inducing the partial dimerization of the NBDs. This interaction is more extensive in one of the two ATP binding site, leading to an asymmetric structure. The overall conformation of the transmembrane domains is not altered in either of these metastable states, indicating that the conformational changes associated with ATP binding observed in the simulations in the absence of substrate do not lead to the outward-facing conformation and thus would be insufficient in themselves to drive transport. Nevertheless, the metastable intermediate ATP-bound conformations observed are compatible with a wide range of experimental cross-linking data demonstrating the simulations do capture physiologically important conformations. Analysis of the interaction between ATP and its cofactor Mg2+ with each NBD indicates that the coordination of ATP and Mg2+ differs between the two NBDs. The role structural asymmetry may play in ATP binding and hydrolysis is discussed. Furthermore, we demonstrate that our results are not heavily influenced by the crystal structure chosen for initiation of the simulations. PMID:24632881

  2. Constitutive androstane receptor upregulates Abcb1 and Abcg2 at the blood-brain barrier after CITCO activation.

    PubMed

    Lemmen, Julia; Tozakidis, Iasson E P; Bele, Prachee; Galla, Hans-Joachim

    2013-03-21

    ATP-driven efflux transporters are considered to be the major hurdle in the treatment of central nervous system (CNS) diseases. Abcb1 (P-glycoprotein) and Abcg2 (breast cancer resistance protein/brain multidrug resistance protein) belong to the best known ABC-transporters. These ABC-transporters limit the permeability of the blood-brain barrier and protect the brain against toxic compounds in the blood but on the other hand they also reduce the efficacy of CNS pharmacotherapy. Even after 40 years of extensive research, the regulatory mechanisms of these efflux transporters are still not completely understood. To unravel the efflux transporter regulation, we analyzed the effect of the nuclear receptor CAR (constitutive androstane receptor) on the expression of Abcb1 and Abcg2 in primary cultures of porcine brain capillary endothelial cells (PBCEC). CAR is a xenobiotic-activated transcription factor, which is, like the other important nuclear receptor pregnane X receptor (PXR), highly expressed in barrier tissue and known to be a positive regulator of ABC-transporters. We demonstrate that activation of porcine CAR by the human CAR (hCAR) ligand CITCO (6-(4-chlorophenyl)-imidazo[2,1-b]thiazole-5-carbaldehyde) leads to an up-regulation of both transporters, whereas the mouse-specific CAR ligand TCPOBOP (1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene) had no effect on transporter expression. The stimulation of PBCEC with CITCO caused a significant up-regulation of both efflux-transporters on RNA-level, protein level and transport level. Furthermore the additional application of a CAR inhibitor significantly decreased the transporter expression to control niveau. In conclusion our data prove CAR activation only by the human ligand CITCO leading to an increased ABC-transporter expression and transport activity. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. A novel application of t-statistics to objectively assess the quality of IC50 fits for P-glycoprotein and other transporters.

    PubMed

    O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe

    2015-02-01

    Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined "no inhibition" and "complete inhibition" plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic.

  4. A novel application of t-statistics to objectively assess the quality of IC50 fits for P-glycoprotein and other transporters

    PubMed Central

    O'Connor, Michael; Lee, Caroline; Ellens, Harma; Bentz, Joe

    2015-01-01

    Current USFDA and EMA guidance for drug transporter interactions is dependent on IC50 measurements as these are utilized in determining whether a clinical interaction study is warranted. It is therefore important not only to standardize transport inhibition assay systems but also to develop uniform statistical criteria with associated probability statements for generation of robust IC50 values, which can be easily adopted across the industry. The current work provides a quantitative examination of critical factors affecting the quality of IC50 fits for P-gp inhibition through simulations of perfect data with randomly added error as commonly observed in the large data set collected by the P-gp IC50 initiative. The types of errors simulated were (1) variability in replicate measures of transport activity; (2) transformations of error-contaminated transport activity data prior to IC50 fitting (such as performed when determining an IC50 for inhibition of P-gp based on efflux ratio); and (3) the lack of well defined “no inhibition” and “complete inhibition” plateaus. The effect of the algorithm used in fitting the inhibition curve (e.g., two or three parameter fits) was also investigated. These simulations provide strong quantitative support for the recommendations provided in Bentz et al. (2013) for the determination of IC50 values for P-gp and demonstrate the adverse effect of data transformation prior to fitting. Furthermore, the simulations validate uniform statistical criteria for robust IC50 fits in general, which can be easily implemented across the industry. A calibration of the t-statistic is provided through calculation of confidence intervals associated with the t-statistic. PMID:25692007

  5. Variability in P-Glycoprotein Inhibitory Potency (IC50) Using Various in Vitro Experimental Systems: Implications for Universal Digoxin Drug-Drug Interaction Risk Assessment Decision Criteria

    PubMed Central

    Bentz, Joe; O’Connor, Michael P.; Bednarczyk, Dallas; Coleman, JoAnn; Lee, Caroline; Palm, Johan; Pak, Y. Anne; Perloff, Elke S.; Reyner, Eric; Balimane, Praveen; Brännström, Marie; Chu, Xiaoyan; Funk, Christoph; Guo, Ailan; Hanna, Imad; Herédi-Szabó, Krisztina; Hillgren, Kate; Li, Libin; Hollnack-Pusch, Evelyn; Jamei, Masoud; Lin, Xuena; Mason, Andrew K.; Neuhoff, Sibylle; Patel, Aarti; Podila, Lalitha; Plise, Emile; Rajaraman, Ganesh; Salphati, Laurent; Sands, Eric; Taub, Mitchell E.; Taur, Jan-Shiang; Weitz, Dietmar; Wortelboer, Heleen M.; Xia, Cindy Q.; Xiao, Guangqing; Yabut, Jocelyn; Yamagata, Tetsuo; Zhang, Lei

    2013-01-01

    A P-glycoprotein (P-gp) IC50 working group was established with 23 participating pharmaceutical and contract research laboratories and one academic institution to assess interlaboratory variability in P-gp IC50 determinations. Each laboratory followed its in-house protocol to determine in vitro IC50 values for 16 inhibitors using four different test systems: human colon adenocarcinoma cells (Caco-2; eleven laboratories), Madin-Darby canine kidney cells transfected with MDR1 cDNA (MDCKII-MDR1; six laboratories), and Lilly Laboratories Cells—Porcine Kidney Nr. 1 cells transfected with MDR1 cDNA (LLC-PK1-MDR1; four laboratories), and membrane vesicles containing human P-glycoprotein (P-gp; five laboratories). For cell models, various equations to calculate remaining transport activity (e.g., efflux ratio, unidirectional flux, net-secretory-flux) were also evaluated. The difference in IC50 values for each of the inhibitors across all test systems and equations ranged from a minimum of 20- and 24-fold between lowest and highest IC50 values for sertraline and isradipine, to a maximum of 407- and 796-fold for telmisartan and verapamil, respectively. For telmisartan and verapamil, variability was greatly influenced by data from one laboratory in each case. Excluding these two data sets brings the range in IC50 values for telmisartan and verapamil down to 69- and 159-fold. The efflux ratio-based equation generally resulted in severalfold lower IC50 values compared with unidirectional or net-secretory-flux equations. Statistical analysis indicated that variability in IC50 values was mainly due to interlaboratory variability, rather than an implicit systematic difference between test systems. Potential reasons for variability are discussed and the simplest, most robust experimental design for P-gp IC50 determination proposed. The impact of these findings on drug-drug interaction risk assessment is discussed in the companion article (Ellens et al., 2013) and recommendations are provided. PMID:23620485

  6. Macrocyclic lactones differ in interaction with recombinant P-glycoprotein 9 of the parasitic nematode Cylicocylus elongatus and ketoconazole in a yeast growth assay.

    PubMed

    Kaschny, Maximiliane; Demeler, Janina; Janssen, I Jana I; Kuzmina, Tetiana A; Besognet, Bruno; Kanellos, Theo; Kerboeuf, Dominique; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2015-04-01

    Macrocyclic lactones (MLs) are widely used parasiticides against nematodes and arthropods, but resistance is frequently observed in parasitic nematodes of horses and livestock. Reports claiming resistance or decreased susceptibility in human nematodes are increasing. Since no target site directed ML resistance mechanisms have been identified, non-specific mechanisms were frequently implicated in ML resistance, including P-glycoproteins (Pgps, designated ABCB1 in vertebrates). Nematode genomes encode many different Pgps (e.g. 10 in the sheep parasite Haemonchus contortus). ML transport was shown for mammalian Pgps, Pgps on nematode egg shells, and very recently for Pgp-2 of H. contortus. Here, Pgp-9 from the equine parasite Cylicocyclus elongatus (Cyathostominae) was expressed in a Saccharomyces cerevisiae strain lacking seven endogenous efflux transporters. Pgp was detected on these yeasts by flow cytometry and chemiluminescence using the monoclonal antibody UIC2, which is specific for the active Pgp conformation. In a growth assay, Pgp-9 increased resistance to the fungicides ketoconazole, actinomycin D, valinomycin and daunorubicin, but not to the anthelmintic fungicide thiabendazole. Since no fungicidal activity has been described for MLs, their interaction with Pgp-9 was investigated in an assay involving two drugs: Yeasts were incubated with the highest ketoconazole concentration not affecting growth plus increasing concentrations of MLs to determine competition between or modulation of transport of both drugs. Already equimolar concentrations of ivermectin and eprinomectin inhibited growth, and at fourfold higher ML concentrations growth was virtually abolished. Selamectin and doramectin did not increase susceptibility to ketoconazole at all, although doramectin has been shown previously to strongly interact with human and canine Pgp. An intermediate interaction was observed for moxidectin. This was substantiated by increased binding of UIC2 antibodies in the presence of ivermectin, moxidectin, daunorubicin and ketoconazole but not selamectin. These results demonstrate direct effects of MLs on a recombinant nematode Pgp in an ML-specific manner.

  7. Macrocyclic Lactones Differ in Interaction with Recombinant P-Glycoprotein 9 of the Parasitic Nematode Cylicocylus elongatus and Ketoconazole in a Yeast Growth Assay

    PubMed Central

    Kaschny, Maximiliane; Demeler, Janina; Janssen, I. Jana I.; Kuzmina, Tetiana A.; Besognet, Bruno; Kanellos, Theo; Kerboeuf, Dominique; von Samson-Himmelstjerna, Georg; Krücken, Jürgen

    2015-01-01

    Macrocyclic lactones (MLs) are widely used parasiticides against nematodes and arthropods, but resistance is frequently observed in parasitic nematodes of horses and livestock. Reports claiming resistance or decreased susceptibility in human nematodes are increasing. Since no target site directed ML resistance mechanisms have been identified, non-specific mechanisms were frequently implicated in ML resistance, including P-glycoproteins (Pgps, designated ABCB1 in vertebrates). Nematode genomes encode many different Pgps (e.g. 10 in the sheep parasite Haemonchus contortus). ML transport was shown for mammalian Pgps, Pgps on nematode egg shells, and very recently for Pgp-2 of H. contortus. Here, Pgp-9 from the equine parasite Cylicocyclus elongatus (Cyathostominae) was expressed in a Saccharomyces cerevisiae strain lacking seven endogenous efflux transporters. Pgp was detected on these yeasts by flow cytometry and chemiluminescence using the monoclonal antibody UIC2, which is specific for the active Pgp conformation. In a growth assay, Pgp-9 increased resistance to the fungicides ketoconazole, actinomycin D, valinomycin and daunorubicin, but not to the anthelmintic fungicide thiabendazole. Since no fungicidal activity has been described for MLs, their interaction with Pgp-9 was investigated in an assay involving two drugs: Yeasts were incubated with the highest ketoconazole concentration not affecting growth plus increasing concentrations of MLs to determine competition between or modulation of transport of both drugs. Already equimolar concentrations of ivermectin and eprinomectin inhibited growth, and at fourfold higher ML concentrations growth was virtually abolished. Selamectin and doramectin did not increase susceptibility to ketoconazole at all, although doramectin has been shown previously to strongly interact with human and canine Pgp. An intermediate interaction was observed for moxidectin. This was substantiated by increased binding of UIC2 antibodies in the presence of ivermectin, moxidectin, daunorubicin and ketoconazole but not selamectin. These results demonstrate direct effects of MLs on a recombinant nematode Pgp in an ML-specific manner. PMID:25849454

  8. Biliary transport of irinotecan and metabolites in normal and P-glycoprotein-deficient mice.

    PubMed

    Iyer, Lalitha; Ramírez, Jacqueline; Shepard, Dale R; Bingham, Christopher M; Hossfeld, Dieter-Kurt; Ratain, Mark J; Mayer, Ulrich

    2002-04-01

    The extensive and unpredictable biliary excretion of CPT-11 and its metabolites, SN-38 and SN-38 glucuronide (SN-38G) may contribute to the wide interpatient variability reported in the disposition and gastrointestinal toxicity of CPT-11. We studied the role of P-glycoprotein (P-gp) in in vivo biliary excretion of CPT-11, SN-38 and SN-38G in mice lacking mdr1-type P-gp [ mdr1a/1b(-/-)] in the presence of the multidrug resistance (MDR) reversal agent, PSC833. Wild-type (Wt) and mdr1a/1b(-/-) mice ( n=3 or 4) were treated intragastrically with PSC833 (50 mg/kg) or vehicle 2 h prior to i.v. CPT-11 dosing (10 mg/kg), and bile samples were collected. P-gp was found to play an important role in CPT-11 biliary excretion, as there was a significant (40%, P<0.05) decrease in its biliary recovery in 90 min in mdr1a/1b(-/-) mice (6.6+/-0.6% dose) compared with Wt mice (11+/-1.2%). This also implied a major role of other undetermined non-P-gp-mediated mechanism(s) for hepatic transport of CPT-11, which was inhibited by PSC833 (1.8+/-0.8% with PSC833, 6.6+/-0.6% without PSC833) in mdr1a/1b(-/-) mice. SN-38 and SN-38G biliary transport was unchanged in mice lacking P-gp after vehicle treatment, indicating a lack of P-gp mediation in their transport. PSC833 significantly reduced (56-89%) SN-38 and SN-38G biliary transport in Wt and mdr1a/1b(-/-) mice, suggesting that PSC833 may be a candidate to modulate biliary excretion of SN-38 with potential use in reducing CPT-11 toxicity.

  9. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    PubMed

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multiple resistance to carcinogens and xenobiotics: P-glycoproteins as universal detoxifiers.

    PubMed

    Efferth, Thomas; Volm, Manfred

    2017-07-01

    The detoxification of toxic substances is of general relevance in all biological systems. The plethora of exogenous xenobiotic compounds and endogenous toxic metabolic products explains the evolutionary pressure of all organisms to develop molecular mechanisms to detoxify and excrete harmful substances from the body. P-glycoprotein and other members of the ATP-binding cassette (ABC) transporter family extrude innumerous chemical compounds out of cells. Their specific expression in diverse biological contexts cause different phenotypes: (1) multidrug resistance (MDR) and thus failure of cancer chemotherapy, (2) avoidance of accumulation of carcinogens and prevention of carcinogenesis in healthy tissues, (3) absorption, distribution, metabolization and excretion (ADME) of pharmacological drugs in human patients, (4) protection from environmental toxins in aquatic organisms (multi-xenobiotic resistance, MXR). Hence ABC-transporters may have opposing effects for organismic health reaching from harmful in MDR of tumors to beneficial for maintenance of health in MXR. While their inhibition by specific inhibitors may improve treatment success in oncology and avoid carcinogenesis, blocking of ABC-transporter-driven efflux by environmental pollutants leads to ecotoxicological consequences in marine biotopes. Poisoned seafood may enter the food-chain and cause intoxications in human beings. As exemplified with ABC-transporters, joining forces in interdisciplinary research may, therefore, be a wise strategy to fight problems in human medicine and environmental sciences.

  11. Glyceollin transport, metabolism, and effects on P-glycoprotein function in Caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    Glyceollins are phytoalexins produced in soybeans from their isoflavone precursor daidzein. Their impressive anti-cancer and glucose normalization effects in rodents have generated interest in their therapeutic potential. The aim of the present studies was to begin to understand glyceollin intesti...

  12. Expression and significance of glucose transporter-1, P-glycoprotein, multidrug resistance-associated protein and glutathione S-transferase-π in laryngeal carcinoma.

    PubMed

    Mao, Zhong-Ping; Zhao, Li-Jun; Zhou, Shui-Hong; Liu, Meng-Qin; Tan, Wei-Feng; Yao, Hong-Tian

    2015-02-01

    Increasing glucose transporter-1 (GLUT-1) activity is one of the most important ways to increase the cellular influx of glucose. We previously demonstrated that increased GLUT-1 expression was an independent predictor of survival in patients with laryngeal carcinoma. Thus, GLUT-1 may present a novel therapeutic target in laryngeal carcinoma. In this study, the expression of GLUT-1, P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and glutathione S-transferase-π (GST-π) in laryngeal carcinomas was investigated by immunohistochemistry. Additionally, possible correlations between GLUT-1 and P-gp, MRP1 and GST-π and various clinicopathological parameters were analyzed. In this study, 52.9% (18/34), 58.8% (20/34), 20.6% (7/34) and 58.8% (20/34) of the laryngeal carcinomas were positive for GLUT-1, P-gp, MRP1 and GST-π, respectively. The expression of GLUT-1, P-gp, MRP1 and GST-π was higher in laryngeal carcinoma specimens when compared with laryngeal precancerous lesions (P<0.05). Pearson's correlation analysis showed correlations between GLUT-1 and P-gp (r=0.364; P=0.034), GLUT-1 and MRP1 (r=0.359; P=0.037) and P-gp and GST-π (r=0.426; P=0.012). GLUT-1 expression was found to significantly correlate with tumor-node-metastasis classification (P=0.02) and clinical stage (P=0.037). Furthermore, P-gp was found to significantly correlate with clinical stage (P=0.026). Univariate analysis showed that MRP1 expression was significantly associated with poor survival (c 2 =5.16; P=0.023). Multivariate analysis revealed that lymph node metastasis (P=0.009) and MRP1 overexpression (P=0.023) were significant predictors of poor survival. In the present study, the expression of GLUT-1, P-gp, MRP1 and GST-π in laryngeal carcinomas was investigated, as well as the correlations between these proteins. P-gp was found to significantly correlate with clinical stage, while MRP1 overexpression was significantly associated with poor survival.

  13. A Cell-Cell Fusion Assay to Assess Arenavirus Envelope Glycoprotein Membrane-Fusion Activity.

    PubMed

    York, Joanne; Nunberg, Jack H

    2018-01-01

    For many viruses that enter their target cells through pH-dependent fusion of the viral and endosomal membranes, cell-cell fusion assays can provide an experimental platform for investigating the structure-function relationships that promote envelope glycoprotein membrane-fusion activity. Typically, these assays employ effector cells expressing the recombinant envelope glycoprotein on the cell surface and target cells engineered to quantitatively report fusion with the effector cell. In the protocol described here, Vero cells are transfected with a plasmid encoding the arenavirus envelope glycoprotein complex GPC and infected with the vTF7-3 vaccinia virus expressing the bacteriophage T7 RNA polymerase. These effector cells are mixed with target cells infected with the vCB21R-lacZ vaccinia virus encoding a β-galactosidase reporter under the control of the T7 promoter. Cell-cell fusion is induced upon exposure to low-pH medium (pH 5.0), and the resultant expression of the β-galactosidase reporter is quantitated using a chemiluminescent substrate. We have utilized this robust microplate cell-cell fusion assay extensively to study arenavirus entry and its inhibition by small-molecule fusion inhibitors.

  14. Role of NH3 and NH4+ transporters in renal acid-base transport.

    PubMed

    Weiner, I David; Verlander, Jill W

    2011-01-01

    Renal ammonia excretion is the predominant component of renal net acid excretion. The majority of ammonia excretion is produced in the kidney and then undergoes regulated transport in a number of renal epithelial segments. Recent findings have substantially altered our understanding of renal ammonia transport. In particular, the classic model of passive, diffusive NH3 movement coupled with NH4+ "trapping" is being replaced by a model in which specific proteins mediate regulated transport of NH3 and NH4+ across plasma membranes. In the proximal tubule, the apical Na+/H+ exchanger, NHE-3, is a major mechanism of preferential NH4+ secretion. In the thick ascending limb of Henle's loop, the apical Na+-K+-2Cl- cotransporter, NKCC2, is a major contributor to ammonia reabsorption and the basolateral Na+/H+ exchanger, NHE-4, appears to be important for basolateral NH4+ exit. The collecting duct is a major site for renal ammonia secretion, involving parallel H+ secretion and NH3 secretion. The Rhesus glycoproteins, Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg), are recently recognized ammonia transporters in the distal tubule and collecting duct. Rhcg is present in both the apical and basolateral plasma membrane, is expressed in parallel with renal ammonia excretion, and mediates a critical role in renal ammonia excretion and collecting duct ammonia transport. Rhbg is expressed specifically in the basolateral plasma membrane, and its role in renal acid-base homeostasis is controversial. In the inner medullary collecting duct (IMCD), basolateral Na+-K+-ATPase enables active basolateral NH4+ uptake. In addition to these proteins, several other proteins also contribute to renal NH3/NH4+ transport. The role and mechanisms of these proteins are discussed in depth in this review.

  15. Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin.

    PubMed

    Lee, Chong-Ki; Choi, Jun-Shik; Bang, Joon Seok

    2013-06-01

    The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-∞ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions.

  16. Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin

    PubMed Central

    Lee, Chong-Ki; Choi, Jun-Shik

    2013-01-01

    The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration(IC50) of 4.1 µM and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the AUC0-∞ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions. PMID:23776402

  17. HIV Glycoprotein Gp120 Impairs Fast Axonal Transport by Activating Tak1 Signaling Pathways

    PubMed Central

    Berth, Sarah H.; Mesnard-Hoaglin, Nichole; Wang, Bin; Kim, Hajwa; Song, Yuyu; Sapar, Maria; Morfini, Gerardo

    2016-01-01

    Sensory neuropathies are the most common neurological complication of HIV. Of these, distal sensory polyneuropathy (DSP) is directly caused by HIV infection and characterized by length-dependent axonal degeneration of dorsal root ganglion (DRG) neurons. Mechanisms for axonal degeneration in DSP remain unclear, but recent experiments revealed that the HIV glycoprotein gp120 is internalized and localized within axons of DRG neurons. Based on these findings, we investigated whether intra-axonal gp120 might impair fast axonal transport (FAT), a cellular process critical for appropriate maintenance of the axonal compartment. Significantly, we found that gp120 severely impaired both anterograde and retrograde FAT. Providing a mechanistic basis for these effects, pharmacological experiments revealed an involvement of various phosphotransferases in this toxic effect, including members of mitogen-activated protein kinase pathways (Tak-1, p38, and c-Jun N-terminal Kinase (JNK)), inhibitor of kappa-B-kinase 2 (IKK2), and PP1. Biochemical experiments and axonal outgrowth assays in cell lines and primary cultures extended these findings. Impairments in neurite outgrowth in DRG neurons by gp120 were rescued using a Tak-1 inhibitor, implicating a Tak-1 mitogen-activated protein kinase pathway in gp120 neurotoxicity. Taken together, these observations indicate that kinase-based impairments in FAT represent a novel mechanism underlying gp120 neurotoxicity consistent with the dying-back degeneration seen in DSP. Targeting gp120-based impairments in FAT with specific kinase inhibitors might provide a novel therapeutic strategy to prevent axonal degeneration in DSP. PMID:27872270

  18. Toxicity of xanthene food dyes by inhibition of human drug-metabolizing enzymes in a noncompetitive manner.

    PubMed

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC(50) values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC(50) values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of (1)O(2) originating on xanthene dyes by light irradiation, because inhibition was prevented by (1)O(2) quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin.

  19. Toxicity of Xanthene Food Dyes by Inhibition of Human Drug-Metabolizing Enzymes in a Noncompetitive Manner

    PubMed Central

    Mizutani, Takaharu

    2009-01-01

    The synthetic food dyes studied were rose bengal (RB), phroxine (PL), amaranth, erythrosine B (ET), allura red, new coccine, acid red (AR), tartrazine, sunset yellow FCF, brilliant blue FCF, and indigo carmine. First, data confirmed that these dyes were not substrates for CYP2A6, UGT1A6, and UGT2B7. ET inhibited UGT1A6 (glucuronidation of p-nitrophenol) and UGT2B7 (glucuronidation of androsterone). We showed the inhibitory effect of xanthene dye on human UGT1A6 activity. Basic ET, PL, and RB in those food dyes strongly inhibited UGT1A6 activity, with IC50 values = 0.05, 0.04, and 0.015 mM, respectively. Meanwhile, AR of an acidic xanthene food dye showed no inhibition. Next, we studied the inhibition of CYP3A4 of a major phase I drug-metabolizing enzyme and P-glycoprotein of a major transporter by synthetic food dyes. Human CYP3A4 and P-glycoprotein were also inhibited by basic xanthene food dyes. The IC50 values of these dyes to inhibit CYP3A4 and P-glycoprotein were the same as the inhibition level of UGT1A6 by three halogenated xanthene food dyes (ET, PL, and RB) described above, except AR, like the results with UGT1A6 and UGT2B7. We also confirmed the noninhibition of CYP3A4 and P-gp by other synthetic food dyes. Part of this inhibition depended upon the reaction of 1O2 originating on xanthene dyes by light irradiation, because inhibition was prevented by 1O2 quenchers. We studied the influence of superoxide dismutase and catalase on this inhibition by dyes and we found prevention of inhibition by superoxide dismutase but not catalase. This result suggests that superoxide anions, originating on dyes by light irradiation, must attack drug-metabolizing enzymes. It is possible that red cosmetics containing phloxine, erythrosine, or rose bengal react with proteins on skin under lighting and may lead to rough skin. PMID:20041016

  20. Multiple alterations of canalicular membrane transport activities in rats with CCl(4)-induced hepatic injury.

    PubMed

    Song, Im-Sook; Lee, Young-Mi; Chung, Suk-Jae; Shim, Chang-Koo

    2003-04-01

    The influence of CCl(4)-induced experimental hepatic injury (CCl(4)-EHI) on the expression and transport activities of primary active transporters on the canalicular membrane, including P-glycoprotein (P-gp), a bile salt export pump (Bsep) and a multidrug resistance associated protein2 (Mrp2), was assessed. CCl(4)-EHI was induced by an intraperitoneal injection of CCl(4) to rats at a dose of 1 ml/kg 24 h prior to the preparation of canalicular liver plasma membrane (cLPM) vesicles and pharmacokinetic studies. The expression of each transporter was measured for the vesicles via Western blot analysis at 6, 12, 24, 36, and 48 h after the injection of CCl(4). The in vivo canalicular excretion clearance (CL(exc)) of [(3)H]daunomycin, [(3)H]taurocholate and [(3)H]17beta-estradiol-17beta-D-glucuronide (E(2)17betaG), representative substrates of P-gp, Bsep, and Mrp2, respectively, was determined following an i.v. infusion to rats. The uptake of each substrate into cLPM vesicles in the presence of ATP was also measured by a rapid filtration technique. As the result of the CCl(4)-EHI, the protein level of transporters was altered as a function of time in multiple manners; it was increased by 3.6-fold for P-gp, unchanged for Bsep, and decreased by 73% for Mrp2 at 24 h. The in vivo CL(exc) and the intrinsic uptake clearance into cLPM vesicles (CL(int)) at 24 h after the CCl(4) injection (CCl(4)-EHI(24 h)) were also influenced by the EHI in a similar manner; they were increased by 1.8- and 1.9-fold for daunomycin, unchanged for taurocholate, and decreased by 41 and 39% for E(2)17betaG, respectively, consistent with multiple alterations in the expression of the relevant transporters.

  1. Saturable Active Efflux by P-Glycoprotein and Breast Cancer Resistance Protein at the Blood-Brain Barrier Leads to Nonlinear Distribution of Elacridar to the Central Nervous System

    PubMed Central

    Sane, Ramola; Agarwal, Sagar; Mittapalli, Rajendar K.

    2013-01-01

    The study objective was to investigate factors that affect the central nervous system (CNS) distribution of elacridar. Elacridar inhibits transport mediated by P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) and has been used to study the influence of transporters on brain distribution of chemotherapeutics. Adequate distribution of elacridar across the blood-brain barrier (BBB) and into the brain parenchyma is necessary to target tumor cells in the brain that overexpress transporters and reside behind an intact BBB. We examined the role of P-gp and Bcrp on brain penetration of elacridar using Friend leukemia virus strain B wild-type, Mdr1a/b(−/−), Bcrp1(−/−), and Mdr1a/b(−/−)Bcrp1(−/−) mice. Initially, the mice were administered 2.5 mg/kg of elacridar intravenously, and the plasma and brain concentrations were determined. The brain-to-plasma partition coefficient of elacridar in the wild-type mice was 0.82, as compared with 3.5 in Mdr1a/b(−/−) mice, 6.6 in Bcrp1(−/−) mice, and 15 in Mdr1a/b(−/−)Bcrp1(−/−) mice, indicating that both P-gp and Bcrp limit the brain distribution of elacridar. The four genotypes were then administered increasing doses of elacridar, and the CNS distribution of elacridar was determined. The observed and model predicted maximum brain-to-plasma ratios (Emax) at the highest dose were not significantly different in all genotypes. However, the ED50 was lower for Mdr1a/b(−/−) mice compared with Bcrp1(−/−) mice. These findings correlate with the relative expression of P-gp and Bcrp at the BBB in these mice and demonstrate the quantitative enhancement in elacridar CNS distribution as a function of its dose. Overall, this study provides useful concepts for future applications of elacridar as an adjuvant therapy to improve targeting of chemotherapeutic agents to tumor cells in the brain parenchyma. PMID:23397054

  2. Curcumin Regulates Colon Cancer by Inhibiting P-Glycoprotein in In-situ Cancerous Colon Perfusion Rat Model.

    PubMed

    Neerati, Prasad; Sudhakar, Yakkanti A; Kanwar, Jagat R

    2013-07-08

    Studies on p-glycoprotein was carried out world vide with cell lines like Caco2, MDR1-LLC-PK1 and MDR1-MDCK in-vitro , but most of the results were failed to produce similar results in-vivo. In the present study curcumin inhibitory action on p-glycoprotein increased permeability of irinotecan, so in the colon cancer it would be beneficial if curcumin used as add on therapy. Intra-rectal administered of N-Nitroso N-methyl urea (2 mg/Kg) induced colon cancer. Single pass whole length of colon in-situ perfusion was carried out in rats with irinotecan to study the influence of p-glycoprotein modulators like verapamil and curcumin. The rats were divided in to 5 groups (n=6), Group I served as control perfused with 30 μg/ml of irinotecan, propronolol and phenol red. Group II was cancerous group, induced by N-methyl N-nitroso urea. Group III was perfused with irinotican in cancerous rats. Group IV, perfused with irinotican in presence of verapamil and group V was pre-treated with curcumin and then perfused with irinotican and was estimated by HPLC-UV to effective permeability coefficient. Our qRT-PCR and Western blot results confirmed that about 15-fold decreases in the expression of p-glycoprotein (P-gp) in curcumin treated colon cancer cells. Irinotecan was increased to 0.00066 cm/s and about 11-fold increase in verapamil-coperfused group, where curcumin pre-treated group irinotecan was increases 0.00006 cm/s to 0.00042 cm/s that is about 7-fold increase p-glycoprotein inhibitory activity by verapamil and curcumin found to be significantly enhanced the cancerous colon permeability of irinotecan. Any safe suitable p-glycoprotein inhibitors along with irinotecan will enhance the therapeutic benefit in the treatment of the colon cancer.

  3. Population pharmacokinetic modelling of non-linear brain distribution of morphine: influence of active saturable influx and P-glycoprotein mediated efflux

    PubMed Central

    Groenendaal, D; Freijer, J; de Mik, D; Bouw, M R; Danhof, M; de Lange, E C M

    2007-01-01

    Background and purpose: Biophase equilibration must be considered to gain insight into the mechanisms underlying the pharmacokinetic-pharmacodynamic (PK-PD) correlations of opioids. The objective was to characterise in a quantitative manner the non-linear distribution kinetics of morphine in brain. Experimental approach: Male rats received a 10-min infusion of 4 mg kg−1 of morphine, combined with a continuous infusion of the P-glycoprotein (Pgp) inhibitor GF120918 or vehicle, or 40 mg kg−1 morphine alone. Unbound extracellular fluid (ECF) concentrations obtained by intracerebral microdialysis and total blood concentrations were analysed using a population modelling approach. Key results: Blood pharmacokinetics of morphine was best described with a three-compartment model and was not influenced by GF120918. Non-linear distribution kinetics in brain ECF was observed with increasing dose. A one compartment distribution model was developed, with separate expressions for passive diffusion, active saturable influx and active efflux by Pgp. The passive diffusion rate constant was 0.0014 min−1. The active efflux rate constant decreased from 0.0195 min−1 to 0.0113 min−1 in the presence of GF120918. The active influx was insensitive to GF120918 and had a maximum transport (Nmax/Vecf) of 0.66 ng min−1 ml−1 and was saturated at low concentrations of morphine (C50=9.9 ng ml−1). Conclusions and implications: Brain distribution of morphine is determined by three factors: limited passive diffusion; active efflux, reduced by 42% by Pgp inhibition; low capacity active uptake. This implies blood concentration-dependency and sensitivity to drug-drug interactions. These factors should be taken into account in further investigations on PK-PD correlations of morphine. PMID:17471182

  4. Esterification of Quercetin Increases Its Transport Across Human Caco-2 Cells.

    PubMed

    Hu, Jiang-Ning; Zou, Xian-Guo; He, Yi; Chen, Fang; Deng, Ze-Yuan

    2016-07-01

    Plant polyphenols showed useful biochemical characteristics in vitro; however, the assessments of their clinical applications in vivo are restricted by their limited bioavailability due to their strong resistance to 1st-pass effects during absorption. In order to improve the bioavailability of quercetin (QU), the ester derivative of QU (3,3',4',5,7-pentahydroxy flavones, TAQU) was synthesized, followed by examining the oil-water partition coefficient as well as the transport mechanisms of QU and its ester derivative (TAQU) using human Caco-2 cells. The transport characteristics of QU and TAQU transport under different conditions (different concentrations, time, pH, temperature, tight junctions, and potential transporters) were systematically investigated. Results showed that QU had a lower permeability coefficient (2.82 × 10(-6) cm/s) for apical-to-basolateral (AP-BL) transport over 5 to 50 μM, whereas the transport rate for AP to BL flux of TAQU (5.23 × 10(-6) cm/s) was significantly greater than that of QU. Paracellular pathways were not involved during the transport of both QU and TAQU. QU was poorly absorbed by active transport, whereas TAQU was mostly absorbed by passive diffusion. Efflux transporters, P-glycoproteins, multidrug resistance proteins were proven to participate in the transport process of QU, but not in that of TAQU. These results suggested that improving the lipophicity of QU by esterification could increase the transport of QU across Caco-2 cells. © 2016 Institute of Food Technologists®

  5. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: herb-drug interactions mediated via P-gp.

    PubMed

    Li, Xue; Hu, Jinping; Wang, Baolian; Sheng, Li; Liu, Zhihao; Yang, Shuang; Li, Yan

    2014-03-01

    Modulation of drug transporters via herbal medicines which have been widely used in combination with conventional prescription drugs may result in herb-drug interactions in clinical practice. The present study was designed to investigate the inhibitory effects of 50 major herbal constituents on P-glycoprotein (P-gp) in vitro and in vivo as well as related inhibitory mechanisms. Among these herbal medicines, four constituents, including emodin, 18β-glycyrrhetic acid (18β-GA), dehydroandrographolide (DAG), and 20(S)-ginsenoside F₁ [20(S)-GF₁] exhibited significant inhibition (>50%) on P-gp in MDR1-MDCKII and Caco-2 cells. Emodin was the strongest inhibitor of P-gp (IC₅₀=9.42 μM), followed by 18β-GA (IC₅₀=21.78 μM), 20(S)-GF₁ (IC₅₀=76.08 μM) and DAG (IC₅₀=77.80 μM). P-gp ATPase activity, which was used to evaluate the affinity of substrates to P-gp, was stimulated by emodin and DAG with Km and Vmax values of 48.61, 29.09 μM and 71.29, 38.45 nmol/min/mg protein, respectively. However, 18β-GA and 20(S)-GF₁ exhibited significant inhibition on both basal and verapamil-stimulated P-gp ATPase activities at high concentration. Molecular docking analysis (CDOCKER) further elucidated the mechanism for structure-inhibition relationships of herbal constituents with P-gp. When digoxin was co-administered to male SD rats with emodin or 18β-GA, the AUC(₀₋t) and Cmax of digoxin were increased by approximately 51% and 58%, respectively. Furthermore, 18β-GA, DAG, 20(S)-GF₁ and Rh₁ at 10 μM significantly inhibited CYP3A4/5 activity, while emodin activated the metabolism of midazolam in human liver microsomes. In conclusion, four herbal constituents demonstrated inhibition of P-gp to specific extents in vitro and in vivo. Taken together, our findings provided the basis for the reliable assessment of the potential risks of herb-drug interactions in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Solamargine, a bioactive steroidal alkaloid isolated from Solanum aculeastrum induces non-selective cytotoxicity and P-glycoprotein inhibition.

    PubMed

    Burger, Trevor; Mokoka, Tsholofelo; Fouché, Gerda; Steenkamp, Paul; Steenkamp, Vanessa; Cordier, Werner

    2018-05-02

    Solanum aculeastrum fruits are used by some cancer sufferers as a form of alternative treatment. Scientific literature is scarce concerning its anticancer activity, and thus the aim of the study was to assess the in vitro anticancer and P-glycoprotein inhibitory potential of extracts of S. aculeastrum fruits. Furthermore, assessment of the combinational effect with doxorubicin was also done. The crude extract was prepared by ultrasonic maceration. Liquid-liquid extraction yielded one aqueous and two organic fractions. Bioactive constituents were isolated from the aqueous fraction by means of column chromatography, solid phase extraction and preparative thin-layer chromatography. Confirmation of bioactive constituent identity was done by nuclear magnetic resonance and ultra-performance liquid chromatography mass spectrometry. The crude extract and fractions were assessed for cytotoxicity and P-glycoprotein inhibition in both cancerous and non-cancerous cell lines using the sulforhodamine B and rhodamine-123 assays, respectively. Both the crude extract and aqueous fraction was cytotoxic to all cell lines, with the SH-SY5Y neuroblastoma cell line being most susceptible to exposure (IC 50  = 10.72 μg/mL [crude], 17.21 μg/mL [aqueous]). Dose-dependent P-glycoprotein inhibition was observed for the crude extract (5.9 to 18.9-fold at 100 μg/mL) and aqueous fraction (2.9 to 21.2 at 100 μg/mL). The steroidal alkaloids solamargine and solanine were identified. While solanine was not bioactive, solamargine displayed an IC 50 of 15.62 μg/mL, and 9.1-fold P-glycoprotein inhibition at 100 μg/mL against the SH-SY5Y cell line. Additive effects were noted for combinations of doxorubicin against the SH-SY5Y cell line. The crude extract and aqueous fraction displayed potent non-selective cytotoxicity and noteworthy P-glycoprotein inhibition. These effects were attributed to solamargine. P-glycoprotein inhibitory activity was only present at concentrations higher than those inducing cytotoxicity, and thus does not appear to be the likely mechanism for the enhancement of doxorubicin's cytotoxicity. Preliminary results suggest that non-selective cytotoxicity may hinder drug development, however, further assessment of the mode of cell death is necessary to determine the route forward.

  7. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.

    PubMed

    Šemeláková, M; Jendželovský, R; Fedoročko, P

    2016-07-01

    Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Sensitive and Specific Fluorescent Probes for Functional Analysis of the Three Major Types of Mammalian ABC Transporters

    PubMed Central

    Lebedeva, Irina V.; Pande, Praveen; Patton, Wayne F.

    2011-01-01

    An underlying mechanism for multi drug resistance (MDR) is up-regulation of the transmembrane ATP-binding cassette (ABC) transporter proteins. ABC transporters also determine the general fate and effect of pharmaceutical agents in the body. The three major types of ABC transporters are MDR1 (P-gp, P-glycoprotein, ABCB1), MRP1/2 (ABCC1/2) and BCRP/MXR (ABCG2) proteins. Flow cytometry (FCM) allows determination of the functional expression levels of ABC transporters in live cells, but most dyes used as indicators (rhodamine 123, DiOC2(3), calcein-AM) have limited applicability as they do not detect all three major types of ABC transporters. Dyes with broad coverage (such as doxorubicin, daunorubicin and mitoxantrone) lack sensitivity due to overall dimness and thus may yield a significant percentage of false negative results. We describe two novel fluorescent probes that are substrates for all three common types of ABC transporters and can serve as indicators of MDR in flow cytometry assays using live cells. The probes exhibit fast internalization, favorable uptake/efflux kinetics and high sensitivity of MDR detection, as established by multidrug resistance activity factor (MAF) values and Kolmogorov-Smirnov statistical analysis. Used in combination with general or specific inhibitors of ABC transporters, both dyes readily identify functional efflux and are capable of detecting small levels of efflux as well as defining the type of multidrug resistance. The assay can be applied to the screening of putative modulators of ABC transporters, facilitating rapid, reproducible, specific and relatively simple functional detection of ABC transporter activity, and ready implementation on widely available instruments. PMID:21799851

  9. Multiphoton imaging for assessing renal disposition in acute kidney injury

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.

    2016-11-01

    Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.

  10. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners

    PubMed Central

    Muramatsu, Takashi

    2016-01-01

    Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. PMID:26684586

  11. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells.

    PubMed

    Mabashi-Asazuma, Hideaki; Shi, Xianzong; Geisler, Christoph; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2013-02-01

    Insect cells are widely used for recombinant glycoprotein production, but they cannot provide the glycosylation patterns required for some biotechnological applications. This problem has been addressed by genetically engineering insect cells to express mammalian genes encoding various glycoprotein glycan processing functions. However, for various reasons, the impact of a mammalian cytosine-5'-monophospho (CMP)-sialic acid transporter has not yet been examined. Thus, we transformed Spodoptera frugiperda (Sf9) cells with six mammalian genes to generate a new cell line, SfSWT-4, that can produce sialylated glycoproteins when cultured with the sialic acid precursor, N-acetylmannosamine. We then super-transformed SfSWT-4 with a human CMP-sialic acid transporter (hCSAT) gene to isolate a daughter cell line, SfSWT-6, which expressed the hCSAT gene in addition to the other mammalian glycogenes. SfSWT-6 cells had higher levels of cell surface sialylation and also supported higher levels of recombinant glycoprotein sialylation, particularly when cultured with low concentrations of N-acetylmannosamine. Thus, hCSAT expression has an impact on glycoprotein sialylation, can reduce the cost of recombinant glycoprotein production and therefore should be included in ongoing efforts to glycoengineer the baculovirus-insect cell system. The results of this study also contributed new insights into the endogenous mechanism and potential mechanisms of CMP-sialic acid accumulation in the Golgi apparatus of lepidopteran insect cells.

  12. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions.

    PubMed

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-02-24

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions.

  13. Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions

    PubMed Central

    Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil

    2016-01-01

    Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160

  14. Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter*

    PubMed Central

    Seebacher, Nicole A.; Lane, Darius J. R.; Jansson, Patric J.; Richardson, Des R.

    2016-01-01

    Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a “safe house” to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in multidrug-resistant tumors where a stressful micro-environment exists. PMID:26601947

  15. Directed evolution of P-glycoprotein cysteines reveals site-specific, non-conservative substitutions that preserve multidrug resistance.

    PubMed

    Swartz, Douglas J; Mok, Leo; Botta, Sri K; Singh, Anukriti; Altenberg, Guillermo A; Urbatsch, Ina L

    2014-06-25

    Pgp (P-glycoprotein) is a prototype ABC (ATP-binding-cassette) transporter involved in multidrug resistance of cancer. We used directed evolution to replace six cytoplasmic Cys (cysteine) residues in Pgp with all 20 standard amino acids and selected for active mutants. From a pool of 75000 transformants for each block of three Cys, we identified multiple mutants that preserved drug resistance and yeast mating activity. The most frequent substitutions were glycine and serine for Cys427 (24 and 20%, respectively) and Cys1070 (37 and 25%) of the Walker A motifs in the NBDs (nucleotide-binding domains), Cys1223 in NBD2 (25 and 8%) and Cys638 in the linker region (24 and 16%), whereas close-by Cys669 tolerated glycine (16%) and alanine (14%), but not serine (absent). Cys1121 in NBD2 showed a clear preference for positively charged arginine (38%) suggesting a salt bridge with Glu269 in the ICL2 (intracellular loop 2) may stabilize domain interactions. In contrast, three Cys residues in transmembrane α-helices could be successfully replaced by alanine. The resulting CL (Cys-less) Pgp was fully active in yeast cells, and purified proteins displayed drug-stimulated ATPase activities indistinguishable from WT (wild-type) Pgp. Overall, directed evolution identified site-specific, non-conservative Cys substitutions that allowed building of a robust CL Pgp, an invaluable new tool for future functional and structural studies, and that may guide the construction of other CL proteins where alanine and serine have proven unsuccessful.

  16. Effect of structural modification of α-aminoxy peptides on their intestinal absorption and transport mechanism.

    PubMed

    Ma, Bin; Zha, Huiyan; Li, Na; Yang, Dan; Lin, Ge

    2011-08-01

    A representative α-aminoxy peptide 1 has been demonstrated to have a potential for the treatment of human diseases associated with Cl(-) channel dysfunctions. However, its poor intestinal absorption was determined. The purpose of this study was to delineate the transport mechanism responsible for its poor absorption and also to prepare peptide analogues by structural modifications of 1 at its isobutyl side chains without changing the α-aminoxy core for retaining biological activity to improve the intestinal absorption. The poor intestinal absorption of 1 was proved to be due to the P-glycoprotein (P-gp) mediated efflux transport in Caco-2 cell monolayer, intestinal segments in Ussing chamber and rat single pass intestinal perfusion models. Four analogues with propionic acid (2), butanamine (3), methyl (4) and hydroxymethyl side chains (5) were synthesized and tested using the same models. Except for the permeability of 2, the absorbable permeability of the modified peptides in Caco-2 cell monolayer and their intestinal absorption in rats were significantly improved to 7-fold (3), 4-fold (4), 11-fold (5) and 36-fold (2), 42-fold (3), 55-fold (4), 102-fold (5), respectively, compared with 1 (P(app), 0.034 ± 0.003 × 10(-6) cm/s; P(blood), 1.61 ± 0.807 × 10(-6) cm/s). More interestingly, the structural modification remarkably altered transport mechanism of the peptides, leading to the conversion of the active transport via P-gp mediation (1, 2), to MRP mediation (3), MRP plus BCRP mediation (4) or a passive diffusion (5). Furthermore, P-gp mediated efflux transport of 1 and 2 was demonstrated to not alter the P-gp expression, while 1 but not 2 exhibited uncompetitive inhibitory effect on P-gp ATPase. The results demonstrated that intestinal absorption and transport mechanism of the α-aminoxy peptides varied significantly with different structures, and their absorption can be dramatically improved by structural modifications, which allow us to further design and prepare better α-aminoxy peptide candidates with appropriate pharmacokinetic fates, including intestinal absorption, for potential clinical use.

  17. Estimation of the binding ability of main transport proteins of blood plasma with liver cirrhosis by the fluorescent probe method

    NASA Astrophysics Data System (ADS)

    Korolenko, E. A.; Korolik, E. V.; Korolik, A. K.; Kirkovskii, V. V.

    2007-07-01

    We present results from an investigation of the binding ability of the main transport proteins (albumin, lipoproteins, and α-1-acid glycoprotein) of blood plasma from patients at different stages of liver cirrhosis by the fluorescent probe method. We used the hydrophobic fluorescent probes anionic 8-anilinonaphthalene-1-sulfonate, which interacts in blood plasma mainly with albumin; cationic Quinaldine red, which interacts with α-1-acid glycoprotein; and neutral Nile red, which redistributes between lipoproteins and albumin in whole blood plasma. We show that the binding ability of albumin and α-1-acid glycoprotein to negatively charged and positively charged hydrophobic metabolites, respectively, increases in the compensation stage of liver cirrhosis. As the pathology process deepens and transitions into the decompensation stage, the transport abilities of albumin and α-1-acid glycoprotein decrease whereas the binding ability of lipoproteins remains high.

  18. Determination of S-methyl-L-methionine (SMM) from Brassicaceae Family Vegetables and Characterization of the Intestinal Transport of SMM by Caco-2 Cells.

    PubMed

    Song, Ji-Hoon; Lee, Hae-Rim; Shim, Soon-Mi

    2017-01-01

    The objectives of the current study were to determine S-methyl-L-methionine (SMM) from various Brassicaceae family vegetables by using validated analytical method and to characterize the intestinal transport mechanism of SMM by the Caco-2 cells. The SMM is well known to provide therapeutic activity in peptic ulcers. The amount of SMM from various Brassicaceae family vegetables ranged from 89.08 ± 1.68 μg/g to 535.98 ± 4.85 μg/g of dry weight by using validated ultra-performance liquid chromatography-electrospray ionization-mass spectrometry method. For elucidating intestinal transport mechanism, the cells were incubated with or without transport inhibitors, energy source, or a metabolic inhibitor. Phloridzin and verapamil as inhibitors of sodium glucose transport protein (SGLT1) and P-glycoprotein, respectively, were not responsible for cellular uptake of SMM. Glucose and sodium azide were not affected by the cellular accumulation of SMM. The efflux ratio of SMM was 0.26, implying that it is not effluxed through Caco-2 cells. The apparent coefficient permeability (P app ) of SMM was 4.69 × 10 -5 cm/s, indicating that it will show good oral absorption in in vivo. © 2016 Institute of Food Technologists®.

  19. Maternal serum proteome changes between the first and third trimester of pregnancy in rural southern Nepal.

    PubMed

    Scholl, P F; Cole, R N; Ruczinski, I; Gucek, M; Diez, R; Rennie, A; Nathasingh, C; Schulze, K; Christian, P; Yager, J D; Groopman, J D; West, K P

    2012-05-01

    Characterization of normal changes in the serum proteome during pregnancy may enhance understanding of maternal physiology and lead to the development of new gestational biomarkers. In 23 Nepalese pregnant women who delivered at term, two-dimensional difference in-gel electrophoresis (DIGE) was used to assess changes in relative protein abundance between paired serum samples collected in the first and third trimesters. One-hundred and forty-five of over 700 protein spots in DIGE gels (pI 4.2-6.8) exhibited nominally significant (p < 0.05) differences in abundance across trimesters. Additional filtering using a Bonferroni correction reduced the number of significant (p < 0.00019) spots to 61. Mass spectrometric analysis detected 38 proteins associated with gestational age, cytoskeletal remodeling, blood pressure regulation, lipid and nutrient transport, and inflammation. One new protein, pregnancy-specific β-glycoprotein 4 was detected. A follow-up isotope tagging for relative and absolute quantitation (iTRAQ) experiment of six mothers from the DIGE study revealed 111 proteins, of which 11 exhibited significant (p < 0.05) differences between trimesters. Four of these proteins: gelsolin, complement C1r subcomponent, α-1-acid glycoprotein, and α-1B-glycoprotein also changed in the DIGE analysis. Although not previously associated with normal pregnancy, gelsolin decreased in abundance by the third trimester (p < 0.01) in DIGE, iTRAQ and Western analyses. Changes in abundance of proteins in serum that are associated with syncytiotrophoblasts (gelsolin, pregnancy-specific β-1 glycoprotein 1 and β-2-glycoprotein I) probably reflect dynamics of a placental proteome shed into maternal circulation during pregnancy. Measurement of changes in the maternal serum proteome, when linked with birth outcomes, may yield biomarkers for tracking reproductive health in resource poor settings in future studies. Published by Elsevier Ltd.

  20. Prediction of drug transport processes using simple parameters and PLS statistics. The use of ACD/logP and ACD/ChemSketch descriptors.

    PubMed

    Osterberg, T; Norinder, U

    2001-01-01

    A method of modelling and predicting biopharmaceutical properties using simple theoretically computed molecular descriptors and multivariate statistics has been investigated for several data sets related to solubility, IAM chromatography, permeability across Caco-2 cell monolayers, human intestinal perfusion, brain-blood partitioning, and P-glycoprotein ATPase activity. The molecular descriptors (e.g. molar refractivity, molar volume, index of refraction, surface tension and density) and logP were computed with ACD/ChemSketch and ACD/logP, respectively. Good statistical models were derived that permit simple computational prediction of biopharmaceutical properties. All final models derived had R(2) values ranging from 0.73 to 0.95 and Q(2) values ranging from 0.69 to 0.86. The RMSEP values for the external test sets ranged from 0.24 to 0.85 (log scale).

  1. Role of P-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941.

    PubMed

    Salphati, Laurent; Lee, Leslie B; Pang, Jodie; Plise, Emile G; Zhang, Xiaolin

    2010-09-01

    2-(1H-Indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) is a novel small molecule inhibitor of the phosphatidylinositol 3-kinase (PI3K) pathway currently evaluated in the clinic as an anticancer agent. The objectives of this study were to determine in vitro whether GDC-0941 was a substrate of P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp1) and to investigate the impact of these transporters on the pharmacokinetics, brain penetration, and activity of GDC-0941 in FVBn mice (wild-type) and Mdr1a/b(-/-), Bcrp1(-/-), and Mdr1a/b(-/-)/Bcrp1(-/-) knockout mice. Studies with Madin-Darby canine kidney cells transfected with P-gp or Bcrp1 established that this compound was a substrate of both transporters. After administrations to mice, GDC-0941 brain-to-plasma ratio ranged from 0.02 to 0.06 in the wild-type and Bcrp1(-/-) mice and was modestly higher in the Mdr1a/b(-/-) mice, ranging from 0.08 to 0.11. In contrast, GDC-0941 brain-to-plasma ratio in Mdr1a/b(-/-)/Bcrp1(-/-) triple knockout mice was 30-fold higher than in the wild-type mice. The plasma clearance of GDC-0941 was similar in wild-type and all knockout mice, ranging from 15 to 25 ml/(min . kg) in the wild-type mice and from 18 to 35 ml/(min . kg) in the knockout mice. Exposure after oral administration was comparable in the four strains of mice. The PI3K pathway was markedly inhibited in the brain of Mdr1a/b(-/-)/Bcrp1(-/-) mice for up to 6 h postdose, as evidenced by a 60% suppression of the phosphorylated Akt signal, whereas no inhibition was detected in the brain of wild-type mice. The concerted effects of P-gp and Bcrp1 in restricting GDC-0941 access and pathway modulation in mouse brain may have implications for the treatment of patients with brain tumors.

  2. Anticancer Effects of the Nitric Oxide-Modified Saquinavir Derivative Saquinavir-NO against Multidrug-Resistant Cancer Cells12

    PubMed Central

    Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich

    2010-01-01

    The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266

  3. The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel

    2013-02-05

    Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimersmore » as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.« less

  4. Effects of selected OATP and/or ABC transporter inhibitors on the brain and whole-body distribution of glyburide.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Cisternino, Salvatore; Peyronneau, Marie-Anne; Damont, Annelaure; Goutal, Sébastien; Dubois, Albertine; Dollé, Frédéric; Scherrmann, Jean-Michel; Valette, Héric; Kuhnast, Bertrand; Bottlaender, Michel

    2013-10-01

    Glyburide (glibenclamide, GLB) is a widely prescribed antidiabetic with potential beneficial effects in central nervous system injury and diseases. In vitro studies show that GLB is a substrate of organic anion transporting polypeptide (OATP) and ATP-binding cassette (ABC) transporter families, which may influence GLB distribution and pharmacokinetics in vivo. In the present study, we used [(11)C]GLB positron emission tomography (PET) imaging to non-invasively observe the distribution of GLB at a non-saturating tracer dose in baboons. The role of OATP and P-glycoprotein (P-gp) in [(11)C]GLB whole-body distribution, plasma kinetics, and metabolism was assessed using the OATP inhibitor rifampicin and the dual OATP/P-gp inhibitor cyclosporine. Finally, we used in situ brain perfusion in mice to pinpoint the effect of ABC transporters on GLB transport at the blood-brain barrier (BBB). PET revealed the critical role of OATP on liver [(11)C]GLB uptake and its subsequent impact on [(11)C]GLB metabolism and plasma clearance. OATP-mediated uptake also occurred in the myocardium and kidney parenchyma but not the brain. The inhibition of P-gp in addition to OATP did not further influence [(11)C]GLB tissue and plasma kinetics. At the BBB, the inhibition of both P-gp and breast cancer resistance protein (BCRP) was necessary to demonstrate the role of ABC transporters in limiting GLB brain uptake. This study demonstrates that GLB distribution, metabolism, and elimination are greatly dependent on OATP activity, the first step in GLB hepatic clearance. Conversely, P-gp, BCRP, and probably multidrug resistance protein 4 work in synergy to limit GLB brain uptake.

  5. Effects of nifedipine on the pharmacokinetics of repaglinide in rats: possible role of CYP3A4 and P-glycoprotein inhibition by nifedipine.

    PubMed

    Choi, Jin-Seok; Choi, In; Choi, Dong-Hyun

    2013-01-01

    The aim of this study was to investigate the effects of nifedipine on the bioavailability and pharmacokinetics of repaglinide in rats. The effect of nifedipine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was evaluated. The pharmacokinetic parameters of repaglinide and blood glucose concentrations were also determined in rats after oral (0.5 mg/kg) and intravenous (0.2 mg/kg) administration of repaglinide to rats in the presence and absence of nifedipine (1 and 3 mg/kg). Administration of nifedipine resulted in inhibition CYP3A4 activity with an IC50 value of 7.8 μM, and nifedipine significantly inhibited P-gp activity in a concentration-dependent manner. Compared to the oral control group, nifedipine significantly increased the area under the plasma concentration-time curve (AUC0-∞) and the peak plasma concentration (Cmax) of repaglinide by 49.3 and 25.5%, respectively. Nifedipine significantly decreased the total body clearance (CL/F) of repaglinide by 22.0% compared to the oral control group. Nifedipine also increased the absolute bioavailability (AB) of repaglinide by 50.0% compared to the oral control group (33.6%). In addition, the relative bioavailability (RB) of repaglinide was 1.16- to 1.49-fold greater than that of the control group. Compared to the intravenous control, nifedipine significantly increased AUC0-∞ of repaglinide. Blood glucose concentrations had significant differences compared to the oral control groups. Nifedipine enhanced the oral bioavailability of repaglinide, which may be mainly attributable to inhibition of CYP3A4-mediated metabolism of repaglinide in the small intestine and/or in the liver and to inhibition of the P-gp efflux transporter in the small intestine and/or reduction of total body clearance by nifedipine. The current study has raised awareness of potential drug interactions by concomitant use of repaglinide with nifedipine.

  6. Functional Reconstitution into Liposomes of Purified Human RhCG Ammonia Channel

    PubMed Central

    Mouro-Chanteloup, Isabelle; Cochet, Sylvie; Chami, Mohamed; Genetet, Sandrine; Zidi-Yahiaoui, Nedjma; Engel, Andreas; Colin, Yves; Bertrand, Olivier; Ripoche, Pierre

    2010-01-01

    Background Rh glycoproteins (RhAG, RhBG, RhCG) are members of the Amt/Mep/Rh family which facilitate movement of ammonium across plasma membranes. Changes in ammonium transport activity following expression of Rh glycoproteins have been described in different heterologous systems such as yeasts, oocytes and eukaryotic cell lines. However, in these complex systems, a potential contribution of endogenous proteins to this function cannot be excluded. To demonstrate that Rh glycoproteins by themselves transport NH3, human RhCG was purified to homogeneity and reconstituted into liposomes, giving new insights into its channel functional properties. Methodology/Principal Findings An HA-tag introduced in the second extracellular loop of RhCG was used to purify to homogeneity the HA-tagged RhCG glycoprotein from detergent-solubilized recombinant HEK293E cells. Electron microscopy analysis of negatively stained purified RhCG-HA revealed, after image processing, homogeneous particles of 9 nm diameter with a trimeric protein structure. Reconstitution was performed with sphingomyelin, phosphatidylcholine and phosphatidic acid lipids in the presence of the C12E8 detergent which was subsequently removed by Biobeads. Control of protein incorporation was carried out by freeze-fracture electron microscopy. Particle density in liposomes was a function of the Lipid/Protein ratio. When compared to empty liposomes, ammonium permeability was increased two and three fold in RhCG-proteoliposomes, depending on the Lipid/Protein ratio (1/300 and 1/150, respectively). This strong NH3 transport was reversibly inhibited by mercuric and copper salts and exhibited a low Arrhenius activation energy. Conclusions/Significance This study allowed the determination of ammonia permeability per RhCG monomer, showing that the apparent PunitNH3 (around 1×10−3 µm3.s−1) is close to the permeability measured in HEK293E cells expressing a recombinant human RhCG (1.60×10−3 µm3.s−1), and in human red blood cells endogenously expressing RhAG (2.18×10−3 µm3.s−1). The major finding of this study is that RhCG protein is active as an NH3 channel and that this function does not require any protein partner. PMID:20126667

  7. Quantitative Targeted Absolute Proteomics (QTAP)-based Pharmacoproteomics: The Importance of International Collaboration.

    PubMed

    Terasaki, Tetsuya

    2017-01-01

    Proteins such as membrane transporters, enzymes, receptors and channels play key roles in drug absorption, distribution, metabolism, and elimination, and also influence efficacy and the likelihood of adverse reactions. Therefore, if we can quantify the activities of these molecules, it may be possible to predict the behavior of candidate drugs in humans in disease states; such methodology would be extremely helpful for efficient drug development. We have developed an in silico method to select appropriate peptides within amino acid sequences in order to quantify targeted proteins by LC-MS/MS in selected reaction monitoring (SRM) mode. We have applied this method for the quantification of functional proteins in order to validate various in vitro and in vivo models. We found fairly good correlation between protein amounts and the enzymatic activities of microsomal cytochrome P450 (CYP) isoforms and uridine 5'-diphospho-glucuronosyltransferase (UGT) in human liver, as well as between protein amounts and the transport activities of multiple transporters in human lung cells. These results suggest that protein quantification can be useful in predicting activity. We have applied this approach to evaluate the usefulness and limitations of an immortalized human brain capillary endothelial cell line (D3 cells) and a P-glycoprotein humanized (hMDR1) mouse model by comparing the amounts of functional proteins in the models with those in isolated capillaries from human brain. In order to obtain sufficient human tissue specimens for further studies leading to clinical applications, we believe that international collaboration will be crucial.

  8. Inhibitory effect of SJSZ glycoprotein (38 kDa) on expression of heat shock protein 27 and 70 in chromium (VI)-treated hepatocytes.

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2012-01-01

    Chromium (VI) is as an extremely toxic chemical substance, and is also an internationally recognized human carcinogen. The principal objective of this study was to determine whether or not Styrax japonica Siebold et al. Zuccarini (SJSZ) glycoprotein prevents hepatocarcinogenesis in chromium-treated BNL CL.2 cells and ICR mice. Firstly, it was evaluated that SJSZ glycoprotein has strong antioxidant character and scavenges radicals. In an effort to assess the chemopreventive effects of SJSZ glycoprotein on hepatocarcinogenesis, ICR mice were intraperitoneally injected with chromium (10 mg/kg, BW) for 8 weeks. After sacrifice, we evaluated indicators of liver tissue damage [the activities of lactate dehydrogenase (LDH) and alanine aminotransferase (ALT), and thiobarbituric acid-reactive substances (TBARS)], antioxidative enzymes [activities of superoxide dismutase (SOD), catalase (CAT) and gluthathione peroxidase (GPx)], and initiating hepatocarcinogenic indicator [heat shock protein (HSP) 27 and 70] and protein kinase C (PKC), p38 MAPK and PCNA via biochemical methods and immunoblot analysis. The results obtained from this study demonstrated that the SJSZ glycoprotein (50 μg/ml) inhibited the production of intracellular ROS in BNL CL.2 cells. In addition, the SJSZ glycoprotein (10 mg/kg, BW) attenuated the levels of LDH, ALT, and TBARS, whereas it increased antioxidative enzymes in mouse serum. SJSZ glycoprotein attenuated the activity of HSP27, HSP70, PKC, MAPKs, and PCNA in BNL CL.2 cells and liver tissue. Taken together, our results indicate that SJSZ glycoprotein might be have a potent preventive effect against hepatocarcinogenesis induced by oxidative stress.

  9. Reversion of the P-glycoprotein-mediated multidrug resistance of cancer cells by FK-506 derivatives.

    PubMed

    Jachez, B; Boesch, D; Grassberger, M A; Loor, F

    1993-04-01

    FK-506 is a resistance-modulating agent (RMA) for tumor cells whose multidrug resistance (MDR) involves a P-glycoprotein (Pgp)-mediated anti-cancer drug efflux. The family of FK-506 relatives and derivatives includes analogs which display a whole range of chemosensitizing strengths, from no detectable RMA activity to a complete reversion of the MDR phenotype. Similarly, FK-506 analogs display a whole range of immunosuppressive activities, including inactive ones. FK-506 was compared for RMA activity with 11 FK-506 analogs which were at least 20-fold less active than FK-506 for the inhibition of the bi-directional mixed lymphocyte reaction displayed the whole range of RMA activity. One such strong RMA derivative of FK-506 (SDZ 280-629) was further shown able to restore completely daunomycin retention by highly resistant MDR P388 tumor cells.

  10. Modulation of CYPs, P-gp, and PXR by Eschscholzia californica (California Poppy) and Its Alkaloids.

    PubMed

    Manda, Vamshi K; Ibrahim, Mohamed A; Dale, Olivia R; Kumarihamy, Mallika; Cutler, Stephen J; Khan, Ikhlas A; Walker, Larry A; Muhammad, Ilias; Khan, Shabana I

    2016-04-01

    Eschscholzia californica, a native US plant, is traditionally used as a sedative, analgesic, and anxiolytic herb. With the rapid rise in the use of herbal supplements together with over-the-counter and prescription drugs, the risk for potential herb-drug interactions is also increasing. Most of the clinically relevant pharmacokinetic drug interactions occur due to modulation of cytochrome P450 enzymes (CYPs), P-glycoprotein, and the pregnane X receptor by concomitantly used herbs. This study aimed to determine the effects of an EtOH extract, aqueous extract (tea), basic CHCl3 fractions, and isolated major alkaloids, namely protopine (1), escholtzine (2), allocryptopine (3), and californidine (4), of E. californica on the activity of cytochrome P450s, P-glycoprotein and the pregnane X receptor. The EtOH extract and fractions showed strong time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19, and reversible inhibition of CYP 2D6. Among the alkaloids, escholtzine (2) and allocryptopine (3) exhibited time-dependent inhibition of CYP 3A4, CYP 2C9, and CYP 2C19 (IC50 shift ratio > 2), while protopine (1) and allocryptopine (3) showed reversible inhibition of CYP 2D6 enzyme. A significant activation of the pregnane X receptor (> 2-fold) was observed with the EtOH extract, basic CHCl3 fraction, and alkaloids (except protopine), which resulted into an increased expression of mRNA and the activity of CYP 3A4 and CYP 1A2. The expression of P-glycoprotein was unaffected. However, aqueous extract (tea) and its main alkaloid californidine (4) did not affect cytochrome P450s, P-glycoprotein, or the pregnane X receptor. This data suggests that EtOH extract of E. californica and its major alkaloids have a potential of causing interactions with drugs that are metabolized by cytochrome P450s, while the tea seems to be safer. Georg Thieme Verlag KG Stuttgart · New York.

  11. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum

    PubMed Central

    Ferris, Sean P.; Jaber, Nikita S.; Molinari, Maurizio; Arvan, Peter; Kaufman, Randal J.

    2013-01-01

    Protein folding in the endoplasmic reticulum (ER) is error prone, and ER quality control (ERQC) processes ensure that only correctly folded proteins are exported from the ER. Glycoproteins can be retained in the ER by ERQC, and this retention contributes to multiple human diseases, termed ER storage diseases. UDP-glucose:glycoprotein glucosyltransferase (UGGT1) acts as a central component of glycoprotein ERQC, monoglucosylating deglucosylated N-glycans of incompletely folded glycoproteins and promoting subsequent reassociation with the lectin-like chaperones calreticulin and calnexin. The extent to which UGGT1 influences glycoprotein folding, however, has only been investigated for a few selected substrates. Using mouse embryonic fibroblasts lacking UGGT1 or those with UGGT1 complementation, we investigated the effect of monoglucosylation on the soluble/insoluble distribution of two misfolded α1-antitrypsin (AAT) variants responsible for AAT deficiency disease: null Hong Kong (NHK) and Z allele. Whereas substrate solubility increases directly with the number of N-linked glycosylation sites, our results indicate that additional solubility is conferred by UGGT1 enzymatic activity. Monoglucosylation-dependent solubility decreases both BiP association with NHK and unfolded protein response activation, and the solubility increase is blocked in cells deficient for calreticulin. These results suggest that UGGT1-dependent monoglucosylation of N-linked glycoproteins promotes substrate solubility in the ER. PMID:23864712

  12. Presynaptic neurones may contribute a unique glycoprotein to the extracellular matrix at the synapse

    NASA Astrophysics Data System (ADS)

    Caroni, Pico; Carlson, Steven S.; Schweitzer, Erik; Kelly, Regis B.

    1985-04-01

    As the extracellular matrix at the original site of a neuromuscular junction seems to play a major part in the specificity of synaptic regeneration1-5, considerable attention has been paid to unique molecules localized to this region6-11. Here we describe an extracellular matrix glycoprotein of the elasmobranch electric organ that is localized near the nerve endings. By immunological criteria, it is synthesized in the cell bodies, transported down the axons and is related to a glycoprotein in the synaptic vesicles of the neurones that innervate the electric organ. It is apparently specific for these neurones, as it cannot be detected elsewhere in the nervous system of the fish. Therefore, neurones seem to contribute unique extracellular matrix glycoproteins to the synaptic region. Synaptic vesicles could be involved in transporting these glycoproteins to or from the nerve terminal surface.

  13. α(1,3)-Fucosyltransferases FUT4 and FUT7 Control Murine Susceptibility to Thrombosis

    PubMed Central

    Wang, Huili; Morales-Levy, Maria; Rose, Jason; Mackey, Lantz C.; Bodary, Peter; Eitzman, Daniel; Homeister, Jonathon W.

    2014-01-01

    The α(1,3)-fucosyltransferases, types IV and VII (FUT4 and FUT7, respectively), are required for the synthesis of functional selectin-type leukocyte adhesion molecule ligands. The selectins and their ligands modulate leukocyte trafficking, and P-selectin and its ligand, P-selectin glycoprotein ligand-1, can modulate hemostasis and thrombosis. Regulation of thrombosis by FUT4 and/or FUT7 activity was examined in mouse models of carotid artery thrombosis and collagen/epinephrine-induced thromboembolism. Mice lacking both FUT4 and FUT7 (Fut−/− mice) had a shorter time to occlusive thrombus formation in the injured carotid artery and a higher mortality due to collagen/epinephrine-induced pulmonary thromboemboli. Mice lacking P-selectin or P-selectin glycoprotein ligand-1 did not have a prothrombotic phenotype. Whole blood platelet aggregation was enhanced, and plasma fibrinogen content, clot weight, and clot strength were increased in Fut−/− mice, and in vitro clot lysis was reduced compared with wild type. Fut4−/−, but not Fut7−/−, mice had increased pulmonary thromboembolism-induced mortality and decreased thromboemboli dissolution in vivo. These data show that FUT4 and FUT7 activity regulates thrombosis in a P-selectin– and P-selectin glycoprotein ligand-1–independent manner and suggest that FUT4 activity is important for thrombolysis. PMID:23562273

  14. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro

    P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less

  15. 20(S)-Protopanaxadiol (PPD) analogues chemosensitize multidrug-resistant cancer cells to clinical anticancer drugs.

    PubMed

    Liu, Junhua; Wang, Xu; Liu, Peng; Deng, Rongxin; Lei, Min; Chen, Wantao; Hu, Lihong

    2013-07-15

    Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3-2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Biological and immunogenic properties of rabies virus glycoprotein expressed by canine herpesvirus vector.

    PubMed

    Xuan, X; Tuchiya, K; Sato, I; Nishikawa, Y; Onoderaz, Y; Takashima, Y; Yamamoto, A; Katsumata, A; Iwata, A; Ueda, S; Mikami, T; Otsuka, H

    1998-01-01

    In order to evaluate whether canine herpesvirus (CHV) could be used as a live vector for the expression of heterologous immunogenes, we constructed a recombinant canine herpesvirus (CHV) expressing glycoprotein (G protein) of rabies virus (RV). The gene of G protein was inserted within the thymidine kinase gene of CHV YP11mu strain under the control of the human cytomegalovirus immediate early promoter. The G protein expressed by the recombinant CHV was processed and transported to the cell surface as in RV infected cells, and showed the same biological activities such as low pH dependent cell fusion and hemadsorption. The antigenic authenticity of the recombinant G protein was confirmed by a panel of monoclonal antibodies specific for G protein. Dogs inoculated intransally with the recombinant CHV produced higher titres of virus neutralizing antibodies against RV than those inoculated with a commercial, inactivated rabies vaccine. These results suggest that the CHV recombinant expressing G protein can be used as a vaccine to control canine rabies and that CHV may be useful as a vector to develop live recombinant against other infectious diseases in dogs.

  17. The inside and outside: topological issues in plant cell wall biosynthesis and the roles of nucleotide sugar transporters.

    PubMed

    Temple, Henry; Saez-Aguayo, Susana; Reyes, Francisca C; Orellana, Ariel

    2016-09-01

    The cell wall is a complex extracellular matrix composed primarily of polysaccharides. Noncellulosic polysaccharides, glycoproteins and proteoglycans are synthesized in the Golgi apparatus by glycosyltransferases (GTs), which use nucleotide sugars as donors to glycosylate nascent glycan and glycoprotein acceptors that are subsequently exported to the extracellular space. Many nucleotide sugars are synthesized in the cytosol, leading to a topological issue because the active sites of most GTs are located in the Golgi lumen. Nucleotide sugar transporters (NSTs) overcome this problem by translocating nucleoside diphosphate sugars from the cytosol into the lumen of the organelle. The structures of the cell wall components synthesized in the Golgi are diverse and complex; therefore, transporter activities are necessary so that the nucleotide sugars can provide substrates for the GTs. In this review, we describe the topology of reactions involved in polysaccharide biosynthesis in the Golgi and focus on the roles of NSTs as well as their impacts on cell wall structure when they are altered. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. P-glycoprotein and multidrug resistance-associated protein are involved in the regulation of extracellular levels of the major antiepileptic drug carbamazepine in the brain.

    PubMed

    Potschka, H; Fedrowitz, M; Löscher, W

    2001-11-16

    Despite considerable advances in the pharmacotherapy of epilepsy, about 30% of epileptic patients are refractory to antiepileptic drugs (AEDs). In most cases, a patient who is resistant to one major AED is also refractory to other AEDs, although these drugs act by different mechanisms. The mechanisms that lead to drug resistance in epilepsy are not known. Recently, over-expression of multidrug transporters, such as P-glycoprotein (PGP) and multidrug resistance-associated protein (MRP), has been reported in surgically resected epileptogenic human brain tissue and suggested to contribute to the drug resistance of epilepsy. However, it is not known to what extent multidrug transporters such as PGP or MRP are involved in transport of AEDs. In the present study, we used in vivo microdialysis in rats to study whether the concentration of carbamazepine in the extracellular fluid of the cerebral cortex can be enhanced by inhibition of PGP or MRP, using the PGP inhibitor verapamil and the MRP inhibitor probenecid. Local perfusion with verapamil or probenecid via the microdialysis probe increased the extracellular concentration of carbamazepine. The data indicate that both PGP and MRP participate in the regulation of extracellular brain concentrations of the major AED carbamazepine.

  19. Interactions of pesticides with membrane drug transporters: Implications for toxicokinetics and toxicity.

    PubMed

    Chedik, Lisa; Bruyere, Arnaud; Bacle, Astrid; Potin, Sophie; Le Vée, Marc; Fardel, Olivier

    2018-06-10

    Drug transporters are now recognized as major actors of pharmacokinetics. They are also likely implicated in toxicokinetics and toxicology of environmental pollutants, notably pesticides, to which humans are widely exposed and which are known to exert various deleterious effects towards health. Interactions of pesticides with drug transporters are therefore important to consider. Areas covered: This review provides an overview of the interactions of pesticides with membrane drug transporters, i.e., inhibition of their activity, regulation of their expression and handling of pesticides. Consequences for toxicokinetics and toxicity of pesticides are additionally summarized and discussed. Expert opinion: Some pesticides belonging to several chemical classes, such as organochlorine, pyrethroid and organophosphorus pesticides, have been demonstrated to interact with various uptake and efflux drug transporters, including the efflux pump P-glycoprotein and the uptake organic cation transporters (OCTs). This provides the proof of the concept that pesticide-transporter relationships merit attention. More extensive and systematic characterization of pesticide-transporter relationships, possibly through the use of in silico methods, is however likely required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and realistic pesticide concentrations reached in humans, may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity.

  20. Methylation of Notch3 modulates chemoresistance via P-glycoprotein.

    PubMed

    Gu, Xiaoting; Lu, Yangfan; He, Dongxu; Lu, Chunxiao; Jin, Jian; Lu, Xiaojie; Ma, Xin

    2016-12-05

    The global gene expression and DNA methylation of genes in adriamycin-resistant human breast cancer cells (MCF-7/ADM cells) are similar to those in paclitaxel-resistant MCF-7 cells (MCF-7/PTX) and are significantly different from those in wild-type MCF-7 cells. DNA methylation is associated with chemoresistance in breast cancer and changes the characteristics of chemoresistant and chemosensitive cells. Here, we showed that the tumor-suppressor gene Notch3 was inactivated due to epigenetic silencing DNA hypermethylation in MCF-7/ADM cells. In addition, the drug efflux pump P-glycoprotein was negatively regulated by Notch3 and highly expressed in MCF-7/ADM cells. Taken together, our findings demonstrated that hypermethylation of Notch3 causes activation of P-glycoprotein in adriamycin-resistant cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cabazitaxel is more active than first-generation taxanes in ABCB1(+) cell lines due to its reduced affinity for P-glycoprotein.

    PubMed

    Duran, George E; Derdau, Volker; Weitz, Dietmar; Philippe, Nicolas; Blankenstein, Jörg; Atzrodt, Jens; Sémiond, Dorothée; Gianolio, Diego A; Macé, Sandrine; Sikic, Branimir I

    2018-04-19

    The primary aim of this study was to determine cabazitaxel's affinity for the ABCB1/P-glycoprotein (P-gp) transporter compared to first-generation taxanes. We determined the kinetics of drug accumulation and retention using [ 14 C]-labeled taxanes in multidrug-resistant (MDR) cells. In addition, membrane-enriched fractions isolated from doxorubicin-selected MES-SA/Dx5 cells were used to determine sodium orthovanadate-sensitive ATPase stimulation after exposure to taxanes. Custom [ 3 H]-azido-taxane analogues were synthesized for the photoaffinity labeling of P-gp. The maximum intracellular drug concentration was achieved faster with [ 14 C]-cabazitaxel (5 min) than [ 14 C]-docetaxel (15-30 min). MDR cells accumulated twice as much cabazitaxel than docetaxel, and these levels could be restored to parental levels in the presence of the P-gp inhibitor PSC-833 (valspodar). Efflux in drug-free medium confirmed that MDR cells retained twice as much cabazitaxel than docetaxel. There was a strong association (r 2  = 0.91) between the degree of taxane resistance conferred by P-gp expression and the accumulation differences observed with the two taxanes. One cell model expressing low levels of P-gp was not cross-resistant to cabazitaxel while demonstrating modest resistance to docetaxel. Furthermore, there was a 1.9 × reduction in sodium orthovanadate-sensitive ATPase stimulation resulting from treatment with cabazitaxel compared to docetaxel. We calculated a dissociation constant (Kd) value of 1.7 µM for [ 3 H]-azido-docetaxel and ~ 7.5 µM for [ 3 H]-azido-cabazitaxel resulting in a 4.4 × difference in P-gp labeling, and cold docetaxel was a more effective competitor than cabazitaxel. Our studies confirm that cabazitaxel is more active in ABCB1(+) cell models due to its reduced affinity for P-gp compared to docetaxel.

  2. Design, synthesis and biological evaluation of (S)-valine thiazole-derived cyclic and non-cyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1)

    PubMed Central

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Kapoor, Khyati; Chufan, Eduardo E.; Patel, Bhargav A.; Ambudkar, Suresh V.; Talele, Tanaji T.

    2014-01-01

    Multidrug resistance (MDR) caused by ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) through extrusion of anticancer drugs from the cells is a major cause of failure to cancer chemotherapy. Previously, selenazole containing cyclic peptides were reported as P-gp inhibitors and these were also used for co-crystallization with mouse P-gp, which has 87% homology to human P-gp. It has been reported that human P-gp, can simultaneously accommodate 2-3 moderate size molecules at the drug binding pocket. Our in-silico analysis based on the homology model of human P-gp spurred our efforts to investigate the optimal size of (S)-valine-derived thiazole units that can be accommodated at drug-binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)-valine-derived thiazole units to investigate the optimal size, lipophilicity and the structural form (linear and cyclic) of valine-derived thiazole peptides that can accommodate well in the P-gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear- (13) and cyclic-trimer (17) derivatives of QZ59S-SSS were found to be the most and equally potent inhibitors of human P-gp (IC50 = 1.5 μM). Cyclic trimer and linear trimer being equipotent, future studies can be focused on non-cyclic counterparts of cyclic peptides maintaining linear trimer length. Binding model of the linear trimer (13) within the drug-binding site on the homology model of human P-gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the non-cyclic form. PMID:24288265

  3. Design, synthesis, and biological evaluation of (S)-valine thiazole-derived cyclic and noncyclic peptidomimetic oligomers as modulators of human P-glycoprotein (ABCB1).

    PubMed

    Singh, Satyakam; Prasad, Nagarajan Rajendra; Kapoor, Khyati; Chufan, Eduardo E; Patel, Bhargav A; Ambudkar, Suresh V; Talele, Tanaji T

    2014-01-03

    Multidrug resistance caused by ATP binding cassette transporter P-glycoprotein (P-gp) through extrusion of anticancer drugs from the cells is a major cause of failure in cancer chemotherapy. Previously, selenazole-containing cyclic peptides were reported as P-gp inhibitors and were also used for co-crystallization with mouse P-gp, which has 87 % homology to human P-gp. It has been reported that human P-gp can simultaneously accommodate two to three moderately sized molecules at the drug binding pocket. Our in silico analysis, based on the homology model of human P-gp, spurred our efforts to investigate the optimal size of (S)-valine-derived thiazole units that can be accommodated at the drug binding pocket. Towards this goal, we synthesized varying lengths of linear and cyclic derivatives of (S)-valine-derived thiazole units to investigate the optimal size, lipophilicity, and structural form (linear or cyclic) of valine-derived thiazole peptides that can be accommodated in the P-gp binding pocket and affects its activity, previously an unexplored concept. Among these oligomers, lipophilic linear (13) and cyclic trimer (17) derivatives of QZ59S-SSS were found to be the most and equally potent inhibitors of human P-gp (IC50 =1.5 μM). As the cyclic trimer and linear trimer compounds are equipotent, future studies should focus on noncyclic counterparts of cyclic peptides maintaining linear trimer length. A binding model of the linear trimer 13 within the drug binding site on the homology model of human P-gp represents an opportunity for future optimization, specifically replacing valine and thiazole groups in the noncyclic form. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Using the lentiviral vector system to stably express chicken P-gp and BCRP in MDCK cells for screening the substrates and studying the interplay of both transporters.

    PubMed

    Zhang, Yujuan; Huang, Jinhu; Liu, Yang; Guo, Tingting; Wang, Liping

    2018-06-01

    Transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are known to influence the pharmacokinetics and toxicity of substrate drugs. However, no detailed information is as yet available about functional activity and substrate spectra of chicken P-gp and BCRP. In this study, BCRP single and BCRP/P-gp double-transfected MDCK cell lines (named MDCK-chAbcg2 and MDCK-chAbcg2/Abcb1, respectively) were generated using lentiviral vector system to develop reliable systems for screening the substrates for these two transporters and study the interplay between them. The constructed cell lines significantly expressed functional exogenous proteins and expression persisted for at least 50 generations with no decrease. Enrofloxacin, ciprofloxacin, tilmicosin, sulfadiazine, ampicillin and clindamycin were classified as the substrates of chicken P-gp according to the rules suggested by FDA, as their net efflux ratios were greater than two. Similarly, enrofloxacin, ciprofloxacin, tilmicosin, florfenicol, ampicillin and clindamycin were classified as the substrates of BCRP. Among these drugs, enrofloxacin, ciprofloxacin, tilmicosin, ampicillin, and clindamycin were the cosubstrates of P-gp and BCRP, however, chicken BCRP and P-gp exhibit different affinities to the shared substrates at different concentrations by blocking either one or both transport with specific inhibitors in the coexpression system. It was also found that ceftiofur, amoxicillin and doxycycline were not substrates of either chicken BCRP or the substrates of chicken P-gp. These constructed cell models provide useful systems for high-throughput screening of the potential substrates of chicken BCRP and P-gp as well as the drug-drug interaction mediated via chicken BCRP and P-gp.

  5. Decursin in Angelica gigas Nakai (AGN) Enhances Doxorubicin Chemosensitivity in NCI/ADR-RES Ovarian Cancer Cells via Inhibition of P-glycoprotein Expression.

    PubMed

    Choi, Hyeong Sim; Cho, Sung-Gook; Kim, Min Kyoung; Kim, Min Soo; Moon, Seung Hee; Kim, Il Hwan; Ko, Seong-Gyu

    2016-12-01

    Angelica gigas Nakai (AGN, Korean Dang-gui) is traditionally used for the treatment of various diseases including cancer. Here, we investigated multidrug-resistant phenotype-reversal activities of AGN and its compounds (decursin, ferulic acid, and nodakenin) in doxorubicin-resistant NCI/ADR-RES ovarian cancer cells. Our results showed that a combination of doxorubicin with either AGN or decursin inhibited a proliferation of NCI/ADR-RES cells. These combinations increased the number of cells at sub-G1 phase when cells were stained with Annexin V-fluorescein isothiocyanate. We also found that these combinations activated caspase-9, caspase-8, and caspase-3 and increased cleaved PARP level. Moreover, an inhibition of P-glycoprotein expression by either AGN or decursin resulted in a reduction of its activity in NCI/ADR-RES cells. Therefore, our data demonstrate that decursin in AGN inhibits doxorubicin-resistant ovarian cancer cell proliferation and induces apoptosis in the presence of doxorubicin via blocking P-glycoprotein expression. Therefore, AGN would be a potentially novel treatment option for multidrug-resistant tumors by sensitizing to anticancer agents. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro.

    PubMed

    Theile, Dirk; Haefeli, Walter Emil; Weiss, Johanna

    2015-08-01

    Mitotane (1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane, o,p'-DDD) represents one of the most active drugs for the treatment of adrenocortical carcinoma. Its metabolites 1,1-(o,p'-dichlorodiphenyl) acetic acid (=o,p'-DDA) and 1,1-(o,p'-dichlorodiphenyl)-2,2 dichloroethene (=o,p'-DDE) partly contribute to its pharmacological effects. Because mitotane has a narrow therapeutic index and causes pharmacokinetic drug-drug interactions, knowledge about these compounds' effects on drug metabolizing and transporting proteins is crucial. Using quantitative real-time polymerase chain reaction, our study confirmed the strong inducing effects of o,p'-DDD on mRNA expression of cytochrome P450 3A4 (CYP3A4, 30-fold) and demonstrated that other enzymes and transporters are also induced (e.g., CYP1A2, 8.4-fold; ABCG2 (encoding breast resistance cancer protein, BCRP), 4.2-fold; ABCB1 (encoding P-glycoprotein, P-gp) 3.4-fold). P-gp induction was confirmed at the protein level. o,p'-DDE revealed a similar induction profile, however, with less potency and o,p'-DDA had only minor effects. Reporter gene assays clearly confirmed o,p'-DDD to be a PXR activator and for the first time demonstrated that o,p'-DDE and o,p'-DDA also activate PXR albeit with lower potency. Using isolated, recombinant CYP enzymes, o,p'-DDD and o,p'-DDE were shown to strongly inhibit CYP2C19 (IC50 = 0.05 and 0.09 µM). o,p'-DDA exhibited only minor inhibitory effects. In addition, o,p'-DDD, o,p'-DDE, and o,p'-DDA are demonstrated to be neither substrates nor inhibitors of BCRP or P-gp function. In summary, o,p'-DDD and o,p'-DDE might be potential perpetrators in pharmacokinetic drug-drug interactions through induction of drug-metabolizing enzymes or drug transporters and by potent inhibition of CYP2C19. In tumors over-expressing BCRP or P-gp, o,p'-DDD and its metabolites should retain their efficacy due to a lack of substrate characteristics.

  7. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    PubMed Central

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can act as regulators of the activity of various ABC and SLC drug transporters, but only when used at high and non-relevant concentrations, making unlikely any contribution of these transporter activity alterations to pyrethroid toxicity in environmentally exposed humans. PMID:28099443

  8. Inhibition of vinblastine efflux mediated by P-glycoprotein by grapefruit juice components in caco-2 cells.

    PubMed

    Takanaga, H; Ohnishi, A; Matsuo, H; Sawada, Y

    1998-10-01

    We investigated the effect of components in grapefruit juice (GFJ) on the transport of vinblastine, a substrate of P-glycoprotein (P-gp), across Caco-2 cells. The apical to basolateral flux of [3H]vinblastine was increased in the presence of GFJ extracts. The steady-state uptake of [3H]vinblastine from the apical side was significantly increased in the presence of GFJ in a dose-dependent manner within the range of 2.5 to 50% (v/v) of GFJ. Although naringin and naringenin reduced apical efflux of [3H]vinblastine at the concentration present in GFJ and increased steady-state uptake from the apical side to 124 and 240%, respectively, the observed effect of naringin was not enough to account for the effect of GFJ and naringenin is not naturally present in GFJ. To investigate the effective components in GFJ, we examined the inhibitory effect of several organic solvent extracts of GFJ on the transport of [3H]vinblastine in Caco-2 cells. Organic solvent extracts of GFJ enhanced the apical to basolateral transcellular transport and inhibited the apical efflux. The permeability coefficient of apical to basolateral transport of [3H]vinblastine increased in the order of the ethyl acetate>diethyl ether>methylene chloride extracts of GFJ. Since the extracted amount of naringenin by ethyl acetate was less than that with the other organic solvents, the primary inhibitor in GFJ is suggested to be different from this flavonoid. The present study demonstrated the existence of inhibitory components in GFJ for the P-gp function in Caco-2 cells, which are distinct from known components such as naringin or naringenin.

  9. Up-regulation of P-glycoprotein reduces intracellular accumulation of beta amyloid: investigation of P-glycoprotein as a novel therapeutic target for Alzheimer's disease

    PubMed Central

    Abuznait, Alaa H.; Cain, Courtney; Ingram, Drury; Burk, David; Kaddoumi, Amal

    2011-01-01

    Objectives Several studies have suggested the efflux transporter P-glycoprotein (P-gp) to play a role in the etiology of Alzheimer's disease through the clearance of amyloid beta (Aβ) from the brain. In this study, we aimed to investigate the possibility of P-gp as a potential therapeutic target for Alzheimer's disease by examining the impact of P-gp up-regulation on the clearance of Aβ, a neuropathological hallmark of Alzheimer's disease. Methods Uptake studies for 125I-radiolabelled Aβ1–40, and fluorescent immunostaining technique for P-gp and fluorescent imaging of Aβ1–40 were carried out in LS-180 cells following treatment with drugs known to induce P-gp expression. Key findings Approximately 10–35% decrease in 125I-Aβ1–40 intracellular accumulation was observed in cells treated with rifampicin, dexamethasone, caffeine, verapamil, hyperforin, β-estradiol and pentylenetetrazole compared with control. Also, fluorescent micrographs showed an inverse relationship between levels of P-gp expression and 5-carboxyfluorescein labelled Aβ (FAM-Aβ1–40) intracellular accumulation. Quantitative analysis of the micrographs revealed that the results were consistent with those of the uptake studies using 125I-Aβ1–40. Conclusions The investigated drugs were able to improve the efflux of Aβ1–40 from the cells via P-gp up-regulation compared with control. Our results elucidate the importance of targeting Aβ clearance via P-gp up-regulation, which will be effective in slowing or halting the progression of Alzheimer's disease. PMID:21718295

  10. Selenorhodamine Photosensitizers for Photodynamic Therapy of P-Glycoprotein-Expressing Cancer Cells

    PubMed Central

    2015-01-01

    We examined a series of selenorhodamines with amide and thioamide functionality at the 5-position of a 9-(2-thienyl) substituent on the selenorhodamine core for their potential as photosensitizers for photodynamic therapy (PDT) in P-glycoprotein (P-gp) expressing cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their uptake into Colo-26 cells in the absence or presence of verapamil, for their dark and phototoxicity toward Colo-26 cells, for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their colocalization with mitochondrial specific agents in Colo-26 cells. Thioamide derivatives 16b and 18b were more effective photosensitizers than amide derivatives 15b and 17b. Selenorhodamine thioamides 16b and 18b were useful in a combination therapy to treat Colo-26 cells in vitro: a synergistic therapeutic effect was observed when Colo-26 cells were exposed to PDT and treatment with the cancer drug doxorubicin. PMID:25250825

  11. Abcb1 in Pigs: Molecular cloning, tissues distribution, functional analysis, and its effect on pharmacokinetics of enrofloxacin

    PubMed Central

    Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping

    2016-01-01

    P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343

  12. Heat-stable antigen (CD24) as ligand for mouse P-selectin.

    PubMed

    Sammar, M; Aigner, S; Hubbe, M; Schirrmacher, V; Schachner, M; Vestweber, D; Altevogt, P

    1994-07-01

    Heat-stable antigen (HSA)/CD24 is a cell surface molecule expressed by many cell types in the mouse. The molecule has an unusual structure because of its small protein core and extensive glycosylation. In order to study the functional role of the HSA-associated glycoconjugates we have isolated different forms of HSA. Using lectin analysis we provide evidence for extensive heterogeneity in carbohydrate composition and sialic acid linkage. Several HSA forms were recognized by mouse P-selectin-IgG but not E-selectin-IgG in ELISA. As expected, P-selectin-IgG also bound to L2/HNK-1-positive neural glycoproteins (L2-glycoproteins) and sulfatides but not to gangliosides and other control glycoproteins. The binding of P-selectin-IgG to L2-glycoproteins and HSA required bivalent cations. The reactivity to HSA was sensitive to sialidase treatment whereas the binding to L2-glycoproteins was not. Studies with alpha 2-6 sialytransferase indicated that alpha 2-6 linked sialic acid was not involved in the P-selectin binding to HSA. Surprisingly, an L2/HNK-1 specific antibody was found to cross-react with some HSA glycoforms and its binding correlated with P-selectin-IgG reactivity. L2/HNK-1-positive or L2/HNK-1-negative HSA glycoforms were also analyzed after coating to polystyrene beads. Only the L2/HNK-1-positive HSA coated beads were reactive with P-selectin-IgG and could bind to activated bend3 endothelioma cells expressing P-selectin whereas the L2/HNK-1-negative HSA beads did not. It is suggested that in its L2/HNK-1 modified form the HSA molecule on leukocytes could represent a ligand for P-selectin on endothelial cells or platelets.

  13. Gold(I) NHC Complexes: Antiproliferative Activity, Cellular Uptake, Inhibition of Mammalian and Bacterial Thioredoxin Reductases, and Gram-Positive Directed Antibacterial Effects.

    PubMed

    Schmidt, Claudia; Karge, Bianka; Misgeld, Rainer; Prokop, Aram; Franke, Raimo; Brönstrup, Mark; Ott, Ingo

    2017-02-03

    Gold complexes with N-heterocyclic carbene (NHC) ligands represent a promising class of metallodrugs for the treatment of cancer or infectious diseases. In this report, the synthesis and the biological evaluation of halogen-containing NHC-Au I -Cl complexes are described. The complexes 1 and 5 a-5 f displayed good cytotoxic activity against tumor cells, and cellular uptake studies suggested that an intact Au-NHC fragment is essential for the accumulation of high amounts of both the metal and the NHC ligand. However, the bioavailability was negatively affected by serum components of the cell culture media and was influenced by likely transformations of the complex. One example (5 d) efficiently induced apoptosis in vincristine- and daunorubicin-resistant P-glycoprotein overexpressing Nalm-6 leukemia cells. Cellular uptake studies with this compound showed that both the wild-type and resistant Nalm-6 cells accumulated comparable amounts of gold, indicating that the gold drug was not excreted by P-glycoprotein or other efflux transporters. The effective inhibition of mammalian and bacterial thioredoxin reductases (TrxR) was confirmed for all of the gold complexes. Antibacterial screening of the gold complexes showed a particularly high activity against Gram-positive strains, reflecting their high dependence on an intact Trx/TrxR system. This result is of particular interest as the inhibition of bacterial TrxR represents a relatively little explored mechanism of new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effects of Cabazitaxel in Renal Cell Carcinoma Cell Lines.

    PubMed

    Mizutani, Kosuke; Tomoda, Masashi; Ohno, Yuta; Hayashi, Hideki; Fujita, Yasunori; Kawakami, Kyojiro; Kameyama, Koji; Kato, Taku; Sugiyama, Tadashi; Itoh, Yoshinori; Ito, Masafumi; Deguchi, Takashi

    2015-12-01

    Advanced renal cell carcinoma is treated with mammalian target of rapamycin (mTOR) inhibitors or tyrosine kinase inhibitors (TKIs). The effects of these drugs are, however, limited and novel treatment strategies are required. Clear-cell type renal cell carcinoma (ccRCC) is chemo-resistant, in part, due to expression of multidrug resistance proteins such as p-glycoprotein. Cabazitaxel, a tubulin-binding taxane drug used for castration-resistant prostate cancer, has less affinity for p-glycoprotein compared to docetaxel. In the current study, the effects of docetaxel and cabazitaxel on ccRCC cells were investigated. The expression of p-glycoprotein was evaluated in the ccRCC cell lines, Caki-1, KMRC-1 and OS-RC-2 by western blotting. Cells were treated with cabazitaxel or docetaxel, and growth kinetics and tubulin polymerization were determined by the WST-1 assay and cell-based tubulin polymerization assay, respectively. Intracellular drug concentrations were measured by chromatography. AKT activation after treatment was examined by western blotting. All ccRCC cell lines expressed p-glycoprotein. Cabazitaxel inhibited cell growth and induced tubulin polymerization more potently than docetaxel. The intracellular concentration of cabazitaxel was much higher than docetaxel in all cell lines. Both docetaxel and cabazitaxel inhibit AKT phosphorylation at 5 min among three cells. Cabazitaxel inhibits growth of ccRCC cells expressing p-glycoprotein and could thus be possibly used for advanced ccRCC patients in combination with targeted-therapy enhancing their effects. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Molecular Expression and Functional Activity of Efflux and Influx Transporters in Hypoxia Induced Retinal Pigment Epithelial Cells

    PubMed Central

    Vadlapatla, Ramya; Vadlapudi, Aswani Dutt; Ponnaluri, VK Chaithanya; Pal, Dhananjay; Mukherji, Mridul; Mitra, Ashim K.

    2013-01-01

    A decrease in tissue oxygen levels (aka hypoxia) mediates a number of vascular retinal diseases. Despite introduction of novel therapeutics, treatment of retinal disorders remains challenging, possibly due to complex nature of hypoxia signaling. To date, the differential effect of hypoxia on expression of efflux and influx transporters in retinal cells has not been studied. Therefore, the objective of this study was to delineate molecular and functional expression of membrane transporters in human retinal pigment epithelial (RPE) cells cultured under normoxic and hypoxic conditions. Quantitative real time polymerase chain reaction (qPCR), ELISA and immunoblot analysis were performed to examine the RNA and protein expression levels of transporters. Further, functional activity was evaluated by performing the uptake of various substrates in both normoxic and hypoxic conditions. qPCR analysis showed elevated expression of efflux transporters (P-glycoprotein, multidrug resistant protein 2, breast cancer resistant protein) and influx transporters (folate receptor-α, cationic and neutral amino acid transporter, sodium dependent multivitamin transporter) in a time dependent manner. Immunoblot analysis further confirmed elevated expression of breast cancer resistant protein and sodium dependent multivitamin transporter. A decrease in the uptake of efflux transporter substrates (digoxin, lopinavir and abacavir) and enhanced uptake of influx transporter substrates (arginine, folic acid and biotin) in hypoxia relative to normoxia further confirmed elevated expression of transporters, respectively. This study demonstrates for the first time that hypoxic conditions may alter expression of efflux and influx transporters in RPE cells. These findings suggest that hypoxia may further alter disposition of ophthalmic drugs. PMID:23827654

  16. Development, validation and utility of an in vitro technique for assessment of potential clinical drug-drug interactions involving P-glycoprotein.

    PubMed

    Keogh, John P; Kunta, Jeevan R

    2006-04-01

    Regulatory interest is increasing for drug transporters generally and P-glycoprotein (Pgp) in particular, primarily in the area of drug-drug interactions. To aid in both identifying and discharging the potential liabilities associated with drug-transporter interactions, the pharmaceutical industry has a growing requirement for routine and robust non-clinical assays. An assay was designed, optimised and validated to determine the in vitro inhibitory potency of new chemical entities (NCEs) towards human Pgp-mediated transport. [3H]-Digoxin was established as a suitable probe substrate by investigating its characteristics in the in vitro system (MDCKII-MDR1 cells grown in 24-multiwell inserts). The inhibitory potencies (apparent IC50) of known Pgp inhibitors astemizole, GF120918, ketoconazole, itraconazole, quinidine, verapamil and quinine were determined over at least a 1000-fold concentration range. Validation was carried out using manual and automatic techniques. [3H]-Digoxin was found to be stable and have good mass balance in the system. In contrast to [A-->B] transport, [3H]-digoxin [B-->A] transport rates were readily measured with good reproducibility. There was no evidence of saturation of transport up to 10 microM digoxin and 30 nM digoxin was selected for routine assay use, reflecting clinical therapeutic concentrations. IC50 values ranged over approximately 100-fold with excellent reproducibility. Results from manual and automated versions were in close agreement. This method is suitable for routine use to assess the in vitro inhibitory potency of NCEs on Pgp-mediated digoxin transport. Comparison of IC50 values against clinical interaction profiles for the probe inhibitors indicated the in vitro assay is predictive of clinical digoxin-drug interactions mediated via Pgp.

  17. The Design, Synthesis, and Biological Evaluation of New Paclitaxel Analogs With the Ability to Evade Efflux by P-Glycoprotein

    DTIC Science & Technology

    2005-05-01

    H O R1 7 10 13 3’ O O OH NH O O OH AcO HO O BzO H O Ph 7 10 13 3’ O 1 (R1=Ph...R2= Ac, paclitaxel) 2 (TX-67) 1a (R1=t-BuO R2= H , docetaxel) Figure 1. Paclitaxel, Docetaxel and TX-67 4 1.1 Seelig model vs. Active Transport...BzO H O O Type I Type I Type II Type I Type I Type II 3` 13 2 4 7 10 1` OH O Pgp repulsion motif Figure 2. TX-67 recognition elements

  18. Optimized approaches for quantification of drug transporters in tissues and cells by MRM proteomics.

    PubMed

    Prasad, Bhagwat; Unadkat, Jashvant D

    2014-07-01

    Drug transporter expression in tissues (in vivo) usually differs from that in cell lines used to measure transporter activity (in vitro). Therefore, quantification of transporter expression in tissues and cell lines is important to develop scaling factor for in vitro to in vivo extrapolation (IVIVE) of transporter-mediated drug disposition. Since traditional immunoquantification methods are semiquantitative, targeted proteomics is now emerging as a superior method to quantify proteins, including membrane transporters. This superiority is derived from the selectivity, precision, accuracy, and speed of analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple reaction monitoring (MRM) mode. Moreover, LC-MS/MS proteomics has broader applicability because it does not require selective antibodies for individual proteins. There are a number of recent research and review papers that discuss the use of LC-MS/MS for transporter quantification. Here, we have compiled from the literature various elements of MRM proteomics to provide a comprehensive systematic strategy to quantify drug transporters. This review emphasizes practical aspects and challenges in surrogate peptide selection, peptide qualification, peptide synthesis and characterization, membrane protein isolation, protein digestion, sample preparation, LC-MS/MS parameter optimization, method validation, and sample analysis. In particular, bioinformatic tools used in method development and sample analysis are discussed in detail. Various pre-analytical and analytical sources of variability that should be considered during transporter quantification are highlighted. All these steps are illustrated using P-glycoprotein (P-gp) as a case example. Greater use of quantitative transporter proteomics will lead to a better understanding of the role of drug transporters in drug disposition.

  19. Transport of a Novel Angiotensin-I-Converting Enzyme Inhibitory Peptide Ala-His-Leu-Leu Across Human Intestinal Epithelial Caco-2 Cells.

    PubMed

    Li, Ying; Zhao, Jiangtao; Liu, Xiaoli; Xia, Xiudong; Wang, Ying; Zhou, Jianzhong

    2017-03-01

    The transport behavior and absorption mechanism of Ala-His-Leu-Leu (AHLL) intestinal absorption in Caco-2 cell monolayers were clarified systemically. The safe absorptive concentration of AHLL was 200 μg/mL, which was determined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. The permeation of AHLL was concentration dependent in a bidirectional transfer and reached a plateau at 90 min. The efflux ratio was above 0.5, suggesting that AHLL was absorbed by both active transport and passive diffusion. The apparent permeability coefficients (P app ) of AHLL both from the apical (AP) to basolateral (BL) side (P app AB) and from the BL to AP side (P app BA) decreased when the temperature was lowered from 37°C to 4°C.The uptake of AHLL was more at pH 7.4 than at other pHs. Both verapamil and (E)-3-[[[3-[2-(7-chloro-2- quinolinyl) ethenyl] phenyl]-[[(3-dimethyl amino)-3-oxopropyl]thio] methyl] thio]-propanoic acid (MK571) inhibited the absorption of AHLL, indicating that P-glycoprotein and multi-drug resistant proteins (MRPs) were all involved in AHLL secretion, especially multi-drug resistant protein 2 (MRP2). AHLL was transported through both trans- and paracellular pathways across the Caco-2 cell monolayer. This work first elucidates the AHLL absorption mechanism in Caco-2 cells and provides the basis for future studies on the improvement of bioavailability.

  20. Basigin (CD147), a multifunctional transmembrane glycoprotein with various binding partners.

    PubMed

    Muramatsu, Takashi

    2016-05-01

    Basigin, also called CD147 or EMMPRIN, is a transmembrane glycoprotein that belongs to the immunoglobulin superfamily. Basigin has isoforms; the common form (basigin or basigin-2) has two immunoglobulin domains, and the extended form (basigin-1) has three. Basigin is the receptor for cyclophilins, S100A9 and platelet glycoprotein VI, whereas basigin-1 serves as the receptor for the rod-derived cone viability factor. Basigin tightly associates with monocarboxylate transporters and is essential for their cell surface translocation and activities. In the same membrane plane, basigin also associates with other proteins including GLUT1, CD44 and CD98. The carbohydrate portion of basigin is recognized by lectins, such as galectin-3 and E-selectin. These molecular recognitions form the basis for the role of basigin in the transport of nutrients, migration of inflammatory leukocytes and induction of matrix metalloproteinases. Basigin is important in vision, spermatogenesis and other physiological phenomena, and plays significant roles in the pathogenesis of numerous diseases, including cancer. Basigin is also the receptor for an invasive protein RH5, which is present in malaria parasites. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society.

  1. Herpes Simplex Virus Membrane Proteins gE/gI and US9 Act Cooperatively To Promote Transport of Capsids and Glycoproteins from Neuron Cell Bodies into Initial Axon Segments

    PubMed Central

    Howard, Paul W.; Howard, Tiffani L.

    2013-01-01

    Herpes simplex virus (HSV) and other alphaherpesviruses must move from sites of latency in ganglia to peripheral epithelial cells. How HSV navigates in neuronal axons is not well understood. Two HSV membrane proteins, gE/gI and US9, are key to understanding the processes by which viral glycoproteins, unenveloped capsids, and enveloped virions are transported toward axon tips. Whether gE/gI and US9 function to promote the loading of viral proteins onto microtubule motors in neuron cell bodies or to tether viral proteins onto microtubule motors within axons is not clear. One impediment to understanding how HSV gE/gI and US9 function in axonal transport relates to observations that gE−, gI−, or US9− mutants are not absolutely blocked in axonal transport. Mutants are significantly reduced in numbers of capsids and glycoproteins in distal axons, but there are less extensive effects in proximal axons. We constructed HSV recombinants lacking both gE and US9 that transported no detectable capsids and glycoproteins to distal axons and failed to spread from axon tips to adjacent cells. Live-cell imaging of a gE−/US9− double mutant that expressed fluorescent capsids and gB demonstrated >90% diminished capsids and gB in medial axons and no evidence for decreased rates of transport, stalling, or increased retrograde transport. Instead, capsids, gB, and enveloped virions failed to enter proximal axons. We concluded that gE/gI and US9 function in neuron cell bodies, in a cooperative fashion, to promote the loading of HSV capsids and vesicles containing glycoproteins and enveloped virions onto microtubule motors or their transport into proximal axons. PMID:23077321

  2. Evidence for glycoprotein transport into complex plastids.

    PubMed

    Peschke, Madeleine; Moog, Daniel; Klingl, Andreas; Maier, Uwe G; Hempel, Franziska

    2013-06-25

    Diatoms are microalgae that possess so-called "complex plastids," which evolved by secondary endosymbiosis and are surrounded by four membranes. Thus, in contrast to primary plastids, which are surrounded by only two membranes, nucleus-encoded proteins of complex plastids face additional barriers, i.e., during evolution, mechanisms had to evolve to transport preproteins across all four membranes. This study reveals that there exist glycoproteins not only in primary but also in complex plastids, making transport issues even more complicated, as most translocation machineries are not believed to be able to transport bulky proteins. We show that plastidal reporter proteins with artificial N-glycosylation sites are indeed glycosylated during transport into the complex plastid of the diatom Phaeodactylum tricornutum. Additionally, we identified five endogenous glycoproteins, which are transported into different compartments of the complex plastid. These proteins get N-glycosylated during transport across the outermost plastid membrane and thereafter are transported across the second, third, and fourth plastid membranes in the case of stromal proteins. The results of this study provide insights into the evolutionary pressure on translocation mechanisms and pose unique questions on the operating mode of well-known transport machineries like the translocons of the outer/inner chloroplast membranes (Toc/Tic).

  3. Capsaicin pretreatment enhanced the bioavailability of fexofenadine in rats by P-glycoprotein modulation: in vitro, in situ and in vivo evaluation.

    PubMed

    Bedada, Satish Kumar; Appani, Ramgopal; Boga, Praveen Kumar

    2017-06-01

    Capsaicin is the main pungent principle present in chili peppers has been found to possess P-glycoprotein (P-gp) inhibition activity in vitro, which may have the potential to modulate bioavailability of P-gp substrates. Therefore, purpose of this study was to evaluate the effect of capsaicin on intestinal absorption and bioavailability of fexofenadine, a P-gp substrate in rats. The mechanistic evaluation was determined by non-everted sac and intestinal perfusion studies to explore the intestinal absorption of fexofenadine. These results were confirmed by an in vivo pharmacokinetic study of oral administered fexofenadine in rats. The intestinal transport and apparent permeability (P app ) of fexofenadine were increased significantly by 2.8 and 2.6 fold, respectively, in ileum of capsaicin treated rats when compared to control group. Similarly, absorption rate constant (K a ), fraction absorbed (F ab ) and effective permeability (P eff ) of fexofenadine were increased significantly by 2.8, 2.9 and 3.4 fold, respectively, in ileum of rats pretreated with capsaicin when compared to control group. In addition, maximum plasma concentration (C max ) and area under the concentration-time curve (AUC) were increased significantly by 2.3 and 2.4 fold, respectively, in rats pretreated with capsaicin as compared to control group. Furthermore, obtained results in rats pretreated with capsaicin were comparable to verapamil (positive control) treated rats. Capsaicin pretreatment significantly enhanced the intestinal absorption and bioavailability of fexofenadine in rats likely by inhibition of P-gp mediated cellular efflux, suggesting that the combined use of capsaicin with P-gp substrates may require close monitoring for potential drug interactions.

  4. Phosphorylation of varicella-zoster virus glycoprotein gpI by mammalian casein kinase II and casein kinase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grose, C.; Jackson, W.; Traugh, J.A.

    1989-09-01

    Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, the authors investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an inmore » vitro assay containing ({gamma}-{sup 32}P)ATP. The same glycoprotein was phosphorylated when ({sup 32}P)GTP was substituted for ({sup 32}P)ATP in the protein kinase assay. They also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.« less

  5. Transporter Expression in Liver Tissue from Subjects with Alcoholic or Hepatitis C Cirrhosis Quantified by Targeted Quantitative Proteomics

    PubMed Central

    Wang, Li; Collins, Carol; Kelly, Edward J.; Chu, Xiaoyan; Ray, Adrian S.; Salphati, Laurent; Xiao, Guangqing; Lee, Caroline; Lai, Yurong; Liao, Mingxiang; Mathias, Anita; Evers, Raymond; Humphreys, William; Hop, Cornelis E. C. A.; Kumer, Sean C.

    2016-01-01

    Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance–associated protein (MRP)2, MRP3, MRP4, sodium taurocholate–cotransporting polypeptide (NTCP), organic anion–transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict transporter-mediated drug disposition in liver cirrhosis patients. PMID:27543206

  6. In Silico and in Vitro Screening for P-Glycoprotein Interaction with Tenofovir, Darunavir, and Dapivirine: An Antiretroviral Drug Combination for Topical Prevention of Colorectal HIV Transmission.

    PubMed

    Swedrowska, Magda; Jamshidi, Shirin; Kumar, Abhinav; Kelly, Charles; Rahman, Khondaker Miraz; Forbes, Ben

    2017-08-07

    The aim of the study was to use in silico and in vitro techniques to evaluate whether a triple formulation of antiretroviral drugs (tenofovir, darunavir, and dapivirine) interacted with P-glycoprotein (P-gp) or exhibited any other permeability-altering drug-drug interactions in the colorectal mucosa. Potential drug interactions with P-gp were screened initially using molecular docking, followed by molecular dynamics simulations to analyze the identified drug-transporter interaction more mechanistically. The transport of tenofovir, darunavir, and dapivirine was investigated in the Caco-2 cell models and colorectal tissue, and their apparent permeability coefficient (P app ), efflux ratio (ER), and the effect of transporter inhibitors were evaluated. In silico, dapivirine and darunavir showed strong affinity for P-gp with similar free energy of binding; dapivirine exhibiting a ΔG PB value -38.24 kcal/mol, darunavir a ΔG PB value -36.84 kcal/mol. The rank order of permeability of the compounds in vitro was tenofovir < darunavir < dapivirine. The P app for tenofovir in Caco-2 cell monolayers was 0.10 ± 0.02 × 10 -6 cm/s, ER = 1. For dapivirine, P app was 32.2 ± 3.7 × 10 -6 cm/s, but the ER = 1.3 was lower than anticipated based on the in silico findings. Neither tenofovir nor dapivirine transport was influenced by P-gp inhibitors. The absorptive permeability of darunavir (P app = 6.4 ± 0.9 × 10 -6 cm/s) was concentration dependent with ER = 6.3, which was reduced by verapamil to 1.2. Administration of the drugs in combination did not alter their permeability compared to administration as single agents. In conclusion, in silico modeling, cell culture, and tissue-based assays showed that tenofovir does not interact with P-gp and is poorly permeable, consistent with a paracellular transport mechanism. In silico modeling predicted that darunavir and dapivirine were P-gp substrates, but only darunavir showed P-gp-dependent permeability in the biological models, illustrating that in silico modeling requires experimental validation. When administered in combination, the disposition of the proposed triple-therapy antiretroviral drugs in the colorectal mucosa will depend on their distinctly different permeability, but was not interdependent.

  7. Microdose study of a P-glycoprotein substrate, fexofenadine, using a non-radioisotope-labelled drug and LC/MS/MS.

    PubMed

    Yamazaki, A; Kumagai, Y; Yamane, N; Tozuka, Z; Sugiyama, Y; Fujita, T; Yokota, S; Maeda, M

    2010-04-01

    Fexofenadine is a P-glycoprotein substrate of low bioavailability. It is primarily excreted into faeces as a parent drug via biliary excretion. The predictability from microdose data for the drug absorbed via transporters such as P-glycoprotein is not known. Therefore, this study assessed the predictability of therapeutic-dose pharmacokinetics of fexofenadine from microdosing data using non-radioisotope-labelled drug and liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). In a single dose, randomized, two-way crossover study, eight subjects received a microdose (100 microg) or a therapeutic dose (60 mg) of fexofenadine. Blood samples were collected until 12 h after dosing, and assayed using LC/MS/MS. Plasma concentration-time curves of fexofenadine between microdose and therapeutic dose were similar. The mean +/- SD of C(max) normalized to 60 mg dose after microdose and therapeutic dose were 379 +/- 147 and 275 +/- 145 ng/mL respectively. The mean AUC(last) normalized to 60 mg dose after microdose and therapeutic dose were 1914 +/- 738 and 1431 +/- 432 ng/h/mL respectively. The mean dose-adjusted C(max) and AUC(last) after microdose were higher compared with those after therapeutic dose. Individual plots of C(max) and AUC(last) normalized to 60 mg dose, were similar for microdose and therapeutic dose. None of the pharmacokinetic parameters were statistically different using anova. Overall, the microdose pharmacokinetics profile was similar to, and hence predictive of, that of the therapeutic dose. For the P-glycoprotein substrate fexofenadine, the predictability of therapeutic-dose pharmacokinetics from microdose data was good. A microdose study using a non-radioisotope-labelled drug and LC/MS/MS is convenient, and has the potential to aid the early selection of drug candidates.

  8. High brain distribution of a new central nervous system drug candidate despite its P-glycoprotein-mediated efflux at the mouse blood-brain barrier.

    PubMed

    Taccola, Camille; Cartot-Cotton, Sylvaine; Valente, Delphine; Barneoud, Pascal; Aubert, Catherine; Boutet, Valérie; Gallen, Fabienne; Lochus, Murielle; Nicolic, Sophie; Dodacki, Agnès; Smirnova, Maria; Cisternino, Salvatore; Declèves, Xavier; Bourasset, Fanchon

    2018-05-30

    Efficacy of drugs aimed at treating central nervous system (CNS) disorders rely partly on their ability to cross the cerebral endothelium, also called the blood-brain barrier (BBB), which constitutes the main interface modulating exchanges of compounds between the brain and blood. In this work, we used both, conventional pharmacokinetics (PK) approach and in situ brain perfusion technique to study the blood and brain PK of PKRinh, an inhibitor of the double-stranded RNA-dependent protein kinase (PKR) activation, in mice. PKRinh showed a supra dose-proportional blood exposure that was not observed in the brain, and a brain to blood AUC ratio of unbound drug smaller than 1 at all tested doses. These data suggested the implication of an active efflux at the BBB. Using in situ brain perfusion technique, we showed that PKRinh has a very high brain uptake clearance which saturates with increasing concentrations. Fitting the data to a Michaelis-Menten equation revealed that PKRinh transport through the BBB is composed of a passive unsaturable flux and an active saturable protein-mediated efflux with a k m of ≅ 3 μM. We were able to show that the ATP-binding cassette (ABC) transporter P-gp (Abcb1), but not Bcrp (Abcg2), was involved in the brain to blood efflux of PKRinh. At the circulating PKRinh concentrations of this study, the P-gp was not saturated, in accordance with the linear brain PKRinh PK. Finally, PKRinh had high brain uptake clearance (14 μl/g/s) despite it is a good P-gp substrate (P-gp Efflux ratio ≅ 3.6), and reached similar values than the cerebral blood flow reference, diazepam, in P-gp saturation conditions. With its very unique brain transport properties, PKRinh improves our knowledge about P-gp-mediated efflux across the BBB for the development of new CNS directed drugs. Copyright © 2018. Published by Elsevier B.V.

  9. Relevance of P-glycoprotein on CXCR4+ B cells to organ manifestation in highly active rheumatoid arthritis.

    PubMed

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Kawabe, Akio; Tanaka, Yoshiya

    2018-03-01

    In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4 + B cells to clinical manifestations in refractory RA. CD19 + B cells were analyzed using flow cytometry and immunohistochemistry. P-gp was highly expressed especially on CXCR4 + CD19 + B cells in RA. The proportion of P-gp-expressing CXCR4 + B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp + CXCR4 + CD19 + B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp + CXCR4 + CD19 + B cells. Adalimumab reduced P-gp + CXCR4 + CD19 + B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. Expansion of P-gp + CXCR4 + B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.

  10. Abundance of Drug Transporters in the Human Kidney Cortex as Quantified by Quantitative Targeted Proteomics

    PubMed Central

    Prasad, Bhagwat; Johnson, Katherine; Billington, Sarah; Lee, Caroline; Chung, Git W.; Brown, Colin D.A.; Kelly, Edward J.; Himmelfarb, Jonathan

    2016-01-01

    Protein expression of renal uptake and efflux transporters was quantified by quantitative targeted proteomics using the surrogate peptide approach. Renal uptake transporters assessed in this study included organic anion transporters (OAT1–OAT4), organic cation transporter 2 (OCT2), organic/carnitine cation transporters (OCTN1 and OCTN2), and sodium-glucose transporter 2 (SGLT2); efflux transporters included P-glycoprotein, breast cancer resistance protein, multidrug resistance proteins (MRP2 and MRP4), and multidrug and toxin extrusion proteins (MATE1 and MATE2-K). Total membrane was isolated from the cortex of human kidneys (N = 41). The isolated membranes were digested by trypsin and the digest was subjected to liquid chromatography–tandem mass spectrometry analysis. The mean expression of surrogate peptides was as follows (given with the standard deviation, in picomoles per milligram of total membrane protein): OAT1 (5.3 ± 1.9), OAT2 (0.9 ± 0.3), OAT3 (3.5 ± 1.6), OAT4 (0.5 ± 0.2), OCT2 (7.4 ± 2.8), OCTN1 (1.3 ± 0.6), OCTN2 (0.6 ± 0.2), P-glycoprotein (2.1 ± 0.8), MRP2 (1.4 ± 0.6), MRP4 (0.9 ± 0.6), MATE1 (5.1 ± 2.3), and SGLT2 (3.7 ± 1.8). Breast cancer resistance protein (BCRP) and MATE2-K proteins were detectable but were below the lower limit of quantification. Interestingly, the protein expression of OAT1 and OAT3 was significantly correlated (r > 0.8). A significant correlation was also observed between expression of multiple other drug transporters, such as OATs/OCT2 or OCTN1/OCTN2, and SGLT2/OCTNs, OCT, OATs, and MRP2. These renal transporter data should be useful in deriving in vitro to in vivo scaling factors to accurately predict renal clearance and kidney epithelial cell exposure to drugs or their metabolites. PMID:27621205

  11. Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex

    PubMed Central

    Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E. C. A.; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V.

    2014-01-01

    Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling. PMID:24122874

  12. P-Glycoprotein Activity in Steroid-Responsive vs. Steroid-Resistant Nephrotic Syndrome.

    PubMed

    Badr, Hassan S; El-Hawy, Mahmoud A; Helwa, Mohammed A

    2016-11-01

    To explore the expression of P-glycoprotein (P-gp) in the peripheral blood nucleated cells (PBNCs) of children with nephrotic syndrome in relation to their clinical response to glucocorticoid treatment. Thirty-six children with nephrotic syndrome (20 cases of steroid-responsive and 16 cases of steroid-resistant) were examined. All the participants were subjected to complete history taking, thorough clinical examination, laboratory investigations (24-h urinary protein, serum albumin, complete blood count with differential white blood cell count, serum cholesterol, serum urea, serum creatinine) and functional assay of P-gp using FACS Calibur flowcytometry. P-gp assay was done in both groups during remission. P-gp activity was significantly higher in steroid-resistant than steroid-sensitive cases. P-gp can be used as a predictor of outcome, as a part of laboratory evaluation of the cases before starting steroid therapy, so as to determine whether to use alternative line of therapy or use one of the P-gp inhibitors with steroid therapy.

  13. Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus.

    PubMed

    Wanas, E; Efler, S; Ghosh, K; Ghosh, H P

    1999-12-01

    Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.

  14. Genome-wide identification of ATP-binding cassette (ABC) transporters and their roles in response to polycyclic aromatic hydrocarbons (PAHs) in the copepod Paracyclopina nana.

    PubMed

    Jeong, Chang-Bum; Kim, Duck-Hyun; Kang, Hye-Min; Lee, Young Hwan; Kim, Hui-Su; Kim, Il-Chan; Lee, Jae-Seong

    2017-02-01

    The ATP-binding cassette (ABC) protein superfamily is one of the largest gene families and is highly conserved in all domains. The ABC proteins play roles in several biological processes, including multi-xenobiotic resistance (MXR), by functioning as transporters in the cellular membrane. They also mediate the cellular efflux of a wide range of substrates against concentration gradients. In this study, 37 ABC genes belonging to eight distinct subfamilies were identified in the marine copepod Paracyclopina nana and annotated based on a phylogenetic analysis. Also, the functions of P-glycoproteins (P-gp) and multidrug resistance-associated proteins (MRPs), conferring MXR, were verified using fluorescent substrates and specific inhibitors. The activities of MXR-mediated ABC proteins and their transcriptional level were examined in response to polyaromatic hydrocarbons (PAHs), main components of the water-accommodated fraction. This study increases the understanding of the protective role of MXR in response to PAHs over the comparative evolution of ABC gene families. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The transepithelial transport mechanism of polybrominated diphenyl ethers in human intestine determined using a Caco-2 cell monolayer.

    PubMed

    Yu, Yingxin; Wang, Mengmeng; Zhang, Kaiqiong; Yang, Dan; Zhong, Yufang; An, Jing; Lei, Bingli; Zhang, Xinyu

    2017-04-01

    Oral ingestion plays an important role in human exposure to polybrominated diphenyl ethers (PBDEs). The uptake of PBDEs primarily occurs in the small intestine. The aim of the present study is to investigate the transepithelial transport characteristics and mechanisms of PBDEs in the small intestine using a Caco-2 cell monolayer model. The apparent permeability coefficients of PBDEs indicated that tri- to hepta-BDEs were poorly absorbed compounds. A linear increase in transepithelial transport was observed with various concentrations of PBDEs, which suggested that passive diffusion dominated their transport at the concentration range tested. In addition, the pseudo-first-order kinetics equation can be applied to the transepithelial transport of PBDEs. The rate-determining step in transepithelial transport of PBDEs was trans-cell transport including the trans-pore process. The significantly lower transepithelial transport rates at low temperature for bidirectional transepithelial transport suggested that an energy-dependent transport mechanism was involved. The efflux transporters (P-glycoprotein, multidrug resistance-associated protein, and breast cancer resistance protein) and influx transporters (organic cation transporters) participated in the transepithelial transport of PBDEs. In addition, the transepithelial transport of PBDEs was pH sensitive; however, more information is required to understand the influence of pH. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Drug resistance in epithelial ovarian cancer: P-glycoprotein and glutation S-transferase. Can they play an important role in detecting response to platinum-based chemotherapy as a first-line therapy.

    PubMed

    Simşek, T; Ozbilim, G; Gülkesen, H; Kaya, H; Sargin, F; Karaveli, S

    2001-01-01

    Drug resistance is important for the treatment of ovarian cancer. P-glycoprotein and glutation S-transferase as resistance markers play an important role in the effectivity of chemotherapeutical agents. The role of P-glycoprotein and glutation S-transferase in the treatment of epithelial ovarian cancer is not well understood. We investigated the relation between P-glycoprotein and glutation S-transferase level for response to platinum-based chemotherapy in epithelial ovarian cancer. We reviewed 30 cases diagnosed as epithelial ovarian cancer and treated with platinum-based chemotherapy in the Department of Obstetrics and Gynecology, Akdeniz University School of Medicine. The material was attained from initial parafin-embeded blocks stained for P-glycoprotein and glutation S-transferase. The cases that were diagnosed and treated before attending our clinic were not enrolled in the study. Mean age was 58.2 (25-70) and mean gravida 4.1 (0-10). Twenty-four patients (80%) were glutation S-transferase positive. Three cases (10%) out of 30 had positive reaction for P-glycoprotein. No difference was revealed regarding chemotherapy response rate among the cases showing glutation S-transferase positivity and P-glycoprotein negativity. Detection of glutation S-transferase and P-glycoprotein levels in epithelial ovarian cancer tissue is not important for response to platinum-based chemotherapy as a first line.

  17. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Nora F.; Faculty of Pharmacy, Suez Canal University, Ismailia; Jasirwan, Chyntia

    2016-03-15

    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highlymore » conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.« less

  18. Cell wall O-glycoproteins and N-glycoproteins: aspects of biosynthesis and function

    PubMed Central

    Nguema-Ona, Eric; Vicré-Gibouin, Maïté; Gotté, Maxime; Plancot, Barbara; Lerouge, Patrice; Bardor, Muriel; Driouich, Azeddine

    2014-01-01

    Cell wall O-glycoproteins and N-glycoproteins are two types of glycomolecules whose glycans are structurally complex. They are both assembled and modified within the endomembrane system, i.e., the endoplasmic reticulum (ER) and the Golgi apparatus, before their transport to their final locations within or outside the cell. In contrast to extensins (EXTs), the O-glycan chains of arabinogalactan proteins (AGPs) are highly heterogeneous consisting mostly of (i) a short oligo-arabinoside chain of three to four residues, and (ii) a larger β-1,3-linked galactan backbone with β-1,6-linked side chains containing galactose, arabinose and, often, fucose, rhamnose, or glucuronic acid. The fine structure of arabinogalactan chains varies between, and within plant species, and is important for the functional activities of the glycoproteins. With regards to N-glycans, ER-synthesizing events are highly conserved in all eukaryotes studied so far since they are essential for efficient protein folding. In contrast, evolutionary adaptation of N-glycan processing in the Golgi apparatus has given rise to a variety of organism-specific complex structures. Therefore, plant complex-type N-glycans contain specific glyco-epitopes such as core β,2-xylose, core α1,3-fucose residues, and Lewisa substitutions on the terminal position of the antenna. Like O-glycans, N-glycans of proteins are essential for their stability and function. Mutants affected in the glycan metabolic pathways have provided valuable information on the role of N-/O-glycoproteins in the control of growth, morphogenesis and adaptation to biotic and abiotic stresses. With regards to O-glycoproteins, only EXTs and AGPs are considered herein. The biosynthesis of these glycoproteins and functional aspects are presented and discussed in this review. PMID:25324850

  19. Characterization of pH-sensitive molecular switches that trigger the structural transition of vesicular stomatitis virus glycoprotein from the postfusion state toward the prefusion state.

    PubMed

    Ferlin, Anna; Raux, Hélène; Baquero, Eduard; Lepault, Jean; Gaudin, Yves

    2014-11-01

    Vesicular stomatitis virus (VSV; the prototype rhabdovirus) fusion is triggered at low pH and mediated by glycoprotein G, which undergoes a low-pH-induced structural transition. A unique feature of rhabdovirus G is that its conformational change is reversible. This allows G to recover its native prefusion state at the viral surface after its transport through the acidic Golgi compartments. The crystal structures of G pre- and postfusion states have been elucidated, leading to the identification of several acidic amino acid residues, clustered in the postfusion trimer, as potential pH-sensitive switches controlling the transition back toward the prefusion state. We mutated these residues and produced a panel of single and double mutants whose fusion properties, conformational change characteristics, and ability to pseudotype a virus lacking the glycoprotein gene were assayed. Some of these mutations were also introduced in the genome of recombinant viruses which were further characterized. We show that D268, located in the segment consisting of residues 264 to 273, which refolds into postfusion helix F during G structural transition, is the major pH sensor while D274, D395, and D393 have additional contributions. Furthermore, a single passage of recombinant virus bearing the mutation D268L (which was demonstrated to stabilize the G postfusion state) resulted in a pseudorevertant with a compensatory second mutation, L271P. This revealed that the propensity of the segment of residues 264 to 273 to refold into helix F has to be finely tuned since either an increase (mutation D268L alone) or a decrease (mutation L271P alone) of this propensity is detrimental to the virus. Vesicular stomatitis virus enters cells via endocytosis. Endosome acidification induces a structural transition of its unique glycoprotein (G), which mediates fusion between viral and endosomal membranes. G conformational change is reversible upon increases in pH. This allows G to recover its native prefusion state at the viral surface after its transport through the acidic Golgi compartments. We mutated five acidic residues, proposed to be pH-sensitive switches controlling the structural transition back toward the prefusion state. Our results indicate that residue D268 is the major pH sensor, while other acidic residues have additional contributions, and reveal that the propensity of the segment consisting of residues 264 to 273 to adopt a helical conformation is finely regulated. This segment might be a good target for antiviral compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. Role of N-linked polymannose oligosaccharides in targeting glycoproteins for endoplasmic reticulum-associated degradation.

    PubMed

    Spiro, R G

    2004-05-01

    Misfolded or incompletely assembled multisubunit glycoproteins undergo endoplasmic reticulum-associated degradation (ERAD) regulated in large measure by their N-linked polymannose oligosaccharides. In this quality control system lectin interaction with Glc(3)Man(9)GlcNAc(2) glycans after trimming with endoplasmic reticulum (ER) alpha-glucosidases and alpha-mannosidases sorts out persistently unfolded glycoproteins for N-deglycosylation and proteolytic degradation. Monoglucosylated (Glc(1)Man(9)GlcNAc(2)) glycoproteins take part in the calnexin/calreticulin glucosylation-deglucosylation cycle, while the Man(8)GlcNAc(2) isomer B product of ER mannosidase I interacts with EDEM. Proteasomal degradation requires retrotranslocation into the cytosol through a Sec61 channel and deglycosylation by peptide: N-glycosidase (PNGase); in alternate models both PNGase and proteasomes may be either free in the cytosol or ER membrane-imbedded/attached. Numerous proteins appear to undergo nonproteasomal degradation in which deglycosylation and proteolysis take place in the ER lumen. The released free oligosaccharides (OS) are transported to the cytosol as OS-GlcNAc(2) along with similar components produced by the hydrolytic action of the oligosaccharyltransferase, where they together with OS from the proteasomal pathway are trimmed to Man(5)GlcNAc(1) by the action of cytosolic endo-beta- N-acetylglucosaminidase and alpha-mannosidase before entering the lysosomes. Some misfolded glycoproteins can recycle between the ER, intermediate and Golgi compartments, where they are further processed before ERAD. Moreover, properly folded glycoproteins with mannose-trimmed glycans can be deglucosylated in the Golgi by endomannosidase, thereby releasing calreticulin and permitting formation of complex OS. A number of regulatory controls have been described, including the glucosidase-glucosyltransferase shuttle, which controls the level of Glc(3)Man(9)GlcNAc(2)-P-P-Dol, and the unfolded protein response, which enhances synthesis of components of the quality control system.

  1. Elucidation of chemosensitization effect of acridones in cancer cell lines: Combined pharmacophore modeling, 3D QSAR, and molecular dynamics studies.

    PubMed

    Gade, Deepak Reddy; Makkapati, Amareswararao; Yarlagadda, Rajesh Babu; Peters, Godefridus J; Sastry, B S; Rajendra Prasad, V V S

    2018-06-01

    Overexpression of P-glycoprotein (P-gp) leads to the emergence of multidrug resistance (MDR) in cancer treatment. Acridones have the potential to reverse MDR and sensitize cells. In the present study, we aimed to elucidate the chemosensitization potential of acridones by employing various molecular modelling techniques. Pharmacophore modeling was performed for the dataset of chemosensitizing acridones earlier proved for cytotoxic activity against MCF7 breast cancer cell line. Gaussian-based QSAR studies also performed to predict the favored and disfavored region of the acridone molecules. Molecular dynamics simulations were performed for compound 10 and human P-glycoprotein (obtained from Homology modeling). An efficient pharmacophore containing 2 hydrogen bond acceptors and 3 aromatic rings (AARRR.14) was identified. NCI 2012 chemical database was screened against AARRR.14 CPH and identified 25 best-fit molecules. Potential regions of the compound were identified through Field (Gaussian) based QSAR. Regression analysis of atom-based QSAR resulted in r 2 of 0.95 and q 2 of 0.72, whereas, regression analysis of field-based QSAR resulted in r 2 of 0.92 and q 2 of 0.87 along with r 2 cv as 0.71. The fate of the acridone molecule (compound 10) in the P-glycoprotein environment is analyzed through analyzing the conformational changes occurring during the molecular dynamics simulations. Combined data of different in silico techniques provided basis for deeper understanding of structural and mechanistic insights of interaction phenomenon of acridones with P-glycoprotein and also as strategic basis for designing more potent molecules for anti-cancer and multidrug resistance reversal activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms

    PubMed Central

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V.; Baer, Maria R.

    2013-01-01

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC50s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC50 of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [125I]iodoarylazidoprazosin ([125I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. PMID:23261525

  3. The Pim kinase inhibitor SGI-1776 decreases cell surface expression of P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) and drug transport by Pim-1-dependent and -independent mechanisms.

    PubMed

    Natarajan, Karthika; Bhullar, Jasjeet; Shukla, Suneet; Burcu, Mehmet; Chen, Zhe-Sheng; Ambudkar, Suresh V; Baer, Maria R

    2013-02-15

    Overexpression of the ATP-binding cassette (ABC) drug efflux proteins P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) on malignant cells is associated with inferior chemotherapy outcomes. Both, ABCB1 and ABCG2, are substrates of the serine/threonine kinase Pim-1; Pim-1 knockdown decreases their cell surface expression, but SGI-1776, the first clinically tested Pim inhibitor, was shown to reverse drug resistance by directly inhibiting ABCB1-mediated transport. We sought to characterize Pim-1-dependent and -independent effects of SGI-1776 on drug resistance. SGI-1776 at the Pim-1-inhibitory and non-cytotoxic concentration of 1 μM decreased the IC(50)s of the ABCG2 and ABCB1 substrate drugs in cytotoxicity assays in resistant cells, with no effect on the IC(50) of non-substrate drug, nor in parental cells. SGI-1776 also increased apoptosis of cells overexpressing ABCG2 or ABCB1 exposed to substrate chemotherapy drugs and decreased their colony formation in the presence of substrate, but not non-substrate, drugs, with no effect on parental cells. SGI-1776 decreased ABCB1 and ABCG2 surface expression on K562/ABCB1 and K562/ABCG2 cells, respectively, with Pim-1 overexpression, but not HL60/VCR and 8226/MR20 cells, with lower-level Pim-1 expression. Finally, SGI-1776 inhibited uptake of ABCG2 and ABCB1 substrates in a concentration-dependent manner irrespective of Pim-1 expression, inhibited ABCB1 and ABCG2 photoaffinity labeling with the transport substrate [(125)I]iodoarylazidoprazosin ([(125)I]IAAP) and stimulated ABCB1 and ABCG2 ATPase activity. Thus SGI-1776 decreases cell surface expression of ABCB1 and ABCG2 and inhibits drug transport by Pim-1-dependent and -independent mechanisms, respectively. Decrease in ABCB1 and ABCG2 cell surface expression mediated by Pim-1 inhibition represents a novel mechanism of chemosensitization. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier

    PubMed Central

    2012-01-01

    Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders. PMID:23421673

  5. Oleanolic and maslinic acid sensitize soft tissue sarcoma cells to doxorubicin by inhibiting the multidrug resistance protein MRP-1, but not P-glycoprotein.

    PubMed

    Villar, Victor Hugo; Vögler, Oliver; Barceló, Francisca; Gómez-Florit, Manuel; Martínez-Serra, Jordi; Obrador-Hevia, Antònia; Martín-Broto, Javier; Ruiz-Gutiérrez, Valentina; Alemany, Regina

    2014-04-01

    The pentacyclic triterpenes oleanolic acid (OLA) and maslinic acid (MLA) are natural compounds present in many plants and dietary products consumed in the Mediterranean diet (e.g., pomace and virgin olive oils). Several nutraceutical activities have been attributed to OLA and MLA, whose antitumoral effects have been extensively evaluated in human adenocarcinomas, but little is known regarding their effectiveness in soft tissue sarcomas (STS). We assessed efficacy and molecular mechanisms involved in the antiproliferative effects of OLA and MLA as single agents or in combination with doxorubicin (DXR) in human synovial sarcoma SW982 and leiomyosarcoma SK-UT-1 cells. As single compound, MLA (10-100 μM) was more potent than OLA, inhibiting the growth of SW982 and SK-UT-1 cells by 70.3 ± 1.11% and 68.8 ± 1.52% at 80 μM, respectively. Importantly, OLA (80 μM) or MLA (30 μM) enhanced the antitumoral effect of DXR (0.5-10 μM) by up to 2.3-fold. On the molecular level, efflux activity of the multidrug resistance protein MRP-1, but not of the P-glycoprotein, was inhibited. Most probably as a consequence, DXR accumulated in these cells. Kinetic studies showed that OLA behaved as a competitive inhibitor of substrate-mediated MRP-1 transport, whereas MLA acted as a non-competitive one. Moreover, none of both triterpenes induced a compensatory increase in MRP-1 expression. In summary, OLA or MLA sensitized cellular models of STS to DXR and selectively inhibited MRP-1 activity, but not its expression, leading to a higher antitumoral effect possibly relevant for clinical treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Inhibition of P-glycoprotein-mediated transport by extracts of and monoterpenoids contained in Zanthoxyli Fructus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Naoko; Takagi, Akiyoshi; Kitazawa, Hidenori

    2005-12-01

    Citrus (rutaceous) herbs are often used in traditional medicine and Japanese cuisine and can be taken concomitantly with conventional medicine. In this study, the effect of various citrus-herb extracts on P-glycoprotein (P-gp)-mediated transport was examined in vitro to investigate a possible interaction with P-gp substrates. Component monoterpenoids of the essential oil in Zanthoxyli Fructus was screened to find novel P-gp inhibitors. LLC-GA5-COL150 cells transfected with human MDR1 cDNA encoding P-gp were used. Cellular accumulation of [{sup 3}H]digoxin was measured in the presence or absence of P-gp inhibitors or test samples. Aurantii Fructus, Evodiae Fructus, Aurantii Fructus Immaturus, Aurantii Nobilis Pericarpium,more » Phellodendri Cortex, and Zanthoxyli Fructus were extracted with hot water (decocted) and then fractionated with ethyl acetate. The cell to medium ratio of [{sup 3}H]digoxin accumulation increased significantly in the presence of the decoction of Evodiae Fructus, Aurantii Nobilis Pericarpium, and Zanthoxyli Fructus, and the ethyl acetate fraction of all citrus herbs used. The ethyl acetate fraction of Zanthoxyli Fructus exhibited the strongest inhibition of P-gp among tested samples with an IC{sub 5} value of 166 {mu}g/mL. Then its component monoterpenoids, geraniol, geranyl acetate (R)-(+)-limonene, (R)-(+)-linalool, citronellal (R)-(+)-citronellal, DL-citronellol (S)-(-)-{beta}-citronellol, and cineole, were screened. (R)-(+)-citronellal and (S)-(-)-{beta}-citronellol inhibited P-gp with IC{sub 5} values of 167 {mu}M and 504 {mu}M, respectively. These findings suggest that Zanthoxyli Fructus may interact with P-gp substrates and that some monoterpenoids with the relatively lower molecular weight of about 150 such as (R)-(+)-citronellal can be potent inhibitors of P-gp.« less

  7. Mitomycin C induces multidrug resistance in glaucoma surgery.

    PubMed

    Hueber, Arno; Esser, Johannes M; Kociok, Norbert; Welsandt, Gerhard; Lüke, Christoph; Roters, Sigrid; Esser, Peter J

    2008-02-01

    Despite the adjuvant use of mitomycin C during trabeculectomy, failures still occur. We investigated whether cultured human Tenon fibroblasts exposed to low-dose mitomycin C developed a multidrug resistance phenotype in vitro, and whether mitomycin C treatment during previous filtration surgery induces P-glycoprotein expression in vivo. Cultured human Tenon fibroblasts treated with low-dose 0.01 nM mitomycin C for 2 weeks were subsequently treated with 0.1 to 100 microM mitomycin C in the absence or presence of 4 microM verapamil, and allowed to recover for 24 hours. Low-dose mitomycin C-treated fibroblasts were analysed for P-glycoprotein expression using flow cytometry, immunoblotting, and RT-PCR for mdr-1 mRNA. In addition, fibroblasts were treated with low dose 0.1 nM 5-fluorouracil for 2 weeks and analysed for P-glycoprotein expression using flow cytometry. Expression of P-glycoprotein was analysed in surgically removed Tenon tissue (n = 30) using immunohistochemistry. Of the 30 patients, 20 had a previous trabeculectomy, of which nine had previous adjuvant therapy with mitomycin C during trabeculectomy. Partial resistance to mitomycin C after low-dose mitomycin C pre-treatment was significantly neutralised by the addition of verapamil. Low-dose mitomycin C up-regulated P-glycoprotein expression, but not mdr-1 mRNA expression. 5-Fluorouracil did not induce P-glycoprotein expression. P-glycoprotein expression was detected in all nine patients exposed to mitomycin C during previous trabeculectomies. Only six of 21 specimens from patients not previously exposed to mitomycin C showed faint P-glycoprotein expression. The induction of P-glycoprotein by mitomycin C could explain some failures that occur after repeated use of mitomycin C during trabeculectomy. The concomitant use of verapamil or the use of 5-fluorouracil alone could increase the success rate of repeat trabeculectomies.

  8. Chimeric Lyssavirus Glycoproteins with Increased Immunological Potential

    PubMed Central

    Jallet, Corinne; Jacob, Yves; Bahloul, Chokri; Drings, Astrid; Desmezieres, Emmanuel; Tordo, Noël; Perrin, Pierre

    1999-01-01

    The rabies virus glycoprotein molecule (G) can be divided into two parts separated by a flexible hinge: the NH2 half (site II part) containing antigenic site II up to the linear region (amino acids [aa] 253 to 275 encompassing epitope VI [aa 264]) and the COOH half (site III part) containing antigenic site III and the transmembrane and cytoplasmic domains. The structural and immunological roles of each part were investigated by cell transfection and mouse DNA-based immunization with homogeneous and chimeric G genes formed by fusion of the site II part of one genotype (GT) with the site III part of the same or another GT. Various site II-site III combinations between G genes of PV (Pasteur virus strain) rabies (GT1), Mokola (GT3), and EBL1 (European bat lyssavirus 1 [GT5]) viruses were tested. Plasmids pGPV-PV, pGMok-Mok, pGMok-PV, and pGEBL1-PV induced transient expression of correctly transported and folded antigens in neuroblastoma cells and virus-neutralizing antibodies against parental viruses in mice, whereas, pG-PVIII (site III part only) and pGPV-Mok did not. The site III part of PV (GT1) was a strong inducer of T helper cells and was very effective at presenting the site II part of various GTs. Both parts are required for correct folding and transport of chimeric G proteins which have a strong potential value for immunological studies and development of multivalent vaccines. Chimeric plasmid pGEBL1-PV broadens the spectrum of protection against European lyssavirus genotypes (GT1, GT5, and GT6). PMID:9847325

  9. TLR signaling modulates side effects of anticancer therapy in the small intestine

    PubMed Central

    Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W.; Cario, Elke

    2014-01-01

    Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified and there is so far no successful therapeutic intervention. Here, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b+-myeloid cell infiltration and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/MDR1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b+-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wildtype mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies, by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. PMID:25589072

  10. Glycoprotein import: a common feature of complex plastids?

    PubMed

    Peschke, Madeleine; Hempel, Franziska

    2013-10-01

    Complex plastids evolved by secondary endosymbiosis and are, in contrast to primary plastids, surrounded by 3 or 4 envelope membranes. Recently, we provided evidence that in diatoms proteins exist that get N-glycosylated during transport across the outermost membrane of the complex plastid. This gives rise to unique questions on the transport mechanisms of these bulky proteins, which get transported across up to 3 further membranes into the plastid stroma. Here we discuss our results in an evolutionary context and speculate about the existence of plastidal glycoproteins in other organisms with complex plastids.

  11. Rabies Virus Envelope Glycoprotein Targets Lentiviral Vectors to the Axonal Retrograde Pathway in Motor Neurons*

    PubMed Central

    Hislop, James N.; Islam, Tarin A.; Eleftheriadou, Ioanna; Carpentier, David C. J.; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D.

    2014-01-01

    Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors. PMID:24753246

  12. Mutational analysis of P-glycoprotein: suppression of caspase activation in the absence of ATP-dependent drug efflux.

    PubMed

    Tainton, K M; Smyth, M J; Jackson, J T; Tanner, J E; Cerruti, L; Jane, S M; Darcy, P K; Johnstone, R W

    2004-09-01

    P-glycoprotein (P-gp) can induce multidrug resistance (MDR) through the ATP-dependent efflux of chemotherapeutic agents. We have previously shown that P-gp can inhibit nondrug apoptotic stimuli by suppressing the activation of caspases. To determine if this additional activity is functionally linked to ATP hydrolysis, we expressed wild-type and ATPase-mutant P-gp and showed that cells expressing mutant P-gp could not efflux chemotherapeutic drugs but remained relatively resistant to apoptosis. CEM lymphoma cells expressing mutant P-gp treated with vincristine showed a decrease in the fraction of cells with apoptotic morphology, cytochrome c release from the mitochondria and suppression of caspase activation, yet still accumulated in mitosis and showed a loss of clonogenic potential. The loss of clonogenicity in vincristine-treated cells expressing mutant P-gp was associated with accumulation of cells in mitosis and the presence of multinucleated cells consistent with mitotic catastrophe. The antiapoptotic effect of mutant P-gp was not affected by antibodies that inhibit the efflux function of the protein. These data are consistent with a dual activity model for P-gp-induced MDR involving both ATPase-dependent drug efflux and ATPase-independent inhibition of apoptosis. The structure-function analyses described herein provide novel insight into the mechanisms of action of P-gp in mediating MDR.

  13. Molecular model of the outward facing state of the human P-glycoprotein (ABCB1), and comparison to a model of the human MRP5 (ABCC5)

    PubMed Central

    Ravna, Aina W; Sylte, Ingebrigt; Sager, Georg

    2007-01-01

    Background Multidrug resistance is a particular limitation to cancer chemotherapy, antibiotic treatment and HIV medication. The ABC (ATP binding cassette) transporters human P-glycoprotein (ABCB1) and the human MRP5 (ABCC5) are involved in multidrug resistance. Results In order to elucidate structural and molecular concepts of multidrug resistance, we have constructed a molecular model of the ATP-bound outward facing conformation of the human multidrug resistance protein ABCB1 using the Sav1866 crystal structure as a template, and compared the ABCB1 model with a previous ABCC5 model. The electrostatic potential surface (EPS) of the ABCB1 substrate translocation chamber, which transports cationic amphiphilic and lipophilic substrates, was neutral with negative and weakly positive areas. In contrast, EPS of the ABCC5 substrate translocation chamber, which transports organic anions, was generally positive. Positive-negative ratios of amino acids in the TMDs of ABCB1 and ABCC5 were also analyzed, and the positive-negative ratio of charged amino acids was higher in the ABCC5 TMDs than in the ABCB1 TMDs. In the ABCB1 model residues Leu65 (transmembrane helix 1 (TMH1)), Ile306 (TMH5), Ile340 (TMH6) and Phe343 (TMH6) may form a binding site, and this is in accordance with previous site directed mutagenesis studies. Conclusion The Sav1866 X-ray structure may serve as a suitable template for the ABCB1 model, as it did with ABCC5. The EPS in the substrate translocation chambers and the positive-negative ratio of charged amino acids were in accordance with the transport of cationic amphiphilic and lipophilic substrates by ABCB1, and the transport of organic anions by ABCC5. PMID:17803828

  14. Clinical evaluation of P-glycoprotein inhibition by venetoclax: a drug interaction study with digoxin.

    PubMed

    Chiney, Manoj S; Menon, Rajeev M; Bueno, Orlando F; Tong, Bo; Salem, Ahmed Hamed

    2018-09-01

    1. Venetoclax is a novel, small molecule B-cell lymphoma-2 (BCL-2) inhibitor that has demonstrated clinical efficacy in a variety of haematological malignancies. Since venetoclax is an inhibitor of P glycoprotein (P-gp) transporter, a study was conducted in healthy, female volunteers to evaluate the effect of venetoclax on the pharmacokinetics of digoxin, a P-gp probe substrate. 2. Volunteers received a single oral dose of digoxin (0.5 mg) with or without a single oral dose of venetoclax (100  mg). Serial blood samples were obtained for pharmacokinetic assessments of digoxin and venetoclax and serial urine samples were obtained for measurement of digoxin concentrations. Safety was assessed throughout the study. 3. Coadministration of digoxin and venetoclax increased digoxin maximum observed plasma concentration (C max ) by 35% and area under the plasma-concentration time curve (AUC 0-∞) by 9%. Digoxin half-life, renal clearance and the fraction excreted unchanged in urine remained relatively similar. The results of this study indicate that venetoclax can increase the concentrations of P-gp substrates. Narrow therapeutic index P-gp substrates should be administered six hours prior to venetoclax to minimise the potential interaction.

  15. Interaction of Human Cytomegalovirus Tegument Proteins ppUL35 and ppUL35A with Sorting Nexin 5 Regulates Glycoprotein B (gpUL55) Localization.

    PubMed

    Maschkowitz, Gregor; Gärtner, Sabine; Hofmann-Winkler, Heike; Fickenscher, Helmut; Winkler, Michael

    2018-05-01

    Human cytomegalovirus (HCMV) is a widespread human pathogen that causes asymptomatic infection in healthy individuals but poses a serious threat to immunocompromised patients. During the late phase of HCMV infection, the viral capsid is transported to the cytoplasmic viral assembly center (cVAC), where it is enclosed by the tegument protein layer and the viral envelope. The cVAC consists of circularly arranged vesicles from the trans -Golgi and endosomal networks. The HCMV gene UL35 encodes ppUL35 and its shorter form, ppUL35A. We have previously shown that the UL35 gene is involved in HCMV assembly, but it is unknown how UL35 proteins regulate viral assembly. Here we show that sorting nexin 5 (SNX5), a component of the retromer and part of the retrograde transport pathway, interacts with UL35 proteins. Expression of wild-type proteins but not mutants defective in SNX5 binding resulted in the cellular redistribution of the cation-independent mannose-6-phosphate receptor (CI-M6PR), indicating that UL35 proteins bind and negatively regulate SNX5 to modulate cellular transport pathways. Furthermore, binding of UL35 proteins to SNX5 was required for efficient viral replication and for transport of the most abundant HCMV glycoprotein B (gB; gpUL55) to the cVAC. These results indicate that ppUL35 and ppUL35A control the localization of the essential gB through the regulation of a retrograde transport pathway. Thus, this work is the first to define a molecular interaction between a tegument protein and a vesicular transport factor to regulate glycoprotein localization. IMPORTANCE Human cytomegalovirus is ubiquitously present in the healthy population, but reactivation or reinfection can cause serious, life-threatening infections in immunocompromised patients. For completion of its lytic cycle, human cytomegalovirus induces formation of an assembly center where mature virus particles are formed from multiple viral proteins. Viral glycoproteins use separate vesicular pathways for transport to the assembly center, which are incompletely understood. Our research identified a viral structural protein which affects the localization of one of the major glycoproteins. We could link this change in glycoprotein localization to an interaction of the structural protein with a cellular protein involved in regulation of vesicle transport. This increases our understanding of how the virus intersects into cellular regulatory pathways to enhance its own replication. Copyright © 2018 American Society for Microbiology.

  16. Amino-terminal domain of the v-fms oncogene product includes a functional signal peptide that directs synthesis of a transforming glycoprotein in the absence of feline leukemia virus gag sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, E.F.; Roussel, M.F.; Hampe, A.

    1986-08-01

    The nucleotide sequence of a 5' segment of the human genomic c-fms proto-oncogene suggested that recombination between feline leukemia virus and feline c-fms sequences might have occurred in a region encoding the 5' untranslated portion of c-fms mRNA. The polyprotein precursor gP180/sup gag-fms/ encoded by the McDonough strain of feline sarcoma virus was therefore predicted to contain 34 v-fms-coded amino acids derived from sequences of the c-fms gene that are not ordinarily translated from the proto-oncogene mRNA. The (gP180/sup gag-fms/) polyprotein was cotranslationally cleaved near the gag-fms junction to remove its gag gene-coded portion. Determination of the amino-terminal sequence ofmore » the resulting v-fms-coded glycoprotein, gp120/sup v-fms/, showed that the site of proteolysis corresponded to a predicted signal peptidase cleavage site within the c-fms gene product. Together, these analyses suggested that the linked gag sequences may not be necessary for expression of a biologically active v-fms gene product. The gag-fms sequences of feline sarcoma virus strain McDonough and the v-fms sequences alone were inserted into a murine retroviral vector containing a neomycin resistance gene. The authors conclude that a cryptic hydrophobic signal peptide sequence in v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms was unmasked by gag deletion, thereby allowing the correct orientation and transport of the v-fms gene product within membranous organelles. It seems likely that the proteolytic cleavage of gP180/gag-fms/ is mediated by signal peptidase and that the amino termini of gp140/sup v-fms/ and the c-fms gene product are identical.« less

  17. P-glycoprotein (MDR1/ABCB1) restricts brain accumulation and Cytochrome P450-3A (CYP3A) limits oral availability of the novel ALK/ROS1 inhibitor lorlatinib.

    PubMed

    Li, Wenlong; Sparidans, Rolf W; Wang, Yaogeng; Lebre, Maria C; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2018-05-09

    Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still 4-fold increased in Abcb1a/1b -/- and Abcb1a/1b;Abcg2 -/- mice, but not in single Abcg2 -/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice 4-fold, i.e. to the same level as in Abcb1a/1b;Abcg2 -/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a -/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then 2-fold reduced upon transgenic over-expression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib. This article is protected by copyright. All rights reserved. © 2018 UICC.

  18. Potential role for human P-glycoprotein in the transport of lacosamide.

    PubMed

    Zhang, Chunbo; Chanteux, Hugues; Zuo, Zhong; Kwan, Patrick; Baum, Larry

    2013-07-01

    Antiepileptic drugs (AEDs) do not effectively treat 30-40% of patients with epilepsy. Export of AEDs by P-glycoprotein (Pgp, ABCB1, or MDR1), which is overexpressed in the blood-brain barrier in drug-resistant patients, may be a mechanism for resistance to AEDs. For most recently approved AEDs, whether they are transported by Pgp is unknown. We investigated whether a new AED, lacosamide (LCM), is a substrate of human Pgp. LLC-PK1 and MDCKII cells transfected with the human MDR1 gene were used to determine the substrate status of LCM in concentration equilibrium transport assays (CETAs). An equal concentration of drug was initially loaded in both the apical and basal chambers, and the concentration in both chambers was measured up to 4 h. The experiments were repeated in the presence of the Pgp inhibitors verapamil and tariquidar. Caco-2 assays were used to determine the intrinsic permeability and efflux ratio of LCM as well as its potential to inhibit digoxin, a Pgp substrate. Lacosamide was transported by MDR1-transfected cells from basolateral to apical sides. The efflux of LCM could be completely blocked by verapamil or tariquidar. In Caco-2 assays, LCM showed high permeability without a significant efflux ratio; it did not inhibit digoxin, a Pgp substrate. Although LCM is a substrate of Pgp in CETA, Caco-2 data demonstrated that passive diffusion should play a major role in the overall disposition of LCM. The critical role of Pgp should be addressed in vivo. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  19. Association between MDR1 gene of gastrointestinal tumors, the expression of P-glycoprotein and resistance to chemotherapeutic drugs.

    PubMed

    Su, Jian-Li; Wang, Cheng-Hong; Kang, Hong-Gang; Zhang, Jing; Wang, Bao-Zhong; Liu, Mei-Rong; Zhao, Jun; Liu, Lin

    2017-09-01

    The aim of the present study was to examine and discuss the association between multidrug resistance 1 gene ( MDR1 ) of gastrointestinal tumors, the expression of P-glycoprotein and resistance to chemotherapeutic drugs. In this study, 126 cases of patients with gastrointestinal tumors admitted to hospital from February 2013 to February 2015 were selected. The expression levels of MDR1 gene were obsreved in the control population and patients before and after treatment by fluoresecent quantitative PCR. The protein expression level of P-glycoprotein was determined using western blotting and enzyme-linked immunosorbent assay. In addition, drug resistance was assessed by ATP-TCA chemosensitivity experiments. The results showed that before treatment, the expression of mRNA in MDR1 of tissues of gastrointestinal tract of the 126 cases was 108-fold larger than that of the gastrointestinal tract of the controls (p<0.05), P-glycoprotein was 87-fold larger than the expression level of the controls (p<0.05). The sensitivity of 126 tumor tissues to different chemotherapeutic drugs was determined, and the results showed that most of the tumor tissues were sensitive to chemotherapeutic drugs, and the sensitivity rate reached 96.4%. Following chemotherapy, the expression of mRNA in MDR1 of tumor tissues and the expression of P-glycoprotein decreased (p<0.05). In conclusion, the MDR1 gene and P-glycoprotein have a positive correlation with the occurrence of gastrointestinal tumors, and a negative correlation between the MDR1 gene and P-glycoprotein with resistance of chemotherapeutic drugs. Therefore, the MDR1 gene and P-glycoprotein can be used as references in the identification and diagnosis of gastrointestinal tumors.

  20. Geneva cocktail for cytochrome p450 and P-glycoprotein activity assessment using dried blood spots.

    PubMed

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-09-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography-tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session.

  1. Geneva Cocktail for Cytochrome P450 and P-Glycoprotein Activity Assessment Using Dried Blood Spots

    PubMed Central

    Bosilkovska, M; Samer, C F; Déglon, J; Rebsamen, M; Staub, C; Dayer, P; Walder, B; Desmeules, J A; Daali, Y

    2014-01-01

    The suitability of the capillary dried blood spot (DBS) sampling method was assessed for simultaneous phenotyping of cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp) using a cocktail approach. Ten volunteers received an oral cocktail capsule containing low doses of the probes bupropion (CYP2B6), flurbiprofen (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and fexofenadine (P-gp) with coffee/Coke (CYP1A2) on four occasions. They received the cocktail alone (session 1), and with the CYP inhibitors fluvoxamine and voriconazole (session 2) and quinidine (session 3). In session 4, subjects received the cocktail after a 7-day pretreatment with the inducer rifampicin. The concentrations of probes/metabolites were determined in DBS and plasma using a single liquid chromatography–tandem mass spectrometry method. The pharmacokinetic profiles of the drugs were comparable in DBS and plasma. Important modulation of CYP and P-gp activities was observed in the presence of inhibitors and the inducer. Minimally invasive one- and three-point (at 2, 3, and 6 h) DBS-sampling methods were found to reliably reflect CYP and P-gp activities at each session. PMID:24722393

  2. Glycosylation and intracellular transport of membrane glycoproteins encoded by murine leukemia viruses. Inhibition by amino acid analogues and by tunicamycin.

    PubMed

    Polonoff, E; Machida, C A; Kabat, D

    1982-12-10

    Addition of asparagine-linked oligosaccharides to nascent murine leukemia virus (MuLV)-encoded membrane glycoproteins was inhibited either completely by tunicamycin or specifically at Asn-X-Thr glycosylation sites by incorporation of the threonine analogue beta-hydroxynorvaline. In conditions of partial analogue substitution, a series of subglycosylated components is formed which are related by a constant apparent Mr difference when assayed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The total number of asparagine-linked oligosaccharides is then estimated by dividing the measured apparent Mr of one oligosaccharide into the total apparent Mr difference between the complete glycoprotein and the polypeptide chain that is synthesized in cells incubated with tunicamycin. Correct results were obtained using glycoproteins with known numbers of oligosaccharides. Our analyses indicate that the gp70 membrane envelope glycoproteins of certain ecotropic MuLVs contain seven oligosaccharides, whereas the GIX+ antigen-containing variant gp70 contains one fewer Asn-X-Thr-linked oligosaccharide. The membrane glycoprotein encoded by the gag gene of Friend MuLV contains only one asparagine-linked oligosaccharide. Similarly, the gp55 membrane glycoprotein encoded by Friend erythroleukemia virus contains four asparagine-linked oligosaccharides. Pulse-chase and cell surface iodination analyses indicate that MuLV membrane envelope glycoprotein processing by partial proteolysis and transport to the cell surface can be efficiently blocked by structural perturbations caused by incorporation of different amino acid analogues or by loss of oligosaccharides. Our data also suggest that loss of oligosaccharides may expose new antigenic sites in viral membrane glycoproteins and increase their susceptibility to intracellular proteolysis.

  3. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    PubMed

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  4. Pharmacokinetic and pharmacodynamic drug interactions of carbamazepine and glibenclamide in healthy albino Wistar rats

    PubMed Central

    Prashanth, S.; Kumar, A. Anil; Madhu, B.; Rama, N.; Sagar, J. Vidya

    2011-01-01

    Aims: To find out the pharmacokinetic and pharmacodynamic drug interaction of carbamazepine, a protype drug used to treat painful diabetic neuropathy with glibenclamide in healthy albino Wistar rats following single and multiple dosage treatment. Materials and Methods: Therapeutic doses (TD) of glibenclamide and TD of carbamazepine were administered to the animals. The blood glucose levels were estimated by GOD/POD method and the plasma glibenclamide concentrations were estimated by a sensitive RP HPLC method to calculate pharmacokinetic parameters. Results: In single dose study the percentage reduction of blood glucose levels and glibenclamide concentrations of rats treated with both carbamazepine and glibenclamide were significantly increased when compared with glibenclamide alone treated rats and the mechanism behind this interaction may be due to inhibition of P-glycoprotein mediated transport of glibenclamide by carbamazepine, but in multiple dose study the percentage reduction of blood glucose levels and glibenclamide concentrations were reduced and it may be due to inhibition of P-glycoprotein mediated transport and induction of CYP2C9, the enzyme through which glibenclamide is metabolised. Conclusions: In the present study there is a pharmacokinetic and pharmacodynamic interaction between carbamazepine and glibenclamide was observed. The possible interaction involves both P-gp and CYP enzymes. To investigate this type of interactions pre-clinically are helpful to avoid drug-drug interactions in clinical situation. PMID:21701639

  5. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis.

    PubMed

    Albecka, Anna; Laine, Romain F; Janssen, Anne F J; Kaminski, Clemens F; Crump, Colin M

    2016-01-01

    Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The effect of lycopene on cytochrome P450 isoenzymes and P-glycoprotein by using human liver microsomes and Caco-2 cell monolayer model.

    PubMed

    Kong, Lingti; Song, Chunli; Ye, Linhu; Xu, Jian; Guo, Daohua; Shi, Qingping

    2018-01-11

    Lycopene is widely used as a dietary supplement. However, the effects of lycopene on cytochrome P450 (CYP) enzymes or P-glycoprotein (P-gp) are not comprehensive. The present study was performed to investigate the effects of lycopene on the CYP enzymes and P-gp activity. A cocktail method was used to evaluate the activities of CYP3A4, CYP2C9, CYP2C19, CYP2D6 and CYP2E1. Caco-2 cell monolayer model was carried out to assay lycopene on P-gp activity. The results indicated that lycopene had a moderate inhibitory effect on CYP2E1, with IC50 value of 43.65 μM, whereas no inhibitory effects on CYP3A4, CYP2C19, CYP2D6 and CYP2E1, with IC50 values all over 100 μM. In addition, lycopene showed almost no inhibitory effect on rhodamine-123 efflux and uptake (p > .05), indicated no effects on P-gp activity. In conclusion, there should be required attention when lycopene are coadministered with other drugs that are metabolised by CYP2E1.

  7. Inhibitory effects of herbal constituents on P-glycoprotein in vitro and in vivo: Herb–drug interactions mediated via P-gp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xue, E-mail: lixue@imm.ac.cn; Hu, Jinping, E-mail: hujp@imm.ac.cn; Wang, Baolian, E-mail: wangbaolian@imm.ac.cn

    Modulation of drug transporters via herbal medicines which have been widely used in combination with conventional prescription drugs may result in herb–drug interactions in clinical practice. The present study was designed to investigate the inhibitory effects of 50 major herbal constituents on P-glycoprotein (P-gp) in vitro and in vivo as well as related inhibitory mechanisms. Among these herbal medicines, four constituents, including emodin, 18β-glycyrrhetic acid (18β-GA), dehydroandrographolide (DAG), and 20(S)-ginsenoside F{sub 1} [20(S)-GF{sub 1}] exhibited significant inhibition (> 50%) on P-gp in MDR1-MDCKII and Caco-2 cells. Emodin was the strongest inhibitor of P-gp (IC{sub 50} = 9.42 μM), followed bymore » 18β-GA (IC{sub 50} = 21.78 μM), 20(S)-GF{sub 1} (IC{sub 50} = 76.08 μM) and DAG (IC{sub 50} = 77.80 μM). P-gp ATPase activity, which was used to evaluate the affinity of substrates to P-gp, was stimulated by emodin and DAG with K{sub m} and V{sub max} values of 48.61, 29.09 μM and 71.29, 38.45 nmol/min/mg protein, respectively. However, 18β-GA and 20(S)-GF{sub 1} exhibited significant inhibition on both basal and verapamil-stimulated P-gp ATPase activities at high concentration. Molecular docking analysis (CDOCKER) further elucidated the mechanism for structure–inhibition relationships of herbal constituents with P-gp. When digoxin was co-administered to male SD rats with emodin or 18β-GA, the AUC{sub 0−t} and Cmax of digoxin were increased by approximately 51% and 58%, respectively. Furthermore, 18β-GA, DAG, 20(S)-GF{sub 1} and Rh{sub 1} at 10 μM significantly inhibited CYP3A4/5 activity, while emodin activated the metabolism of midazolam in human liver microsomes. In conclusion, four herbal constituents demonstrated inhibition of P-gp to specific extents in vitro and in vivo. Taken together, our findings provided the basis for the reliable assessment of the potential risks of herb–drug interactions in humans. - Highlights: • Emodin, 18β-GA, DAG, and 20(S)-GF{sub 1} significantly inhibited P-gp in vitro. • P-gp ATPase activity was stimulated by emodin and DAG. • 18β-GA and 20(S)-GF{sub 1} exhibited significant inhibition on P-gp ATPase activity. • Molecular docking analysis elucidated the SAR of herbal constituents with P-gp. • Pretreatment with emodin or 18β-GA increased the AUC and Cmax of digoxin in vivo.« less

  8. Plasmin-clipped beta(2)-glycoprotein-I inhibits endothelial cell growth by down-regulating cyclin A, B and D1 and up-regulating p21 and p27.

    PubMed

    Beecken, Wolf-Dietrich C; Ringel, Eva Maria; Babica, Jan; Oppermann, Elsie; Jonas, Dietger; Blaheta, Roman A

    2010-10-28

    beta(2)-Glycoprotein-I (beta(2)gpI), an abundant plasma glycoprotein, functions as a regulator of thrombosis. Previously, we demonstrated that plasmin-clipped beta(2)gpI (cbeta(2)gpI) exerts an anti-angiogenic effect on human umbilical vein endothelial cells (HUVEC). The present study was focused on the molecular background responsible for this phenomenon. cbeta(2)gpI strongly reduced HUVEC growth and proliferation as evidenced by the MTT and BrdU assay and delayed cell cycle progression arresting HUVEC in the S-and G2/M-phase. Western blot analysis indicated that cbeta(2)gpI inhibited cyclin A, B and D1, and enhanced p21 and p27 expression. Activity of p38 was down-regulated independently from the cbeta(2)gpI incubation time. Phosphorylation of ERK1/2 was not changed early (30 and 60 min) but became enhanced later (90 min, 4h). JNK activity was reduced rapidly after cbeta(2)gpI treatment but compared to controls, increased thereafter. Annexin II blockade prevented growth inhibition and cell cycle delay evoked by cbeta(2)gpI. We assume that cbeta(2)gpI's effects on HUVEC growth is mediated via cyclin A, B and D1 suppression, up-regulation of p21 and p27 and coupled to modifications of the mitogen-activated protein (MAP) kinase signalling pathway. cbeta(2)gpI may represent a potential endogenous angiogenesis-targeted compound, opening the possibility of a novel tool to treat cancer. 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Identification of Roles for Peptide: N-Glycanase and Endo-β-N-Acetylglucosaminidase (Engase1p) during Protein N-Glycosylation in Human HepG2 Cells

    PubMed Central

    Chantret, Isabelle; Fasseu, Magali; Zaoui, Karim; Le Bizec, Christiane; Sadou Yayé, Hassane; Dupré, Thierry; Moore, Stuart E. H.

    2010-01-01

    Background During mammalian protein N-glycosylation, 20% of all dolichol-linked oligosaccharides (LLO) appear as free oligosaccharides (fOS) bearing the di-N-acetylchitobiose (fOSGN2), or a single N-acetylglucosamine (fOSGN), moiety at their reducing termini. After sequential trimming by cytosolic endo β-N-acetylglucosaminidase (ENGase) and Man2c1 mannosidase, cytosolic fOS are transported into lysosomes. Why mammalian cells generate such large quantities of fOS remains unexplored, but fOSGN2 could be liberated from LLO by oligosaccharyltransferase, or from glycoproteins by NGLY1-encoded Peptide-N-Glycanase (PNGase). Also, in addition to converting fOSGN2 to fOSGN, the ENGASE-encoded cytosolic ENGase of poorly defined function could potentially deglycosylate glycoproteins. Here, the roles of Ngly1p and Engase1p during fOS metabolism were investigated in HepG2 cells. Methods/Principal Findings During metabolic radiolabeling and chase incubations, RNAi-mediated Engase1p down regulation delays fOSGN2-to-fOSGN conversion, and it is shown that Engase1p and Man2c1p are necessary for efficient clearance of cytosolic fOS into lysosomes. Saccharomyces cerevisiae does not possess ENGase activity and expression of human Engase1p in the png1Δ deletion mutant, in which fOS are reduced by over 98%, partially restored fOS generation. In metabolically radiolabeled HepG2 cells evidence was obtained for a small but significant Engase1p-mediated generation of fOS in 1 h chase but not 30 min pulse incubations. Ngly1p down regulation revealed an Ngly1p-independent fOSGN2 pool comprising mainly Man8GlcNAc2, corresponding to ∼70% of total fOS, and an Ngly1p-dependent fOSGN2 pool enriched in Glc1Man9GlcNAc2 and Man9GlcNAc2 that corresponds to ∼30% of total fOS. Conclusions/Significance As the generation of the bulk of fOS is unaffected by co-down regulation of Ngly1p and Engase1p, alternative quantitatively important mechanisms must underlie the liberation of these fOS from either LLO or glycoproteins during protein N-glycosylation. The fully mannosylated structures that occur in the Ngly1p-dependent fOSGN2 pool indicate an ERAD process that does not require N-glycan trimming. PMID:20668520

  10. Application of Physiologically Based Pharmacokinetic Modeling in Understanding Bosutinib Drug-Drug Interactions: Importance of Intestinal P-Glycoprotein.

    PubMed

    Yamazaki, Shinji; Loi, Cho-Ming; Kimoto, Emi; Costales, Chester; Varma, Manthena V

    2018-05-08

    Bosutinib is an orally available Src/Abl tyrosine kinase inhibitor indicated for the treatment of patients with Ph+ chronic myelogenous leukemia at a clinically recommended dose of 500 mg once daily. Clinical results indicated that increases in bosutinib oral exposures were supra-proportional at the lower doses (50 to 200 mg) and approximately dose-proportional at the higher doses (200 to 600 mg). Bosutinib is a substrate of CYP3A4 and P-glycoprotein and exhibits pH-dependent solubility with moderate intestinal permeability. These findings led us to investigate the factors influencing the underlying pharmacokinetic mechanisms of bosutinib with physiologically-based pharmacokinetic (PBPK) models. Our primary objectives were to: 1) refine the previously developed bosutinib PBPK model based on the latest oral bioavailability data and 2) verify the refined PBPK model with P-glycoprotein kinetics based on the bosutinib drug-drug interaction (DDI) results with ketoconazole and rifampin. Additionally, the verified PBPK model was applied to predict bosutinib DDIs with dual CYP3A/P-glycoprotein inhibitors. The results indicated that 1) the refined PBPK model adequately described the observed plasma concentration-time profiles of bosutinib and 2) the verified PBPK model reasonably predicted the effects of ketoconazole and rifampin on bosutinib exposures by accounting for intestinal P-gp inhibition/induction. These results suggested that bosutinib DDI mechanism could involve not only CYP3A4-mediated metabolism but also P-glycoprotein-mediated efflux on absorption. In summary, P-glycoprotein kinetics could constitute a critical element in the PBPK models to understand the pharmacokinetic mechanism of dual CYP3A/P-glycoprotein substrates such as bosutinib exhibiting nonlinear pharmacokinetics due largely to a saturation of intestinal P-glycoprotein-mediated efflux. The American Society for Pharmacology and Experimental Therapeutics.

  11. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses

    PubMed Central

    Zhao, Hanjun; Zhou, Jie; Zhang, Ke; Chu, Hin; Liu, Dabin; Poon, Vincent Kwok-Man; Chan, Chris Chung-Sing; Leung, Ho-Chuen; Fai, Ng; Lin, Yong-Ping; Zhang, Anna Jin-Xia; Jin, Dong-Yan; Yuen, Kwok-Yung; Zheng, Bo-Jian

    2016-01-01

    A safe, potent and broad-spectrum antiviral is urgently needed to combat emerging respiratory viruses. In light of the broad antiviral activity of β-defensins, we tested the antiviral activity of 11 peptides derived from mouse β-defensin-4 and found that a short peptide, P9, exhibited potent and broad-spectrum antiviral effects against multiple respiratory viruses in vitro and in vivo, including influenza A virus H1N1, H3N2, H5N1, H7N7, H7N9, SARS-CoV and MERS-CoV. The antiviral activity of P9 was attributed to its high-affinity binding to viral glycoproteins, as well as the abundance of basic amino acids in its composition. After binding viral particles through viral surface glycoproteins, P9 entered into cells together with the viruses via endocytosis and prevented endosomal acidification, which blocked membrane fusion and subsequent viral RNA release. This study has paved the avenue for developing new prophylactic and therapeutic agents with broad-spectrum antiviral activities. PMID:26911565

  12. N-Glycosylation of the alpha subunit does not influence trafficking or functional activity of the human organic solute transporter alpha/beta

    PubMed Central

    Soroka, Carol J; Xu, Shuhua; Mennone, Albert; Lam, Ping; Boyer, James L

    2008-01-01

    Background The organic solute transporter (OSTα-OSTβ) is a heteromeric transporter that is expressed on the basolateral membrane of epithelium in intestine, kidney, liver, testis and adrenal gland and facilitates efflux of bile acids and other steroid solutes. Both subunits are required for plasma membrane localization of the functional transporter but it is unclear how and where the subunits interact and whether glycosylation is required for functional activity. We sought to examine these questions for the human OSTα-OSTβ transporter using the human hepatoma cell line, HepG2, and COS7 cells transfected with constructs of human OSTα-FLAG and OSTβ-Myc. Results Tunicamycin treatment demonstrated that human OSTα is glycosylated. In COS7 cells Western blotting identified the unglycosylated form (~31 kD), the core precursor form (~35 kD), and the mature, complex glycoprotein (~40 kD). Immunofluorescence of both cells indicated that, in the presence of OSTβ, the alpha subunit could still be expressed on the plasma membrane after tunicamycin treatment. Furthermore, the functional uptake of 3H-estrone sulfate was unchanged in the absence of N-glycosylation. Co-immunoprecipitation indicates that the immature form of OSTα interact with OSTβ. However, immunoprecipitation of OSTβ using an anti-Myc antibody did not co-precipitate the mature, complex glycosylated form of OSTα, suggesting that the primary interaction occurs early in the biosynthetic pathway and may be transient. Conclusion In conclusion, human OSTα is a glycoprotein that requires interaction with OSTβ to reach the plasma membrane. However, glycosylation of OSTα is not necessary for interaction with the beta subunit or for membrane localization or function of the heteromeric transporter. PMID:18847488

  13. Complete identification of E-selectin ligands on neutrophils reveals distinct functions of PSGL-1, ESL-1, and CD44.

    PubMed

    Hidalgo, Andrés; Peired, Anna J; Wild, Martin; Vestweber, Dietmar; Frenette, Paul S

    2007-04-01

    The selectins and their ligands are required for leukocyte extravasation during inflammation. Several glycoproteins have been suggested to bind to E-selectin in vitro, but the complete identification of its physiological ligands has remained elusive. Here, we showed that E-selectin ligand-1 (ESL-1), P-selectin glycoprotein ligand-1 (PSGL-1), and CD44 encompassed all endothelial-selectin ligand activity on neutrophils by using gene- and RNA-targeted loss of function. PSGL-1 played a major role in the initial leukocyte capture, whereas ESL-1 was critical for converting initial tethers into steady slow rolling. CD44 controlled rolling velocity and mediated E-selectin-dependent redistribution of PSGL-1 and L-selectin to a major pole on slowly rolling leukocytes through p38 signaling. These results suggest distinct and dynamic contributions of these three glycoproteins in selectin-mediated neutrophil adhesion and signaling.

  14. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance

    PubMed Central

    Lespine, Anne; Ménez, Cécile; Bourguinat, Catherine; Prichard, Roger K.

    2011-01-01

    Parasitic helminths cause significant disease in animals and humans. In the absence of alternative treatments, anthelmintics remain the principal agents for their control. Resistance extends to the most important class of anthelmintics, the macrocyclic lactone endectocides (MLs), such as ivermectin, and presents serious problems for the livestock industries and threatens to severely limit current parasite control strategies in humans. Understanding drug resistance is important for optimizing and monitoring control, and reducing further selection for resistance. Multidrug resistance (MDR) ABC transporters have been implicated in ML resistance and contribute to resistance to a number of other anthelmintics. MDR transporters, such as P-glycoproteins, are essential for many cellular processes that require the transport of substrates across cell membranes. Being overexpressed in response to chemotherapy in tumour cells and to ML-based treatment in nematodes, they lead to therapy failure by decreasing drug concentration at the target. Several anthelmintics are inhibitors of these efflux pumps and appropriate combinations can result in higher treatment efficacy against parasites and reversal of resistance. However, this needs to be balanced against possible increased toxicity to the host, or the components of the combination selecting on the same genes involved in the resistance. Increased efficacy could result from modifying anthelmintic pharmacokinetics in the host or by blocking parasite transporters involved in resistance. Combination of anthelmintics can be beneficial for delaying selection for resistance. However, it should be based on knowledge of resistance mechanisms and not simply on mode of action classes, and is best started before resistance has been selected to any member of the combination. Increasing knowledge of the MDR transporters involved in anthelmintic resistance in helminths will play an important role in allowing for the identification of markers to monitor the spread of resistance and to evaluate new tools and management practices aimed at delaying its spread. PMID:24533264

  15. Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters

    PubMed Central

    2017-01-01

    The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies. PMID:28493713

  16. Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters.

    PubMed

    Caetano-Pinto, Pedro; Jamalpoor, Amer; Ham, Janneke; Goumenou, Anastasia; Mommersteeg, Monique; Pijnenburg, Dirk; Ruijtenbeek, Rob; Sanchez-Romero, Natalia; van Zelst, Bertrand; Heil, Sandra G; Jansen, Jitske; Wilmer, Martijn J; van Herpen, Carla M L; Masereeuw, Rosalinde

    2017-06-05

    The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies.

  17. Differential phosphorylation patterns of P-glycoprotein reconstituted into a proteoliposome system: insight into additional unconventional phosphorylation sites.

    PubMed

    Lelong-Rebel, Isabelle H; Cardarelli, Carol O

    2005-01-01

    Membrane vesicles from the multidrug-resistant KB-V1 and KB-C1 cell lines overexpressing P-glycoprotein (Pgp), responsible for pleiotropic chemotherapeutic agents resistance, were solubilized with octyl-glucoside (OG-EX) and further fractionated on DEAE-sepharose column with increased concentrations of NaCl. The fraction containing Pgp (F3) was reconstituted into proteoliposomes (F3-PLP). Comparisons of the phosphorylation levels of Pgp achieved throughout the purification and reconstitution steps were addressed in this study. The [delta32 P] ATP-driven phosphorylation of Pgp was strongly increased in OG-EX, decreased in F3 and not detected in F3-PLP, when compared to Pgp phosphorylation in native plasma membrane vesicles. [delta32 P]ATP-phosphorylation of Pgp in F3-PLP could be restored by exogenously added PKC or by the catalytic sub-unit of PKA. The vanadate-induced hyperphosphorylation effect on Pgp by [delta32 P]ATP observed with plasma membrane vesicles was maintained in OG-EX, but was lost in F3 and did not enable labelling in F3-PLP. Enhancement of [delta32 P]-labelling of native Pgp via [delta32 P]ATP combined with GTP was maintained and also triggered phosphorylation of purified/reconstituted Pgp in F3-PLP as well. Altogether, our data suggest differential phosphorylation patterns of the transporter linked to environmental molecular composition (lipids, presence of detergent) and structure (unfolded versus embedded). In addition, restoration by GTP of Pgp phosphorylation by [delta32 P]ATP in the frame of F3-PLP suggests intra-molecular modulations and hints that other phosphorylation sites and processes, different from the classic ones involving PKC and/or PKA, may participate in the transporter's mechanism.

  18. Exploring movement and energy in human P-glycoprotein conformational rearrangement.

    PubMed

    Zhang, Yue; Gong, Weikang; Wang, Yan; Liu, Yang; Li, Chunhua

    2018-04-24

    Human P-glycoprotein (P-gp), a kind of ATP-Binding Cassette transporter, can export a diverse variety of anti-cancer drugs out of the tumor cell. Its overexpression is one of the main reasons for the multidrug resistance (MDR) of tumor cells. It has been confirmed that during the substrate transport process, P-gp experiences a large-scale structural rearrangement from the inward- to outward-facing states. However, the mechanism of how the nucleotide-binding domains (NBDs) control the transmembrane domains (TMDs) to open towards the periplasm in the outward-facing state has not yet been fully characterized. Herein, targeted molecular dynamics simulations were performed to explore the conformational rearrangement of human P-gp. The results show that the allosteric process proceeds in a coupled way, and first the transition is driven by the NBDs, and then transmitted to the cytoplasmic parts of TMDs, finally to the periplasmic parts. The trajectories show that besides the translational motions, the NBDs undergo a rotation movement, which mainly occurs in xy plane and ensures the formation of the correct ATP-binding pockets. The analyses on the interaction energies between the six structure segments (cICLs) from the TMDs and NBDs reveal that their subtle energy differences play an important role in causing the periplasmic parts of the transmembrane helices to separate from each other in the established directions and in appropriate amplitudes. This conclusion can explain the two experimental phenomena about human P-gp in some extent. These studies have provided a detailed exploration into human P-gp rearrangement process and given an energy insight into the TMD reorientation during P-gp transition.

  19. The prion-ZIP connection: From cousins to partners in iron uptake

    PubMed Central

    Singh, Neena; Asthana, Abhishek; Baksi, Shounak; Desai, Vilok; Haldar, Swati; Hari, Sahi; Tripathi, Ajai K

    2015-01-01

    ABSTRACT Converging observations from disparate lines of inquiry are beginning to clarify the cause of brain iron dyshomeostasis in sporadic Creutzfeldt-Jakob disease (sCJD), a neurodegenerative condition associated with the conversion of prion protein (PrPC), a plasma membrane glycoprotein, from α-helical to a β-sheet rich PrP-scrapie (PrPSc) isoform. Biochemical evidence indicates that PrPC facilitates cellular iron uptake by functioning as a membrane-bound ferrireductase (FR), an activity necessary for the transport of iron across biological membranes through metal transporters. An entirely different experimental approach reveals an evolutionary link between PrPC and the Zrt, Irt-like protein (ZIP) family, a group of proteins involved in the transport of zinc, iron, and manganese across the plasma membrane. Close physical proximity of PrPC with certain members of the ZIP family on the plasma membrane and increased uptake of extracellular iron by cells that co-express PrPC and ZIP14 suggest that PrPC functions as a FR partner for certain members of this family. The connection between PrPC and ZIP proteins therefore extends beyond common ancestry to that of functional cooperation. Here, we summarize evidence supporting the facilitative role of PrPC in cellular iron uptake, and implications of this activity on iron metabolism in sCJD brains. PMID:26689487

  20. Ca 125 and Ca 19-9: two cancer-associated sialylsaccharide antigens on a mucus glycoprotein from human milk.

    PubMed

    Hanisch, F G; Uhlenbruck, G; Dienst, C; Stottrop, M; Hippauf, E

    1985-06-03

    The cancer-associated antigens Ca 125 and Ca 19-9 were demonstrated by radioimmunoassay to form structural units of a mucus glycoprotein in human milk taken from healthy women four days after parturition. The glycoprotein precipitated with the casein fraction at pH 4.6 and was completely absent in the whey as judged from Ca 19-9 assay. It could be effectively enriched by phenol-saline extraction from soluble milk proteins and further purified by gel filtration on Sephacryl S300 and Sephacryl S400. The active component with a bouyant density of 1.41 g/ml in isopycnic density gradient centrifugation (CsCl) shared common physico-chemical and chemical characteristics of mucus glycoproteins. Carbohydrates representing about 68% by weight were conjugated to protein by alkali-labile linkages, exclusively and were essentially free of D-mannose. Activities of Ca 125 and Ca 19-9 were both destroyed by treatment with periodate, mild alkali or neuraminidase suggesting the antigens are sialylated saccharides bound to protein by alkali-labile linkages. The fraction of monosialylated saccharide alditols isolated after reductive beta-elimination from the mucus glycoprotein was shown to inhibit monoclonal antibodies anti-(Ca 125) and anti-(Ca 19-9) in radioimmunoassay.

  1. Development of classification models for identifying "true" P-glycoprotein (P-gp) inhibitors through inhibition, ATPase activation and monolayer efflux assays.

    PubMed

    Rapposelli, Simona; Coi, Alessio; Imbriani, Marcello; Bianucci, Anna Maria

    2012-01-01

    P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as "true" P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.

  2. Interaction of Food Additives with Intestinal Efflux Transporters.

    PubMed

    Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi

    2017-11-06

    Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.

  3. Echinacea sanguinea and Echinacea pallida extracts stimulate glucuronidation and basolateral transfer of Bauer alkamids 8 and 10 and ketone 24 and inhibit p-glycoprotein transporter in Caco-2 cells

    USDA-ARS?s Scientific Manuscript database

    The use of Echinacea as a medicinal herb is prominent in the United States, and many studies have assessed the effectiveness of Echinacea as an immunomodulator. We hypothesized that Bauer alkamides 8, 10 and 11 and ketone 24 were absorbed similarly either as pure compounds or from Echinacea sanguin...

  4. Potential of the novel antiretroviral drug rilpivirine to modulate the expression and function of drug transporters and drug-metabolising enzymes in vitro.

    PubMed

    Weiss, Johanna; Haefeli, Walter Emil

    2013-05-01

    The objective of this study was to assess the drug-drug interaction potential of the new non-nucleoside reverse transcriptase inhibitor (NNRTI) rilpivirine in vitro. The following were evaluated: P-glycoprotein (P-gp/ABCB1) inhibition by calcein assay; breast cancer resistance protein (BCRP/ABCG2) inhibition by pheophorbide A efflux; and inhibition of organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 by 8-fluorescein-cAMP uptake. Inhibition of cytochrome P450 enzymes was assessed using commercially available kits. Substrate characteristics were evaluated by growth inhibition assays in MDCKII cells overexpressing particular ABC transporters. Induction of drug-metabolising enzymes and transporters was quantified by real-time RT-PCR in LS180 cells, and activation of pregnane X receptor (PXR) by a reporter gene assay. Rilpivirine significantly inhibited P-gp (IC(50) = 13.1 ± 6.8 μmol/L), BCRP (IC(50) = 1.5 ± 0.3 μmol/L), OATP1B1 (IC(50) = 4.1 ± 1.8 μmol/L), OATP1B3 (IC(50) = 6.1 ± 0.9 μmol/L), CYP3A4 (IC(50) = 1.3 ± 0.6 μmol/L), CYP2C19 (IC(50) = 2.7 ± 0.3 μmol/L) and CYP2B6 (IC(50) = 4.2 ± 1.6 μmol/L). Growth inhibition assays indicate that rilpivirine is not a substrate of P-gp, BCRP, or multidrug resistance-associated proteins 1 and 2. In LS180 cells, rilpivirine induced mRNA expression of ABCB1, CYP3A4 and UGT1A3, whereas ABCC1, ABCC2, ABCG2, OATP1B1 and UGT1A9 were not induced. Moreover, rilpivirine was a PXR activator. In conclusion, rilpivirine inhibits and induces several relevant drug-metabolising enzymes and drug transporters, but owing to its low plasma concentrations it is most likely less prone to drug-drug interactions than older NNRTIs. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. Structure and assembly of desmosome junctions: biosynthesis, processing, and transport of the major protein and glycoprotein components in cultured epithelial cells.

    PubMed

    Penn, E J; Hobson, C; Rees, D A; Magee, A I

    1987-07-01

    Extracts of metabolically labeled cultured epithelial cells have been analyzed by immunoprecipitation followed by SDS-PAGE, using antisera to the major high molecular mass proteins and glycoproteins (greater than 100 kD) from desmosomes of bovine muzzle epidermis. For nonstratifying cells (Madin-Darby canine kidney [MDCK] and Madin-Darby bovine kidney), and A431 cells that have lost the ability to stratify through transformation, and a stratifying cell type (primary human keratinocytes) apparently similar polypeptides were immunoprecipitated with our antisera. These comprised three glycoproteins (DGI, DGII, and DGIII) and one major nonglycosylated protein (DPI). DPII, which has already been characterized by others in stratifying tissues, appeared to be absent or present in greatly reduced amounts in the nonstratifying cell types. The desmosome glycoproteins were further characterized in MDCK cells. Pulse-chase studies showed all three DGs were separate translation products. The two major glycoprotein families (DGI and DGII/III) were both found to be synthesized with co-translational addition of 2-4 high mannose cores later processed into complex type chains. However, they became endo-beta-N-acetylglucosaminidase H resistant at different times (DGII/III being slower). None of the DGs were found to have O-linked oligosaccharides unlike bovine muzzle DGI. Transport to the cell surface was rapid for all glycoproteins (60-120 min) as demonstrated by the rate at which they became sensitive to trypsin in intact cells. This also indicated that they were exposed at the outer cell surface. DGII/III, but not DGI, underwent a proteolytic processing step, losing 10 kD of carbohydrate-free peptide, during transport to the cell surface suggesting a possible regulatory mechanism in desmosome assembly.

  6. THE ROLE OF MULTIDRUG RESISTANCE ASSOCIATED PROTEIN (MRP) IN THE BLOOD-BRAIN BARRIER AND OPIOID ANALGESIA

    PubMed Central

    Su, Wendy; Pasternak, Gavril W.

    2013-01-01

    The blood brain barrier protects the brain from circulating compounds and drugs. The ATP-binding cassette (ABC) transporter P-glycoprotein (Pgp) is involved with the barrier, both preventing the influx of agent from the blood into the brain and facilitating the efflux of compounds from the brain into the blood, raising the possibility of a similar role for other transporters. Multidrug resistance associated protein (MRP), a 190 kDa protein similar to Pgp is also ABC transport that has been implicated in the blood brain barrier. The current study explores its role in opioid action. Immunohistochemically, it is localized in the choroid plexus in ratsand can be selectively downregulated by antisense treatment at both the level of mRNA, as shown by RT-PCR, and protein, as demonstrated immunohistochemically. Behaviorally, downregulation of MRP significantly enhances the analgesic potency of systemic morphine in MRP knockout mice and in antisense-treated rats by lowering the blood brain barrier. Following intracerebroventricular administration, a number of compounds, including some opioids, are rapidly secreted from the brain into the blood where they contribute to the overall analgesic effects by activating peripheral systems. MRP plays a role in this efflux. Downregulating MRP expression leads to a corresponding decrease in the transport and a diminished analgesic response from opioids administered intracerebroventricularly. Thus, the transporter protein MRP plays a role in maintaining the blood-brain barrier and modulates the activity of opioids. PMID:23508590

  7. Fractionation and immunological characterization of allergens and allergoids of Prosopis juliflora pollen.

    PubMed

    Thakur, I S; Kamal; Mishra, S

    1991-06-01

    Allergoids of Prosopis juliflora pollen were prepared by formalinization of crude allergen and glycoprotein. Fractionation of crude allergen and allergoids on Sephadex G-100 resulted in separation of proteins of varying molecular size and a glycoprotein of 81 to 13 KD. Allergoids prepared from the glycoprotein fractionated into two proteins of approximately 200 KD and more than 200 KD. Crossed immunoelectrophoresis indicated 12 and gel diffusion test 3 precipitating antigens incrude allergen extract; by these tests allergoids depicted 8 and 3 precipitin bands, respectively. The precipitin analysis showed heterogeneity of allergenic determinants and also variation in cross-immunogenicity of the formalinized derivatives. The skin prick and radioallergosorbent tests depicted greater activity of fractionated crude allergens than the allergoids. The above tests suggest altered and concealed antigenic determinants as result of formalinization of P. juliflora pollen which, however, showed reduced allergenic activity relative to the native allergen.

  8. Transporter-Mediated Disposition, Clinical Pharmacokinetics and Cholestatic Potential of Glyburide and Its Primary Active Metabolites.

    PubMed

    Li, Rui; Bi, Yi-An; Vildhede, Anna; Scialis, Renato J; Mathialagan, Sumathy; Yang, Xin; Marroquin, Lisa D; Lin, Jian; Varma, Manthena V S

    2017-07-01

    Glyburide is widely used for the treatment of type 2 diabetes. We studied the mechanisms involved in the disposition of glyburide and its pharmacologically active hydroxy metabolites M1 and M2b and evaluated their clinical pharmacokinetics and the potential role in glyburide-induced cholestasis employing physiologically based pharmacokinetic (PBPK) modeling. Transport studies of parent and metabolites in human hepatocytes and transfected cell systems imply hepatic uptake mediated by organic anion-transporting polypeptides. Metabolites are also subjected to basolateral and biliary efflux by P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated proteins, and are substrates to renal organic anion transporter 3. A PBPK model in combination with a Bayesian approach was developed considering the identified disposition mechanisms. The model reasonably described plasma concentration time profiles and urinary recoveries of glyburide and the metabolites, implying the role of multiple transport processes in their pharmacokinetics. Predicted free liver concentrations of the parent (∼30-fold) and metabolites (∼4-fold) were higher than their free plasma concentrations. Finally, all three compounds showed bile salt export pump inhibition in vitro; however, significant in vivo inhibition was not apparent for any compound on the basis of a predicted unbound liver exposure-response effect model using measured in vitro IC 50 values. In conclusion, this study demonstrates the important role of multiple drug transporters in the disposition of glyburide and its active metabolites, suggesting that variability in the function of these processes may lead to pharmacokinetic variability in the parent and the metabolites, potentially translating to pharmacodynamic variability. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Antihistamines in drivers, aircrew and occupations of risk.

    PubMed

    Jáuregui, I; Ferrer, M; Montoro, J; Dávila, I; Bartra, J; del Cuvillo, A; Mullol, J; Sastre, J; Valero, A

    2013-01-01

    The most commonly occurring allergic diseases can involve a daytime drowsiness associated with the condition itself. The antihistamines used in their treatment can also have central effects and affect certain occupations concerned with risk, road safety and maritime and air navigation. Cognitive tests, experimental studies and epidemiological data recommend avoiding 1st generation antihistamines for people who must drive regularly and/or professions concerned with safety. Although there are no comparative studies on real driving between 1st and 2nd generation antihistamines, in this type of patients there should be a preference for prescribing those with least possible central effect, especially those which are a good substrate for transmembrane transporter pumps such as P-glycoprotein and therefore have a low capacity for crossing the hematoencephalic barrier, thus allowing a broader window for therapy. In this sense, bilastine is a good P-glycoprotein substrate and shows good tolerance at CNS level, in both psychometric trials and real driving test protocols, even at double the dose recommended in the technical file.

  10. Menadione serves as a substrate for P-glycoprotein: implication in chemosensitizing activity.

    PubMed

    Oh, Seok-Jeong; Han, Hyo-Kyung; Kang, Keon-Wook; Lee, Young-Joo; Lee, Moo-Yeol

    2013-04-01

    Based on its chemosensitizing effect, we questioned whether menadione is an inhibitor or a substrate of P-glycoprotein (P-gp). To test this hypothesis, we assessed the effect of menadione on P-gp activity and examined the P-gp-dependency of cellular accumulation and cytotoxicity of menadione as well. Treatment with menadione resulted in the concentration-dependent increase of rhodamine 123 (Rh123) accumulation in P-gp-overexpressing MDCKII/MDR1 and NCI/ADR-RES cells, suggesting that menadione inhibits Rh123 extrusion by P-gp. Compared with MDCKII or MCF-7, intracellular distribution of [(3)H]-menadione was significantly lower in MDCKII/MDR1 or NCI/ADR-RES cells, which could be restored by the P-gp inhibitors, verapamil and quinidine. Consistent with these results, MDCKII/MDR1 or NCI/ADR-RES cells were more resistant to the cytotoxicity of menadione than MDCKII or MCF-7 cells, respectively. Such resistance was abolished by the combined treatment of verapamil and quinidine in NCI/ADR-RES cells. Our study identified menadione as a substrate of P-gp, which presumably, acts as the mechanism for the chemosensitizing effect. Menadione may be a promising chemotherapeutic enhancer by its ability of circumventing drug resistance, in addition to its own anti-cancer activity.

  11. Quantitative and Mechanistic Assessment of Model Lipophilic Drugs in Micellar Solutions in the Transport Kinetics Across MDR1-MDCK Cell Monolayers.

    PubMed

    Ho, Norman F H; Nielsen, James; Peterson, Michelle; Burton, Philip S

    2016-02-01

    An approach to characterizing P-glycoprotein (Pgp) interaction potential for sparingly water-soluble compounds was developed using bidirectional transport kinetics in MDR1-MDCK cell monolayers. Paclitaxel, solubilized in a dilute polysorbate 80 (PS80) micellar solution, was used as a practical example. Although the passage of paclitaxel across the cell monolayer was initially governed by the thermodynamic activity of the micelle-solubilized drug solution, Pgp inhibition was sustained by the thermodynamic activity (i.e., critical micelle concentration) of the PS80 micellar solution bathing the apical (ap) membrane. The mechanistic understanding of the experimental strategies and treatment of data was supported by a biophysical model expressed in the form of transport events occurring at the ap and basolateral (bl) membranes in series whereas the vectorial directions of the transcellular kinetics were accommodated. The derived equations permitted the stepwise quantitative delineation of the Pgp efflux activity (inhibited and uninhibited by PS80) and the passive permeability coefficient of the ap membrane, the passive permeability at the bl membrane and, finally, the distinct coupling of these with efflux pump activity to identify the rate-determining steps and mechanisms. The Jmax/KM(∗) for paclitaxel was in the order of 10(-4) cm/s and the ap- and bl-membrane passive permeability coefficients were asymmetric, with bl-membrane permeability significantly greater than ap. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  12. Novel understanding of ABC transporters ABCB1/MDR/P-glycoprotein, ABCC2/MRP2, and ABCG2/BCRP in colorectal pathophysiology

    PubMed Central

    Andersen, Vibeke; Svenningsen, Katrine; Knudsen, Lina Almind; Hansen, Axel Kornerup; Holmskov, Uffe; Stensballe, Allan; Vogel, Ulla

    2015-01-01

    AIM: To evaluate ATP-binding cassette (ABC) transporters in colonic pathophysiology as they had recently been related to colorectal cancer (CRC) development. METHODS: Literature search was conducted on PubMed using combinations of the following terms: ABC transporters, ATP binding cassette transporter proteins, inflammatory bowel disease, ulcerative, colitis, Crohns disease, colorectal cancer, colitis, intestinal inflammation, intestinal carcinogenesis, ABCB1/P-glycoprotein (P-gp/CD243/MDR1), ABCC2/multidrug resistance protein 2 (MRP2) and ABCG2/breast cancer resistance protein (BCRP), Abcb1/Mdr1a, abcc2/Mrp2, abcg2/Bcrp, knock-out mice, tight junction, membrane lipid function. RESULTS: Recently, human studies reported that changes in the levels of ABC transporters were early events in the adenoma-carcinoma sequence leading to CRC. A link between ABCB1, high fat diet and gut microbes in relation to colitis was suggested by the animal studies. The finding that colitis was preceded by altered gut bacterial composition suggests that deletion of Abcb1 leads to fundamental changes of host-microbiota interaction. Also, high fat diet increases the frequency and severity of colitis in specific pathogen-free Abcb1 KO mice. The Abcb1 KO mice might thus serve as a model in which diet/environmental factors and microbes may be controlled and investigated in relation to intestinal inflammation. Potential molecular mechanisms include defective transport of inflammatory mediators and/or phospholipid translocation from one side to the other of the cell membrane lipid bilayer by ABC transporters affecting inflammatory response and/or function of tight junctions, phagocytosis and vesicle trafficking. Also, diet and microbes give rise to molecules which are potential substrates for the ABC transporters and which may additionally affect ABC transporter function through nuclear receptors and transcriptional regulation. Another critical role of ABCB1 was suggested by the finding that ABCB1 expression identifies a subpopulation of pro-inflammatory Th17 cells which were resistant to treatment with glucocorticoids. The evidence for the involvement of ABCC2 and ABCG2 in colonic pathophysiology was weak. CONCLUSION: ABCB1, diet, and gut microbes mutually interact in colonic inflammation, a well-known risk factor for CRC. Further insight may be translated into preventive and treatment strategies. PMID:26557010

  13. Rabies virus envelope glycoprotein targets lentiviral vectors to the axonal retrograde pathway in motor neurons.

    PubMed

    Hislop, James N; Islam, Tarin A; Eleftheriadou, Ioanna; Carpentier, David C J; Trabalza, Antonio; Parkinson, Michael; Schiavo, Giampietro; Mazarakis, Nicholas D

    2014-06-06

    Rabies pseudotyped lentiviral vectors have great potential in gene therapy, not least because of their ability to transduce neurons following their distal axonal application. However, very little is known about the molecular processes that underlie their retrograde transport and cell transduction. Using multiple labeling techniques and confocal microscopy, we demonstrated that pseudotyping with rabies virus envelope glycoprotein (RV-G) enabled the axonal retrograde transport of two distinct subtypes of lentiviral vector in motor neuron cultures. Analysis of this process revealed that these vectors trafficked through Rab5-positive endosomes and accumulated within a non-acidic Rab7 compartment. RV-G pseudotyped vectors were co-transported with both the tetanus neurotoxin-binding fragment and the membrane proteins thought to mediate rabies virus endocytosis (neural cell adhesion molecule, nicotinic acetylcholine receptor, and p75 neurotrophin receptor), thus demonstrating that pseudotyping with RV-G targets lentiviral vectors for transport along the same pathway exploited by several toxins and viruses. Using motor neurons cultured in compartmentalized chambers, we demonstrated that axonal retrograde transport of these vectors was rapid and efficient; however, it was not able to transduce the targeted neurons efficiently, suggesting that impairment in processes occurring after arrival of the viral vector in the soma is responsible for the low transduction efficiency seen in vivo, which suggests a novel area for improvement of gene therapy vectors. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Regulation of multidrug resistance proteins by genistein in a hepatocarcinoma cell line: impact on sorafenib cytotoxicity.

    PubMed

    Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, María Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina Inés; Catania, Viviana Alicia; Ruiz, María Laura

    2015-01-01

    Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 μM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 μM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 μM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 μM) and MRP2 induction by GNT (only at 10 μM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.

  15. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate.

    PubMed

    Qiao, Hongzhi; Chen, Lihua; Rui, Tianqi; Wang, Jingxian; Chen, Ting; Fu, Tingming; Li, Junsong; Di, Liuqing

    2017-01-01

    Andrographolide (ADG) is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS) were prepared using a wet media milling technique followed by freeze drying. d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS), a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box-Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3), respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability ( P app ) of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS ( P <0.01). Compared to the ADG coarse powder, a physical mixture, commercial dripping pills and ADG-NS without TPGS, ADG-NS exhibited significantly higher plasma exposure with significant enhancements in C max and area under the curve of plasma concentration versus time from zero to the last sampling time (AUC 0- t ) ( P <0.01). An evaluation of the anti-inflammatory effect on Carr-induced paw edema demonstrated that the ADG-NS were more effective in reducing the rate of paw swelling, producing a greater increase in the serum levels of nitric oxide (NO), Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) ( P <0.01) and an increase in superoxide dismutase activity ( P <0.05) compared to the ADG coarse powder. This study indicated that nanosuspensions could act as an effective delivery device for ADG to enhance its oral bioavailability and biological efficacy.

  16. Arenavirus Stable Signal Peptide Is the Keystone Subunit for Glycoprotein Complex Organization

    PubMed Central

    Bederka, Lydia H.; Bonhomme, Cyrille J.; Ling, Emily L.

    2014-01-01

    ABSTRACT The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. PMID:25352624

  17. Ferrocene and (arene)ruthenium(II) complexes of the natural anticancer naphthoquinone plumbagin with enhanced efficacy against resistant cancer cells and a genuine mode of action.

    PubMed

    Spoerlein-Guettler, Cornelia; Mahal, Katharina; Schobert, Rainer; Biersack, Bernhard

    2014-09-01

    A series of ferrocene and (arene)ruthenium(II) complexes attached to the naturally occurring anticancer naphthoquinones plumbagin and juglone was tested for efficacy against various cancer cell lines and for alterations in the mode of action. The plumbagin ferrocene and (p-cymene)Ru(II) conjugates 1c and 2a overcame the multi-drug drug resistance of KB-V1/Vbl cervix carcinoma cells and showed IC50 (72 h) values around 1 μM in growth inhibition assays using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT). They were further investigated for their influence on the cell cycle of KB-V1/Vbl and HCT-116 colon carcinoma cells, on the generation of reactive oxygen species (ROS) by the latter cell line, for their substrate character for the P-glycoprotein drug eflux pump via the calcein-AM efflux assays, and for DNA affinity by the electrophoretic mobility shift assay (EMSA). The derivatives 1c and 2a increased the number of dead cancer cells (sub-G0/G1 fraction) in a dose- and time-dependent manner. ROS levels were significantly increased upon treatment with 1c and 2a. These compounds also showed a greater affinity to linear DNA than plumbagin. While plumbagin did not affect calcein-AM transport by P-glycoprotein the derivatives 1c and 2a exhibited a 50% or 80% inhibition of the P-glycoprotein-mediated calcein-AM efflux relative to the clinically established sensitizer verapamil. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells.

    PubMed

    Bebawy, M; Combes, V; Lee, E; Jaiswal, R; Gong, J; Bonhoure, A; Grau, G E R

    2009-09-01

    Multidrug resistance (MDR), a significant impediment to the successful treatment of cancer clinically, has been attributed to the overexpression of P-glycoprotein (P-gp), a plasma membrane multidrug efflux transporter. P-gp maintains sublethal intracellular drug concentrations by virtue of its drug efflux capacity. The cellular regulation of P-gp expression is currently known to occur at either pre- or post-transcriptional levels. In this study, we identify a 'non-genetic' mechanism whereby microparticles (MPs) serve as vectors in the acquisition and spread of MDR. MPs isolated from drug-resistant cancer cells (VLB(100)) were co-cultured with drug sensitive cells (CCRF-CEM) over a 4 h period to allow for MP binding and P-gp transfer. Presence of P-gp on MPs was established using flow cytometry (FCM) and western blotting. Whole-cell drug accumulation assays using rhodamine 123 and daunorubicin (DNR) were carried out to validate the transfer of functional P-gp after co-culture. We establish that MPs shed in vitro from drug-resistant cancer cells incorporate cell surface P-gp from their donor cells, effectively bind to drug-sensitive recipient cells and transfer functional P-gp to the latter. These findings serve to substantially advance our understanding of the molecular basis for the emergence of MDR in cancer clinically and lead to new treatment strategies which target and inhibit MP mediated transfer of P-gp during the course of treatment.

  19. Investigating the dynamic nature of the ABC transporters: ABCB1 and MsbA as examples for the potential synergies of MD theory and EPR applications.

    PubMed

    Stockner, Thomas; Mullen, Anna; MacMillan, Fraser

    2015-10-01

    ABC transporters are primary active transporters found in all kingdoms of life. Human multidrug resistance transporter ABCB1, or P-glycoprotein, has an extremely broad substrate spectrum and confers resistance against chemotherapy drug treatment in cancer cells. The bacterial ABC transporter MsbA is a lipid A flippase and a homolog to the human ABCB1 transporter, with which it partially shares its substrate spectrum. Crystal structures of MsbA and ABCB1 have been solved in multiple conformations, providing a glimpse into the possible conformational changes the transporter could be going through during the transport cycle. Crystal structures are inherently static, while a dynamic picture of the transporter in motion is needed for a complete understanding of transporter function. Molecular dynamics (MD) simulations and electron paramagnetic resonance (EPR) spectroscopy can provide structural information on ABC transporters, but the strength of these two methods lies in the potential to characterise the dynamic regime of these transporters. Information from the two methods is quite complementary. MD simulations provide an all atom dynamic picture of the time evolution of the molecular system, though with a narrow time window. EPR spectroscopy can probe structural, environmental and dynamic properties of the transporter in several time regimes, but only through the attachment sites of an exogenous spin label. In this review the synergistic effects that can be achieved by combining the two methods are highlighted, and a brief methodological background is also presented. © 2015 Authors; published by Portland Press Limited.

  20. Potential pharmacokinetic effect of rifampicin on enrofloxacin in broilers: Roles of P-glycoprotein and BCRP induction by rifampicin.

    PubMed

    Guo, Mengjie; Dai, Xiaohua; Hu, Dongmin; Zhang, Yu; Sun, Yong; Ren, Weilong; Wang, Liping

    2016-09-01

    P-glycoprotein ( P-GP: , encoding gene Abcb1) and Breast Cancer Resistance Protein ( BCRP: , encoding gene Abcg2) are transport proteins that play a major role in modulating the bioavailability of oral drugs in humans and rodents. It has been shown that rifampicin is the typical inducer of P-gp in rodents by activating the nuclear receptor. However, its effect on Abcb1, Abcg2, CYP3A, and chicken xenobiotic-sensing orphan nuclear receptor ( CXR: ) mRNA expression in broilers is poorly understood. This study explored the effect of rifampicin on mRNA expression of Abcb1, Abcg2, CYP3A37, CXR as well as its effect on the pharmacokinetics of enrofloxacin in broilers. The mRNA levels of Abcb1, Abcg2, CYP3A37, and CXR were significantly increased in the liver (except Abcg2), kidney, jejunum, and ileum (P < 0.05) but not significantly changed in the duodenum (P > 0.05) after treated with rifampicin. Further analysis revealed that the variation tendencies of Abcb1, Abcg2, and CYP3A37 expression levels were significantly correlated with CXR mRNA expression levels in liver, kidney, jejunum, and ileum. Coadministration of rifampicin significantly changed the pharmacokinetic behavior of enrofloxacin orally administered by showing clearly lower AUC0-∞, AUC0-t, and Cmax as well as longer Tmax. The bioavailability of orally administered enrofloxacin was decreased from 72.5% to 24.8% by rifampicin. However, rifampicin did not significantly change the pharmacokinetics of enrofloxacin following intravenous administration. Our study shows that rifampicin up-regulated the small intestinal level of P-gp and BCRP and suggests that P-gp and BCRP are key factors that affected pharmacokinetic behavior of orally administered enrofloxacin by limiting its absorption from the intestine in broilers. © 2016 Poultry Science Association Inc.

  1. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    PubMed Central

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  2. Modulating the folding of P-glycoprotein and cystic fibrosis transmembrane conductance regulator truncation mutants with pharmacological chaperones.

    PubMed

    Wang, Ying; Loo, Tip W; Bartlett, M Claire; Clarke, David M

    2007-03-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) and P-glycoprotein (P-gp) are ATP-binding cassette (ABC) transporters that have two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Defective folding of CFTR lacking phenylalanine 508 (DeltaPhe508) in NBD1 is the most common cause of cystic fibrosis. The Phe508 position seems to be universally important in ABC transporters because deletion of the equivalent residue (Tyr490) in P-gp also inhibits maturation of the protein. The pharmacological chaperone VRT-325 can repair the DeltaPhe508-type folding defects in P-gp or CFTR. VRT-325 may repair the folding defects by promoting dimerization of the two NBDs or by promoting folding of the TMDs. To distinguish between these two mechanisms, we tested the ability of VRT-325 to promote folding of truncation mutants lacking one or both NBDs. Sensitivity to glycosidases was used as an indirect indicator of folding. It was found that VRT-325 could promote maturation of truncation mutants lacking NBD2. Truncation mutants of CFTR or P-gp lacking both NBDs showed deficiencies in core-glycosylation that could be partially reversed by carrying out expression in the presence of VRT-325. The results show that dimerization of the two NBDs to form a "nucleotide-sandwich" structure or NBD interactions with the TMDs are not essential for VRT-325 enhancement of folding. Instead, VRT-325 can promote folding of the TMDs alone. The ability of VRT-325 to promote core-glycosylation of the NBD-less truncation mutants suggests that one mechanism whereby the compound enhances folding is by promoting proper insertion of TM segments attached to the glycosylated loops so that they adopt an orientation favorable for glycosylation.

  3. Oxysterols decrease apical-to-basolateral transport of Aß peptides via an ABCB1-mediated process in an in vitro Blood-brain barrier model constituted of bovine brain capillary endothelial cells.

    PubMed

    Saint-Pol, Julien; Candela, Pietra; Boucau, Marie-Christine; Fenart, Laurence; Gosselet, Fabien

    2013-06-23

    It is known that activation of the liver X receptors (LXRs) by natural or synthetic agonists decreases the amyloid burden and enhances cognitive function in transgenic murine models of Alzheimer's disease (AD). Recent evidence suggests that LXR activation may affect the transport of amyloid ß (Aß) peptides across the blood-brain barrier (the BBB, which isolates the brain from the peripheral circulation). By using a well-characterized in vitro BBB model, we demonstrated that LXR agonists (24S-hydroxycholesterol, 27-hydroxycholesterol and T0901317) modulated the expression of target genes involved in cholesterol homeostasis (such as ATP-binding cassette sub-family A member 1 (ABCA1)) and promoted cellular cholesterol efflux to apolipoprotein A-I and high density lipoproteins. Interestingly, we also observed a decrease in Aß peptide influx across brain capillary endothelial cells, although ABCA1 did not appear to be directly involved in this process. By focusing on others receptors and transporters that are thought to have major roles in Aß peptide entry into the brain, we then demonstrated that LXR stimulation provoked an increase in expression of the ABCB1 transporter (also named P-glycoprotein (P-gp)). Further investigations confirmed ABCB1's involvement in the restriction of Aß peptide influx. Taken as a whole, our results not only reinforce the BBB's key role in cerebral cholesterol homeostasis but also demonstrate the importance of the LXR/ABCB1 axis in Aß peptide influx-highlighting an attractive new therapeutic approach whereby the brain could be protected from peripheral Aß peptide entry. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Rabies Virus Hijacks and Accelerates the p75NTR Retrograde Axonal Transport Machinery

    PubMed Central

    Gluska, Shani; Zahavi, Eitan Erez; Chein, Michael; Gradus, Tal; Bauer, Anja; Finke, Stefan; Perlson, Eran

    2014-01-01

    Rabies virus (RABV) is a neurotropic virus that depends on long distance axonal transport in order to reach the central nervous system (CNS). The strategy RABV uses to hijack the cellular transport machinery is still not clear. It is thought that RABV interacts with membrane receptors in order to internalize and exploit the endosomal trafficking pathway, yet this has never been demonstrated directly. The p75 Nerve Growth Factor (NGF) receptor (p75NTR) binds RABV Glycoprotein (RABV-G) with high affinity. However, as p75NTR is not essential for RABV infection, the specific role of this interaction remains in question. Here we used live cell imaging to track RABV entry at nerve terminals and studied its retrograde transport along the axon with and without the p75NTR receptor. First, we found that NGF, an endogenous p75NTR ligand, and RABV, are localized in corresponding domains along nerve tips. RABV and NGF were internalized at similar time frames, suggesting comparable entry machineries. Next, we demonstrated that RABV could internalize together with p75NTR. Characterizing RABV retrograde movement along the axon, we showed the virus is transported in acidic compartments, mostly with p75NTR. Interestingly, RABV is transported faster than NGF, suggesting that RABV not only hijacks the transport machinery but can also manipulate it. Co-transport of RABV and NGF identified two modes of transport, slow and fast, that may represent a differential control of the trafficking machinery by RABV. Finally, we determined that p75NTR-dependent transport of RABV is faster and more directed than p75NTR-independent RABV transport. This fast route to the neuronal cell body is characterized by both an increase in instantaneous velocities and fewer, shorter stops en route. Hence, RABV may employ p75NTR-dependent transport as a fast mechanism to facilitate movement to the CNS. PMID:25165859

  5. Reversal of P-glycoprotein-mediated multidrug resistance by 5,6,7,3',4'-pentamethoxyflavone (Sinensetin).

    PubMed

    Choi, Cheol Hee; Sun, Kyung Hoon; An, Chun San; Yoo, Jin Cheol; Hahm, Kyung Soo; Lee, In Hwa; Sohng, Jae Kyung; Kim, Youn Chul

    2002-07-26

    Multidrug resistance (MDR) cells can be sensitized to anticancer drugs when treated concomitantly with chemosensitizers. In this study, chemosensitizing effects of 5,6,7,3',4'-pentamethoxyflavone (sinensetin) and its analogs were investigated with respect to in vitro efficacy and structure-activity relationship. Sinensetin reversed the resistance of P-glycoprotein (Pgp)-overexpressing AML-2/D100 to vincristine in a concentration-dependent manner. Chemosensitizing effect of sinensetin was 10- and 18-fold higher than those of 5,7,3',4'-tetramethoxyflavone and 3,7-dihydroxy-3',4'-dimethoxyflavone, respectively. Sinensetin cytotoxicity in AML-2/D100 was not changed by the complete inhibition of Pgp, suggesting that it is not a substrate for Pgp. Flow cytometry showed that sinensetin increased drug accumulation in the AML-2/D100 in a concentration-dependent manner. Unlike verapamil and cyclosporin A, the maximum non-cytotoxic concentrations of sinensetin were found to decrease the Pgp levels. Azidopine-binding assay showed that cyclosporin A or verapamil inhibited azidopine binding on Pgp partially but sinensetin did not. Taken together, these results suggest that sinensetin has a chemosensitizing effect in reversing Pgp-mediated MDR by increasing the intracellular accumulation of drugs without competition in a binding site of azidopine. Thus, sinensetin is anticipated as a novel and highly potent second-generation flavonoid chemosensitizer, since sinensetin has significant advantages of having a high therapeutic index, of being a non-transportable inhibitor, and of effecting no induction of Pgp.

  6. The interaction of gut microbes with host ABC transporters

    PubMed Central

    Mercado-Lubo, Regino

    2010-01-01

    ATP binding cassette (ABC) transporters are increasingly recognized for their ability to modulate the absorption, distribution, metabolism, secretion and toxicity of xenobiotics. In addition to their essential function in drug resistance, there is also emerging evidence documenting the important role ABC transporters play in tissue defense. In this respect, the gastrointestinal tract represents a critical vanguard of defense against oral exposure of drugs while at the same time functions as a physical barrier between the lumenal contents (including bacteria) and the intestinal epithelium. Given emerging evidence suggesting that multidrug resistance protein (MDR) plays an important role in host-bacterial interactions in the gastrointestinal tract, this review will discuss the interplay between MDR of the intestinal epithelial cell barrier and gut microbes in health and disease. In particular, we will explore host-microbe interactions involving three apically restricted ABC transporters of the intestinal epithelium; P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2) and cystic fibrosis transmembrane regulator (CFTR). PMID:21327038

  7. Impact of P-Glycoprotein (ABCB1) and Breast Cancer Resistance Protein (ABCG2) on the Brain Distribution of a Novel BRAF Inhibitor: Vemurafenib (PLX4032)

    PubMed Central

    Mittapalli, Rajendar K.; Vaidhyanathan, Shruthi; Sane, Ramola

    2012-01-01

    Vemurafenib [N-(3-{[5-(4-chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]carbonyl}-2,4-difluorophenyl)propane-1-sulfonamide(PLX4032)] is a novel small-molecule BRAF inhibitor, recently approved by the Food and Drug Administration for the treatment of patients with metastatic melanoma with a BRAFV600E mutation. The objective of this study was to investigate the role of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) in the distribution of vemurafenib to the central nervous system. In vitro studies conducted in transfected Madin-Darby canine kidney II cells show that the intracellular accumulation of vemurafenib is significantly restricted because of active efflux by P-gp and BCRP. Bidirectional flux studies indicated greater transport in the basolateral-to-apical direction than the apical-to-basolateral direction because of active efflux by P-gp and BCRP. The selective P-gp and BCRP inhibitors zosuquidar and (3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino(1′,2′:1,6)pyrido(3,4-b)indole-3-propanoic acid-1,1-dimethylethyl ester (Ko143) were able to restore the intracellular accumulation and bidirectional net flux of vemurafenib. The in vivo studies revealed that the brain distribution coefficient (area under the concentration time profile of brain/area under the concentration time profile of plasma) of vemurafenib was 0.004 in wild-type mice. The steady-state brain-to-plasma ratio of vemurafenib was 0.035 ± 0.009 in Mdr1a/b(−/−) mice, 0.009 ± 0.006 in Bcrp1(−/−) mice, and 1.00 ± 0.19 in Mdr1a/b(−/−)Bcrp1(−/−) mice compared with 0.012 ± 0.004 in wild-type mice. These data indicate that the brain distribution of vemurafenib is severely restricted at the blood-brain barrier because of active efflux by both P-gp and BCRP. This finding has important clinical significance given the ongoing trials examining the efficacy of vemurafenib in brain metastases of melanoma. PMID:22454535

  8. Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey.

    PubMed

    Kosa, Rachel E; Lazzaro, Sarah; Bi, Yi-An; Tierney, Brendan; Gates, Dana; Modi, Sweta; Costales, Chester; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena V

    2018-06-07

    We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP) and talinolol (P-gp) were obtained in cynomolgus monkey - alone or in combination with transporter inhibitors. Single dose rifampicin (30 mg/kg) significantly (p<0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin (AUC ratio ~21-39). Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (p<0.05) impacted the renal clearance of rosuvastatin (~8-fold). In vitro, rifampicin (10μM) inhibited uptake of pitavastatin, rosuvastatin and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP; while talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions. The American Society for Pharmacology and Experimental Therapeutics.

  9. Dissection of the Role of the Stable Signal Peptide of the Arenavirus Envelope Glycoprotein in Membrane Fusion

    PubMed Central

    Messina, Emily L.; York, Joanne

    2012-01-01

    The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junín) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition. PMID:22438561

  10. The stabilisation of purified, reconstituted P-glycoprotein by freeze drying with disaccharides.

    PubMed

    Heikal, Adam; Box, Karl; Rothnie, Alice; Storm, Janet; Callaghan, Richard; Allen, Marcus

    2009-02-01

    The drug efflux pump P-glycoprotein (P-gp) (ABCB1) confers multidrug resistance, a major cause of failure in the chemotherapy of tumours, exacerbated by a shortage of potent and selective inhibitors. A high throughput assay using purified P-gp to screen and characterise potential inhibitors would greatly accelerate their development. However, long-term stability of purified reconstituted ABCB1 can only be reliably achieved with storage at -80 degrees C. For example, at 20 degrees C, the activity of ABCB1 was abrogated with a half-life of <1 day. The aim of this investigation was to stabilise purified, reconstituted ABCB1 to enable storage at higher temperatures and thereby enable design of a high throughput assay system. The ABCB1 purification procedure was optimised to allow successful freeze drying by substitution of glycerol with the disaccharides trehalose or maltose. Addition of disaccharides resulted in ATPase activity being retained immediately following lyophilisation with no significant difference between the two disaccharides. However, during storage trehalose preserved ATPase activity for several months regardless of the temperature (e.g. 60% retention at 150 days), whereas ATPase activity in maltose purified P-gp was affected by both storage time and temperature. The data provide an effective mechanism for the production of resilient purified, reconstituted ABCB1.

  11. Role of active drug transporters in refractory multiple myeloma.

    PubMed

    Tucci, Marco; Quatraro, Cosima; Dammacco, Franco; Silvestris, Franco

    2009-01-01

    Drug resistance is a major drawback for cancer chemotherapy protocols and previous studies have demonstrated the overexpression of the P-glycoprotein (P-gp) as mechanism by which myeloma cells develop multidrug resistance (MDR). However, other molecules may apparently promote MDR in multiple myeloma (MM). They include both lung resistance-related protein (LRP) and p53 activation. The inhibition of P-gp in MM patients treated with melphalan (PAM) has been associated to increased toxicity, whereas defective apoptosis due to down-modulation of the NF-kB is a feature of MDR+ myeloma cells. On the contrary, clinical trials with proteasome inhibitors have been successfully carried out to overcome MDR despite their toxicity profile. Recently, sigma receptors (sigmaR)(S), namely sigmaR(1) and sigmaR(2), have been found to be overexpressed in breast cancer cells. In addition, their levels correlate with both P-gp upregulation and MDR development. By contrast, selective inhibitors of sigmaR(S) as PB28, disrupt the P-gp signals and restore the apoptosis machinery in malignant cells. We have reviewed the major pathogenetic events promoting MDR in MM and focused on the sigmaR(S) as potential mechanism driving this function. We demonstrate that MDR+ myeloma cells overexpress the sigmaR(2) and that the treatment with PB28 induces P-gp down-modulation through the activation of the caspases enrolled in both extrinsic and intrinsic apoptotic pathways. Thus, sigmaR(2) inhibitors may be tentatively proposed for the treatment of PAM-resistant MM patients.

  12. Identification of H209 as Essential for pH 8-Triggered Receptor-Independent Syncytium Formation by S Protein of Mouse Hepatitis Virus A59.

    PubMed

    Li, Pei; Shan, Yiwei; Zheng, Wangliang; Ou, Xiuyuan; Mi, Dan; Mu, Zhixia; Holmes, Kathryn V; Qian, Zhaohui

    2018-06-01

    The spike glycoprotein (S) of murine coronavirus mouse hepatitis virus (MHV) strain A59 uses murine carcinoembryonic antigen-related cell adhesion molecule 1a as its receptor for cell entry, but S protein can also be triggered in the absence of receptor by pH 8.0 alone at 37°C. The mechanism by which conformational changes of this S glycoprotein can be triggered by pH 8.0 has not yet been determined. Here, we show that MHV-A59 S protein is triggered by pH 8.0 at 37°C to induce receptor-independent syncytium (RIS) formation on 293T cells, and that the conformational changes in S proteins triggered by pH 8.0 are very similar to those triggered by receptor binding. We systemically mutated each of 15 histidine residues in S protein and found that H209 is essential for pH 8.0-triggered RIS formation, while H179, H441, H643, and H759 also play important roles in this process. Replacement of H209 with Ala had no effect on receptor binding, but in murine 17Cl.1 cells mutant H209A MHV-A59 showed delayed growth kinetics and was readily outcompeted by wild-type virus when mixed together, indicating that the H209A mutation caused a defect in virus fitness. Finally, the H209A mutation significantly increased the thermostability of S protein in its prefusion conformation, which may raise the energy barrier for conformational change of S protein required for membrane fusion and lead to a decrease in virus fitness in cell culture. Thus, MHV-A59 may have evolved to lower the stability of its S protein in order to increase virus fitness. IMPORTANCE Enveloped viruses enter cells through fusion of viral and cellular membranes, and the process is mediated by interactions between viral envelope proteins and their host receptors. In the prefusion conformation, viral envelope proteins are metastable, and activation to the fusion conformation is tightly regulated, since premature activation would lead to loss of viral infectivity. The stability of viral envelope proteins greatly influences their activation and virus fitness. Here, we report that, similar to the A82V mutation in Ebola glycoprotein, in the S glycoprotein of murine coronavirus MHV-A59, the histidine residue at position of 209 significantly affects the thermal stability of the S protein, determines whether S protein can be activated at 37°C by either pH 8.0 alone or by receptor binding, and affects viral fitness in cell culture. Thus, the spike glycoprotein of MHV-A59 has evolved to retain histidine at position 209 to optimize virus fitness. Copyright © 2018 American Society for Microbiology.

  13. Otitis media in Brazilian human immunodeficiency virus infected children undergoing antiretroviral therapy.

    PubMed

    Miziara, I D; Weber, R; Araújo Filho, B Cunha; Pinheiro Neto, C Diógenes

    2007-11-01

    To assess changes in the prevalence of otitis media, associated with the use of highly active antiretroviral therapy, in Brazilian human immunodeficiency virus (HIV) infected children. Division of otorhinolaryngology, Hospital das Clínicas, Sao Paulo University Medical School, Brazil. A cohort of 459 HIV-infected children aged below 13 years. The prevalence of otitis media and the serum cluster of differentiation four glycoprotein T lymphocyte count were compared for children receiving highly active antiretroviral therapy (with protease inhibitors) and those receiving standard antiretroviral therapy (without protease inhibitors). Otitis media was present in 33.1 per cent of the children. Children aged from zero years to five years 11 months receiving highly active antiretroviral therapy had a higher prevalence of acute otitis media (p=0.02) and a lower prevalence of chronic otitis media (p=0.02). Children who were receiving highly active antiretroviral therapy had a mean serum cluster of differentiation four glycoprotein T lymphocyte count greater than that of those who were receiving standard antiretroviral therapy (p<0.001). The use of highly active antiretroviral therapy in Brazilian HIV-infected children was associated with a lower prevalence of chronic otitis media.

  14. Fabrication and in vitro/in vivo evaluation of amorphous andrographolide nanosuspensions stabilized by d-α-tocopheryl polyethylene glycol 1000 succinate/sodium lauryl sulfate

    PubMed Central

    Qiao, Hongzhi; Chen, Lihua; Rui, Tianqi; Wang, Jingxian; Chen, Ting; Fu, Tingming; Li, Junsong; Di, Liuqing

    2017-01-01

    Andrographolide (ADG) is a diterpenoid isolated from Andrographis paniculata with a wide spectrum of biological activities, including anti-inflammatory, anticancer and hepatoprotective effects. However, its poor water solubility and efflux by P-glycoprotein have resulted in lower bioavailability. In this study, ADG nanosuspensions (ADG-NS) were prepared using a wet media milling technique followed by freeze drying. d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS), a surfactant that inhibits P-glycoprotein function, and sodium lauryl sulfate were used as surface stabilizers. A Box–Behnken design was used to optimize the nanosuspension preparation. The products of these optimal preparation conditions were amorphous and possessed much faster dissolution in vitro than a coarse powder of ADG. The particle size and redispersibility index of the freeze-dried ADG-NS were 244.6±3.0 nm and 113%±1.14% (n=3), respectively. A short-term stability study indicated that the freeze-dried ADG-NS could remain highly stable as nanosuspensions during the testing period. A test of transport across a Caco-2 cell monolayer revealed that the membrane permeability (Papp) of ADG-NS was significantly higher than the permeability of the ADG coarse powder or ADG-NS without TPGS (P<0.01). Compared to the ADG coarse powder, a physical mixture, commercial dripping pills and ADG-NS without TPGS, ADG-NS exhibited significantly higher plasma exposure with significant enhancements in Cmax and area under the curve of plasma concentration versus time from zero to the last sampling time (AUC0−t) (P<0.01). An evaluation of the anti-inflammatory effect on Carr-induced paw edema demonstrated that the ADG-NS were more effective in reducing the rate of paw swelling, producing a greater increase in the serum levels of nitric oxide (NO), Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) (P<0.01) and an increase in superoxide dismutase activity (P<0.05) compared to the ADG coarse powder. This study indicated that nanosuspensions could act as an effective delivery device for ADG to enhance its oral bioavailability and biological efficacy. PMID:28223797

  15. Design, synthesis and biological evaluation of LBM-A5 derivatives as potent P-glycoprotein-mediated multidrug resistance inhibitors.

    PubMed

    Wu, Yuxiang; Pan, Miaobo; Dai, Yuxuan; Liu, Baomin; Cui, Jian; Shi, Wei; Qiu, Qianqian; Huang, Wenlong; Qian, Hai

    2016-05-15

    A novel series of P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) inhibitors with triazol-N-phenethyl-tetrahydroisoquinoline or triazol-N-ethyl-tetrahydroisoquinoline scaffold were designed and synthesized via click chemistry. Most of the synthesized compounds showed higher reversal activity than verapamil (VRP). Among them, the most potent compound 4 showed a comparable activity with the known potent P-gp inhibitor WK-X-34 with lower cytotoxicity toward K562 cells (IC50>100μM). Compared with VRP, compound 4 exhibited more potency in increasing drug accumulation in K562/A02 MDR cells. Moreover, compound 4 could significantly reverse MDR in a dose-dependent manner and also persist longer chemo-sensitizing effect than VRP with reversibility. Further mechanism studies revealed that compound 4 could remarkably increase the intracellular accumulation of Adriamycin (ADM) in K562/A02 cells as well as inhibit rhodamine-123 (Rh123) efflux from the cells. These results suggested that compound 4 may represent a promising candidate for developing P-gp-mediated MDR inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Emodin plays an interventional role in epileptic rats via multidrug resistance gene 1 (MDR1).

    PubMed

    Yang, Tao; Kong, Bin; Kuang, Yongqin; Cheng, Lin; Gu, Jianwen; Zhang, Junhai; Shu, Haifeng; Yu, Sixun; Yang, Xiaokun; Cheng, Jingming; Huang, Haidong

    2015-01-01

    To observe the interventional effects of emodin in epileptic rats and elucidate its possible mechanism of action. Thirty-six female Wistar rats were randomly divided into normal control group, model group (intraperitoneal injection of kainic acid) and emodin group (intraperitoneal injection of kainic acid+emodin intervention). The rat epilepsy model was confirmed by behavioral tests and electroencephalography. The protein levels of P-glycoprotein and N-methyl-D-aspartate (NMDA) receptor in cerebral vascular tissue were analyzed by western blotting, and mRNA levels of multidrug resistance gene 1 (MDR1) and cyclooxygenase-2 (COX-2) were analyzed by real-time PCR. COX-2 and P-glycoprotein levels in the brains were detected by immunohistochemical assay. The seizures were relieved in emodin group. Laser scanning confocal microscopy showed P-glycoprotein fluorescence increased significantly after seizures, indicating that epilepsy can induce overexpression of P-glycoprotein. Compared with control group, protein levels of P-glycoprotein and NMDA receptor in cerebral vascular tissue were significantly higher in model group, and mRNA levels of MDR1 and COX-2 were also significantly increased. Compared with model group, P-glycoprotein and NMDA receptor levels in cerebral vascular tissue were significantly decreased in emodin group (P<0.05), and the levels of MDR1 and COX-2 were down-regulated (P<0.05). In the rat brain, seizures could significantly increase COX-2 and P-glycoprotein levels, while emodin intervention was able to significantly reduce the levels of both. These findings suggest that epileptic seizures are tightly associated with up-regulated MDR1 gene, and emodin shows good antagonistic effects on epileptic rats, possibly through inhibition of MDR1 gene and its associated genes.

  17. Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A.

    PubMed

    Prueksaritanont, T; Tatosian, D A; Chu, X; Railkar, R; Evers, R; Chavez-Eng, C; Lutz, R; Zeng, W; Yabut, J; Chan, G H; Cai, X; Latham, A H; Hehman, J; Stypinski, D; Brejda, J; Zhou, C; Thornton, B; Bateman, K P; Fraser, I; Stoch, S A

    2017-04-01

    A microdose cocktail containing midazolam, dabigatran etexilate, pitavastatin, rosuvastatin, and atorvastatin has been established to allow simultaneous assessment of a perpetrator impact on the most common drug metabolizing enzyme, cytochrome P450 (CYP)3A, and the major transporters organic anion-transporting polypeptides (OATP)1B, breast cancer resistance protein (BCRP), and MDR1 P-glycoprotein (P-gp). The clinical utility of these microdose cocktail probe substrates was qualified by conducting clinical drug interaction studies with three inhibitors with different in vitro inhibitory profiles (rifampin, itraconazole, and clarithromycin). Generally, the pharmacokinetic profiles of the probe substrates, in the absence and presence of the inhibitors, were comparable to their reported corresponding pharmacological doses, and/or in agreement with theoretical expectations. The exception was dabigatran, which resulted in an approximately twofold higher magnitude for microdose compared to conventional dosing, and, thus, can be used to flag a worst-case scenario for P-gp. Broader application of the microdose cocktail will facilitate a more comprehensive understanding of the roles of drug transporters in drug disposition and drug interactions. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  18. Bioactivity of proteins isolated from Lactobacillus plantarum L67 treated with Zanthoxylum piperitum DC glycoprotein.

    PubMed

    Song, S; Oh, S; Lim, K-T

    2015-06-01

    Lactobacilli in the human gastrointestinal tract have beneficial effects on the health of their host. To enhance these effects, the bioactivity of lactobacilli can be fortified through exogenous dietary or pharmacological agents, such as glycoproteins. To elucidate the inductive effect of Zanthoxylum piperitum DC (ZPDC) glycoprotein on Lactobacillus plantarum L67, we evaluated the radical-scavenging activity, anti-oxidative enzymes (SOD, GPx and CAT), growth rate, ATPase activity and β-galactosidase activity of this strain. When Lact. plantarum L67 was treated with ZPDC glycoprotein at different concentrations, the intensities of a few SDS-PAGE bands were slightly changed. The amount of a 23 kDa protein was increased upon treatment with increasing concentrations of ZPDC glycoprotein. The results of this study indicate that the radical-scavenging activity for O2(-) and OH¯, but not for the DPPH radical, increased in a concentration-dependent manner after treatment with ZPDC glycoprotein. The activation of anti-oxidative enzymes (SOD, GPx and CAT), growth rate and β-galactosidase activity also increased in a concentration-dependent manner in response to ZPDC glycoprotein treatment, whereas ATPase activity was decreased. In summary, ZPDC glycoprotein stimulated an increase in the bioactivity of Lact. plantarum L67. Significance and impact of the study: This study demonstrated that Lactobacillus plantarum L67 possesses anti-oxidative activity. This strain of lactic bacteria has been known to have various probiotic uses, such as yogurt starters and dietary additional supplements. We found, through this experiment, that the protein has a strong anti-oxidative character, and the activity can be enhanced by treatment with Zanthoxylum piperitum DC (ZPDC) glycoprotein. This study may be application of Lact. plantarum L67 treated by ZPDC glycoprotein in yogurt fermentation. It could be one of the avenues of minimizing yogurt postacidification during storage. In addition, it can be manufactured and incorporated in food products without losing viability and functionality of Lact. plantarum L67. © 2015 The Society for Applied Microbiology.

  19. The effect of grapefruit juice on drug disposition

    PubMed Central

    Hanley, Michael J.; Cancalon, Paul; Widmer, Wilbur W.; Greenblatt, David J.

    2011-01-01

    Introduction Since their initial discovery in 1989, grapefruit juice-drug interactions have received extensive interest from the scientific, medical, regulatory, and lay communities. Although knowledge regarding the effects of grapefruit juice on drug disposition continues to expand, the list of drugs studied in the clinical setting remains relatively limited. Areas covered This article reviews the in vitro effects of grapefruit juice and its constituents on the activity of cytochrome P450 enzymes, organic anion-transporting polypeptides, P-glycoprotein, esterases and sulfotransferases. The translational applicability of the in vitro findings to the clinical setting is discussed for each drug metabolizing enzyme and transporter. Reported area under the plasma concentration-time curve ratios for available grapefruit juice-drug interaction studies are also provided. Relevant investigations were identified by searching the Pubmed electronic database from 1989 to 2010. Expert opinion Grapefruit juice increases the bioavailability of some orally-administered drugs that are metabolized by CYP3A and normally undergo extensive presystemic extraction. In addition, grapefruit juice can decrease the oral absorption of a few drugs that rely on organic anion-transporting polypeptides in the gastrointestinal tract for their uptake. The number of drugs shown to interact with grapefruit juice in vitro is far greater than the number of clinically relevant grapefruit juice-drug interactions. For the majority of patients, complete avoidance of grapefruit juice is unwarranted. PMID:21254874

  20. Biologically active peptides of the vesicular stomatitis virus glycoprotein.

    PubMed Central

    Schlegel, R; Wade, M

    1985-01-01

    A peptide corresponding to the amino-terminal 25 amino acids of the mature vesicular stomatitis virus glycoprotein has recently been shown to be a pH-dependent hemolysin. In the present study, we analyzed smaller constituent peptides and found that the hemolytic domain resides within the six amino-terminal amino acids. Synthesis of variant peptides indicates that the amino-terminal lysine can be replaced by another positively charged amino acid (arginine) but that substitution with glutamic acid results in the total loss of the hemolytic function. Peptide-induced hemolysis was dependent upon buffer conditions and was inhibited when isotonicity was maintained with mannitol, sucrose, or raffinose. In sucrose, all hemolytic peptides were also observed to mediate hemagglutination. The large 25-amino acid peptide is also a pH-dependent cytotoxin for mammalian cells and appears to effect gross changes in cell permeability. Conservation of the amino terminus of vesicular stomatitis virus and rabies virus suggests that the membrane-destabilizing properties of this domain may be important for glycoprotein function. Images PMID:2981356

  1. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    York, Joanne; Nunberg, Jack H.

    2007-03-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although positionmore » - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease.« less

  2. Intracellular transport and stability of varicella-zoster virus glycoprotein K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Susan L.; Govero, Jennifer L.; Heineman, Thomas C.

    2007-02-20

    VZV gK, an essential glycoprotein that is conserved among the alphaherpesviruses, is believed to participate in membrane fusion and cytoplasmic virion morphogenesis based on analogy to its HSV-1 homolog. However, the production of VZV gK-specific antibodies has proven difficult presumably due to its highly hydrophobic nature and, therefore, VZV gK has received limited study. To overcome this obstacle, we inserted a FLAG epitope into gK near its amino terminus and produced VZV recombinants expressing epitope-tagged gK (VZV gK-F). These recombinants grew indistinguishably from native VZV, and FLAG-tagged gK could be readily detected in VZV gK-F-infected cells. FACS analysis established thatmore » gK is transported to the plasma membrane of infected cells, while indirect immunofluorescence demonstrated that gK accumulates predominately in the Golgi. Using VZV gK-F-infected cells we demonstrated that VZV gK, like several other herpesvirus glycoproteins, is efficiently endocytosed from the plasma membrane. However, pulse-labeling experiments revealed that the half-life of gK is considerably shorter than that of other VZV glycoproteins including gB, gE and gH. This finding suggests that gK may be required in lower abundance than other viral glycoproteins during virion morphogenesis or viral entry.« less

  3. Platelet 12-lipoxygenase activation via glycoprotein VI: involvement of multiple signaling pathways in agonist control of H(P)ETE synthesis.

    PubMed

    Coffey, Marcus J; Jarvis, Gavin E; Gibbins, Jonathan M; Coles, Barbara; Barrett, Natasha E; Wylie, Oliver R E; O'Donnell, Valerie B

    2004-06-25

    Lipoxygenases (LOX) contribute to vascular disease and inflammation through generation of bioactive lipids, including 12-hydro(pero)xyeicosatetraenoic acid (12-H(P)ETE). The physiological mechanisms that acutely control LOX product generation in mammalian cells are uncharacterized. Human platelets that contain a 12-LOX isoform (p12-LOX) were used to define pathways that activate H(P)ETE synthesis in the vasculature. Collagen and collagen-related peptide (CRP) (1 to 10 microg/mL) acutely induced platelet 12-H(P)ETE synthesis. This implicated the collagen receptor glycoprotein VI (GPVI), which signals via the immunoreceptor-based activatory motif (ITAM)-containing FcRgamma chain. Conversely, thrombin only activated at high concentrations (> 0.2 U/mL), whereas U46619 and ADP alone were ineffective. Collagen or CRP-stimulated 12-H(P)ETE generation was inhibited by staurosporine, PP2, wortmannin, BAPTA/AM, EGTA, and L-655238, implicating src-tyrosine kinases, PI3-kinase, Ca2+ mobilization, and p12-LOX translocation. In contrast, protein kinase C (PKC) inhibition potentiated 12-H(P)ETE generation. Finally, activation of the immunoreceptor tyrosine-based inhibitory motif (ITIM)-containing platelet endothelial cell adhesion molecule (PECAM-1) inhibited p12-LOX product generation. This study characterizes a receptor-dependent pathway for 12-H(P)ETE synthesis via the collagen receptor GPVI, which is negatively regulated by PECAM-1 and PKC, and demonstrates a novel link between immune receptor signaling and lipid mediator generation in the vasculature.

  4. 36 kDa glycoprotein isolated from Rhus verniciflua stokes inhibits G/GO-induced mitochondrial apoptotic signal pathways in BNL CL.2 cells.

    PubMed

    Lee, Sei-Jung; Oh, Phil-Sun; Lim, Kwang; Lim, Kye-Taek

    2005-12-01

    Rhus verniciflua Stokes is one of the medicinal plants traditionally used to heal and treat hepatic and inflammatory diseases. We found that a glycoprotein isolated from the fruit has a molecular weight of 36 kDa and consists of a carbohydrate component (38.75%) and a protein (61.25%), and that the glycoprotein has a strong scavenging activity against hydroxyl radicals without any pro-oxidant activity in the cell-free system. In glucose/glucose oxidase (G/GO)-induced BNL CL.2 cells, the results showed that Rhus verniciflua Stokes glycoprotein has dose-dependent blocking activities against G/GO-induced cytotoxicity and apoptosis, increasing the glutathione (GSH) peroxidase activity. In the activity of the mitochondrial apoptotic mediators (cytochrome c, caspases and poly(ADP-ribose)polymerase (PARP)), the glycoprotein (100 microg/ml) showed an inhibitory effect on cytochrome c release, caspase-9/3 activation, and PARP cleavage. Moreover, Rhus verniciflua Stokes glycoprotein has a stimulating effect on the nitric oxide production. Here, we speculate that this glycoprotein is one of the natural antioxidants and of the modulators of apoptotic signal pathways in BNL CL.2 cells.

  5. Catalytic transitions in the human MDR1 P-glycoprotein drug binding sites.

    PubMed

    Wise, John G

    2012-06-26

    Multidrug resistance proteins that belong to the ATP-binding cassette family like the human P-glycoprotein (ABCB1 or Pgp) are responsible for many failed cancer and antiviral chemotherapies because these membrane transporters remove the chemotherapeutics from the targeted cells. Understanding the details of the catalytic mechanism of Pgp is therefore critical to the development of inhibitors that might overcome these resistances. In this work, targeted molecular dynamics techniques were used to elucidate catalytically relevant structures of Pgp. Crystal structures of homologues in four different conformations were used as intermediate targets in the dynamics simulations. Transitions from conformations that were wide open to the cytoplasm to transition state conformations that were wide open to the extracellular space were studied. Twenty-six nonredundant transitional protein structures were identified from these targeted molecular dynamics simulations using evolutionary structure analyses. Coupled movement of nucleotide binding domains (NBDs) and transmembrane domains (TMDs) that form the drug binding cavities were observed. Pronounced twisting of the NBDs as they approached each other as well as the quantification of a dramatic opening of the TMDs to the extracellular space as the ATP hydrolysis transition state was reached were observed. Docking interactions of 21 known transport ligands or inhibitors were analyzed with each of the 26 transitional structures. Many of the docking results obtained here were validated by previously published biochemical determinations. As the ATP hydrolysis transition state was approached, drug docking in the extracellular half of the transmembrane domains seemed to be destabilized as transport ligand exit gates opened to the extracellular space.

  6. Glyceollin Transport, Metabolism, and Effects on P-Glycoprotein Function in Caco-2 Cells

    PubMed Central

    Chimezie, Chukwuemezie; Ewing, Adina C.; Quadri, Syeda S.; Cole, Richard B.; Boué, Stephen M.; Omari, Christopher F.; Bratton, Melyssa; Glotser, Elena; Skripnikova, Elena; Townley, Ian

    2014-01-01

    Abstract Glyceollins are phytoalexins produced in soybeans from their isoflavone precursor daidzein. Their impressive anticancer and glucose normalization effects in rodents have generated interest in their therapeutic potential. The aim of the present studies was to begin to understand glyceollin intestinal transport and metabolism, and their potential effects on P-glycoprotein (Pgp) in Caco-2 cells. At 10 and 25 μM, glyceollin permeability was 2.4±0.16×10−4 cm/sec and 2.1±0.15×10−4 cm/sec, respectively, in the absorptive direction. Basolateral to apical permeability at 25 μM was 1.6±0.10×10−4 cm/sec. Results suggest high absorption potential of glyceollin by a passive-diffusion-dominated mechanism. A sulfate conjugate at the phenolic hydroxyl position was observed following exposure to Caco-2 cells. In contrast to verapamil inhibition of the net secretory permeability of rhodamine 123 (R123) and its enhancement of calcein AM uptake into Caco-2 cells, neither glyceollin nor genistein inhibited Pgp (MDR1; ABCB1) up to 300 μM. There was no significant change in MDR1 mRNA expression, Pgp protein expression, or R123 transport in cells exposed to glyceollin or genistein for 24 h up to 100 μM. Collectively, these results suggest that glyceollin has the potential to be well absorbed, but that, similar to the isoflavone genistein, its absorption may be reduced substantially by intestinal metabolism; further, they indicate that glyceollin does not appear to alter Pgp function in Caco-2 cells. PMID:24476214

  7. Ionophore and Biometal Modulation of P-glycoprotein Expression and Function in Human Brain Microvascular Endothelial Cells.

    PubMed

    McInerney, Mitchell P; Volitakis, Irene; Bush, Ashley I; Banks, William A; Short, Jennifer L; Nicolazzo, Joseph A

    2018-03-05

    Biometals such as zinc and copper have been shown to affect tight junction expression and subsequently blood-brain barrier (BBB) integrity. Whether these biometals also influence the expression and function of BBB transporters such as P-glycoprotein (P-gp) however is currently unknown. Using the immortalised human cerebral microvascular endothelial (hCMEC/D3) cell line, an in-cell western assay (alongside western blotting) assessed relative P-gp expression after treatment with the metal ionophore clioquinol and biometals zinc and copper. The fluorescent P-gp substrate rhodamine-123 was employed to observe functional modulation, and inductively coupled plasma mass spectrometry (ICP-MS) provided information on biometal trafficking. A 24-h treatment with clioquinol, zinc and copper (0.5, 0.5 and 0.1 μM) induced a significant upregulation of P-gp (1.7-fold) assessed by in-cell western and this was confirmed with western blotting (1.8-fold increase). This same treatment resulted in a 23% decrease in rhodamine-123 accumulation over a 1 h incubation. ICP-MS demonstrated that while t8his combination treatment had no effect on intracellular zinc concentrations, the treatment significantly enhanced bioavailable copper (4.6-fold). Enhanced delivery of copper to human brain microvascular endothelial cells is associated with enhanced expression and function of the important efflux pump P-gp, which may provide therapeutic opportunities for P-gp modulation.

  8. Effect of collecting duct-specific deletion of both Rh B Glycoprotein (Rhbg) and Rh C Glycoprotein (Rhcg) on renal response to metabolic acidosis

    PubMed Central

    Lee, Hyun-Wook; Verlander, Jill W.; Handlogten, Mary E.; Han, Ki-Hwan

    2013-01-01

    The Rhesus (Rh) glycoproteins, Rh B and Rh C Glycoprotein (Rhbg and Rhcg, respectively), are ammonia-specific transporters expressed in renal distal nephron and collecting duct sites that are necessary for normal rates of ammonia excretion. The purpose of the current studies was to determine the effect of their combined deletion from the renal collecting duct (CD-Rhbg/Rhcg-KO) on basal and acidosis-stimulated acid-base homeostasis. Under basal conditions, urine pH and ammonia excretion and serum HCO3− were similar in control (C) and CD-Rhbg/Rhcg-KO mice. After acid-loading for 7 days, CD-Rhbg/Rhcg-KO mice developed significantly more severe metabolic acidosis than did C mice. Acid loading increased ammonia excretion, but ammonia excretion increased more slowly in CD-Rhbg/Rhcg-KO and it was significantly less than in C mice on days 1–5. Urine pH was significantly more acidic in CD-Rhbg/Rhcg-KO mice on days 1, 3, and 5 of acid loading. Metabolic acidosis increased phosphenolpyruvate carboxykinase (PEPCK) and Na+/H+ exchanger NHE-3 and decreased glutamine synthetase (GS) expression in both genotypes, and these changes were significantly greater in CD-Rhbg/Rhcg-KO than in C mice. We conclude that 1) Rhbg and Rhcg are critically important in the renal response to metabolic acidosis; 2) the significantly greater changes in PEPCK, NHE-3, and GS expression in acid-loaded CD-Rhbg/Rhcg-KO compared with acid-loaded C mice cause the role of Rhbg and Rhcg to be underestimated quantitatively; and 3) in mice with intact Rhbg and Rhcg expression, metabolic acidosis does not induce maximal changes in PEPCK, NHE-3, and GS expression despite the presence of persistent metabolic acidosis. PMID:24338819

  9. Comparison of mechanistic transport cycle models of ABC exporters.

    PubMed

    Szöllősi, Dániel; Rose-Sperling, Dania; Hellmich, Ute A; Stockner, Thomas

    2018-04-01

    ABC (ATP binding cassette) transporters, ubiquitous in all kingdoms of life, carry out essential substrate transport reactions across cell membranes. Their transmembrane domains bind and translocate substrates and are connected to a pair of nucleotide binding domains, which bind and hydrolyze ATP to energize import or export of substrates. Over four decades of investigations into ABC transporters have revealed numerous details from atomic-level structural insights to their functional and physiological roles. Despite all these advances, a comprehensive understanding of the mechanistic principles of ABC transporter function remains elusive. The human multidrug resistance transporter ABCB1, also referred to as P-glycoprotein (P-gp), is one of the most intensively studied ABC exporters. Using ABCB1 as the reference point, we aim to compare the dominating mechanistic models of substrate transport and ATP hydrolysis for ABC exporters and to highlight the experimental and computational evidence in their support. In particular, we point out in silico studies that enhance and complement available biochemical data. "This article is part of a Special Issue entitled: Beyond the Structure-Function Horizon of Membrane Proteins edited by Ute Hellmich, Rupak Doshi and Benjamin McIlwain." Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Possibility of Predicting Serotonin Transporter Occupancy From the In Vitro Inhibition Constant for Serotonin Transporter, the Clinically Relevant Plasma Concentration of Unbound Drugs, and Their Profiles for Substrates of Transporters.

    PubMed

    Yahata, Masahiro; Chiba, Koji; Watanabe, Takao; Sugiyama, Yuichi

    2017-09-01

    Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro K i values for human SERT and plasma concentrations of unbound drug (C u,plasma ), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro K i values were compared with the means of in vivo K i values (K i,u,plasma ) which were calculated as C u,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro K i values for 7 drugs were comparable to their in vivo K i,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro K i values and C u,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  11. A mechanism for overcoming P-glycoprotein-mediated drug resistance: novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC.

    PubMed

    Seebacher, Nicole A; Richardson, Des R; Jansson, Patric J

    2016-12-01

    The intracellular distribution of a drug can cause significant variability in both activity and selectivity. Herein, we investigate the mechanism by which the anti-cancer agents, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and the clinically trialed, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), re-instate the efficacy of doxorubicin (DOX), in drug-resistant P-glycoprotein (Pgp)-expressing cells. Both Dp44mT and DpC potently target and kill Pgp-expressing tumors, while DOX effectively kills non-Pgp-expressing cancers. Thus, the combination of these agents should be considered as an effective rationalized therapy for potently treating advanced and resistant tumors that are often heterogeneous in terms of Pgp-expression. These studies demonstrate that both Dp44mT and DpC are transported into lysosomes via Pgp transport activity, where they induce lysosomal-membrane permeabilization to release DOX trapped within lysosomes. This novel strategy of loading lysosomes with DOX, followed by permeabilization with Dp44mT or DpC, results in the relocalization of stored DOX from its lysosomal 'safe house' to its nuclear targets, markedly enhancing cellular toxicity against resistant tumor cells. Notably, the combination of Dp44mT or DpC with DOX showed a very high level of synergism in multiple Pgp-expressing cell types, for example, cervical, breast and colorectal cancer cells. These studies revealed that the level of drug synergy was proportional to Pgp activity. Interestingly, synergism was ablated by inhibiting Pgp using the pharmacological inhibitor, Elacridar, or by inhibiting Pgp-expression using Pgp-silencing, demonstrating the importance of Pgp in the synergistic interaction. Furthermore, lysosomal-membrane stabilization inhibited the relocalization of DOX from lysosomes to the nucleus upon combination with Dp44mT or DpC, preventing synergism. This latter observation demonstrated the importance of lysosomal-membrane permeabilization to the synergistic interaction between these agents. The synergistic and potent anti-tumor efficacy observed between DOX and thiosemicarbazones represents a promising treatment combination for advanced cancers, which are heterogeneous and composed of non-Pgp- and Pgp-expressing tumor cells.

  12. The adhesion of Pseudomonas aeruginosa to high molecular weight human tear film species corresponds to glycoproteins reactive with Sambucus nigra lectin.

    PubMed

    Aristoteli, Lina Panayiota; Willcox, Mark D P

    2006-11-01

    Pseudomonas aeruginosa is a pathogen gaining prevalence in contact lens-related corneal ulcers. Tear outflow protects the ocular surface, where high molecular weight tear glycoproteins bind bacteria for removal from the eye. The purpose of the present study was to identify glycoproteins in human tears involved in the adhesion of ocular P. aeruginosa isolates. Basal human tears were applied to a bacterial adhesion assay involving electrophoretic separation of tear components, transfer to nitrocellulose and incubation with biotin-labelled bacteria. Glycoproteins were further characterised using lectin profiling. The results showed large-dimension agarose gels were imperative for the detection of at least four glycoproteins with a migration >200 kDa, including species not previously identified. P. aeruginosa 6294 preferentially bound to a well-defined glycoprotein near the origin of the gel that, unlike other glycoproteins >200 kDa, reacted with Sambucus nigra lectin (sialic acid alpha2-6) but not WGA lectin (N-acetylglucosamine, sialic acid alpha2-3). Adhesion did not involve free biotin label or hydrophobic interactions. Also, the pre-incubation of separated tear glycoproteins with S. nigra lectin increased subsequent adhesion of 6294 to this tear glycoprotein. The less virulent Paer1 strain showed diffuse adhesion in the S. nigra-reactive region at the gel origin. In conclusion, an overlay adhesion assay was developed that identified slow-migrating sialylated glycoprotein species in human tears preferentially bound by P. aeruginosa ocular strains, and S. nigra lectin seemed to enhance the interaction. The study provides a basis for direct investigation of bacterial adhesion to glycoproteins with an apparent migration >200 kDa in tear fluid.

  13. TLR signaling modulates side effects of anticancer therapy in the small intestine.

    PubMed

    Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W; Cario, Elke

    2015-02-15

    Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified, and there is so far no successful therapeutic intervention. In this study, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b(+)-myeloid cell infiltration, and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/multidrug resistance (MDR)1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b(+)-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wild-type mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. Copyright © 2015 by The American Association of Immunologists, Inc.

  14. Differential interaction of Escherichia coli heat-labile toxin and cholera toxin with pig intestinal brush border glycoproteins depending on their ABH and related blood group antigenic determinants.

    PubMed

    Balanzino, L E; Barra, J L; Monferran, C G; Cumar, F A

    1994-04-01

    The ability of glycoproteins from pig intestinal brush border membranes (BBM) to bind cholera toxin (CT) or heat-labile toxins from strains of Escherichia coli isolated from human (LTh) or pig (LTp) intestines was studied. Glycoproteins capable of binding the toxins are also recognized by antibodies or lectins specific for ABO(H) blood group and related antigens. Pigs expressing A, H, or I antigenic determinants were used for comparison. The toxin-binding capacity of a glycoprotein depends on the toxin type and the blood group epitope borne by the glycoprotein. LTh and LTp preferably bound to several blood group A-active glycoproteins rather than H-active glycoproteins. By contrast, CT practically did not recognize either blood group A- or blood group H-active glycoproteins, while glycoproteins from pigs expressing I antigenic determinants were able to interact with LTh, LTp, and CT. LTh, LTp, or CT glycoprotein binding was selectively inhibited by specific lectins or monosaccharides. Affinity purification of the toxin binding brush border glycoproteins on the basis of their blood group reactivity suggests that such glycoproteins are hydrolytic enzymes. BBM from A+ pigs contain about 27 times more LTh binding sites, in addition to those recognized by CT, than an equivalent membrane preparation from H+ pigs. The present findings may help clarify some previous unclear results on LTh binding to intestinal BBM glycoproteins obtained by use of animals not typed by their ABO(H) blood group phenotype.

  15. Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells.

    PubMed

    Figueroa-González, Gabriela; Jacobo-Herrera, Nadia; Zentella-Dehesa, Alejandro; Pereda-Miranda, Rogelio

    2012-01-27

    Reversal of multidrug resistance (MDR) by thirty resin glycosides from the morning glory family (Convolvulaceae) was evaluated in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). The effects of these amphipathic compounds on the cytotoxicity and P-glycoprotein (P-gp)-mediated MDR were estimated with the sulforhodamine B colorimetric assay. Active noncytotoxic compounds exerted a potentiation effect of vinblastine susceptibility by 1- to over 1906-fold at tested concentrations of 5 and 25 μg/mL. Murucoidin V (1) enhanced vinblastine activity 255-fold when incorporated at 25 μg/mL and also, based on flow cytometry, significantly increased the intracellular accumulation of rhodamine 123 with the use of reserpine as a positive control for a MDR reversal agent. Incubation of MCF-7/Vin cells with 1 caused an increase in uptake and notably lowered the efflux rate of rhodamine 123. Decreased expression of P-glycoprotein by compound 1 was detected by immunofluorescence flow cytometry after incubation with an anti-P-gp monoclonal antibody. These results suggest that resin glycosides represent potential efflux pump inhibitors for overcoming MDR in cancer therapy.

  16. Optimization by Molecular Fine Tuning of Dihydro-β-agarofuran Sesquiterpenoids as Reversers of P-Glycoprotein-Mediated Multidrug Resistance.

    PubMed

    Callies, Oliver; Sánchez-Cañete, María P; Gamarro, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Bazzocchi, Isabel L

    2016-03-10

    P-glycoprotein (P-gp) plays a crucial role in the development of multidrug resistance (MDR), a major obstacle for successful chemotherapy in cancer. Herein, we report on the development of a natural-product-based library of 81 dihydro-β-agarofuran sesquiterpenes (2-82) by optimization of the lead compound 1. The compound library was evaluated for its ability to inhibit P-gp-mediated daunomycin efflux in MDR cells. Selected analogues were further analyzed for their P-gp inhibition constant, intrinsic toxicity, and potency to reverse daunomycin and vinblastine resistances. Analogues 6, 24, 28, 59, and 66 were identified as having higher potency than compound 1 and verapamil, a first-generation P-gp modulator. SAR analysis revealed the size of the aliphatic chains and presence of nitrogen atoms are important structural characteristics to modulate reversal activity. The present study highlights the potential of these analogues as modulators of P-gp mediated MDR in cancer cells.

  17. Bromelain decreases neutrophil interactions with P-selectin, but not E-selectin, in vitro by proteolytic cleavage of P-selectin glycoprotein ligand-1.

    PubMed

    Banks, Jessica M; Herman, Christine T; Bailey, Ryan C

    2013-01-01

    Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment.

  18. Bromelain Decreases Neutrophil Interactions with P-Selectin, but Not E-Selectin, In Vitro by Proteolytic Cleavage of P-Selectin Glycoprotein Ligand-1

    PubMed Central

    Bailey, Ryan C.

    2013-01-01

    Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment. PMID:24244398

  19. The G glycoprotein of respiratory syncytial virus depresses respiratory rates through the CX3C motif and substance P.

    PubMed

    Tripp, Ralph A; Dakhama, Azzeddine; Jones, Les P; Barskey, Albert; Gelfand, Erwin W; Anderson, Larry J

    2003-06-01

    Respiratory syncytial virus (RSV) infection in the neonate can alter respiratory rates, i.e., lead to episodes of apnea. We show that RSV G glycoprotein reduces respiratory rates associated with the induction of substance P (SP) and G glycoprotein-CX3CR1 interaction, an effect that is inhibited by treatment with anti-G glycoprotein, anti-SP, or anti-CX3CR1 monoclonal antibodies. These data suggest new approaches for treating some aspects of RSV disease.

  20. The G Glycoprotein of Respiratory Syncytial Virus Depresses Respiratory Rates through the CX3C Motif and Substance P

    PubMed Central

    Tripp, Ralph A.; Dakhama, Azzeddine; Jones, Les P.; Barskey, Albert; Gelfand, Erwin W.; Anderson, Larry J.

    2003-01-01

    Respiratory syncytial virus (RSV) infection in the neonate can alter respiratory rates, i.e., lead to episodes of apnea. We show that RSV G glycoprotein reduces respiratory rates associated with the induction of substance P (SP) and G glycoprotein-CX3CR1 interaction, an effect that is inhibited by treatment with anti-G glycoprotein, anti-SP, or anti-CX3CR1 monoclonal antibodies. These data suggest new approaches for treating some aspects of RSV disease. PMID:12743318

  1. Rhodamine-123: a p-glycoprotein marker complex with sodium lauryl sulfate.

    PubMed

    Al-Mohizea, Abdullah M; Al-Jenoobi, Fahad Ibrahim; Alam, Mohd Aftab

    2015-03-01

    Aim of this study was to investigate the role of sodium lauryl sulfate (SLS) as P-glycoprotein inhibitor. The everted rat gut sac model was used to study in-vitro mucosal to serosal transport of Rhodamine-123 (Rho-123). Surprisingly, SLS decreases the serosal absorption of Rho-123 at all investigated concentrations. Investigation reveals complex formation between Rhodamine-123 and sodium lauryl sulfate. Interaction profile of SLS & Rho-123 was studied at variable SLS concentrations. The SLS concentration higher than critical micelle concentration (CMC) increases the solubility of Rho-123 but could not help in serosal absorption, on the contrary the absorption of Rho-123 decreased. Rho-123 and SLS form pink color complex at sub-CMC. The SLS concentrations below CMC decrease the solubility of Rho-123. For further studies, Rho-123 & SLS complex was prepared by using solvent evaporation technique and characterized by using differential scanning calorimeter (DSC). Thermal analysis also proved the formation of complex between SLS & Rho-123. The P values were found to be significant (<0.05) except group comprising 0.0001% SLS, and that is because 0.0001% SLS is seems to be very low to affect the solubility or complexation of Rho-123.

  2. Natural lignans from Arctium lappa modulate P-glycoprotein efflux function in multidrug resistant cancer cells.

    PubMed

    Su, Shan; Cheng, Xinlai; Wink, Michael

    2015-02-15

    Arctium lappa is a well-known traditional medicinal plant in China (TCM) and Europe that has been used for thousands of years to treat arthritis, baldness or cancer. The plant produces lignans as secondary metabolites which have a wide range of bioactivities. Yet, their ability to reverse multidrug resistance (MDR) in cancer cells has not been explored. In this study, we isolated six lignans from A. lappa seeds, namely arctigenin, matairesinol, arctiin, (iso)lappaol A, lappaol C, and lappaol F. The MDR reversal potential of the isolated lignans and the underlying mechanism of action were studied using two MDR cancer cell lines, CaCo2 and CEM/ADR 5000 which overexpress P-gp and other ABC transporters. In two-drug combinations of lignans with the cytotoxic doxorubicin, all lignans exhibited synergistic effects in CaCo2 cells and matairesinol, arctiin, lappaol C and lappaol F display synergistic activity in CEM/ADR 5000 cells. Additionally, in three-drug combinations of lignans with the saponin digitonin and doxorubicin MDR reversal activity was even stronger enhanced. The lignans can increase the retention of the P-gp substrate rhodamine 123 in CEM/ADR 5000 cells, indicating that lignans can inhibit the activity of P-gp. Our study provides a first insight into the potential chemosensitizing activity of a series of natural lignans, which might be candidates for developing novel adjuvant anticancer agents. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Pharmacokinetic Assessment of Efflux Transport in Sunitinib Distribution to the Brain

    PubMed Central

    Oberoi, Rajneet K.; Mittapalli, Rajendar K.

    2013-01-01

    This study quantitatively assessed transport mechanisms that limit the brain distribution of sunitinib and investigated adjuvant strategies to improve its brain delivery for the treatment of glioblastoma multiforme (GBM). Sunitinib has not shown significant activity in GBM clinical trials, despite positive results seen in preclinical xenograft studies. We performed in vivo studies in transgenic Friend leukemia virus strain B mice: wild-type, Mdr1a/b(−/−), Bcrp1(−/−), and Mdr1a/b(−/−)Bcrp1(−/−) genotypes were examined. The brain-to-plasma area under the curve ratio after an oral dose (20 mg/kg) was similar to the steady-state tissue distribution coefficient, indicating linear distribution kinetics in mice over this concentration range. Furthermore, the distribution of sunitinib to the brain increased after administration of selective P-glycoprotein (P-gp) or breast cancer resistance protein (Bcrp) pharmacological inhibitors and a dual inhibitor, elacridar, comparable to that of the corresponding transgenic genotype. The brain-to-plasma ratio after coadministration of elacridar in wild-type mice was ∼12 compared with ∼17.3 in Mdr1a/b(−/−)Bcrp1(−/−) mice. Overall, these findings indicate that there is a cooperation at the blood-brain barrier (BBB) in restricting the brain penetration of sunitinib, and brain delivery can be enhanced by administration of a dual inhibitor. These data indicate that the presence of cooperative efflux transporters, P-gp and Bcrp, in an intact BBB can protect invasive glioma cells from chemotherapy. Thus, one may consider the use of transporter inhibition as a powerful adjuvant in the design of future clinical trials for the targeted delivery of sunitinib in GBM. PMID:24113148

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follis, Kathryn E.; York, Joanne; Nunberg, Jack H.

    The fusogenic potential of Class I viral envelope glycoproteins is activated by proteloytic cleavage of the precursor glycoprotein to generate the mature receptor-binding and transmembrane fusion subunits. Although the coronavirus (CoV) S glycoproteins share membership in this class of envelope glycoproteins, cleavage to generate the respective S1 and S2 subunits appears absent in a subset of CoV species, including that responsible for the severe acute respiratory syndrome (SARS). To determine whether proteolytic cleavage of the S glycoprotein might be important for the newly emerged SARS-CoV, we introduced a furin recognition site at single basic residues within the putative S1-S2 junctionalmore » region. We show that furin cleavage at the modified R667 position generates discrete S1 and S2 subunits and potentiates membrane fusion activity. This effect on the cell-cell fusion activity by the S glycoprotein is not, however, reflected in the infectivity of pseudotyped lentiviruses bearing the cleaved glycoprotein. The lack of effect of furin cleavage on virion infectivity mirrors that observed in the normally cleaved S glycoprotein of the murine coronavirus and highlights an additional level of complexity in coronavirus entry.« less

  5. Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics

    PubMed Central

    Yang, Chunhua; Donthamsetty, Shashikiran; Cantuaria, Guilherme; Jadhav, Gajanan R.; Vangala, Subrahmanyam; Reid, Michelle D.; Aneja, Ritu

    2014-01-01

    Natural and complementary therapies in conjunction with mainstream cancer care are steadily gaining popularity. Ginger extract (GE) confers significant health-promoting benefits owing to complex additive and/or synergistic interactions between its bioactive constituents. Recently, we showed that preservation of natural “milieu” confers superior anticancer activity on GE over its constituent phytochemicals, 6-gingerol (6G), 8-gingerol (8G), 10-gingerol (10G) and 6-shogaol (6S), through enterohepatic recirculation. Here we further evaluate and compare the effects of GE and its major bioactive constituents on cytochrome P450 (CYP) enzyme activity in human liver microsomes by monitoring metabolites of CYP-specific substrates using LC/MS/MS detection methods. Our data demonstrate that individual gingerols are potent inhibitors of CYP isozymes, whereas GE exhibits a much higher half-maximal inhibition value, indicating no possible herb-drug interactions. However, GE's inhibition of CYP1A2 and CYP2C8 reflects additive interactions among the constituents. In addition, studies performed to evaluate transporter-mediated intestinal efflux using Caco-2 cells revealed that GE and its phenolics are not substrates of P-glycoprotein (Pgp). Intriguingly, however, 10G and 6S were not detected in the receiver compartment, indicating possible biotransformation across the Caco-2 monolayer. These data strengthen the notion that an interplay of complex interactions among ginger phytochemicals when fed as whole extract dictates its bioactivity highlighting the importance of consuming whole foods over single agents. Our study substantiates the need for an in-depth analysis of hepatic biotransformation events and distribution profiles of GE and its active phenolics for the design of safe regimens. PMID:25251219

  6. Overcoming STC2 mediated drug resistance through drug and gene co-delivery by PHB-PDMAEMA cationic polyester in liver cancer cells.

    PubMed

    Cheng, Hongwei; Wu, Zhixian; Wu, Caisheng; Wang, Xiaoyuan; Liow, Sing Shy; Li, Zibiao; Wu, Yun-Long

    2018-02-01

    Stanniocalcin 2 (STC2) overexpression in hepatocellular carcinoma (HCC) could lead to poor prognosis, which might be due to its induced P-glycoprotein and Bcl-2 protein expression level increase. P-glycoprotein or membrane pump induced drug efflux and altered prosurvival Bcl-2 expression are key mechanisms for drug resistance leading to failure of chemotherapy in HCC. However, current strategy to overcome both P-glycoprotein and Bcl-2 protein induced drug resistance was rarely reported. In this work, we utilized an amphiphilic poly[(R)-3-hydroxybutyrate] (PHB)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) cationic polyester to encapsulate chemotherapeutic paclitaxel (PTX) in hydrophobic PHB domain and Bcl-2 convertor Nur77/ΔDBD gene (Nur77 without DNA binding domain for mitochondria localization) by formation of polyplex due to cationic PDMAEMA segment, to effectively inhibit the drug resistant HepG2/STC2 and SMCC7721/STC2 liver cancer cell growth. Thanks to the cationic nanoparticle complex formation ability and high transfection efficiency to express Bcl-2 conversion proteins, PHB-PDMAEMA/PTX@polyplex could partially impair P-glycoprotein induced PTX efflux and activate the apoptotic function of previous prosurvival Bcl-2 protein. This is the pioneer report of cationic amphiphilic polyester PHB-PDMAEMA to codeliver anticancer drug and therapeutic plasmid to overcome both pump and non-pump mediated chemotherapeutic resistance in liver cancer cells, which might be inspiring for the application of polyester in personalized cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Detection and functional characterization of Pgp1 (ABCB1) and MRP3 (ABCC3) efflux transporters in the PLHC-1 fish hepatoma cell line.

    PubMed

    Zaja, Roko; Klobucar, Roberta Sauerborn; Smital, Tvrtko

    2007-03-30

    The PLHC-1 hepatoma cell line derived from topminnow (Poeciliopsis lucida) is one of the most frequently used fish cell lines in aquatic ecotoxicology. These cells have been well characterized regarding the presence of phase I and phase II enzymes involved in the metabolism of xenobiotics. However, the presence of the ABC transport proteins possibly involved in the MultiXenobiotic Resistance (MXR) mechanism as phase III of cellular detoxification has never been described in the PLHC-1 cells. The main goal of this study was the detection and functional characterization of toxicologically relevant xenobiotic efflux transporters from ABCB and ABCC subfamily in the PLHC-1 cells. Using specific primer pairs two PCR products 1769 and 1023bp in length were successfully cloned and sequenced. Subsequent multiple alignment and phylogenetic analysis showed that these sequences share a high degree of homology with the P-glycoprotein (Pgp1; ABCB1) and the MRP3 (ABCC3). Functional experiments with fluorescent model substrates and specific inhibitors were used to verify that transport activities of Pgp- and MRP-related proteins are indeed present in PLHC-1 cells. Accumulation or efflux/retention rates of rhodamine 123, calcein-AM or monochlorbimane were time- and concentration-dependent. Cyclosporine A, MK571, verapamil, reversine 205, indomethacine and probenecid were used as specific inhibitors of Pgp1 and/or MRPs transport activities, resulting in a dose dependent inhibition of related transport activities in PLHC-1 cells. Similar to mammalian systems, the obtained IC(50) values were in the lower micromolar range. Taken together these data demonstrate that: (1) the PLHC-1 cells do express a functional MXR mechanism mediated by toxicologically relevant ABC efflux transporters; and (2) the presence of all three critical phases of cellular detoxification additionally affirms the PLHC-1 cells as a reliable in vitro model in aquatic toxicology.

  8. Interactions of bilastine, a new oral H₁ antihistamine, with human transporter systems.

    PubMed

    Lucero, Maria Luisa; Gonzalo, Ana; Ganza, Alvaro; Leal, Nerea; Soengas, Itziar; Ioja, Eniko; Gedey, Szilvia; Jahic, Mirza; Bednarczyk, Dallas

    2012-06-01

    Membrane transporters play a significant role in facilitating transmembrane drug movement. For new pharmacological agents, it is important to evaluate potential interactions (e.g., substrate specificity and/or inhibition) with human transporters that may affect their pharmacokinetics, efficacy, or toxicity. Bilastine is a new nonsedating H₁ antihistamine indicated for the treatment of allergic rhinoconjunctivitis and urticaria. The in vitro inhibitory effects of bilastine were assessed on 12 human transporters: four efflux [multidrug resistance protein 1 (MDR1) or P-glycoprotein, breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2), and bile salt export pump) and eight uptake transporters (sodium taurocholate cotransporting polypeptide, organic cation transporter (OCT)1, organic anion transporter (OAT)1, OAT3, OCT2, OATP2B1, OATP1B1, and OATP1B3). Only mild inhibition was found for MDR1-, OCT1-, and OATP2B1-mediated transport of probe substrates at the highest bilastine concentration assayed (300 μM; half-maximal inhibitory concentration: ≥300 μM). Bilastine transport by MDR1, BCRP, OAT1, OAT3, and OCT2 was also investigated in vitro. Only MDR1 active transport of bilastine was relevant, whereas it did not appear to be a substrate of OCT2, OAT1, or OAT3, nor was it transported substantially by BCRP. Drug-drug interactions resulting from bilastine inhibition of drug transporters that would be generally regarded as clinically relevant are unlikely. Additionally, bilastine did not appear to be a substrate of human BCRP, OAT1, OAT3, or OCT2 and thus is not a potential victim of inhibitors of these transporters. On the other hand, based on in vitro evaluation, clinically relevant interactions with MDR1 inhibitors are anticipated.

  9. Intercalated cell-specific Rh B glycoprotein deletion diminishes renal ammonia excretion response to hypokalemia

    PubMed Central

    Bishop, Jesse M.; Lee, Hyun-Wook; Handlogten, Mary E.; Han, Ki-Hwan; Verlander, Jill W.

    2013-01-01

    The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia. PMID:23220726

  10. The Dystrophin Glycoprotein Complex Regulates the Epigenetic Activation of Muscle Stem Cell Commitment.

    PubMed

    Chang, Natasha C; Sincennes, Marie-Claude; Chevalier, Fabien P; Brun, Caroline E; Lacaria, Melanie; Segalés, Jessica; Muñoz-Cánoves, Pura; Ming, Hong; Rudnicki, Michael A

    2018-05-03

    Asymmetrically dividing muscle stem cells in skeletal muscle give rise to committed cells, where the myogenic determination factor Myf5 is transcriptionally activated by Pax7. This activation is dependent on Carm1, which methylates Pax7 on multiple arginine residues, to recruit the ASH2L:MLL1/2:WDR5:RBBP5 histone methyltransferase complex to the proximal promoter of Myf5. Here, we found that Carm1 is a specific substrate of p38γ/MAPK12 and that phosphorylation of Carm1 prevents its nuclear translocation. Basal localization of the p38γ/p-Carm1 complex in muscle stem cells occurs via binding to the dystrophin-glycoprotein complex (DGC) through β1-syntrophin. In dystrophin-deficient muscle stem cells undergoing asymmetric division, p38γ/β1-syntrophin interactions are abrogated, resulting in enhanced Carm1 phosphorylation. The resulting progenitors exhibit reduced Carm1 binding to Pax7, reduced H3K4-methylation of chromatin, and reduced transcription of Myf5 and other Pax7 target genes. Therefore, our experiments suggest that dysregulation of p38γ/Carm1 results in altered epigenetic gene regulation in Duchenne muscular dystrophy. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. CIRCULATING MICROPARTICLES IN PATIENTS WITH ANTIPHOSPHOLIPID ANTIBODIES: CHARACTERIZATION AND ASSOCIATIONS

    PubMed Central

    Chaturvedi, Shruti; Cockrell, Erin; Espinola, Ricardo; Hsi, Linda; Fulton, Stacey; Khan, Mohammad; Li, Liang; Fonseca, Fabio; Kundu, Suman; McCrae, Keith R.

    2014-01-01

    The antiphospholipid syndrome is characterized by venous or arterial thrombosis and/or recurrent fetal loss in the presence of circulating antiphospholipid antibodies. These antibodies cause activation of endothelial and other cell types leading to the release of microparticles with procoagulant and pro-inflammatory properties. The aims of this study were to characterize the levels of endothelial cell, monocyte, platelet derived, and tissue factor-bearing microparticles in patients with antiphospholipid antibodies, to determine the association of circulating microparticles with anticardiolipin and anti-β2-glycoprotein antibodies, and to define the cellular origin of microparticles that express tissue factor. Microparticle content within citrated blood from 47 patients with antiphospholipid antibodies and 144 healthy controls was analyzed within 2 hours of venipuncture. Levels of Annexin-V, CD105 and CD144 (endothelial derived), CD41 (platelet derived) and tissue factor positive microparticles were significantly higher in patients than controls. Though levels of CD14 (monocyte-derived) microparticles in patient plasma were not significantly increased, increased levels of CD14 and tissue factor positive microparticles were observed in patients. Levels of microparticles that stained for CD105 and CD144 showed a positive correlation with IgG (R = 0.60, p=0.006) and IgM anti-beta2-glycoprotein I antibodies (R=0.58, p=0.006). The elevation of endothelial and platelet derived microparticles in patients with APS and their correlation with anti-β2-glycoprotein I antibodies suggests a chronic state of vascular cell activation in these individuals and an important role for β2-glycoprotein I in development of the pro-thrombotic state associated with antiphospholipid antibodies. PMID:25467081

  12. In silico Analysis for Predicting Fatty Acids of Black Cumin Oil as Inhibitors of P-Glycoprotein.

    PubMed

    Ali, Babar; Jamal, Qazi Mohd Sajid; Mir, Showkat R; Shams, Saiba; Al-Wabel, Naser A; Kamal, Mohammad A

    2015-10-01

    Black cumin oil is obtained from the seeds of Nigella sativa L. which belongs to family Ranunculaceae. The seed oil has been reported to possess antitumor, antioxidant, antibacterial, anti-inflammatory, hypoglycemic, central nervous system depressant, antioxidant, and immunostimulatory activities. These bioactivities have been attributed to the fixed oil, volatile oil, or their components. Seed oil consisted of 15 saturated fatty acids (17%) and 17 unsaturated fatty acids (82.9%). Long chain fatty acids and medium chain fatty acids have been reported to increase oral bioavailability of peptides, antibiotics, and other important therapeutic agents. In earlier studies, permeation enhancement and bioenhancement of drugs has been done with black cumin oil. In order to recognize the mechanism of binding of fatty acids to P-glycoprotein (P-gp), linoleic acid, oleic acid, margaric acid, cis-11, 14-eicosadienoic acid, and stearic acid were selected for in silico studies, which were carried out using AutoDock 4.2, based on the Lamarckian genetic algorithm principle. Template search with BLAST and HHblits has been performed against the SWISS-MODEL template library. The target sequence was searched with BLAST against the primary amino acid sequence of P-gp from Rattus norvegicus. The amount of energy needed by linoleic acid, oleic acid, eicosadienoic acid, margaric acid, and stearic acid to bind with P-gp were found to be - 10.60, -10.48, -9.95, -11.92, and - 10.37 kcal/mol, respectively. The obtained data support that all the selected fatty acids have contributed to inhibit P-gp activity thereby enhances the bioavailability of drugs. This study plays a significant role in finding hot spots in P-gp and may offer the further scope of designing potent and specific inhibitors of P-gp. Generation of 3D structure of fatty acid compounds from Black cumin oil and 3D homology modeling of Rat P glycoprotein as a receptor.Rat P-gp structure quality shows 88.5% residues in favored region obtained by Ramchandran plot analysis.Docking analysis revealed that Some amino acids common for all compounds like Ser221, Pro222, Ile224, Gly225, Ser228, Ala229, Lys233, Tyr302, Tyr309, Ile337, Leu338 and Thr341 in the P-gp and ligands binding patterns.Eicosadeinoic acid has highest binding affinity with P-gp as the amount of energy needed to bind with P-gp was lowest (-11.92 kcal/mol). Abbreviations used: P-gp: P-glycoprotein.

  13. In-Depth N-Glycosylation Reveals Species-Specific Modifications and Functions of the Royal Jelly Protein from Western (Apis mellifera) and Eastern Honeybees (Apis cerana).

    PubMed

    Feng, Mao; Fang, Yu; Han, Bin; Xu, Xiang; Fan, Pei; Hao, Yue; Qi, Yuping; Hu, Han; Huo, Xinmei; Meng, Lifeng; Wu, Bin; Li, Jianke

    2015-12-04

    Royal jelly (RJ), secreted by honeybee workers, plays diverse roles as nutrients and defense agents for honeybee biology and human health. Despite being reported to be glycoproteins, the glycosylation characterization and functionality of RJ proteins in different honeybee species are largely unknown. An in-depth N-glycoproteome analysis and functional assay of RJ produced by Apis mellifera lingustica (Aml) and Apis cerana cerana (Acc) were conducted. RJ produced by Aml yielded 80 nonredundant N-glycoproteins carrying 190 glycosites, of which 23 novel proteins harboring 35 glycosites were identified. For Acc, all 43 proteins glycosylated at 138 glycosites were reported for the first time. Proteins with distinct N-glycoproteomic characteristics in terms of glycoprotein species, number of N-glycosylated sites, glycosylation motif, abundance level of glycoproteins, and N-glycosites were observed in this two RJ samples. The fact that the low inhibitory efficiency of N-glycosylated major royal jelly protein 2 (MRJP2) against Paenibacillus larvae (P. larvae) and the absence of antibacterial related glycosylated apidaecin, hymenoptaecin, and peritrophic matrix in the Aml RJ compared to Acc reveal the mechanism for why the Aml larvae are susceptible to P. larvae, the causative agent of a fatal brood disease (American foulbrood, AFB). The observed antihypertension activity of N-glycosylated MRJP1 in two RJ samples and a stronger activity found in Acc than in Aml reveal that specific RJ protein and modification are potentially useful for the treatment of hypertensive disease for humans. Our data gain novel understanding that the western and eastern bees have evolved species-specific strategies of glycosylation to fine-tune protein activity for optimizing molecular function as nutrients and immune agents for the good of honeybee and influence on the health promoting activity for human as well. This serves as a valuable resource for the targeted probing of the biological functions of RJ proteins for honeybee and medical communities.

  14. Serum levels of P-glycoprotein and persistence of disease activity despite treatment in patients with systemic lupus erythematosus.

    PubMed

    Perez-Guerrero, Edsaul Emilio; Gamez-Nava, Jorge Ivan; Muñoz-Valle, Jose Francisco; Cardona-Muñoz, Ernesto German; Bonilla-Lara, David; Fajardo-Robledo, Nicte Selene; Nava-Zavala, Arnulfo Hernan; Garcia-Cobian, Teresa Arcelia; Rincón-Sánchez, Ana Rosa; Murillo-Vazquez, Jessica Daniela; Cardona-Müller, David; Vazquez-Villegas, Maria Luisa; Totsuka-Sutto, Sylvia Elena; Gonzalez-Lopez, Laura

    2018-02-01

    Around 25% of patients with systemic lupus erythematosus (SLE) could be refractory to conventional therapies. P-glycoprotein expression on cell surface has been implied on drug resistance, however, to date, it is unknown if P-gp serum levels are associated with SLE disease activity. Evaluate the association of serum P-gp levels and SLE with disease activity despite treatment. A cross-sectional study was conducted on 93 female SLE patients, all receiving glucocorticoids at stable doses for the previous 6 months before to baseline. SLE patients were classified into two groups: (a) patients with active disease [SLE disease activity index (SLEDAI) ≥ 3] despite treatment, and (b) patients with inactive disease (SLEDAI < 3) after treatment. Forty-three healthy females comprised the control group. Serum P-gp, anti-DNA, and both anti-nucleosome antibody levels were measured using ELISA. Active-SLE patients despite treatment had higher P-gp levels compared with inactive-SLE after treatment (78.02 ng/mL ± 114.11 vs. 33.75 ng/mL ± 41.11; p = 0.018) or versus reference group subjects (30.56 ng/mL ± 28.92; p = 0.011). P-gp levels correlated with the scores of SLEDAI (r = 0.26; p = 0.01), Mexican-SLEDAI (MEX-SLEDAI) (r = 0.32; p = 0.002), SLICC/ACR damage index (r = 0.47; p < 0.001), and with prednisone doses (r = 0.33; p = 0.001). In the multivariate model, the high P-gp levels were associated with SLICC/ACR score (p = 0.001), and SLEDAI score (p = 0.014). Our findings support a relationship between serum P-gp levels and SLE with disease activity despite treatment, but it requires further validation in longitudinal studies.

  15. Sodium butyrate attenuates soybean oil-based lipid emulsion-induced increase in intestinal permeability of lipopolysaccharide by modulation of P-glycoprotein in Caco-2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian

    Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaButmore » was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.« less

  16. Comparative evaluation of two dye probes in the rat everted gut sac model for unambiguous classification of P-gp substrate and inhibitor.

    PubMed

    Perrone, Maria Grazia; Inglese, Carmela; Berardi, Francesco; Leopoldo, Marcello; Perrone, Roberto; Colabufo, Nicola Antonio

    2013-01-01

    P-glycoprotein (P-gp) plays a crucial role in beta-amyloid efflux from the blood-brain barrier thus becoming a promising pharmacological target in the treatment of Alzheimer's disease (AD). The increase of P-glycoprotein expression and activity by a P-gp inducer could be an effective pharmacological strategy in slowing or halting the progression of AD. Commonly used in vitro methods to classify a P-gp interacting molecule as substrate, inhibitor, modulator or inducer are not always confirmed by in vivo experiments. Here we validate the new dye-probe beta-amyloid (1-40) HiLyte Fluor™ TR-labeled (Ab-HiLyte) (Anaspec) P-gp mediated transport in the ex vivo rat everted gut sac assay by using MC18 or MC266, a fully characterized P-gp inhibitor and substrate, respectively, and compare it with the commonly used dye rhodamine. Male Wistar rats' everted intestines were divided into sacs, each sac was filled with 10μM Ab-HiLyte with or without 50μM of MC18 or MC266. Ab-HiLyte concentrations in mucosal fluid were measured spectrophotometrically at 594nm at each appropriate time. The Ab-HiLyte P-gp mediated efflux had a K=1.00×10(-2)min(-1) and t(1/2)=68.74min, while in the presence of MC18, the Ab-HiLyte efflux turned out to be reduced by an order of magnitude (K=1.65×10(-3)min(-1)) and the half life is extremely increased (t(1/2)=419min). A P-gp substrate, like MC266, determines no change in the efflux of Ab: the kinetic constant and the half life turned out to be unmodified (K=1.81×10(-2)min(-1) and t(1/2)=38.28min). The results demonstrate that the new dye probe, Ab-HiLyte, could be a probe of choice to unequivocally distinguish between a P-gp substrate and an inhibitor. This is particularly important as different groups obtain a controversial classification of the same compound. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Localized Down-regulation of P-glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain

    NASA Astrophysics Data System (ADS)

    Cho, Hongseok; Lee, Hwa-Youn; Han, Mun; Choi, Jong-Ryul; Ahn, Sanghyun; Lee, Taekwan; Chang, Yongmin; Park, Juyoung

    2016-08-01

    Multi-drug resistant efflux transporters found in Blood-Brain Barrier (BBB) acts as a functional barrier, by pumping out most of the drugs into the blood. Previous studies showed focused ultrasound (FUS) induced microbubble oscillation can disrupt the BBB by loosening the tight junctions in the brain endothelial cells; however, no study was performed to investigate its impact on the functional barrier of the BBB. In this study, the BBB in rat brains were disrupted using the MRI guided FUS and microbubbles. The immunofluorescence study evaluated the expression of the P-glycoprotein (P-gp), the most dominant multi-drug resistant protein found in the BBB. Intensity of the P-gp expression at the BBB disruption (BBBD) regions was significantly reduced (63.2 ± 18.4%) compared to the control area. The magnitude of the BBBD and the level of the P-gp down-regulation were significantly correlated. Both the immunofluorescence and histologic analysis at the BBBD regions revealed no apparent damage in the brain endothelial cells. The results demonstrate that the FUS and microbubbles can induce a localized down-regulation of P-gp expression in rat brain. The study suggests a clinically translation of this method to treat neural diseases through targeted delivery of the wide ranges of brain disorder related drugs.

  18. Strategies for Enhanced Drug Delivery to the Central Nervous System

    PubMed Central

    Dwibhashyam, V. S. N. M.; Nagappa, A. N.

    2008-01-01

    Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703

  19. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells

    PubMed Central

    Peng, Xing-Xiang; Tiwari, Amit K.; Wu, Hsiang-Chun; Chen, Zhe-Sheng

    2012-01-01

    Imatinib, a breakpoint cluster region (BCR)-Abelson murine leukemia (ABL) tyrosine kinase inhibitor (TKI), has revolutionized the treatment of chronic myelogenous leukemia (CML). However, development of multidrug resistance (MDR) limits the use of imatinib. In the present study, we aimed to investigate the mechanisms of cellular resistance to imatinib in CML. Therefore, we established an imatinib-resistant human CML cell line (K562-imatinib) through a stepwise selection process. While characterizing the phenotype of these cells, we found that K562-imatinib cells were 124.6-fold more resistant to imatinib than parental K562 cells. In addition, these cells were cross-resistant to second- and third-generation BCR-ABL TKIs. Western blot analysis and reverse transcription-polymerase chain reaction(RT-PCR) demonstrated that P-glycoprotein (P-gp) and MDR1 mRNA levels were increased in K562-imatinib cells. In addition, accumulation of [14C]6-mercaptopurine (6-MP) was decreased, whereas the ATP-dependent efflux of [14C] 6-MP and [3H]methotrexate transport were increased in K562-imatinib cells. These data suggest that the overexpression of P-gp may play a crucial role in acquired resistance to imatinib in CML K562-imatinib cells. PMID:22098951

  20. Molecular Cloning and Characterization of a P-Glycoprotein from the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae)

    PubMed Central

    Tian, Lixia; Yang, Jiaqiang; Hou, Wenjie; Xu, Baoyun; Xie, Wen; Wang, Shaoli; Zhang, Youjun; Zhou, Xuguo; Wu, Qingjun

    2013-01-01

    Macrocyclic lactones such as abamectin and ivermectin constitute an important class of broad-spectrum insecticides. Widespread resistance to synthetic insecticides, including abamectin and ivermectin, poses a serious threat to the management of diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major pest of cruciferous plants worldwide. P-glycoprotein (Pgp), a member of the ABC transporter superfamily, plays a crucial role in the removal of amphiphilic xenobiotics, suggesting a mechanism for drug resistance in target organisms. In this study, PxPgp1, a putative Pgp gene from P. xylostella, was cloned and characterized. The open reading frame (ORF) of PxPgp1 consists of 3774 nucleotides, which encodes a 1257-amino acid peptide. The deduced PxPgp1 protein possesses structural characteristics of a typical Pgp, and clusters within the insect ABCB1. PxPgp1 was expressed throughout all developmental stages, and showed the highest expression level in adult males. PxPgp1 was highly expressed in midgut, malpighian tubules and testes. Elevated expression of PxPgp1 was observed in P. xylostella strains after they were exposed to the abamectin treatment. In addition, the constitutive expressions of PxPgp1 were significantly higher in laboratory-selected and field-collected resistant strains in comparison to their susceptible counterpart. PMID:24264038

  1. Inhibition of P-glycoprotein in Caco-2 cells: effects of herbal remedies frequently used by cancer patients.

    PubMed

    Engdal, S; Nilsen, O G

    2008-06-01

    1. The herbal products Natto K2, Agaricus, mistletoe, noni juice, green tea and garlic were investigated for in vitro inhibitory potential on P-glycoprotein (P-gp)-mediated transport of digoxin (30 nM) in differentiated and polarized Caco-2 cells. 2. Satisfactory cell functionality was demonstrated through measurements of assay linearity, transepithelial electric resistance (TEER), cytotoxicity, mannitol permeability, and inclusion of the positive inhibition control verapamil. 3. The most potent inhibitors of the net digoxin flux (IC(50)) were mistletoe > Natto K2 > Agaricus > green tea (0.022, 0.62, 3.81, >4.5 mg ml(-1), respectively). Mistletoe also showed the lowest IC(25) value, close to that obtained by verapamil (1.0 and 0.5 microg ml(-1), respectively). The IC(50)/IC(25) ratio was found to be a good parameter for the determination of inhibition profiles. Garlic and noni juice were classified as non-inhibitors. 4. This study shows that mistletoe, Natto K2, Agaricus and green tea inhibit P-gp in vitro. Special attention should be paid to mistletoe due to very low IC(50) and IC(25) values and to Natto K2 due to a low IC(50) value and a low IC(50)/IC(25) ratio.

  2. Antiretroviral Drug Interactions: Overview of Interactions Involving New and Investigational Agents and the Role of Therapeutic Drug Monitoring for Management

    PubMed Central

    Rathbun, R. Chris; Liedtke, Michelle D.

    2011-01-01

    Antiretrovirals are prone to drug-drug and drug-food interactions that can result in subtherapeutic or supratherapeutic concentrations. Interactions between antiretrovirals and medications for other diseases are common due to shared metabolism through cytochrome P450 (CYP450) and uridine diphosphate glucuronosyltransferase (UGT) enzymes and transport by membrane proteins (e.g., p-glycoprotein, organic anion-transporting polypeptide). The clinical significance of antiretroviral drug interactions is reviewed, with a focus on new and investigational agents. An overview of the mechanistic basis for drug interactions and the effect of individual antiretrovirals on CYP450 and UGT isoforms are provided. Interactions between antiretrovirals and medications for other co-morbidities are summarized. The role of therapeutic drug monitoring in the detection and management of antiretroviral drug interactions is also briefly discussed. PMID:24309307

  3. Characterization of canine herpesvirus glycoprotein C expressed by a recombinant baculovirus in insect cells.

    PubMed

    Xuan, X; Maeda, K; Mikami, T; Otsuka, H

    1996-12-01

    The gene encoding the canine herpesvirus (CHV) glycoprotein C (gC) homologue has been identified by sequence homology analyses with other well studied herpesviruses. Previously, we have identified three CHV glycoproteins, gp145/112, gp80 and gp47 using a panel of monoclonal antibodies (MAbs). To determine which CHV glycoprotein corresponds to gC, a recombinant baculovirus which contains the putative CHV gC structural gene under the baculovirus polyhedrin promoter was constructed. The recombinant baculovirus expressed gC-related polypeptides (44-62 kDa), which reacted only with MAbs against CHV gp80, indicating that the previously identified CHV gp80 is the translation product of the gC gene. The baculovirus expressed gC was glycosylated and transported to the surface of infected cells. At least seven neutralizing epitopes were conserved on the gC produced in insect cells. It was found that the recombinant baculovirus infected cells adsorbed murine erythrocytes as is the case for CHV-infected cells. The hemadsorption activity was inhibited by heparin, indicating that the CHV gC binds to heparan sulfate on the surface of murine erythrocytes. Mice immunized with the recombinant gC produced strong neutralizing antibodies. Our results suggest that CHV gC produced in insect cells may be useful as a subunit vaccine to control CHV infections.

  4. Vitamin D receptor activation induces P-glycoprotein and increases brain efflux of quinidine: an intracerebral microdialysis study in conscious rats.

    PubMed

    Durk, Matthew R; Fan, Jianghong; Sun, Huadong; Yang, Yingbo; Pang, Henrianna; Pang, K Sandy; de Lannoy, Inés A M

    2015-03-01

    Since the vitamin D receptor (VDR) was found to up-regulate cerebral P-glycoprotein expression in vitro and in mice, we extend our findings to rats by assessing the effect of rat Vdr activation on brain efflux of quinidine, a P-gp substrate that is eliminated primarily by cytochrome P450 3a. We treated rats with vehicle or the active VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] (4.8 or 6.4 nmol/kg i.p. every 2nd day × 4) and examined P-gp expression and cerebral quinidine disposition via microdialysis in control and treatment studies conducted longitudinally in the same rat. The 6.4 nmol/kg 1,25(OH)2D3 dose increased cerebral P-gp expression 1.75-fold whereas hepatic Cyp3a remained unchanged. Although there was no change in systemic clearance elicited by 1,25(OH)2D3, brain extracellular fluid quinidine concentrations were lower in treated rats. We noted that insertion of indwelling catheters increased plasma protein binding of quinidine and serial sampling decreased the blood:plasma concentration ratio, factors that alter distribution ratios in microdialysis studies. After appropriate correction, KECF/P,uu and KECF/B,uu, or ratios of quinidine unbound concentrations in brain extracellular fluid to plasma or blood at steady-state, were more than halved. We demonstrate that VDR activation increases cerebral P-gp expression and delimits brain penetration of P-gp substrates.

  5. The permeability characteristics and interaction of the main components from Zhizi Bopi decoction in the MDCK cell model.

    PubMed

    Qian, Zhengyue; Huang, Cheng; Shen, Chenlin; Meng, Xiaoming; Chen, Zhaolin; Hu, Tingting; Li, Yangyang; Li, Jun

    2016-08-01

    1. Although emerging evidence indicates the therapeutic effects of Zhizi Bopi Decoction, the extent to which essential ingredients are absorbed and the possible synergistic actions are poorly understood. 2. In this study, MDCK cell model was used to determine the bi-directional permeability and interaction between the main components (geniposide, berberine and glycyrrhizic acid) of Zhizi Bopi Decoction. 3. The transport of the active ingredients was concentration-dependent in both directions. Moreover, the Papp (AP-BL) values of berberine and glycyrrhizic acid were significantly reduced when co-incubation with an ATP inhibitor. Additionally, uptake of berberine, glycyrrhizic acid were clearly inhibited by the inhibitors of P-glycoprotein and MRP2, indicating that P-gp and MRP2 may be involved in the transport of berberine and glycyrrhizic acid, respectively. However, it was found that geniposide may be purely passive diffusion. Furthermore, the combined incubation of geniposide with berberine and glycyrrhizic acid had a powerful sorbefacient effect than use of a single drug alone which may be regulated by tight junctions. 4. In summary, our study provides useful information for pharmacological applications of Zhizi Bopi Decoction and offers new insights into this ancient decoction for further researches, especially in drug synergism.

  6. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  7. Structure and ligand-based design of P-glycoprotein inhibitors: a historical perspective.

    PubMed

    Palmeira, Andreia; Sousa, Emilia; Vasconcelos, M Helena; Pinto, Madalena; Fernandes, Miguel X

    2012-01-01

    Computer-assisted drug design (CADD) is a valuable approach for the discovery of new chemical entities in the field of cancer therapy. There is a pressing need to design and develop new, selective, and safe drugs for the treatment of multidrug resistance (MDR) cancer forms, specifically active against P-glycoprotein (P-gp). Recently, a crystallographic structure for mouse P-gp was obtained. However, for decades the design of new P-gp inhibitors employed mainly ligand-based approaches (SAR, QSAR, 3D-QSAR and pharmacophore studies), and structure-based studies used P-gp homology models. However, some of those results are still the pillars used as a starting point for the design of potential P-gp inhibitors. Here, pharmacophore mapping, (Q)SAR, 3D-QSAR and homology modeling, for the discovery of P-gp inhibitors are reviewed. The importance of these methods for understanding mechanisms of drug resistance at a molecular level, and design P-gp inhibitors drug candidates are discussed. The examples mentioned in the review could provide insights into the wide range of possibilities of using CADD methodologies for the discovery of efficient P-gp inhibitors.

  8. Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid.

    PubMed

    Li, Lujia; Fu, Qingxue; Xia, Mengxin; Xin, Lei; Shen, Hongyi; Li, Guowen; Ji, Guang; Meng, Qianchao; Xie, Yan

    2018-01-31

    Phytic acid (IP6) is a natural phosphorylated inositol, which is abundantly present in most cereal grains and seeds. This study investigated the effects of IP6 regulation on P-glycoprotein (P-gp) and its potential mechanisms using in situ and in vitro models. The effective permeability of the typical P-gp substrate rhodamine 123 (R123) in colon was significantly increased from (1.69 ± 0.22) × 10 -5 cm/s in the control group to (3.39 ± 0.417) × 10 -5 cm/s (p < 0.01) in the 3.5 mM IP6 group. Additionally, IP6 can concentration-dependently decrease the R123 efflux ratio in both Caco-2 and MDCK II-MDR1 cell monolayers and increase intracellular R123 accumulation in Caco-2 cells. Furthermore, IP6 noncompetitively inhibited P-gp by impacting R123 efflux kinetics. The noncompetitive inhibition of P-gp by IP6 was likely due to decreases in P-gp ATPase activity and P-gp molecular conformational changes induced by IP6. In summary, IP6 is a promising P-gp inhibitor candidate.

  9. 116 kDa glycoprotein isolated from Ulmus davidiana Nakai (UDN) inhibits glucose/glucose oxidase (G/GO)-induced apoptosis in BNL CL.2 cells.

    PubMed

    Ko, Jeong-Hyeon; Lee, Sei-Jung; Lim, Kye-Taek

    2005-09-14

    Ulmus davidiana Nakai (UDN) has been used in folk medicine for its anti-inflammatory activity. In the present study, we investigated the antiapoptotic effect of UDN glycoprotein in glucose/glucose oxidase (G/GO)-induced BNL CL.2 cells. To evaluate the antiapoptotic effect of UDN glycoprotein, experiments were carried out using Western blot analysis for nuclear factor-kappa B (NF-kappaB), caspase-3, and poly(ADP-ribose) polymerase (PARP). We also examined nitric oxide (NO) production and nuclear staining. When BNL CL.2 cells were treated with G/GO (50 mU/ml), viability of the cells was 54.1%. However, the number of living cells after the addition of UDN glycoprotein in the presence of G/GO increased. UDN glycoprotein protected from cell damage caused by G/GO. Interestingly, UDN glycoprotein decreased NF-kappaB activation and stimulated NO production in G/GO-induced BNL CL.2 cells. In apoptotic parameters, UDN glycoprotein inhibited activations of caspase-3 and PARP cleavage in G/GO-induced BNL CL.2 cells. The results of nuclear staining indicated that UDN glycoprotein (50 microg/ml) has a protective ability from apoptotic cell death caused G/GO (50 mU/ml). In conclusion, UDN glycoprotein has a protective effect on apoptosis induced by G/GO through the inhibition of NF-kappaB, caspase-3, and PARP activity, and the stimulation of NO production in BNL CL.2 cells.

  10. Differential chemosensitization of P-glycoprotein overexpressing K562/Adr cells by withaferin A and Siamois polyphenols

    PubMed Central

    2010-01-01

    Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NFκB, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NFκB, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NFκB inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NFκB target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NFκB inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis. PMID:20438634

  11. Comprehensive analog synthesis of (S)-valine thiazole peptidomimetic TTT-28 to understand enigmatic drug-binding sites of P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Patel, Bhargav A.

    P-glycoprotein (P-gp) is considered an important therapeutic target for reversal of multidrug resistance (MDR) in cancer. It recognizes a diverse range of chemically and mechanistically dissimilar drugs. It has been postulated that the efflux by P-gp plays a major role in failure of chemotherapy. Hence, researchers have been trying to obtain a potent inhibitor of P-gp with specificity to tumor sites. In this pursuit, we previously were able to obtain a novel (S)-valine thiazole-derived peptidomimetic compound 1 ( TTT-28), which showed potent reversal of MDR in vitro as well as in vivo compared to verapamil, a well-known MDR modulator. We have also found that compound 1 triggers ATPase stimulation when incubated with P-gp alike verapamil, which implies its mechanism of action as competitive in nature. In this study, we attempted to understand structural requirements of ligands binding to a perplexing drug-binding site of P-gp and affecting its ATPase function. Toward this goal, we prepared a novel set of 64 analogues by fine tuning lead compound 1. These synthesized analogues were tested using ATPase activity assay. During the course of the study, a potent stimulator (1) of ATPase activity was transformed into an ATPase inhibitory leads such as compounds 43 , 57 and 113. The ATPase inhibitory activity of these compounds is predominantly contributed by the presence of a cyclohexyl group in place of the 2-aminobenzophenone moiety of ATPase activity stimulatory lead compound 1. Molecular modeling studies suggested a need for specific interactions with the drug-binding site of P-gp to induce different conformational states of P-gp to produce either stimulation or inhibition of ATPase activity. Collectively, this comprehensive synthesis work will facilitate further research towards P-gp inhibitor development.

  12. Fullerene inhibits benzo(a)pyrene Efflux from Cyprinus carpio hepatocytes by affecting cell membrane fluidity and P-glycoprotein expression.

    PubMed

    Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang

    2016-05-01

    P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir.

    PubMed

    Neumanova, Zuzana; Cerveny, Lukas; Greenwood, Susan L; Ceckova, Martina; Staud, Frantisek

    2015-11-01

    Abacavir is as a frequent part of combination antiretroviral therapy used in pregnant women. The aim of this study was to investigate, using in vitro, in situ and ex vivo experimental approaches, whether the transplacental pharmacokinetics of abacavir is affected by ATP-binding cassette (ABC) efflux transporters functionally expressed in the placenta: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), multidrug resistance-associated protein 2 (ABCC2) and multidrug resistance-associated protein 5 (ABCC5). In vitro transport assays revealed that abacavir is a substrate of human ABCB1 and ABCG2 transporters but not of ABCC2 or ABCC5. In addition, in situ experiments using dually perfused rat term placenta confirmed interactions of abacavir with placental Abcb1/Abcg2. In contrast, uptake studies in human placental villous fragments did not reveal any interaction of abacavir with efflux transporters suggesting a large contribution of passive diffusion and/or influx mechanisms to net transplacental abacavir transfer. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A novel curcumin derivative which inhibits P-glycoprotein, arrests cell cycle and induces apoptosis in multidrug resistance cells.

    PubMed

    Lopes-Rodrigues, Vanessa; Oliveira, Ana; Correia-da-Silva, Marta; Pinto, Madalena; Lima, Raquel T; Sousa, Emília; Vasconcelos, M Helena

    2017-01-15

    Cancer multidrug resistance (MDR) is a major limitation to the success of cancer treatment and is highly associated with the overexpression of drug efflux pumps such as P-glycoprotein (P-gp). In order to achieve more effective chemotherapeutic treatments, it is important to develop P-gp inhibitors to block/decrease its activity. Curcumin (1) is a secondary metabolite isolated from the turmeric of Curcuma longa L.. Diverse biological activities have been identified for this compound, particularly, MDR modulation in various cancer cell models. However, curcumin (1) has low chemical stability, which severely limits its application. In order to improve stability and P-gp inhibitory effect, two potential more stable curcumin derivatives were synthesized as building blocks, followed by several curcumin derivatives. These compounds were then analyzed in terms of antitumor and anti-P-gp activity, in two MDR and sensitive tumor lines (from chronic myeloid leukemia and non-small cell lung cancer). We identified from a series of curcumin derivatives a novel curcumin derivative (1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-diene-3,5-dione, 10) with more potent antitumor and anti-P-gp activity than curcumin (1). This compound (10) was shown to promote cell cycle arrest (at the G2/M phase) and induce apoptosis in the MDR chronic myeloid leukemia cell line. Therefore it is a really interesting P-gp inhibitor due to its ability to inhibit both P-gp function and expression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Resistance-modifying Activity in Vinblastine-resistant Human Breast Cancer Cells by Oligosaccharides Obtained from Mucilage of Chia Seeds (Salvia hispanica).

    PubMed

    Rosas-Ramírez, Daniel G; Fragoso-Serrano, Mabel; Escandón-Rivera, Sonia; Vargas-Ramírez, Alba L; Reyes-Grajeda, Juan P; Soriano-García, Manuel

    2017-06-01

    The multidrug resistance (MDR) phenotype is considered as a major cause of the failure in cancer chemotherapy. The acquisition of MDR is usually mediated by the overexpression of drug efflux pumps of a P-glycoprotein. The development of compounds that mitigate the MDR phenotype by modulating the activity of these transport proteins is an important yet elusive target. Here, we screened the saponification and enzymatic degradation products from Salvia hispanica seed's mucilage to discover modulating compounds of the acquired resistance to chemotherapeutic in breast cancer cells. Preparative-scale recycling HPLC was used to purify the hydrolysis degradation products. All compounds were tested in eight different cancer cell lines and Vero cells. All compounds were noncytotoxic at the concentration tested against the drug-sensitive and multidrug-resistant cells (IC 50  > 29.2 μM). For the all products, a moderate vinblastine-enhancing activity from 4.55-fold to 6.82-fold was observed. That could be significant from a therapeutic perspective. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filone, Claire Marie; Heise, Mark; Doms, Robert W.

    2006-12-20

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expressionmore » of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.« less

  17. A proposed role for efflux transporters in the pathogenesis of hydrocephalus

    PubMed Central

    Krishnamurthy, Satish; Tichenor, Michael D.; Satish, Akhila G.; Lehmann, David B.

    2014-01-01

    Hydrocephalus is a common brain disorder that is treated only with surgery. The basis for surgical treatment rests on the circulation theory. However, clinical and experimental data to substantiate circulation theory have remained inconclusive. In brain tissue and in the ventricles, we see that osmotic gradients drive water diffusion in water-permeable tissue. As the osmolarity of ventricular CSF increases within the cerebral ventricles, water movement into the ventricles increases and causes hydrocephalus. Macromolecular clearance from the ventricles is a mechanism to establish the normal CSF osmolarity, and therefore ventricular volume. Efflux transporters, (p-glycoprotein), are located along the blood brain barrier and play an important role in the clearance of macromolecules (endobiotics and xenobiotics) from the brain to the blood. There is clinical and experimental data to show that macromolecules are cleared out of the brain in normal and hydrocephalic brains. This article summarizes the existing evidence to support the role of efflux transporters in the pathogenesis of hydrocephalus. The location of p-gp along the pathways of macromolecular clearance and the broad substrate specificity of this abundant transporter to a variety of different macromolecules are reviewed. Involvement of p-gp in the transport of amyloid beta in Alzheimer disease and its relation to normal pressure hydrocephalus is reviewed. Finally, individual variability of p-gp expression might explain the variability in the development of hydrocephalus following intraventricular hemorrhage. PMID:25165050

  18. Relationship of CYP2D6, CYP3A, POR, and ABCB1 genotypes with galantamine plasma concentrations.

    PubMed

    Noetzli, Muriel; Guidi, Monia; Ebbing, Karsten; Eyer, Stephan; Zumbach, Serge; Giannakopoulos, Panteleimon; von Gunten, Armin; Csajka, Chantal; Eap, Chin B

    2013-04-01

    The frequently prescribed antidementia drug galantamine is extensively metabolized by the enzymes cytochrome P450 (CYP) 2D6 and CYP3A and is a substrate of the P-glycoprotein. We aimed to study the relationship between genetic variants influencing the activity of these enzymes and transporters with galantamine steady state plasma concentrations. In this naturalistic cross-sectional study, 27 older patients treated with galantamine were included. The patients were genotyped for common polymorphisms in CYP2D6, CYP3A4/5, POR, and ABCB1, and galantamine steady state plasma concentrations were determined. The CYP2D6 genotype seemed to be an important determinant of galantamine pharmacokinetics, with CYP2D6 poor metabolizers presenting 45% and 61% higher dose-adjusted galantamine plasma concentrations than heterozygous and homozygous CYP2D6 extensive metabolizers (median 2.9 versus 2.0 ng/mL · mg, P = 0.025, and 1.8 ng/mL · mg, P = 0.004), respectively. The CYP2D6 genotype significantly influenced galantamine plasma concentrations. The influence of CYP2D6 polymorphisms on the treatment efficacy and tolerability should be further investigated.

  19. Dynamic electrophoretic fingerprinting of the HIV-1 envelope glycoprotein

    PubMed Central

    2013-01-01

    Background Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms. Results The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH. Conclusions Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized environment on the interactions of HIV with target cells are more pronounced than previously appreciated. There is differential chemistry of trimeric, but not monomeric, Env under conditions which mimic the mucosa compared to those found systemically. This should be taken into consideration during design of immunogens which targets virus at mucosal portals of entry. PMID:23514633

  20. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice

    PubMed Central

    Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556

  1. ABC transporters P-gp and Bcrp do not limit the brain uptake of the novel antipsychotic and anticonvulsant drug cannabidiol in mice.

    PubMed

    Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C

    2016-01-01

    Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.

  2. Expression, regulation, and function of drug transporters in cervicovaginal tissues of a mouse model used for microbicide testing

    PubMed Central

    Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Rohan, Lisa C.

    2016-01-01

    P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with 3H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues. PMID:27453435

  3. The reconstituted P-glycoprotein multidrug transporter is a flippase for glucosylceramide and other simple glycosphingolipids.

    PubMed

    Eckford, Paul D W; Sharom, Frances J

    2005-07-15

    The Pgp (P-glycoprotein) multidrug transporter, which is linked to multidrug resistance in human cancers, functions as an efflux pump for non-polar drugs, powered by the hydrolysis of ATP at its nucleotide binding domains. The drug binding sites of Pgp appear to be located within the cytoplasmic leaflet of the membrane bilayer, suggesting that Pgp may function as a 'flippase' for hydrophobic compounds. Pgp has been shown to translocate fluorescent phospholipids, and it has been suggested that it may also interact with GlcCer (glucosylceramide). Here we use a dithionite fluorescence quenching technique to show that reconstituted Pgp can flip several NBD (nitrobenzo-2-oxa-1,3-diazole)-labelled simple glycosphingolipids, including NBD-GlcCer, from one leaflet of the bilayer to the other in an ATP-dependent, vanadate-sensitive fashion. The rate of NBD-GlcCer flipping was similar to that observed for NBD-labelled PC (phosphatidylcholine). NBD-GlcCer flipping was inhibited in a concentration-dependent, saturable fashion by various Pgp substrates and modulators, and inhibition correlated well with the Kd for binding to the protein. The addition of a second sugar to the headgroup of the glycolipid to form NBD-lactosylceramide drastically reduced the rate of flipping compared with NBD-PC, probably because of the increased size and polarity contributed by the additional sugar residue. We conclude that Pgp functions as a broad-specificity outwardly-directed flippase for simple glycosphingolipids and membrane phospholipids.

  4. A CRISPR-Cas9 Generated MDCK Cell Line Expressing Human MDR1 Without Endogenous Canine MDR1 (cABCB1): An Improved Tool for Drug Efflux Studies.

    PubMed

    Karlgren, Maria; Simoff, Ivailo; Backlund, Maria; Wegler, Christine; Keiser, Markus; Handin, Niklas; Müller, Janett; Lundquist, Patrik; Jareborg, Anne-Christine; Oswald, Stefan; Artursson, Per

    2017-09-01

    Madin-Darby canine kidney (MDCK) II cells stably transfected with transport proteins are commonly used models for drug transport studies. However, endogenous expression of especially canine MDR1 (cMDR1) confounds the interpretation of such studies. Here we have established an MDCK cell line stably overexpressing the human MDR1 transporter (hMDR1; P-glycoprotein), and used CRISPR-Cas9 gene editing to knockout the endogenous cMDR1. Genomic screening revealed the generation of a clonal cell line homozygous for a 4-nucleotide deletion in the canine ABCB1 gene leading to a frameshift and a premature stop codon. Knockout of cMDR1 expression was verified by quantitative protein analysis and functional studies showing retained activity of the human MDR1 transporter. Application of this cell line allowed unbiased reclassification of drugs previously defined as both substrates and non-substrates in different studies using commonly used MDCK-MDR1 clones. Our new MDCK-hMDR1 cell line, together with a previously developed control cell line, both with identical deletions in the canine ABCB1 gene and lack of cMDR1 expression represent excellent in vitro tools for use in drug discovery. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  5. Effect of glucose transport inhibitors on vincristine efflux in multidrug-resistant murine erythroleukaemia cells overexpressing the multidrug resistance-associated protein (MRP) and two glucose transport proteins, GLUT1 and GLUT3.

    PubMed Central

    Martell, R. L.; Slapak, C. A.; Levy, S. B.

    1997-01-01

    The relationship between mammalian facilitative glucose transport proteins (GLUT) and multidrug resistance was examined in two vincristine (VCR)-selected murine erythroleukaemia (MEL) PC4 cell lines. GLUT proteins, GLUT1 and GLUT3, were constitutively coexpressed in the parental cell line and also in the VCR-selected cell lines. Increased expression of the GLUT1 isoform was noted both in the PC-V40 (a non-P-glycoprotein, mrp-overexpressing subline) and in the more resistant PC-V160 (overexpressing mrp and mdr3) cell lines. Overexpression of GLUT3 was detected only in the PC-V160 subline. An increased rate of facilitative glucose transport (Vmax) and level of plasma membrane GLUT protein expression paralleled increased VCR resistance, active VCR efflux and decreased VCR steady-state accumulation in these cell lines. Glucose transport inhibitors (GTIs), cytochalasin B (CB) and phloretin blocked the active efflux and decreased steady-state accumulation of VCR in the PC-V40 subline. GTIs did not significantly affect VCR accumulation in the parental or PC-V160 cells. A comparison of protein sequences among GLUT1, GLUT3 and MRP revealed a putative cytochalasin B binding site in MRP, which displayed 44% sequence similarity/12% identity with that previously identified in GLUT1 and GLUT3; these regions also exhibited a similar hydropathy plot pattern. The findings suggested that CB bound to MRP and directly or indirectly lowered VCR efflux and/or CB bound to one or both GLUT proteins, which acted to lower the VCR efflux mediated by MRP. This is the first report of a non-neuronal murine cell line that expressed GLUT3. Images Figure 3 PMID:9010020

  6. Immortalisation of a human diploid fibroblast cell strain: a DT-diaphorase paradox.

    PubMed Central

    Kuehl, B. L.; Brezden, C. B.; Traver, R. D.; Siegel, D.; Ross, D.; Renzing, J.; Rauth, A. M.

    1996-01-01

    Transfection of a normal human diploid fibroblast cell strain, GM38, with a simian virus 40 (SV40) large T antigen containing plasmid, yielded an immortal cell line, G38-8X, which had a similar sensitivity as the parental cell strain to the quinone-containing chemotherapeutic agent mitomycin C (MMC), under both aerobic and hypoxic exposure conditions. The activity level of DT-diaphorase was similar in both the parental GM38 and G38-8X cells. Although DT-diaphorase could be detected by Western blot analysis, using two mouse anti-human monoclonal antibodies, in GM38 cells, it was not detected in the G38-8X cells. G38-8X cells have a slightly increased P450R activity (2-fold), and have elevated P-glycoprotein levels compared with the parental GM38 cell strain. The immortal G38-8X cell line is 2-fold more resistant to ionising radiation than the parental GM38 cell strain (D10 approximately 5 Gy). Although these SV40 large T antigen immortalised human diploid fibroblasts behaved similarly to their parental cell strain in terms of MMC sensitivity and DT-diaphorase activity, careful characterisation revealed that these cells had enhanced P-glycoprotein activity and had a decreased sensitivity to ionising radiation. Images Figure 3 PMID:8763839

  7. Square-wave voltammetry assays for glycoproteins on nanoporous gold

    PubMed Central

    Pandey, Binod; Bhattarai, Jay K.; Pornsuriyasak, Papapida; Fujikawa, Kohki; Catania, Rosa; Demchenko, Alexei V.; Stine, Keith J.

    2014-01-01

    Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A – ALP (or soybean agglutinin – ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con A–ALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL−1 BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 μM and 286 μM, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay. PMID:24611035

  8. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

    PubMed

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-11-01

    Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and delta 9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (-)-11-nor-9-carboxy-delta 9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates.

  9. HIV envelope-mediated, CCR5/α4β7-dependent killing of CD4-negative γδ T cells which are lost during progression to AIDS.

    PubMed

    Li, Haishan; Pauza, C David

    2011-11-24

    HIV infects and replicates in CD4+ T cells but effects on host immunity and disease also involve depletion, hyper-activation, and modification of CD4-negative cell populations. In particular, the depletion of CD4-negative γδ T cells is common to all HIV+ individuals. We found that soluble or cell-associated envelope glycoproteins from CCR5-tropic strains of HIV could bind, activates the p38-caspase pathway, and induce the death of γδ cells. Envelope binding requires integrin α4β7 and chemokine receptor CCR5 which are at high levels and form a complex on the γδ T cell membrane. This receptor complex facilitated V3 loop binding to CCR5 in the absence of CD4-induced conformational changes. Cell death was increased by antigen stimulation after exposure to envelope glycoprotein. Direct signaling by envelope glycoprotein killed CD4-negative γδ T cells and reproduced a defect observed in all patients with HIV disease.

  10. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    PubMed

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer. © 2016 Wiley Periodicals, Inc.

  11. Overexpression of the ABC transporter AvtAB increases avermectin production in Streptomyces avermitilis.

    PubMed

    Qiu, Jingfan; Zhuo, Ying; Zhu, Dongqing; Zhou, Xiufen; Zhang, Lixin; Bai, Linquan; Deng, Zixin

    2011-10-01

    Avermectins are 16-membered macrocyclic polyketides with potent antiparasitic activities, produced by Streptomyces avermitilis. Upstream of the avermectin biosynthetic gene cluster, there is the avtAB operon encoding the ABC transporter AvtAB, which is highly homologous to the mammalian multidrug efflux pump P-glycoprotein (Pgp). Inactivation of avtAB had no effect, but increasing the concentration of avtAB mRNA 30-500-fold, using a multi-copy plasmid in S. avermitilis, enhanced avermectin production about two-fold both in the wild-type and in a high-yield producer strain on agar plates. In liquid industrial fermentation medium, the overall productivity of avermectin B1a in the engineered high-yield producer was improved for about 50%, from 3.3 to 4.8 g/l. In liquid YMG medium, moreover, the ratio of intracellular to extracellular accumulation of avermectin B1a was dropped from 6:1 to 4.5:1 in response to multiple copies of avtAB. Additionally, the overexpression of avtAB did not cause any increased expression of the avermectin biosynthetic genes through RT-PCR analysis. We propose that the AvtAB transporter exports avermectin, and thus reduces the feedback inhibition on avermectin production inside the cell. This strategy may be useful for enhancing the production of other antibiotics.

  12. Low ABCB1 and high OCT1 levels play a favorable role in the molecular response to imatinib in CML patients in the community clinical practice.

    PubMed

    da Cunha Vasconcelos, Flavia; Mauricio Scheiner, Marcos Antonio; Moellman-Coelho, Arthur; Mencalha, André Luiz; Renault, Ilana Zalcberg; Rumjanek, Vivian Mary; Maia, Raquel Ciuvalschi

    2016-12-01

    Despite the favorable clinical evolution of patients with chronic myeloid leukemia (CML), resistance or intolerance to imatinib is present in approximately 35% of patients. Sokal score is a widely used risk factor, however efflux and influx transporters are provisional risk factors implicated in imatinib resistance. This study analyzed Sokal score, ABCB1, ABCG2 and OCT1 mRNA transporter expression levels as well as P-glycoprotein expression and efflux transporters activity to seek a possible correlation between these factors and the molecular response at 12 months from imatinib start as well as 8-year overall survival (OS). Low plus intermediate Sokal score correlated to optimal imatinib responses, as well as OS at 8-years, thus confirming the established role of Sokal score as a prognostic factor in CML patients. Low ABCB1 and high OCT1 mRNA levels were associated with an optimal molecular response, while the inverse levels were associated with non-responders (warning and failure) patients. Our results suggest that ABCB1 and OCT1 mRNA expressions may present biological relevance to identify responder and non-responder patients to imatinib treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. An in vitro evaluation of guanfacine as a substrate for P-glycoprotein

    PubMed Central

    Gillis, Nancy K; Zhu, Hao-Jie; Markowitz, John S

    2011-01-01

    Background With a US Food and Drug Administration-labeled indication to treat attention-deficit/hyperactivity disorder (ADHD), the nonstimulant guanfacine has become the preferred α2-agonist for ADHD treatment. However, significant interindividual variability has been observed in response to guanfacine. Consequently, hypotheses of a contributing interaction with the ubiquitously expressed drug transporter, P-glycoprotein (P-gp), have arisen. We performed an in vitro study to determine if guanfacine is indeed a substrate of P-gp. Methods Intracellular accumulation of guanfacine was compared between P-gp expressing LLC-PK1/MDR1 cells and P-gp-negative LLC-PK1 cells to evaluate the potential interaction between P-gp and guanfacine. Cellular retention of guanfacine was analyzed using a high-performance liquid chromatographic-ultraviolet method. Rhodamine6G, a known P-gp substrate, was included in the study as a positive control. Results At guanfacine concentrations of 50 μM and 5 μM, intracellular accumulation of guanfacine in LLC-PK1/MDR1 cells was, 35.9% ± 4.8% and 49.0% ± 28.3% respectively, of that in LLC-PK1 cells. In comparison, the concentration of rhodamine6G, the positive P-gp substrate, in LLC-PK1/MDR1 cells was only 5% of that in LLC-PK1 cells. Conclusion The results of the intracellular accumulation study suggest that guanfacine is, at best, a weak P-gp substrate. Therefore, it is unlikely that P-gp, or any genetic variants thereof, are a determining factor in the interindividual variability of response observed with guanfacine therapy. PMID:21931492

  14. Selective export of autotaxin from the endoplasmic reticulum.

    PubMed

    Lyu, Lin; Wang, Baolu; Xiong, Chaoyang; Zhang, Xiaotian; Zhang, Xiaoyan; Zhang, Junjie

    2017-04-28

    Autotaxin (ATX) or ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2) is a secretory glycoprotein and functions as the key enzyme for lysophosphatidic acid generation. The mechanism of ATX protein trafficking is largely unknown. Here, we demonstrated that p23, a member of the p24 protein family, was the protein-sorting receptor required for endoplasmic reticulum (ER) export of ATX. A di-phenylalanine (Phe-838/Phe-839) motif in the human ATX C-terminal region was identified as a transport signal essential for the ATX-p23 interaction. Knockdown of individual Sec24 isoforms by siRNA revealed that ER export of ATX was impaired only if Sec24C was down-regulated. These results suggest that ATX is selectively exported from the ER through a p23, Sec24C-dependent pathway. In addition, it was found that AKT signaling played a role in ATX secretion regulation to facilitate ATX ER export by enhancing the nuclear factor of activated T cell-mediated p23 expression. Furthermore, the di-hydrophobic amino acid motifs (FY) also existed in the C-terminal regions of human ENPP1 and ENPP3. Such a p23, Sec24C-dependent selective ER export mechanism is conserved among these ENPP family members. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Antitumor Agents 293. Non-toxic Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) Analogs Chemosensitize Multidrug Resistant Cancer Cells to Clinical Anticancer Drugs

    PubMed Central

    Hung, Hsin-Yi; Ohkoshi, Emika; Goto, Masuo; Bastow, Kenneth F.; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung

    2012-01-01

    Novel dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) analogs were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine resistant nasopharyngeal carcinoma) cells, a multi-drug resistant cell line over-expressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2′-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5–10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analog 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogs against both non-MDR and MDR cells, suggesting that DDB analogs serve as the novel lead compounds for the development of chemosensitizers to overcome MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogs dramatically elevated cellular concentration of anticancer drugs. PMID:22612652

  16. Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking.

    PubMed

    Pal Sharma, C; Goldmann, Wolfgang H

    2004-01-01

    Actin-binding protein (ABP-280; filamin) is a phosphoprotein present in the periphery of the cytoplasm where it can cross-link actin filaments, associate with lipid membranes, and bind to membrane surface receptors. Given its function and localization in the cell, we decided to investigate the possibility of whether it serves as substrate for p56lck, a lymphocyte-specific member of the src family of protein tyrosine kinases associated with cell surface glycoproteins. The interaction of p56lck with membrane glycoproteins is important for cell development and functional activation. Here, we show that purified p56lck interacts and catalyzes in vitro kinase reactions. Tyrosine phosphorylation by p56lck is restricted to a single peptide of labeled ABP-280 shown by protease digest. The addition of phorbol ester to cells results in the inhibition of phosphorylation of ABP-280 by p56lck. These results show a decrease in phosphorylation suggesting conformationally induced regulation. Dynamic light scattering confirmed increased actin filament cross-linking due to phosphorylation of ABP-280 by p56lck.

  17. Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation.

    PubMed

    Yang, Chih-Jen; Chang, Wen-Wei; Lin, Song-Tao; Chen, Man-Chin; Lee, Che-Hsin

    2018-01-01

    Chemotherapy is one of effective methods for the treatment of tumor. Patients often develop drug resistance after chemotherapic cycles. Salmonella has potential as antitumor agent. Salmonella used in tandem with chemotherapy had additive effects, providing a rationale for using tumor-targeting Salmonella in combination with conventional chemotherapy. To improve the efficacy and safety of Salmonella , a further understanding of Salmonella interactions with the tumor microenvironment is required. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is highly relevant for the success of chemotherapy. Following Salmonella infection, dose-dependent downregulation of P-gp expressions were examined. Salmonella significantly decreased the efflux capabilities of P-gp, as based on the influx of Rhodamine 123 assay. In addition, Salmonella significant reduced the protein express the expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells. The Salmonella -induced downregulation of P-gp was rescued by transfection of cells with active P-AKT. Our results demonstrate that Salmonella in tumor sites leads to decrease the expression of P-gp and enhances the combination of Salmonell a and 5-Fluorouracil therapeutic effects.

  18. Establishment of optimized MDCK cell lines for reliable efflux transport studies.

    PubMed

    Gartzke, Dominik; Fricker, Gert

    2014-04-01

    Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Novel dihydro-beta-agarofuran sesquiterpenes as potent modulators of human P-glycoprotein dependent multidrug resistance.

    PubMed

    Torres-Romero, David; Muñoz-Martínez, Francisco; Jiménez, Ignacio A; Castanys, Santiago; Gamarro, Francisco; Bazzocchi, Isabel L

    2009-12-21

    P-Glycoprotein (Pgp) overexpression is one factor contributing to multidrug resistance (MDR) in cancer cells and represents one drawback in the treatment of cancer. In an attempt to find more specific and less toxic anticancer MDR-reversal agents, we report herein the isolation, structure elucidation and biological activity of nine new (, and ) and seven known (, and ) dihydro-beta-agarofuran sesquiterpenes from the leaves of Celastrus vulcanicola. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques, CD studies and biogenetic means. All the compounds were assayed on human MDR1-transfected NIH-3T3 cells, in order to determine their ability to reverse the MDR phenotype due to Pgp overexpression. Six compounds from these series (, , , , and ) showed an effectiveness that was similar to (or higher than) the classical Pgp reversal agent verapamil for the reversal of resistance to daunomycin and vinblastine. The structure-activity relationships are discussed.

  20. Demonstration that endoplasmic reticulum-associated degradation of glycoproteins can occur downstream of processing by endomannosidase.

    PubMed

    Kukushkin, Nikolay V; Alonzi, Dominic S; Dwek, Raymond A; Butters, Terry D

    2011-08-15

    During quality control in the ER (endoplasmic reticulum), nascent glycoproteins are deglucosylated by ER glucosidases I and II. In the post-ER compartments, glycoprotein endo-α-mannosidase provides an alternative route for deglucosylation. Previous evidence suggests that endomannosidase non-selectively deglucosylates glycoproteins that escape quality control in the ER, facilitating secretion of aberrantly folded as well as normal glycoproteins. In the present study, we employed FOS (free oligosaccharides) released from degrading glycoproteins as biomarkers of ERAD (ER-associated degradation), allowing us to gain a global rather than single protein-centred view of ERAD. Glucosidase inhibition was used to discriminate between glucosidase- and endomannosidase-mediated ERAD pathways. Endomannosidase expression was manipulated in CHO (Chinese-hamster ovary)-K1 cells, naturally lacking a functional version of the enzyme, and HEK (human embryonic kidney)-293T cells. Endomannosidase was shown to decrease the levels of total FOS, suggesting decreased rates of ERAD. However, following pharmacological inhibition of ER glucosidases I and II, endomannosidase expression resulted in a partial switch between glucosylated FOS, released from ER-confined glycoproteins, to deglucosylated FOS, released from endomannosidase-processed glycoproteins transported from the Golgi/ERGIC (ER/Golgi intermediate compartment) to the ER. Using this approach, we have identified a previously unknown pathway of glycoprotein flow, undetectable by the commonly employed methods, in which secretory cargo is targeted back to the ER after being processed by endomannosidase. © The Authors Journal compilation © 2011 Biochemical Society

  1. Pharmacokinetic interplay of phase II metabolism and transport: a theoretical study.

    PubMed

    Wu, Baojian

    2012-01-01

    Understanding of the interdependence of cytochrome P450 enzymes and P-glycoprotein in disposition of drugs (also termed "transport-metabolism interplay") has been significantly advanced in recent years. However, whether such "interplay" exists between phase II metabolic enzymes and efflux transporters remains largely unknown. The objective of this article is to explore the role of efflux transporters (acting on the phase II metabolites) in disposition of the parent drug in Caco-2 cells, liver, and intestine via simulations utilizing a catenary model (for Caco-2 system) and physiologically based pharmacokinetic (PBPK) models (for the liver and intestine). In all three models, "transport-metabolism interplay" (i.e., inhibition of metabolite efflux decreases the metabolism) can be observed only when futile recycling (or deconjugation) occurred. Futile recycling appeared to bridge the two processes (i.e., metabolite formation and excretion) and enable the interplay thereof. Without futile recycling, metabolite formation was independent on its downstream process excretion, thus impact of metabolite excretion on its formation was impossible. Moreover, in liver PBPK model with futile recycling, impact of biliary metabolite excretion on the exposure of parent drug [(systemic (reservoir) area under the concentration-time curve (AUC(R1))] was limited; a complete inhibition of efflux resulted in AUC(R1) increases of less than 1-fold only. In intestine PBPK model with futile recycling, even though a complete inhibition of efflux could result in large elevations (e.g., 3.5-6.0-fold) in AUC(R1), an incomplete inhibition of efflux (e.g., with a residual activity of ≥ 20% metabolic clearance) saw negligible increases (<0.9-fold) in AUC(R1). In conclusion, this study presented mechanistic observations of pharmacokinetic interplay between phase II enzymes and efflux transporters. Those studying such "interplay" are encouraged to adequately consider potential consequences of inhibition of efflux transporters in humans. Copyright © 2011 Wiley-Liss, Inc.

  2. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    PubMed Central

    He, Jin-Lian; Zhou, Zhi-Wei; Yin, Juan-Juan; He, Chang-Qiang; Zhou, Shu-Feng; Yu, Yang

    2015-01-01

    Drug metabolizing enzymes (DMEs) and drug transporters are regulated via epigenetic, transcriptional, posttranscriptional, and translational and posttranslational modifications. Phase I and II DMEs and drug transporters play an important role in the disposition and detoxification of a large number of endogenous and exogenous compounds. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a critical regulator of a variety of important cytoprotective genes that are involved in disposition and detoxification of xenobiotics. Schisandra chinensis (SC) is a commonly used traditional Chinese herbal medicine that has been primarily used to protect the liver because of its potent antioxidative and anti-inflammatory activities. SC can modulate some DMEs and drug transporters, but the underlying mechanisms are unclear. In this study, we aimed to explore the role of Nrf2 in the regulatory effect of SC extract (SCE) on selected DMEs and drug transporters in human hepatocellular liver carcinoma cell line (HepG2) cells. The results showed that SCE, schisandrin A, and schisandrin B significantly increased the expression of NAD(P)H: Nicotinamide Adenine Dinucleotide Phosphate-oxidase or:quinone oxidoreductase 1, heme oxygenase-1, glutamate–cysteine ligase, and glutathione S-transferase A4 at both transcriptional and posttranscriptional levels. Incubation of HepG2 cells with SCE resulted in a significant increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2) and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions. PMID:25552902

  3. Effect of P-glycoprotein on flavopiridol sensitivity

    PubMed Central

    Boerner, S A; Tourne, M E; Kaufmann, S H; Bible, K C

    2001-01-01

    Flavopiridol is the first potent inhibitor of cyclin-dependent kinases (CDKs) to enter clinical trials. Little is known about mechanisms of resistance to this agent. In order to determine whether P-glycoprotein (Pgp) might play a role in flavopiridol resistance, we examined flavopiridol sensitivity in a pair of Chinese hamster ovary cell lines differing with respect to level of Pgp expression. The IC 50 s of flavopiridol in parental AuxB1 (lower Pgp) and colchicine-selected CHRC5 (higher Pgp) cells were 90.2 ± 6.6 nM and 117 ± 2.3 nM, respectively (P< 0.01), suggesting that Pgp might have a modest effect on flavopiridol action. Consistent with this hypothesis, pretreatment with either quinidine or verapamil (inhibitors of Pgp-mediated transport) sensitized CHRC5 cells to the antiproliferative effects of flavopiridol. Because of concern that colony forming assays might not accurately reflect cytotoxicity, we also examined flavopiridol-treated cells by trypan blue staining and flow cytometry. These assays confirmed that flavopiridol was less toxic to cells expressing higher levels of Pgp. Further experiments revealed that flavopiridol inhibited the binding of [3H]-azidopine to Pgp in isolated membrane vesicles, but only at high concentrations. Collectively, these results identify flavopiridol as a weak substrate for Pgp. © 2001 Cancer Research Campaign www.bjcancer.com PMID:11355953

  4. Growth of HepG2 cells was suppressed through modulation of STAT6/IL-4 and IL-10 in RAW 264.7 cells treated by phytoglycoprotein (38 kDa).

    PubMed

    Lee, Jin; Lim, Kye-Taek

    2013-06-01

    Macrophage type 2 (M2) is closely associated with tumor progression and metastasis. Thus, in this study, the antitumor effect of Styrax japonica Siebold et al. Zuccarini (SJSZ) glycoprotein on HepG2 cell proliferation through modulating M2 was investigated by measuring [³H]-thymidine incorporation and proliferating cell nuclear antigen (PCNA), nitric oxide (NO), reactive oxygen species (ROS), mitogen-activated protein kinases, signal transducer and activator of transcription (STAT) 6, cytokines [interleukin (IL)-4, IL-10, IL-12, and interferon (IFN)-γ], and CD163-positive cells using biochemical analysis, radioactivity, Western blot, ELISA, quantitative real-time polymerase chain reaction, and flow cytometry in coculture system. RAW 264.7 cells were found to be cytotoxic to HepG2 cells but [³H]-thymidine incorporation and expression of PCNA was suppressed in the presence of the SJSZ glycoprotein (20 μg/ml). The SJSZ glycoprotein normalized production of NO and ROS and expression of inducible nitric oxide synthase, IFN-γ, and IL-12 but suppressed expression of pSTAT6, IL-4, IL-10, and CD163-positive cells. Thus, the results of this study suggest that the SJSZ glycoprotein suppresses proliferation of HepG2 cells by modulating M2.

  5. Role of P-glycoprotein on CD69+CD4+ cells in the pathogenesis of proliferative lupus nephritis and non-responsiveness to immunosuppressive therapy

    PubMed Central

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Tanaka, Yoshiya

    2017-01-01

    Introduction P-glycoprotein (P-gp) expression on activated lymphocytes in systemic lupus erythematosus (SLE) plays a role in active efflux of intracellular drugs, resulting in drug resistance. The role of P-gp-expressing lymphocytes in the pathogenesis of SLE remains unclear. The aim of this study was to determine the importance of P-gp+CD4+ cells in organ manifestations in refractory SLE. Methods The proportion of P-gp+CD4+ cells was determined by flow cytometry in peripheral blood of patients with SLE (n=116) and healthy adults (n=10). Renal biopsy specimens were examined by immunohistochemistry for P-gp expression. Results CD69 is a marker of CD4 cell activation. The proportion of both P-gp-expressing CD4+ cells and CD69-expressing CD4+ cells in peripheral blood was higher in SLE than control. The proportion of P-gp+CD69+CD4+ cells correlated with Systemic Lupus Erythematosus Disease Activity Index and was higher in poor responders to corticosteroids. Furthermore, the proportion of P-gp+CD69+CD4+ cells was significantly higher in proliferative lupus nephritis (LN) with poor response to corticosteroids. The efficacy of immunosuppressive therapy depended on the regulation of the proportion of P-gp+CD69+CD4+ cells. Marked accumulation of P-gp+CD4+ cells in renal interstitial tissue and high proportion of peripheral P-gp+CD69+CD4+ cells were noted in patients with proliferative LN. Conclusions The results showed high proportion of P-gp+CD69+CD4+ cells in peripheral blood and their accumulation in renal tissue in patients with proliferative LN refractory to CS therapy, suggesting that P-gp expression on activated CD4+ T cells is a potentially useful marker for refractoriness to treatment and a novel target for treatment. PMID:29225917

  6. Role of P-glycoprotein on CD69+CD4+ cells in the pathogenesis of proliferative lupus nephritis and non-responsiveness to immunosuppressive therapy.

    PubMed

    Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Tanaka, Yoshiya

    2017-01-01

    P-glycoprotein (P-gp) expression on activated lymphocytes in systemic lupus erythematosus (SLE) plays a role in active efflux of intracellular drugs, resulting in drug resistance. The role of P-gp-expressing lymphocytes in the pathogenesis of SLE remains unclear. The aim of this study was to determine the importance of P-gp + CD4 + cells in organ manifestations in refractory SLE. The proportion of P-gp + CD4 + cells was determined by flow cytometry in peripheral blood of patients with SLE (n=116) and healthy adults (n=10). Renal biopsy specimens were examined by immunohistochemistry for P-gp expression. CD69 is a marker of CD4 cell activation. The proportion of both P-gp-expressing CD4 + cells and CD69-expressing CD4 + cells in peripheral blood was higher in SLE than control. The proportion of P-gp + CD69 + CD4 + cells correlated with Systemic Lupus Erythematosus Disease Activity Index and was higher in poor responders to corticosteroids. Furthermore, the proportion of P-gp + CD69 + CD4 + cells was significantly higher in proliferative lupus nephritis (LN) with poor response to corticosteroids. The efficacy of immunosuppressive therapy depended on the regulation of the proportion of P-gp + CD69 + CD4 + cells. Marked accumulation of P-gp + CD4 + cells in renal interstitial tissue and high proportion of peripheral P-gp + CD69 + CD4 + cells were noted in patients with proliferative LN. The results showed high proportion of P-gp + CD69 + CD4 + cells in peripheral blood and their accumulation in renal tissue in patients with proliferative LN refractory to CS therapy, suggesting that P-gp expression on activated CD4 + T cells is a potentially useful marker for refractoriness to treatment and a novel target for treatment.

  7. Immunogenicity of a recombinant infectious hematopoietic necrosis virus glycoprotein produced in insect cells.

    PubMed

    Cain, K D; LaPatra, S E; Shewmaker, B; Jones, J; Byrne, K M; Ristow, S S

    1999-04-15

    A recombinant infectious hematopoietic necrosis virus (IHNV) glycoprotein (G protein), produced in Spodoptera frugiperda (Sf9) cells following infection with a baculovirus vector containing the full-length (1.6 kb) glycoprotein gene, provided very limited protection in rainbow trout Oncorhynchus mykiss challenged with IHNV. Fish were injected intraperitoneally (i.p.) with Sf9 cells grown at 20 degrees C (RecGlow) or 27 degrees C (RecGhigh) expressing the glycoprotein gene. Various antigen (Ag) preparations were administered to adult rainbow trout or rainbow trout fry. Sera collected from adult fish were evaluated for IHNV neutralization activity by a complement-dependent neutralization assay. Anti-IHNV neutralizing activity was observed in sera, but the percent of fish responding was significantly lower (p < 0.05) in comparison to fish immunized with a low virulence strain of IHNV (LV-IHNV). A small number of fish immunized with RecGlow or RecGhigh possessed IHNV G protein specific antibodies (Abs) in their serum. Cumulative mortality (CM) of rainbow trout fry (mean weight, 1 g) vaccinated by i.p. injection of freeze/thawed Sf9 cells producing RecGlow was 18% in initial trials following IHNV challenge. This level of protection was significant (p < 0.05) but was not long lasting, and neutralizing Abs were not detected in pooled serum samples. When trout fry (mean weight, 0.6 g) were vaccinated with supernatant collected from sonicated Sf9 cells, Sf9 cells producing RecGlow, or Sf9 cells producing RecGhigh, CM averaged 46%. Protection was enhanced over negative controls, but not the positive controls (2% CM), suggesting that in the first trial soluble cellular proteins may have provided some level of non-specific protection, regardless of recombinant protein expression. Although some immunity was elicited in fish, and RecGlow provided short-term protection from IHNV, Ab-mediated protection could not be demonstrated. The results suggest that recombinant G proteins produced in insect cells lack the immunogenicity associated with vaccination of fish with an attenuated strain of IHNV.

  8. Investigation of the Role of Breast Cancer Resistance Protein (Bcrp/Abcg2) on Pharmacokinetics and Central Nervous System Penetration of Abacavir and Zidovudine in the Mouse

    PubMed Central

    Giri, Nagdeep; Shaik, Naveed; Pan, Guoyu; Terasaki, Tetsuya; Mukai, Chisato; Kitagaki, Shinji; Miyakoshi, Naoki; Elmquist, William F.

    2016-01-01

    Many anti-human immunodeficiency virus 1 nucleoside reverse-transcriptase inhibitors have low central nervous system (CNS) distribution due in part to active efflux transport at the blood-brain barrier. We have previously shown that zidovudine (AZT) and abacavir (ABC) are in vitro substrates for the efflux transport protein breast cancer resistance protein (Bcrp) 1. We evaluated the influence of Bcrp1 on plasma pharmacokinetics and brain penetration of zidovudine and abacavir in wild-type and Bcrp1-deficient (Bcrp1−/−) FVB mice. There was no difference in either area under the concentration-time profiles for plasma (AUCplasma) or brain (AUCbrain) for zidovudine between the wild-type and Bcrp1−/− mice. The AUCplasma of abacavir was 20% lower in the Bcrp1−/− mice, whereas the AUCbrain was 20% greater. This difference resulted in a 1.5-fold increase in abacavir brain exposure in the Bcrp1−/− mice. The effect of selective and nonselective transport inhibitors on the ABC brain/plasma ratio at a single time point was evaluated. 3-(6-Isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6,7,12,12a-octahydropyrazino[1′,2′:1,6]pyrido[3,4-b]indol-3-yl)-propionicacid tert-butyl ester (Ko143), N[4[2-(6, 7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10H-acridine-4-carboxamide (GF120918), probenecid, and Pluronic P85 increased abacavir plasma concentrations in the wild-type mice. Abacavir plasma concentrations in Bcrp1−/− mice were increased by (R)-4-((1aR,6R,10bS)-1,2-difluoro-1,1a,6,10b-tetrahydrodibenzo(a,e)cyclopropa(c)cycloheptan-6-yl)-α-((5-quinoloyloxy)methyl)-1-piperazineethanol trihydrochloride (LY335979), GF120918, and probenecid, but not by Ko143. Brain/plasma concentration ratios in both the wild-type and Bcrp1−/− mice were increased by the P-glycoprotein inhibitors LY335979 and GF120918, but not by BCRP-selective inhibitors. These data indicate that deletion of Bcrp1 has little influence on the pharmacokinetics or brain penetration of AZT. However, for abacavir, deletion of Bcrp1 reduces plasma exposure and enhances brain penetration. These findings suggest that Bcrp1 does not play a significant role in limiting the CNS distribution of zidovudine and abacavir; however, brain penetration of abacavir is dependent on P-glycoprotein-mediated efflux. PMID:18443033

  9. Mechanisms involved in the cytotoxic action of Brazilian propolis and caffeic acid against HEp-2 cells and modulation of P-glycoprotein activity.

    PubMed

    da Silva, Lívia M; Frión-Herrera, Yahima; Bartolomeu, Ariane R; Gorgulho, Carolina Mendonça; Sforcin, José M

    2017-11-01

    The effects of propolis and phenolic compounds (caffeic acid - Caf; dihydrocinnamic acid - Cin; p-coumaric acid - Cou) in the same quantity found in our propolis sample were investigated on human laryngeal epidermoid carcinoma (HEp-2) cells. Cell viability, apoptosis/necrosis and cell cycle arrest, P53 and CASPASE-3 gene expression, generation of reactive oxygen species (ROS) and the ability of propolis to induce doxorubicin (DOX) efflux using a P-glycoprotein (P-gp) inhibitor (verapamil) were assayed. Propolis exerted a cytotoxic effect on HEp-2 cells, whereas isolated compounds had no effect on cell viability. Higher concentrations were tested and Caf induced late apoptosis or necrosis in HEp-2 cells, while propolis induced apoptosis, both probably due to ROS generation. P53 expression was downregulated by propolis but not by Caf. CASPASE-3 expression was correlated with induction of both early and late apoptosis, with both propolis and Caf alone upregulating its expression. Propolis induced cell cycle arrest at G2/M phase and Caf at S phase. Propolis but not Caf may act as a P-gp inhibitor by modulating P-gp activity and inhibiting DOX efflux. Propolis exerted cytotoxic effects on HEp-2 cells, and the mechanisms are discussed, showing its potential as an antitumour drug. © 2017 Royal Pharmaceutical Society.

  10. Nrf2/P-glycoprotein axis is associated with clinicopathological characteristics in colorectal cancer.

    PubMed

    Sadeghi, Mohammad Reza; Jeddi, Farhad; Soozangar, Narges; Somi, Mohammad Hossein; Shirmohamadi, Masoud; Khaze, Vahid; Samadi, Nasser

    2018-08-01

    Colorectal cancer (CRC) is the fourth leading cause of cancer-related death worldwide. Activation of ABCB1 gene and its main product, P-glycoprotein, is the common reason for chemoresistance. The nuclear factor-erythroid 2-related factor2 (Nrf2) is directly regulated by Kelch like ECH-associated protein1 (Keap1). In addition, Nrf2 is a key transcriptional factor that regulates efflux transporters, including P-gp. The aim of this study was to investigate the expression levels of Nrf2, Keap1 and ABCB1 in the biopsy samples and their association with clinicopathological features in CRC patients. Both mRNA and protein expression levels were measured by Real-time PCR and immunohistochemistry (IHC), respectively, in biopsies from colonoscopy in 65 CRC patients compared to those in 65 non-CRC individuals. While expression levels of Nrf2 and ABCB1 (P-gp) were markedly higher in both mRNA and protein levels in CRC biopsies (p < 0.01), Keap1 expression level was significantly lower in these samples (p < 0.05). Positive correlations between Nrf2 expression level and tumor size (p = 0.003), lymph node (p = 0.038), distant metastasis (p = 0.008), and smoking status (p = 0.02) were observed. However, P-gp expression was associated only with patient age and smoking status. In addition, there was a positive correlation between protein levels of Nrf2 and P-gp, in both CRC (r = 0.617, p < 0.001) and non-CRC tissues (r = 0.930, p < 0.001). In conclusion, over-expression of Nrf2 and ABCB1/P-gp, as well as down-regulation of mRNA expression level of Keap1 in CRC patients denotes the role of Keap1/Nrf2/ABCB1 axis in CRC progression and chemoresistance. Our data suggest that therapeutic inhibition of Nrf2/ABCB1 signaling can be considered as a novel strategy to improve the efficacy of chemotherapeutics against CRC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Characteristics of Mammalian Rh Glycoproteins (SLC42 transporters) and Their Role in Acid-Base Transport

    PubMed Central

    Nakhoul, Nazih L.; Hamm, L. Lee

    2012-01-01

    The mammalian Rh glycoproteins belong to the solute transporter family SLC42 and include RhAG, present in red blood cells, and two non-erythroid members RhBG and RhCG that are expressed in various tissues, including kidney, liver, skin and the GI tract. The Rh proteins in the red blood cell form an “Rh complex” made up of one D-subunit, one CE-subunit and two RhAG subunits. The Rh complex has a well-known antigenic effect but also contributes to the stability of the red cell membrane. RhBG and RhCG are related to the NH4+ transporters of the yeast and bacteria but their exact function is yet to be determined. This review describes the expression and molecular properties of these membrane proteins and their potential role as NH3/NH4+ and CO2 transporters. The likelihood that these proteins transport gases such as CO2 or NH3 is novel and significant. The review also describes the physiological importance of these proteins and their relevance to human disease. PMID:23506896

  12. Establishment and characterisation of a novel bovine SV40 large T-antigen-transduced foetal hepatocyte-derived cell line.

    PubMed

    Gleich, Alexander; Kaiser, Bastian; Schumann, Julia; Fuhrmann, Herbert

    2016-06-01

    Due to lack of in vitro models for bovine hepatocytes apart from primary cells, there is demand for a bovine hepatocyte-derived cell line. Transduction of bovine foetal hepatocytes with SV40 large T-antigen was performed using the vector pRetro-E2 SV40. Phase contrast microscopy was carried out to evaluate morphology. Immunofluorescence staining was conducted to study expression of keratins, tight junction proteins zona occludens-1 and claudin-1, glucose transporter-2 and P-glycoprotein as well as phosphoenolpyruvate carboxykinase. Urea and triglyceride production was quantified photometrically. Histochemical staining of glycogen by Periodic acid-Schiff stain and of lipids with Oil red O was performed after 24 h incubation with 20 mM glucose and 85 μM palmitic acid, respectively. Gene expression analysis of hepatocyte-typical genes was conducted by reverse transcription PCR. We obtained a SV40LTAg-transduced extended passage cell line, referred to as BFH12. Polygonal growth, keratins, tight junction proteins zona occludens-1 and claudin-1 and glucose transporter-2 as well as P-glycoprotein and phosphoenolpyruvate carboxykinase were attested positively. Urea production calculated as cell-specific rate was 14.2 ± 2.0 fmol/h (early passage) and 17.6 ± 3.7 fmol/h (late passage). Cell-specific triglyceride production was 1.6 ± 0.5 fmol/h (early passage) and 2.1 ± 0.3 fmol/h (late passage). Additionally, cells were positive for glycogen and lipid storage and showed a gene expression pattern resembling foetal hepatocytes. With the properties described here, the novel cell line BFH12 is a hepatocyte-derived cell line which can be used as an in vitro whole cell model.

  13. Visceral and subcutaneous adipose tissue express and secrete functional alpha2hsglycoprotein (fetuin a) especially in obesity.

    PubMed

    Pérez-Sotelo, Diego; Roca-Rivada, Arturo; Larrosa-García, María; Castelao, Cecilia; Baamonde, Iván; Baltar, Javier; Crujeiras, Ana Belen; Seoane, Luisa María; Casanueva, Felipe F; Pardo, María

    2017-02-01

    The secretion of the hepatokine alpha-2-Heremans-Schmid glycoprotein/Fetuin A, implicated in pathological processes including systemic insulin resistance, by adipose tissue has been recently described. Thus, we have recently identified its presence in white adipose tissue secretomes by mass spectrometry. However, the secretion pattern and function of adipose-derived alpha-2-Heremans-Schmid glycoprotein are poorly understood. The aim of this study is to evaluate the expression and secretion of total and active phosphorylated alpha-2-Heremans-Schmid glycoprotein by adipose tissue from visceral and subcutaneous localizations in animals at different physiological and nutritional status including anorexia and obesity. Alpha-2-Heremans-Schmid glycoprotein expression and secretion in visceral adipose tissue and subcutaneous adipose tissue explants from animals under fasting and exercise training, at pathological situations such as anorexia and obesity, and from human obese individuals were assayed by immunoblotting, quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay. We reveal that visceral adipose tissue expresses and secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue, and that this secretion is diminished after fasting and exercise training. Visceral adipose tissue from anorectic animals showed reduced alpha-2-Heremans-Schmid glycoprotein secretion; on the contrary, alpha-2-Heremans-Schmid glycoprotein is over-secreted by visceral adipose tissue in the occurrence of obesity. While secretion of active-PhophoSer321α2HSG by visceral adipose tissue is independent of body mass index, we found that the fraction of active-alpha-2-Heremans-Schmid glycoprotein secreted by subcutaneous adipose tissue increments significantly in situations of obesity. Functional studies show that the inhibition of adipose-derived alpha-2-Heremans-Schmid glycoprotein increases insulin sensitivity in differentiated adipocytes. In conclusion, visceral adipose tissue secretes more alpha-2-Heremans-Schmid glycoprotein than subcutaneous adipose tissue and this secretion is more sensitive to nutritional and physiological changes. The over-secretion of alpha-2-Heremans-Schmid glycoprotein by visceral adipose tissue, the increased secretion of the active phosphorylated form by subcutaneous adipose tissuein obese animals, and the adipose-derived alpha-2-Heremans-Schmid glycoprotein capacity to inhibit the insulin pathway suggest the participation of adipose-derived alpha-2-Heremans-Schmid glycoprotein in the deleterious effects of obesity.

  14. Absence of Capsule Reveals Glycan-Mediated Binding and Recognition of Salivary Mucin MUC7 by Streptococcus pneumoniae

    PubMed Central

    Thamadilok, Supaporn; Roche-Håkansson, Hazeline; Håkansson, Anders P.; Ruhl, Stefan

    2015-01-01

    SUMMARY Salivary proteins modulate bacterial colonization in the oral cavity and interact with systemic pathogens that pass through the oropharynx. An interesting example is the opportunistic respiratory pathogen Streptococcus pneumoniae that normally resides in the nasopharynx, but belongs to the greater Mitis group of streptococci, most of which colonize the oral cavity. S. pneumoniae also expresses a serine-rich repeat (SRR) adhesin, PsrP, that is a homologue to oral Mitis group SRR adhesins, such as Hsa of S. gordonii and SrpA of S. sanguinis. Since the latter bind to salivary glycoproteins through recognition of terminal sialic acids, we wanted to determine whether S. pneumoniae also binds to salivary proteins through possibly the same mechanism. We found that only a capsule-free mutant of S. pneumoniae TIGR4 binds to salivary proteins, most prominently to mucin MUC7, but that this binding was not mediated through PsrP or recognition of sialic acid. We also found, however, that PsrP is involved in agglutination of human red blood cells (RBCs). After removal of PsrP, an additional previously masked lectin-like adhesin activity mediating agglutination of sialidase-treated RBCs becomes revealed. Using a custom-spotted glycoprotein and neoglycoprotein dot blot array, we identify candidate glycan motifs recognized by PsrP and by the putative S. pneumoniae adhesin that could perhaps be responsible for pneumococcal binding to salivary MUC7 and glycoproteins on RBCs. PMID:26172471

  15. Functional expression of a human GDP-L-fucose transporter in Escherichia coli.

    PubMed

    Förster-Fromme, Karin; Schneider, Sarah; Sprenger, Georg A; Albermann, Christoph

    2017-02-01

    To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes. The heterologous expression of the recombinant and codon-adapted human GDP-L-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-L-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3 H-GDP-L-fucose with a V max of 8 pmol/min mg with a K m of 4 µM. The functional expression of SLC35C1 in GDP-L-fucose overproducing E. coli led to the export of GDP-L-fucose to the culture supernatant. The export of GDP-L-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.

  16. QSAR studies of macrocyclic diterpenes with P-glycoprotein inhibitory activity.

    PubMed

    Sousa, Inês J; Ferreira, Maria-José U; Molnár, Joseph; Fernandes, Miguel X

    2013-02-14

    Multidrug resistance (MDR) represents a major limitation for cancer chemotherapy. There are several mechanisms of MDR but the most important is associated with P-glycoprotein (P-gp) overexpression. The development of modulators of P-gp that are able to re-establish drug sensitivity of resistant cells has been considered a promising approach for overcoming MDR. Macrocyclic lathyrane and jatrophane-type diterpenes from Euphorbia species were found to be strong MDR reversing agents. In this study we applied quantitative structure-activity relationship (QSAR) methodology in order to identify the most relevant molecular features of macrocyclic diterpenes with P-gp inhibitory activity and to determine which structural modifications can be performed to improve their activity. Using experimental biological data at two concentrations (4 and 40 μg/ml), we developed a QSAR model for a set of 51 bioactive diterpenic compounds which includes lathyrane and jatrophane-type diterpenes and another model just for jatrophanes. The cross-validation correlation values for all diterpenes QSAR models developed for biological activities at compound concentrations of 4 and 40 μg/ml were 0.758 and 0.729, respectively. Regarding the prediction ability, we get R²(pred) values of 0.765 and 0.534 for biological activities at compound concentrations of 4 and 40 μg/ml, respectively. Applying the cross-validation test to jatrophanes QSAR models, we obtained 0.680 and 0.787 for biological activities at compound concentrations of 4 and 40 μg/ml concentrations, respectively. For the same concentrations, the obtained R²(pred) values for jatrophanes models were 0.541 and 0.534, respectively. The obtained models were statistically valid and showed high prediction ability. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Liposomes Coloaded with Elacridar and Tariquidar To Modulate the P-Glycoprotein at the Blood-Brain Barrier.

    PubMed

    Nieto Montesinos, Rita; Béduneau, Arnaud; Lamprecht, Alf; Pellequer, Yann

    2015-11-02

    This study prepared three liposomal formulations coloaded with elacridar and tariquidar to overcome the P-glycoprotein-mediated efflux at the blood-brain barrier. Their pharmacokinetics, brain distribution, and impact on the model P-glycoprotein substrate, loperamide, were compared to those for the coadministration of free elacridar plus free tariquidar. After intravenous administration in rats, elacridar and tariquidar in conventional liposomes were rapidly cleared from the bloodstream. Their low levels in the brain did not improve the loperamide brain distribution. Although elacridar and tariquidar in PEGylated liposomes exhibited 2.6 and 1.9 longer half-lives than free elacridar and free tariquidar, respectively, neither their Kp for the brain nor the loperamide brain distribution was improved. However, the conjugation of OX26 F(ab')2 fragments to PEGylated liposomes increased the Kps for the brain of elacridar and tariquidar by 1.4- and 2.1-fold, respectively, in comparison to both free P-gp modulators. Consequently, the Kp for the brain of loperamide increased by 2.7-fold. Moreover, the plasma pharmacokinetic parameters and liver distribution of loperamide were not modified by the PEGylated OX26 F(ab')2 immunoliposomes. Thus, this formulation represents a promising tool for modulating the P-glycoprotein-mediated efflux at the blood-brain barrier and could improve the brain uptake of any P-glycoprotein substrate that is intended to treat central nervous system diseases.

  18. A new method measuring the interaction of radiotracers with the human P-glycoprotein (P-gp) transporter.

    PubMed

    Vraka, Chrysoula; Dumanic, Monika; Racz, Teresa; Pichler, Florian; Philippe, Cecile; Balber, Theresa; Klebermass, Eva-Maria; Wagner, Karl-Heinz; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus

    2018-05-01

    In drug development, biomarkers for cerebral applications have a lower success rate compared to cardiovascular drugs or tumor therapeutics. One reason is the missing blood brain barrier penetration, caused by the tracer's interaction with efflux transporters such as the P-gp (MDR1 or ABCB1). Aim of this study was the development of a reliable model to measure the interaction of radiotracers with the human efflux transporter P-gp in parallel to the radiolabeling process. LigandTracer® Technology was used with the wildtype cell line MDCKII and the equivalent cell line overexpressing human P-gp (MDCKII-hMDR1). The method was evaluated based on established PET tracers with known interaction with the human P-gp transporter and in nanomolar concentration (15 nM). [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP were used as P-gp substrates by comparing the real-time model with an uptake assay and μPET images. [ 11 C]DASB [ 11 C]Harmine, [ 18 F]FMeNER,[ 18 F]FE@SUPPY and [ 11 C]Me@HAPTHI were used as tracers without interactions with P-gp in vitro. However, [ 11 C]Me@HAPTHI shows a significant increase in SUV levels after blocking with Tariquidar. The developed real-time kinetic model uses directly PET tracers in a compound concentration, which is reflecting the in vivo situation. This method may be used at an early stage of radiopharmaceutical development to measure interactions to P-gp before conducting animal experiments. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Genetic disruption of lactate/H+ symporters (MCTs) and their subunit CD147/BASIGIN sensitizes glycolytic tumor cells to phenformin.

    PubMed

    Marchiq, Ibtissam; Le Floch, Renaud; Roux, Danièle; Simon, Marie-Pierre; Pouyssegur, Jacques

    2015-01-01

    Rapidly growing glycolytic tumors require energy and intracellular pH (pHi) homeostasis through the activity of two major monocarboxylate transporters, MCT1 and the hypoxia-inducible MCT4, in intimate association with the glycoprotein CD147/BASIGIN (BSG). To further explore and validate the blockade of lactic acid export as an anticancer strategy, we disrupted, via zinc finger nucleases, MCT4 and BASIGIN genes in colon adenocarcinoma (LS174T) and glioblastoma (U87) human cell lines. First, we showed that homozygous loss of MCT4 dramatically sensitized cells to the MCT1 inhibitor AZD3965. Second, we demonstrated that knockout of BSG leads to a decrease in lactate transport activity of MCT1 and MCT4 by 10- and 6-fold, respectively. Consequently, cells accumulated an intracellular pool of lactic and pyruvic acids, magnified by the MCT1 inhibitor decreasing further pHi and glycolysis. As a result, we found that these glycolytic/MCT-deficient cells resumed growth by redirecting their metabolism toward OXPHOS. Third, we showed that in contrast with parental cells, BSG-null cells became highly sensitive to phenformin, an inhibitor of mitochondrial complex I. Phenformin addition to these MCT-disrupted cells in normoxic and hypoxic conditions induced a rapid drop in cellular ATP-inducing cell death by "metabolic catastrophe." Finally, xenograft analysis confirmed the deleterious tumor growth effect of MCT1/MCT4 ablation, an action enhanced by phenformin treatment. Collectively, these findings highlight that inhibition of the MCT/BSG complexes alone or in combination with phenformin provides an acute anticancer strategy to target highly glycolytic tumors. This genetic approach validates the anticancer potential of the MCT1 and MCT4 inhibitors in current development. ©2014 American Association for Cancer Research.

  20. Design, synthesis, and biological evaluation of 6-methoxy-2-arylquinolines as potential P-glycoprotein inhibitors.

    PubMed

    Aboutorabzadeh, Sayyed Mohammad; Mosaffa, Fatemeh; Hadizadeh, Farzin; Ghodsi, Razieh

    2018-01-01

    In the present study, a new series of 6-methoxy-2-arylquinoline analogues was designed and synthesized as P-glycoprotein (P-gp) inhibitors using quinine and flavones as the lead compounds. The cytotoxic activity of the synthesized compounds was evaluated against two human cancer cell lines including EPG85-257RDB, multidrug-resistant gastric carcinoma cells (P-gp-positive gastric carcinoma cell line), and EPG85-257P, drug-sensitive gastric carcinoma cells. Compounds showing low to moderate toxicity in the MTT test were selected to investigate their P-gp inhibition activity. Moreover, trying to explain the results of biological experiments, docking studies of the selected compounds into the homology-modeled human P-gp, were carried out. The physicochemical and ADME properties of the compounds as drug candidate were also predicted. Most of our compounds exhibited negligible or much lower cytotoxic effect in both cancer cells. Among the series, 5a and 5b, alcoholic quinoline derivatives were found to inhibit the efflux of rhodamine 123 at the concentration of 10 μM significantly. Among the tested quinolines, 5a and 5b showed the most potent P-gp inhibitory activity in the series and were 1.3-fold and 2.1-fold stronger than verapamil, respectively. SAR data revealed that hydroxyl methyl in position 4 of quinolines has a key role in P-gp efflux inhibition of our compounds. ADME studies suggested that all of the compounds included in this study may have a good human intestinal absorption.

Top