[Expression and significance of P-gp/mdr1 mRNA, MRP and LRP in non-Hodgkin's lymphoma].
Li, Le; Su, Li-ping; Ma, Li; Zhao, Jin; Zhu, Lei; Zhou, Yong-an
2009-03-01
To explore the expression and clinical significance of P-glycoprotein (P-gp)/mdr1mRNA, multidrug resistance-associated protein (MRP) and lung resistance protein (LRP) in newly diagnosed non-Hodgkin's lymphoma. mdr1 mRNA of in 41 patients with non-Hodgkin's lymphoma was assayed by semi-quantitative RT-PCR. The expressions of P-gp, MRP and LRP proteins in lymph node viable blasts were identified by flow cytometry. The results were compared with those obtained from control cases, and the correlation of the changes with clinical outcomes was analyzed. (1) Among the 41 cases, the positive expression of P-gp protein was detected in 8 cases, MRP in 7 cases, LRP in 15 cases, and mdr 1 mRNA in 11 cases. (2) The P-gp and LRP levels in NHL were significantly higher than those in control group, but MRP wasn't. The P-gp over-expression was significantly associated with mdr1mRNA (r = 0.396, P = 0.01). No correlation was showed among the expressions of P-gp, MRP and LRP. (3) Patients with P-gp expression had a poorer outcome of chemotherapy than those with P-gp-negative (P = 0.005). P-gp expression was significantly associated with higher clinical stage (P = 0.046) and elevated serum lactate dehydrogenase level (P = 0.032), but not associated with malignant degree (P = 0.298). MRP had no impact on the outcome of chemotherapy (P = 0.212), and wasn't significantly associated with higher clinical stage (P = 0.369), elevated LDH (P = 0.762) and higher malignant degree (P = 0.451). Patients with LRP expression had a poorer outcome of chemotherapy than those LRP-negative (P = 0.012). LRP expression was significantly associated with higher clinical stage (P = 0.0019), elevated LDH (P = 0.02) and higher malignant degree (P = 0.01). The data of this study indicate that P-gp and LRP expressions but not MRP expression are important in the mechanism of drug resistance associated with a poor clinical outcome in previously untreated NHL.
Xie, Yuan; Yu, Nian; Chen, Yan; Zhang, Kang; Ma, Hai-Yan; Di, Qing
2017-01-01
Overexpression of P-glycoprotein (P-gp) in the brain is an important mechanism involved in drug-resistant epilepsy (DRE). High-mobility group box 1 (HMGB1), an inflammatory cytokine, significantly increases following seizures and may be involved in upregulation of P-gp. However, the underlying mechanisms remain elusive. The aim of the present study was to evaluate the role of HMGB1 and its downstream signaling components, receptor for advanced glycation end-product (RAGE) and nuclear factor-κB (NF-κB), on P-gp expression in rat brains during status epilepticus (SE). Small interfering RNA (siRNA) was administered to rats prior to induction of SE by pilocarpine, to block transcription of the genes encoding HMGB1 and RAGE, respectively. An inhibitor of NF-κB, pyrrolidinedithiocarbamic acid (PDTC), was utilized to inhibit activation of NF-κB. The expression levels of HMGB1, RAGE, phosphorylated-NF-κB p65 (p-p65) and P-gp were detected by western blotting. The relative mRNA expression levels of the genes encoding these proteins were measured using reverse transcription-quantitative polymerase chain reaction and the cellular localization of the proteins was determined by immunofluorescence. Pre-treatment with HMGB1 siRNA reduced the expression levels of RAGE, p-p65 and P-gp. PDTC reduced the expression levels of P-gp. These findings suggested that overexpression of P-gp during seizures may be regulated by HMGB1 via the RAGE/NF-κB signaling pathway, and may be a novel target for treating DRE. PMID:28627626
Liao, Zheng-Gen; Tang, Tao; Guan, Xue-Jing; Dong, Wei; Zhang, Jing; Zhao, Guo-Wei; Yang, Ming; Liang, Xin-Li
2016-11-24
P-glycoprotein (P-gp) affects the transport of many drugs; including puerarin and vincristine. Our previous study demonstrated that imperatorin increased the intestinal absorption of puerarin and vincristine by inhibiting P-gp-mediated drug efflux. However; the underlying mechanism was not known. The present study investigated the mechanism by which imperatorin promotes P-gp-mediated drug transport. We used molecular docking to predict the binding force between imperatorin and P-gp and the effect of imperatorin on P-gp activity. P-gp efflux activity and P-gp ATPase activity were measured using a rhodamine 123 (Rh-123) accumulation assay and a Pgp-Glo™ assay; respectively. The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess cellular membrane fluidity in MDCK-MDR1 cells. Western blotting was used to analyze the effect of imperatorin on P-gp expression; and P-gp mRNA levels were assessed by qRT-PCR. Molecular docking results demonstrated that the binding force between imperatorin and P-gp was much weaker than the force between P-gp and verapamil (a P-gp substrate). Imperatorin activated P-gp ATPase activity; which had a role in the inhibition of P-gp activity. Imperatorin promoted Rh-123 accumulation in MDCK-MDR1 cells and decreased cellular membrane fluidity. Western blotting demonstrated that imperatorin inhibited P-gp expression; and qRT-PCR revealed that imperatorin down-regulated P-gp (MDR1) gene expression. Imperatorin decreased P-gp-mediated drug efflux by inhibiting P-gp activity and the expression of P-gp mRNA and protein. Our results suggest that imperatorin could down-regulate P-gp expression to overcome multidrug resistance in tumors.
Resveratrol-decreased hyperalgesia mediated by the P2X7 receptor in gp120-treated rats.
Wu, Bing; Ma, Yucheng; Yi, Zhihua; Liu, Shuangmei; Rao, Shenqiang; Zou, Lifang; Wang, Shouyu; Xue, Yun; Jia, Tianyu; Zhao, Shanhong; Shi, Liran; Li, Lin; Yuan, Huilong; Liang, Shangdong
2017-01-01
Background Chronic pain is a common symptom in human immunodeficiency virus (HIV)-1 infection/acquired immunodeficiency syndrome patients. The literature shows that the HIV envelope glycoprotein 120 (gp120) can directly cause hyperalgesia by stimulating primary sensory afferent nerves. The P2X 7 receptor in the dorsal root ganglia (DRG) is closely related to neuropathic and inflammatory pain. In this study, we aimed to explore the effect of resveratrol (RES) on gp120-induced neuropathic pain that is mediated by the P2X 7 receptor in the rat DRG. Results Mechanical hyperalgesia in rats treated with gp120 was increased compared with that in the sham group. The P2X 7 expression levels in rats treated with gp120 were higher than those in the sham group. Co-localization of the P2X 7 receptor and glial fibrillary acidic protein (GFAP, a marker of satellite glial cells [SGCs]) in the DRG SGCs of the gp120 group exhibited more intense staining than that of the sham group. RES decreased the mechanical hyperalgesia and P2X 7 expression levels in gp120 treatment rats. Co-localization of the P2X 7 receptor and GFAP in the gp120+ RES group was significantly decreased compared to the gp120 group. RES decreased the IL-1β and TNF-α receptor (R) expression levels and ERK1/2 phosphorylation levels as well as increased IL-10 expression in the DRG of gp120-treated rats. Whole cell clamping demonstrated that RES significantly inhibited adenosine triphosphate-activated currents in HEK293 cells that were transfected with the P2X 7 plasmid. Conclusions RES relieved mechanical hyperalgesia in gp120-treated rats by inhibiting the P2X 7 receptor.
Chen, Q; Hu, J; Qin, S S; Liu, C L; Wu, H; Wang, J R; Lu, X M; Wang, J; Chen, G Q; Liu, Y; Liu, B Y; Xu, C S; Liang, S D
2016-05-13
This study was aimed at exploring the effects of P2X7 receptors on gp120-induced injury and naringin's protective effects against gp120-induced injury in BV2 microglia. BV2 microglia injury model was established by gp120 treatment and MTS assay was used to verify whether naringin has a cell-protective effect against gp120-induced injury. Changes in P2X7 receptor expression were assayed using RT-PCR, qPCR, and western blot. Results showed that the ODs of the Ctrl, gp120, gp120+naringin, and gp120+BBG groups were 0.91 ± 0.10, 0.71 ± 0.09, 0.83 ± 0.10, and 0.83 ± 0.10, respectively. Compared to the control group, the gp120 group showed a significantly decreased cell survival rate. Cell survival rates of the gp120+naringin group increased significantly compared to those of the gp120 group, while no difference was observed when compared to the gp120+BBG group. The relative P2X7 mRNA expression levels in the Ctrl, gp120, gp120+naringin, and gp120+BBG groups were 0.73 ± 0.06, 1.05 ± 0.06, 0.78 ± 0.05, and 0.81 ± 0.04, respectively. The corresponding P2X7 protein expression levels were 0.46 ± 0.04, 0.79 ± 0.04, 0.38 ± 0.07, and 0.42 ± 0.06. P2X7 mRNA and protein expression in the gp120 group increased significantly compared to those in the control group, and declined in the gp120+naringin group compared to those in the gp120 group. Therefore, P2X7 receptors might be involved in gp120-induced injury in BV2 microglia, and naringin might play a protective role by inhibiting the up-regulated expression of P2X7 receptors.
Tsujimura, Shizuyo; Saito, Kazuyoshi; Nakayamada, Shingo; Tanaka, Yoshiya
2010-04-01
P-glycoprotein (P-gp) on activated lymphocytes is an adenosine triphosphate (ATP)-binding cassette transporter that causes drug resistance by exclusion of intracellular drugs in patients with active rheumatoid arthritis (RA). However, infliximab with methotrexate (MTX) can overcome P-gp-mediated drug resistance. We encounter patients who cannot continue infliximab or MTX. Here we tested how etanercept affected P-gp-mediated drug resistance in such intractable RA patients. Peripheral lymphocytes of 11 RA patients (3 switched from infliximab and 8 who could not be treated with MTX) were analyzed for P-gp expression by flow cytometry and for drug exclusion using radioisotope-labeled dexamethasone. Activated lymphocytes of RA patients overexpressed P-gp and coexpressed CD69. Incubation of these lymphocytes with dexamethasone in vitro reduced intracellular dexamethasone levels. Two-week etanercept therapy significantly reduced P-gp expression and eliminated such P-gp- and CD69-high-expressing subgroup. The reduction in P-gp resulted in recovery of intracellular dexamethasone levels in lymphocytes and improvement of disease activity, thus allowing tapering of corticosteroids. None of the patients experienced any severe adverse effects. Etanercept is useful for overcoming P-gp-mediated treatment resistance in intractable RA patients who have to discontinue infliximab or are intolerant to MTX.
Wu, Jinjun; Lin, Na; Li, Fangyuan; Zhang, Guiyu; He, Shugui; Zhu, Yuanfeng; Ou, Rilan; Li, Na; Liu, Shuqiang; Feng, Lizhi; Liu, Liang; Liu, Zhongqiu; Lu, Linlin
2016-01-01
The Aconitum species, which mainly contain bioactive Aconitum alkaloids, are frequently administered concomitantly with other herbal medicines or chemical drugs in clinics. The potential risk of drug–drug interactions (DDIs) arising from co-administration of Aconitum alkaloids and other drugs against specific targets such as P-glycoprotein (P-gp) must be evaluated. This study focused on the effects of three representative Aconitum alkaloids: aconitine (AC), benzoylaconine (BAC), and aconine, on the expression and activity of P-gp. We observed that Aconitum alkaloids increased P-gp expression in LS174T and Caco-2 cells in the order AC > BAC > aconine. Nuclear receptors were involved in the induction of P-gp. AC and BAC increased the P-gp transport activity. Strikingly, intracellular ATP levels and mitochondrial mass also increased. Furthermore, exposure to AC decreased the toxicity of vincristine and doxorubicin towards the cells. In vivo, AC significantly up-regulated the P-gp protein levels in the jejunum, ileum, and colon of FVB mice, and protected them against acute AC toxicity. Taken together, the findings of our in vitro and in vivo experiments indicate that AC can induce P-gp expression, and that co-administration of AC with P-gp substrate drugs may cause DDIs. Our findings have important implications for Aconitum therapy in clinics. PMID:27139035
Valton, Emeline; Wawrzyniak, Ivan; Amblard, Christian; Combourieu, Bruno; Bayle, Marie-Laure; Desmolles, François; Kwiatkowski, Fabrice; Penault-Llorca, Frédérique; Bamdad, Mahchid
2017-09-01
P-glycoprotein (P-gp) is a ubiquitous membrane detoxification pump involved in cellular defence against xenobiotics. Blood is a hub for the trade and transport of physiological molecules and xenobiotics. Our recent studies have highlighted the expression of a 140-kDa P-gp in brown trout erythrocytes in primary cell culture and its dose-dependent response to Benzo[a]pyrene pollutant. The purpose of this study was focused on using P-gp expression in brown trout erythrocytes as a biomarker for detecting the degree of river pollution. abcb1 gene and P-gp expression level were analysed by reverse transcriptase-PCR and Western blot, in the erythrocytes of brown trouts. The latter were collected in upstream and downstream of four rivers in which 17 polycyclic aromatic hydrocarbons and 348 varieties of pesticides micro-residues were analysed by liquid chromatography and mass spectrometry. The abcb1 gene and the 140-kDa P-gp were not expressed in trout erythrocytes from uncontaminated river. In contrast, they are clearly expressed in contaminated rivers, in correlation with the river pollution degree and the nature of the pollutants. This biological tool may offer considerable advantages since it provides an effective response to the increasing need for an early biomarker.
Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Kawabe, Akio; Tanaka, Yoshiya
2018-03-01
In rheumatoid arthritis (RA), P-glycoprotein (P-gp) expression on activated B cells is associated with active efflux of intracellular drugs, resulting in drug resistance. CXCR4 is associated with migration of B cells. This study was designed to elucidate the relevance of P-gp expression on CXCR4 + B cells to clinical manifestations in refractory RA. CD19 + B cells were analyzed using flow cytometry and immunohistochemistry. P-gp was highly expressed especially on CXCR4 + CD19 + B cells in RA. The proportion of P-gp-expressing CXCR4 + B cells correlated with disease activity, estimated by Simplified Disease Activity Index (SDAI), and showed marked expansion in RA patients with high SDAI and extra-articular involvement. In highly active RA, massive infiltration of P-gp + CXCR4 + CD19 + B cells was noted in CXCL12-expressing inflammatory lesions of RA synovitis and RA-associated interstitial pneumonitis. In RA patient with active extra-articular involvement, intracellular dexamethasone level (IDL) in lymphocytes diminished with expansion of P-gp + CXCR4 + CD19 + B cells. Adalimumab reduced P-gp + CXCR4 + CD19 + B cells, increased IDL in lymphocytes, and improved the clinical manifestation and allowed tapering of concomitant medications. Expansion of P-gp + CXCR4 + B cells seems to be associated with drug resistance, disease activity and progressive destructive arthritis with extra-articular involvement in RA.
Tempestilli, Massimo; Gentilotti, Elisa; Tommasi, Chiara; Nicastri, Emanuele; Martini, Federico; De Nardo, Pasquale; Narciso, Pasquale; Pucillo, Leopoldo P
2013-08-01
It has been shown that P-glycoprotein (P-gp) can greatly affect the cell uptake of antiretroviral drugs, thus hampering their access to HIV-1 replication sites. Lymphocytes are important sites of replication of HIV and target of other drugs, modification on these cells of P-gp could have an effect on pharmacokinetic of antiretrovirals and drug substrates. Blood samples from 16 healthy volunteers were used to determine the expression of P-gp on total, T and T helper lymphocytes after exposure to darunavir, a second generation protease inhibitor, and raltegravir, the first approved integrase inhibitor. Moreover, the effect of the drugs on P-gp functional activity was also studied by the rhodamine-123 efflux test. Darunavir, but not raltegravir, exposure caused a moderate, dose-dependent increment in P-gp expression in total, T and T helper lymphocytes, as demonstrated by the relative frequency of P-gp+ cells and by the amount of P-gp molecules present on cell surface. Functionally, incubation with darunavir led to a marked inhibition of P-gp activity measured by the efflux of rhodamine-123 similar to that observed by verapamil, a specific P-gp inhibitor. Raltegravir was not able to modify the efflux of rhodamine-123 level. Data show that darunavir, unlike raltegravir, may modify the expression and functionality of P-gp on human lymphocytes, thus leading to potential changes in intracellular concentrations of darunavir in patients treated with other drugs substrate of P-gp and vice versa. Our study highlights the need for studies on drug interactions via the P-gp modulation mechanism, especially with the current multi-drug regimens. Copyright © 2013 Elsevier B.V. All rights reserved.
Goyal, Sonia; Raheja, Geetu; Singh, Varsha; Akhtar, Maria; Nazir, Talat M.; Alrefai, Waddah A.; Gill, Ravinder K.; Dudeja, Pradeep K.
2011-01-01
P-glycoprotein (P-gp) mediates efflux of xenobiotics and bacterial toxins from the intestinal mucosa into the lumen. Dysregulation of P-gp has been implicated in inflammatory bowel disease. Certain probiotics have been shown to be effective in treating inflammatory bowel disease. However, direct effects of probiotics on P-gp are not known. Current studies examined the effects of Lactobacilli on P-gp function and expression in intestinal epithelial cells. Caco-2 monolayers and a mouse model of dextran sulfate sodium-induced colitis were utilized. P-gp activity was measured as verapamil-sensitive [3H]digoxin transepithelial flux. Multidrug resistant 1 (MDR1)/P-gp expression was measured by real-time quantitative PCR and immunoblotting. Culture supernatant (CS; 1:10 or 1:50, 24 h) of Lactobacillus acidophilus or Lactobacillus rhamnosus treatment of differentiated Caco-2 monolayers (21 days postplating) increased (∼3-fold) MDR1/P-gp mRNA and protein levels. L. acidophilus or L. rhamnosus CS stimulated P-gp activity (∼2-fold, P < 0.05) via phosphoinositide 3-kinase and ERK1/2 MAPK pathways. In mice, L. acidophilus or L. rhamnosus treatment (3 × 109 colony-forming units) increased mdr1a/P-gp mRNA and protein expression in the ileum and colon (2- to 3-fold). In the dextran sulfate sodium (DSS)-induced colitis model (3% DSS in drinking water for 7 days), the degree of colitis as judged by histological damage and myeloperoxidase activity was reduced by L. acidophilus. L. acidophilus treatment to DSS-treated mice blocked the reduced expression of mdr1a/P-gp mRNA and protein in the distal colon. These findings suggest that Lactobacilli or their soluble factors stimulate P-gp expression and function under normal and inflammatory conditions. These data provide insights into a novel mechanism involving P-gp upregulation in beneficial effects of probiotics in intestinal inflammatory disorders. PMID:21350189
Sun, Yong; Zhang, Yu; Dong, Lingling; Dai, Xiaohua; Wang, Liping
2013-01-01
Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp) expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that broilers aged 4 week-old expressed significantly (P<0.01) higher levels of P-gp mRNA in the liver, jejunum and ileum, than at other ages. However, there was no significant (P>0.05) age-related difference in the duodenum. Furthermore, the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum, respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 μg•ml-1, P=0.009), AUC(14.54 vs. 9.35 μg•ml-1•h, P=0.005) and Ka (1.38 vs. 0.43 h-1, P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2ka (0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator, significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary for different ages of broilers for effective therapy. PMID:24066110
Guo, Mengjie; Bughio, Shamsuddin; Sun, Yong; Zhang, Yu; Dong, Lingling; Dai, Xiaohua; Wang, Liping
2013-01-01
Bioavailability is the most important factor for the efficacy of any drug and it is determined by P- glycoprotein (P-gp) expression. Confirmation of P-gp expression during ontogeny is needed for understanding the differences in therapeutic efficacy of any drug in juvenile and adult animals. In this study, Abcb1 mRNA levels in the liver and intestine of broilers during ontogeny were analysed by RT qPCR. Cellular distribution of P-gp was detected by immunohistochemstry. Age-related differences of enrofloxacin pharmacokinetics were also studied. It was found that broilers aged 4 week-old expressed significantly (P<0.01) higher levels of P-gp mRNA in the liver, jejunum and ileum, than at other ages. However, there was no significant (P>0.05) age-related difference in the duodenum. Furthermore, the highest and lowest levels of Abcb1 mRNA expression were observed in the jejunum, and duodenum, respectively. P-gp immunoreactivity was detected on the apical surface of the enterocytes and in the bile canalicular membranes of the hepatocytes. Pharmacokinetic analysis revealed that the 8 week-old broilers, when orally administrated enrofloxacin, exhibited significantly higher Cmax (1.97 vs. 0.98 μg • ml(-1), P=0.009), AUC(14.54 vs. 9.35 μg • ml(-1) • h, P=0.005) and Ka (1.38 vs. 0.43 h(-1), P=0.032), as well as lower Tpeak (1.78 vs. 3.28 h, P=0.048) and T1/2 ka (0.6 vs. 1.64 h, P=0.012) than the 4 week-old broilers. The bioavailability of enrofloxacin in 8 week-old broilers was increased by 15.9%, compared with that in 4 week-old birds. Interestingly, combining verapamil, a P-gp modulator, significantly improved pharmacokinetic behaviour of enrofloxacin in all birds. The results indicate juvenile broilers had a higher expression of P-gp in the intestine, affecting the pharmacokinetics and reducing the bioavailability of oral enrofloxacin in broilers. On the basis of our results, it is recommended that alternative dose regimes are necessary for different ages of broilers for effective therapy.
Guo, Mengjie; Sun, Yong; Zhang, Yu; Bughio, Shamsuddin; Dai, Xiaohua; Ren, Weilong; Wang, Liping
2014-01-01
P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P<0.05), but not significantly in the liver and duodenum (P>0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (P<0.05) compared with healthy birds. Furthermore, the infection reduced absorption of orally administered enrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL(-1), P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL(-1) h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h(-1), P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.
Sadeghi, Mohammad Reza; Jeddi, Farhad; Soozangar, Narges; Somi, Mohammad Hossein; Shirmohamadi, Masoud; Khaze, Vahid; Samadi, Nasser
2018-08-01
Colorectal cancer (CRC) is the fourth leading cause of cancer-related death worldwide. Activation of ABCB1 gene and its main product, P-glycoprotein, is the common reason for chemoresistance. The nuclear factor-erythroid 2-related factor2 (Nrf2) is directly regulated by Kelch like ECH-associated protein1 (Keap1). In addition, Nrf2 is a key transcriptional factor that regulates efflux transporters, including P-gp. The aim of this study was to investigate the expression levels of Nrf2, Keap1 and ABCB1 in the biopsy samples and their association with clinicopathological features in CRC patients. Both mRNA and protein expression levels were measured by Real-time PCR and immunohistochemistry (IHC), respectively, in biopsies from colonoscopy in 65 CRC patients compared to those in 65 non-CRC individuals. While expression levels of Nrf2 and ABCB1 (P-gp) were markedly higher in both mRNA and protein levels in CRC biopsies (p < 0.01), Keap1 expression level was significantly lower in these samples (p < 0.05). Positive correlations between Nrf2 expression level and tumor size (p = 0.003), lymph node (p = 0.038), distant metastasis (p = 0.008), and smoking status (p = 0.02) were observed. However, P-gp expression was associated only with patient age and smoking status. In addition, there was a positive correlation between protein levels of Nrf2 and P-gp, in both CRC (r = 0.617, p < 0.001) and non-CRC tissues (r = 0.930, p < 0.001). In conclusion, over-expression of Nrf2 and ABCB1/P-gp, as well as down-regulation of mRNA expression level of Keap1 in CRC patients denotes the role of Keap1/Nrf2/ABCB1 axis in CRC progression and chemoresistance. Our data suggest that therapeutic inhibition of Nrf2/ABCB1 signaling can be considered as a novel strategy to improve the efficacy of chemotherapeutics against CRC. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Tsujimura, Shizuyo; Tanaka, Yoshiya
2012-02-01
Although corticosteroids, immunosuppressants and disease-modifying antirheumatic drugs (DMARDs) are widely used in the treatment of various systemic autoimmune diseases such as systemic lupus erythematosus (SLE), we often experience patients with systemic autoimmune diseases who are resistant to these treatments. P-glycoprotein (P-gp) of membrane transporters, a product of the multiple drug resistance (MDR)-1 gene, is known to play a pivotal role in the acquisition of drug resistance to chemotherapy in malignancy. However, the relevance of MDR-1 and P-gp to resting and activated lymphocytes, which are the major target in the treatment of systemic autoimmune diseases, remains unclear. Studies from our laboratories found surface expression of P-gp on peripheral lymphocytes in patients with SLE and a significant correlation between the expression level and disease activity. Such expression is induced not only by genotoxic stresses but also by various stimuli including cytokines, resulting in active efflux of drugs from the cytoplasm of lymphocytes, resulting in drug-resistance and high disease activity. However, the use of both P-gp antagonists (e.g., cyclosporine) and inhibition of P-gp synthesis with intensive immunosuppressive therapy successfully reduces the efflux of corticosteroids from lymphocytes in vitro, suggesting that P-gp antagonists and P-gp synthesis inhibitors could be used to overcome drug-resistance in vivo and improve outcome. In conclusion, lymphocytes activated by various stimuli in patients with highly active disease apparently acquire MDR-1-mediated multidrug resistance against corticosteroids and probably some DMARDs, which are substrates of P-gp. Inhibition/reduction of P-gp could overcome such drug resistance. The expression of P-gp on lymphocytes is a promising marker of drug resistance and a suitable target to combat drug resistance in patients with active systemic autoimmune diseases.
Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation.
Yang, Chih-Jen; Chang, Wen-Wei; Lin, Song-Tao; Chen, Man-Chin; Lee, Che-Hsin
2018-01-01
Chemotherapy is one of effective methods for the treatment of tumor. Patients often develop drug resistance after chemotherapic cycles. Salmonella has potential as antitumor agent. Salmonella used in tandem with chemotherapy had additive effects, providing a rationale for using tumor-targeting Salmonella in combination with conventional chemotherapy. To improve the efficacy and safety of Salmonella , a further understanding of Salmonella interactions with the tumor microenvironment is required. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is highly relevant for the success of chemotherapy. Following Salmonella infection, dose-dependent downregulation of P-gp expressions were examined. Salmonella significantly decreased the efflux capabilities of P-gp, as based on the influx of Rhodamine 123 assay. In addition, Salmonella significant reduced the protein express the expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells. The Salmonella -induced downregulation of P-gp was rescued by transfection of cells with active P-AKT. Our results demonstrate that Salmonella in tumor sites leads to decrease the expression of P-gp and enhances the combination of Salmonell a and 5-Fluorouracil therapeutic effects.
Zhu, Hong; Gao, Jun; Wang, Lei; Qian, Ke-Jian; Cai, Li-Ping
2018-03-01
The aim of the present study was to investigate the mechanism of action by which naringin reverses the resistance of ovarian cancer cells to cisplatin. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and western blotting assays were used to detect the effects of different concentrations of naringin on the expressions of nuclear factor (NF)-κB and P-glycoprotein (P-gp) in the SKOV3/CDDP cell line. Small interfering RNA (siRNA) targeting NF-κB was designed and synthesized to silence NF-κB, and recombinant plasmid vectors overexpressing NF-κB were constructed to transfect cells. RT-qPCR and western blotting assays were subsequently performed to detect the effects of NF-κB on the expression of P-gp at the mRNA and protein levels. Naringin was added to the NF-κB-overexpressing SKOV3/CDDP cells and cultured for 48 h, followed by the detection of the expression of P-gp. RT-PCR and western blotting results demonstrated that the gene and protein expressions of NF-κB and P-gp were significantly decreased in a dose-dependent manner by naringin treatment (P<0.05). In cells overexpressing NF-κB, P-gp expression was significantly elevated (P<0.05), and the expression of P-gp was significantly decreased when NF-κB was silenced (P<0.05). Treatment with naringin was able to significantly ameliorate the NF-κB-induced overexpression of P-gp (P<0.05). These results indicate that naringin is able to inhibit the expression of NF-κB and P-gp in SKOV3/CDDP cells. Such an inhibitory effect may increase gradually with concentration, and is associated with blockade of the NF-κB signaling pathway. This pathway may represent one of the mechanisms of action by which Naringin reverses resistance to platinum-based agents in ovarian cancer cells.
P-gp Protein Expression and Transport Activity in Rodent Seizure Models and Human Epilepsy.
Hartz, Anika M S; Pekcec, Anton; Soldner, Emma L B; Zhong, Yu; Schlichtiger, Juli; Bauer, Bjoern
2017-04-03
A cure for epilepsy is currently not available, and seizure genesis, seizure recurrence, and resistance to antiseizure drugs remain serious clinical problems. Studies show that the blood-brain barrier is altered in animal models of epilepsy and in epileptic patients. In this regard, seizures increase expression of blood-brain barrier efflux transporters such as P-glycoprotein (P-gp), which is thought to reduce brain uptake of antiseizure drugs, and thus, contribute to antiseizure drug resistance. The goal of the current study was to assess the viability of combining in vivo and ex vivo preparations of isolated brain capillaries from animal models of seizures and epilepsy as well as from patients with epilepsy to study P-gp at the blood-brain barrier. Exposing isolated rat brain capillaries to glutamate ex vivo upregulated P-gp expression to levels that were similar to those in capillaries isolated from rats that had status epilepticus or chronic epilepsy. Moreover, the fold-increase in P-gp protein expression seen in animal models is consistent with the fold-increase in P-gp observed in human brain capillaries isolated from patients with epilepsy compared to age-matched control individuals. Overall, the in vivo/ex vivo approach presented here allows detailed analysis of the mechanisms underlying seizure-induced changes of P-gp expression and transport activity at the blood-brain barrier. This approach can be extended to other blood-brain barrier proteins that might contribute to drug-resistant epilepsy or other CNS disorders as well.
The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma.
Hirose, Masao
2009-04-01
There is a controversy over the link between phenotypes of multidrug resistance (MDR) and clinical outcome in leukemia/lymphoma patients. This may be because the process behind the induction and loss of expression of genotypes and phenotypes by which MDR develops and the role of MDR in fresh cells of human leukemia/lymphoma are not clearly defined. P-glycoprotein (P-gp) increased and decreased along with mdr-1 expression in three cell lines out of five vincristine (VCR)-resistant cell lines. MRP appeared with increased mrp expression in the other two cell lines. After the drug was removed from the culture system, mdr-1/P-gp changed in parallel with the level of VCR resistance, although mrp and MRP did not. It was concluded that P-gp is directly derived from mdr-1 and that mdr-1/P-gp supports the VCR-resistance but mrp/MRP is not directly linked to the VCR-resistance. These results should contribute to a better understanding of MDR phenomenon in cancer.
Wang, Jiarui; Zhang, Jinhui; Zhang, Lichuan; Zhao, Long; Fan, Sufang; Yang, Zhonghai; Gao, Fei; Kong, Ying; Xiao, Gary Guishan; Wang, Qi
2011-11-01
This study aimed to determine the relationship between the endogenous levels of P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP), lung resistance-related protein (LRP), glutathione-s-transferase-π (GST‑π) and topoisomerase IIα (TopoIIα) and intrinsic drug resistance in four human lung cancer cell lines, SK-MES-1, SPCA-1, NCI-H-460 and NCI-H-446, of different histological types. The expression of P-gp, MRP, LRP, GST-π and TopoIIα was measured by immunofluorescence, Western blotting and RT-PCR. Drug resistance to cisplatin, doxorubicin and VP-16 was determined using MTT assays. The correlation between expression of the resistance-related proteins and their roles in the resistance to drugs in these cancer cell lines was analyzed. We found that the endogenous levels of P-gp, MRP, LRP, GST-π and TopoIIα in the four cell lines varied. The level of GST-π in the SK-MES-1 cells was the highest, whereas the level of P-gp in the SPCA-1 cells was the lowest. The chemoresistance to cisplatin, doxorubicin and VP-16 in the four cell lines was different. The SPCA-1 cell line was most resistance to cisplatin; SK-MES-1 was most resistance to VP-16; whereas SK-MES-1 was most sensitive to doxorubicin. There was a positive correlation between GST-π expression and resistance to cisplatin, between TopoIIα expression and resistance to VP-16; and a negative correlation was noted between TopoIIα expression and resistance to doxorubicin. In summary, the endogenous expression of P-gp, MRP, LRP, GST-π and TopoIIα was different in the four human lung cancer cell lines of different histological types, and this variance may be associated with the variation in chemosensitivity to cisplatin, doxorubicin and VP-16. Among the related proteins, GST-π may be useful for the prediction of the intrinsic resistance to cisplatin, whereas TopoIIα may be useful to predict resistance to doxorubicin and VP-16 in human lung cancer cell lines.
In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han Yi; Chin Tan, Theresa May; Lim, Lee-Yong
2008-08-01
Piperine, a major component of black pepper, is used as spice and nutrient enhancer. The purpose of the present study was to evaluate the effects of acute and prolonged piperine exposure on cellular P-gp expression and function in vitro and in vivo. Piperine at concentrations ranging from 10 to 100 {mu}M, determined by MTT assay to be non-cytotoxic, was observed to inhibit P-gp mediated efflux transport of [{sup 3}H]-digoxin across L-MDR1 and Caco-2 cell monolayers. The acute inhibitory effect was dependent on piperine concentration, with abolishment of [{sup 3}H]-digoxin polarized transport attained at 50 {mu}M of piperine. In contrast, prolongedmore » (48 and 72 h) co-incubation of Caco-2 cell monolayers with piperine (50 and 100 {mu}M) increased P-gp activity through an up-regulation of cellular P-gp protein and MDR1 mRNA levels. The up-regulated protein was functionally active, as demonstrated by a higher degree of [{sup 3}H]-digoxin efflux across the cell monolayers, but the induction was readily reversed by the removal of the spice from the culture medium. Peroral administration of piperine at the dose of 112 {mu}g/kg body weight/day to male Wistar rats for 14 consecutive days also led to increased intestinal P-gp levels. However, there was a concomitant reduction in the rodent liver P-gp although the kidney P-gp level was unaffected. Our data suggest that caution should be exercised when piperine is to be co-administered with drugs that are P-gp substrates, particularly for patients whose diet relies heavily on pepper.« less
Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui
2016-01-01
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants. PMID:27129170
Yuan, Wei-Qi; Zhang, Rong-Rong; Wang, Jun; Ma, Yan; Li, Wen-Xue; Jiang, Ren-Wang; Cai, Shao-Hui
2016-05-24
Multidrug resistance (MDR) mediated by P-glycoprotein (P-gp) is a major cause of cancer therapy failure. In this study, we identified a novel C21 steroidal glycoside, asclepiasterol, capable of reversing P-gp-mediated MDR. Asclepiasterol (2.5 and 5.0μM) enhanced the cytotoxity of P-gp substrate anticancer drugs in MCF-7/ADR and HepG-2/ADM cells. MDR cells were more responsive to paclitaxel in the presence of asclepiasterol, and colony formation of MDR cells was only reduced upon treatment with a combination of asclepiasterol and doxorubicin. Consistent with these findings, asclepiasterol treatment increased the intracellular accumulation of doxorubicin and rhodamine 123 (Rh123) in MDR cells. Asclepiasterol decreased expression of P-gp protein without stimulating or suppressing MDR1 mRNA levels. Asclepiasterol-mediated P-gp suppression caused inhibition of ERK1/2 phosphorylation in two MDR cell types, and EGF, an activator of the MAPK/ERK pathway, reversed the P-gp down-regulation, implicating the MAPK/ERK pathway in asclepiasterol-mediated P-gp down-regulation. These results suggest that asclepiasterol could be developed as a modulator for reversing P-gp-mediated MDR in P-gp-overexpressing cancer variants.
Tong, Xinxin; Chen, Shengjie; Zheng, Huanqin; Huang, Shiguang; Lu, Fangli
2018-05-19
Interleukin 27 (IL-27) is a member of the IL-6/IL-12 family, and IL-27 receptor (IL-27R) consists of WSX-1 (the IL-27Rα subunit) and the signal-transducing subunit gp130. Human and mouse mast cells (MCs) express the IL-27R. To explore the expressions of IL-27/IL-27R subunits (WSX-1 and gp130) during acute ocular toxoplasmosis (OT), we established mouse model by intraocular injection of 500 Toxoplasma gondii RH strain tachyzoites. Histopathological changes were analyzed, MCs were counted by toluidine blue staining, and tryptase + /IL-27 + MCs were examined by immunofluorescence double-staining in the eyes and cervical lymph nodes (CLNs) of T. gondii-infected mice. The mRNA expressions of IL-27p28, WSX-1, gp130, and tachyzoite specific surface antigen 1 (SAG1) in the eyes and CLNs of T. gondii-infected mice, and the expressions of WSX-1 and gp130 in the murine mastocytoma cell line P815 infected with T. gondii tachyzoites in vitro were examined by using quantitative real-time reverse transcription-polymerase chain reaction. Our results showed that, after T. gondii infection, severe histopathological changes, increased numbers of total MCs and degranulated MCs, elevated expressions of IL-27p28, WSX-1, and gp130 were found in the eyes and CLNs, and significant correlations between the levels of IL-27 and SAG1 existed in the eyes and CLNs of T. gondii-infected mice. In addition, increased levels of WSX-1 and gp130 were examined in T. gondii-infected P815 cells. Our data suggested that IL-27/IL-27R expression induced by T. gondii infection may regulate MC-mediated immune response during acute OT in mouse model.
Dahan, Arik; Amidon, Gordon L
2009-01-01
The purpose of this study was to investigate the role of P-gp efflux in the in vivo intestinal absorption process of BCS class III P-gp substrates, i.e. high-solubility low-permeability drugs. The in vivo permeability of two H (2)-antagonists, cimetidine and famotidine, was determined by the single-pass intestinal perfusion model in different regions of the rat small intestine, in the presence or absence of the P-gp inhibitor verapamil. The apical to basolateral (AP-BL) and the BL-AP transport of the compounds in the presence or absence of various efflux transporters inhibitors (verapamil, erythromycin, quinidine, MK-571 and fumitremorgin C) was investigated across Caco-2 cell monolayers. P-gp expression levels in the different intestinal segments were confirmed by immunoblotting. Cimetidine and famotidine exhibited segmental dependent permeability through the gut wall, with decreased P(eff) in the distal ileum in comparison to the proximal regions of the intestine. Coperfusion of verapamil with the drugs significantly increased the permeability in the ileum, while no significant change in the jejunal permeability was observed. Both drugs exhibited significantly greater BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. Concentration dependent decrease of this secretion was obtained by the P-gp inhibitors verapamil, erythromycin and quinidine, while no effect was evident by the MRP2 inhibitor MK-571 and the BCRP inhibitor FTC, indicating that P-gp is the transporter mediates the intestinal efflux of cimetidine and famotidine. P-gp levels throughout the intestine were inversely related to the in vivo permeability of the drugs from the different segments. The data demonstrate that for these high-solubility low-permeability P-gp substrates, P-gp limits in vivo intestinal absorption in the distal segments of the small intestine; however P-gp plays a minimal role in the proximal intestinal segments due to significant lower P-gp expression levels in this region.
Mohamed, Loqman A.; Keller, Jeffrey N.; Kaddoumi, Amal
2016-01-01
Recently, we showed that rivastigmine decreased amyloid-β (Aβ) brain load in aged rats by enhancing its clearance across the blood-brain barrier (BBB) via upregulation of P-glycoprotein (P-gp) and low-density lipoprotein receptor-related protein 1 (LRP1). Here, we extend our previous work to clarify P-gp role in mediating rivastigmine effect on Aβ brain levels and neuroprotection in a mouse model of Alzheimer’s disease (AD) that expresses different levels of P-gp. APPSWE mice were bred with mdr1a/b knockout mice to produce littermates that were divided into three groups; APP+/mdr1+/+, APP+/mdr1+/− and APP+/mdr1−/−. Animals received rivastigmine treatment (0.3 mg/kg/day) or vehicle for 8 weeks using Alzet osmotic mini-pumps. ELISA analysis of brain homogenates for Aβ showed rivastigmine treatment to significantly decrease Aβ brain load in APP+/mdr1+/+ by 25% and in APP+/mdr1+/− mice by 21% compared to their vehicle treated littermates, but not in APP+/mdr1−/− mice. In addition, rivastigmine reduced GFAP immunostaining of astrocytes by 50% and IL-1β brain level by 43% in APP+/mdr1+/+ mice, however its effect was less pronounced in P-gp knockout mice. Moreover, rivastigmine demonstrated a P-gp expression dependent neuroprotective effect that was highest in APP+/mdr1+/+>APP+/mdr1+/−>APP+/mdr1−/− as determined by expression of synaptic markers PSD-95 and SNAP-25 using Western blot analysis. Collectively, our results suggest that P-gp plays important role in mediating rivastigmine non-cholinergic beneficial effects, including Aβ brain load reduction, neuroprotective and anti-inflammatory effects in the AD mouse models. PMID:26780497
Wang, Tian-Xiao; Yang, Xiao-Hong
2008-05-01
This study investigated the reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis mahoniae, on P-glycoprotein-mediated multidrug resistance in human breast cancer doxorubicin-resistant (MCF-7/DOX) cells. RT-PCR assay and immunity histochemistry assay were used to determine the expression level of mdrl gene and P-gp in MCF-7/DOX cells to elucidate resistant character of MCF-7/DOX cells. The activity of isotetrandine to enhance doxorubicin cytotoxicity was tested using MTT (3-(4, 5-dimethyhthiazol)-2,5 -diphenyltetrazolium bromide) assay and was evaluated by the reversal fold (RF) values. Intracellular accumulation of doxorubicin was assessed by the determination of doxorubicin-associated fluorescence intensity. Effect of isotetrandrine on the expression level of P-gp in MCF-7/DOX cells was then determined by immunity histochemistry assay. The ability of isotetrandrine to inhibit P-gp function was evaluated by detecting the accumulation and efflux of rhodamine 123 (Rh123) with flow cytometry (FCM). Verapamil was employed as a comparative agent in whole experiment. The results indicated that MCF-7/DOX cells had phenotype of MDR and that the positive expression of P-gp was their resistant character. 10 microg x mL(-1) isotetrandrine could distinctly enhance cytotoxicity of DOX in MCF-7/DOX cells and reversal fold (RF) was significantly higher than that of verapamil (P < 0.05), but it hardly affected cytotoxicity of DOX in MCF-7 cells and the expression level of P-gp in MCF-7/DOX cells. The ability of isotetrandrine to inhibit P-gp function was reversible, because incubation of MCF-7/DOX cells with isotetrandrine caused a marked increase in uptake and a notable decrease in efflux of Rh123 and a marked increase of intracellular DOX concentrations. In conclusion, isotetrandrine exhibited potent effect on the reversal of P-gp-mediated MDR in vitro, suggesting that it might become a candidate of effective MDR reversing agent in cancer chemotherapy.
Chi, Xiaosa; Huang, Cheng; Li, Rui; Wang, Wei; Wu, Mengqian; Li, Jinmei; Zhou, Dong
2017-04-01
The mammalian target of rapamycin (mTOR) has been demonstrated to mediate multidrug resistance in various tumors by inducing P-glycoprotein (P-gp) overexpression. Here, we investigated the correlation between the mTOR pathway and P-gp expression in pharmacoresistant epilepsy. Temporal cortex specimens were obtained from patients with refractory mesial temporal lobe epilepsy (mTLE) and age-matched controls who underwent surgeries at West China Hospital of Sichuan University between June 2014 and May 2015. We established a rat model of epilepsy kindled by coriaria lactone (CL) and screened pharmacoresistant rats (non-responders) using phenytoin. Non-responders were treated for 4 weeks with vehicle only or with the mTOR pathway inhibitor rapamycin at doses of 1, 3, and 6 mg/kg. Western blotting and immunohistochemistry were used to detect the expression of phospho-S6 (P-S6) and P-gp at different time points (1 h, 8 h, 1 day, 3 days, 1 weeks, 2 weeks, and 4 weeks) after the onset of treatment. Overexpression of P-S6 and P-gp was detected in both refractory mTLE patients and non-responder rats. Rapamycin showed an inhibitory effect on P-S6 and P-gp expression 1 week after treatment in rats. In addition, the expression levels of P-S6 and P-gp in the 6 mg/kg group were significantly lower than those in the 1 mg/kg or the 3 mg/kg group at the same time points (all P < 0.05). Moreover, rapamycin decreased the duration and number of CL-induced seizures, as well as the stage of non-responders (all P < 0.05). The current study indicates that the mTOR signaling pathway plays a critical role in P-gp expression in drug-resistant epilepsy. Inhibition of the mTOR pathway by rapamycin may be a potential therapeutic approach for pharmacoresistant epilepsy.
Guo, Mengjie; Sun, Yong; Zhang, Yu; Bughio, Shamsuddin; Dai, Xiaohua; Ren, Weilong; Wang, Liping
2014-01-01
P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P<0.05), but not significantly in the liver and duodenum (P>0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (P<0.05) compared with healthy birds. Furthermore, the infection reduced absorption of orally administered enrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL−1, P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL−1 h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h−1, P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers. PMID:24498193
Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin
2017-05-15
The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect against mucosal as well as systemic inoculation are needed. We evaluated a version of human parainfluenza virus type 1 (HPIV1) bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ) as an intranasal vaccine vector to express the EBOV glycoprotein GP. We evaluated expression from two different genome positions (pre-N and N-P) and investigated the use of vector packaging signals. African green monkeys immunized with two doses of the vector expressing GP from the pre-N position developed high titers of GP neutralizing serum antibodies. The attenuated vaccine candidate is expected to be safe and immunogenic and is available for clinical development. Copyright © 2017 American Society for Microbiology.
Qiu, Zhaohui; Peng, Jie; Mou, Lingli; Li, Xiao; Meng, Fanqi; Yu, Peng
2018-05-01
Multidrug resistance (MDR) of tumors occurs when tumor cells exhibit reduced sensitivity to a large number of unrelated drugs. The molecular mechanism of MDR commonly involves overexpression of the plasma membrane drug efflux pump P-glycoprotein (P-gp). Overexpression of P-gp may be induced by the selection and/or adaptation of cells during exposure to chemotherapeutic drugs, referred to as acquired P-gp-mediated MDR. This study aimed to establish a P-gp quantification method by Ultra Performance Liquid Chromatography and Tandem Mass Spectrometry (UPLC-MS/MS) to better understand the regulation of P-gp expression and its relationship with the level of drug resistance. Absolute P-gp expression was determined in the human tumor cells MCF-7, HepG-2, and SMMC-7721 and their corresponding drug-resistant subclones MCF-7/ADMs, MCF-7/MXs, MCF-7/MTXs, HepG-2/ADMs, HepG-2/MXs, HepG-2/MTXs, SMMC-7721/ADMs, SMMC-7721/MXs and SMMC-7721/MTXs. A unique 10-mer tryptic peptide (IATEAIENFR) of P-gp was synthesized for developing the quantitative UPLC-MS/MS method with the stable isotope labeled signature peptide IATEAI ( 13 C 6, 15 N 1 ) ENFR as the internal standard (IS). The detection signal was linear in the range of 0.1-100 ng mL -1 . Quality control (QC) data showed that the within-run and between-run precision (%RSD) and accuracy (%RE) conformed to acceptable criteria of ±15% for the calibration standards and QCs (±20% at the LLOQ). The UPLC-MS/MS method was first applied to quantify P-gp in HepG-2 and SMMC-7721 cells and their drug-resistant subclones. The results confirmed that P-gp expression in most drug-resistant subclones increase significantly compared to parental tumor cells but varied among different types of drugs or tumor cells. This outcome was then compared with published reports and discrepancy was observed in HepG2 cell lines mainly due to different sample types and samples sources. Additionally, P-gp mRNA results ascertained that overexpression of P-gp in subclones was not only regulated by MDR1. The linear correlation between RI and logarithm-transformed P-gp expression was moderate or high and statistically significantly different in subclones, except for SMMC-7721/ADMs. The present study is the first to demonstrate the quantitative relationship between RI and P-gp expression by linear regression modeling and expanded the number of efflux transporters related to MDR quantifiable by LC-MS/MS to better understand the biological significance of effluent transporter expression. Copyright © 2018 Elsevier B.V. All rights reserved.
Jiang, Yunbo; Xiao, Shaobo; Fang, Liurong; Yu, Xiaolan; Song, Yunfeng; Niu, Chuanshuang; Chen, Huanchun
2006-04-05
The two major membrane-associated proteins of porcine reproductive and respiratory syndrome virus (PRRSV), GP5 and M (encoded by ORF5 and ORF6 genes, respectively), are associated as disulfide-linked heterodimers (GP5/M) in the virus particle. In the present study, three different DNA vaccine constructs, expressing GP5 alone (pCI-ORF5), M alone (pCI-ORF6) or GP5 and M proteins simultaneously (pCI-ORF5/ORF6), were constructed. In vitro, the co-expressed GP5 and M proteins could form heterodimeric complexes in transfected cells and heterodimerization altered the subcellular localization of GP5. The immunogenicities of these DNA vaccine constructs were firstly investigated in a mouse model. Mice inoculated with pCI-ORF5/ORF6 developed PRRSV-specific neutralizing antibodies at 6 and 8 weeks after primary immunization. However, only some mice developed low levels of neutralizing antibodies in groups immunized with pCI-ORF5 or pCI-ORF6. The highest lymphocyte proliferation responses were also observed in mice immunized with pCI-ORF5/ORF6. Interestingly, significantly enhanced GP5-specific ELISA antibody could be detected in mice immunized with pCI-ORF5/ORF6 compared to mice immunized with pCI-ORF5. The immunogenicities of pCI-ORF5/ORF6 were further evaluated in piglets (the natural host) and all immunized piglets developed neutralizing antibodies at 10 weeks after primary immunization, whereas there was no detectable neutralizing antibodies in piglets immunized with pCI-ORF5. These results indicate that the formation of GP5/M heterodimers may be involved in post-translational modification and transport of GP5 and may play an important role in immune responses against PRRSV infection. More importantly, co-expression of GP5 and M protein in heterodimers can significantly improve the potency of DNA vaccination and could be used as a strategy to develop a new generation of vaccines against PRRSV.
Tkaczuk, Katherine Rak; Yue, Binbin; Zhan, Min; Tait, Nancy; Yarlagadda, Lavanya; Dai, Huifang; Serrero, Ginette
2011-01-01
Introduction: GP88 (PC-Cell Derived Growth Factor, progranulin) is a glycoprotein overexpressed in breast tumors and involved in their proliferation and survival. Since GP88 is secreted, an exploratory study was established to compare serum GP88 level between breast cancer patients (BC) and healthy volunteers (HV). Methods: An IRB approved prospective study enrolled 189 stage 1–4 BC patients and 18 HV. GP88 serum concentration was determined by immunoassay. Results: Serum GP88 level was 28.7 + 5.8 ng/ml in HV and increased to 40.7 + 16.0 ng/ml (P = 0.007) for stage 1–3 and 45.3 + 23.3 ng/ml (P = 0.0007) for stage 4 BC patients. There was no correlation between the GP88 level and BC characteristics such as age, race, tumor grade, ER, PR and HER-2 expression. Conclusion: These data suggest that serial testing of serum GP88 levels may have value as a circulating biomarker for detection, monitoring and follow up of BC. PMID:21792312
Valton, Emeline; Amblard, Christian; Desmolles, François; Combourieu, Bruno; Penault-Llorca, Frédérique; Bamdad, Mahchid
2015-01-01
In aquatic organisms, such as fish, blood is continually exposed to aquatic contaminants. Multidrug Resistance (MDR) proteins are ubiquitous detoxification membrane pumps, which recognize various xenobiotics. Moreover, their expression is induced by a large class of drugs and pollutants. We have highlighted the co-expression of a mini P-gp of 75 kDa and a P-gp of 140 kDa in the primary culture of brown trout erythrocytes and in the erythrocytes of wild brown trout collected from three rivers in the Auvergne region of France. In vitro experiments showed that benzo[a]pyrene, a highly toxic pollutant model, induced the co-expression of mini-P-gp and P-gp in trout erythrocytes in a dose-dependent manner and relay type response. Similarly, in the erythrocytes of wild brown trout collected from rivers contaminated by a mixture of PAH and other multi-residues of pesticides, mini-P-gp and P-gp were able to modulate their expression, according to the nature of the pollutants. The differential and complementary responses of mini-P-gp and P-gp in trout erythrocytes suggest the existence in blood cells of a real protective network against xenobiotics/drugs. This property could be exploited to develop a blood biomarker of river pollution. PMID:26854141
Guo, Tingting; Huang, Jinhu; Zhang, Hongyu; Dong, Lingling; Guo, Dawei; Guo, Li; He, Fang; Bhutto, Zohaib Ahmed; Wang, Liping
2016-01-01
P-glycoprotein (P-gp) is one of the best-known ATP-dependent efflux transporters, contributing to differences in pharmacokinetics and drug-drug interactions. Until now, studies on pig P-gp have been scarce. In our studies, the full-length porcine P-gp cDNA was cloned and expressed in a Madin-Darby Canine Kidney (MDCK) cell line. P-gp expression was then determined in tissues and its role in the pharmacokinetics of oral enrofloxacin in pigs was studied. The coding region of pig Abcb1 gene was 3,861 bp, encoding 1,286 amino acid residues (Mw = 141,966). Phylogenetic analysis indicated a close evolutionary relationship between porcine P-gp and those of cow and sheep. Pig P-gp was successfully stably overexpressed in MDCK cells and had efflux activity for rhodamine 123, a substrate of P-gp. Tissue distribution analysis indicated that P-gp was highly expressed in brain capillaries, small intestine, and liver. In MDCK-pAbcb1 cells, enrofloxacin was transported by P-gp with net efflux ratio of 2.48 and the efflux function was blocked by P-gp inhibitor verapamil. High expression of P-gp in the small intestine could modify the pharmacokinetics of orally administrated enrofloxacin by increasing the Cmax, AUC and Ka, which was demonstrated using verapamil, an inhibitor of P-gp. PMID:27572343
Torres-Vergara, Pablo; Penny, Jeffrey
2018-06-01
The effects of anti-inflammatory glucocorticoids dexamethasone (DX) and hydrocortisone (HC), pro-inflammatory cytokine interleukin-1β (IL-1β) and dietary long-chain polyunsaturated fatty acids (PUFAs) on expression and activity of the ATP-binding cassette transporter P-glycoprotein (P-GP) were studied in porcine brain endothelial cells (PBECs). Primary PBECs were treated for 24 h with glucocorticoids, IL-1β and long-chain PUFAs. P-GP activity was determined by measuring intracellular calcein accumulation and P-GP expression by Western blotting. The effect of PUFAs on membrane fluidity was assessed by fluorescence recovery after photobleaching (FRAP). Dexamethasone, HC and IL-1β significantly increased P-GP expression and activity. The effect of IL-1β was attenuated by the IL-1 receptor antagonist (IL-1RA). This is the first report of the combined actions of IL-1β and IL-1RA on P-GP expression and the first evidence of glucocorticoid-mediated P-GP up-regulation in PBECs. Arachidonic acid (AA), docosahexaenoic acid (DHA) and eicosapentenoic acid (EPA) significantly decreased P-GP activity without affecting expression or membrane fluidity. AA, DHA and EPA counteracted IL-1β-mediated increases in P-GP activity, while AA and EPA, but not DHA, counteracted glucocorticoid-mediated increase in P-GP activity. While glucocorticoids and IL-1β possess opposing actions in inflammation, they demonstrate functional consistency by increasing P-GP expression and activity in PBECs. © 2018 Royal Pharmaceutical Society.
Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Tanaka, Yoshiya
2017-01-01
Introduction P-glycoprotein (P-gp) expression on activated lymphocytes in systemic lupus erythematosus (SLE) plays a role in active efflux of intracellular drugs, resulting in drug resistance. The role of P-gp-expressing lymphocytes in the pathogenesis of SLE remains unclear. The aim of this study was to determine the importance of P-gp+CD4+ cells in organ manifestations in refractory SLE. Methods The proportion of P-gp+CD4+ cells was determined by flow cytometry in peripheral blood of patients with SLE (n=116) and healthy adults (n=10). Renal biopsy specimens were examined by immunohistochemistry for P-gp expression. Results CD69 is a marker of CD4 cell activation. The proportion of both P-gp-expressing CD4+ cells and CD69-expressing CD4+ cells in peripheral blood was higher in SLE than control. The proportion of P-gp+CD69+CD4+ cells correlated with Systemic Lupus Erythematosus Disease Activity Index and was higher in poor responders to corticosteroids. Furthermore, the proportion of P-gp+CD69+CD4+ cells was significantly higher in proliferative lupus nephritis (LN) with poor response to corticosteroids. The efficacy of immunosuppressive therapy depended on the regulation of the proportion of P-gp+CD69+CD4+ cells. Marked accumulation of P-gp+CD4+ cells in renal interstitial tissue and high proportion of peripheral P-gp+CD69+CD4+ cells were noted in patients with proliferative LN. Conclusions The results showed high proportion of P-gp+CD69+CD4+ cells in peripheral blood and their accumulation in renal tissue in patients with proliferative LN refractory to CS therapy, suggesting that P-gp expression on activated CD4+ T cells is a potentially useful marker for refractoriness to treatment and a novel target for treatment. PMID:29225917
Tsujimura, Shizuyo; Adachi, Tomoko; Saito, Kazuyoshi; Tanaka, Yoshiya
2017-01-01
P-glycoprotein (P-gp) expression on activated lymphocytes in systemic lupus erythematosus (SLE) plays a role in active efflux of intracellular drugs, resulting in drug resistance. The role of P-gp-expressing lymphocytes in the pathogenesis of SLE remains unclear. The aim of this study was to determine the importance of P-gp + CD4 + cells in organ manifestations in refractory SLE. The proportion of P-gp + CD4 + cells was determined by flow cytometry in peripheral blood of patients with SLE (n=116) and healthy adults (n=10). Renal biopsy specimens were examined by immunohistochemistry for P-gp expression. CD69 is a marker of CD4 cell activation. The proportion of both P-gp-expressing CD4 + cells and CD69-expressing CD4 + cells in peripheral blood was higher in SLE than control. The proportion of P-gp + CD69 + CD4 + cells correlated with Systemic Lupus Erythematosus Disease Activity Index and was higher in poor responders to corticosteroids. Furthermore, the proportion of P-gp + CD69 + CD4 + cells was significantly higher in proliferative lupus nephritis (LN) with poor response to corticosteroids. The efficacy of immunosuppressive therapy depended on the regulation of the proportion of P-gp + CD69 + CD4 + cells. Marked accumulation of P-gp + CD4 + cells in renal interstitial tissue and high proportion of peripheral P-gp + CD69 + CD4 + cells were noted in patients with proliferative LN. The results showed high proportion of P-gp + CD69 + CD4 + cells in peripheral blood and their accumulation in renal tissue in patients with proliferative LN refractory to CS therapy, suggesting that P-gp expression on activated CD4 + T cells is a potentially useful marker for refractoriness to treatment and a novel target for treatment.
Yang, Shu; Jin, Hong; Zhao, Zhigang
2018-04-23
Objective The blood-brain barrier (BBB), regulating brain homeostasis and limiting the entry of most drugs, is characterized by intercellular tight junctions and the presence of transporters. In this study, the paracellular tightness and functional expression of efflux transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) were evaluated in mouse brain immortalized cell line bEnd3 to prove it as a useful BBB-mimicking system for biological and pharmacological research. Methods The presence of P-gp, BCRP and tight junction proteins occludin, claudin-5 and ZO-1 were validated by RT-PCR and Western blot. The tightness of bEnd3 monolayers was evaluated by measuring the permeability of hydrophilic marker Lucifer yellow. The P-gp functionality was identified by intracellular uptake assay using Rhodamine 123 (R123) as P-gp substrate and verapamil as P-gp inhibitor. The BCRP functionality was identified by flow cytometric analysis of mitoxantrone accumulation and fluorescence microscopic analysis of Hoechst 33342 accumulation using Ko-143 as BCRP inhibitor. Results The bEnd3 cells demonstrated the expression of P-gp, BCRP and tight junction proteins occludin, claudin-5 and ZO-1 at mRNA and protein levels. The permeability coefficient of Lucifer yellow was 1.3 ± 0.13 × 10 -3 cm/min, indicating the moderate paracellular tightness barrier formed by bEnd3 cells. The verapamil induced a higher cellular uptake of Rhodamine 123, and Ko-143 significantly elevated cellular accumulation of mitoxantrone and Hoechst 33342, suggesting the P-gp and BCRP functionality shown by bEnd3 cells. Conclusions The bEnd3 cell line represents a useful in vitro tool for studying BBB characteristics and drug transport mechanisms at the BBB.
Dual-phase 99mTc-MIBI imaging and the expressions of P-gp, GST-π, and MRP1 in hyperparathyroidism.
Xue, Jianjun; Liu, Yan; Yang, Danrong; Yu, Yan; Geng, Qianqian; Ji, Ting; Yang, Lulu; Wang, Qi; Wang, Yuanbo; Lu, Xueni; Yang, Aimin
2017-10-01
The aim of this study was to further elucidate the mechanisms of dual-phase technetium-99m methoxyisobutylisonitrile (Tc-MIBI) parathyroid imaging by exploring the association between early uptake results (EUR), delayed uptake results (DUR), and the retention index (RI) in dual-phase Tc-MIBI parathyroid imaging and P glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and glutathione S-transferase-π (GST-π) expression in hyperparathyroidism (HPT). Preoperative dual-phase (early and delayed) Tc-MIBI imaging was performed on 74 patients undergoing parathyroidectomy for HPT. EUR, DUR, and RI were calculated. P-gp, MRP1, and GST-π expressions were assessed using immunohistochemistry in resected tissue from HPT and control patients. The association between P-gp, MRP1, and GST-π expressions and EUR, DUR, and RI in HPT was evaluated. The positive rate of dual-phase T c-MIBI imaging was 91.89% (68/74) and the false-negative rate was 8.11% (6/74). P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients (47.37 and 81.5%, P<0.05); there was no difference in MRP1. EUR were associated with P-gp and GST-π expressions, and DUR were associated with MRP1 expression. There was a significant difference in MRP1 expression between RI greater than or equal to 0 and RI less than 0. There was no relationship between the sensitivity of dual-phase Tc-MIBI imaging and P-gp, MRP1, and GST-π expressions in resected parathyroid tissue. The six false-negative HPT cases consisted of three P-gp (-)/MRP1 (-) tissues, three P-gp (-)/GST-π (-) tissues, and four MRP1 (-)/GST-π (-) tissues. As P-gp and GST-π expressions were higher in tissues resected from control compared with HPT patients, Tc-MIBI may wash out faster from normal parathyroid tissue surrounding the lesion compared with the lesion itself, facilitating detection.
El-Masry, Eman M; Abou-Donia, Mohamed B
2006-05-01
P-glycoprotein (P-gp), the most extensively studied ATP-binding transporter, functions as a biological barrier by extruding toxic substances and xenobiotics out of the cell. This study was carried out to determine the effect of N,N-diethyl-m-toluamide (DEET) and pyridostigmine bromide (PB), alone and in combination, on P-gp expression using Escherichia coli leaky mutant transformed with Mdr1 gene (pT5-7/mdr1), which codes for P-gp or lactose permease (pT5-7/lacY) as negative control. Also, daunomycin (a known P-gp sustrate) was used as a positive control and reserpine (a known P-gp inhibitor) served as a negative control. An in vitro cell-resistant assay was used to monitor the potential of test compounds to interact with P-gp. Following exposure of the cells to pyridostigmine bromide or daunomycin, P-gp conferred significant resistance against both compounds, while reserpine and DEET significantly inhibited the glycoprotein. Cells were grown in the presence of noncytotoxic concentrations of daunomycin, pyridostigmine bromide, reserpine, or DEET, and membrane fractions were examined by Western immunoblotting for expression of P-gp. Daunomycin induced P-gp expression quantitatively more than pyridostigmine bromide, while reserpine and DEET significantly inhibited P-gp expression in cells harboring mdr1. Photoaffinity labeling experiment performed with the P-gp ligand [125I]iodoarylazidoprazosin demonstrated that compounds that induced or inhibited P-gp transport activity also bound to P-gp. DEET was also found to be a potent inhibitor of P-gp-mediated ATPase activity, whereas pyridostigmine bromide increased P-gp ATPase activity. Cells expressing P-gp or lac permease were exposed to pyridostigmine bromide and DEET, alone and in combination. Noncytotoxic concentrations of DEET significantly inhibited P-gp-mediated resistance against pyridostigmine bromide, resulting in a reduction of the number of effective drug interactions with biological targets. An explanation of these results might be that DEET is a third-generation inhibitor of P-gp; it has high potency and specificity for P-gp, it inhibits hydrolysis of ATP, it exerts no appreciable impact on cytochrome P-450 3A4, and it prevents transport of xenobiotics, such as pyridostigmine bromide, out of the cell. This conclusion explains, at least in part, the increased toxicity and bioavailability of pyridostigmine bromide following combined administration with DEET. This study improves our understanding of the basis of chemical interactions with DEET by defining the ability of drugs to interact with P-gp either as inhibitors or substrates, which may in turn lead to altered efficacy or toxicity.
Oral and inhaled corticosteroids: Differences in P-glycoprotein (ABCB1) mediated efflux
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowe, Andrew, E-mail: a.p.crowe@curtin.edu.au; Tan, Ai May
There is concern that P-glycoprotein mediated efflux contributes to steroid resistance. Therefore, this study examined bidirectional corticosteroid transport and induction capabilities for P-glycoprotein (P-gp) to understand which of the systemic and inhaled corticosteroids interacted with P-gp to the greatest extent. Hydrocortisone, prednisolone, prednisone, methylprednisolone, and dexamethasone represented systemically active drugs, while fluticasone propionate, beclomethasone dipropionate, ciclesonide and budesonide represented inhaled corticosteroids. Aldosterone and fludrocortisone represented mineralocorticoids. All drugs were detected using individually optimised HPLC protocols. Transport studies were conducted through Caco-2 monolayers. Hydrocortisone and aldosterone had efflux ratios below 1.5, while prednisone showed a P-gp mediated efflux ratio of onlymore » 1.8 compared to its active drug, prednisolone, with an efflux ratio of 4.5. Dexamethasone and beclomethasone had efflux ratios of 2.1 and 3.3 respectively, while this increased to 5.1 for methylprednisolone. Fluticasone showed an efflux ratio of 2.3. Protein expression studies suggested that all of the inhaled corticosteroids were able to induce P-gp expression, from 1.6 to 2 times control levels. Most of the systemic corticosteroids had higher passive permeability (> 20 × 10{sup −6} cm/s) compared to the inhaled corticosteroids (> 5 × 10{sup −6} cm/s), except for budesonide, with permeability similar to the systemic corticosteroids. Inhaled corticosteroids are not transported by P-gp to the same extent as systemic corticosteroids. However, they are able to induce P-gp production. Thus, inhaled corticosteroids may have greater interactions with other P-gp substrates, but P-gp itself is less likely to influence resistance to the drugs. -- Highlights: ► Inhaled corticosteroids are only weak substrates for P-gp, including budesonide. ► Inhaled corticosteroid potent P-gp inducers especially fluticasone and beclomethasone. ► Systemic corticosteroids are weak P-gp inducers. ► Mineralocorticoids not affected by P-gp mediated efflux.« less
Komori, Yuki; Arisawa, Sakiko; Takai, Miho; Yokoyama, Kunihiro; Honda, Minako; Hayashi, Kazuhiko; Ishigami, Masatoshi; Katano, Yoshiaki; Goto, Hidemi; Ueyama, Jun; Ishikawa, Tetsuya; Wakusawa, Shinya
2014-02-05
The hepatoprotective action of ursodeoxycholic acid (UDCA) was previously suggested to be partially dependent on its antioxidative effect. Doxorubicin (DOX) and reactive oxygen species have also been implicated in the overexpression of P-glycoprotein (P-gp), which is encoded by the MDR1 gene and causes antitumor multidrug resistance. In the present study, we assessed the effects of UDCA on the expression of MDR1 mRNA, P-gp, and intracellular reactive oxygen species levels in DOX-treated HepG2 cells and compared them to those of other bile acids. DOX-induced increases in reactive oxygen species levels and the expression of MDR1 mRNA were inhibited by N-acetylcysteine, an antioxidant, and the DOX-induced increase in reactive oxygen species levels and DOX-induced overexpression of MDR1 mRNA and P-gp were inhibited by UDCA. Cells treated with UDCA showed improved rhodamine 123 uptake, which was decreased in cells treated with DOX alone. Moreover, cells exposed to DOX for 24h combined with UDCA accumulated more DOX than that of cells treated with DOX alone. Thus, UDCA may have inhibited the overexpression of P-gp by suppressing DOX-induced reactive oxygen species production. Chenodeoxycholic acid (CDCA) also exhibited these effects, whereas deoxycholic acid and litocholic acid were ineffective. In conclusion, UDCA and CDCA had an inhibitory effect on the induction of P-gp expression and reactive oxygen species by DOX in HepG2 cells. The administration of UDCA may be beneficial due to its ability to prevent the overexpression of reactive oxygen species and acquisition of multidrug resistance in hepatocellular carcinoma cells. Copyright © 2013 Elsevier B.V. All rights reserved.
Perez-Guerrero, Edsaul Emilio; Gamez-Nava, Jorge Ivan; Muñoz-Valle, Jose Francisco; Cardona-Muñoz, Ernesto German; Bonilla-Lara, David; Fajardo-Robledo, Nicte Selene; Nava-Zavala, Arnulfo Hernan; Garcia-Cobian, Teresa Arcelia; Rincón-Sánchez, Ana Rosa; Murillo-Vazquez, Jessica Daniela; Cardona-Müller, David; Vazquez-Villegas, Maria Luisa; Totsuka-Sutto, Sylvia Elena; Gonzalez-Lopez, Laura
2018-02-01
Around 25% of patients with systemic lupus erythematosus (SLE) could be refractory to conventional therapies. P-glycoprotein expression on cell surface has been implied on drug resistance, however, to date, it is unknown if P-gp serum levels are associated with SLE disease activity. Evaluate the association of serum P-gp levels and SLE with disease activity despite treatment. A cross-sectional study was conducted on 93 female SLE patients, all receiving glucocorticoids at stable doses for the previous 6 months before to baseline. SLE patients were classified into two groups: (a) patients with active disease [SLE disease activity index (SLEDAI) ≥ 3] despite treatment, and (b) patients with inactive disease (SLEDAI < 3) after treatment. Forty-three healthy females comprised the control group. Serum P-gp, anti-DNA, and both anti-nucleosome antibody levels were measured using ELISA. Active-SLE patients despite treatment had higher P-gp levels compared with inactive-SLE after treatment (78.02 ng/mL ± 114.11 vs. 33.75 ng/mL ± 41.11; p = 0.018) or versus reference group subjects (30.56 ng/mL ± 28.92; p = 0.011). P-gp levels correlated with the scores of SLEDAI (r = 0.26; p = 0.01), Mexican-SLEDAI (MEX-SLEDAI) (r = 0.32; p = 0.002), SLICC/ACR damage index (r = 0.47; p < 0.001), and with prednisone doses (r = 0.33; p = 0.001). In the multivariate model, the high P-gp levels were associated with SLICC/ACR score (p = 0.001), and SLEDAI score (p = 0.014). Our findings support a relationship between serum P-gp levels and SLE with disease activity despite treatment, but it requires further validation in longitudinal studies.
Abuznait, Alaa H.; Patrick, Shawn G.; Kaddoumi, Amal
2011-01-01
Purpose Drug transporters are increasingly recognized as important determinants of variability in drug disposition and therapeutic response, both in pre-clinical and clinical stages of drug development process. The role P-glycoprotein (P-gp) plays in drug interactions via its inhibition is well established. However, much less knowledge is available about drugs effect on P-gp up-regulation. The objective of this work was to in vitro investigate and rank commonly used drugs according to their potencies to up-regulate P-gp activity utilizing the same experimental conditions. Methods The in vitro potencies of several drugs of diverse physicochemical and therapeutic properties including rifampicin, dexamethasone, caffeine, verapamil, pentylenetetrazole, hyperforin, and β-estradiol over broad concentration range to up-regulate P-gp expression and activity were examined. For dose-response studies, LS-180 cells were treated with different concentrations of the selected drugs followed by P-gp protein and gene expressions analyses. P-gp functionality was determined by uptake studies with rhodamine 123 as a P-gp substrate, followed by Emax/EC50 evaluation. Results The results demonstrated a dose-dependent increase in P-gp expression and activity following treatments. At 50 μM concentration (hyperforin, 0.1 μM), examined drugs increased P-gp protein and gene expressions by up to 5.5 and 6.2-fold, respectively, while enhanced P-gp activity by 1.8–4-fold. The rank order of these drugs potencies to up-regulate P-gp activity was as following: hyperforin ⋙ dexamethasone ≈ β-estradiol > caffeine > rifampicin ≈ pentylenetetrazole > verapamil. Conclusions These drugs have the potential to be involved in drug interactions when administered with other drugs that are P-gp substrates. Further studies are needed to in vivo evaluate these drugs and verify the consequences of such induction on P-gp activity for in vitro-in vivo correlation purposes. PMID:21733412
Pinzone, M R; Di Rosa, M; Celesia, B M; Condorelli, F; Malaguarnera, M; Madeddu, G; Martellotta, F; Castronuovo, D; Gussio, M; Coco, C; Palermo, F; Cosentino, S; Cacopardo, B; Nunnari, G
2013-07-01
Vitamin D deficiency is very common among HIV-infected subjects. We cross-sectionally evaluated the prevalence and risk factors for hypovitaminosis D in 91 HIV-infected Italian patients. We studied in a cohort of 91 HIV-infected Italian patients the metabolism of Vitamin D by evaluating the in vitro expression of CYP27B1, CYP24A1 and vitamin D receptor (VDR) by monocytes and macrophages stimulated with the viral envelope protein gp120 or lipopolysaccharide (LPS). The prevalence of vitamin D deficiency (25OHD < 10 ng/ml) and vitamin D insufficiency (25OHD 10-30 ng/ml) was 31% and 57%, respectively. In univariate analysis, female sex (p = 0.01), increasing age (p = 0.05), higher highly sensitive-C reactive protein (p = 0.025), higher parathyroid hormone (PTH) (p = 0.043) and lower BMI (p = 0.04) were associated with vitamin D deficiency. In multivariate analysis, the association was still significant only for PTH (p = 0.03) and female sex (p = 0.03). Monocyte stimulation with LPS (100 ng/ml) or gp120 (1 µg/ml) significantly upregulated CYP27B1 mRNA expression. Moreover, gp120 significantly increased VDR mRNA levels. On the contrary, neither LPS nor gp120 modified CYP24A1 levels. Macrophage stimulation with LPS (100 ng/ml) significantly upregulated CYP27B1 and CYP24A1 mRNA expression. When monocytes were cultured in the presence of 25OHD (40 ng/ml) and stimulated with LPS we detected significantly lower levels of 25OHD in the supernatant. Vitamin D deficiency was very common in our cohort of HIV-infected patients. Chronic inflammation, including residual viral replication, may contribute to hypovitaminosis D, by modulating vitamin D metabolism and catabolism. Systematic screening may help identifying subjects requiring supplementation.
Duran, George E; Derdau, Volker; Weitz, Dietmar; Philippe, Nicolas; Blankenstein, Jörg; Atzrodt, Jens; Sémiond, Dorothée; Gianolio, Diego A; Macé, Sandrine; Sikic, Branimir I
2018-04-19
The primary aim of this study was to determine cabazitaxel's affinity for the ABCB1/P-glycoprotein (P-gp) transporter compared to first-generation taxanes. We determined the kinetics of drug accumulation and retention using [ 14 C]-labeled taxanes in multidrug-resistant (MDR) cells. In addition, membrane-enriched fractions isolated from doxorubicin-selected MES-SA/Dx5 cells were used to determine sodium orthovanadate-sensitive ATPase stimulation after exposure to taxanes. Custom [ 3 H]-azido-taxane analogues were synthesized for the photoaffinity labeling of P-gp. The maximum intracellular drug concentration was achieved faster with [ 14 C]-cabazitaxel (5 min) than [ 14 C]-docetaxel (15-30 min). MDR cells accumulated twice as much cabazitaxel than docetaxel, and these levels could be restored to parental levels in the presence of the P-gp inhibitor PSC-833 (valspodar). Efflux in drug-free medium confirmed that MDR cells retained twice as much cabazitaxel than docetaxel. There was a strong association (r 2 = 0.91) between the degree of taxane resistance conferred by P-gp expression and the accumulation differences observed with the two taxanes. One cell model expressing low levels of P-gp was not cross-resistant to cabazitaxel while demonstrating modest resistance to docetaxel. Furthermore, there was a 1.9 × reduction in sodium orthovanadate-sensitive ATPase stimulation resulting from treatment with cabazitaxel compared to docetaxel. We calculated a dissociation constant (Kd) value of 1.7 µM for [ 3 H]-azido-docetaxel and ~ 7.5 µM for [ 3 H]-azido-cabazitaxel resulting in a 4.4 × difference in P-gp labeling, and cold docetaxel was a more effective competitor than cabazitaxel. Our studies confirm that cabazitaxel is more active in ABCB1(+) cell models due to its reduced affinity for P-gp compared to docetaxel.
Störmer, Elke; von Moltke, Lisa L; Perloff, Michael D; Greenblatt, David J
2002-07-01
This study investigated the effects of the non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTI) nevirapine (NVR), efavirenz (EFV), and delavirdine (DLV) on P-glycoprotein (P-gp) activity and expression to anticipate P-gp related drug-drug interactions associated with combination therapy. NNRTIs were evaluated as P-gp substrates by measuring differential transport across Caco-2 cell monolayers. Inhibition of P-gp mediated rhodaminel23 (Rh123) transport in Caco-2 cells was used to assess P-gp inhibition by NNRTIs. Induction of P-gp expression and activity in LS180V cells following 3-day exposure to NNRTIs was measured by western blot analysis and cellular Rh123 uptake, respectively. The NNRTIs showed no differential transport between the basolateral to apical and apical to basolateral direction. NNRTI transport in either direction was not affected by the P-gp inhibitor verapamil. DLV inhibited Rh123 transport, causing a reduction to 15% of control at 100 microM (IC50 = 30 microM). NVR caused a concentration-dependent induction of P-gp expression in LS180V cells resulting in a 3.5-fold increase in immunoreactive P-gp at 100 microM NVR. Induction attributable to EFV and DLV was quantitatively smaller. NVR significantly reduced cellular uptake of Rh123 into LS180V cells, indicating increased drug efflux due to induced P-gp activity; effects of EFV and DLV were smaller. Acute DLV treatment of LS180V cells previously induced with NVR or ritonavir did not reverse the decreased Rh123 cell accumulation. NNRTIs show differential effects on P-gp activity and expression in vitro. Clinical studies are required to elucidate the clinical importance of potential drug interactions.
Abuznait, Alaa H.; Cain, Courtney; Ingram, Drury; Burk, David; Kaddoumi, Amal
2011-01-01
Objectives Several studies have suggested the efflux transporter P-glycoprotein (P-gp) to play a role in the etiology of Alzheimer's disease through the clearance of amyloid beta (Aβ) from the brain. In this study, we aimed to investigate the possibility of P-gp as a potential therapeutic target for Alzheimer's disease by examining the impact of P-gp up-regulation on the clearance of Aβ, a neuropathological hallmark of Alzheimer's disease. Methods Uptake studies for 125I-radiolabelled Aβ1–40, and fluorescent immunostaining technique for P-gp and fluorescent imaging of Aβ1–40 were carried out in LS-180 cells following treatment with drugs known to induce P-gp expression. Key findings Approximately 10–35% decrease in 125I-Aβ1–40 intracellular accumulation was observed in cells treated with rifampicin, dexamethasone, caffeine, verapamil, hyperforin, β-estradiol and pentylenetetrazole compared with control. Also, fluorescent micrographs showed an inverse relationship between levels of P-gp expression and 5-carboxyfluorescein labelled Aβ (FAM-Aβ1–40) intracellular accumulation. Quantitative analysis of the micrographs revealed that the results were consistent with those of the uptake studies using 125I-Aβ1–40. Conclusions The investigated drugs were able to improve the efflux of Aβ1–40 from the cells via P-gp up-regulation compared with control. Our results elucidate the importance of targeting Aβ clearance via P-gp up-regulation, which will be effective in slowing or halting the progression of Alzheimer's disease. PMID:21718295
Li, Ka; Li, Xin; Tian, Jiguang; Wang, Hongliang; Pan, Jingbo; Li, Jianmin
2016-10-01
The development of chemoresistance is closely linked to the plateau of the survival rate in osteosarcoma (OS) patients. CD133-positive (CD133+) OS cells are known as cancer stem cells (CSCs) in OS and exhibit the characteristic of chemoresistance. In this study, CD133+ and CD133‑negative (CD133‑) MG‑63 cells were isolated by magnetic activated cell sorting (MACS). We verified that CD133+ MG‑63 cells were more resistant to cisplatin (CDDP) than CD133‑ MG‑63 cells. DNA‑dependent protein kinase catalytic subunit (DNA‑PKcs) and P‑glycoprotein (P‑gp) were expressed at higher levels in the CD133+ MG‑63 cells compared with those levels in the CD133‑ MG‑63 cells, whereas downregulation of DNA‑PKcs by small interfering RNA (siRNA) decreased chemoresistance to CDDP and P‑gp expression at the mRNA and protein levels in these cells. This indicated that DNA‑PKcs was correlated with P‑gp expression in the CD133+ MG‑63 cells. The Akt/NF‑κB pathway was hyperactivated in the CD133+ MG‑63 cells, whereas inhibition of the Akt/NF‑κB pathway downregulated P‑gp expression. In addition, downregulation of DNA‑PKcs suppressed the activity of the Akt/NF‑κB pathway. These results revealed that downregulation of DNA‑PKcs could decrease P‑gp expression via suppression of the Akt/NF‑κB pathway in CD133+ MG‑63 cells. Therefore, inhibition of DNA‑PKcs decreases P‑gp expression and sensitizes OS CSCs to chemotherapeutic agents in vitro, which needs to be further validated in vivo.
Min, Hae-Ki; Mirshahi, Faridoddin; Verdianelli, Aurora; Pacana, Tommy; Patel, Vaishali; Park, Chun-Geon; Choi, Aejin; Lee, Jeong-Hoon; Park, Chung-Berm; Ren, Shunlin
2015-01-01
The status of the GP130-STAT3 signaling pathway in humans with nonalcoholic fatty liver disease (NAFLD) and its relevance to disease pathogenesis are unknown. The expression of the gp130-STAT3 axis and gp130 cytokine receptors were studied in subjects with varying phenotypes of NAFLD including nonalcoholic steatohepatitis (NASH) and compared with lean and weight-matched controls without NAFLD. Gp130 and its downstream signaling element (Tyk2 and STAT3) expression were inhibited in obese controls whereas they were increased in NAFLD. IL-6 levels were increased in NASH and correlated with gp130 expression (P < 0.01). Palmitate inhibited gp130-STAT3 expression and signaling. IL-6 and palmitate inhibited hepatic insulin signaling via STAT3-dependent and independent mechanisms, respectively. STAT3 overexpression reversed palmitate-induced lipotoxicity by increasing autophagy (ATG7) and decreasing endoplasmic reticulum stress. These data demonstrate that the STAT3 pathway is activated in NAFLD and can worsen insulin resistance while protecting against other lipotoxic mechanisms of disease pathogenesis. PMID:25747354
Tainton, K M; Smyth, M J; Jackson, J T; Tanner, J E; Cerruti, L; Jane, S M; Darcy, P K; Johnstone, R W
2004-09-01
P-glycoprotein (P-gp) can induce multidrug resistance (MDR) through the ATP-dependent efflux of chemotherapeutic agents. We have previously shown that P-gp can inhibit nondrug apoptotic stimuli by suppressing the activation of caspases. To determine if this additional activity is functionally linked to ATP hydrolysis, we expressed wild-type and ATPase-mutant P-gp and showed that cells expressing mutant P-gp could not efflux chemotherapeutic drugs but remained relatively resistant to apoptosis. CEM lymphoma cells expressing mutant P-gp treated with vincristine showed a decrease in the fraction of cells with apoptotic morphology, cytochrome c release from the mitochondria and suppression of caspase activation, yet still accumulated in mitosis and showed a loss of clonogenic potential. The loss of clonogenicity in vincristine-treated cells expressing mutant P-gp was associated with accumulation of cells in mitosis and the presence of multinucleated cells consistent with mitotic catastrophe. The antiapoptotic effect of mutant P-gp was not affected by antibodies that inhibit the efflux function of the protein. These data are consistent with a dual activity model for P-gp-induced MDR involving both ATPase-dependent drug efflux and ATPase-independent inhibition of apoptosis. The structure-function analyses described herein provide novel insight into the mechanisms of action of P-gp in mediating MDR.
Yi, Zhihua; Xie, Lihui; Zhou, Congfa; Yuan, Huilong; Ouyang, Shuai; Fang, Zhi; Zhao, Shanhong; Jia, Tianyu; Zou, Lifang; Wang, Shouyu; Xue, Yun; Wu, Bing; Gao, Yun; Li, Guilin; Liu, Shuangmei; Xu, Hong; Xu, Changshui; Zhang, Chunping; Liang, Shangdong
2018-03-01
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y 12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y 12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y 12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca 2+ ] i activated by the P2Y 12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y 12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca 2+ ] i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y 12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y 12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.
Wang, Nanbu; Zhang, Qinxin; Ning, Baile; Luo, Laiyu; Fang, Yongqi
2017-06-01
Glioma is the most common primary brain tumor and has an undesirable prognosis due to the blood-brain barrier (BBB) and drug resistance. A thorough investigation of the changes in intracellular drug concentrations is important to observe therapeutic effects and cell resistance. P-glycoprotein (P-gp) is an essential protein of Multi-drug resistance 1 (MDR1). The over-expression of P-gp and MDR1 is associated with poor prognosis and drug-resistance in glioma. However, β-asarone can pass through the BBB easily and increase the drug concentration in the rat brain. Our aim is to study the effect of β-asarone on promoting the entry of temozolomide (TMZ) into human glioma U251 cells. The cells were divided into three groups: model group, TMZ group (300μM) and co-administration group (360μM β-asarone; 300μM TMZ). We further detected P-gp and MDR1 expression in U251 and rat glioma C6 cells in four groups: model group (U251/C6), TMZ group (U251 300μM, C6 420μM), β-asarone group (U251 360μM, C6 450μM) and co-administration group (β-asarone 360μM, TMZ 300μM for U251; β-asarone 450μM, TMZ 420μM for C6). Then, high performance liquid chromatography was used to determine the intracellular and extracellular levels of TMZ. Morphological changes in both cells were observed by the microscope. The Counting Kit-8 assay was used to measure the cell proliferation and toxicity. Cell immunohistochemistry/immunofluorescence, flowcytometry and western blot were synchronously used to examine the expression of P-gp. We also determined the levels of MDR1 mRNA by RT-PCR. The results showed that β-asarone could promote the entry of TMZ into U251 cells through the membrane. The co-administration of β-asarone and TMZ also decreased cell proliferation and the expression of P-gp and MDR1 better than single medication in U251 and C6 cells. All of the data suggest that β-asarone might contribute to treatment by promoting TMZ's entry into glioma cells, thereby contributing to anti-cancer growth and inhibiting P-gp and MDR1 expression. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Guo, Mengjie; Dai, Xiaohua; Hu, Dongmin; Zhang, Yu; Sun, Yong; Ren, Weilong; Wang, Liping
2016-09-01
P-glycoprotein ( P-GP: , encoding gene Abcb1) and Breast Cancer Resistance Protein ( BCRP: , encoding gene Abcg2) are transport proteins that play a major role in modulating the bioavailability of oral drugs in humans and rodents. It has been shown that rifampicin is the typical inducer of P-gp in rodents by activating the nuclear receptor. However, its effect on Abcb1, Abcg2, CYP3A, and chicken xenobiotic-sensing orphan nuclear receptor ( CXR: ) mRNA expression in broilers is poorly understood. This study explored the effect of rifampicin on mRNA expression of Abcb1, Abcg2, CYP3A37, CXR as well as its effect on the pharmacokinetics of enrofloxacin in broilers. The mRNA levels of Abcb1, Abcg2, CYP3A37, and CXR were significantly increased in the liver (except Abcg2), kidney, jejunum, and ileum (P < 0.05) but not significantly changed in the duodenum (P > 0.05) after treated with rifampicin. Further analysis revealed that the variation tendencies of Abcb1, Abcg2, and CYP3A37 expression levels were significantly correlated with CXR mRNA expression levels in liver, kidney, jejunum, and ileum. Coadministration of rifampicin significantly changed the pharmacokinetic behavior of enrofloxacin orally administered by showing clearly lower AUC0-∞, AUC0-t, and Cmax as well as longer Tmax. The bioavailability of orally administered enrofloxacin was decreased from 72.5% to 24.8% by rifampicin. However, rifampicin did not significantly change the pharmacokinetics of enrofloxacin following intravenous administration. Our study shows that rifampicin up-regulated the small intestinal level of P-gp and BCRP and suggests that P-gp and BCRP are key factors that affected pharmacokinetic behavior of orally administered enrofloxacin by limiting its absorption from the intestine in broilers. © 2016 Poultry Science Association Inc.
Functional Impact of ABCB1 Variants on Interactions between P-Glycoprotein and Methadone
Hung, Chin-Chuan; Chiou, Mu-Han; Teng, Yu-Ning; Hsieh, Yow-Wen; Huang, Chieh-Liang; Lane, Hsien-Yuan
2013-01-01
Methadone is a widely used substitution therapy for opioid addiction. Large inter-individual variability has been observed in methadone maintenance dosages and P-glycoprotein (P-gp) was considered to be one of the major contributors. To investigate the mechanism of P-gp’s interaction with methadone, as well as the effect of genetic variants on the interaction, Flp-In™-293 cells stably transfected with various genotypes of human P-gp were established in the present study. The RNA and protein expression levels of human P-gp were confirmed by real-time quantitative RT-PCR and western blot, respectively. Utilizing rhodamine 123 efflux assay and calcein-AM uptake study, methadone was demonstrated to be an inhibitor of wild-type human P-gp via non-competitive kinetic (IC50 = 2.17±0.10 µM), while the variant-type human P-gp, P-gp with 1236T-2677T-3435T genotype and P-gp with 1236T-2677A-3435T genotype, showed less inhibition potency (IC50 = 2.97±0.09 µM and 4.43±1.10 µM, respectively) via uncompetitive kinetics. Methadone also stimulated P-gp ATPase and inhibited verapamil-stimulated P-gp ATPase activity under therapeutic concentrations. These results may provide a possible explanation for higher methadone dosage requirements in patients carrying variant-type of P-gp and revealed the possible drug-drug interactions in patients who receive concomitant drugs which are also P-gp substrates. PMID:23527191
Shao, Yiye; Wang, Cuicui; Hong, Zhen; Chen, Yinghui
2016-03-01
It is widely recognized that P-glycoprotein (P-gp) mediates drug resistance in refractory epilepsy. However, the molecular mechanism underlying the up-regulation of P-gp expression remains unclear. Our previous studies have demonstrated that p38 mitogen-activated protein kinase (MAPK) regulates P-gp expression in cultured K562 cells. However, a lack of in vivo research leaves unanswered questions regarding whether p38MAPK regulates P-gp expression or drug resistance in refractory epilepsy. This in vivo study examined the effects of p38MAPK on the expression of P-gp and mdr1 in the rat brain and quantified antiepileptic drug (AED) concentrations in the hippocampal extracellular fluid. In addition, the role of p38MAPK in electrical and behavioral activity in a rat epilepsy model was studied. The results indicated that p38MAPK inhibition by SB202190 reduced P-gp expression, while increasing AED concentration in the hippocampal extracellular fluid in refractory epileptic rats. SB202190 also reduced the resistance to AEDs in drug-resistant rats and significantly reduced the severity of seizure activity. These results suggest that p38MAPK could participate in drug resistance in refractory epilepsy through the regulation of P-gp. We show that the specific inhibitor of p38MAPK could down-regulate the expression of multidrug transporter (P-glycoprotein) in blood-brain barrier, increase the concentration of antiepileptic drugs in the hippocampal extracellular fluid and reduce anti-epileptic drug resistance in refractory epileptic rats. We propose that the p38MAPK signaling pathway participates in drug resistance in refractory epilepsy through the regulation of P-glycoprotein expression. © 2015 International Society for Neurochemistry.
Laguens, Rubén P; Lazarowski, Alberto J; Cuniberti, Luis A; Vera Janavel, Gustavo L; Cabeza Meckert, Patricia M; Yannarelli, Gustavo G; del Valle, Héctor F; Lascano, Elena C; Negroni, Jorge A; Crottogini, Alberto J
2007-02-01
We have recently reported that in chronic myocardial ischemia, adult mammalian cardiomyocytes express P-glycoprotein (P-gp). We now investigate if P-gp is also expressed in acute regional ischemia followed by reperfusion. Adult conscious sheep underwent 12-min occlusion of the mid-left anterior descending artery (inflatable cuff). Successful ischemia-reperfusion was confirmed by monitoring percent systolic left ventricular anterior wall thickening (sonomicrometry) during the whole ischemic period and every 10 min over 2 hr following cuff deflation. At 3, 24, and 48 hr after reperfusion, P-gp expression was investigated by immunohistochemistry and Western blot and MDR-1 mRNA by RT-PCR. Cardiomyocytes in the occluded artery territory (but not those in remote areas) consistently expressed P-gp at their sarcolemma. Whereas at 3 and 24 hr P-gp was mainly observed in the T tubules, at 48 hr it predominated in intercalated discs and gap junctions. RT-PCR and Western blot revealed higher expression in ischemic than in control myocardium. We conclude that in adult sheep with acute myocardial ischemia, the MDR-1 gene-encoded P-gp is expressed at the sarcolemma of the cardiomyocytes from 3 hr up to at least 48 hr after reperfusion.
Hasibu, Ibrahim; Patoine, Dany; Pilote, Sylvie; Drolet, Benoit; Simard, Chantale
2015-04-01
The guinea-pig is an excellent animal model for studying cardiopulmonary physiology/pharmacology. Interestingly, it also possesses a number of drug-metabolizing enzymes found in humans, such as CYP1A, CYP2D and CYP3A. To evaluate the hypothesis that the guinea-pig also expresses a functional CYP2C drug-metabolizing enzyme and the P-glycoprotein (P-gp) drug transporter in various tissues. cDNAs encoding CYP2C and P-gp were obtained from guinea-pig liver or small intestine and sequenced. Western blotting was performed to confirm the expression of CYP2C and P-gp. The functional enzymatic activity of guinea-pig CYP2C was evaluated with microsomal preparations using diclofenac and tolbutamide as specific drug substrates in HPLC analyses. To further study both P-gp and CYP2C functional activities, the guinea-pig ABCB1/MDR1 and CYP2C genes were cloned. The recombinant plasmids were then transfected in HEK293 (human embryonic kidney) cells and either calcein-acetoxymethyl ester (AM) accumulation assays or 14,15-EET/DHET formation experiments were performed to evaluate either P-gp transport activity or CYP2C epoxygenase activity, respectively. The guinea-pig tissue distribution of P-gp was studied by Western blotting. Functional expression of CYP2C was demonstrated in guinea-pig liver microsomal preparations. CYP2C-mediated biotransformation of diclofenac and tolbutamide were shown. Expression of P-gp protein was detected in guinea-pig liver and small intestine. Functional activity of guinea-pig P-gp was demonstrated in ABCB1/MDR1-transfected cells. GP-CYP2C-transfected cells also showed functional epoxygenase activity. The guinea-pig expresses functional CYP2C and P-gp, thus suggesting its usefulness for further validating data obtained with other animal models in drug biotransformation/transport studies. Copyright © 2015 John Wiley & Sons, Ltd.
Mao, Zhong-Ping; Zhao, Li-Jun; Zhou, Shui-Hong; Liu, Meng-Qin; Tan, Wei-Feng; Yao, Hong-Tian
2015-02-01
Increasing glucose transporter-1 (GLUT-1) activity is one of the most important ways to increase the cellular influx of glucose. We previously demonstrated that increased GLUT-1 expression was an independent predictor of survival in patients with laryngeal carcinoma. Thus, GLUT-1 may present a novel therapeutic target in laryngeal carcinoma. In this study, the expression of GLUT-1, P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and glutathione S-transferase-π (GST-π) in laryngeal carcinomas was investigated by immunohistochemistry. Additionally, possible correlations between GLUT-1 and P-gp, MRP1 and GST-π and various clinicopathological parameters were analyzed. In this study, 52.9% (18/34), 58.8% (20/34), 20.6% (7/34) and 58.8% (20/34) of the laryngeal carcinomas were positive for GLUT-1, P-gp, MRP1 and GST-π, respectively. The expression of GLUT-1, P-gp, MRP1 and GST-π was higher in laryngeal carcinoma specimens when compared with laryngeal precancerous lesions (P<0.05). Pearson's correlation analysis showed correlations between GLUT-1 and P-gp (r=0.364; P=0.034), GLUT-1 and MRP1 (r=0.359; P=0.037) and P-gp and GST-π (r=0.426; P=0.012). GLUT-1 expression was found to significantly correlate with tumor-node-metastasis classification (P=0.02) and clinical stage (P=0.037). Furthermore, P-gp was found to significantly correlate with clinical stage (P=0.026). Univariate analysis showed that MRP1 expression was significantly associated with poor survival (c 2 =5.16; P=0.023). Multivariate analysis revealed that lymph node metastasis (P=0.009) and MRP1 overexpression (P=0.023) were significant predictors of poor survival. In the present study, the expression of GLUT-1, P-gp, MRP1 and GST-π in laryngeal carcinomas was investigated, as well as the correlations between these proteins. P-gp was found to significantly correlate with clinical stage, while MRP1 overexpression was significantly associated with poor survival.
Genuine functions of P-glycoprotein (ABCB1).
Mizutani, Takaharu; Masuda, Masatoshi; Nakai, Emi; Furumiya, Kenji; Togawa, Hiroshi; Nakamura, Yutaka; Kawai, Yuko; Nakahira, Keiko; Shinkai, Shigeko; Takahashi, Kazuhiko
2008-02-01
P-glycoprotein (P-gp, ABCB1, MDR1) was recognized as a drug-exporting protein from cancer cells three decade ago. Apart from the multidrug transporter side effects of P-gp, normal physiological functions of P-gp have been reported. P-gp could be responsible for translocating platelet-activating factor (PAF) across the plasma membrane and PAF inhibited drug transport mediated by P-gp in cancer cells. P-gp regulated the translocation of sphingomyelin (SM) and GlcCer, and short chain C(6)-NBD-GlcCer was found in the apical medium of P-gp cells exclusively and not in the basolateral membrane. SM plays an important role in the esterification of cholesterol. High expression of P-gp prevents stem-cell differentiation, leading to the proliferation and amplification of this cell repertoire, and functional P-gp plays a fundamental role in regulating programmed cell death, apoptosis. The transporter function of P-gp is therefore necessary to protect cells from death. P-gp can translocate both C(6)-NBD-PC and C(6)-NBD-PE across the apical membrane. This PC translocation was also confirmed with [(3)H]choline radioactivity. Progesterone is not transported by P-gp, but blocks P-gp-mediated efflux of other drugs and P-gp can mediate the transport of a variety of steroids. Cells transfected with human P-gp esterified more cholesterol. P-gp might also be involved in the transport of cytokines, particularly IL-1beta, IL-2, IL-4 and IFNgamma, out of activated normal lymphocytes into the surrounding medium. P-gp expression is also associated with a volume-activated chloride channel, thus P-gp is bifunctional with both transport and channel regulators. We also present information about P-gp polymorphism and new structural concepts, "gate" and "twist", of the P-gp structure.
Khattar, Sunil K; Palaniyandi, Senthilkumar; Samal, Sweety; LaBranche, Celia C; Montefiori, David C; Zhu, Xiaoping; Samal, Siba K
2015-01-01
The combination of multiple HIV antigens in a vaccine can broaden antiviral immune responses. In this study, we used NDV vaccine strain LaSota to generate rNDV (rLaSota/optGag) expressing human codon optimized p55 Gag protein of HIV-1. We examined the effect of co-immunization of rLaSota/optGag with rNDVs expressing different forms of Env protein gp160, gp120, gp140L [a version of gp140 that lacked cytoplasmic tail and contained complete membrane-proximal external region (MPER)] and gp140S (a version of gp140 that lacked cytoplasmic tail and distal half of MPER) on magnitude and breadth of humoral, mucosal and cellular immune responses in guinea pigs and mice. Our results showed that inclusion of rLaSota/optGag with rNDVs expressing different forms of Env HIV Gag did not affect the Env-specific humoral and mucosal immune responses in guinea pigs and that the potent immune responses generated against Env persisted for at least 13 weeks post immunization. The highest Env-specific humoral and mucosal immune responses were observed with gp140S+optGag group. The neutralizing antibody responses against HIV strains BaL.26 and MN.3 induced by gp140S+optGag and gp160+optGag were higher than those elicited by other groups. Inclusion of Gag with gp160, gp140S and gp140L enhanced the level of Env-specific IFN-γ-producing CD8+ T cells in mice. Inclusion of Gag with gp160 and gp140L also resulted in increased Env-specific CD4+ T cells. The level of Gag-specific CD8+ and CD4+ T cells was also enhanced in mice immunized with Gag along with gp140S and gp120. These results indicate lack of antigen interference in a vaccine containing rNDVs expressing Env and Gag proteins. PMID:25695657
Chiral Thioxanthones as Modulators of P-glycoprotein: Synthesis and Enantioselectivity Studies.
Lopes, Ana; Martins, Eva; Silva, Renata; Pinto, Madalena M M; Remião, Fernando; Sousa, Emília; Fernandes, Carla
2018-03-10
Recently, thioxanthone derivatives were found to protect cells against toxic P-glycoprotein (P-gp) substrates, acting as potent inducers/activators of this efflux pump. The study of new P-gp chiral modulators produced from thioxanthone derivatives could clarify the enantioselectivity of this ABC transporter towards this new class of modulators. The aim of this study was to evaluate the P-gp modulatory ability of four enantiomeric pairs of new synthesized chiral aminated thioxanthones (ATxs) 1 - 8 , studying the influence of the stereochemistry on P-gp induction/ activation in cultured Caco-2 cells. The data displayed that all the tested compounds (at 20 μM) significantly decreased the intracellular accumulation of a P-gp fluorescent substrate (rhodamine 123) when incubated simultaneously for 60 min, demonstrating an increased activity of the efflux, when compared to control cells. Additionally, all of them except ATx 3 (+), caused similar results when the accumulation of the P-gp fluorescent substrate was evaluated after pre-incubating cells with the test compounds for 24 h, significantly reducing the rhodamine 123 intracellular accumulation as a result of a significant increase in P-gp activity. However, ATx 2 (-) was the only derivative that, after 24 h of incubation, significantly increased P-gp expression. These results demonstrated a significantly increased P-gp activity, even without an increase in P-gp expression. Therefore, ATxs 1 - 8 were shown to behave as P-gp activators. Furthermore, no significant differences were detected in the activity of the protein when comparing the enantiomeric pairs. Nevertheless, ATx 2 (-) modulates P-gp expression differently from its enantiomer, ATx 1 (+). These results disclosed new activators and inducers of P-gp and highlight the existence of enantioselectivity in the induction mechanism.
Chen, F; Zhu, L; Qiu, H; Qin, S
2017-04-01
One hundred and fifty 7-day-old Arbor Acres broilers were randomly assigned into five groups: group 1 served as a control that was fed a basal diet without selenium (Se) supplementation; groups 2, 3 and 4 were fed the basal diet supplemented with 0.15, 0.5 and 1.5 mg Se as Se-enriched Saccharomyces cerevisiae (SSC) per kg of diet; and group 5 was fed the basal diet supplemented with 0.15 mg per kg of Se as sodium selenite (SS). Growth performance, glutathione peroxidase (GP X ) and superoxide dismutase (SOD) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content in plasma and liver, and cellular glutathione peroxidase (GP X -1) and phospholipid hydroperoxide glutathione peroxidase (GP X -4) mRNA levels in liver were determined. Compared with group 1, groups 2-4 exhibited higher body weights (p < 0.05), lower feed/gain ratios, and higher GP X activities in plasma (p < 0.05) and GP X and SOD activities and GP X -1 and GP X -4 mRNA levels in liver (p < 0.05). Compared with group 5, group 2 exhibited higher GP X activity in plasma on day 21 (p < 0.05). Compared with group 2 and 5, group 3 exhibited lower MDA content in plasma on day 7 (p < 0.05), higher GP X activity in plasma, SOD activity and GP X -1 mRNA levels in liver on day 14 and 21 (p < 0.05), and higher GP X -4 mRNA levels on day 14 (p < 0.05). Compared with group 4, group 3 exhibited lower MDA contents in plasma on day 14 (p < 0.05) and in liver on day 21 (p < 0.05), higher T-AOC in plasma and higher GP X -1 mRNA levels on day 14 and 21 (p < 0.05), and higher SOD activity in plasma and higher SOD and GP X activities in liver on day 21 (p < 0.05). Thus, SSC improves growth and antioxidant status of broilers; the short-term bioavailability of SS was faster than that of SSC, but the long-term bioavailability of SSC was greater than SS. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Cho, Hyun-Jong; Choi, Min-Koo; Lin, Hongxia; Kim, Jung Sun; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk
2011-03-01
P-glycoprotein (P-gp) is an efflux transporter encoded by the multidrug resistance gene (MDR1), which is also known as the human ABCB1 gene (ATP-binding cassette, subfamily-B). The objectives of this study were to investigate the expression of P-gp in passaged primary human nasal epithelial (HNE) cell monolayer, cultured by the air-liquid interface (ALI) method, and to evaluate its feasibility as an in-vitro model for cellular uptake and transport studies of P-gp substrates. Reverse transcriptase-polymerase chain reaction (RT-PCR) was performed to verify the expression of the MDR1 gene. Transport and cellular uptake studies with P-gp substrate (rhodamine123) and P-gp inhibitors (verapamil and cyclosporin A) were conducted to assess the functional activity of P-gp in HNE cell monolayers cultured by the ALI method. MDR1 gene expression in primary HNE cell monolayers cultured by ALI method was confirmed by RT-PCR. The apparent permeability coefficient (P(app) ) of the P-gp substrate (rhodamine123) in the basolateral to apical (B to A) direction was 6.9 times higher than that in the apical to basolateral (A to B) direction. B to A transport was saturated at high rhodamine123 concentration, and the treatment of P-gp inhibitors increased cellular uptake of rhodamine123 in a time- and concentration-dependent manner. These results support the MDR1 gene expression and the functional activity of P-gp in primary HNE cell monolayers cultured by the ALI method. © 2011 The Authors. JPP © 2011 Royal Pharmaceutical Society.
Thompson, Brandon J.; Sanchez-Covarrubias, Lucy; Zhang, Yifeng; Laracuente, Mei-Li; Vanderah, Todd W.; Ronaldson, Patrick T.; Davis, Thomas P.
2013-01-01
Effective pharmacologic treatment of pain with opioids requires that these drugs attain efficacious concentrations in the central nervous system (CNS). A primary determinant of CNS drug permeation is P-glycoprotein (P-gp), an endogenous blood-brain barrier (BBB) efflux transporter that is involved in brain-to-blood transport of opioid analgesics (i.e., morphine). Recently, the nuclear receptor constitutive androstane receptor (CAR) has been identified as a regulator of P-gp functional expression at the BBB. This is critical to pharmacotherapy of pain/inflammation, as patients are often administered acetaminophen (APAP), a CAR-activating ligand, in conjunction with an opioid. Our objective was to investigate, in vivo, the role of CAR in regulation of P-gp at the BBB. Following APAP treatment, P-gp protein expression was increased up to 1.4–1.6-fold in a concentration-dependent manner. Additionally, APAP increased P-gp transport of BODIPY-verapamil in freshly isolated rat brain capillaries. This APAP-induced increase in P-gp expression and activity was attenuated in the presence of CAR pathway inhibitor okadaic acid or transcriptional inhibitor actinomycin D, suggesting P-gp regulation is CAR-dependent. Furthermore, morphine brain accumulation was enhanced by P-gp inhibitors in APAP-treated animals, suggesting P-gp–mediated transport. A warm-water (50°C) tail-flick assay revealed a significant decrease in morphine analgesia in animals treated with morphine 3 or 6 hours after APAP treatment, as compared with animals treated concurrently. Taken together, our data imply that inclusion of APAP in a pain treatment regimen activates CAR at the BBB and increases P-gp functional expression, a clinically significant drug-drug interaction that modulates opioid analgesic efficacy. PMID:24019224
Membrane microparticles mediate transfer of P-glycoprotein to drug sensitive cancer cells.
Bebawy, M; Combes, V; Lee, E; Jaiswal, R; Gong, J; Bonhoure, A; Grau, G E R
2009-09-01
Multidrug resistance (MDR), a significant impediment to the successful treatment of cancer clinically, has been attributed to the overexpression of P-glycoprotein (P-gp), a plasma membrane multidrug efflux transporter. P-gp maintains sublethal intracellular drug concentrations by virtue of its drug efflux capacity. The cellular regulation of P-gp expression is currently known to occur at either pre- or post-transcriptional levels. In this study, we identify a 'non-genetic' mechanism whereby microparticles (MPs) serve as vectors in the acquisition and spread of MDR. MPs isolated from drug-resistant cancer cells (VLB(100)) were co-cultured with drug sensitive cells (CCRF-CEM) over a 4 h period to allow for MP binding and P-gp transfer. Presence of P-gp on MPs was established using flow cytometry (FCM) and western blotting. Whole-cell drug accumulation assays using rhodamine 123 and daunorubicin (DNR) were carried out to validate the transfer of functional P-gp after co-culture. We establish that MPs shed in vitro from drug-resistant cancer cells incorporate cell surface P-gp from their donor cells, effectively bind to drug-sensitive recipient cells and transfer functional P-gp to the latter. These findings serve to substantially advance our understanding of the molecular basis for the emergence of MDR in cancer clinically and lead to new treatment strategies which target and inhibit MP mediated transfer of P-gp during the course of treatment.
Valton, Emeline; Amblard, Christian; Wawrzyniak, Ivan; Penault-Llorca, Frederique; Bamdad, Mahchid
2013-12-05
Blood is a site of physiological transport for a great variety of molecules, including xenobiotics. Blood cells in aquatic vertebrates, such as fish, are directly exposed to aquatic pollution. P-gp are ubiquitous "membrane detoxification proteins" implicated in the cellular efflux of various xenobiotics, such as polycyclic aromatic hydrocarbons (PAHs), which may be pollutants. The existence of this P-gp detoxification system inducible by benzo [a] pyrene (BaP), a highly cytotoxic PAH, was investigated in the nucleated erythrocytes of brown trout. Western blot analysis showed the expression of a 140-kDa P-gp in trout erythrocytes. Primary cultures of erythrocytes exposed to increasing concentrations of BaP showed no evidence of cell toxicity. Yet, in the same BaP-treated erythrocytes, P-gp expression increased significantly in a dose-dependent manner. Brown trout P-gp erythrocytes act as membrane defence mechanism against the pollutant, a property that can be exploited for future biomarker development to monitor water quality.
Joseph, Joan; Fernández-Lloris, Raquel; Pezzat, Elías; Saubi, Narcís; Cardona, Pere-Joan; Mothe, Beatriz; Gatell, Josep Maria
2010-01-01
Mycobacterium bovis Bacillus Calmette-Guérin (BCG) as a live vector of recombinant bacterial vaccine is a promising system to be used. In this study, we evaluate the disrupted expression of heterologous HIV-1gp120 gene in BCG Pasteur host strain using replicative vectors pMV261 and pJH222. pJH222 carries a lysine complementing gene in BCG lysine auxotrophs. The HIV-1 gp120 gene expression was regulated by BCG hsp60 promoter (in plasmid pMV261) and Mycobacteria spp. α-antigen promoter (in plasmid pJH222). Among 14 rBCG:HIV-1gp120 (pMV261) colonies screened, 12 showed a partial deletion and two showed a complete deletion. However, deletion was not observed in all 10 rBCG:HIV-1gp120 (pJH222) colonies screened. In this study, we demonstrated that E. coli/Mycobacterial expression vectors bearing a weak promoter and lysine complementing gene in a recombinant lysine auxotroph of BCG could prevent genetic rearrangements and disruption of HIV 1gp120 gene expression, a key issue for engineering Mycobacterial based vaccine vectors. PMID:20617151
Deng, Lulu; Li, Qin; Lin, Guixian; Huang, Dan; Zeng, Xuxin; Wang, Xinwei; Li, Ping; Jin, Xiaobao; Zhang, Haifeng; Li, Chunmei; Chen, Lixin; Wang, Liwei; Huang, Shulin; Shao, Hongwei; Xu, Bin; Mao, Jianwen
2016-01-01
P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl- current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions. PMID:26877779
Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Patton, Dorothy; Rohan, Lisa
2014-11-01
Antiretroviral drug absorption and disposition in cervicovaginal tissue is important for the effectiveness of vaginally or orally administered drug products in preexposure prophylaxis (PrEP) of HIV-1 sexual transmission to women. Therefore, it is imperative to understand critical determinants of cervicovaginal tissue pharmacokinetics. This study aimed to examine the mRNA expression and protein localization of three efflux transporters, P-glycoprotein (P-gp), multidrug resistance-associated protein 4 (MRP4), and breast cancer resistance protein (BCRP), in the lower genital tract of premenopausal women and pigtailed macaques. Along the human lower genital tract, the three transporters were moderately to highly expressed compared to colorectal tissue and liver, as revealed by real-time reverse transcriptase polymerase chain reaction (RT-PCR). In a given genital tract segment, the transporter with the highest expression level was either BCRP or P-gp, while MRP4 was always expressed at the lowest level among the three transporters tested. The immunohistochemical staining showed that P-gp and MRP4 were localized in multiple cell types including epithelial cells and vascular endothelial cells. BCRP was predominantly localized in the vascular endothelial cells. Differences in transporter mRNA level and localization were observed among endocervix, ectocervix, and vagina. Compared to human tissues, the macaque cervicovaginal tissues displayed comparable expression and localization patterns of the three transporters, although subtle differences were observed between the two species. The role of these cervicovaginal transporters in drug absorption and disposition warrants further studies. The resemblance between human and pigtailed macaque in transporter expression and localization suggests the utility of the macaque model in the studies of human cervicovaginal transporters.
Xin Liu, Gong; Derst, Christian; Schlichthörl, Günter; Heinen, Steffen; Seebohm, Guiscard; Brüggemann, Andrea; Kummer, Wolfgang; Veh, Rüdiger W; Daut, Jürgen; Preisig-Müller, Regina
2001-01-01
The aim of the study was to compare the properties of cloned Kir2 channels with the properties of native rectifier channels in guinea-pig (gp) cardiac muscle. The cDNAs of gpKir2.1, gpKir2.2, gpKir2.3 and gpKir2.4 were obtained by screening a cDNA library from guinea-pig cardiac ventricle. A partial genomic structure of all gpKir2 genes was deduced by comparison of the cDNAs with the nucleotide sequences derived from a guinea-pig genomic library. The cell-specific expression of Kir2 channel subunits was studied in isolated cardiomyocytes using a multi-cell RT-PCR approach. It was found that gpKir2.1, gpKir2.2 and gpKir2.3, but not gpKir2.4, are expressed in cardiomyocytes. Immunocytochemical analysis with polyclonal antibodies showed that expression of Kir2.4 is restricted to neuronal cells in the heart. After transfection in human embryonic kidney cells (HEK293) the mean single-channel conductance with symmetrical K+ was found to be 30.6 pS for gpKir2.1, 40.0 pS for gpKir2.2 and 14.2 pS for Kir2.3. Cell-attached measurements in isolated guinea-pig cardiomyocytes (n = 351) revealed three populations of inwardly rectifying K+ channels with mean conductances of 34.0, 23.8 and 10.7 pS. Expression of the gpKir2 subunits in Xenopus oocytes showed inwardly rectifying currents. The Ba2+ concentrations required for half-maximum block at -100 mV were 3.24 μm for gpKir2.1, 0.51 μm for gpKir2.2, 10.26 μm for gpKir2.3 and 235 μm for gpKir2.4. Ba2+ block of inward rectifier channels of cardiomyocytes was studied in cell-attached recordings. The concentration and voltage dependence of Ba2+ block of the large-conductance inward rectifier channels was virtually identical to that of gpKir2.2 expressed in Xenopus oocytes. Our results suggest that the large-conductance inward rectifier channels found in guinea-pig cardiomyocytes (34.0 pS) correspond to gpKir2.2. The intermediate-conductance (23.8 pS) and low-conductance (10.7 pS) channels described here may correspond to gpKir2.1 and gpKir2.3, respectively. PMID:11283229
Contreras, Marcela L; de la Fuente-Ortega, Erwin; Vargas-Roberts, Sofía; Muñoz, Daniela C; Goic, Carolina A; Haeger, Paola A
2017-01-01
Ethanol exposure increases oxidative stress in developing organs, including the brain. Antioxidant treatment during maternal ethanol ingestion improves behavioral deficits in rodent models of fetal alcohol spectrum disorder (FASD). However, the impact of general antioxidant treatment in their adult offspring and the Specific Reactive Species (ROS)-dependent mechanism, are not fully understood. We hypothesized that pre and early postnatal ethanol exposure (PEE) modifies redox homeostasis, in particular NOX2 function during reward signaling in the mesocorticolimbic pathway, which reinforces the effects of alcohol. We developed a FASD rat model which was evaluated during adolescence (P21) and adulthood (P70). We first studied whether redox homeostasis is affected in PEE animals, by analyzing mRNA expression of SOD1, CAT, and Gpx1. We found that PEE reduced the mRNA levels of these three anti-oxidant enzymes in PFC and HIPP at P21 and in the VTA at P70. We also analyzed basal mRNA and protein expression of NOX2 subunits such as gp91phox, p22 phox, and p47 phox, in mesocorticolimbic brain areas of PEE rat brains. At P21, gp91 phox, and p47 phox levels in the VTA were decreased. At P70, gp91 phox mRNA levels was decreased in HIPP and both mRNA and protein levels were decreased in PFC. Since NOX2 is regulated by the N-methyl-D-aspartate Receptor (NMDAR), we analyzed NMDAR mRNA expression and found differential expression of NMDAR subunits (NR1 and NR2B) in the PFC that was age dependent, with levels decreased at P21 and increased at P70. The analysis also revealed decreased NR2B mRNA expression in HIPP and VTA at P70. Offspring from maternal ethanol users consumed 25% more ethanol in a free choice alcohol consumption test than control rats, and showed place preference for an alcohol-paired compartment. In vivo inhibition of NOX2 using apocynin in drinking water, or infusion of blocked peptide gp91 phox ds in the VTA normalized alcohol place preference, suggesting that NOX2 plays an important role in addictive like behavior. Taken together, PEE significantly affects the expression of antioxidant enzymes, NOX2, NMDAR in an age, and brain region dependent manner. Moreover, we demonstrate that NOX2 regulates alcohol seeking behavior.
Ghanem, Carolina I; Rudraiah, Swetha; Bataille, Amy M; Vigo, María B; Goedken, Michael J; Manautou, José E
2015-04-01
Changes in expression of liver ABC transporters have been described during acute APAP intoxication. However, the effect of APAP on brain ABC transporters is poorly understood. The aim of this study was to evaluate the effect of APAP on brain ABC transporters expression and the role of the oxidative stress sensor Nrf2. Male C57BL/6J mice were administered APAP (400mg/kg) for analysis of brain mRNA and protein expression of Mrp1-6, Bcrp and P-gp. The results show induction of P-gp, Mrp2 and Mrp4 proteins, with no changes in Bcrp, Mrp1 or Mrp5-6. The protein values were accompanied by corresponding changes in mRNA levels. Additionally, brain Nrf2 nuclear translocation and expression of two Nrf2 target genes, quinone oxidoreductase 1 (Nqo1) and Hemoxygenase 1 (Ho-1), was evaluated at 6, 12 and 24h after APAP treatment. Nrf2 nuclear content increased by 58% at 12h after APAP along with significant increments in mRNA and protein expression of Nqo1 and Ho-1. Furthermore, APAP treated Nrf2 knockout mice did not increase mRNA or protein expression of Mrp2 and Mrp4 as observed in wildtypes. In contrast, P-gp induction by APAP was observed in both genotypes. In conclusion, acute APAP intoxication induces protein expression of brain P-gp, Mrp2 and Mrp4. This study also suggests that brain changes in Mrp2 and Mrp4 expression may be due to in situ Nrf2 activation by APAP, while P-gp induction is independent of Nrf2 function. The functional consequences of these changes in brain ABC transporters by APAP deserve further attention. Copyright © 2015 Elsevier Inc. All rights reserved.
Zhang, Ye; Zhou, Ting; Duan, Jingjing; Xiao, Zhijun; Li, Guihua; Xu, Feng
2013-10-01
Chemotherapy is important in the systematic treatment of breast cancer. While multidrug resistance (MDR) is the main obstacle in chemotherapy, a reversal reagent with high reversal effect but low toxicity is the hotspot issue at present to overcome MDR. Antidepressant fluoxetine (FLX) is a potential new highly effective chemosensitizer, however, the possible mechanism is unclear. In this study, the effect of FLX on multidrug resistance mediated by P-glycoprotein (P-gp) and glutathione S-transferase-pi (GST-π) were researched in resistant/sensitive breast cancer cells. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to determine the cells viability after being incubated with FLX/Adriamycin (ADM)/Paclitaxel (PTX) alone or FLX-ADM, FLX-PTX combination. Western blot was performed to assay the expression of P-gp and GST-π proteins. Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qRT-PCR) were performed to assay the level of MDR1 mRNA. The results showed that pre-treatment with FLX enhance cytotoxicity significantly both on resistant and sensitive cells, downregulated the expression of P-gp and GST-π proteins in resistance cells, decreased the MDR1 mRNA by FLX-PTX combination only. No P-gp and GST-π were detected in sensitive cells. Our research thus indicated that FLX reverse the breast cancer cell's resistance and enhance the chemosensitivity by regulating P-gp and GST-π levels. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Kikuchi, Hidehiko; Mimuro, Hitomi; Kuribayashi, Futoshi
2018-01-01
The membrane bound cytochrome b 558 composed of gp91-phox and p22-phox proteins, and cytosolic proteins p40-, p47-and p67-phox are important components of superoxide (O 2 - )-generating system in phagocytes. Here, we describe that resveratrol, a pleiotropic phytochemical belonging to the stilbenoids, dramatically activates the O 2 - -generating system during retinoic acid (RA)-induced differentiation of human monoblastic leukemia U937 cells to macrophage-like cells. When U937 cells were cultured in the presence of RA and resveratrol, the O 2 - -generating activity increased more than 5-fold compared with that in the absence of the latter. Semiquantitative RT-PCR showed that co-treatment with RA and resveratrol strongly enhanced transcription of the gp91-phox compared with those of the RA-treatment only. On the other hand, immunoblot analysis revealed that co-treatment with RA and resveratrol caused remarkable accumulation of protein levels of gp91-phox (to 4-fold), p22-phox (to 5-fold) and p47-phox (to 4-fold) compared with those of the RA-treatment alone. In addition, ChIP assay suggested that resveratrol participates in enhancing the gene expression of gp91-phox via promoting acetylation of Lys-9 residues and Lys-14 residues of histone H3 within chromatin around the promoter regions of the gene. These results suggested that resveratrol strongly enhances the RA-induced O 2 - -generating activity via up-regulation of gp91-phox gene expression in U937 cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Abou-Donia, Mohamed B; El-Masry, Eman M; Abdel-Rahman, Ali A; McLendon, Roger E; Schiffman, Susan S
2008-01-01
Splenda is comprised of the high-potency artificial sweetener sucralose (1.1%) and the fillers maltodextrin and glucose. Splenda was administered by oral gavage at 100, 300, 500, or 1000 mg/kg to male Sprague-Dawley rats for 12-wk, during which fecal samples were collected weekly for bacterial analysis and measurement of fecal pH. After 12-wk, half of the animals from each treatment group were sacrificed to determine the intestinal expression of the membrane efflux transporter P-glycoprotein (P-gp) and the cytochrome P-450 (CYP) metabolism system by Western blot. The remaining animals were allowed to recover for an additional 12-wk, and further assessments of fecal microflora, fecal pH, and expression of P-gp and CYP were determined. At the end of the 12-wk treatment period, the numbers of total anaerobes, bifidobacteria, lactobacilli, Bacteroides, clostridia, and total aerobic bacteria were significantly decreased; however, there was no significant treatment effect on enterobacteria. Splenda also increased fecal pH and enhanced the expression of P-gp by 2.43-fold, CYP3A4 by 2.51-fold, and CYP2D1 by 3.49-fold. Following the 12-wk recovery period, only the total anaerobes and bifidobacteria remained significantly depressed, whereas pH values, P-gp, and CYP3A4 and CYP2D1 remained elevated. These changes occurred at Splenda dosages that contained sucralose at 1.1-11 mg/kg (the US FDA Acceptable Daily Intake for sucralose is 5 mg/kg). Evidence indicates that a 12-wk administration of Splenda exerted numerous adverse effects, including (1) reduction in beneficial fecal microflora, (2) increased fecal pH, and (3) enhanced expression levels of P-gp, CYP3A4, and CYP2D1, which are known to limit the bioavailability of orally administered drugs.
Igboeli, Okechukwu O; Burka, John F; Fast, Mark D
2014-06-01
Parasitic sea lice are a major challenge for salmon aquaculture. This is especially due to the recent development of resistance to emamectin benzoate (EMB) in the parasite. We investigated: (1) whether EMB treatment success in Grand Manan, Bay of Fundy, NB, Canada can be explained through EMB bioassay and P-glycoprotein (P-gp) mRNA expression studies; (2) if other populations of sea lice not under EMB selective pressure possess similar EMB sensitivity as Grand Manan sea lice populations; and (3) the heritability of EMB resistance in Lepeophtheirus salmonis. EMB bioassay results indicated population, species, sex and temporal differences in EMB EC50 values. RT-qPCR analyses revealed population and sex differences in P-gp mRNA levels, correlating with the bioassay results. Laboratory-reared sea lice maintained their EMB sensitivity status up to the F3 generation. Caligus elongatus, collected from Grand Manan showed more than twofold lower EMB EC50 values compared with L. salmonis collected from the same site. Concurrent exposure to EMB and verapamil yielded no increase in C. elongatus sensitivity to the parasiticide. Sea lice bioassay and P-gp mRNA studies can be used to track EMB resistance and sex differences in EMB sensitivity and P-gp mRNA levels exist in the parasite. © 2013 Society of Chemical Industry.
Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C
2017-10-01
P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Chuan; Li, Huaying; Luo, Chunyan; Li, Yifei; Zhang, Yi; Yun, Ding; Mu, Dezhi; Zhou, Kaiyu; Hua, Yimin
2015-10-01
Placental P-glycoprotein (P-gp) plays a significant role in controlling digoxin transplacental rate. Investigations on P-gp regulation in placenta of women with different pregnant pathology are of great significance to the individualized transplacental digoxin treatment for fetal heart failure (FHF). This study aimed to explore the effect of maternal obesity on the expression and functionality of placental P-gp both in human and in mice. Placenta tissues from obese and lean women were collected. Female C57BL mice were fed with either a normal chow diet or a high-fat diet for 12 weeks before mating and throughout pregnancy. Maternal plasma glucose, HDL-C, LDL-C, TC, TGs, insulin, IL-1β, IL-6 and TNF-α concentrations was detected. Placental ABCB1/Abcb1a/Abcb1b/IL-1β/IL-6/TNF-α mRNA and P-gp/IL-1β/IL-6/TNF-α protein expression were determined by real-time quantitative PCR and western-blot, respectively. Maternal plasma and fetal-unit digoxin concentrations were detected by a commercial kit assay. Both ABCB1 gene mRNA and protein expression of obesity group was significantly lower than that of control group in human. The high-fat dietary intervention resulted in an overweight phenotype, a significant increased Lee's index, higher levels of plasma glucose, HDL-C, LDL-C, insulin and TGs, increased peri-renal and peri-reproductive gland adipose tissue weight, and larger size of adipose cell. Compared with control group at the same gestational day (E12.5, E15.5, E17.5), placental Abcb1a mRNA and P-gp expression of obese group were significantly decreased in mice, while digoxin transplacental rates were significantly increased. Higher maternal plasma IL-1β/TNF-α concentrations and placental IL-1β/TNF-α expression were observed in obesity groups in comparison with control group at the same gestational age. Maternal obesity could inhibit placental P-gp expression and its functionality both in human and in mice, which might be resulted from a heightened inflammatory response. Copyright © 2015 Elsevier Ltd. All rights reserved.
Khattar, Sunil K.; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C.; Montefiori, David C.
2015-01-01
ABSTRACT Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. PMID:26199332
Yue, Grace G L; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K M; Hon, Po-Ming; Lee, Mavis Y H; Kennelly, Edward J; Deng, Gary; Yeung, Simon K; Cassileth, Barrie R; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B S
2012-03-01
The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases.
Yue, Grace G.L.; Cheng, Sau-Wan; Yu, Hua; Xu, Zi-Sheng; Lee, Julia K.M.; Hon, Po-Ming; Lee, Mavis Y.H.; Kennelly, Edward J.; Deng, Gary; Yeung, Simon K.; Cassileth, Barrie R.; Fung, Kwok-Pui; Leung, Ping-Chung
2012-01-01
Abstract The rhizome of Curcuma longa (turmeric) is often used in Asia as a spice and as a medicine. Its most well-studied component, curcumin, has been shown to exhibit poor bioavailability in animal studies and clinical trials. We hypothesized that the presence of lipophilic components (e.g., turmerones) in turmeric extract would affect the absorption of curcumin. The effects of turmerones on curcumin transport were evaluated in human intestinal epithelial Caco-2 cells. The roles of turmerones on P-glycoprotein (P-gp) activities and mRNA expression were also evaluated. Results showed that in the presence of α- and aromatic turmerones, the amount of curcumin transported into the Caco-2 cells in 2 hours was significantly increased. α-Turmerone and verapamil (a P-gp inhibitor) significantly inhibited the efflux of rhodamine-123 and digoxin (i.e., inhibited the activity of P-gp). It is interesting that aromatic turmerone significantly increased the rhodamine-123 efflux and P-gp (MDR1 gene) mRNA expression levels. The effects of α- and aromatic turmerones on curcumin transport as well as P-gp activities were shown here for the first time. The presence of turmerones did affect the absorption of curcumin in vitro. These findings suggest the potential use of turmeric extract (including curcumin and turmerones), rather than curcumin alone, for treating diseases. PMID:22181075
Min, Hongping; Niu, Miaomiao; Zhang, Weilin; Yan, Jia; Li, Jiachang; Tan, Xiying; Li, Bo; Su, Mengxiang; Di, Bin; Yan, Fang
2017-01-01
Development of multidrug resistance (MDR) is a continuous clinical challenge partially due to the overexpression of P-glycoprotein (P-gp) for chronic myelogenous leukemia (CML) patients. Herein, we evaluated the inhibitory potency of emodin, a natural anthraquinone derivative isolated from Rheum palmatum L, on P-gp in P-gp positive K562/ADM cells. Competition experiments combined with molecular docking analysis were utilized to investigate the binding modes between emodin and binding sites of P-gp. Emodin reversed adriamycin resistance in K562/ADM cells accompanied with the decrease of P-gp protein expression, further increasing the uptake of rhodamine123 in both K562/ADM and Caco-2 cells, indicating the inhibition of P-gp efflux function. Moreover, when incubated with emodin under different conditions where P-gp was inhibited, K562/ADM cells displayed increasing intracellular uptake of emodin, suggesting that emodin may be the potential substrate of P-gp. Importantly, rhodamine 123 could increase the Kintrinsic (Ki) value of emodin linearly, whereas, verapamil could not, implying that emodin competitively bound to the R site of P-gp and noncompetition existed between emodin and verapamil at the M site, in a good accordance with the results of molecular docking that emodin bound to the R site of P-gp with higher affinity. Based on our results, we suggest that emodin might be used to modulate P-gp function and expression. PMID:29121121
Min, Hongping; Niu, Miaomiao; Zhang, Weilin; Yan, Jia; Li, Jiachang; Tan, Xiying; Li, Bo; Su, Mengxiang; Di, Bin; Yan, Fang
2017-01-01
Development of multidrug resistance (MDR) is a continuous clinical challenge partially due to the overexpression of P-glycoprotein (P-gp) for chronic myelogenous leukemia (CML) patients. Herein, we evaluated the inhibitory potency of emodin, a natural anthraquinone derivative isolated from Rheum palmatum L, on P-gp in P-gp positive K562/ADM cells. Competition experiments combined with molecular docking analysis were utilized to investigate the binding modes between emodin and binding sites of P-gp. Emodin reversed adriamycin resistance in K562/ADM cells accompanied with the decrease of P-gp protein expression, further increasing the uptake of rhodamine123 in both K562/ADM and Caco-2 cells, indicating the inhibition of P-gp efflux function. Moreover, when incubated with emodin under different conditions where P-gp was inhibited, K562/ADM cells displayed increasing intracellular uptake of emodin, suggesting that emodin may be the potential substrate of P-gp. Importantly, rhodamine 123 could increase the Kintrinsic (Ki) value of emodin linearly, whereas, verapamil could not, implying that emodin competitively bound to the R site of P-gp and noncompetition existed between emodin and verapamil at the M site, in a good accordance with the results of molecular docking that emodin bound to the R site of P-gp with higher affinity. Based on our results, we suggest that emodin might be used to modulate P-gp function and expression.
Du, Yijun; Lu, Yu; Wang, Xinglong; Qi, Jing; Liu, Jiyu; Hu, Yue; Li, Feng; Wu, Jiaqiang; Guo, Lihui; Liu, Junzhen; Tao, Haiying; Sun, Wenbo; Chen, Lei; Cong, Xiaoyan; Ren, Sufang; Shi, Jianli; Li, Jun; Wang, Jinbao; Huang, Baohua; Wan, Renzhong
2014-01-01
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) had caused catastrophic losses in swine industry in China. The current inactivated vaccine provided only limited protection, and the attenuated live vaccine could protect piglets against the HP-PRRSV but there was a possibility that the attenuated virus returned to high virulence. In this study, the eukaryotic expression vector pVAX1© was modified under the control of rabbit β-globin intron II gene and the modified vector pMVAX1© was constructed. Porcine interleukin-2 (IL-2) and GP3-GP5 fusion protein of HP-PRRSV strain SD-JN were highly expressed by pMVAX1©. Mice inoculated with pMVAX1©-GP35 developed significantly higher PRRSV-specific antibody responses and T cell proliferation than those vaccinated with pVAX1©-GP35. pMVAX1©-GP35 was selected as PRRS DNA vaccine candidate and co-administrated with pVAX1©-IL-2 or pMVAX1©-IL-2 in pigs. pMVAX1©-IL-2+pMVAX1©-GP35 could provide enhanced PRRSV-specific antibody responses, T cell proliferation, Th1-type and Th2-type cytokine responses and CTL responses than pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35. Following homologous challenge with HP-PRRSV strain SD-JN, similar with attenuated PRRS vaccine group, pigs inoculated with pMVAX1©-IL-2+pMVAX1©-GP35 showed no clinical signs, almost no lung lesions and no viremia, as compared to those in pMVAX1©-GP35 and pVAX1©-IL-2+pMVAX1©-GP35 groups. It indicated that pMVAX1©-IL-2 effectively increases humoral and cell mediated immune responses of pMVAX1©-GP35. Co-administration of pMVAX1©-IL-2 and pMVAX1©-GP35 might be attractive candidate vaccines for preventing HP-PRRSV infections.
NASA Astrophysics Data System (ADS)
Cho, Hongseok; Lee, Hwa-Youn; Han, Mun; Choi, Jong-Ryul; Ahn, Sanghyun; Lee, Taekwan; Chang, Yongmin; Park, Juyoung
2016-08-01
Multi-drug resistant efflux transporters found in Blood-Brain Barrier (BBB) acts as a functional barrier, by pumping out most of the drugs into the blood. Previous studies showed focused ultrasound (FUS) induced microbubble oscillation can disrupt the BBB by loosening the tight junctions in the brain endothelial cells; however, no study was performed to investigate its impact on the functional barrier of the BBB. In this study, the BBB in rat brains were disrupted using the MRI guided FUS and microbubbles. The immunofluorescence study evaluated the expression of the P-glycoprotein (P-gp), the most dominant multi-drug resistant protein found in the BBB. Intensity of the P-gp expression at the BBB disruption (BBBD) regions was significantly reduced (63.2 ± 18.4%) compared to the control area. The magnitude of the BBBD and the level of the P-gp down-regulation were significantly correlated. Both the immunofluorescence and histologic analysis at the BBBD regions revealed no apparent damage in the brain endothelial cells. The results demonstrate that the FUS and microbubbles can induce a localized down-regulation of P-gp expression in rat brain. The study suggests a clinically translation of this method to treat neural diseases through targeted delivery of the wide ranges of brain disorder related drugs.
McInerney, Mitchell P; Volitakis, Irene; Bush, Ashley I; Banks, William A; Short, Jennifer L; Nicolazzo, Joseph A
2018-03-05
Biometals such as zinc and copper have been shown to affect tight junction expression and subsequently blood-brain barrier (BBB) integrity. Whether these biometals also influence the expression and function of BBB transporters such as P-glycoprotein (P-gp) however is currently unknown. Using the immortalised human cerebral microvascular endothelial (hCMEC/D3) cell line, an in-cell western assay (alongside western blotting) assessed relative P-gp expression after treatment with the metal ionophore clioquinol and biometals zinc and copper. The fluorescent P-gp substrate rhodamine-123 was employed to observe functional modulation, and inductively coupled plasma mass spectrometry (ICP-MS) provided information on biometal trafficking. A 24-h treatment with clioquinol, zinc and copper (0.5, 0.5 and 0.1 μM) induced a significant upregulation of P-gp (1.7-fold) assessed by in-cell western and this was confirmed with western blotting (1.8-fold increase). This same treatment resulted in a 23% decrease in rhodamine-123 accumulation over a 1 h incubation. ICP-MS demonstrated that while t8his combination treatment had no effect on intracellular zinc concentrations, the treatment significantly enhanced bioavailable copper (4.6-fold). Enhanced delivery of copper to human brain microvascular endothelial cells is associated with enhanced expression and function of the important efflux pump P-gp, which may provide therapeutic opportunities for P-gp modulation.
Silva, Renata; Palmeira, Andreia; Carmo, Helena; Barbosa, Daniel José; Gameiro, Mariline; Gomes, Ana; Paiva, Ana Mafalda; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remião, Fernando
2015-10-01
The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro
P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNAmore » expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. -- Highlights: •Adenovirus vector infection induced P-gp mRNA expression in three NSCLC cell lines. •Adenovirus vector infection enhanced P-gp-mediated doxorubicin efflux from the cells. •The increase of P-gp was not mediated by nuclear receptors (PXR, CAR) or COX-2.« less
Effects of naringin on learning and memory dysfunction induced by gp120 in rats.
Qin, Shanshan; Chen, Qiang; Wu, Hui; Liu, Chenglong; Hu, Jing; Zhang, Dalei; Xu, Changshui
2016-06-01
The aim of the present study was to investigate the effects of naringin on learning and memory dysfunction induced by HIV-1-enveloped protein gp120 in rats, and to identify its potential mechanisms of action. Learning and memory ability was evaluated via Morris water maze test, P2X7 receptor and P65 protein expressions in the rat hippocampus were detected by western blot analysis, and P2X7 mRNA expression in the hippocampus was measured by RT-PCR. We also recorded P2X7 agonist BzATP-activated current in the hippocampus via patch clamp technique. The results showed that naringin treatment (30mg/kg/day) markedly decreased the escape latency and target platform errors of rats treated with gp120 (50ng/day), and further, that naringin treatment significantly decreased the expression of P2X7 and P65 protein and P2X7 mRNA in the hippocampus of gp120-treated rats. In addition, naringin treatment reduced BzATP-activated current in the hippocampus of gp120-treated rats. These results altogether demonstrated that naringin can improve gp120-induced learning and memory dysfunction via mechanisms involving the inhibition of P2X7 expression in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.
Mohan, Hosahalli K; Routledge, Thomas; Cane, Paul; Livieratos, Lefteris; Ballinger, James R; Peters, Adrien M
2016-09-01
Purpose To examine the relation between the lung elimination rate of inhaled technetium 99m ((99m)Tc)-sestamibi and immunohistochemical expression of bronchopulmonary multidrug resistance protein 1 (MRP1) and permeability glycoprotein (P-gp) and assess the repeatability of the inhaled (99m)Tc-sestamibi clearance technique. Materials and Methods (99m)Tc-sestamibi is a known substrate for P-gp and MRP1, which are established cellular drug efflux transporters. The elimination rate of (99m)Tc-sestamibi from the lungs after inhalation as an aerosol has been hypothesized to be regulated by expression of these transporters. Institutional ethics committee approval was received for this prospective study. Written informed consent was obtained from all participants. The clearance of inhaled (99m)Tc-sestamibi from the lungs of 13 patients due to undergo surgery for primary lung cancer (five of 13) or spontaneous pneumothorax (eight of 13) was estimated after dynamic imaging of the lungs during a period of 40 minutes. The time taken to clear 50% of inhaled sestamibi (T1/2) was compared with a semiquantitative immunohistochemical assessment (grade 0-3) of MRP1 and P-gp expression in the lung by using parametric and nonparametric tests. The study was repeated in five participants to assess the repeatability of the technique by using a Bland Altman analysis method. Results MRP1 expression was seen in 12 of 13 patients, while P-gp expression was seen in only two. The mean (99m)Tc-sestamibi elimination rate was faster in patients (n = 6) with low levels of MRP1 expression (grade 0-1) and mean T1/2 of 105 minutes ± 20 (standard deviation), compared with those with higher levels of MRP1 expression (grade 2-3, n = 7) and mean T1/2 of 149 minutes ± 28 (P = .008). Bland-Altman analysis revealed excellent agreement between test and retest values. Conclusion Inhaled (99m)Tc-sestamibi clearance study is a repeatable technique demonstrating significant correlation with MRP1 expression in the lungs. (©) RSNA, 2016.
A Novel Role of Proline Oxidase in HIV-1 Envelope Glycoprotein-induced Neuronal Autophagy*
Pandhare, Jui; Dash, Sabyasachi; Jones, Bobby; Villalta, Fernando; Dash, Chandravanu
2015-01-01
Proline oxidase (POX) catalytically converts proline to pyrroline-5-carboxylate. This catabolic conversion generates reactive oxygen species (ROS) that triggers cellular signaling cascades including autophagy and apoptosis. This study for the first time demonstrates a role of POX in HIV-1 envelope glycoprotein (gp120)-induced neuronal autophagy. HIV-1 gp120 is a neurotoxic factor and is involved in HIV-1-associated neurological disorders. However, the mechanism of gp120-mediated neurotoxicity remains unclear. Using SH-SY5Y neuroblastoma cells as a model, this study demonstrates that gp120 treatment induced POX expression and catalytic activity. Concurrently, gp120 also increased intracellular ROS levels. However, increased ROS had a minimal effect on neuronal apoptosis. Further investigation indicated that the immediate cellular response to increased ROS paralleled with induction of autophagy markers, beclin-1 and LC3-II. These data lead to the hypothesis that neuronal autophagy is activated as a cellular protective response to the toxic effects of gp120. A direct and functional role of POX in gp120-mediated neuronal autophagy was examined by inhibition and overexpression studies. Inhibition of POX activity by a competitive inhibitor “dehydroproline” decreased ROS levels concomitant with reduced neuronal autophagy. Conversely, overexpression of POX in neuronal cells increased ROS levels and activated ROS-dependent autophagy. Mechanistic studies suggest that gp120 induces POX by targeting p53. Luciferase reporter assays confirm that p53 drives POX transcription. Furthermore, data demonstrate that gp120 induces p53 via binding to the CXCR4 co-receptor. Collectively, these results demonstrate a novel role of POX as a stress response metabolic regulator in HIV-1 gp120-associated neuronal autophagy. PMID:26330555
López-Karpovitch, Xavier; Graue, Gerardo; Crespo-Solís, Erick; Piedras, Josefa
2008-07-01
High P-glycoprotein-mediated multidrug resistance-1 (P-gp/MDR1) activity in lymphocytes from idiopathic thrombocytopenic purpura (ITP) patients may affect disease outcome. ITP treatment includes glucocorticoids that are substrates of P-gp; hence, P-gp functional activity and antigenic expression were assessed by flow cytometry in T and natural killer (NK) cells from ITP patients before and after prednisone therapy. Herein, patients' T and NK cells did not show increased MDR1 functional activity, whereas P-gp antigenic expression was significantly enhanced in both therapy-free and prednisone-treated patients. Prednisone treatment did not significantly modify the function and expression of MDR1 in T and NK cells of ITP patients.
Zhang, Yujuan; Huang, Jinhu; Liu, Yang; Guo, Tingting; Wang, Liping
2018-06-01
Transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are known to influence the pharmacokinetics and toxicity of substrate drugs. However, no detailed information is as yet available about functional activity and substrate spectra of chicken P-gp and BCRP. In this study, BCRP single and BCRP/P-gp double-transfected MDCK cell lines (named MDCK-chAbcg2 and MDCK-chAbcg2/Abcb1, respectively) were generated using lentiviral vector system to develop reliable systems for screening the substrates for these two transporters and study the interplay between them. The constructed cell lines significantly expressed functional exogenous proteins and expression persisted for at least 50 generations with no decrease. Enrofloxacin, ciprofloxacin, tilmicosin, sulfadiazine, ampicillin and clindamycin were classified as the substrates of chicken P-gp according to the rules suggested by FDA, as their net efflux ratios were greater than two. Similarly, enrofloxacin, ciprofloxacin, tilmicosin, florfenicol, ampicillin and clindamycin were classified as the substrates of BCRP. Among these drugs, enrofloxacin, ciprofloxacin, tilmicosin, ampicillin, and clindamycin were the cosubstrates of P-gp and BCRP, however, chicken BCRP and P-gp exhibit different affinities to the shared substrates at different concentrations by blocking either one or both transport with specific inhibitors in the coexpression system. It was also found that ceftiofur, amoxicillin and doxycycline were not substrates of either chicken BCRP or the substrates of chicken P-gp. These constructed cell models provide useful systems for high-throughput screening of the potential substrates of chicken BCRP and P-gp as well as the drug-drug interaction mediated via chicken BCRP and P-gp.
Auzmendi, Jerónimo; Buchholz, Bruno; Salguero, Jimena; Cañellas, Carlos; Kelly, Jazmín; Men, Paula; Zubillaga, Marcela; Rossi, Alicia; Merelli, Amalia; Gelpi, Ricardo J; Ramos, Alberto J; Lazarowski, Alberto
2018-02-16
Sudden unexpected death in epilepsy (SUDEP) is the major cause of death in those patients suffering from refractory epilepsy (RE), with a 24-fold higher risk relative to the normal population. SUDEP risk increases with seizure frequency and/or seizure-duration as in RE and Status Epilepticus (SE). P-glycoprotein (P-gp), the product of the multidrug resistant ABCB1-MDR-1 gene, is a detoxifying pump that extrudes drugs out of the cells and can confer pharmacoresistance to the expressing cells. Neurons and cardiomyocytes normally do not express P-gp, however, it is overexpressed in the brain of patients or in experimental models of RE and SE. P-gp was also detected after brain or cardiac hypoxia. We have previously demonstrated that repetitive pentylenetetrazole (PTZ)-induced seizures increase P-gp expression in the brain, which is associated with membrane depolarization in the hippocampus, and in the heart, which is associated with fatal SE. SE can produce hypoxic-ischemic altered cardiac rhythm (HIACR) and severe arrhythmias, and both are related with SUDEP. Here, we investigate whether SE induces the expression of hypoxia-inducible transcription factor (HIF)-1α and P-gp in cardiomyocytes, which is associated with altered heart rhythm, and if these changes are related with the spontaneous death rate. SE was induced in Wistar rats once a week for 3 weeks, by lithium-pilocarpine-paradigm. Electrocardiograms, HIF-1α, and P-gp expression in cardiomyocytes, were evaluated in basal conditions and 72 h after SE. All spontaneous deaths occurred 48 h after each SE was registered. We observed that repeated SE induced HIF-1α and P-gp expression in cardiomyocytes, electrocardiographic (ECG) changes, and a high rate of spontaneous death. Our results suggest that the highly accumulated burden of convulsive stress results in a hypoxic heart insult, where P-gp expression may play a depolarizing role in cardiomyocyte membranes and in the development of the ECG changes, such as QT interval prolongation, that could be related with SUDEP. We postulate that this mechanism could explain, in part, the higher SUDEP risk in patients with RE or SE.
Liu, Chenglong; Deng, Zeyu; Liu, Yang; Chen, Guoqiao; Liu, Baoyun
2017-01-01
Human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein 120 has been shown to activate microglia, causing release of inflammatory and toxic factors. The P2X7 receptor, primarily expressed on microglia, is closely associated with inflammation. Naringin, a plant bioflavonoid, has anti-inflammatory and anti-oxidative properties. We hypothesized that P2X7 receptor mediated gp120-induced injury in primary cultured microglia, and that naringin would have a protective effect. We showed that HIV-1 gp120 peptide (V3 loop, fragment 308–331) appeared to induce apoptosis of primary cultured microglia. However, there was a decrease of microglia apoptosis in gp120+naringin group compared with gp120 group. Using qPCR, Western blot, and immunofluorescence, we showed that gp120 stimulated expression of P2X7 mRNA and receptor protein, and this stimulation was inhibited by naringin. Treatment with gp120 increased concentrations of eATP, TNFα and IL-1β, and these effects were inhibited by naringin. Taken together, these results suggested that gp120 contributed to microglial cell injury and neurotoxic activity by up-regulating expression of P2X7, in a naringin-protective manner. PMID:28832643
Chen, Qiang; Wu, Hui; Tao, Jia; Liu, Chenglong; Deng, Zeyu; Liu, Yang; Chen, Guoqiao; Liu, Baoyun; Xu, Changshui
2017-01-01
Human immunodeficiency virus type-1 (HIV-1) envelope glycoprotein 120 has been shown to activate microglia, causing release of inflammatory and toxic factors. The P2X7 receptor, primarily expressed on microglia, is closely associated with inflammation. Naringin, a plant bioflavonoid, has anti-inflammatory and anti-oxidative properties. We hypothesized that P2X7 receptor mediated gp120-induced injury in primary cultured microglia, and that naringin would have a protective effect. We showed that HIV-1 gp120 peptide (V3 loop, fragment 308-331) appeared to induce apoptosis of primary cultured microglia. However, there was a decrease of microglia apoptosis in gp120+naringin group compared with gp120 group. Using qPCR, Western blot, and immunofluorescence, we showed that gp120 stimulated expression of P2X7 mRNA and receptor protein, and this stimulation was inhibited by naringin. Treatment with gp120 increased concentrations of eATP, TNFα and IL-1β, and these effects were inhibited by naringin. Taken together, these results suggested that gp120 contributed to microglial cell injury and neurotoxic activity by up-regulating expression of P2X7, in a naringin-protective manner.
Li, Ming; de Graaf, Inge A M; van de Steeg, Evita; de Jager, Marina H; Groothuis, Geny M M
2017-04-01
Intestinal P-gp and CYP3A4 work coordinately to reduce the intracellular concentration of drugs, and drug-drug interactions (DDIs) based on this interplay are of clinical importance and require pre-clinical investigation. Using precision-cut intestinal slices (PCIS) of human jejunum, ileum and colon, we investigated the P-gp/CYP3A4 interplay and related DDIs with P-gp inhibitors at the different regions of the human intestine with quinidine (Qi), dual substrate of P-gp and CYP3A4, as probe. All the P-gp inhibitors increased the intracellular concentrations of Qi by 2.1-2.6 fold in jejunum, 2.6-3.8 fold in ileum but only 1.2-1.3 fold in colon, in line with the different P-gp expression in these intestinal regions. The selective P-gp inhibitors (CP100356 and PSC833) enhanced 3-hydroxy-quinidine (3OH-Qi) in jejunum and ileum, while dual inhibitors of P-gp and CYP3A4 (verapamil and ketoconazole) decreased the 3OH-Qi production, despite of the increased intracellular Qi concentration, due to inhibition of CYP3A4. The outcome of DDIs based on P-gp/CYP3A4 interplay, shown as remarkable changes in the intracellular concentration of both the parent drug and the metabolite, varied among the intestinal regions, probably due to the different expression of P-gp and CYP3A4, and were different from those found in rat PCIS, which may have important implications for the disposition and toxicity of drugs and their metabolites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Hong; Jia, Xiu-Hong; Chen, Jie-Ru; Wang, Jian-Yong; Li, You-Jie
2016-06-01
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) has been reported to play a pivotal role in tumor chemotherapy failure. Study after study has illustrated that the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with P-gp expression in many human malignancies. In the present study, osthole, an O-methylated coumarin, exhibited potent reversal capability of MDR in myelogenous leukemia K562/ADM cells. Simultaneously, the uptake and efflux of Rhodamine-123 (Rh-123) and the accumulation of doxorubicin assays combined with flow cytometric analysis suggested that osthole could increase intracellular drug accumulation. Furthermore, osthole decreased the expression of multidrug resistance gene 1 (MDR1) at both the mRNA and protein levels. Further experiments elucidated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway which might be the main mechanism accounting for the reversal potential of osthole in the MDR in K562/ADM cells. In conclusion, osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.
Zhu, Zhenni; Wang, Yu; Liu, Zhiqing; Wang, Fan; Zhao, Qiu
2012-05-01
The aim of this study was to verify the inhibitory effects of epigallocatechin-3-gallate (EGCG) on cell proliferation and the expression of hypoxia-inducible factor 1 (HIF-1α) and multidrug resistance protein 1 (MDR1/P-gp) in the human pancreatic carcinoma cell line PANC-1, thereby, reversing drug resistance of pancreatic carcinoma and improving its sensitivity to cancer chemotherapy. The human pancreatic carcinoma cell line PANC-1 was incubated under hypoxic conditions with different concentrations of epigallocatechin-3-gallate (EGCG) for indicated hours. The effects of EGCG on the mRNA or protein expression of HIF-1α and MDR1 were determined by RT-PCR or western blotting. Cellular proliferation and viability assays were measured using Cell Counting Kit-8. Western blotting revealed that EGCG inhibits the expression of the HIF-1α protein in a dose-dependent manner, while RT-PCR showed that it does not have any effects on HIF-1α mRNA. In addition, EGCG attenuated the mRNA and protein levels of P-gp in a dose-dependent manner, reaching a peak at the highest concentration. Furthermore, EGCG inhibited the proliferation of PANC-1 cells in a concentration- and time-dependent manner. The attenuation of HIF-1α and the consequently reduced P-gp could contribute to the inhibitory effects of EGCG on the proliferation of PANC-1 cells.
Takeshita, Akihiro; Shinjo, Kaori; Yamakage, Nozomi; Ono, Takaaki; Hirano, Isao; Matsui, Hirotaka; Shigeno, Kazuyuki; Nakamura, Satoki; Tobita, Tadasu; Maekawa, Masato; Ohnishi, Kazunori; Sugimoto, Yoshikazu; Kiyoi, Hitoshi; Naoe, Tomoki; Ohno, Ryuzo
2009-06-01
The effect of CMC-544, a calicheamicin-conjugated anti-CD22 monoclonal antibody, was analysed in relation to CD22 and P-glycoprotein (P-gp) in B-cell chronic lymphocytic leukaemia (CLL) and non-Hodgkin lymphoma (NHL) in vitro. The cell lines used were CD22-positive parental Daudi and Raji, and their P-gp positive sublines, Daudi/MDR and Raji/MDR. Cells obtained from 19 patients with B-cell CLL or NHL were also used. The effect of CMC-544 was analysed by viable cell count, morphology, annexin-V staining, and cell cycle distribution. A dose-dependent, selective cytotoxic effect of CMC-544 was observed in cell lines that expressed CD22. CMC-544 was not effective on Daudi/MDR and Raji/MDR cells compared with their parental cells. The MDR modifiers, PSC833 and MS209, restored the cytotoxic effect of CMC-544 in P-gp-expressing sublines. In clinical samples, the cytotoxic effect of CMC-544 was inversely related to the amount of P-gp (P = 0.003), and to intracellular rhodamine-123 accumulation (P < 0.001). On the other hand, the effect positively correlated with the amount of CD22 (P = 0.010). The effect of CMC-544 depends on the levels of CD22 and P-gp. Our findings will help to predict the clinical effectiveness of this drug on these B-cell malignancies, suggesting a beneficial effect with combined use of CMC-544 and MDR modifiers.
Lack of gp130 expression in hepatocytes attenuates tumor progression in the DEN model.
Hatting, M; Spannbauer, M; Peng, J; Al Masaoudi, M; Sellge, G; Nevzorova, Y A; Gassler, N; Liedtke, C; Cubero, F J; Trautwein, C
2015-03-05
Chronic liver inflammation is a crucial event in the development and growth of hepatocellular carcinoma (HCC). Compelling evidence has shown that interleukin-6 (IL-6)/gp130-dependent signaling has a fundamental role in liver carcinogenesis. Thus, in the present study we aimed to investigate the role of gp130 in hepatocytes for the initiation and progression of HCC. Hepatocyte-specific gp130 knockout mice (gp130(Δhepa)) and control animals (gp130(f/f)) were treated with diethylnitrosamine (DEN). The role of gp130 for acute injury (0-144 h post treatment), tumor initiation (24 weeks) and progression (40 weeks) was analyzed. After acute DEN-induced liver injury we observed a reduction in the inflammatory response in gp130(Δhepa) animals as reflected by decreased levels of IL-6 and oncostatin M. The loss of gp130 slightly attenuated the initiation of HCC 24 weeks after DEN treatment. In contrast, 40 weeks after DEN treatment, male and female gp130(Δhepa) mice showed smaller tumors and reduced tumor burden, indicating a role for hepatocyte-specific gp130 expression during HCC progression. Oxidative stress and DNA damage were substantially and similarly increased by DEN in both gp130(f/f) and gp130(Δhepa) animals. However, gp130(Δhepa) livers revealed aberrant STAT5 activation and decreased levels of transforming growth factor-β (TGFβ), pSMAD2/3 and SMAD2, whereas phosphorylation of STAT3 at Tyr705 and Ser727 was absent. Our results indicate that gp130 deletion in hepatocytes reduces progression, but not HCC initiation in the DEN model. Gp130 deletion resulted in STAT3 inhibition but increased STAT5 activation and diminished TGF-dependent signaling. Hence, blocking gp130 in hepatocytes might be an interesting therapeutic target to inhibit the growth of HCC.
Mao, Zonglei; Zhou, Jin; Luan, Junwei; Sheng, Weihua; Shen, Xiaochun; Dong, Xiaoqiang
2014-03-01
Multidrug resistance (MDR), mediated by overexpression of drug efflux transporters such as P-glycoprotein (P-gp), is a major problem limiting successful chemotherapy of gastric cancer. Tamoxifen (TAM), a triphenylethylene nonsteroidal antiestrogen agent, shows broad-spectrum antitumor properties. Emerging studies demonstrated that TAM could significantly reduce the MDR in a variety of human cancers. Here we investigated the effects and possible underlying mechanisms of action of TAM on the reversion of MDR in ER-negative human gastric cancer cells. Our results demonstrated that in MDR phenotype SGC7901/CDDP gastric cancer cells TAM dramatically lowered the IC50 of CDDP, 5-FU and ADM, increased the intracellular Rhodamine123 accumulation and induced G0/G1 phase arrest, while G2/M phase decreased accordingly. Furthermore, at the molecular level, TAM substantially decreased the expression of P-gp, p-Akt and the Akt-regulated downstream effectors such as p-GSK-3β, p-BAD, Bcl-XL and cyclinD1 proteins without affecting the expression of t-Akt, t-GSK-3β, t-BAD proteins in SGC7901/CDDP cells. Thus, our findings demonstrate that TAM reverses P-gp-mediated gastric cancer cell MDR via inhibiting the PI3K/Akt signaling pathway. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Chieli, Elisabetta; Romiti, Nadia; Catiana Zampini, Iris; Garrido, Gabino; Inés Isla, María
2012-12-18
Zuccagnia punctata extracts (ZpE) are used in ethnomedicine as antimicrobial and anti-inflammatory drugs. The pharmacological properties of ZpE and their polyphenolic components suggest that they may be used as potential modulators on the P-glycoprotein (P-gp) multidrug transporter. P-gp is well known for its role in the acquired drug resistance by tumors following chemotherapy, causing a low drug bioavailability by extruding them out of the cells. To evaluate the effects of ZpE and three of their phenolic components: 7-hydroxyflavanone (HF), 3,7-dihydroxyflavone (DHF) and 2',4'-dihydroxychalcone (DHC) on P-gp activity and expression. The effects of natural products on ABCB1/P-gp function and expression were evaluated by R-123 accumulation assay and western blot analysis using HK-2 cells as experimental model. The ABCB1 mRNA content was determined by SQRT-PCR. The accumulation of R-123 in HK-2 cells was significantly increased by ZpE and DHF, and to a lesser extent by DHC, indicating their roles on the efflux transporter activity. However, HF did not show any effect. HK-2 cells maintained in the presence of ZpE or DHF for 72 h, showed an increase in P-gp expression whereas activity was unchanged or decreased. No changes were observed in ABCB1 mRNA content. Furthermore, in these assay conditions, more sensibility of HK-2 cells to the cytotoxic action of cyclosporine A (P-gp substrate) was observed. These results may suggest an impact of Zuccagnia punctata and some of its components on the pharmacokinetics of drugs that are P-gp substrates, as well as a potential role on multidrug resistance modulation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Shao, Lili; Zhang, Tianyuan; Melero, Jose; Huang, Yumeng; Liu, Yuanjun; Liu, Quanzhong; He, Cheng; Nelson, David E; Zhong, Guangming
2018-01-01
The cryptic plasmid is essential for Chlamydia muridarum dissemination from the genital tract to the gastrointestinal (GI) tract. Following intravaginal inoculation, a C. muridarum strain deficient in plasmid-encoded pGP3 or pGP4 but not pGP5, pGP7, or pGP8 failed to spread to the mouse gastrointestinal tract, although mice infected with these strains developed productive genital tract infections. pGP3- or pGP4-deficient strains also failed to colonize the gastrointestinal tract when delivered intragastrically. pGP4 regulates pGP3, while pGP3 does not affect pGP4 expression, indicating that pGP3 is critical for C. muridarum colonization of the gastrointestinal tract. Mutants deficient in GlgA, a chromosome-encoded protein regulated by pGP4, also consistently colonized the mouse gastrointestinal tract. Interestingly, C. muridarum colonization of the gastrointestinal tract positively correlated with pathogenicity in the upper genital tract. pGP3-deficient C. muridarum strains did not induce hydrosalpinx or spread to the GI tract even when delivered to the oviduct by intrabursal inoculation. Thus, the current study not only has revealed that pGP3 is a novel chlamydial colonization factor in the gastrointestinal tract but also has laid a foundation for investigating the significance of gastrointestinal Chlamydia . Copyright © 2017 American Society for Microbiology.
In Silico Screening for Inhibitors of P-Glycoprotein That Target the Nucleotide Binding Domains
Brewer, Frances K.; Follit, Courtney A.; Vogel, Pia D.
2014-01-01
Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. PMID:25270578
Braun, Clemens; Sakamoto, Atsushi; Fuchs, Holger; Ishiguro, Naoki; Suzuki, Shinobu; Cui, Yunhai; Klinder, Klaus; Watanabe, Michitoshi; Terasaki, Tetsuya; Sauer, Achim
2017-10-02
Transporters at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) play a pivotal role as gatekeepers for efflux or uptake of endogenous and exogenous molecules. The protein expression of a number of them has already been determined in the brains of rodents, nonhuman primates, and humans using quantitative targeted absolute proteomics (QTAP). The dog is an important animal model for drug discovery and development, especially for safety evaluations. The purpose of the present study was to clarify the relevance of the transporter protein expression for drug distribution in the dog brain and CSF. We used QTAP to examine the protein expression of 17 selected transporters and receptors at the dog BBB and BCSFB. For the first time, we directly linked the expression of two efflux transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), to regional brain and CSF distribution using specific substrates. Two cocktails, each containing one P-gp substrate (quinidine or apafant) and one BCRP substrate (dantrolene or daidzein) were infused intravenously prior to collection of the brain. Transporter expression varied only slightly between the capillaries of different brain regions and did not result in region-specific distribution of the investigated substrates. There were, however, distinct differences between brain capillaries and choroid plexus. Largest differences were observed for BCRP and P-gp: both were highly expressed in brain capillaries, but no BCRP and only low amounts of P-gp were detected in the choroid plexus. K p,uu,brain and K p,uu,CSF of both P-gp substrates were indicative of drug efflux. Also, K p,uu,brain for the BCRP substrates was low. In contrast, K p,uu,CSF for both BCRP substrates was close to unity, resulting in K p,uu,CSF /K p,uu,brain ratios of 7 and 8, respectively. We conclude that the drug transporter expression profiles differ between the BBB and BCSFB in dogs, that there are species differences in the expression profiles, and that CSF is not a suitable surrogate for unbound brain concentrations of BCRP substrates in dogs.
Bae, Jin Kyung; Kim, You-Jin; Chae, Hee-Sung; Kim, Do Yeun; Choi, Han Seok; Chin, Young-Won; Choi, Young Hee
2017-05-01
1. Drug efflux by P-glycoprotein (P-gp) is a common resistance mechanism of breast cancer cells to paclitaxel, the primary chemotherapy in breast cancer. As a means of overcoming the drug resistance-mediated failure of paclitaxel chemotherapy, the potential of Korean red ginseng extract (KRG) as an adjuvant chemotherapy has been reported only in in vitro. Therefore, we assessed whether KRG alters P-gp mediated paclitaxel efflux, and therefore paclitaxel efficacy in in vitro and vivo models. 2. KRG inhibited P-gp protein expression and transcellular efflux of paclitaxel in MDCK-mdr1 cells, but KRG was not a substrate of P-gp ATPase. In female rats with mammary tumor, the combination of paclitaxel with KRG showed the greater reduction of tumor volumes, lower P-gp protein expression and higher paclitaxel distribution in tumors, and greater oral bioavailability of paclitaxel than paclitaxel alone. 3. From these results, KRG increased systemic circulation of oral paclitaxel and its distribution to tumors via P-gp inhibition in rats and under the current study conditions.
Wang, Li; Tan, Rui-Zhi; Zhang, Zhi-Xia; Yin, Rui; Zhang, Yong-Liang; Cui, Wei-Jia; He, Tao
2018-01-01
Multidrug resistance (MDR) severely limits the effectiveness of chemotherapy. Previous studies have identified Twist as a key factor of acquired MDR in breast, gastric and prostate cancer. However, the underlying mechanisms of action of Twist in MDR remain unclear. In the present study, the expression levels of MDR-associated proteins, including lung resistance-related protein (LRP), topoisomerase IIα (TOPO IIα), MDR-associated protein (MRP) and P-glycoprotein (P-gp), and the expression of Twist in cancerous tissues and pericancerous tissues of human breast cancer, were examined. In order to simulate Taxol ® resistance in cells, a Taxol ® -resistant human mammary adenocarcinoma cell subline (MCF-7/Taxol ® ) was established by repeatedly exposing MCF-7 cells to high concentrations of Taxol ® (up to 15 µg/ml). Twist was also overexpressed in 293 cells by transfecting this cell line with pcDNA5/FRT/TO vector containing full-length hTwist cDNA to explore the dynamic association between Twist and MDR gene-associated proteins. It was identified that the expression levels of Twist, TOPO IIα, MRP and P-gp were upregulated and LRP was downregulated in human breast cancer tissues, which was consistent with the expression of these proteins in the Taxol ® -resistant MCF-7 cell model. Notably, the overexpression of Twist in 293 cells increased the resistance to Taxol ® , Trichostatin A and 5-fluorouracil, and also upregulated the expression of MRP and P-gp. Taken together, these data demonstrated that Twist may promote drug resistance in cells and cancer tissues through regulating the expression of MDR gene-associated proteins, which may assist in understanding the mechanisms of action of Twist in drug resistance.
Evaluation of P-Glycoprotein Inhibitory Potential Using a Rhodamine 123 Accumulation Assay
Jouan, Elodie; Le Vée, Marc; Mayati, Abdullah; Denizot, Claire; Parmentier, Yannick; Fardel, Olivier
2016-01-01
In vitro evaluation of P-glycoprotein (P-gp) inhibitory potential is now a regulatory issue during drug development, in order to predict clinical inhibition of P-gp and subsequent drug–drug interactions. Assays for this purpose, commonly based on P-gp-expressing cell lines and digoxin as a reference P-gp substrate probe, unfortunately exhibit high variability, raising thus the question of developing alternative or complementary tests for measuring inhibition of P-gp activity. In this context, the present study was designed to investigate the use of the fluorescent dye rhodamine 123 as a reference P-gp substrate probe for characterizing P-gp inhibitory potential of 16 structurally-unrelated drugs known to interact with P-gp. 14/16 of these P-gp inhibitors were found to increase rhodamine 123 accumulation in P-gp-overexpressing MCF7R cells, thus allowing the determination of their P-gp inhibitory potential, i.e., their half maximal inhibitor concentration (IC50) value towards P-gp-mediated transport of the dye. These IC50 values were in the range of variability of previously reported IC50 for P-gp and can be used for the prediction of clinical P-gp inhibition according to Food and Drug Administration (FDA) criteria, with notable sensitivity (80%). Therefore, the data demonstrated the feasibility of the use of rhodamine 123 for evaluating the P-gp inhibitory potential of drugs. PMID:27077878
Chen, Qiqing; Hu, Xialin; Wang, Rui; Yuan, Jin; Yin, Daqiang
2016-05-01
P-Glycoprotein (P-gp) can protect cells by pumping out toxic compounds, and has been found widely expressed in fish tissues. Here, we illustrate the P-gp efflux ability for benzo(a)pyrene (BaP) in the hepatocytes of common carp (Cyprinus carpio) after exposing to fullerene aqueous suspension (nC60). The results revealed that nC60 increased the membrane fluidity by decreasing the ratio of saturated to unsaturated fatty acids, and increased the cholesterol contents. These findings, combined with 10-38% and 70-75% down-regulation of P-gp mRNA and protein respectively, suggested that nC60 caused inhibition on P-gp efflux transport system. Therefore, we further investigated the cellular efflux ability for BaP. Results showed unequivocally that nC60 is a potent P-gp inhibitor. The retaining BaP amounts after efflux were elevated by 1.7-2.8 fold during the 10 day exposure. Meanwhile, 5mg/L humic acid (one of the important fractions of natural organic matter, which is ubiquitous in aquatic environment) alleviated the nC60 damage to hepatocytes in terms of oxidative damage, cholesterol increment, and P-gp content reduction; and finally attenuated the suppressed P-gp efflux ability. Collectively, this study provides the first evidence of nC60 toxicity to P-gp functionality in fish and illustrates the possible mechanism of the suppressed P-gp efflux ability for BaP. Copyright © 2016 Elsevier B.V. All rights reserved.
Ikarashi, Nobutomo; Ogawa, Sosuke; Hirobe, Ryuta; Kon, Risako; Kusunoki, Yoshiki; Yamashita, Marin; Mizukami, Nanaho; Kaneko, Miho; Wakui, Nobuyuki; Machida, Yoshiaki; Sugiyama, Kiyoshi
2017-03-30
In previous studies, we showed that a high-dose intake of green tea polyphenol (GP) induced a hepatospecific decrease in the expression and activity of the drug-metabolizing enzyme cytochrome P450 3A (CYP3A). In this study, we examined whether this decrease in CYP3A expression is induced by epigallocatechin gallate (EGCG), which is the main component of GP. After a diet containing 1.5% EGCG was given to mice, the hepatic CYP3A expression was measured. The level of intestinal bacteria of Clostridium spp., the concentration of lithocholic acid (LCA) in the feces, and the level of the translocation of pregnane X receptor (PXR) to the nucleus in the liver were examined. A decrease in the CYP3A expression level was observed beginning on the second day of the treatment with EGCG. The level of translocation of PXR to the nucleus was significantly lower in the EGCG group. The fecal level of LCA was clearly decreased by the EGCG treatment. The level of intestinal bacteria of Clostridium spp. was also decreased by the EGCG treatment. It is clear that the hepatospecific decrease in the CYP3A expression level observed after a high-dose intake of GP was caused by EGCG. Because EGCG, which is not absorbed from the intestine, causes a decrease in the level of LCA-producing bacteria in the colon, the level of LCA in the liver decreases, resulting in a decrease in the nuclear translocation of PXR, which in turn leads to the observed decrease in the expression level of CYP3A. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel
2013-02-05
Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimersmore » as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.« less
Igboeli, O O; Purcell, S L; Wotton, H; Poley, J; Burka, J F; Fast, M D
2013-03-01
Control of sea lice, Lepeophtheirus salmonis, on farmed Atlantic salmon, Salmo salar, relies heavily on chemotherapeutants. However, reduced efficacy of many treatments and need for integrated sea lice management plans require innovative strategies. Resistance to emamectin benzoate (EMB), a major sea lice parasiticide, has been linked with P-glycoprotein (P-gp) expression. We hypothesized that host immunostimulation would complement EMB treatment outcome. Lepeophtheirus salmonis-infected Atlantic salmon were fed immunostimulatory or control feeds. Sea lice were collected for 24-h EMB bioassays 1 and 2 weeks prior to commencement of EMB treatment of the fish. Two weeks after cessation of immunostimulant-treated feed, EMB was administered at 150 μg kg(-1) fish biomass for 7 days. The bioassay revealed stage, gender and immunostimulant-related differences in EMB EC(50) . Sea lice attached to salmon with a history of immunostimulation exhibited significantly greater survival than those on control feeds, despite similar levels of EMB in host tissues. Lepeophtheirus salmonis from salmon with a history of immunostimulation also exhibited higher P-gp mRNA expression as well as greater survivability compared to controls. Administration of immunostimulants prior to EMB treatment caused increased expression of P-gp mRNA which could have consequently caused decreased efficacy of the parasiticide. © 2013 Blackwell Publishing Ltd.
Shah, Ankit; Verma, Ashish S.; Patel, Kalpeshkumar H.; Noel, Richard; Rivera-Amill, Vanessa; Silverstein, Peter S.; Chaudhary, Suman; Bhat, Hari K.; Stamatatos, Leonidas; Singh, Dhirendra P.; Buch, Shilpa; Kumar, Anil
2011-01-01
In addition to its role in virus entry, HIV-1 gp120 has also been implicated in HIV-associated neurocognitive disorders. However, the mechanism(s) responsible for gp120-mediated neuroinflammation remain undefined. In view of increased levels of IL-6 in HIV-positive individuals with neurological manifestations, we sought to address whether gp120 is involved in IL-6 over-expression in astrocytes. Transfection of a human astrocyte cell line with a plasmid encoding gp120 resulted in increased expression of IL-6 at the levels of mRNA and protein by 51.3±2.1 and 11.6±2.2 fold respectively; this effect of gp120 on IL-6 expression was also demonstrated using primary human fetal astrocytes. A similar effect on IL-6 expression was observed when primary astrocytes were treated with gp120 protein derived from different strains of X4 and R5 tropic HIV-1. The induction of IL-6 could be abrogated by use of gp120-specific siRNA. Furthermore, this study showed that the NF-κB pathway is involved in gp120-mediated IL-6 over-expression, as IKK-2 and IKKβ inhibitors inhibited IL-6 expression by 56.5% and 60.8%, respectively. These results were also confirmed through the use of NF-κB specific siRNA. We also showed that gp120 could increase the phosphorylation of IκBα. Furthermore, gp120 transfection in the SVGA cells increased translocation of NF-κB from cytoplasm to nucleus. These results demonstrate that HIV-1 gp120-mediated over-expression of IL-6 in astrocytes is one mechanism responsible for neuroinflammation in HIV-infected individuals and this is mediated by the NF-κB pathway. PMID:21712995
Kawabe, Akio; Tsujimura, Shizuyo; Saito, Kazuyoshi; Tanaka, Yoshiya
2017-01-01
True renal lupus vasculitis (TRLV), a vascular lesion usually associated with proliferative lupus nephritis (LN), is resistant to conventional treatments. The expression of P-glycoprotein (P-gp) on activated lymphocytes causes drug resistance. We herein report a patient with TRLV, minimal change LN, overexpression of P-gp on peripheral B cells, and accumulation of P-gp+ B cells at the site of TRLV. High-dose corticosteroids combined with intravenous cyclophosphamide pulse therapy resulted in clinical remission and the long-term normal renal function. PMID:28626187
Structural determination, distribution, and physiological actions of ghrelin in the guinea pig.
Okuhara, Yuji; Kaiya, Hiroyuki; Teraoka, Hiroki; Kitazawa, Takio
2018-01-01
We identified guinea pig ghrelin (gp-ghrelin), and examined its distribution and physiological actions in the guinea-pig. Gp-ghrelin is a 28-amino acid peptide (GASFR SPEHH SAQQR KESRK LPAKI QPR); seven amino acids are different from that of rat ghrelin at positions 2, 5, 10, 11, 19, 21, and 25, which include the conserved region known in mammals. The third serine residue is mainly modified by n-decanoyl acid. Both gp-ghrelin and rat ghrelin increased intracellular Ca 2+ concentration of HEK293 cells expressing guinea pig growth hormone secretagogue receptor 1a (GHS-R1a), and the affinity of gp-ghrelin was slightly higher than that of rat ghrelin. In addition, gp-ghrelin was also effective in CHO cells expressing rat GHS-R1a with similar affinity to that of rat ghrelin. Gp-ghrelin mRNA was predominantly expressed in the stomach, whereas the expression levels in other organs was low. High levels of GHS-R1a mRNA expression were observed in the pituitary, medulla oblongata, and kidney, while medium levels were noted in the thalamus, pons, olfactory bulb, and heart. Immunohistochemistry identified gp-ghrelin-immunopositive cells in the gastric mucosa and pancreas. Intraperitoneal injection of gp-ghrelin increased food intake in the guinea pig. Gp-ghrelin did not cause any mechanical responses in isolated gastrointestinal smooth muscles in vitro, similar to rat ghrelin. In conclusion, the N-terminal structures that are conserved in mammals were different in gp-ghrelin. Moreover, the functional characteristics of gp-ghrelin, other than its distribution, were dissimilar from those in other Rodentia. Copyright © 2017 Elsevier Inc. All rights reserved.
In silico screening for inhibitors of p-glycoprotein that target the nucleotide binding domains.
Brewer, Frances K; Follit, Courtney A; Vogel, Pia D; Wise, John G
2014-12-01
Multidrug resistances and the failure of chemotherapies are often caused by the expression or overexpression of ATP-binding cassette transporter proteins such as the multidrug resistance protein, P-glycoprotein (P-gp). P-gp is expressed in the plasma membrane of many cell types and protects cells from accumulation of toxins. P-gp uses ATP hydrolysis to catalyze the transport of a broad range of mostly hydrophobic compounds across the plasma membrane and out of the cell. During cancer chemotherapy, the administration of therapeutics often selects for cells which overexpress P-gp, thereby creating populations of cancer cells resistant to a variety of chemically unrelated chemotherapeutics. The present study describes extremely high-throughput, massively parallel in silico ligand docking studies aimed at identifying reversible inhibitors of ATP hydrolysis that target the nucleotide-binding domains of P-gp. We used a structural model of human P-gp that we obtained from molecular dynamics experiments as the protein target for ligand docking. We employed a novel approach of subtractive docking experiments that identified ligands that bound predominantly to the nucleotide-binding domains but not the drug-binding domains of P-gp. Four compounds were found that inhibit ATP hydrolysis by P-gp. Using electron spin resonance spectroscopy, we showed that at least three of these compounds affected nucleotide binding to the transporter. These studies represent a successful proof of principle demonstrating the potential of targeted approaches for identifying specific inhibitors of P-gp. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Van der Heyden, Sara; Croubels, Siska; Gadeyne, Caroline; Ducatelle, Richard; Daminet, Sylvie; Murua Escobar, Hugo; Sterenczak, Katharina; Polis, Ingeborgh; Schauvliege, Stijn; Hesta, Myriam; Chiers, Koen
2012-06-01
To evaluate the impact of modulation of the membrane-bound efflux pump P-glycoprotein (P-gp) on plasma concentrations of orally administered prednisolone in dogs. 7 healthy adult Beagles. Each dog received 3 treatments (control [no treatment], rifampicin [100 mg/d, PO, for 21 days, as an inducer of P-gp], and ketoconazole [100 mg/d, PO, for 21 days, as an inhibitor of P-gp]). A single dose of prednisolone (1 mg/kg, PO) was administered on day 8 of each treatment period. There was a 7-day washout period between subsequent treatments. Plasma concentrations of prednisolone were determined by use of a validated liquid chromatography-tandem mass spectrometry method. Duodenum and colon biopsy specimens were obtained endoscopically from anesthetized dogs and assessed for P-gp protein labeling via immunohistochemical analysis and mRNA quantification via real-time PCR assay. Total fecal collection was performed for evaluation of effects of P-gp modulation on digestion of nutrients. Rifampicin treatment upregulated duodenal P-gp in dogs and significantly reduced the area under the plasma concentration-time curve of prednisolone. Ketoconazole typically downregulated expression of duodenal P-gp, with a subsequent increase in the area under the plasma concentration-time curve of prednisolone. There was a noticeable interindividual difference in response. Digestion of nutrients was not affected. Modulation of P-gp expression influenced plasma concentrations of prednisolone after oral administration in dogs. Thus, treatment response to prednisolone may be influenced by coadministration of P-gp-modulating medications or feed ingredients.
Saint John's wort: An in vitro analysis of P-glycoprotein induction due to extended exposure
Perloff, Michael D; von Moltke, Lisa L; Störmer, Elke; Shader, Richard I; Greenblatt, David J
2001-01-01
Chronic use of Saint John's wort (SJW) has been shown to lower the bioavailability for a variety of co-administered drugs including indinavir, cyclosporin, and digoxin. Decreases in intestinal absorption through induction of the multidrug resistance transporter, P-glycoprotein (P-gp), may explain decreased bioavailability. The present study characterized the response of P-gp to chronic and acute exposure of SJW and hypericin (HYP, a presumed active moiety within SJW) in an in vitro system. Experiments were performed with 3 to 300 μg ml−1 of methanol-extracted SJW and 0.03 to 3 μM HYP, representing low to high estimates of intestinal concentrations. In induction experiments, LS-180 intestinal carcinoma cells were exposed for 3 days to SJW, HYP, vehicle or a positive control (ritonavir). P-gp was quantified using Western blot analysis. P-gp expression was strongly induced by SJW (400% increase at 300 μg ml−1) and by HYP (700% at 3 μM) in a dose-dependent fashion. Cells chronically treated with SJW had decreased accumulation of rhodamine 123, a P-gp substrate, that was reversed with acute verapamil, a P-gp inhibitor. Fluorescence microscopy of intact cells validated these findings. In Caco-2 cell monolayers, SJW and HYP caused moderate inhibition of P-gp-attributed transport at the maximum concentrations tested. SJW and HYP significantly induced P-gp expression at low, clinically relevant concentrations. Similar effects occurring in vivo may explain the decreased bioavailability of P-gp substrate drugs when co-administered with SJW. PMID:11739235
Zhitomirsky, Benny; Farber, Hodaya; Assaraf, Yehuda G
2018-04-01
LysoTracker and MitoTracker Red are fluorescent probes widely used for viable cell staining of lysosomes and mitochondria, respectively. They are utilized to study organelle localization and their resident proteins, assess organelle functionality and quantification of organelle numbers. The ATP-driven efflux transporter P-glycoprotein (P-gp) is expressed in normal and malignant tissues and extrudes structurally distinct endogenous and exogenous cytotoxic compounds. Thus, once aromatic hydrophobic compounds such as the above-mentioned fluorescent probes are recognized as transport substrates, efflux pumps including P-gp may abolish their ability to reach their cellular target organelles. Herein, we show that LysoTracker and MitoTracker Red are expelled from P-gp-overexpressing cancer cells, thus hindering their ability to fluorescently mark target organelles. We further demonstrate that tariquidar, a potent P-gp transport inhibitor, restores LysoTracker and MitoTracker Red cell entry. We conclude that LysoTracker and MitoTracker Red are P-gp transport substrates, and therefore, P-gp expression must be taken into consideration prior to cellular applications using these probes. Importantly, as MitoTracker was a superior P-gp substrate than LysoTracker Red, we discuss the implications for the future design of chemotherapeutics evading cancer multidrug resistance. Furthermore, restoration of MitoTracker Red fluorescence in P-gp-overexpressing cells may facilitate the identification of potent P-gp transport inhibitors (i.e. chemosensitizers). © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
An in vitro evaluation of guanfacine as a substrate for P-glycoprotein
Gillis, Nancy K; Zhu, Hao-Jie; Markowitz, John S
2011-01-01
Background With a US Food and Drug Administration-labeled indication to treat attention-deficit/hyperactivity disorder (ADHD), the nonstimulant guanfacine has become the preferred α2-agonist for ADHD treatment. However, significant interindividual variability has been observed in response to guanfacine. Consequently, hypotheses of a contributing interaction with the ubiquitously expressed drug transporter, P-glycoprotein (P-gp), have arisen. We performed an in vitro study to determine if guanfacine is indeed a substrate of P-gp. Methods Intracellular accumulation of guanfacine was compared between P-gp expressing LLC-PK1/MDR1 cells and P-gp-negative LLC-PK1 cells to evaluate the potential interaction between P-gp and guanfacine. Cellular retention of guanfacine was analyzed using a high-performance liquid chromatographic-ultraviolet method. Rhodamine6G, a known P-gp substrate, was included in the study as a positive control. Results At guanfacine concentrations of 50 μM and 5 μM, intracellular accumulation of guanfacine in LLC-PK1/MDR1 cells was, 35.9% ± 4.8% and 49.0% ± 28.3% respectively, of that in LLC-PK1 cells. In comparison, the concentration of rhodamine6G, the positive P-gp substrate, in LLC-PK1/MDR1 cells was only 5% of that in LLC-PK1 cells. Conclusion The results of the intracellular accumulation study suggest that guanfacine is, at best, a weak P-gp substrate. Therefore, it is unlikely that P-gp, or any genetic variants thereof, are a determining factor in the interindividual variability of response observed with guanfacine therapy. PMID:21931492
Zeng, Yi; Zhang, Le; Hu, Zhiping; Yang, Qidong; Ma, Mingming; Liu, Baoqiong; Xia, Jian; Xu, Hongwei; Liu, Yunhai; Du, Xiaoping
2016-08-01
Platelet glycoprotein (GP) mediated the role of platelet in coagulation. Platelet GP Ia 807C/T is the only GP polymorphism associated with the expression levels of GP Ia/IIa (the platelet collagen receptor). Recently, the GP Ia 807C/T polymorphism has been reported to have no association with cerebral hemorrhage (CH) in two studies pertained to Caucasian populations. The purpose of this study is to evaluate the association between platelet GP Ia 807C/T polymorphism and CH in a Han Chinese population. We performed genotype analysis for platelet GP Ia 807C/T polymorphism in a case-control study involving 195 patients with CH and 116 age- and sex-matched controls. In contrast to previous reports, we found that the frequencies of GP Ia 807C/T T allele, CT and TT genotype were much higher in CH patients than in controls (33.9% vs. 22.8%, p = 0.004; 45.5% and 11.1% vs. 40.4% and 2.6%, p = 0.022). Logistic regression analysis revealed that the presence of GP Ia 807C/T C allele and CC genotype were both associated with a decreased risk of CH compared with T allele, CT and TT genotypes, respectively (adjusted odds ratio [OR] = 0.565, 95% CI: 0.384-0.887, p = 0.005; adjusted OR = 0.172, 95% CI: 0.043-0.639, p = 0.009; adjusted OR = 0.254, 95% CI: 0.085-0.961, p = 0.041, respectively). These findings indicated that platelet GP Ia 807C/T polymorphism could be a protective factor of CH in the Chinese population.
Collateral Sensitivity of Multidrug-Resistant Cells to the Orphan Drug Tiopronin
Goldsborough, Andrew S.; Handley, Misty D.; Dulcey, Andrés E.; Pluchino, Kristen M.; Kannan, Pavitra; Brimacombe, Kyle R.; Hall, Matthew D.; Griffiths, Gary; Gottesman, Michael M.
2011-01-01
A major challenge in the treatment of cancer is multidrug resistance (MDR) that develops during chemotherapy. Here we demonstrate that tiopronin (1), a thiol-substituted N-propanoylglycine derivative, was selectively toxic to a series of cell lines expressing the drug efflux pump P-glycoprotein (P-gp, ABCB1) and MRP1 (ABCC1). Treatment of MDR cells with 1 led to instability of the ABCB1 mRNA and consequently a reduction in P-gp protein, despite functional assays demonstrating that tiopronin does not interact with P-gp. Long-term exposure of P-gp-expressing cells to 1 sensitized them to doxorubicin and taxol, both P-gp substrates. Treatment of MRP1-overexpressing cells with tiopronin led to a significant reduction in MRP1 protein. Synthesis and screening of analogs of tiopronin demonstrated that the thiol functional group was essential for collateral sensitivity, while substitution of the amino acid backbone altered but did not destroy specificity, pointing to future development of targeted analogs. PMID:21657271
González, María L; Vera, D Mariano A; Laiolo, Jerónimo; Joray, Mariana B; Maccioni, Mariana; Palacios, Sara M; Molina, Gabriela; Lanza, Priscila A; Gancedo, Samanta; Rumjanek, Vivian; Carpinella, María C
2017-01-01
P-glycoprotein (P-gp) is a membrane protein associated with multidrug resistance (MDR) due to its key role in mediating the traffic of chemotherapeutic drugs outside cancer cells, leading to a cellular response that hinders efforts toward successful therapy. With the aim of finding agents that circumvent the MDR phenotype mediated by P-gp, 15 compounds isolated from native and naturalized plants of Argentina were screened. Among these, the non-cytotoxic lignan (±) pinoresinol successfully restored sensitivity to doxorubicin from 7 μM in the P-gp overexpressed human myelogenous leukemia cells, Lucena 1. This resistance-reversing effect was confirmed by competitively increasing the intracellular doxorubicin accumulation and by significantly inhibiting the efflux of doxorubicin and, to a lesser extent, that of rhodamine 123. The activity obtained was similar to that observed with verapamil. No such results were observed in the sensitive parental K562 cell line. To gain deeper insight into the mode of action of pinoresinol, its effect on P-gp function and expression was examined. The docking simulations indicated that the lignan bound to P-gp at the apex of the V-shaped transmembrane cavity, involving transmembrane helices 4, 5, and 6, and partially overlapped the binding region of tariquidar, which was used as a positive control. These results would shed some light on the nature of its interaction with P-gp at molecular level and merit further mechanistic and kinetic studies. In addition, it showed a maximum 29% activation of ATP hydrolysis and antagonized verapamil-stimulated ATPase activity with an IC 50 of 20.9 μM. On the other hand, pinoresinol decreased the presence of P-gp in the cell surface. Derivatives of pinoresinol with improved activity were identified by docking studies. The most promising one, the non-cytotoxic 1-acetoxypinoresinol, caused a reversion of doxorubicin resistance from 0.11 μM and thus higher activity than the lead compound. It also caused a significant increase in doxorubicin accumulation. Results were similar to those observed with verapamil. The results obtained positioned these compounds as potential candidates for effective agents to overcome P-gp-mediated MDR, leading to better outcomes for leukemia chemotherapy.
Khattar, Sunil K; Manoharan, Vinoth; Bhattarai, Bikash; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2015-07-21
Newcastle disease virus (NDV) avirulent strain LaSota was used to coexpress gp160 Env and p55 Gag from a single vector to enhance both Env-specific and Gag-specific immune responses. The optimal transcription position for both Env and Gag genes in the NDV genome was determined by generating recombinant NDV (rNDV)-Env-Gag (gp160 located between the P and M genes and Gag between the HN and L genes), rNDV-Gag-Env (Gag located between the P and M genes and gp160 between the HN and L genes), rNDV-Env/Gag (gp160 followed by Gag located between the P and M genes), and rNDV-Gag/Env (Gag followed by gp160 located between the P and M genes). All the recombinant viruses replicated at levels similar to those seen with parental NDV in embryonated chicken eggs and in chicken fibroblast cells. Both gp160 and Gag proteins were expressed at high levels in cell culture, with gp160 found to be incorporated into the envelope of NDV. The Gag and Env proteins expressed by all the recombinants except rNDV-Env-Gag self-assembled into human immunodeficiency virus type 1 (HIV-1) virus-like particles (VLPs). Immunization of guinea pigs by the intranasal route with these rNDVs produced long-lasting Env- and Gag-specific humoral immune responses. The Env-specific humoral and mucosal immune responses and Gag-specific humoral immune responses were higher in rNDV-Gag/Env and rNDV-Env/Gag than in the other recombinants. rNDV-Gag/Env and rNDV-Env/Gag were also more efficient in inducing cellular as well as protective immune responses to challenge with vaccinia viruses expressing HIV-1 Env and Gag in mice. These results suggest that vaccination with a single rNDV coexpressing Env and Gag represents a promising strategy to enhance immunogenicity and protective efficacy against HIV. A safe and effective vaccine that can induce both systemic and mucosal immune responses is needed to control HIV-1. In this study, we showed that coexpression of Env and Gag proteins of HIV-1 performed using a single Newcastle disease virus (NDV) vector led to the formation of HIV-1 virus-like particles (VLPs). Immunization of guinea pigs with recombinant NDVs (rNDVs) elicited potent long-lasting systemic and mucosal immune responses to HIV. Additionally, the rNDVs were efficient in inducing cellular immune responses to HIV and protective immunity to challenge with vaccinia viruses expressing HIV Env and Gag in mice. These results suggest that the use of a single NDV expressing Env and Gag proteins simultaneously is a novel strategy to develop a safe and effective vaccine against HIV. Copyright © 2015 Khattar et al.
Su, Chunhe; Yang, Xiaopeng; Lou, Jiyu
2016-08-01
This study aimed to explore whether the regulatory effect of miR-21 on α-synuclein expression in neurons is a potential mechanism by which geniopside (GP) protects the central nervous system from Parkinson disease (PD). The human neuroblastoma cell line SH-SY5Y was induced to differentiate in vitro and treated with dimethyl sulfoxide (DMSO), N-methyl-4-phenylpyridinium iodide (MPP(+)), and MPP(+) together with GP. To identify the role of miR-21 in the regulation of lysosome-associated membrane protein 2 (LAMP2A) and α-synuclein, SH-SY5Y cells pretreated with MPP(+) were transfected with miR-21 mimic and miR-21 inhibitor. To identify whether GP could reduce the level of α-synuclein through miR-21/LAMP2A, SHSY5Y cells pretreated with GP were treated with miR-21 mimic or miR-21 inhibitor; meanwhile, a luciferase reporter assay was performed to confirm the direct target of miR-21. LAMP2A was overexpressed using a pCMV6-XL5-LAMP2A vector to confirm the role of LAMP2A in the regulation of α-synuclein by miR-21. In these in vitro experiments, the RNA and/or protein expressions of miR-21, LAMP2A, and α-synuclein in SH-SY5Y cells were determined by quantitative real-time polymerase chain reaction and/or western blotting, respectively. An in vivo PD mouse model was established through intraperitoneal injection with N-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). The mice were treated with saline, MPTP, MPTP+GP, and MPTP+GP+miR-21 agomir. The numbers of TH(+) cells in the substantia nigra in different groups of mice were compared. The RNA and/or protein expressions of miR-21, LAMP2A, and α-synuclein were also determined. The level of miR-21 in the cells or mice models was significantly higher than that in normal cells or normal mice, respectively, and GP significantly downregulated miR-21. GP also raised the protein and mRNA expressions of LAMP2A and reduced the protein level of α-synuclein in PD models. MiR-21 upregulated the expression of α-synuclein by directly targeting 3' UTR of LAMP2A. LAMP2A overexpression abolished the upregulating effect of miR-21 mimic on α-synuclein. MiR-21 mimics/agomir reversed the GP-induced downregulation of α-synuclein; miR-21 inhibitor effectively increased the downregulation of α-synuclein caused by GP. GP exhibits neuroprotective properties by inhibiting α-synuclein expression in PD models through the miR-21/LAMP2A axis. Copyright © 2016 Elsevier B.V. All rights reserved.
Opatrna, Sylvie; Lysak, Daniel; Trefil, Ladislav; Parker, Clare; Topley, Nicholas
2012-01-01
♦ Objective: In this study, we compared the activity of interleukin-6 (IL-6), a marker of ongoing peritoneal inflammation and biocompatibility, and its other signaling components, the soluble IL-6 receptor (sIL-6R) and soluble Gp130 (sGp130), in peritoneal effluent from patients treated with icodextrin-based (E) peritoneal dialysis (PD) solution and glucose-based bicarbonate/lactate–buffered (P) solution. ♦ Methods: Using baseline peritoneal ultrafiltration capacity, 33 stable incident PD patients were allocated either to P only (n = 20) or to P plus E for the overnight dwell (n = 13). We used ELISA to determine IL-6, sIL-6R, and sGp130 in timed overnight effluent at 1, 6, and 12 months after PD initiation. Flow cytometry was used to measure expression of IL-6R and Gp130 on isolated peritoneal leukocytes at the same time points. Peritonitis was an exclusion criterion. ♦ Results: At all time points, levels of IL-6 and sIL-6R, and the appearance rates of IL-6 (90.5 pg/min vs. 481.1 pg/min, p < 0.001; 138.6 pg/min vs. 1187.5 pg/min, p < 0.001; and 56.1 pg/min vs. 1386.0 pg/min, p < 0.001), sIL-6R (2035.3 pg/min vs. 4907.0 pg/min, p < 0.01; 1375.0 pg/min vs. 6348.4 pg/min, p < 0.01; and 1881.3 pg/min vs. 5437.8 pg/min, p < 0.01), and sGp130 (37.6 ng/min vs. 65.4 ng/min, p < 0.01; 39.2 ng/min vs. 80.6 ng/min, p < 0.01; 27.8 ng/min vs. 71.0 ng/min, p < 0.01) were significantly higher in peritoneal effluent from E-treated patients than from P-treated patients. Expression of IL6-R and Gp130 on individual leukocyte types isolated from PD effluent did not differ between E- and P-treated patients. The numbers of white blood cells present in effluent were higher in E-treated than in P-treated patients at all time points, but no significant differences were seen in the differential counts or in the number of exfoliated mesothelial cells. The IL-6 parameters in effluent from E-treated patients correlated with their plasma C-reactive protein. Despite the increased activation of the IL-6 system, no increase in peritoneal permeability as assessed by the dialysate-to-plasma ratio of creatinine in E effluent or by systemic inflammation was observed throughout the study. ♦ Conclusions: Higher levels of IL-6, its soluble receptors, and leukocyte expression were observed in E-treated than in P-treated patients, but this difference was not associated with alterations in peritoneal permeability or systemic inflammation during 1 year of follow-up. Leukocyte counts in effluent from E-treated patients were within the normal range previously reported for glucose solutions. This lack of clinical consequences may be a result of a parallel rise in sIL-6R and sGp130, which are known to control the biologic activity of IL-6. The utility of IL-6 level determinations, in isolation, for assessing the biocompatibility of PD solutions is questionable. PMID:22302924
Lagas, Jurjen S; Sparidans, Rolf W; van Waterschoot, Robert A B; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H
2008-03-01
Salinomycin is a polyether organic anion that is extensively used as a coccidiostatic antibiotic in poultry and commonly fed to ruminant animals to improve feed efficiency. However, salinomycin also causes severe toxicity when accidentally fed to animals in high doses. In addition, humans are highly sensitive to salinomycin and severe toxicity has been reported. Multidrug efflux transporters like P-glycoprotein (P-gp), BCRP, and MRP2 are highly expressed in the intestine and can restrict the oral uptake and tissue penetration of xenobiotics. The purpose of this study was to investigate whether the anionic drug salinomycin is a substrate for one or more of these efflux pumps. Salinomycin was actively transported by human MDR1 P-gp expressed in polarized MDCK-II monolayers but not by the known organic anion transporters human MRP2 and murine Bcrp1. Using P-gp-deficient mice, we found a marked increase in plasma salinomycin concentrations after oral administration and decreased plasma clearance after intravenous administration. Furthermore, absence of P-gp resulted in significantly increased brain penetration. P-gp-deficient mice also displayed clearly increased susceptibility to salinomycin toxicity. Thus far, P-gp was thought to affect mainly hydrophobic, positively charged or neutral drugs in vivo. Our data show that P-gp can also be a major determinant of the pharmacokinetic behavior and toxicity of an organic anionic drug. Variation in P-gp activity might thus directly affect the effective exposure to salinomycin and possibly to other anionic drugs and toxin substrates. Individuals with reduced or absent P-gp activity could therefore be more susceptible to salinomycin toxicity.
Janikova, M; Zizkova, V; Skarda, J; Kharaishvili, G; Radova, L; Kolar, Z
2016-01-01
Recently, miR-23b has emerged as a promising new cancer biomarker but its role in lung cancer has not been established yet. Patients still do not respond well to available treatments, probably due to expression of multidrug resistance (MDR) proteins, such as P-gp, MRP and LRP/MVP. The aim of this study was to determine the role of miR-23b in non-small cell lung cancer (NSCLC) and its relationship to the patient outcome together with MDR transporter proteins. We immunohistochemically evaluated expression of P-gp, MRP and LRP/MVP and quantified the relative levels of miR-23b in 62 NSCLC patients´ samples. The prognostic significance of miR-23b and MDR proteins was tested by Kaplan-Meier and Cox-regression analysis. Our results showed that miR-23b is mostly downregulated in NSCLC samples (57/62) and that its upregulation in tumors is connected with longer progression-free survival (PFS; P = 0.065) and overall survival (OS; P = 0.048). The Cox proportional hazard model revealed that the risk of death or relapse in NSCLC patients with miR-23b downregulation increases together with LRP/MVP expression and both risks decrease with miR-23b upregulation (HRPFS = 4.342, PPFS = 0.022; HROS = 4.408, POS = 0.015). Our findings indicate that miR-23b, especially in combination with LRP/MVP expression, might serve as a suitable prognostic biomarker for NSCLC patients.
Montazami, N; Kheir Andish, M; Majidi, J; Yousefi, M; Yousefi, B; Mohamadnejad, L; Shanebandi, D; Estiar, M A; Khaze, V; Mansoori, B; Baghbani, E; Baradaran, B
2015-05-28
One of the most challenging aspects of colon cancer therapy is rapid acquisition of multidrug resistant phenotype. The multidrug resistance gene 1 (MDR1) product, p—glycoprotein (P—gp), pump out a variety of anticancer agents from the cell, giving rise to a general drug resistance against chemotherapeutic agents. The aim of this study was to investigate the effect of a specific MDR1 small interference RNA (siRNA) on sensitivity of oxaliplatin—resistant SW480 human colon cancer cell line (SW480/OxR) to the chemotherapeutic drug oxaliplatin. SW480 cells were made resistant by continuous incubation with stepwise serially increased concentrations of oxaliplatin over a 6—months period. Resistance cell were subsequently transfected with specific MDR1 siRNA. Relative MDR1 mRNA expression was measured by Quantitative real—time PCR. Western blot analysis was performed to determine the protein levels of P—gp. The cytotoxic effects of oxaliplatin and MDR1 siRNA, alone and in combination were assessed using MTT and the number of apoptotic cells was determined with the TUNEL assay. MDR1 siRNA effectively reduced MDR1 expression in both mRNA and protein levels. MDR1 down—regulation synergistically increased the cytotoxic effects of oxaliplatin and spontaneous apoptosis SW480/OxR. Our data demonstrates that RNA interference could down regulate MDR1 gene expression and reduce the P—gp level, and partially reverse the drug resistance in SW480/OxR cells in vitro. Therefore, the results could suggest that MDR1 silencing may be a potent adjuvant in human colon chemotherapy.
Rothweiler, Florian; Michaelis, Martin; Brauer, Peter; Otte, Jürgen; Weber, Kristoffer; Fehse, Boris; Doerr, Hans Wilhelm; Wiese, Michael; Kreuter, Jörg; Al-Abed, Yousef; Nicoletti, Ferdinando; Cinatl, Jindrich
2010-01-01
The human immunodeficiency virus (HIV) protease inhibitor saquinavir shows anticancer activity. Although its nitric oxide-modified derivative saquinavir-NO (saq-NO) was less toxic to normal cells, it exerted stronger inhibition of B16 melanoma growth in syngeneic C57BL/6 mice than saquinavir did. Saq-NO has been shown to block proliferation, upregulate p53 expression, and promote differentiation of C6 glioma and B16 cells. The anticancer activity of substances is frequently hampered by cancer cell chemoresistance mechanisms. Therefore, we here investigated the roles of p53 and the ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1), and breast cancer resistance protein 1 (BCRP1) in cancer cell sensitivity to saq-NO to get more information about the potential of saq-NO as anticancer drug. Saq-NO exerted anticancer effects in lower concentrations than saquinavir in a panel of human cancer cell lines. Neither p53 mutation or depletion nor expression of P-gp, MRP1, or BCRP1 affected anticancer activity of saq-NO or saquinavir. Moreover, saq-NO sensitized P-gp-, MRP1-, or BCRP1-expressing cancer cells to chemotherapy. Saq-NO induced enhanced sensitization of P-gp- or MRP1-expressing cancer cells to chemotherapy compared with saquinavir, whereas both substances similarly sensitized BCRP1-expressing cells. Washout kinetics and ABC transporter ATPase activities demonstrated that saq-NO is a substrate of P-gp as well as of MRP1. These data support the further investigation of saq-NO as an anticancer drug, especially in multidrug-resistant tumors. PMID:21170266
Durk, Matthew R; Fan, Jianghong; Sun, Huadong; Yang, Yingbo; Pang, Henrianna; Pang, K Sandy; de Lannoy, Inés A M
2015-03-01
Since the vitamin D receptor (VDR) was found to up-regulate cerebral P-glycoprotein expression in vitro and in mice, we extend our findings to rats by assessing the effect of rat Vdr activation on brain efflux of quinidine, a P-gp substrate that is eliminated primarily by cytochrome P450 3a. We treated rats with vehicle or the active VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] (4.8 or 6.4 nmol/kg i.p. every 2nd day × 4) and examined P-gp expression and cerebral quinidine disposition via microdialysis in control and treatment studies conducted longitudinally in the same rat. The 6.4 nmol/kg 1,25(OH)2D3 dose increased cerebral P-gp expression 1.75-fold whereas hepatic Cyp3a remained unchanged. Although there was no change in systemic clearance elicited by 1,25(OH)2D3, brain extracellular fluid quinidine concentrations were lower in treated rats. We noted that insertion of indwelling catheters increased plasma protein binding of quinidine and serial sampling decreased the blood:plasma concentration ratio, factors that alter distribution ratios in microdialysis studies. After appropriate correction, KECF/P,uu and KECF/B,uu, or ratios of quinidine unbound concentrations in brain extracellular fluid to plasma or blood at steady-state, were more than halved. We demonstrate that VDR activation increases cerebral P-gp expression and delimits brain penetration of P-gp substrates.
Hsu, Yuan-Man; Yin, Mei-Chin
2016-06-01
Effects of eicosapentaenoic acid (EPA, 20:5) and docosahexaenoic acid (DHA, 22:6) upon fatty acid composition, oxidative and inflammatory factors and aging proteins in brain of d-galactose (DG) treated aging mice were examined. Each fatty acid at 7 mg/kg BW/week was supplied for 8 weeks. Brain aging was induced by DG treatment (100 mg/kg body weight) via daily subcutaneous injection for 8 weeks. DG, EPA and DHA treatments changed brain fatty acid composition. DG down-regulated brain Bcl-2 expression and up-regulated Bax expression. Compared with DG groups, EPA and DHA further enhanced Bax expression. DG decreased glutathione content, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production, the intake of EPA or DHA caused greater ROS and GSSG formation. DG treatments up-regulated the protein expression of p47(phox) and gp91(phox), and the intake of EPA or DHA led to greater p47(phox) and gp91(phox) expression. DG increased brain prostaglandin E2 (PGE2) levels, and cyclooxygenase (COX)-2 expression and activity, the intake of EPA or DHA reduced brain COX-2 activity and PGE2 formation. DG enhanced brain p53, p16 and p21 expression. EPA and DHA intake led to greater p21 expression, and EPA only caused greater p53 and p16 expression. These findings suggest that these two PUFAs have toxic effects toward aging brain.
Marquez-Nostra, Bernadette V.; Lee, Supum; Laforest, Richard; Vitale, Laura; Nie, Xingyu; Hyrc, Krzysztof; Keler, Tibor; Hawthorne, Thomas; Hoog, Jeremy; Li, Shunqiang; Dehdashti, Farrokh; Ma, Cynthia X.; Lapi, Suzanne E.
2017-01-01
High levels of expression of glycoprotein non-metastatic B (gpNMB) in triple negative breast cancer (TNBC) and its association with metastasis and recurrence make it an attractive target for therapy with the antibody drug conjugate, glembatumumab vedotin (CDX-011). This report describes the development of a companion PET-based diagnostic imaging agent using 89Zr-labeled glembatumumab ([89Zr]DFO-CR011) to potentially aid in the selection of patients most likely to respond to targeted treatment with CDX-011. [89Zr]DFO-CR011 was characterized for its pharmacologic properties in TNBC cell lines. Preclinical studies determined that [89Zr]DFO-CR011 binds specifically to gpNMB with high affinity (Kd = 25 ± 5 nM), immunoreactivity of 2.2-fold less than the native CR011, and its cellular uptake correlates with gpNMB expression (r = 0.95). In PET studies at the optimal imaging timepoint of 7 days p.i., the [89Zr]DFO-CR011 tumor uptake in gpNMB-expressing MDA-MB-468 xenografts had a mean SUV of 2.9, while significantly lower in gpNMB-negative MDA-MB-231 tumors with a mean SUV of 1.9. [89Zr]DFO-CR011 was also evaluated in patient-derived xenograft models of TNBC, where tumor uptake in vivo had a positive correlation with total gpNMB protein expression via ELISA (r = 0.79), despite the heterogeneity of gpNMB expression within the same group of PDX mice. Lastly, the radiation dosimetry calculated from biodistribution studies in MDA-MB-468 xenografts determined the effective dose for human use would be 0.54 mSv/MBq. Overall, these studies demonstrate that [89Zr]DFO-CR011 is a potential companion diagnostic imaging agent for CDX-011 which targets gpNMB, an emerging biomarker for TNBC. PMID:29262642
Crawford, Lindsey; Putnam, David
2014-08-20
Rhodamine dyes are well-known P-glycoprotein (P-gp) substrates that have played an important role in the detection of inhibitors and other substrates of P-gp, as well as in the understanding of P-gp function. Macromolecular conjugates of rhodamines could prove useful as tethers for further probing of P-gp structure and function. Two macromolecular derivatives of rhodamine, methoxypolyethylene glycol-rhodamine6G and methoxypolyethylene glycol-rhodamine123, were synthesized through the 2'-position of rhodamine6G and rhodamine123, thoroughly characterized, and then evaluated by inhibition with verapamil for their ability to interact with P-gp and to act as efflux substrates. To put the results into context, the P-gp interactions of the new conjugates were compared to the commercially available methoxypolyethylene glycol-rhodamineB. FACS analysis confirmed that macromolecular tethers of rhodamine6G, rhodamine123, and rhodamineB were accumulated in P-gp expressing cells 5.2 ± 0.3%, 26.2 ± 4%, and 64.2 ± 6%, respectively, compared to a sensitive cell line that does not overexpress P-gp. Along with confocal imaging, the efflux analysis confirmed that the macromolecular rhodamine tethers remain P-gp substrates. These results open potential avenues for new ways to probe the function of P-gp both in vitro and in vivo.
Khan, Abrar M; Ahmad, Farhan Jalees; Panda, Amulya K; Talegaonkar, Sushama
2016-06-30
Overexpression of P-glycoprotein (P-gp) efflux transporter in glioma cells thwarts the build-up of therapeutic concentration of drugs usually resulting into poor therapeutic outcome. To surmount aforesaid challenge, Imatinib (IMM) loaded Poly-lactide-co-glycolic acid nanoparticles (IMM-PLGA-NPs) were developed and optimized by Box Behnken Design as a new treatment stratagem in malignant glioma. Optimized NPs were functionalized with Pluronic(®) P84, P-gp inhibitor (IMM-PLGA-P84-NPs) which showed size, PDI, zeta potential, drug loading, 182.63±13.56nm, 0.196±0.021, -15.2±1.49mV, 40.63±2.04μg/mg, respectively. Intracellular uptake study conducted on A172, U251MG and C6 glioma cells demonstrated significantly high uptake of IMM through NPs when compared with IMM solution (IMM-S), p<0.001. IMM-PLGA-P84-NPs showed better uptake in P-gp expressing cell line (U251MG and C6) while uncoated NPs showed higher uptake in non-P-gp expressing cell line (A-172). Cytotoxicity studies demonstrated significantly low IC50 for both IMM-PLGA-NPs and IMM-PLGA-P84-NPs when compared with IC50 of IMM-S. IMM-PLGA-P84-NPs showed a significantly low IC50 against P-gp overexpressing cell lines when compared with IC50 of IMM-PLGA-NPs. In contrary, IMM-PLGA-NPs showed lower IC50 against non P-gp expressing cell line. This study demonstrated the feasibility of targeting surface decorated NPs to multidrug resistant gliomas. However, to address its clinical utility extensive in vivo studies are required. Copyright © 2016 Elsevier B.V. All rights reserved.
2014-01-01
Background The European (EU) genotype of porcine reproductive and respiratory syndrome virus (Genotype-I PRRSV) has recently emerged in China. The coexistence of Genotype-I and -II PRRSV strains could cause seriously affect PRRSV diagnosis and management. Current vaccines are not able to protect against PRRSV infection completely and have inherent drawbacks. Thus, genetically engineered vaccines, including DNA vaccine and live vector engineered vaccines, have been developed. This study aimed to determine the enhanced immune responses of mice inoculated with a DNA vaccine coexpressing GP3 and GP5 of a Genotype-I PRRSV. Results To evaluate the immunogenicity of GP3 and GP5 proteins from European-type PRRSV, three DNA vaccines, pVAX1-EU-ORF3-ORF5, pVAX1-EU-ORF3 and pVAX1-EU-ORF5, were constructed, which were based on a Genotype-I LV strain (GenBank ID: M96262). BALB/c mice were immunized with the DNA vaccines; delivered in the form of chitosan-DNA nanoparticles. To increase the efficiency of the vaccine, Quil A (Quillaja) was used as an adjuvant. GP3 and GP5-specific antibodies, neutralizing antibodies and cytokines (IL-2, IL-4, IL-10 and IFN gamma) from the immunized mice sera, and other immune parameters, were examined, including T-cell proliferation responses and subgroups of spleen T-lymphocytes. The results showed that ORF3 and ORF5 proteins of Genotype-I PRRSV induced GP3 and GP5-specific antibodies that could neutralize the virus. The levels of Cytokines IL-2, IL-4, IL-10, and IFN–γ of the experimental groups were significantly higher than those of control groups after booster vaccination (P < 0.05). The production of CD3+CD4+ and CD3+CD8+ T lymphocyte was also induced. T lymphocyte proliferation assays showed that the PRRSV LV strain virus could stimulate the proliferation of T lymphocytes in mice in the experimental group. Conclusions Using Quil A as adjuvant, Genotype-I PRRSV GP3 and GP5 proteins produced good immunogenicity and reactivity. More importantly, better PRRSV-specific neutralizing antibody titers and cell-mediated immune responses were observed in mice immunized with the DNA vaccine co-expressing GP3 and GP5 proteins than in mice immunized with a DNA vaccine expressing either protein singly. The results of this study demonstrated that co-immunization with GP3 and GP5 produced a better immune response in mice. PMID:24916952
Shen, Hu-jia; Wang, Yan-hong; Xu, Jian
2013-02-01
The aim of this study was to explore the inhibitory effect of sorafenib and 5-Fu on transplanted human liver cancer in nude mice, and to investigate the synergistic effect and mechanism between sorafenib and 5-Fu. The nude mouse model of human liver cancer was made by transplantation of human highly metastatic liver cancer cell line HCCLM3 cells, and the tumor-bearing nude mice were treated with sorafenib, 5-Fu or both, respectively, and mock-treated tumor-bearing nude mice as negative control. To assess the anti-tumor effect of sorafenib and the synergistic effect of sorafenib combined with 5-Fu by measuring the tumor weight and number of lung metastases. Moreover, the expressions of phosphorylated extracellular signal-regulated kinase (p-ERK), P-glycoprotein (P-gp) and topoisomerase 2-alpha (Topo IIa) in the nude mice were assayed by immunocytochemistry and Western blot. The tumor weights and numbers of lung metastases were: (2.7 ± 0.825) g and 12.714 ± 6.317 in the negative control group, (0.933 ± 0.333) g and 4.333 ± 3.983 in the sorafenib group, (0.786 ± 0.212) g and 5.429 ± 4.315 in the Sorafenib + 5-Fu combination group, and (2.438 ± 0.793) g and 10.429 ± 6.241 in the 5-Fu group. Statistically, the tumor weights and numbers of lung metastases in the sorafenib group and combination group were significantly decreased, compared with that in the control group (P < 0.05). There was no significant difference in the tumor weight and number of lung metastases between the sorafenib group and the combination treatment group (P > 0.05). The expression levels of p-ERK, P-gp and Topo IIa proteins in the tumors after normalization were: negative control (0.017 ± 0.010, 0.085 ± 0.012, 0.103 ± 0.093), sorafenib group (0.010 ± 0.008, 0.044 ± 0.020, 0.020 ± 0.018), combination group (0.011 ± 0.007, 0.043 ± 0.023, 0.062 ± 0.026), and 5-Fu group (0.018 ± 0.009, 0.063 ± 0.032, 0.065 ± 0.034), respectively. Statistically, the expression of p-ERK, P-gp and Topo IIa in the Sorafenib group was significantly reduced compared with that of the control group (P < 0.05), and there was no significant difference in the expression of p-ERK, P-gp and Topo IIa between the sorafenib group and the combination treatment group (P > 0.05). Sorafenib can inhibit not only the tumor growth and lung metastsis in the nude mouse models, but also reduce the expression of multidrug resistance proteins P-gp and Topo IIa as well. There is no significant advantage for the sorafenib + 5-Fu combination treatment than Sorafenib alone in inhibiting the expression of p-ERK, P-gp and Topo IIa.
Tomono, Takumi; Kajita, Masahiro; Yano, Kentaro; Ogihara, Takuo
2016-08-05
P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Yi, Ying-Jie; Jia, Xiu-Hong; Wang, Jian-Yong; Li, You-Jie; Wang, Hong; Xie, Shu-Yang
2016-05-01
Multidrug resistance (MDR) of leukemia cells is a major obstacle in chemotherapeutic treatment. The high expression and constitutive activation of P-glycoprotein (P-gp) and multidrug resistance protein-1 (MRP-1) have been reported to play a vital role in enhancing cell resistance to anticancer drugs in many tumors. The present study aimed to investigate the reversal of MDR by silencing homeobox A10 (HOXA10) in adriamycin (ADR)-resistant human chronic myelogenous leukemia (CML) K562/ADM cells by modulating the expression of P-gp and MRP-1. K562/ADM cells were stably transfected with HOXA10-targeted short hairpin RNA (shRNA). The results of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis showed that the mRNA and protein expression of HOXA10 was markedly suppressed following transfection with a shRNA-containing vector. The sensitivity of the K562/ADM cells to ADR was enhanced by the silencing of HOXA10, due to the increased intracellular accumulation of ADR. The accumulation of ADR induced by the silencing of HOXA10 may be due to the downregulation of P-gp and MRP-1. Western blot analysis revealed that downregulating HOXA10 inhibited the protein expression of P-gp and MRP-1. Taken together, these results suggest that knockdown of HOXA10 combats resistance and that HOXA10 is a potential target for resistant human CML.
Hajizadeh, Mohammad Reza; Mokarram, Pooneh; Kamali sarvestani, Eskandar; Bolhassani, Azam; Mostafavi Pour, Zohreh
2013-01-01
Background Hepatitis C virus (HCV) infection is the main cause of chronic liver disease and to date there has been no vaccine development to prevent this infection. Among non-structural HCV proteins, NS3 protein is an excellent goal for a therapeutic vaccine, due to its large size and less variation in conserved regions. The immunogenic properties of heat shock proteins (HSPs) for instance GP96 have prompted investigations into their function as strong adjuvant to improve innate and adaptive immunity. Objectives The aim of this study was to examine additive effects of recombinant GP96 (rGP96) fragments accompanied by rNS3 on expression levels of α5integrin and pro-inflammatory cytokines, IL-12 and TNFα, in Antigen Presenting Cells (APCs). Materials and Methods Recombinant viral proteins (rNS3 and rRGD-NS3), N-terminal and C-terminal fragments of GP96 were produced and purified from E. coli in order to treat the cells; mouse spleen Dendritic Cells (DCs) and THP-1 macrophages. Results Our results showed that rNT-GP96 alone significantly increases the expression level of IL-12, TNFα and α5integrin in THP-1 macrophages and DCs, while IL-12 and TNFα expression levels were unaffected by either rNS3 or rRGD-NS3. Interestingly, the co-addition of these recombinant proteins with rNT-GP96 increased IL-12, TNFα and α5integrin expression. Pearson Correlation showed a direct association between α5integrin with IL-12 and TNF-α expression. Conclusions we have highlighted the role of rNS3 plus rNT-GP96 mediated by α5integrin in producing IL-12 and TNFα. It can be suggested that rNT-GP96 could enhance immunity characteristic of rNS3 protein via production of pro-inflammatory cytokines. PMID:24032046
Ozgür, Burak; Saaby, Lasse; Langthaler, Kristine; Brodin, Birger
2018-01-15
Recently, we transfected the porcine intestinal cell line IPEC-J2, with human P-glycoprotein (P-gp, ABCB1). The resulting cell line, iP-gp, has a high expression of functional human P-gp in the apical membrane, and a low expression of nonhuman ATP-binding cassette (ABC) transporters. The aim of the present work was to investigate the usability of iP-gp cell line for determining transepithelial transport kinetics of the prototypical P-gp substrates digoxin and rhodamine 123. The cell line generated tight monolayers after 16days of culture, reflected by high transepithelial electrical resistance values (TEER>15,000Ω·cm 2 ), immunocytochemistry and low fluxes of the paracellular flux marker [ 14 C]-mannitol. Monolayer integrity was not affected the common solvents dimethyl sulfoxide (DMSO), methanol and ethanol in concentrations up to 2% (v/v). Transepithelial fluxes of [ 3 H]-labeled digoxin and rhodamine 123 were measured at varying donor concentrations, and kinetic parameters were estimated. K m and V max of P-gp mediated basolateral-to-apical (B-A) flux of rhodamine 123 were estimated to 332±124μM and 111±16pmol·cm -2 ·min -1 (n=3, total N=6), respectively. V max and K m of digoxin B-A flux could not be estimated due to the low aqueous solubility of digoxin. The half maximal inhibitory concentrations (IC 50 ) of the selective P-gp inhibitor, zosuquidar (LY-335979), were estimated to 0.05±0.01μM (n=3, total N=6) and 0.04±0.01μM (n=3, total N=6) in transport experiments with digoxin and rhodamine 123 as substrates, respectively. Bidirectional fluxes of digoxin and rhodamine 123 were measured in transfected Madin Darby canine kidney cells (MDCK II MDR1) and compared with the fluxes obtained with the iP-gp cell monolayers. Efflux ratios were highest in the iP-gp cells, due to a tighter paracellular pathway. In conclusion, both digoxin and rhodamine 123 could be used to obtain IC 50 values of inhibition, K i values were only possible to obtain using rhodamine 123. The observed tightness, robustness towards solvents and the high efflux ratios confirmed that the iP-gp cell line may serve as a useful screening tool for investigations of substrate-P-gp interactions and modulation of P-gp function. Copyright © 2017 Elsevier B.V. All rights reserved.
Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J.; Ilangovan, Govindasamy
2011-01-01
Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G2/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer. PMID:21784846
Kanagasabai, Ragu; Krishnamurthy, Karthikeyan; Druhan, Lawrence J; Ilangovan, Govindasamy
2011-09-23
Mutant p53 accumulation has been shown to induce the multidrug resistance gene (MDR1) and ATP binding cassette (ABC)-based drug efflux in human breast cancer cells. In the present work, we have found that transcriptional activation of the oxidative stress-responsive heat shock factor 1 (HSF-1) and expression of heat shock proteins, including Hsp27, which is normally known to augment proteasomal p53 degradation, are inhibited in Adriamycin (doxorubicin)-resistant MCF-7 cells (MCF-7/adr). Such an endogenous inhibition of HSF-1 and Hsp27 in turn results in p53 mutation with gain of function in its transcriptional activity and accumulation in MCF-7/adr. Also, lack of HSF-1 enhances nuclear factor κB (NF-κB) DNA binding activity together with mutant p53 and induces MDR1 gene and P-glycoprotein (P-gp, ABCB1), resulting in a multidrug-resistant phenotype. Ectopic expression of Hsp27, however, significantly depleted both mutant p53 and NF-κB (p65), reversed the drug resistance by inhibiting MDR1/P-gp expression in MCF-7/adr cells, and induced cell death by increased G(2)/M population and apoptosis. We conclude from these results that HSF-1 inhibition and depletion of Hsp27 is a trigger, at least in part, for the accumulation of transcriptionally active mutant p53, which can either directly or NF-κB-dependently induce an MDR1/P-gp phenotype in MCF-7 cells. Upon Hsp27 overexpression, this pathway is abrogated, and the acquired multidrug resistance is significantly abolished so that MCF-7/adr cells are sensitized to Dox. Thus, clinical alteration in Hsp27 or NF-κB level will be a potential approach to circumvent drug resistance in breast cancer.
Zeng, Xiao-yan; Dong, Shu; He, Nan-nan; Jiang, Chun-jie; Dai, Yue; Xia, Yu-feng
2015-09-01
Arctigenin is the main active ingredient of Fructus Arctii for the treatment of type 2 diabetes. In this study, the pharmacokinetics of arctigenin in normal and type 2 diabetic rats following oral and intravenous administration was investigated. As compared to normal rats, Cmax and AUC(0-10h) values of oral arctigenin in diabetic rats increased by 356.8% and 223.4%, respectively. In contrast, after intravenous injection, the Cmax and AUC(0-10h) values of arctigenin showed no significant difference between diabetic and normal rats. In order to explore how the bioavailability of oral arctigenin increased under diabetic condition, the absorption behavior of arctigenin was evaluated by in situ single-pass intestinal perfusion (SPIP). The results indicated that arctigenin was a substrate of P-glycoprotein (P-gp). The absorption difference of arctigenin in the normal and diabetic rats could be eliminated by the pretreatment of classic P-gp inhibitor verapamil, suggesting that P-gp might be the key factor causing the absorption enhancement of arctigenin in diabetic rats. Further studies revealed that the uptake of rhodamine 123 (Rho123) in diabetic rats was significantly higher, indicating that diabetes mellitus might impair P-gp function. Consistently, a lower mRNA level of P-gp in the intestine of diabetic rats was found. In conclusion, the absorption of arctigenin after oral administration was promoted in diabetic rats, which might be partially attribute to the decreased expression and impaired function of P-gp in intestines. Copyright © 2015 Elsevier B.V. All rights reserved.
Rapposelli, Simona; Coi, Alessio; Imbriani, Marcello; Bianucci, Anna Maria
2012-01-01
P-glycoprotein (P-gp) is an efflux pump involved in the protection of tissues of several organs by influencing xenobiotic disposition. P-gp plays a key role in multidrug resistance and in the progression of many neurodegenerative diseases. The development of new and more effective therapeutics targeting P-gp thus represents an intriguing challenge in drug discovery. P-gp inhibition may be considered as a valid approach to improve drug bioavailability as well as to overcome drug resistance to many kinds of tumours characterized by the over-expression of this protein. This study aims to develop classification models from a unique dataset of 59 compounds for which there were homogeneous experimental data on P-gp inhibition, ATPase activation and monolayer efflux. For each experiment, the dataset was split into a training and a test set comprising 39 and 20 molecules, respectively. Rational splitting was accomplished using a sphere-exclusion type algorithm. After a two-step (internal/external) validation, the best-performing classification models were used in a consensus predicting task for the identification of compounds named as "true" P-gp inhibitors, i.e., molecules able to inhibit P-gp without being effluxed by P-gp itself and simultaneously unable to activate the ATPase function.
Inhibition of the Human ABC Efflux Transporters P-gp and ...
High body burdens of polybrominated diphenyl ethers (PBDEs) in infants and young children have led to increased concern over their potential impact on human development. PBDE exposure can alter the expression of genes involved in thyroid homeostasis, including those of ATP-binding cassette (ABC) transporters, which mediate cellular xenobiotic efflux. However, little information exists on how PBDEs interact with ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). The purpose of this study was to evaluate the interactions of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and its hydroxylated metabolite 6-OH-BDE-47 with P-gp and BCRP, using human MDR1- and BCRP-expressing membrane vesicles and stably transfected NIH-3T3-MDR1 and MDCK-BCRP cells. In P-gp membranes, BDE-47 did not affect P-gp activity; however, 6-OH-BDE-47 inhibited P-gp activity at low µM concentrations (IC50 = 11.7 µM). In BCRP membranes, BDE-47 inhibited BCRP activity; however, 6-OH-BDE-47 was a stronger inhibitor [IC50 = 45.9 µM (BDE-47) vs. IC50 = 9.4 µM (6-OH-BDE-47)]. Intracellular concentrations of known P-gp and BCRP substrates [(3H)-paclitaxel and (3H)-prazosin, respectively] were significantly higher (indicating less efflux) in NIH-3T3-MDR1 and MDCK-BCRP cells in the presence of 6-OH-BDE-47, but not BDE-47. Collectively, our results indicate that the BDE-47 metabolite 6-OH-BDE-47 is an inhibitor of both P-gp and BCRP efflux activity.
Sheoran, N.; Kumar, R.; Kumar, A.; Batra, K.; Sihag, S.; Maan, S.; Maan, N. S.
2017-01-01
Aim: In this study, a planned research work was conducted to investigate the nutrigenomic aspects of supplementation of Allium sativum (garlic) and Ocimum sanctum (holy basil) leaf powder on the growth performance and immune characteristics of broilers. Materials and Methods: A 6 weeks feeding trial was conducted with 280-day-old Ven Cobb broilers, distributed randomly into seven experimental groups. Each treatment had 4 replicates with 10 birds each. The birds of the control group (T1) were fed a basal diet formulated as per BIS standards. The broilers of treatment groups T2 and T3 were fed basal diet supplemented with the commercially available garlic powder (GP) at levels of 0.5% and 1.0% of the feed, respectively, while broilers in T4 and T5 were fed basal diet supplemented with commercial grade holy basil leaf powder (HBLP) at levels 0.5% and 1.0% of the feed, respectively. Birds in the T6 were fed with 0.5% GP and 0.5% HBLP, whereas T7 was fed with 1.0% GP and 1.0% HBLP. At the end of the feeding trial (6th week), blood samples were collected and analyzed for relative mRNA expression of toll-like receptors (TLR) 2, TLR 4 and TLR 7 using real-time polymerase chain reaction. Results: The mean body weight gain and feed conversion efficiency were improved (p<0.05) in broilers fed the GP and HBLP incorporated diets compared with the control group. The relative mRNA expression levels of TLR 2, TLR 4 and TLR 7 in the peripheral blood of the broilers were found to be increased (p<0.05) in the birds supplemented with graded levels of the GP and HBLP as compared to the untreated group. Conclusion: The present work concludes that the inclusion of GP and HBLP could enhance the production performance and immune status of birds by augmenting the T-cell mediated immune response and thereby protects them from disease without decreasing growth traits as a possible substitution to conventional antimicrobials. PMID:28246456
Bohacova, Viera; Seres, Mario; Pavlikova, Lucia; Kontar, Szilvia; Cagala, Martin; Bobal, Pavel; Otevrel, Jan; Brtko, Julius; Sulova, Zdena; Breier, Albert
2018-05-01
The acceleration of drug efflux activity realized by plasma membrane transporters in neoplastic cells, particularly by P-glycoprotein (P-gp, ABCB1 member of the ABC transporter family), represents a frequently observed molecular cause of multidrug resistance (MDR). This multiple resistance represents a real obstacle in the effective chemotherapy of neoplastic diseases. Therefore, identifying cytotoxic substances that are also effective in P-gp overexpressing cells may be useful for the rational design of substances for the treatment of malignancies with developed MDR. Here, we showed that triorganotin derivatives—tributyltin-chloride (TBT-Cl), tributyltin-bromide (TBT-Br), tributyltin-iodide (TBT-I) and tributyltin-isothiocyanate (TBT-NCS) or triphenyltin-chloride (TPT-Cl) and triphenyltin-isothiocyanate (TPT-NCS)—could induce the death of L1210 mice leukemia cells at a submicromolar concentration independently of P-gp overexpression. The median lethal concentration obtained for triorganotin derivatives did not exceed 0.5 µM in the induction of cell death of either P-gp negative or P-gp positive L1210 cells. Apoptosis related to regulatory pathway of Bcl-2 family proteins seems to be the predominant mode of cell death in either P-gp negative or P-gp positive L1210 cells. TBT-Cl and TBT-Br were more efficient with L1210 cells overexpressing P-gp than with their counterpart P-gp negative cells. In contrast, TBT-I and TPT-NCS induced a more pronounced cell death effect on P-gp negative cells than on P-gp positive cells. Triorganotin derivatives did not affect P-gp efflux in native cells measured by calcein retention within the cells. Taken together, we assumed that triorganotin derivatives represent substances suitable for suppressing the viability of P-gp positive malignant cells.
Roggenbuck, Dirk; Goihl, Alexander; Hanack, Katja; Holzlöhner, Pamela; Hentschel, Christian; Veiczi, Miklos; Schierack, Peter; Reinhold, Dirk; Schulz, Hans-Ulrich
2017-05-01
Glycoprotein 2 (GP2), the pancreatic major zymogen granule membrane glycoprotein, was reported to be elevated in acute pancreatitis in animal models. Enzyme-linked immunosorbent assays (ELISAs) were developed to evaluate human glycoprotein 2 isoform alpha (GP2a) and total GP2 (GP2t) as specific markers for acute pancreatitis in sera of 153 patients with acute pancreatitis, 26 with chronic pancreatitis, 125 with pancreatic neoplasms, 324 with non-pancreatic neoplasms, 109 patients with liver/biliary disease, 67 with gastrointestinal disease, and 101 healthy subjects. GP2a and GP2t levels were correlated with procalcitonin and C-reactive protein in 152 and 146 follow-up samples of acute pancreatitis patients, respectively. The GP2a ELISA revealed a significantly higher assay accuracy in contrast to the GP2t assay (sensitivity ≤3 disease days: 91.7%, specificity: 96.7%, positive likelihood ratio [LR+]: 24.6, LR-: 0.09). GP2a and GP2t levels as well as prevalences were significantly elevated in early acute pancreatitis (≤3 disease days) compared to all control cohorts (p<0.05, respectively). GP2a and GP2t levels were significantly higher in patients with severe acute pancreatitis at admission compared with mild cases (p<0.05, respectively). Odds ratio for GP2a regarding mild vs. severe acute pancreatitis with lethal outcome was 7.8 on admission (p=0.0222). GP2a and GP2t levels were significantly correlated with procalcitonin [Spearman's rank coefficient of correlation (ρ)=0.21, 0.26; p=0.0110, 0.0012; respectively] and C-reactive protein (ρ=0.37, 0.40; p<0.0001; respectively). Serum GP2a is a specific marker of acute pancreatitis and analysis of GP2a can aid in the differential diagnosis of acute upper abdominal pain and prognosis of severe acute pancreatitis.
Li, Ming; de Graaf, Inge A M; Siissalo, Sanna; de Jager, Marina H; van Dam, Annie; Groothuis, Geny M M
2016-05-01
P-glycoprotein (P-gp) and cytochrome P450 3A (CYP3A) are differentially expressed along the intestine and work coordinately to reduce the intracellular concentration of xenobiotics and the absorption of orally taken drugs. Drug-drug interactions (DDIs) based on P-gp/CYP3A interplay are of clinical importance and require preclinical investigation. We investigated the P-gp/Cyp3a interplay and related DDIs with different P-gp inhibitors in the various regions of the rat intestine ex vivo using precision-cut intestinal slices (PCIS) with quinidine (Qi), a dual substrate of P-gp and Cyp3a, as the probe. The results showed that P-gp efflux was the main factor limiting the intracellular Qi content at concentrations below 5µM, whereas both efflux and metabolism were saturated at [Qi] > 50µM. The selective P-gp inhibitors CP100356 [N-(3,4-dimethoxyphenethyl)-4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2[1H]-yl)-6,7-dimethoxyquinazolin-2-amine] and PSC833 [valspodar, 6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-l-valine-cyclosporin A] enhanced the Qi accumulation in slices in line with the different P-gp expression in the intestinal regions and, as a result, also enhanced metabolism in the jejunum and ileum. Dual inhibitors of both P-gp and Cyp3a (verapamil and ketoconazole) increased the concentration of Qi in the jejunum and ileum, but less 3-hydroxy-quinidine was produced due to inhibition of Cyp3a. The results indicate that the P-gp/Cyp3a interplay depends on the concentration of the drug and on the intestinal region under study. Furthermore, due to the P-gp/Cyp3a interplay, DDIs can lead to remarkable changes in the intracellular concentration of both the parent drug and the metabolite, which varies among the intestinal regions and depends on the selectivity of the inhibitors, with potentially important implications for disposition and toxicity of drugs and their metabolites. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
A new strategy for full-length Ebola virus glycoprotein expression in E.coli.
Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming
2016-12-01
Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.
O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F
2013-01-01
Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590
P-Glycoprotein Activity in Steroid-Responsive vs. Steroid-Resistant Nephrotic Syndrome.
Badr, Hassan S; El-Hawy, Mahmoud A; Helwa, Mohammed A
2016-11-01
To explore the expression of P-glycoprotein (P-gp) in the peripheral blood nucleated cells (PBNCs) of children with nephrotic syndrome in relation to their clinical response to glucocorticoid treatment. Thirty-six children with nephrotic syndrome (20 cases of steroid-responsive and 16 cases of steroid-resistant) were examined. All the participants were subjected to complete history taking, thorough clinical examination, laboratory investigations (24-h urinary protein, serum albumin, complete blood count with differential white blood cell count, serum cholesterol, serum urea, serum creatinine) and functional assay of P-gp using FACS Calibur flowcytometry. P-gp assay was done in both groups during remission. P-gp activity was significantly higher in steroid-resistant than steroid-sensitive cases. P-gp can be used as a predictor of outcome, as a part of laboratory evaluation of the cases before starting steroid therapy, so as to determine whether to use alternative line of therapy or use one of the P-gp inhibitors with steroid therapy.
Jing, Weifang; Zhou, Jinrun; Wang, Chunyang; Qiu, Jianhua; Guo, Huijun; Li, Hongmei
2018-04-26
This study focuses on preparing the secretory recombinant J subgroup of avian leukosis virus (ALV-J) gp85 protein using Pichia pastoris and evaluating its immunoprotection as vaccine antigen combining with CpG-ODN adjuvant. The secretory recombinant plasmid pPIC9-gp85 containing ALV-J gp85 gene was designed and was transfected into the genome of P. pastoris (GS115) cells. The recombinant plasmid was expressed under the induction of methanol. The expressed products in the medium of the cells were purified and identified with endoglycosidase digestion assay and western blot mediated with monoclonal antibody (MAb) JE9. The purified product combining with CpG-ODN adjuvant was inoculated intramuscularly into 7-day-old chickens and three booster inoculations were performed on 21 days post first inoculation (dpfi), 42, and 56 dpfi. The antibody responses and cellular immune responses were detected, and the protective effects were analyzed after challenge with ALV-J. The results showed that the secretory pPIC9-gp85 plasmid was successfully constructed and could be stably expressed in GS115 cells. The expressed products were N-acetylglucosylated and could specifically combine with MAb (JE9). The secreted gp85 protein combining with CpG-ODN adjuvant could induce higher antibody response and spleen lymphocyte proliferation response and IFN-γ-inducing response, and could protect all the inoculated chickens against the viremia and the immunosuppressive lesions caused by ALV-J challenge. The results of neutralizing test in vitro suggested that the antisera with some ALV-J antibody titers could neutralize ALV-J strain and inhibit the growth of virus in vitro. The result of IFA showed that IgG antibody in the antisera could specifically combine with ALV-J strain in cells. It can be concluded that the secretory recombinant gp85 protein, as a new acetylglucosylated gp85 protein, was successfully prepared and combining with CpG-ODN adjuvant could protect the inoculated chickens against ALV-J infection. This study first reported the methods on preparing the secretory recombinant ALV-J gp85 protein using P. pastoris and evaluated its immunoprotection.
García Durán, Marga; Costa, Sofia; Sarraseca, Javier; de la Roja, Nuria; García, Julia; García, Isabel; Rodríguez, Maria José
2016-10-01
The causative agent of Porcine Reproductive and Respiratory Syndrome (PRRS) is an enveloped ssRNA (+) virus belonging to the Arteriviridae family. Gp5 and M proteins form disulfide-linked heterodimers that constitute the major components of PRRSV envelope. Gp2, Gp3, Gp4 and E are the minor structural proteins, being the first three incorporated as multimeric complexes in the virus surface. The disease has become one of the most important causes of economic losses in the swine industry. Despite efforts to design an effective vaccine, the available ones allow only partial protection. In the last years, VLPs have become good vaccine alternatives because of safety issues and their potential to activate both branches of the immunological response. The characteristics of recombinant baculoviruses as heterologous expression system have been exploited for the production of VLPs of a wide variety of viruses. In this work, two multiple baculovirus expression vectors (BEVs) with PRRS virus envelope proteins were engineered in order to generate PRRS VLPs: on the one hand, Gp5 and M cDNAs were cloned to generate the pBAC-Gp5M vector; on the other hand, Gp2, Gp3, Gp4 and E cDNAs have been cloned to generate the pBAC-Gp234E vector. The corresponding recombinant baculoviruses BAC-Gp5M and BAC-Gp234E were employed to produce two types of VLPs: basic Gp5M VLPs, by the simultaneous expression of Gp5 and M proteins; and complete VLPs, by the co-expression of the six PRRS proteins after co-infection. The characterization of VLPs by Western blot confirmed the presence of the recombinant proteins using the available specific antibodies (Abs). The analysis by Electron microscopy showed that the two types of VLPs were indistinguishable between them, being similar in shape and size to the native PRRS virus. This system represents a potential alternative for vaccine development and a useful tool to study the implication of specific PRRS proteins in the response against the virus. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Yu-Hang; Yu, Shi-Liang; Gan, Xiu-Guo; Pan, Shang-Ha; Teng, Yue-Qiu; An, Rui-Hua
2016-02-01
We investigated the possible involvement of multidrug resistance protein 1 P-glycoprotein (MDR1 P-gp) in the oxalate-induced redistribution of phosphatidylserine in renal epithelial cell membranes. Real-time PCR and western blotting were used to examine MDR1 expression in Madin-Darby canine kidney cells at the mRNA and protein levels, respectively, whereas surface-expressed phosphatidylserine was detected by the annexin V-binding assay. Oxalate treatment resulted in increased synthesis of MDR1, which resulted in phosphatidylserine (PS) externalization in the renal epithelial cell membrane. Treatment with the MDR1 inhibitor PSC833 significantly attenuated phosphatidylserine externalization. Transfection of the human MDR1 gene into renal epithelial cells significantly increased PS externalization. To our knowledge, this study is the first to show that oxalate increases the synthesis of MDR1 P-gp, which plays a key role in hyperoxaluria-promoted calcium oxalate urolithiasis by facilitating phosphatidylserine redistribution in renal epithelial cells.
Condino-Neto, A; Whitney, C; Newburger, P E
1998-11-01
We investigated the effects of dexamethasone or indomethacin on the NADPH oxidase activity, cytochrome b558 content, and expression of genes encoding the components gp91-phox and p47-phox of the NADPH oxidase system in the human monocytic THP-1 cell line, differentiated with IFN-gamma and TNF-alpha, alone or in combination, for up to 7 days. IFN-gamma and TNF-alpha, alone or in combination, caused a significant up-regulation of the NADPH oxidase system as reflected by an enhancement of the PMA-stimulated superoxide release, cytochrome b558 content, and expression of gp91-phox and p47-phox genes on both days 2 and 7 of cell culture. Noteworthy was the tremendous synergism between IFN-gamma and TNF-alpha for all studied parameters. Dexamethasone down-regulated the NADPH oxidase system of cytokine-differentiated THP-1 cells as assessed by an inhibition on the PMA-stimulated superoxide release, cytochrome b558 content, and expression of the gp91-phox and p47-phox genes. The nuclear run-on assays indicated that dexamethasone down-regulated the NADPH oxidase system at least in part by inhibiting the transcription of gp91-phox and p47-phox genes. Indomethacin inhibited only the PMA-stimulated superoxide release of THP-1 cells differentiated with IFN-gamma and TNF-alpha during 7 days. None of the other parameters was affected by indomethacin. We conclude that dexamethasone down-regulates the NADPH oxidase system at least in part by inhibiting the expression of genes encoding the gp91-phox and p47-phox components of the NADPH oxidase system.
Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger.
Markosyan, Ruben M; Miao, Chunhui; Zheng, Yi-Min; Melikyan, Gregory B; Liu, Shan-Lu; Cohen, Fredric S
2016-01-01
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge-a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry.
Induction of Cell-Cell Fusion by Ebola Virus Glycoprotein: Low pH Is Not a Trigger
Zheng, Yi-Min; Melikyan, Gregory B.; Liu, Shan-Lu; Cohen, Fredric S.
2016-01-01
Ebola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Currently, how EBOV fuses its envelope membrane within an endosomal membrane to cause infection is poorly understood. We successfully measure cell-cell fusion mediated by the EBOV fusion protein, GP, assayed by the transfer of both cytoplasmic and membrane dyes. A small molecule fusion inhibitor, a neutralizing antibody, as well as mutations in EBOV GP known to reduce viral infection, all greatly reduce fusion. By monitoring redistribution of small aqueous dyes between cells and by electrical capacitance measurements, we discovered that EBOV GP-mediated fusion pores do not readily enlarge—a marked difference from the behavior of other viral fusion proteins. EBOV GP must be cleaved by late endosome-resident cathepsins B or L in order to become fusion-competent. Cleavage of cell surface-expressed GP appears to occur in endosomes, as evidenced by the fusion block imposed by cathepsin inhibitors, agents that raise endosomal pH, or an inhibitor of anterograde trafficking. Treating effector cells with a recombinant soluble cathepsin B or thermolysin, which cleaves GP into an active form, increases the extent of fusion, suggesting that a fraction of surface-expressed GP is not cleaved. Whereas the rate of fusion is increased by a brief exposure to acidic pH, fusion does occur at neutral pH. Importantly, the extent of fusion is independent of external pH in experiments in which cathepsin activity is blocked and EBOV GP is cleaved by thermolysin. These results imply that low pH promotes fusion through the well-known pH-dependent activity of cathepsins; fusion induced by cleaved EBOV GP is a process that is fundamentally independent of pH. The cell-cell fusion system has revealed some previously unappreciated features of EBOV entry, which could not be readily elucidated in the context of endosomal entry. PMID:26730950
The MNS glycophorin variant GP.Mur affects differential erythroid expression of Rh/RhAG transcripts.
Hsu, K; Kuo, M-S; Yao, C-C; Cheng, H-C; Lin, H-J; Chan, Y-S; Lin, M
2017-10-01
The band 3 macrocomplex (also known as the ankyrin-associated complex) on the red cell membrane comprises two interacting subcomplexes: a band 3/glycophorin A subcomplex, and a Rh/RhAG subcomplex. Glycophorin B (GPB) is a component of the Rh/RhAG subcomplex that is also structurally associated with glycophorin A (GPA). Expression of glycophorin B-A-B hybrid GP.Mur enhances band 3 expression and is associated with lower levels of Rh-associated glycoprotein (RhAG) and Rh polypeptides. The goal of this study was to determine whether GP.Mur influenced erythroid Rh/RhAG expression at the transcript level. GP.Mur was serologically determined in healthy participants from Taitung County, Taiwan. RNA was extracted from the reticulocyte-enriched fraction of peripheral blood, followed by reverse transcription and quantitative PCR for RhAG, RhD and RhCcEe. Quantification by real-time PCR revealed significantly fewer RhAG and RhCcEe transcripts in the reticulocytes from subjects with homozygous GYP*Mur. Independent from GYP.Mur, both RhAG and RhD transcript levels were threefold or higher than that of RhCcEe. Also, in GYP.Mur and the control samples alike, direct quantitative associations were observed between the transcript levels of RhAG and RhD, but not between that of RhAG and RhCcEe. Erythroid RhD and RhCcEe were differentially expressed at the transcript levels, which could be related to their different degrees of interaction or sensitivity to RhAG. Further, the reduction or absence of glycophorin B in GYP.Mur erythroid cells affected transcript expressions of RhAG and RhCcEe. Thus, GPB and GP.Mur differentially influenced Rh/RhAG expressions prior to protein translation. © 2017 International Society of Blood Transfusion.
d'Orengiani, Anne-Laure Pham-Hung d'Alexandry; Duarte, Lidia; Pavio, Nicole; Le Poder, Sophie
2015-04-16
ORF3 is a supplemental open reading frame coding for an accessory glycoprotein gp3 of unknown function, only present in genotype I canine strain (CCoV-I) and some atypical feline FCoV strains. In these latter hosts, the ORF3 gene systematically displays one or two identical deletions leading to the synthesis of truncated proteins gp3-Δ1 and gp3-Δ2. As deletions in CoV accessory proteins have already been involved in tissue or host switch, studies of these different gp3 proteins were conducted in canine and feline cell. All proteins oligomerise through covalent bonds, are N-glycosylated and are maintained in the ER in non-infected but also in CCoV-II infected cells, without any specific retention signal. However, deletions influence their level of expression. In canine cells, all proteins are expressed with similar level whereas in feline cells, the expression of gp3-Δ1 is higher than the two other forms of gp3. None of the gp3 proteins modulate the viral replication cycle of heterologous genotype II CCoV in canine cell line, leading to the conclusion that the gp3 proteins are probably advantageous only for CCoV-I and atypical FCoV strains. Copyright © 2015 Elsevier B.V. All rights reserved.
Martinez, Osvaldo; Tantral, Lee; Mulherkar, Nirupama; Chandran, Kartik; Basler, Christopher F
2011-11-01
Ebola virus (EBOV) glycoprotein (GP), responsible for mediating host-cell attachment and membrane fusion, contains a heavily glycosylated mucin-like domain hypothesized to shield GP from neutralizing antibodies. To test whether the mucin-like domain inhibits the production and function of anti-GP antibodies, we vaccinated mice with Ebola virus-like particles (VLPs) that express vesicular stomatitis virus G, wild-type EBOV GP (EBGP), EBOV GP without its mucin-like domain (ΔMucGP), or EBOV GP with a Crimean-Congo hemorrhagic fever virus mucin-like domain substituted for the EBOV mucin-like domain (CMsubGP). EBGP-VLP immunized mice elicited significantly higher serum antibody titers toward EBGP or its mutants, as detected by western blot analysis, than did VLP-ΔMucGP. However, EBGP-, ΔMucGP- and CMsubGP-VLP immunized mouse sera contained antibodies that bound to cell surface-expressed GP at similar levels. Furthermore, low but similar neutralizing antibody titers, measured against a vesicular stomatitis virus (VSV) expressing EBGP or ΔMucGP, were present in EBGP, ΔMucGP, and CMsubGP sera, although a slightly higher neutralizing titer (2- to 2.5-fold) was detected in ΔMucGP sera. We conclude that the EBOV GP mucin-like domain can increase relative anti-GP titers, however these titers appear to be directed, at least partly, to denatured GP. Furthermore, removing the mucin-like domain from immunizing VLPs has modest impact on neutralizing antibody titers in serum.
Higashi, Y; Turzanski, J; Pallis, M; Russell, N H
2000-11-01
It has been suggested that the FLAG remission induction regimen comprising fludarabine (F-ara), cytosine arabinoside (Ara-C) and granulocyte colony-stimulating factor (G-CSF) may be capable of overcoming P-glycoprotein (P-gp)-related multidrug resistance (MDR) in patients with acute myeloblastic leukaemia (AML). We have investigated the in vitro response of P-gp-positive and -negative AML clones to FLAG and compared this with their response to treatment with Ara-C and daunorubicin (DNR). Twenty-four cryopreserved samples from patients with AML were studied using a flow cytometric technique for the enumeration of viable (7-amino actinomycin D negative) cells. Samples consisted of 12 P-gp-positive and 12 P-gp-negative cases, as measured by the MRK16 antibody. The results were analysed by calculating the comparative drug resistance (CDR), i.e. the percentage cell death caused by Ara-C + DNR subtracted from the percentage cell death, caused by FLAG after 48 h incubation in suspension culture. P-gp-positive clones were shown to have a significantly higher CDR than P-gp-negative clones (P = 0. 001). Furthermore, a significant positive correlation (r2 = 0.40, P < 0.01) was found between P-gp protein expression and CDR. However, P-gp function, measured using cyclosporin modulation of rhodamine 123 (R123) uptake, was not associated with the CDR, demonstrating that there are other properties of P-gp, besides its role in drug efflux, that modulate the responsiveness of AML blasts to chemotherapy. These results are consistent with a potential benefit for FLAG in P-gp-positive AML, but not P-gp-negative AML, compared with standard anthracycline and Ara-C therapy.
Mukundwa, Andrew; Langa, Silvana O; Mukaratirwa, Samson; Masola, Bubuya
2016-03-04
The skin is the largest organ in the body and diabetes induces pathologic changes on the skin that affect glucose homeostasis. Changes in skin glycogen and glucose levels can mirror serum glucose levels and thus the skin might contribute to whole body glucose metabolism. This study investigated the in vivo effects of diabetes, insulin and oleanolic acid (OA) on enzymes of glycogen metabolism in skin of type 1 diabetic rats. Diabetic and non-diabetic adult male Sprague-Dawley rats were treated with a single daily dose of insulin (4 IU/kg body weight), OA (80 mg/kg body weight) and a combination of OA + insulin for 14 days. Glycogen phosphorylase (GP) expression; and GP, glycogen synthase (GS) and hexokinase activities as well glycogen levels were evaluated. The results suggest that diabetes lowers hexokinase activity, GP activity and GP expression with no change in GS activity whilst the treatments increased GP expression and the activities of hexokinase, GP and GS except for the GS activity in OA treated rats. Glycogen levels were increased slightly by diabetes as well as OA treatment. In conclusion diabetes, OA and insulin can lead to changes in GS and GP activities in skin without significantly altering the glycogen content. We suggest that the skin may contribute to whole body glucose homeostasis particularly in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.
2010-01-01
Background Multidrug resistance (MDR) is a major obstacle in cancer treatment and is often the result of overexpression of the drug efflux protein, P-glycoprotein (P-gp), as a consequence of hyperactivation of NFκB, AP1 and Nrf2 transcription factors. In addition to effluxing chemotherapeutic drugs, P-gp also plays a specific role in blocking caspase-dependent apoptotic pathways. One feature that cytotoxic treatments of cancer have in common is activation of the transcription factor NFκB, which regulates inflammation, cell survival and P-gp expression and suppresses the apoptotic potential of chemotherapeutic agents. As such, NFκB inhibitors may promote apoptosis in cancer cells and could be used to overcome resistance to chemotherapeutic agents. Results Although the natural withanolide withaferin A and polyphenol quercetin, show comparable inhibition of NFκB target genes (involved in inflammation, angiogenesis, cell cycle, metastasis, anti-apoptosis and multidrug resistance) in doxorubicin-sensitive K562 and -resistant K562/Adr cells, only withaferin A can overcome attenuated caspase activation and apoptosis in K562/Adr cells, whereas quercetin-dependent caspase activation and apoptosis is delayed only. Interestingly, although withaferin A and quercetin treatments both decrease intracellular protein levels of Bcl2, Bim and P-Bad, only withaferin A decreases protein levels of cytoskeletal tubulin, concomitantly with potent PARP cleavage, caspase 3 activation and apoptosis, at least in part via a direct thiol oxidation mechanism. Conclusions This demonstrates that different classes of natural NFκB inhibitors can show different chemosensitizing effects in P-gp overexpressing cancer cells with impaired caspase activation and attenuated apoptosis. PMID:20438634
P-Glycoprotein in skin contributes to transdermal absorption of topical corticosteroids.
Hashimoto, Naoto; Nakamichi, Noritaka; Yamazaki, Erina; Oikawa, Masashi; Masuo, Yusuke; Schinkel, Alfred H; Kato, Yukio
2017-04-15
ATP binding cassette transporters, P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), are expressed in skin, but their involvement in transdermal absorption of clinically used drugs remains unknown. Here, we examined their role in transdermal absorption of corticosteroids. Skin and plasma concentrations of dexamethasone after dermal application were reduced in P-gp and BCRP triple-knockout (Mdr1a/1b/Bcrp -/- ) mice. The skin concentration in Mdr1a/1b/Bcrp -/- mice was reduced in the dermis, but not in the epidermis, indicating that functional expression of these transporters in skin is compartmentalized. Involvement of these transporters in dermal transport of dexamethasone was also supported by the observation of a higher epidermal concentration in Mdr1a/1b/Bcrp -/- than wild-type mice during intravenous infusion. Transdermal absorption after dermal application of prednisolone, but not methylprednisolone or ethinyl estradiol, was also lower in Mdr1a/1b/Bcrp -/- than in wild-type mice. Transport studies in epithelial cell lines transfected with P-gp or BCRP showed that dexamethasone and prednisolone are substrates of P-gp, but are minimally transported by BCRP. Thus, our findings suggest that P-gp is involved in transdermal absorption of at least some corticosteroids in vivo. P-gp might be available as a target for inhibition in order to deliver topically applied drugs and cosmetics in a manner that minimizes systemic exposure. Copyright © 2017 Elsevier B.V. All rights reserved.
The Effects of IGF-1 on Trk Expressing DRG Neurons with HIV-gp120- Induced Neurotoxicity.
Li, Hao; Liu, Zhen; Chi, Heng; Bi, Yanwen; Song, Lijun; Liu, Huaxiang
2016-01-01
HIV envelope glycoprotein gp120 is the main protein that causes HIVassociated sensory neuropathy. However, the underlying mechanisms of gp120-induced neurotoxicity are still unclear. There are lack effective treatments for relieving HIV-related neuropathic symptoms caused by gp120-induced neurotoxicity. In the present study, tyrosine kinase receptor (Trk)A, TrkB, and TrkC expression in primary cultured dorsal root ganglion (DRG) neurons with gp120-induced neurotoxicity was investigated. The effects of IGF-1 on distinct Trk-positive DRG neurons with gp120-induced neurotoxicity were also determined. The results showed that gp120 not only dose-dependently induced DRG neuronal apoptosis and inhibited neuronal survival and neurite outgrowth, but also decreased distinct Trk expression levels. IGF-1 rescued DRG neurons from apoptosis and improved neuronal survival of gp120 neurotoxic DRG neurons in vitro. IGF-1 also improved TrkA and TrkB, but not TrkC, expression in gp120 neurotoxic conditions. The effects of IGF-1 could be blocked by preincubation with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results suggested that gp120 may have a wide range of neurotoxicity on different subpopulations of DRG neurons, while IGF-1 might only relieve some subpopulations of DRG neurons with gp120-induced neurotoxicity. These data provide novel information of mechanisms of gp120 neurotoxicity on primary sensory neurons and the potential therapeutic effects of IGF-1 on gp120-induced neurotoxicity.
SAKUMOTO, Ryosuke; HAYASHI, Ken-Go; SAITO, Shiori; KANAHARA, Hiroko; KIZAKI, Keiichiro; IGA, Kosuke
2015-01-01
Heat stress compromises fertility during summer in dairy and beef cows by causing nutritional, physiological and reproductive damages. To examine the difference in endometrial conditions in cows between summer and autumn, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. The trial was conducted in the summer (early in September) and autumn (mid-November) seasons of two consecutive years (2013–2014) in Morioka, Japan. Endometrial samples were collected from the cows using a biopsy technique. The expressions of 268 genes were significantly higher in the endometrium collected in summer than those collected in autumn, whereas the expressions of 369 genes were lower (P<0.05 or lower). Messenger RNA expressions of glycoprotein 2 (GP2), neurotensin (NTS),E-cadherin (CDH1) and heat shock 105kDa/110kDa protein 1 (HSPH1) were validated by quantitative real-time PCR. Transcripts of GP2 and NTS were more abundant in the endometrium from summer than in the endometrium from autumn (P < 0.05). In contrast, the mRNA expressions of CDH1 were lower (P < 0.05) and those of HSPH1 tended to be low (P = 0.09) in the endometrium from summer. Immunohistochemical staining showed that GP2, NTS and HSPH1 were expressed in the endometrial epithelial or glandular epithelial cells. The serum concentrations of NTS collected from the cows in summer were higher than those collected from cows in autumn (P < 0.05). Collectively, the different gene expression profiles may contribute to functional differences in the endometrium between summer and autumn, and the increases in GP2 and NTS may have a relationship with the endometrial deficiency that causes infertility of cows in summer. PMID:25994242
Sakumoto, Ryosuke; Hayashi, Ken-Go; Saito, Shiori; Kanahara, Hiroko; Kizaki, Keiichiro; Iga, Kosuke
2015-01-01
Heat stress compromises fertility during summer in dairy and beef cows by causing nutritional, physiological and reproductive damages. To examine the difference in endometrial conditions in cows between summer and autumn, gene expression profiles were compared using a 15 K bovine oligo DNA microarray. The trial was conducted in the summer (early in September) and autumn (mid-November) seasons of two consecutive years (2013-2014) in Morioka, Japan. Endometrial samples were collected from the cows using a biopsy technique. The expressions of 268 genes were significantly higher in the endometrium collected in summer than those collected in autumn, whereas the expressions of 369 genes were lower (P<0.05 or lower). Messenger RNA expressions of glycoprotein 2 (GP2), neurotensin (NTS),E-cadherin (CDH1) and heat shock 105kDa/110kDa protein 1 (HSPH1) were validated by quantitative real-time PCR. Transcripts of GP2 and NTS were more abundant in the endometrium from summer than in the endometrium from autumn (P < 0.05). In contrast, the mRNA expressions of CDH1 were lower (P < 0.05) and those of HSPH1 tended to be low (P = 0.09) in the endometrium from summer. Immunohistochemical staining showed that GP2, NTS and HSPH1 were expressed in the endometrial epithelial or glandular epithelial cells. The serum concentrations of NTS collected from the cows in summer were higher than those collected from cows in autumn (P < 0.05). Collectively, the different gene expression profiles may contribute to functional differences in the endometrium between summer and autumn, and the increases in GP2 and NTS may have a relationship with the endometrial deficiency that causes infertility of cows in summer.
Zhang, Hui; Mehmood, Khalid; Li, Kun; Rehman, Mujeeb U.; Jiang, Xiong; Huang, Shucheng; Wang, Lei; Zhang, Lihong; Tong, Xiaole; Nabi, Fazul; Yao, Wangyuan; Iqbal, Muhammad K.; Shahzad, Muhammad; Li, Jiakui
2018-01-01
Tibial dyschondroplasia (TD) is main bone problem in fast growing poultry birds that effect proximal growth plate (GP) of tibia bone. TD is broadly defined as non-vascularized and non-mineralized, and enlarged GP with tibia bone deformation and lameness. Icariin (Epimedium sagittatum) is a traditional Chinese medicine, which is commonly practiced in the treatment of various bone diseases. Recently, many researcher reports about the beneficial effects of icariin in relation to various types of bone conditions but no report is available about promoting effect of icariin against TD. Therefore, current study was conducted to explore the ameliorating effect of icariin in thiram-induced TD chickens. A total of 180 broiler chicks were equally distributed in three groups; control, TD induced by thiram (50 mg/kg), and icariin group (treated with icariin @10 mg/kg). All groups were administered with normal standard diet ad libitum regularly until the end of experiment. The wingless-type member 4 (WNT4) and vascular endothelial growth factor (VEGF) genes and proteins expression were analyzed by quantitative real-time polymerase chain reaction and western blot analysis respectively. Tibial bone parameters, physiological changes in serum, antioxidant enzymes, and chicken growth performance were determined to assess advantage and protective effect of the medicine in broiler chicken. The expression of WNT4 was decreased while VEGF increased significantly (P < 0.05) in TD affected chicks. TD enhanced the GP, lameness, and irregular chondrocytes, while reduced the liver function, antioxidant enzymes in liver, and performance of chickens. Icariin treatment up-regulated WNT4 and down-regulated VEGF gene and protein expressions significantly (P < 0.05), restored the GP width, increased growth performance, corrected liver functions and antioxidant enzymes levels in liver, and mitigated the lameness in broiler chickens. In conclusion, icariin administration recovered GP size, normalized performance and prevented lameness significantly. Therefore, icariin treatments are encouraged to reduce the incidence of TD in broiler chickens. PMID:29527166
RNA Editing of the GP Gene of Ebola Virus is an Important Pathogenicity Factor.
Volchkova, Valentina A; Dolnik, Olga; Martinez, Mikel J; Reynard, Olivier; Volchkov, Viktor E
2015-10-01
Synthesis of the surface glycoprotein GP of Ebola virus (EBOV) is dependent on transcriptional RNA editing, whereas direct expression of the GP gene results in synthesis of nonstructural secreted glycoprotein sGP. In this study, we investigate the role of RNA editing in the pathogenicity of EBOV using a guinea pig model and recombinant guinea pig-adapted EBOV containing mutations at the editing site, allowing expression of surface GP without the need for RNA editing, and also preventing synthesis of sGP. We demonstrate that the elimination of the editing site leads to EBOV attenuation in vivo, explained by lower virus spread caused by the higher virus cytotoxicity and, most likely, by an increased ability of the host defense systems to recognize and eliminate virus-infected cells. We also demonstrate that expression of sGP does not affect pathogenicity of EBOV in guinea pigs. In conclusion, data obtained indicate that downregulation of the level of surface GP expression through a mechanism of GP gene RNA editing plays an important role in the high pathogenicity of EBOV. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Choi, Min-Koo; Song, Im-Sook
2016-03-01
This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2-75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level.
Choi, Min-Koo; Song, Im-Sook
2016-01-01
This study aimed to investigate the in vivo relevance of P-glycoprotein (P-gp) in the pharmacokinetics and adverse effect of phenformin. To investigate the involvement of P-gp in the transport of phenformin, a bi-directional transport of phenformin was carried out in LLC-PK1 cells overexpressing P-gp, LLC-PK1-Pgp. Basal to apical transport of phenformin was 3.9-fold greater than apical to basal transport and became saturated with increasing phenformin concentration (2–75 μM) in LLC-PK1-Pgp, suggesting the involvement of P-gp in phenformin transport. Intrinsic clearance mediated by P-gp was 1.9 μL/min while passive diffusion clearance was 0.31 μL/min. Thus, P-gp contributed more to phenformin transport than passive diffusion. To investigate the contribution of P-gp on the pharmacokinetics and adverse effect of phenformin, the effects of verapamil, a P-gp inhibitor, on the pharmacokinetics of phenformin were also examined in rats. The plasma concentrations of phenformin were increased following oral administration of phenformin and intravenous verapamil infusion compared with those administerd phenformin alone. Pharmacokinetic parameters such as Cmax and AUC of phenformin increased and CL/F and Vss/F decreased as a consequence of verapamil treatment. These results suggested that P-gp blockade by verapamil may decrease the phenformin disposition and increase plasma phenformin concentrations. P-gp inhibition by verapamil treatment also increased plasma lactate concentration, which is a crucial adverse event of phenformin. In conclusion, P-gp may play an important role in phenformin transport process and, therefore, contribute to the modulation of pharmacokinetics of phenformin and onset of plasma lactate level. PMID:26797108
Gp120 binding with DC-SIGN induces reactivation of HIV-1 provirus via the NF-κB signaling pathway
Jin, Changzhong; Li, Jie; Cheng, Linfang; Liu, Fumin; Wu, Nanping
2016-01-01
The reactivation mechanism of latent human immunodeficiency virus type 1 (HIV-1) infection is unclear, especially in dendritic cells (DC). DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) binds with HIV-1 and other pathogens to activate the extracellular regulated protein kinase (ERK) and nuclear factor-kappa B (NF-κB) pathways and regulate cytokine expression. We hypothesized that DC-SIGN-induced signaling pathways may activate HIV-1 provirus. To investigate this hypothesis, we generated a model by transfecting 293T cells with a DC-SIGN expression plasmid and an HIV-1 5′ long terminal repeat (LTR) reporter plasmid, and then stimulated the 293T cells with HIV-1 gp120 protein, wild-type HIV-1 or VSV-G-pNL4.3 pseudotype virus (without gp120 protein). It was found that the HIV-1 5′LTR was reactivated by HIV-1 gp120 in DC-SIGN-expressing 293T cells. Then the HIV-1 chronically infected CEM-Bru cells were transfected with DC-SIGN expression plasmid and stimulated by HIV-1 gp120 protein. It was found that early and late HIV-1 provirus replication was reactivated by the HIV-1 gp120/DC-SIGN stimulation. We then investigated the involvement of the ERK, p38 mitogen-activated protein kinases and NF-κB signaling pathways in HIV-1 gp120/DC-SIGN-induced activation of HIV-1 provirus by inhibiting the pathways specifically. Our results indicated that HIV-1 gp120/DC-SIGN stimulation reactivates latent HIV-1 provirus via the NF-κB signal pathway. PMID:26837416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen Yuxian; Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, MD; Ballar, Petek
2006-11-03
Deficiency of circulating {alpha}-1-antitrypsin (AAT) is the most widely recognized abnormality of a proteinase inhibitor that causes lung disease. AAT-deficiency is caused by mutations of the AAT gene that lead to AAT protein retention in the endoplasmic reticulum (ER). Moreover, the mutant AAT accumulated in the ER predisposes the homozygote to severe liver injuries, such as neonatal hepatitis, juvenile cirrhosis, and hepatocellular carcinoma. Despite the fact that mutant AAT protein is subject to ER-associated degradation (ERAD), yeast genetic studies have determined that the ubiquitination machinery, Hrd1/Der3p-cue1p-Ubc7/6p, which plays a prominent role in ERAD, is not involved in degradation of mutantmore » AAT. Here we report that gp78, a ubiquitin ligase (E3) pairing with mammalian Ubc7 for ERAD, ubiquitinates and facilitates degradation of ATZ, the classic deficiency variant of AAT having a Z mutation (Glu 342 Lys). Unexpectedly, gp78 over-expression also significantly increases ATZ solubility. p97/VCP, an AAA ATPase essential for retrotranslocation of misfolded proteins from the ER during ERAD, is involved in gp78-mediated degradation of ATZ. Surprisingly, unlike other ERAD substrates that cause ER stress leading to apoptosis when accumulated in the ER, ATZ, in fact, increases cell proliferation when over-expressed in cells. This effect can be partially inhibited by gp78 over-expression. These data indicate that gp78 assumes multiple unique quality control roles over ATZ, including the facilitation of degradation and inhibition of aggregation of ATZ.« less
Ceballos, María Paula; Decándido, Giulia; Quiroga, Ariel Darío; Comanzo, Carla Gabriela; Livore, Verónica Inés; Lorenzetti, Florencia; Lambertucci, Flavia; Chazarreta-Cifre, Lorena; Banchio, Claudia; Alvarez, María de Luján; Mottino, Aldo Domingo; Carrillo, María Cristina
2018-06-01
Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.
Interrupted reperfusion reduces the activation of NADPH oxidase after cerebral I/R injury.
Shen, Jia; Bai, Xiao-Yin; Qin, Yuan; Jin, Wei-Wei; Zhou, Jing-Yin; Zhou, Ji-Ping; Yan, Ying-Gang; Wang, Qiong; Bruce, Iain C; Chen, Jiang-Hua; Xia, Qiang
2011-06-15
Interrupted reperfusion reduces ischemia/reperfusion (I/R) injury. This study was designed to determine whether NADPH oxidase participates in the neural protection against global I/R injury after interrupted reperfusion. Mice were randomly divided into five groups: sham (sham-operated), I/R (20-min global I/R), RR (I/R+interrupted reperfusion), Apo (I/R+apocynin administration), and RR+Apo. Behavioral tests (pole test, beam walking, and Morris water maze) and Nissl staining were undertaken in all five groups; superoxide levels, expression of gp91(phox) and p47(phox), p47(phox) translocation, and Rac1 activation were measured in the sham, I/R, and RR groups. The motor coordination, bradykinesia, and spatial learning and memory, as well as the neuron survival rates, were better in the RR, Apo, and RR+Apo groups than in the I/R group. The NADPH oxidase-dependent superoxide levels, p47(phox) and gp91(phox) expression, p47(phox) translocation, and Rac1 activation were lower in the RR group than in the I/R group. In conclusion, the neural protective effect of interrupted reperfusion is at least partly mediated by decreasing the expression and assembly of NADPH oxidase and the levels of NADPH oxidase-derived superoxide. The most striking reduction Rac1-GTP in the RR group suggests that interrupted reperfusion also acts on the activation of assembled NADPH oxidase by reducing the availability of Rac1-GTP. Copyright © 2011 Elsevier Inc. All rights reserved.
Cheng, Yan Ho; Jenardhanan, Pranitha; Mathur, Premendu P; Qian, Xiaojing; Xia, Weiliang; Silvestrini, Bruno; Cheng, Chuen Yan
2014-01-01
Breast cancer resistant protein (BCRP, ABCG2) is an ATP-binding cassette (ABC) transporter, which together with two other ABC efflux drug pumps, namely P-glycoprotein (P-gp, ABCB1) and multidrug resistance-related protein 1 (MRP1, ABCC1) is the most important multidrug resistance protein foun d in eukaryotic cells including cells in the testis. However, unlike P-gp and MRP1, which are components of the Sertoli cell blood-testis barrier (BTB), BCRP is not expressed at the BTB in rodents and human testes. Instead, BCRP is expressed by peritubular myoid cells and endothelial cells of the lymphatic vessel in the tunica propria, residing outside the BTB. As such, the testis is equipped with two levels of defense against xenobiotics or drugs, preventing these harmful substances from entering the adluminal compartment to perturb meiosis and post-meiotic spermatid development: one at the level of the BTB conferred by P-gp and MRP1 and one at the tunica propria conferred by BCRP. The presence of drug transporters at the tunica propria as well as at the Sertoli cell BTB thus poses significant obstacles in developing non-hormonal contraceptives if these drugs (e.g., adjudin) exert their effects in germ cells behind the BTB, such as in the adluminal (apical) compartment of the seminiferous epithelium. Herein, we summarize recent findings pertinent to adjudin, a non-hormonal male contraceptive, and molecular interactions of adjudin with BCRP so that this information can be helpful to devise delivery strategies to evade BCRP in the tunica propria to improve its bioavailability in the testis.
Choi, Min-Koo; Song, Im-Sook; Park, So-Ra; Hong, Soon-Sun; Kim, Dae-Duk; Chung, Suk-Jae; Shim, Chang-Koo
2005-02-01
The in vivo canalicular excretion clearance of tributylmethyl ammonium (TBuMA), a P-glycoprotein (P-gp) substrate, was previously reported to be unaffected by the induction of an experimental hepatic injury (EHI) by CCl(4) despite the increased expression of P-gp in the EHI liver. The objective of this study, therefore, was to elucidate the mechanism for the unchanged canalicular excretion clearance of TBuMA in EHI rats. TBuMA uptake was increased in cLPM vesicles from EHI rats compared with that from control rats. The total bile salt concentration in EHI liver was significantly reduced compared with that in a control liver. Because, in our previous studies, the uptake of TBuMA by cLPM vesicles was found to be significantly enhanced in the presence of bile salts, the reduction in bile salt levels in the EHI liver may be related to the unaltered TBuMA clearance. Despite the fact that the uptake of TBuMA by cLPM vesicles was increased by the addition of an EHI liver extract, the extent of the increase was comparatively less compared to the addition of a control liver extract. The in vivo excretion clearance of TBuMA was increased in a taurodeoxycholate dose-dependent manner in EHI rats. These observations suggest, therefore, that despite the induction of P-gp expression by the EHI, the in vivo canalicular excretion clearance of TBuMA remains unaltered as the result of an offset by reduced levels of bile salt(s). Copyright 2004 Wiley-Liss, Inc.
Jornot, L; Junod, A F
1995-01-01
We have studied the effect of selenomethionine (SeMet) and hyperoxia on the expression of glutathione peroxidase (GP) in human umbilical vein endothelial cells. Incubation of HUVEC with 1 x 10(-6) M SeMet for 24 h and 48 h caused a 65% and 86% increase in GP activity respectively. The same treatment did not result in significant changes in GP gene transcription and mRNA levels. Pactamycin, a specific inhibitor of the initiation step of translation, prevented the rise in GP activity induced by SeMet and caused an increase in GP mRNA in both cells grown in normal and SeMet-supplemented medium. Interestingly, SeMet supplementation stimulated the recruitment of GP mRNA from an untranslatable pool on to polyribosomes, so that the concentration of GP mRNA in polyribosomal translatable pools was 50% higher in cells grown in SeMet-supplemented medium than in cells grown in normal medium. On the other hand, cells exposed to 95% O2 for 3 days in normal medium showed a 60%, 394% and 81% increase in GP gene transcription rate, mRNA levels and activity respectively. Hyperoxia also stabilized GP mRNA. Hyperoxic cells grown in SeMet-supplemented medium did not show any change in GP gene transcription and mRNA levels, but expressed an 81% and 100% increase in GP activity and amount of GP mRNA associated with polyribosomes respectively, when compared with hyperoxic cells maintained in normal medium. Thus, GP appeared to be regulated post-transcriptionally, most probably co-translationally, in response to selenium availability, and transcriptionally and post-transcriptionally in response to oxygen. Images Figure 1 Figure 2 Figure 4 Figure 7 Figure 8 PMID:7887914
Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik
2013-01-01
Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91−/− cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91phox. Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91phox expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy. PMID:23462964
Dong, Jing-Mei; Chen, Pei-Jie
2013-07-01
To investigate the method and mechanism for exercise-related immunosuppression via the inhibitor of NADPH oxidase diphenyleneiodonium(DPI) and glutamine supplementation and on the function of neutrophils after overtraining. Fifty male Wistar rats were randomly divided into five groups: a negative control group (C), an overtraining group (E), an overtraining + DPI intervention group (D), an overtraining+ glutamine supplementation group(G) and combined glutamine + DPI intervention group(DG). After 36 - 40 h from the last training, eight rats were randomly selected from each group, and blood was sampled from the orbital vein. ELISAs were used to measure serum cytokine levels and lipid peroxidation in blood plasma. Flow cytometry was used to measure neutrophil respiratory burst and phagocytosis. The activity of NADPH oxidase was assessed by chemiluminescence and the gene expression of gp91(phox) and p47(phox) of the NADPH-oxidase subunit was checked by Western blot. Compared with group C, the plasma concentrations of NO increased in group G, and the NO, cytokine-induced neutrophil chemoattractant (CINC) concentrations in group DG increased significantly. The respiratory burst and phagocytosis function of neutrophils were decreased in group E, but in group DG were increased when compared with those of group E. After overtraining the expression of gp91(phox) and p47(phox) was up regulated in group E. There were no significant changes in other groups except group DG, in which the expression of gp91(phox) was down regulated. Compared with group E, the expression of gp91(phox) and p47(phox) was up regulated in group D, group G and group DG. The activation of NADPH oxidase is responsible for the production of superoxide anions, which may be related to the decrease in neutrophil function after over training and is the mechanism of exercise-related immunosuppression. The DPI treatment combined glutamine supplementation can reverse the decrease neutrophils function after overtraining in vitro.
Ren, Shoufeng; Wei, Qimei; Cai, Liya; Yang, Xuejing; Xing, Cuicui; Tan, Feng; Leavenworth, Jianmei W.; Liang, Shaohui; Liu, Wenquan
2018-01-01
Ebola virus (EBOV) causes severe hemorrhagic fevers in humans, and no approved therapeutics or vaccine is currently available. Glycoprotein (GP) is the major protective antigen of EBOV, and can generate virus-like particles (VLPs) by co-expression with matrix protein (VP40). In this study, we constructed a recombinant Alphavirus Semliki Forest virus (SFV) replicon vector DREP to express EBOV GP and matrix viral protein (VP40). EBOV VLPs were successfully generated and achieved budding from 293 cells after co-transfection with DREP-based GP and VP40 vectors (DREP-GP+DREP-VP40). Vaccination of BALB/c mice with DREP-GP, DREP-VP40, or DREP-GP+DREP-VP40 vectors, followed by immediate electroporation resulted in a mixed IgG subclass production, which recognized EBOV GP and/or VP40 proteins. This vaccination regimen also led to the generation of both Th1 and Th2 cellular immune responses in mice. Notably, vaccination with DREP-GP and DREP-VP40, which produces both GP and VP40 antigens, induced a significantly higher level of anti-GP IgG2a antibody and increased IFN-γ secreting CD8+ T-cell responses relative to vaccination with DREP-GP or DREP-VP40 vector alone. Our study indicates that co-expression of GP and VP40 antigens based on the SFV replicon vector generates EBOV VLPs in vitro, and vaccination with recombinant DREP vectors containing GP and VP40 antigens induces Ebola antigen-specific humoral and cellular immune responses in mice. This novel approach provides a simple and efficient vaccine platform for Ebola disease prevention. PMID:29375526
Effects of adrenolytic mitotane on drug elimination pathways assessed in vitro.
Theile, Dirk; Haefeli, Walter Emil; Weiss, Johanna
2015-08-01
Mitotane (1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)ethane, o,p'-DDD) represents one of the most active drugs for the treatment of adrenocortical carcinoma. Its metabolites 1,1-(o,p'-dichlorodiphenyl) acetic acid (=o,p'-DDA) and 1,1-(o,p'-dichlorodiphenyl)-2,2 dichloroethene (=o,p'-DDE) partly contribute to its pharmacological effects. Because mitotane has a narrow therapeutic index and causes pharmacokinetic drug-drug interactions, knowledge about these compounds' effects on drug metabolizing and transporting proteins is crucial. Using quantitative real-time polymerase chain reaction, our study confirmed the strong inducing effects of o,p'-DDD on mRNA expression of cytochrome P450 3A4 (CYP3A4, 30-fold) and demonstrated that other enzymes and transporters are also induced (e.g., CYP1A2, 8.4-fold; ABCG2 (encoding breast resistance cancer protein, BCRP), 4.2-fold; ABCB1 (encoding P-glycoprotein, P-gp) 3.4-fold). P-gp induction was confirmed at the protein level. o,p'-DDE revealed a similar induction profile, however, with less potency and o,p'-DDA had only minor effects. Reporter gene assays clearly confirmed o,p'-DDD to be a PXR activator and for the first time demonstrated that o,p'-DDE and o,p'-DDA also activate PXR albeit with lower potency. Using isolated, recombinant CYP enzymes, o,p'-DDD and o,p'-DDE were shown to strongly inhibit CYP2C19 (IC50 = 0.05 and 0.09 µM). o,p'-DDA exhibited only minor inhibitory effects. In addition, o,p'-DDD, o,p'-DDE, and o,p'-DDA are demonstrated to be neither substrates nor inhibitors of BCRP or P-gp function. In summary, o,p'-DDD and o,p'-DDE might be potential perpetrators in pharmacokinetic drug-drug interactions through induction of drug-metabolizing enzymes or drug transporters and by potent inhibition of CYP2C19. In tumors over-expressing BCRP or P-gp, o,p'-DDD and its metabolites should retain their efficacy due to a lack of substrate characteristics.
Malsch, Philipp; Andratsch, Manfred; Vogl, Christian; Link, Andrea S.; Alzheimer, Christian; Brierley, Stuart M.; Hughes, Patrick A.
2014-01-01
Glycoprotein 130 (gp130) is the signal transducing receptor subunit for cytokines of the interleukin-6 (IL-6) family, and it is expressed in a multitude of cell types of the immune and nervous system. IL-6-like cytokines are not only key regulators of innate immunity and inflammation but are also essential factors for the differentiation and development of the somatosensory system. Mice with a null mutation of gp130 in primary nociceptive afferents (SNS-gp130−/−) are largely protected from hypersensitivity to mechanical stimuli in mouse models of pathological pain. Therefore, we set out to investigate how neuronal gp130 regulates mechanonociception. SNS-gp130−/− mice revealed reduced mechanosensitivity to high mechanical forces in the von Frey assay in vivo, and this was associated with a reduced sensitivity of nociceptive primary afferents in vitro. Together with these findings, transient receptor potential ankyrin 1 (TRPA1) mRNA expression was significantly reduced in DRG from SNS-gp130−/− mice. This was also reflected by a reduced number of neurons responding with calcium transients to TRPA1 agonists in primary DRG cultures. Downregulation of Trpa1 expression was predominantly discovered in nonpeptidergic neurons, with the deficit becoming evident during stages of early postnatal development. Regulation of Trpa1 mRNA expression levels downstream of gp130 involved the classical Janus kinase family-signal transducer and activator of transcription pathway. Our results closely link proinflammatory cytokines to the expression of TRPA1, both of which have been shown to contribute to hypersensitive pain states. We suggest that gp130 has an essential role in mechanonociception and in the regulation of TRPA1 expression. PMID:25057188
Panchagnula, R; Bansal, T; Varma, M V S; Kaul, C L
2005-12-01
P-Glycoprotein (P-gp) mediated efflux is recognized as a significant biochemical barrier affecting oral absorption for a number of drugs. Various conflicting reports have been published regarding the effects of grapefruit juice (GFJ) on P-gp-mediated drug efflux, in which GFJ has been shown both to inhibit and activate it. Hence, the present study adopted a two-way approach, involving both co-treatment and chronic administration. Bi-directional transport of paclitaxel (PCL) was carried out in the absence and presence of GFJ extract, in rat everted ileum sac. Further, the effect of chronic administration of GFJ to rats was characterized by permeability studies with indinavir (INDI). Co-treatment of GFJ extract at 100% concentration reduced the asymmetric transport of PCL (efflux ratio = 20.8) by increasing absorptive (A --> B) transport by 921% and reducing secretory (B --> A) transport by 41%. Further, GFJ showed a concentration dependent effect on PCL permeability. Imipramine, a passive permeability marker with absorptive permeability of 15.33 +/- 4.26 x 10(-6) cm/s showed no asymmetric transport and also no significant (P < 0.05) change in permeability in the presence of GFJ. Chronic administration of GFJ resulted in a significant decrease in absorptive transport of indinavir, which was even greater than that produced by rifampicin pretreatment. No change in permeability of propranolol, a passive permeability marker, was observed. Further, the decrease in absorptive transport of INDI was reversed by the P-gp inhibitor verapamil. In conclusion, GFJ extract inhibited P-gp-mediated efflux in co-treatment, whereas chronic administration led to increased levels of P-gp expression, thus having a profound effect on intestinal absorption and GFJ-drug interactions in vivo.
Morel, Agnieszka; Rywaniak, Joanna; Bijak, Michał; Miller, Elżbieta; Niwald, Marta; Saluk, Joanna
2017-06-01
The epidemiological studies confirm an increased risk of cardiovascular disease in multiple sclerosis, especially prothrombotic events directly associated with abnormal platelet activity. The aim of our study was to investigate the level of blood platelet activation in the circulation of patients with chronic phase of multiple sclerosis (SP MS) and their reactivity in response to typical platelets' physiological agonists. We examined 85 SP MS patients diagnosed according to the revised McDonald's criteria and 50 healthy volunteers as a control group. The platelet activation and reactivity were assessed using flow cytometry analysis of the following: P-selectin expression (CD62P), activation of GP IIb/IIIa complex (PAC-1 binding), and formation of platelet microparticles (PMPs) and platelet aggregates (PA) in agonist-stimulated (ADP, collagen) and unstimulated whole blood samples. Furthermore, we measured the level of soluble P-selectin (sP-selectin) in plasma using ELISA method, to evaluate the in vivo level of platelet activation, both in healthy and SP MS subjects. We found a statistically significant increase in P-selectin expression, GP IIb/IIIa activation, and formation of PMPs and PA, as well as in unstimulated and agonist-stimulated (ADP, collagen) platelets in whole blood samples from patients with SP MS in comparison to the control group. We also determined the higher sP-selectin level in plasma of SP MS subjects than in the control group. Based on the obtained results, we might conclude that during the course of SP MS platelets are chronically activated and display hyperreactivity to physiological agonists, such as ADP or collagen.
Veszelka, Szilvia; Tóth, András; Walter, Fruzsina R; Tóth, Andrea E; Gróf, Ilona; Mészáros, Mária; Bocsik, Alexandra; Hellinger, Éva; Vastag, Monika; Rákhely, Gábor; Deli, Mária A
2018-01-01
Cell culture-based blood-brain barrier (BBB) models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC), ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA). As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L), and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1) and influx transporters (GLUT-1, LAT-1) were present in all models at mRNA levels. The transcript of BCRP (ABCG2) was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which are substrates of these transporters. Brain endothelial cell lines GP8, RBE4, D3 and D3L did not form a restrictive paracellular barrier necessary for screening small molecular weight pharmacons. Therefore, among the tested culture models, the primary cell-based EPA model is suitable for the functional analysis of the BBB.
Müller, Margit S; Pedersen, Sofie E; Walls, Anne B; Waagepetersen, Helle S; Bak, Lasse K
2015-01-01
Glycogen phosphorylase (GP) is activated to degrade glycogen in response to different stimuli, to support both the astrocyte's own metabolic demand and the metabolic needs of neurons. The regulatory mechanism allowing such a glycogenolytic response to distinct triggers remains incompletely understood. In the present study, we used siRNA-mediated differential knockdown of the two isoforms of GP expressed in astrocytes, muscle isoform (GPMM), and brain isoform (GPBB), to analyze isoform-specific regulatory characteristics in a cellular setting. Subsequently, we tested the response of each isoform to phosphorylation, triggered by incubation with norepinephrine (NE), and to AMP, increased by glucose deprivation in cells in which expression of one GP isoform had been silenced. Successful knockdown was demonstrated on the protein level by Western blot, and on a functional level by determination of glycogen content showing an increase in glycogen levels following knockdown of either GPMM or GPBB. NE triggered glycogenolysis within 15 min in control cells and after GPBB knockdown. However, astrocytes in which expression of GPMM had been silenced showed a delay in response to NE, with glycogen levels significantly reduced only after 60 min. In contrast, allosteric activation of GP by AMP, induced by glucose deprivation, seemed to mainly affect GPBB, as only knockdown of GPBB, but not of GPMM, delayed the glycogenolytic response to glucose deprivation. Our results indicate that the two GP isoforms expressed in astrocytes respond to different physiological triggers, therefore conferring distinct metabolic functions of brain glycogen. © 2014 Wiley Periodicals, Inc.
Tran, Christine D H; Timmins, Peter; Conway, Barbara R; Irwin, William J
2002-01-01
The coordination of the functional activities of intestinal CYP3A4 and P-gp in limiting the absorption of xenobiotics in Caco-2 cells was investigated. Growing Caco-2 cells were exposed to increasing concentrations of doxorubicin (1-2 microM) in plastic flasks to encourage a subpopulation of cells, that displayed an intrinsically higher multidrug resistance (mdr) phenotype than the parent cells, to survive and grow. Doxorubicin-exposed (hereinafter referred to as type I cells) and nonexposed Caco-2 cells (parent cells) on collagen-coated inserts were also treated with either 0 (control) or 0.25 microM 1alpha,25-dihydroxyvitamin D(3) to promote cellular CYP3A4 expression. Increased P-gp protein expression, as detected by Western blotting, was noted in type I cells (213 +/- 54.35%) compared to that of parent cells (100 +/- 6.05%). Furthermore, they retained significantly less [(3)H]vincristine sulphate (p < 0.05), a P-gp substrate, after efflux (272.89 +/- 11.86 fmol/mg protein) than the parent cells (381.39 +/- 61.82 fmol/mg protein). The expression of CYP3A4 in parental cells after 1alpha,25-dihydroxyvitamin D(3) treatment was quantified to be 76.2 +/- 7.6 pmol/mg protein and comparable with that found in human jejunal enterocytes (70.0 +/- 20.0 pmol/mg protein). Type I cells, however, expressed a very low quantity of CYP3A4 both before and after the treatment that was beyond the minimum detection limit of Western blotting. Functionally, the rates of 1-hydroxylation of midazolam by CYP3A for both cell types ranged from 257.0 +/- 20.0 to 1057.0 +/- 46.0 pmol/min/mg protein. Type I cells, although having a higher P-gp expression and activity comparatively, metabolized midazolam less extensively than the parent cells. The results suggested that there were noncoordinated functional activities of intestinal CYP3A4 and P-gp in Caco-2 cells, although they both functioned independently to minimize intestinal epithelial absorption of xenobiotics. Copyright 2002 Wiley-Liss, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-17
... GP in which AmeriGas proposed to acquire ETP's Heritage Propane business through the approximately $2..., Titan Energy Partner, L.P., and Titan Energy GP, L.L.C. ETP's Heritage Propane business includes Heritage Propane Express, an entity that is engaged in the business of preparing, filling, distributing and...
Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?
Callaghan, Richard; Luk, Frederick; Bebawy, Mary
2014-04-01
P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jun-Kai; Gong, Zi-Zhen; Zhang, Tian
Down-regulation of intestinal P-glycoprotein (P-gp) by soybean oil-based lipid emulsion (SOLE) may cause elevated intestinal permeability of lipopolysaccharide (LPS) in patients with total parenteral nutrition, but the appropriate preventative treatment is currently limited. Recently, sodium butyrate (NaBut) has been demonstrated to regulate the expression of P-gp. Therefore, this study aimed to address whether treatment with NaBut could attenuate SOLE-induced increase in intestinal permeability of LPS by modulation of P-gp in vitro. Caco-2 cells were exposed to SOLE with or without NaBut. SOLE-induced down-regulation of P-gp was significantly attenuated by co-incubation with NaBut. Nuclear recruitment of FOXO 3a in response to NaButmore » was involved in P-gp regulation. Transport studies revealed that SOLE-induced increase in permeability of LPS was significantly attenuated by co-incubation with NaBut. Collectively, our results suggested that NaBut may be a potentially useful medication to prevent SOLE-induced increase in intestinal permeability of LPS. - Highlights: • Caco-2 cells were used as models for studying parenteral nutrition in vitro. • NaBut restored SOLE-induced down-regulation of P-gp in Caco-2 cells. • Regulation of P-gp by NaBut was mediated via nuclear recruitment of FOXO 3a. • NaBut modulated the permeability of LPS by P-gp function, not barrier function.« less
Mercer, Susan L; Coop, Andrew
2011-01-01
Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationships to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation.
Brzozowska, Natalia; Li, Kong M.; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S.
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b−∕−), Bcrp knockout (Abcg2−∕−), combined P-gp/Bcrp knockout (Abcb1a/b−∕−Abcg2−∕−) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders. PMID:27257556
Brzozowska, Natalia; Li, Kong M; Wang, Xiao Suo; Booth, Jessica; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C
2016-01-01
Cannabidiol (CBD) is currently being investigated as a novel therapeutic for the treatment of CNS disorders like schizophrenia and epilepsy. ABC transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp) mediate pharmacoresistance in these disorders. P-gp and Bcrp are expressed at the blood brain barrier (BBB) and reduce the brain uptake of substrate drugs including various antipsychotics and anticonvulsants. It is therefore important to assess whether CBD is prone to treatment resistance mediated by P-gp and Bcrp. Moreover, it has become common practice in the drug development of CNS agents to screen against ABC transporters to help isolate lead compounds with optimal pharmacokinetic properties. The current study aimed to assess whether P-gp and Bcrp impacts the brain transport of CBD by comparing CBD tissue concentrations in wild-type (WT) mice versus mice devoid of ABC transporter genes. P-gp knockout (Abcb1a/b (-∕-)), Bcrp knockout (Abcg2 (-∕-)), combined P-gp/Bcrp knockout (Abcb1a/b (-∕-) Abcg2 (-∕-)) and WT mice were injected with CBD, before brain and plasma samples were collected at various time-points. CBD results were compared with the positive control risperidone and 9-hydroxy risperidone, antipsychotic drugs that are established ABC transporter substrates. Brain and plasma concentrations of CBD were not greater in P-gp, Bcrp or P-gp/Bcrp knockout mice than WT mice. In comparison, the brain/plasma concentration ratios of risperidone and 9-hydroxy risperidone were profoundly higher in P-gp knockout mice than WT mice. These results suggest that CBD is not a substrate of P-gp or Bcrp and may be free from the complication of reduced brain uptake by these transporters. Such findings provide favorable evidence for the therapeutic development of CBD in the treatment of various CNS disorders.
Structure and ligand-based design of P-glycoprotein inhibitors: a historical perspective.
Palmeira, Andreia; Sousa, Emilia; Vasconcelos, M Helena; Pinto, Madalena; Fernandes, Miguel X
2012-01-01
Computer-assisted drug design (CADD) is a valuable approach for the discovery of new chemical entities in the field of cancer therapy. There is a pressing need to design and develop new, selective, and safe drugs for the treatment of multidrug resistance (MDR) cancer forms, specifically active against P-glycoprotein (P-gp). Recently, a crystallographic structure for mouse P-gp was obtained. However, for decades the design of new P-gp inhibitors employed mainly ligand-based approaches (SAR, QSAR, 3D-QSAR and pharmacophore studies), and structure-based studies used P-gp homology models. However, some of those results are still the pillars used as a starting point for the design of potential P-gp inhibitors. Here, pharmacophore mapping, (Q)SAR, 3D-QSAR and homology modeling, for the discovery of P-gp inhibitors are reviewed. The importance of these methods for understanding mechanisms of drug resistance at a molecular level, and design P-gp inhibitors drug candidates are discussed. The examples mentioned in the review could provide insights into the wide range of possibilities of using CADD methodologies for the discovery of efficient P-gp inhibitors.
Toklu, H Z; Kabasakal, L; Imeryuz, N; Kan, B; Celikel, C; Cetinel, S; Orun, O; Yuksel, M; Dulger, G A
2013-08-01
The intestinal microflora is an important cofactor in the pathogenesis of intestinal inflammation; and the epithelial cell barrier function is critical in providing protection against the stimulation of mucosal immune system by the microflora. In the present study, therapeutic role of the antibacterial drugs rifampicin and ciprofloxacine were investigated in comparison to spironolactone, an enzyme inducer, in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis of the rats. Drugs were administered for 14 days following induction of colitis. All drug treatments ameliorated the clinical hallmarks of colitis as determined by body weight loss and assessment of diarrhea, colon length, and histology. Oxidative damage and neutrophil infiltration as well as nuclear factor κB (NF-κB) and tumor necrosis factor α (TNF-α) expressions that were increased during colitis, were decreased significantly. Rifampicin and ciprofloxacin were probably effective due to their antibacterial and immunomodulating properties. The multidrug resistence gene (MDR1) and its product p-glycoprotein (P-gp) has been implicated in the pathogenesis of inflammatory bowel disease (IBD). In the present study, findings of the P-gp expression were inconclusive but regarding previous studies, it can be suggested that the beneficial effects of rifampicin and spironolactone may be partly due to their action as a P-gp ligand. Spironolactone has been reported to supress the transcription of proinflamatory cytokines that are considered to be of importance in immunoinflammatory diseases. It is also a powerful pregnane X receptor (PXR) inducer; thus, inhibition of the expression of NF-κB and TNF-α, and amelioration of inflammation by spironolactone suggest that this may have been through the activation of PXR. However, our findings regarding PXR expression were inconclusive. Activation of PXR by spironolactone probably also contributed to the induction of P-gp, resulting in extrusion of noxious substances from the tissue.
Rigalli, Juan Pablo; Ciriaci, Nadia; Arias, Agostina; Ceballos, María Paula; Villanueva, Silvina Stella Maris; Luquita, Marcelo Gabriel; Mottino, Aldo Domingo; Ghanem, Carolina Inés; Catania, Viviana Alicia; Ruiz, María Laura
2015-01-01
Hepatocellular carcinoma (HCC) is the fifth most frequent cancer worldwide. Sorafenib is the only drug available that improves the overall survival of HCC patients. P-glycoprotein (P-gp), Multidrug resistance-associated proteins 2 and 3 (MRP2 and 3) and Breast cancer resistance protein (BCRP) are efflux pumps that play a key role in cancer chemoresistance. Their modulation by dietary compounds may affect the intracellular accumulation and therapeutic efficacy of drugs that are substrates of these transporters. Genistein (GNT) is a phytoestrogen abundant in soybean that exerts its genomic effects through Estrogen-Receptors and Pregnane-X-Receptor (PXR), which are involved in the regulation of the above-mentioned transporters. We evaluated the effect of GNT on the expression and activity of P-gp, MRP2, MRP3 and BCRP in HCC-derived HepG2 cells. GNT (at 1.0 and 10 μM) increased P-gp and MRP2 protein expression and activity, correlating well with an increased resistance to sorafenib cytotoxicity as detected by the methylthiazole tetrazolium (MTT) assay. GNT induced P-gp and MRP2 mRNA expression at 10 but not at 1.0 μM concentration suggesting a different pattern of regulation depending on the concentration. Induction of both transporters by 1.0 μM GNT was prevented by cycloheximide, suggesting translational regulation. Downregulation of expression of the miR-379 by GNT could be associated with translational regulation of MRP2. Silencing of PXR abolished P-gp induction by GNT (at 1.0 and 10 μM) and MRP2 induction by GNT (only at 10 μM), suggesting partial mediation of GNT effects by PXR. Taken together, the data suggest the possibility of nutrient-drug interactions leading to enhanced chemoresistance in HCC when GNT is ingested with soy rich diets or dietary supplements.
Zhang, Ce; Fan, Qing; Chen, Shu-Liang; Ma, Hui
2015-08-01
The purpose of this study was to investigate the combined effects of Ginkgo biloba extract and phenytoin (PHT) sodium as a dose regimen simulating the clinical treatment of patients with epilepsy, on P-glycoprotein (P-GP) overexpression in a pentylenetetrazole-kindled mouse model of epilepsy. Epilepsy was induced by intraperitoneal administration of pentylenetetrazole (40 mg/kg) for 7 days followed by intragastric administration of PHT (40 mg/kg) for 14 days. Thirty mice that developed seizures were randomly divided into three groups and administered PHT as well as the following treatments: saline (negative control); verapamil (20 mg/kg, positive control); and G. biloba (30 mg/kg). Seizure severity was recorded 30 minutes after treatment on Day 4 of drug administration, after which the mice were euthanized, and their brains isolated. Western blots and immunohistochemistry were performed to analyze the expression of P-GP and caspase-3, respectively, in the brain tissue. High-performance liquid chromatography was used to measure the concentrations of PHT in the brains of the treated mice. After 4 consecutive days of treatment, the seizure severity in the mice in the G. biloba extract group was more significantly reduced than the seizure severity in the saline control group, and a significant difference was observed between the G. biloba extract and verapamil control groups (p < 0.05). P-GP expression in the brain more significantly decreased in the mice treated with G. biloba extract and verapamil than it did in the saline-treated control group (p < 0.05). Compared with the saline-treated control group, the mice treated with G. biloba extract and verapamil showed significantly increased brain PHT concentrations (p < 0.05). Furthermore, caspase-3 expression in the brain tissue of the G. biloba extract group was significantly lower than that in the vehicle control group (p < 0.05); this finding demonstrated the neuroprotective effects of G. biloba. Therefore, this study showed that treatment with G. biloba extract in combination with PHT prevented the upregulation of P-GP expression in mice. Moreover, G. biloba extract decreased seizure severity in pentylenetetrazole-kindled/PHT-treated mice through a mechanism that might be related to the reduction of P-GP expression in the brain. Copyright © 2015. Published by Elsevier Taiwan.
O'Brien, F E; Clarke, G; Fitzgerald, P; Dinan, T G; Griffin, B T; Cryan, J F
2012-06-01
Recent studies indicate that efflux of antidepressants by the multidrug resistance transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) may contribute to treatment-resistant depression (TRD) by limiting intracerebral antidepressant concentrations. In addition, clinical experience shows that adjunctive treatment with the P-gp inhibitor verapamil may improve the clinical outcome in TRD. Therefore, the present study aimed to investigate the effect of P-gp inhibition on the transport of the tricyclic antidepressant imipramine and its active metabolite desipramine across the BBB. Intracerebral microdialysis in rats was used to monitor brain levels of imipramine and desipramine following i.v. imipramine administration, with or without pretreatment with one of the P-gp inhibitors verapamil or cyclosporin A (CsA). Plasma drug levels were also determined at regular intervals. Pretreatment with either verapamil or CsA resulted in significant increases in imipramine concentrations in the microdialysis samples, without altering imipramine plasma pharmacokinetics. Furthermore, pretreatment with verapamil, but not CsA, led to a significant elevation in plasma and brain levels of desipramine. The present study demonstrated that P-gp inhibition enhanced the intracerebral concentration of imipramine , thus supporting the hypothesis that P-gp activity restricts brain levels of certain antidepressants, including imipramine. These findings may help to explain reports of a beneficial response to adjunctive therapy with verapamil in TRD. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Cheng, Yan Ho; Jenardhanan, Pranitha; Mathur, Premendu P.; Qian, Xiaojing; Xia, Weiliang; Silvestrini, Bruno; Cheng, Chuen Yan
2016-01-01
Breast cancer resistant protein (BCRP, ABCG2) is an ATP-binding cassette (ABC) transporter, which together with two other ABC efflux drug pumps, namely P-glycoprotein (P-gp, ABCB1) and multidrug resistance-related protein 1 (MRP1, ABCC1) is the most important multidrug resistance protein found in eukaryotic cells including cells in the testis. However, unlike P-gp and MRP1, which are components of the Sertoli cell blood-testis barrier (BTB), BCRP is not expressed at the BTB in rodents and human testes. Instead, BCRP is expressed by peritubular myoid cells and endothelial cells of the lymphatic vessel in the tunica propria, residing outside the BTB. As such, the testis is equipped with two levels of defense against xenobiotics or drugs, preventing these harmful substances from entering the adluminal compartment to perturb meiosis and post-meiotic spermatid development: one at the level of the BTB conferred by P-gp and MRP1 and one at the tunica propria conferred by BCRP. The presence of drug transporters at the tunica propria as well as at the Sertoli cell BTB thus poses significant obstacles in developing non-hormonal contraceptives if these drugs (e.g., adjudin) exert their effects in germ cells behind the BTB, such as in the adluminal (apical) compartment of the seminiferous epithelium. Herein, we summarize recent findings pertinent to adjudin, a non-hormonal male contraceptive, and molecular interactions of adjudin with BCRP so that this information can be helpful to devise delivery strategies to evade BCRP in the tunica propria to improve its bioavailability in the testis. PMID:25620224
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Rodriguez, Ariane; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D; Patterson, Jean L; Mire, Chad E; Geisbert, Thomas W; Hooper, Jay W; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke; Zahn, Roland
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family.
Callendret, Benoit; Vellinga, Jort; Wunderlich, Kerstin; Steigerwald, Robin; Dirmeier, Ulrike; Cheminay, Cedric; Volkmann, Ariane; Brasel, Trevor; Carrion, Ricardo; Giavedoni, Luis D.; Patterson, Jean L.; Mire, Chad E.; Geisbert, Thomas W.; Hooper, Jay W.; Weijtens, Mo; Hartkoorn-Pasma, Jutta; Custers, Jerome; Grazia Pau, Maria; Schuitemaker, Hanneke
2018-01-01
The search for a universal filovirus vaccine that provides protection against multiple filovirus species has been prompted by sporadic but highly lethal outbreaks of Ebolavirus and Marburgvirus infections. A good prophylactic vaccine should be able to provide protection to all known filovirus species and as an upside potentially protect from newly emerging virus strains. We investigated the immunogenicity and protection elicited by multivalent vaccines expressing glycoproteins (GP) from Ebola virus (EBOV), Sudan virus (SUDV), Taï Forest virus (TAFV) and Marburg virus (MARV). Immune responses against filovirus GP have been associated with protection from disease. The GP antigens were expressed by adenovirus serotypes 26 and 35 (Ad26 and Ad35) and modified Vaccinia virus Ankara (MVA) vectors, all selected for their strong immunogenicity and good safety profile. Using fully lethal NHP intramuscular challenge models, we assessed different vaccination regimens for immunogenicity and protection from filovirus disease. Heterologous multivalent Ad26-Ad35 prime-boost vaccination regimens could give full protection against MARV (range 75%-100% protection) and EBOV (range 50% to 100%) challenge, and partial protection (75%) against SUDV challenge. Heterologous multivalent Ad26-MVA prime-boost immunization gave full protection against EBOV challenge in a small cohort study. The use of such multivalent vaccines did not show overt immune interference in comparison with monovalent vaccines. Multivalent vaccines induced GP-specific antibody responses and cellular IFNγ responses to each GP expressed by the vaccine, and cross-reactivity to TAFV GP was detected in a trivalent vaccine expressing GP from EBOV, SUDV and MARV. In the EBOV challenge studies, higher humoral EBOV GP-specific immune responses (p = 0.0004) were associated with survival from EBOV challenge and less so for cellular immune responses (p = 0.0320). These results demonstrate that it is feasible to generate a multivalent filovirus vaccine that can protect against lethal infection by multiple members of the filovirus family. PMID:29462200
Vets, Sofie; De Rijck, Jan; Brendel, Christian; Grez, Manuel; Bushman, Frederic; Debyser, Zeger; Gijsbers, Rik
2013-03-05
Retrovirus-based vectors are commonly used as delivery vehicles to correct genetic diseases because of their ability to integrate new sequences stably. However, adverse events in which vector integration activates proto-oncogenes, leading to clonal expansion and leukemogenesis hamper their application. The host cell-encoded lens epithelium-derived growth factor (LEDGF/p75) binds lentiviral integrase and targets integration to active transcription units. We demonstrated earlier that replacing the LEDGF/p75 chromatin interaction domain with an alternative DNA-binding protein could retarget integration. Here, we show that transient expression of the chimeric protein using mRNA electroporation efficiently redirects lentiviral vector (LV) integration in wild-type (WT) cells. We then employed this technology in a model for X-linked chronic granulomatous disease (X-CGD) using myelomonocytic PLB-985 gp91(-/-) cells. Following electroporation with mRNA encoding the LEDGF-chimera, the cells were treated with a therapeutic lentivector encoding gp91(phox). Integration site analysis revealed retargeted integration away from genes and towards heterochromatin-binding protein 1β (CBX1)-binding sites, in regions enriched in marks associated with gene silencing. Nevertheless, gp91(phox) expression was stable for at least 6 months after electroporation and NADPH-oxidase activity was restored to normal levels as determined by superoxide production. Together, these data provide proof-of-principle that transient expression of engineered LEDGF-chimera can retarget lentivector integration and rescues the disease phenotype in a cell model, opening perspectives for safer gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e77; doi:10.1038/mtna.2013.4; published online 5 March 2013.
Multiple Drug Transport Pathways through human P-Glycoprotein(†)
McCormick, James W.; Vogel, Pia D.; Wise, John G.
2015-01-01
P-glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11 to 12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methyl-pyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar is presented that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp. PMID:26125482
Multiple Drug Transport Pathways through Human P-Glycoprotein.
McCormick, James W; Vogel, Pia D; Wise, John G
2015-07-21
P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.
Diagnostic value of serum Golgi protein 73 for HBV-related primary hepatic carcinoma
Gao, Guosheng; Dong, Feibo; Xu, Xiaozhen; Hu, Airong; Hu, Yaoren
2015-01-01
Background: Alpha-fetoprotein (AFP) levels are routinely used for diagnosis and monitoring of hepatic diseases, but it has a limited value. Golgi protein 73 (GP73) has been suggested as a new marker for hepatic diseases. Objective: To explore the clinical value of serum GP73 in different diseases associated with hepatitis B virus (HBV) infection. Method: Between January 2010 and August 2014, serum samples from 88 patients with chronic hepatitis B (CHB), 78 patients with HBV-related liver cirrhosis (LC), and 194 patients with HBV-related primary hepatic cancer (PHC) were collected. Serum samples from 30 healthy volunteers were used as controls. ELISA and microparticle enzyme immunoassay were used to measure serum GP73 and AFP levels. Receiver operating characteristic (ROC) curves were used to analyze the diagnostic value of serum GP73 and AFP for PHC. Results: For the diagnosis of PHC, GP73 showed a sensitivity of 65.5% and specificity of 66.3%, while AFP levels showed sensitivity of 64.4% and specificity of 76.5%. Serial testing (both tests are positive) could increase the specificity (sensitivity of 45.9% and specificity of 85.5%) while parallel testing (any single positive test result) could increase the sensitivity (sensitivity of 84.0% and specificity of 57.2%). Serum GP73 and AFP levels were significantly different between Child-Pugh grades (P<0.001 for GP73 and P=0.044 for AFP). Significant differences in serum GP73 and AFP were found between TNM stages (all P<0.001). Conclusion: Serum GP73 had limited diagnostic value for HBV-related PHC. The combined use of serum GP73 and AFP levels improved the diagnostic efficacy. PMID:26617863
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Jing; Beijing Key Laboratory for Protein Therapeutics, Beijing 100084; Chen Xi
2008-11-07
The human monoclonal antibody 4E10 against the membrane-proximal external region (MPER) of HIV-1 gp41 demonstrates broad neutralizing activity across various strains, and makes its epitope an attractive target for HIV-1 vaccine development. Although the contiguous epitope of 4E10 has been identified, attempts to re-elicit 4E10-like antibodies have failed, possibly due to the lack of proper conformation of the 4E10 epitope. Here we used pIg-tail expression system to construct a panel of eukaryotic cell-surface expression plasmids encoding the extracellular domain of gp41 with deletion of fusion peptide and/or introduction of L568P mutation that may disrupt the gp41 six-helix bundle core conformationmore » as DNA vaccines for immunization of mice. We found that these changes resulted in significant increase of the antigenicity and immunogenicity of 4E10 epitope. This information is thus useful for rational design of vaccines targeting the HIV-1 gp41 MPER.« less
Elevated CXCL1 expression in gp130-deficient endothelial cells impairs neutrophil migration in mice
Yao, Longbiao; Yago, Tadayuki; Shao, Bojing; Liu, Zhenghui; Silasi-Mansat, Robert; Setiadi, Hendra; Lupu, Florea
2013-01-01
Neutrophils emigrate from venules to sites of infection or injury in response to chemotactic gradients. How these gradients form is not well understood. Some IL-6 family cytokines stimulate endothelial cells to express adhesion molecules and chemokines that recruit leukocytes. Receptors for these cytokines share the signaling subunit gp130. We studied knockout mice lacking gp130 in endothelial cells. Unexpectedly, gp130-deficient endothelial cells constitutively expressed more CXCL1 in vivo and in vitro, and even more upon stimulation with tumor necrosis factor-α. Mobilization of this increased CXCL1 from intracellular stores to the venular surface triggered β2 integrin–dependent arrest of neutrophils rolling on selectins but impaired intraluminal crawling and transendothelial migration. Superfusing CXCL1 over venules promoted neutrophil migration only after intravenously injecting mAb to CXCL1 to diminish its intravascular function or heparinase to release CXCL1 from endothelial proteoglycans. Remarkably, mice lacking gp130 in endothelial cells had impaired histamine-induced venular permeability, which was restored by injecting anti–P-selectin mAb to prevent neutrophil rolling and arrest. Thus, excessive CXCL1 expression in gp130-deficient endothelial cells augments neutrophil adhesion but hinders migration, most likely by disrupting chemotactic gradients. Our data define a role for endothelial cell gp130 in regulating integrin-dependent adhesion and de-adhesion of neutrophils during inflammation. PMID:24081661
Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi
2016-01-01
We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.
da Silva, Lívia M; Frión-Herrera, Yahima; Bartolomeu, Ariane R; Gorgulho, Carolina Mendonça; Sforcin, José M
2017-11-01
The effects of propolis and phenolic compounds (caffeic acid - Caf; dihydrocinnamic acid - Cin; p-coumaric acid - Cou) in the same quantity found in our propolis sample were investigated on human laryngeal epidermoid carcinoma (HEp-2) cells. Cell viability, apoptosis/necrosis and cell cycle arrest, P53 and CASPASE-3 gene expression, generation of reactive oxygen species (ROS) and the ability of propolis to induce doxorubicin (DOX) efflux using a P-glycoprotein (P-gp) inhibitor (verapamil) were assayed. Propolis exerted a cytotoxic effect on HEp-2 cells, whereas isolated compounds had no effect on cell viability. Higher concentrations were tested and Caf induced late apoptosis or necrosis in HEp-2 cells, while propolis induced apoptosis, both probably due to ROS generation. P53 expression was downregulated by propolis but not by Caf. CASPASE-3 expression was correlated with induction of both early and late apoptosis, with both propolis and Caf alone upregulating its expression. Propolis induced cell cycle arrest at G2/M phase and Caf at S phase. Propolis but not Caf may act as a P-gp inhibitor by modulating P-gp activity and inhibiting DOX efflux. Propolis exerted cytotoxic effects on HEp-2 cells, and the mechanisms are discussed, showing its potential as an antitumour drug. © 2017 Royal Pharmaceutical Society.
Yang, Ting; Chen, Fei; Xu, Feifei; Wang, Fengliang; Xu, Qingqing; Chen, Yun
2014-09-25
P-glycoprotein (P-gp) can efflux drugs from cancer cells, and its overexpression is commonly associated with multi-drug resistance (MDR). Thus, the accurate quantification of P-gp would help predict the response to chemotherapy and for prognosis of breast cancer patients. An advanced liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based targeted proteomics assay was developed and validated for monitoring P-gp levels in breast tissue. Tryptic peptide 368IIDNKPSIDSYSK380 was selected as a surrogate analyte for quantification, and immuno-depleted tissue extract was used as a surrogate matrix. Matched pairs of breast tissue samples from 60 patients who were suspected to have drug resistance were subject to analysis. The levels of P-gp were quantified. Using data from normal tissue, we suggested a P-gp reference interval. The experimental values of tumor tissue samples were compared with those obtained from Western blotting and immunohistochemistry (IHC). The result indicated that the targeted proteomics approach was comparable to IHC but provided a lower limit of quantification (LOQ) and could afford more reliable results at low concentrations than the other two methods. LC/MS/MS-based targeted proteomics may allow the quantification of P-gp in breast tissue in a more accurate manner. Copyright © 2014 Elsevier B.V. All rights reserved.
Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug-Drug Interactions.
Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil
2016-02-24
Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug-drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug-drug interactions.
Venetoclax (ABT-199) Might Act as a Perpetrator in Pharmacokinetic Drug–Drug Interactions
Weiss, Johanna; Gajek, Thomas; Köhler, Bruno Christian; Haefeli, Walter Emil
2016-01-01
Venetoclax (ABT-199) represents a specific B-cell lymphoma 2 (Bcl-2) inhibitor that is currently under development for the treatment of lymphoid malignancies. So far, there is no published information on its interaction potential with important drug metabolizing enzymes and drug transporters, or its efficacy in multidrug resistant (MDR) cells. We therefore scrutinized its drug–drug interaction potential in vitro. Inhibition of cytochrome P450 enzymes (CYPs) was quantified by commercial kits. Inhibition of drug transporters (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP), and organic anion transporting polypeptides (OATPs)) was evaluated by the use of fluorescent probe substrates. Induction of drug transporters and drug metabolizing enzymes was quantified by real-time RT-PCR. The efficacy of venetoclax in MDR cells lines was evaluated with proliferation assays. Venetoclax moderately inhibited P-gp, BCRP, OATP1B1, OATP1B3, CYP3A4, and CYP2C19, whereas CYP2B6 activity was increased. Venetoclax induced the mRNA expression of CYP1A1, CYP1A2, UGT1A3, and UGT1A9. In contrast, expression of ABCB1 was suppressed, which might revert tumor resistance towards antineoplastic P-gp substrates. P-gp over-expression led to reduced antiproliferative effects of venetoclax. Effective concentrations for inhibition and induction lay in the range of maximum plasma concentrations of venetoclax, indicating that it might act as a perpetrator drug in pharmacokinetic drug–drug interactions. PMID:26927160
Rodriguez, M J; Sarraseca, J; Fominaya, J; Cortés, E; Sanz, A; Casal, J I
2001-05-01
Glycoprotein 5 (GP(5)) is the major glycoprotein of porcine reproductive and respiratory syndrome virus (PRRSV). Expression of GP(5) has been improved by removing the transmembrane regions. Vectors were constructed encoding complete GP(5) plus three mutants: GP(5) Ns (residues 28--201), GP(5)[30--67] (residues 30--67) and GP(5)[30--201] (residues 30--67/130--201). The three deletion mutants were expressed at levels 20--30 times higher than complete GP(5). GP(5)[30--201] was well recognized in ELISA or immunoblotting by a collection of pig sera. All the fragments were tested for the generation of MAbs, but only the polyhistidine-tagged fragment GP(5)[30--201]H elicited an antibody response sufficient to produce MABS: The two MAbs were positive for PRRSV in ELISA and immunoblotting, but negative for virus neutralization. MAb 4BE12 reacted with residues 130--170 and MAb 3AH9 recognized residues 170--201. This region was recognized strongly in immunoblotting by a collection of infected-pig sera. These results indicate diagnostic potential for this epitope.
Beecken, Wolf-Dietrich C; Ringel, Eva Maria; Babica, Jan; Oppermann, Elsie; Jonas, Dietger; Blaheta, Roman A
2010-10-28
beta(2)-Glycoprotein-I (beta(2)gpI), an abundant plasma glycoprotein, functions as a regulator of thrombosis. Previously, we demonstrated that plasmin-clipped beta(2)gpI (cbeta(2)gpI) exerts an anti-angiogenic effect on human umbilical vein endothelial cells (HUVEC). The present study was focused on the molecular background responsible for this phenomenon. cbeta(2)gpI strongly reduced HUVEC growth and proliferation as evidenced by the MTT and BrdU assay and delayed cell cycle progression arresting HUVEC in the S-and G2/M-phase. Western blot analysis indicated that cbeta(2)gpI inhibited cyclin A, B and D1, and enhanced p21 and p27 expression. Activity of p38 was down-regulated independently from the cbeta(2)gpI incubation time. Phosphorylation of ERK1/2 was not changed early (30 and 60 min) but became enhanced later (90 min, 4h). JNK activity was reduced rapidly after cbeta(2)gpI treatment but compared to controls, increased thereafter. Annexin II blockade prevented growth inhibition and cell cycle delay evoked by cbeta(2)gpI. We assume that cbeta(2)gpI's effects on HUVEC growth is mediated via cyclin A, B and D1 suppression, up-regulation of p21 and p27 and coupled to modifications of the mitogen-activated protein (MAP) kinase signalling pathway. cbeta(2)gpI may represent a potential endogenous angiogenesis-targeted compound, opening the possibility of a novel tool to treat cancer. 2010 Elsevier Ireland Ltd. All rights reserved.
Krishnamurthy, Karthikeyan; Vedam, Kaushik; Kanagasabai, Ragu; Druhan, Lawrence J.; Ilangovan, Govindasamy
2012-01-01
Heat-shock factor 1 (HSF-1), a transcription factor for heat-shock proteins (HSPs), is known to interfere with the transcriptional activity of many oncogenic factors. In the present work, we have discovered that HSF-1 ablation induced the multidrug resistance gene, MDR1b, in the heart and increased the expression of P-glycoprotein (P-gp, ABCB1), an ATP binding cassette that is usually associated with multidrug-resistant cancer cells. The increase in P-gp enhanced the extrusion of doxorubicin (Dox) to alleviate Dox-induced heart failure and reduce mortality in mice. Dox-induced left ventricular (LV) dysfunction was significantly reduced in HSF-1−/− mice. DNA-binding activity of NF-κB was higher in HSF-1−/− mice. IκB, the NF-κB inhibitor, was depleted due to enhanced IκB kinase (IKK)-α activity. In parallel, MDR1b gene expression and a large increase in P-gp and lowering Dox loading were observed in HSF-1−/− mouse hearts. Moreover, application of the P-gp antagonist, verapamil, increased Dox loading in HSF-1−/− cardiomyocytes, deteriorated cardiac function in HSF-1−/− mice, and decreased survival. MDR1 promoter activity was higher in HSF-1−/− cardiomyocytes, whereas a mutant MDR1 promoter with heat-shock element (HSE) mutation showed increased activity only in HSF-1+/+ cardiomyocytes. However, deletion of HSE and NF-κB binding sites diminished luminescence in both HSF-1+/+ and HSF-1−/− cardiomyocytes, suggesting that HSF-1 inhibits MDR1 activity in the heart. Thus, because high levels of HSF-1 are attributed to poor prognosis of cancer, systemic down-regulation of HSF-1 before chemotherapy is a potential therapeutic approach to ameliorate the chemotherapy-induced cardiotoxicity and enhance cancer prognosis. PMID:22615365
Ellens, Harma; Meng, Zhou; Le Marchand, Sylvain J; Bentz, Joe
2018-06-01
In vitro transporter kinetics are typically analyzed by steady-state Michaelis-Menten approximations. However, no clear evidence exists that these approximations, applied to multiple transporters in biological membranes, yield system-independent mechanistic parameters needed for reliable in vivo hypothesis generation and testing. Areas covered: The classical mass action model has been developed for P-glycoprotein (P-gp) mediated transport across confluent polarized cell monolayers. Numerical integration of the mass action equations for transport using a stable global optimization program yields fitted elementary rate constants that are system-independent. The efflux active P-gp was defined by the rate at which P-gp delivers drugs to the apical chamber, since as much as 90% of drugs effluxed by P-gp partition back into nearby microvilli prior to reaching the apical chamber. The efflux active P-gp concentration was 10-fold smaller than the total expressed P-gp for Caco-2 cells, due to their microvilli membrane morphology. The mechanistic insights from this analysis are readily extrapolated to P-gp mediated transport in vivo. Expert opinion: In vitro system-independent elementary rate constants for transporters are essential for the generation and validation of robust mechanistic PBPK models. Our modeling approach and programs have broad application potential. They can be used for any drug transporter with minor adaptations.
Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Rohan, Lisa C.
2016-01-01
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with 3H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues. PMID:27453435
Mercer, Susan L.; Coop, Andrew
2012-01-01
Chronic clinical pain remains poorly treated. Despite attempts to develop novel analgesic agents, opioids remain the standard analgesics of choice in the clinical management of chronic and severe pain. However, mu opioid analgesics have undesired side effects including, but not limited to, respiratory depression, physical dependence and tolerance. A growing body of evidence suggests that P-glycoprotein (P-gp), an efflux transporter, may contribute a systems-level approach to the development of opioid tolerance. Herein, we describe current in vitro and in vivo methodology available to analyze interactions between opioids and P-gp and critically analyze P-gp data associated with six commonly used mu opioids to include morphine, methadone, loperamide, meperidine, oxycodone, and fentanyl. Recent studies focused on the development of opioids lacking P-gp substrate activity are explored, concentrating on structure-activity relationship development to develop an optimal opioid analgesic lacking this systems-level contribution to tolerance development. Continued work in this area will potentially allow for delineation of the mechanism responsible for opioid-related P-gp up-regulation and provide further support for evidence based medicine supporting clinical opioid rotation. PMID:21050174
Nishigaki, Kazuo; Thompson, Delores; Hanson, Charlotte; Yugawa, Takashi; Ruscetti, Sandra
2001-01-01
The Friend spleen focus-forming virus (SFFV) encodes a unique envelope glycoprotein, gp55, which allows erythroid cells to proliferate and differentiate in the absence of erythropoietin (Epo). SFFV gp55 has been shown to interact with the Epo receptor complex, causing constitutive activation of various signal-transducing molecules. When injected into adult mice, SFFV induces a rapid erythroleukemia, with susceptibility being determined by the host gene Fv-2, which was recently shown to be identical to the gene encoding the receptor tyrosine kinase Stk/Ron. Susceptible, but not resistant, mice encode not only full-length Stk but also a truncated form of the kinase, sf-Stk, which may mediate the biological effects of SFFV infection. To determine whether expression of SFFV gp55 leads to the activation of sf-Stk, we expressed sf-Stk, with or without SFFV gp55, in hematopoietic cells expressing the Epo receptor. Our data indicate that sf-Stk interacts with SFFV gp55 as well as gp55P, the biologically active form of the viral glycoprotein, forming disulfide-linked complexes. This covalent interaction, as well as noncovalent interactions with SFFV gp55, results in constitutive tyrosine phosphorylation of sf-Stk and its association with multiple tyrosine-phosphorylated signal-transducing molecules. In contrast, neither Epo stimulation in the absence of SFFV gp55 expression nor expression of a mutant of SFFV that cannot interact with sf-Stk was able to induce tyrosine phosphorylation of sf-Stk or its association with any signal-transducing molecules. Covalent interaction of sf-Stk with SFFV gp55 and constitutive tyrosine phosphorylation of sf-Stk can also be detected in an erythroleukemia cell line derived from an SFFV-infected mouse. Our results suggest that SFFV gp55 may mediate its biological effects in vivo by interacting with and activating a truncated form of the receptor tyrosine kinase Stk. PMID:11483734
Husein, Mustafa Q; Ababneh, Mohammed M; Haddad, Serhan G
2005-01-01
The objective of this experiment was to determine the effect of a 5-day progesterone priming prior to a GnRH-PGF2alpha treatment on reproductive performance of anestrous goats. Thirty-six Mountain Black goats were randomly assigned in a 2 x 2 factorial arrangement and were administered intravaginally on day -12, either with 300 mg progesterone inserts (CGPE and CGP) or with 0 mg progesterone (GPE and GP) for 5 days. On day -6, the goats were injected with 100 microg GnRH, followed 6 days later by 15 mg PGF2alpha (day 0), the time at which the goats in the CGPE and GPE groups were administered 300 IU eCG injections and those in CGP and GP groups were administered the control solution. The goats were exposed to four fertile bucks at 0 h and were checked for breeding marks at 6-h intervals for 72 h. Blood samples were collected from all goats for progesterone analysis. Progesterone concentrations increased only in CGPE and CGP during the period of device insertion but remained low in GPE and GP groups (P < 0.001). Progesterone levels at the time of GnRH injection on day -6 were basal (0.2 +/- 0.04 ng.mL-1) among the groups and began to increase starting on day -2. Day 0 progesterone concentrations differed (P < 0.05) among groups and were significantly influenced by CIDR-G (P < 0.001). A similar proportion of goats expressed estrus and intervals to detected estrus were shorter (P < 0.05) in the CGPE and GPE groups than in GP with no difference between the CGPE, CGP and GPE or between CGP and GP groups. The number of goats ovulating based upon elevated progesterone levels on day 0 was significantly greater (P = 0.002) in CGPE (9/9) and CGP (9/9) than GPE (6/9) and GP (5/9) groups and was significantly influenced by CIDR-G (P = 0.03). All pregnant goats had elevated progesterone concentration on day 0 and none of the goats with basal progesterone levels became pregnant. Pregnancy and kidding rates, twinning percentage and the number of kids born per goat exposed were greater (P < 0.05) among goats treated with progesterone and eCG. In conclusion, progesterone priming and eCG are essential for producing higher rates of pregnancy and kidding in GnRH-PGF2alpha-treated anestrous goats.
Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis.
Matthews, J B; Wright, H J; Roberts, A; Cooper, P R; Chapple, I L C
2007-02-01
Some evidence exists that peripheral neutrophils from patients with chronic periodontitis generate higher levels of reactive oxygen species (ROS) after Fcgamma-receptor stimulation than those from healthy controls. We hypothesized that peripheral neutrophils in periodontitis also show both hyper-reactivity to plaque organisms and hyperactivity in terms of baseline, unstimulated generation and release of ROS. Peripheral neutrophils from chronic periodontitis patients and age/sex/smoking-matched healthy controls (18 pairs) were assayed for total ROS generation and extracellular ROS release, with and without stimulation (Fcgamma-receptor and Fusobacterium nucleatum), using luminol and isoluminol chemiluminescence. Assays were performed with and without priming with Escherichia coli lipopolysaccharide (LPS) and granulocyte-macrophage colony-stimulating factor (GM-CSF). Phox gene expression (p22, p47, p67, gp91) was investigated using reverse transcription-polymerase chain reaction (RT-PCR). Neutrophils from patients produced higher mean levels of ROS in all assays. Total generation and extracellular release of ROS by patients' cells were significantly greater than those from controls after FcgammaR-stimulation, with (P = 0.023) and without (P < or = 0.023) priming with GM-CSF. Differences in unstimulated total ROS generation were not significant. By contrast, patients' cells demonstrated greater baseline, extracellular ROS release than those from controls (P = 0.004). This difference was maintained after priming with LPS (P = 0.028) but not GM-CSF (P = 0.217). Phox gene expression was similar in patient and control cells at baseline and stimulation with F. nucleatum (3 h) consistently reduced gp91(PHOX) transcripts. Our data demonstrate that peripheral neutrophils from periodontitis patients exhibit hyper-reactivity following stimulation (Fcgamma-receptor and F. nucleatum) and hyperactivity in terms of excess ROS release in the absence of exogenous stimulation. This hyperactive/-reactive neutrophil phenotype is not associated with elevated phox gene expression.
Arbez, Jessy; Saas, Philippe; Lamarthée, Baptiste; Malard, Florent; Couturier, Mélanie; Mohty, Mohamad; Gaugler, Béatrice
2015-07-01
This study aimed to characterize the immune effectors contained in the grafts from donor mice mobilized by granulocyte colony-stimulating factor (G-CSF) and plerixafor and to evaluate their impact on the development of acute graft-versus-host-disease (aGVHD). Mobilization was done with G-CSF alone or G-CSF plus plerixafor (G+P). In grafts collected after G+P mobilization, we observed a significantly higher proportion of c-kit(+)Sca-1(+) hematopoietic stem cells compared with G-CSF. A significant increase in the percentage of plasmacytoid dendritic cells was detected in the G+P graft compared with G-CSF graft. We also studied the ability of stem cell grafts mobilized with G+P to induce GVHD in a mouse model. We observed higher mortality (P < 0.001) associated with increased aGVHD clinical score (P < 0.0001) as well as higher pathology score in the intestine of mice receiving G+P as compared with G-CSF grafts (P < 0.001). Moreover, the exacerbated aGVHD severity was associated with upregulation of CCR6 expression on both CD4(+) and CD8(+) T cells from the G+P grafts, as well as on T cells from mice transplanted with G+P grafts. In conclusion, we showed that grafts mobilized with G+P exhibited functional features different from those mobilized with G-CSF alone, which increase the severity of aGVHD in the recipients. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Iwanaga, Kazunori; Yoneda, Shinji; Hamahata, Yukimi; Miyazaki, Makoto; Shibano, Makio; Taniguchi, Masahiko; Baba, Kimiye; Kakemi, Masawo
2011-01-01
Furanocoumarin derivatives, known as components of grapefruit juice, showing inhibitory effects against P-glycoprotein (P-gp) in the intestine are also contained in the plants of rutaceae and umbelliferae families, which are used as components of Kampo extract medicines. In this study, we investigated the inhibitory effects of byakangelicol and rivulobirin A, known as furanocoumarins showing P-gp inhibitory effect using Caco-2 monolayer, against P-gp at the blood-brain barrier (BBB) under both in vitro and in vivo conditions. First we studied the membrane permeability of furanocoumarins to clarify whether they can be absorbed from the intestine. Both furanocoumarins showed high permeability through the Caco-2 monolayer, suggesting that they can easily reach the systemic circulation after oral administration. Then, we evaluated the effect of these furanocoumarins on the uptake of calcein acetoxymethyl ester (calcein-AM), a P-gp substrate, into bovine brain microvascular endothelial cells (BBMEC). Both furanocoumarins significantly increased the uptake amount of calcein-AM into BBMEC by the inhibition of P-gp at the BBB in vitro. Next we also investigated the P-gp inhibitory effect of these furanocoumarins at the rat BBB in vivo using verapamil as a P-gp substrate. Both furanocoumarins increased the B/P ratio of verapamil compared to the control, even under in vivo conditions; however, the extent of the inhibitory effect was much lower than in vitro condition. In conclusion, byakangelicol and rivulobirin A may inhibit P-gp expressed at the BBB even under in vivo conditions. Further studies using Kampo extract medicines under in vivo condition are necessary for safe drug therapy.
Zuo, Bin; Zhao, Yun-Xiao; Yang, Jian-Feng; He, Yang
2015-08-01
To investigate whether the plasma level of platelet auto- antibodies in ITP patients is related to that of co-stimulatory molecules sB7-H2 and sB7-H3. A total of 61 ITP patients and 25 healthy controls from the First Affiliated Hospital of Soochow University from June 2012 to August 2013 were enrolled in this study. The expression levels of platelet auto-antibodies against 5 glycoproteins (GPIX, GP Ib, GP IIIa, GPIIb and P-selectin) in plasma were detected by flow cytometric immuno-beads array, and the expression of soluable co-stimulatory molecules sB7-H2 and sB7-H3 was measured by ELISA. The plasma levels of 5 auto-antibodies against platelet membrance glycoproteins significantly increased in ITP patiens (P < 0.01). Compared with healthy controls, sB7-H2 levels increased (P < 0.05), while the sB7-H3 level did not significantly change (r = 0.13, P > 0.05). However, the correlation analysis showed that sB7-H3 negatively correlated with platelet P-selectin auto-antibody (r = -0.46, P < 0.05), and sB7-H2 and sB7-H3 significantly reduced in ITP patients with positive P-selectin auto-antibody (P < 0.01). In ITP patients, platelet counts negatively correlated with sB7-H2 (r = -0.3907, P < 0.01), but did not correlate with sB7-H3. Soluble costimulatory molecule sB7-H2 elevates in ITP patients, and the level of sB7-H3 is associated with auto-antibodies against P-selectin, suggesting that costimulatory molecules B7-H2 and B7-H3 may be involved in the pathogenesis of immune regulation abnormality in ITP.
Roggero, R; Robert-Hebmann, V; Harrington, S; Roland, J; Vergne, L; Jaleco, S; Devaux, C; Biard-Piechaczyk, M
2001-08-01
Apoptosis of CD4(+) T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4(+) T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4(+) T-cell depletion in AIDS.
Roggero, Rodolphe; Robert-Hebmann, Véronique; Harrington, Steve; Roland, Joachim; Vergne, Laurence; Jaleco, Sara; Devaux, Christian; Biard-Piechaczyk, Martine
2001-01-01
Apoptosis of CD4+ T lymphocytes, induced by contact between human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (gp120) and its receptors, could contribute to the cell depletion observed in HIV-infected individuals. CXCR4 appears to play an important role in gp120-induced cell death, but the mechanisms involved in this apoptotic process remain poorly understood. To get insight into the signal transduction pathways connecting CXCR4 to apoptosis following gp120 binding, we used different cell lines expressing wild-type CXCR4 and a truncated form of CD4 that binds gp120 but lacks the ability to transduce signals. The present study demonstrates that (i) the interaction of cell-associated gp120 with CXCR4-expressing target cells triggers a rapid dissipation of the mitochondrial transmembrane potential resulting in the cytosolic release of cytochrome c from the mitochondria to cytosol, concurrent with activation of caspase-9 and -3; (ii) this apoptotic process is independent of Fas signaling; and (iii) cooperation with a CD4 signal is not required. In addition, following coculture with cells expressing gp120, a Fas-independent apoptosis involving mitochondria and caspase activation is also observed in primary umbilical cord blood CD4+ T lymphocytes expressing high levels of CXCR4. Thus, this gp120-mediated apoptotic pathway may contribute to CD4+ T-cell depletion in AIDS. PMID:11462036
Murine serum glycoprotein gp70 behaves as an acute phase reactant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, I.; Izui, S.; Dixon, F.J.
1982-02-01
A single intraperitoneal injection of bacterial lipopolysaccharide (LPS) or its lipid A component induced high levels of glycoprotein, gp70, in sera of several strains of mice within 24 h. This serum gp70 response induced by LPS was independent of the activation of B cells and the presence of T cells. However, serological and immunohistochemical studies demonstrated the production of gp70 by hepatic parenchymal cells and its subsequent release into the circulating blood. The expression of gp70 in the serum was enhanced not only by LPS but also other inducers of acute phase reactants (APR) such as turpentine oil or polyriboinosinic-polyribocytidylicmore » acid. Further, the serum gp70 response was kinetically identical to those of APR. These results strongly suggest that (a) the liver may be the major source for serum gp70, (b) serum gp70 behaves like an APR, (c) its expression may be controlled by a mechanism similar to that for other APR, and (d) this glycoprotein apparently behaves as a normal host constituent and not a product of a viral genome.« less
Synthesis and P-glycoprotein induction activity of colupulone analogs.
Bharate, Jaideep B; Batarseh, Yazan S; Wani, Abubakar; Sharma, Sadhana; Vishwakarma, Ram A; Kaddoumi, Amal; Kumar, Ajay; Bharate, Sandip B
2015-05-21
Brain amyloid-beta (Aβ) plaques are one of the primary hallmarks associated with Alzheimer's disease (AD) pathology. Efflux pump proteins located at the blood-brain barrier (BBB) have been reported to play an important role in the clearance of brain Aβ, among which the P-glycoprotein (P-gp) efflux transporter pump has been shown to play a crucial role. Thus, P-gp has been considered as a potential therapeutic target for treatment of AD. Colupulone, a prenylated phloroglucinol isolated from Humulus lupulus, is known to activate pregnane-X-receptor (PXR), which is a nuclear receptor controlling P-gp expression. In the present work, we aimed to synthesize and identify analogs of colupulone that are potent P-gp inducer(s) with an ability to enhance Aβ transport across the BBB. A series of colupulone analogs were synthesized by modifications at both prenyl as well as acyl domains. All compounds were screened for P-gp induction activity using a rhodamine 123 based efflux assay in the P-gp overexpressing human adenocarcinoma LS-180 cells, wherein all compounds showed significant P-gp induction activity at 5 μM. In the western blot studies in LS-180 cells, compounds 3k and 5f were able to induce P-gp as well as LRP1 at 1 μM. The effect of compounds on the Aβ uptake and transport was then evaluated. Among all tested compounds, diprenylated acyl phloroglucinol displayed a significant increase (29%) in Aβ transport across bEnd3 cells grown on inserts as a BBB model. The results presented here suggest the potential of this scaffold to enhance clearance of brain Aβ across the BBB and thus its promise for development as a potential anti-Alzheimer agent.
Mazzari, Andre L D A; Milton, Flora; Frangos, Samantha; Carvalho, Ana C B; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M
2016-01-01
Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum.
Mazzari, Andre L. D. A.; Milton, Flora; Frangos, Samantha; Carvalho, Ana C. B.; Silveira, Dâmaris; de Assis Rocha Neves, Francisco; Prieto, Jose M.
2016-01-01
Erythrina mulungu Benth. (Fabaceae), Cordia verbenacea A. DC. (Boraginaceae), Solanum paniculatum L. (Solanaceae) and Lippia sidoides Cham. (Verbenaceae) are medicinal plant species native to Brazil shortlisted by the Brazilian National Health System for future clinical use. However, nothing is known about their effects in metabolic and transporter proteins, which could potentially lead to herb-drug interactions (HDI). In this work, we assess non-toxic concentrations (100 μg/mL) of the plant infusions for their in vitro ability to modulate CYP3A4 mRNA gene expression and intracellular glutathione levels in HepG2 cells, as well as P-glycoprotein (P-gp) activity in vincristine-resistant Caco-2 cells (Caco-2 VCR). Their mechanisms of action were further studied by measuring the activation of human pregnane X receptor (hPXR) in transiently co-transfected HeLa cells and the inhibition of γ-glutamyl transferase (GGT) in HepG2 cells. Our results show that P-gp activity was not affected in any case and that only Solanum paniculatum was able to significantly change CYP3A4 mRNA gene expression (twofold decrease, p < 0.05), this being correlated with an antagonist effect upon hPXR (EC50 = 0.38 mg/mL). Total intracellular glutathione levels were significantly depleted by exposure to Solanum paniculatum (-44%, p < 0.001), Lippia sidoides (-12%, p < 0.05) and Cordia verbenacea (-47%, p < 0.001). The latter plant extract was able to decrease GGT activity (-48%, p < 0.01). In conclusion, this preclinical study shows that the administration of some of these herbal medicines may be able to cause disturbances to metabolic mechanisms in vitro. Although Erythrina mulungu appears safe in our tests, active pharmacovigilance is recommended for the other three species, especially in the case of Solanum paniculatum. PMID:27594838
Eck, Melanie; Durán, Margarita García; Ricklin, Meret E; Locher, Samira; Sarraseca, Javier; Rodríguez, María José; McCullough, Kenneth C; Summerfield, Artur; Zimmer, Gert; Ruggli, Nicolas
2016-02-19
Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of one of the most devastating and economically significant viral disease of pigs worldwide. The vaccines currently available on the market elicit only limited protection. Recombinant vesicular stomatitis virus (VSV) replicon particles (VRP) have been used successfully to induce protection against influenza A virus (IAV) in chickens and bluetongue virus in sheep. In this study, VSV VRP expressing the PRRSV envelope proteins GP5, M, GP4, GP3, GP2 and the nucleocapsid protein N, individually or in combination, were generated and evaluated as a potential vector vaccine against PRRSV infection. High level expression of the recombinant PRRSV proteins was demonstrated in cell culture. However, none of the PRRSV antigens expressed from VRP, with the exception of the N protein, did induce any detectable antibody response in pigs before challenge infection with PRRSV. After challenge however, the antibody responses against GP5, GP4 and GP3 appeared in average 2 weeks earlier than in pigs vaccinated with the empty control VRP. No reduction of viremia was observed in the vaccinated group compared with the control group. When pigs were co-vaccinated with VRP expressing IAV antigens and VRP expressing PRRSV glycoproteins, only antibody responses to the IAV antigens were detectable. These data show that the VSV replicon vector can induce immune responses to heterologous proteins in pigs, but that the PRRSV envelope proteins expressed from VSV VRP are poorly immunogenic. Nevertheless, they prime the immune system for significantly earlier B-cell responses following PRRSV challenge infection.
Postler, Thomas S.; Bixby, Jacqueline G.; Desrosiers, Ronald C.; Yuste, Eloísa
2014-01-01
Previous studies have shown that truncation of the cytoplasmic-domain sequences of the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) just prior to a potential intracellular-trafficking signal of the sequence YIHF can strongly increase Env protein expression on the cell surface, Env incorporation into virions and, at least in some contexts, virion infectivity. Here, all 12 potential intracellular-trafficking motifs (YXXΦ or LL/LI/IL) in the gp41 cytoplasmic domain (gp41CD) of SIVmac239 were analyzed by systematic mutagenesis. One single and 7 sequential combination mutants in this cytoplasmic domain were characterized. Cell-surface levels of Env were not significantly affected by any of the mutations. Most combination mutations resulted in moderate 3- to 8-fold increases in Env incorporation into virions. However, mutation of all 12 potential sites actually decreased Env incorporation into virions. Variant forms with 11 or 12 mutated sites exhibited 3-fold lower levels of inherent infectivity, while none of the other single or combination mutations that were studied significantly affected the inherent infectivity of SIVmac239. These minor effects of mutations in trafficking motifs form a stark contrast to the strong increases in cell-surface expression and Env incorporation which have previously been reported for large truncations of gp41CD. Surprisingly, mutation of potential trafficking motifs in gp41CD of SIVmac316, which differs by only one residue from gp41CD of SIVmac239, effectively recapitulated the increases in Env incorporation into virions observed with gp41CD truncations. Our results indicate that increases in Env surface expression and virion incorporation associated with truncation of SIVmac239 gp41CD are not fully explained by loss of consensus trafficking motifs. PMID:25479017
2015-01-01
P-glycoprotein (P-gp) serves as a therapeutic target for the development of multidrug resistance reversal agents. In this study, we synthesized 21 novel compounds by peptide coupling at corresponding carboxyl and amino termini of (S)-valine-based bis-thiazole and monothiazole derivatives with diverse chemical scaffolds. Using calcein-AM efflux assay, we identified compound 28 (IC50 = 1.0 μM) carrying 3,4,5-trimethoxybenzoyl and 2-aminobenzophenone groups, respectively, at the amino and carboxyl termini of the monothiazole zwitter-ion. Compound 28 inhibited the photolabeling of P-gp with [125I]-iodoarylazidoprazosin with IC50 = 0.75 μM and stimulated the basal ATP hydrolysis of P-gp in a concentration-dependent manner (EC50 ATPase = 0.027 μM). Compound 28 at 3 μM reduced resistance in cytotoxicity assay to paclitaxel in P-gp-expressing SW620/Ad300 and HEK/ABCB1 cell lines. Biochemical and docking studies showed site-1 to be the preferable binding site for 28 within the drug-binding pocket of human P-gp. PMID:24773054
Šemeláková, M; Jendželovský, R; Fedoročko, P
2016-07-01
Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Li, Wenjing; Li, Xinru; Gao, Yajie; Zhou, Yanxia; Ma, Shujin; Zhao, Yong; Li, Jinwen; Liu, Yan; Wang, Xinglin; Yin, Dongdong
2014-01-06
The present study aimed to investigate the effect of monomethoxy poly(ethylene glycol)-block-poly(D,L-lactic acid) (mPEG-PLA) on the activity of P-glycoprotein (P-gp) in Caco-2 cells and further unravel the relationship between PLA chain length in mPEG-PLA and influence on P-gp efflux and the action mechanism. The transport results of rhodamine 123 (R123) across Caco-2 cell monolayers suggested that mPEG-PLA unimers were responsible for its P-gp inhibitory effect. Furthermore, transport studies of R123 revealed that the inhibitory potential of P-gp efflux by mPEG-PLA analogues was strongly correlated with their structural features and showed that the hydrophilic mPEG-PLA copolymers with an intermediate PLA chain length and 10.20 of hydrophilic-lipophilic balance were more effective at inhibiting P-gp efflux in Caco-2 cells. The fluorescence polarization measurement results ruled out the plasma membrane fluidization as a contributor for inhibition of P-gp by mPEG-PLA. Concurrently, mPEG-PLA inhibited neither basal P-gp ATPase (ATP is adenosine triphosphate) activity nor substrate stimulated P-gp ATPase activity, suggesting that mPEG-PLA seemed not to be a substrate of P-gp and a competitive inhibitor. No evident alteration in P-gp surface level was detected by flow cytometry upon exposure of the cells to mPEG-PLA. The depletion of intracellular ATP, which was likely to be a result of partial inhibition of cellular metabolism, was directly correlated with inhibitory potential for P-gp mediated efflux by mPEG-PLA analogues. Hence, intracellular ATP-depletion appeared to be possible explanation to the inhibition mechanism of P-gp by mPEG-PLA. Taken together, the establishment of a relationship between PLA chain length and impact on P-gp efflux activity and interpretation of action mechanism of mPEG-PLA on P-gp are of fundamental importance and will facilitate future development of mPEG-PLA in the drug delivery area.
Yao, Zongli; Guo, Wenfei; Lai, Qifang; Shi, Jianquan; Zhou, Kai; Qi, Hongfang; Lin, Tingting; Li, Ziniu; Wang, Hui
2016-01-01
Naked carp (Gymnocypris przewalskii), endemic to the saline-alkaline Lake Qinghai, have the capacity to tolerate combined high salinity and alkalinity, but migrate to spawn in freshwater rivers each year. In this study, the full-length cDNA of the cytosolic carbonic anhydrase c isoform of G. przewalskii (GpCAc) was amplified and sequenced; mRNA levels and enzyme activity of GpCAc and blood chemistry were evaluated to understand the compensatory responses as the naked carp returned to the saline-alkaline lake after spawning. We found that GpCAc had a total length of 1400 bp and encodes a peptide of 260 amino acids. Comparison of the deduced amino acid sequences and phylogenetic analysis showed that GpCAc was a member of the cytosolic carbonic anhydrase II-like c family. Cytosolic-carbonic-anhydrase-c-specific primers were used to analyze the tissue distribution of GpCAc mRNA expression. Expression of GpCAc mRNA was found in brain, gill, liver, kidney, gut, and muscle tissues, but primarily in the gill and posterior kidney; however, none was evident in red blood cells. Transferring fish from river water to lake water resulted in a respiratory alkalosis, osmolality, and ion rise in the blood, as well as significant decreases in the expression and enzyme activity of GpCAc in both the gill and kidney within 96 h. These results indicate that GpCAc may play an important role in the acclimation to both high salinity and carbonate alkalinity. Specifically, G. przewalskii decreases cytosolic carbonic anhydrase c expression to compensate for a respiratory alkalosis and to aid in osmoregulation during the transition from river to saline-alkaline lake.
Lopes-Rodrigues, Vanessa; Oliveira, Ana; Correia-da-Silva, Marta; Pinto, Madalena; Lima, Raquel T; Sousa, Emília; Vasconcelos, M Helena
2017-01-15
Cancer multidrug resistance (MDR) is a major limitation to the success of cancer treatment and is highly associated with the overexpression of drug efflux pumps such as P-glycoprotein (P-gp). In order to achieve more effective chemotherapeutic treatments, it is important to develop P-gp inhibitors to block/decrease its activity. Curcumin (1) is a secondary metabolite isolated from the turmeric of Curcuma longa L.. Diverse biological activities have been identified for this compound, particularly, MDR modulation in various cancer cell models. However, curcumin (1) has low chemical stability, which severely limits its application. In order to improve stability and P-gp inhibitory effect, two potential more stable curcumin derivatives were synthesized as building blocks, followed by several curcumin derivatives. These compounds were then analyzed in terms of antitumor and anti-P-gp activity, in two MDR and sensitive tumor lines (from chronic myeloid leukemia and non-small cell lung cancer). We identified from a series of curcumin derivatives a novel curcumin derivative (1,7-bis(3-methoxy-4-(prop-2-yn-1-yloxy)phenyl)hepta-1,6-diene-3,5-dione, 10) with more potent antitumor and anti-P-gp activity than curcumin (1). This compound (10) was shown to promote cell cycle arrest (at the G2/M phase) and induce apoptosis in the MDR chronic myeloid leukemia cell line. Therefore it is a really interesting P-gp inhibitor due to its ability to inhibit both P-gp function and expression. Copyright © 2016 Elsevier Ltd. All rights reserved.
Turkanovic, Jasmina; Ward, Michael B; Gerber, Jacobus P; Milne, Robert W
2017-05-01
The aim of this study was to determine the effects of garlic and ginkgo herbal extracts on the pharmacokinetics of the P-glycoprotein (P-gp)/organic anion-transporting polypeptides (Oatps) substrate fexofenadine. Male rats were dosed orally with garlic (120 mg/kg), ginkgo (17 mg/kg), St. John's wort (SJW; 1000 mg/kg; positive control), or Milli-Q water for 14 days. On day 15, rats either were administered fexofenadine (orally or i.v.), had their livers isolated and perfused with fexofenadine, or had their small intestines divided into four segments (SI-SIV) and analyzed for P-gp and Oatp1a5. In vivo, SJW increased the clearance of i.v. administered fexofenadine by 28%. Garlic increased the area under the curve 0-∞ and maximum plasma concentration of orally administered fexofenadine by 47% and 85%, respectively. Ginkgo and SJW had no effect on the oral absorption of fexofenadine. In the perfused liver, garlic, ginkgo, and SJW increased the biliary clearance of fexofenadine with respect to perfusate by 71%, 121%, and 234%, respectively. SJW increased the biliary clearance relative to the liver concentration by 64%. The ratio of liver to perfusate concentrations significantly increased in all treated groups. The expression of Oatp1a5 in SI was increased by garlic (88%) and SJW (63%). There were no significant changes in the expression of P-gp. Induction of intestinal Oatp1a5 by garlic may explain the increased absorption of orally administered fexofenadine. Ginkgo had no effect on the expression of intestinal P-gp or Oatp1a5. A dual inductive effect by SJW on opposing intestinal epithelial transport by Oatp1a5 and P-gp remains a possibility. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Pappas, Jane J; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G; Szyf, Moshe
2014-01-01
The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain.
Inflammation modulates the expression of the intestinal mucins MUC2 and MUC4 in gastric tumors.
Mejías-Luque, R; Lindén, S K; Garrido, M; Tye, H; Najdovska, M; Jenkins, B J; Iglesias, M; Ernst, M; de Bolós, C
2010-03-25
Infection of gastric mucosa by Helicobacter pylori induces an inflammatory response with increased levels of proinflammatory cytokines. Among them, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 induce the activation of signaling pathways that regulate genes expression, such as MUC2 and MUC4 intestinal mucins ectopically detected in gastric tumors. This study evaluated if the predominant inflammatory cell type correlates with MUC2 and MUC4 expression in human intestinal gastric tumors (n=78). In addition, we analyzed the regulatory effects of the associated inflammatory signaling pathways on their expression in gastric cancer cell lines, and in a mouse model with hyperactivated STAT3 signaling pathway. Tumors with predominant lymphoplasmocytic infiltrate (chronic inflammation), presented higher levels of MUC2 and were more differentiated than tumors with predominant polymorphonuclear infiltrate (acute inflammation). These differences can be attributed to specific cytokines, because TNF-alpha and IL-1beta induced MUC2 but no MUC4 expression in gastric cancer cell lines. The two groups of tumors expressed similar levels of MUC4 that correlated with the expression of STAT3 transcription factor, implicated in the activation of genes through the IL-6 pathway. In gastric tissues from gp130(+/+), gp130(Y757F/Y757F) and gp130(Y757F/Y757F) Stat3(-/+) mice, Muc2 was not detected, whereas Muc4 was found in the gastric tumors developed in the gp130(Y757F/Y757F) mice, with hyperactivated STAT3. These data indicate that the signaling pathways associated with the inflammatory response can modulate the expression of MUC2 and MUC4 intestinal mucin genes, in human and mouse gastric tumors.
Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore
2015-05-01
The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.
Staley, Elizabeth M; Yarbrough, Vanisha R; Schoeb, Trenton R; Daft, Joseph G; Tanner, Scott M; Steverson, Dennis; Lorenz, Robin G
2012-09-01
P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE(2)) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a(-/-) mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a(-/-) mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a(-/-) distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a(-/-) animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1(-/-) animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS.
Inoue, Tomoko; Osada, Kenichi; Tagawa, Masaaki; Ogawa, Yuriko; Haga, Toshiaki; Sogame, Yoshihisa; Hashizume, Takanori; Watanabe, Takashi; Taguchi, Atsushi; Katsumata, Takashi; Yabuki, Masashi; Yamaguchi, Noboru
2012-10-01
Although blonanserin, a novel atypical antipsychotic agent with dopamine D(2)/serotonin 5-HT(2A) antagonistic properties, displays good brain distribution, the mechanism of this distribution has not been clarified. P-glycoprotein [(P-gp) or multidrug resistance protein 1 (MDR1)] is an efflux transporter expressed in the brain and plays an important role in limiting drug entry into the central nervous system (CNS). In particular, P-gp can affect the pharmacokinetics and efficacy of antipsychotics, and exacerbate or soothe their adverse effects. In this study, we conducted in vitro and in vivo experiments to determine whether blonanserin is a P-gp substrate. Risperidone and its active metabolite 9-hydroxyrisperidone, both of which are P-gp substrates, were used as reference drugs. Affinity of blonanserin, risperidone, and 9-hydroxyrisperidone for P-gp was evaluated by in vitro transcellular transport across LLC-PK1, human MDR1 cDNA-transfected LLC-PK1 (LLC-MDR1), and mouse Mdr1a cDNA-transfected LLC-PK1 (LLC-Mdr1a). In addition, pharmacokinetic parameters in the brain and plasma (B/P ratio) of test compounds were measured in mdr1a/1b knockout (KO) and wild-type (WT) mice. The results of in vitro experiments revealed that P-gp does not actively transport blonanserin as a substrate in humans or mice. In addition, blonanserin displayed comparable B/P ratios in KO and WT mice, whereas B/P ratios of risperidone and 9-hydroxyrisperidone differed markedly in these animals. Our results indicate that blonanserin is not a P-gp substrate and therefore its brain distribution is unlikely to be affected by this transporter. Copyright © 2012 Elsevier Inc. All rights reserved.
Sun, Z-B; Wang, J-W; Xiao, H; Zhang, Q-S; Kan, W-S; Mo, F-B; Hu, S; Ye, S-N
2015-01-01
In this study, we found out a previously undefined function of icariin which restored the dynamic balance between osteogenic and adipogenic differentiation of mesenchymal stem cells (MSCs) in patients with osteonecrosis of femoral head (ONFH) via ABCB1-promoter demethylation. These findings provided important information regarding potential implication of icariin targeting epigenetic changes for the treatment of steroid -associated ONFH. Here, we investigated whether icariin can also exert a beneficial role in the reactivation of MSCs in the patients with steroid-associated ONFH via ABCB1-promoter demethylation. Bone marrow was collected from the proximal femur in patients with steroid-associated ONFH (n = 20) and patients with new femoral neck fractures (n = 22), and then MSCs were isolated. We investigated cell viability, intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), P-glycoprotein (P-gp) activity, the transcript levels of ABCB1 and oxidative stress-related genes, methylation extent at CpG islands of ABCB1 promoter, and osteogenic and adipogenic differentiation ability of MSCs from the femoral neck fractures group and from the steroid-associated ONFH group treated with or without icariin. We observed that MSCs from the steroid-associated ONFH group showed reduced proliferation ability, elevated ROS level, depressed MMP, weakened osteogenesis, and enhanced adipogenesis while low P-gp activity, transcription level of ABCB1, and oxidative stress-related genes as well as aberrant CpG islands hypermethylation of ABCB1 were also noted in steroid-associated ONFH group. Treatment with icariin obviously induced de novo P-gp expression, decreased oxidative stress, and promoted osteogenesis. Icariin may be a potential drug targeting epigenetic changes for the treatment of steroid-associated ONFH.
Zhou, Tian; Hu, Minlu; Pearlman, Andrew; Rohan, Lisa C
2016-09-15
P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance protein 4 (MRP4) are three efflux transporters that play key roles in the pharmacokinetics of antiretroviral drugs used in the pre-exposure prophylaxis of HIV sexual transmission. In this study, we investigated the expression, regulation, and function of these transporters in cervicovaginal tissues of a mouse model. Expression and regulation were examined using real-time RT-PCR and immunohistochemical staining, in the mouse tissues harvested at estrus and diestrus stages under natural cycling or after hormone synchronization. The three transporters were expressed at moderate to high levels compared to the liver. Transporter proteins were localized in various cell types in different tissue segments. Estrous cycle and exogenous hormone treatment affected transporter mRNA and protein expression, in a tissue- and transporter-dependent manner. Depo-Provera-synchronized mice were dosed vaginally or intraperitoneally with (3)H-TFV, with or without MK571 co-administration, to delineate the function of cervicovaginal Mrp4. Co-administration of MK571 significantly increased the concentration of vaginally-administered TFV in endocervix and vagina. MK571 increased the concentration of intraperitoneally-administered TFV in the cervicovaginal lavage and vagina by several fold. Overall, P-gp, Bcrp, and Mrp4 were positively expressed in mouse cervicovaginal tissues, and their expression can be regulated by the estrous cycle or by exogenous hormones. In this model, the Mrp4 transporter impacted TFV distribution in cervicovaginal tissues. Copyright © 2016. Published by Elsevier Inc.
Becker, S; Klenk, H D; Mühlberger, E
1996-11-01
The surface protein (GP) of Marburg virus (MBG) is synthesized as a 90-kDa precursor protein which is cotranslationally modified by the addition of high-mannose sugars (140 kDa). This step is followed by the conversion of the N-linked sugars to endoglycosidase H (endo H)-resistant species and the addition of O-linked oliosaccharides leading to a mature protein of 170-200 kDa approximately 30 min after pulse labelling. The mature form of GP is efficiently transported to the plasma membrane. GP synthesized using the T7 polymerase-driven vaccinia virus expression system was transported with essentially the same kinetics as the authentic GP. However, the protein that is shown to appear 30 min after pulse labeling at the plasma membrane was slighly smaller (160 kDa) than GP incorporated into the virions (170 kDa). Using a recombinant baculovirus, GP was expressed at high levels in insect cells. Three different species could be identified: a 90-kDa unglycosylated GP localized in the cytoplasm and two 140-kDa glycosylated proteins. Characterization of the glycosylated GPs revealed that processing of the oligosaccharides of GP was less efficient in insect cells than in mammalian cells. The majority of GP remained endo H sensitive containing high-mannose type N-linked glycans, whereas only a small fraction became endo H resistant carrying processed N-glycans and O-glycans. Tunicamycin treatment of the GP-expressing cells demonstrated that N-glycosylation is essential for the transport of the MBG surface protein.
Yano, Kentaro; Otsuka, Kyoma; Kato, Yuko; Kawabata, Hideaki; Ohmori, Shinya; Arakawa, Hiroshi; Ogihara, Takuo
2016-03-01
P-glycoprotein (P-gp) mediates efflux of many xenobiotics, including therapeutic drugs, from normal and tumour tissues, and its functional localization on the plasma membrane of cells is regulated by scaffold proteins, such as ezrin, radixin and moesin (ERM proteins). We previously reported that radixin is involved in post-translational regulation of P-gp in hepatocellular carcinoma HepG2 cells and mouse small intestine, but not in mouse kidney. Here, we investigated whether the role of ERM proteins in regulation of P-gp transport activity in cancers is the same as that in the corresponding normal tissues, using human colon adenocarcinoma (Caco-2) cells and renal carcinoma (Caki-1) cells. In Caco-2 cells, radixin silencing alone reduced the P-gp-mediated intracellular accumulation of rhodamine123 (Rho123), while the mRNA level of P-gp was unchanged. Thus, it appears that only radixin among the ERMs regulates P-gp activity in Caco-2 cells. On the other hand, none of the ERM proteins influenced P-gp activity in Caki-1 cells. The regulation of P-gp by ERM proteins is different between Caco-2 and Caki-1 cells. Moreover, these regulatory properties are the same as those of the corresponding normal tissues, and suggest that tissue-specific differences in the regulation of P-gp by ERM proteins are retained in cancerous tissues. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
Leary, T P; Gao, Y; Splitter, G A
1992-07-01
The desire to obtain authentically glycosylated viral protein products in sufficient quantity for immunological study has led to the use of eucaryotic expression vectors for protein production. An additional advantage is that these protein products can be studied individually in the absence of their native viral environment. We have cloned a complementary DNA (cDNA) encoding bovine herpes virus-1 (BHV-1) glycoprotein 1 (gpI) into the eucaryotic expression vector, pZipNeo SVX1. Since this protein is normally embedded within the membrane of BHV-1 infected cells, we removed sequences encoding the transmembrane domain of the native protein. After transfection of the plasmid construct into the canine osteosarcoma cell line, D17, or Madin-Darby bovine kidney (MDBK) cells, a truncated BHV-1 (gpI) was secreted into the culture medium as demonstrated by radioimmunoprecipitation and SDS-PAGE. Both a CD4+ T-lymphocyte line specific for BHV-1 and freshly isolated T lymphocytes could recognize and respond to the secreted recombinant gpI. Further, recombinant gpI could elicit both antibody and cellular responses in cattle when used as an immunogen. Having established constitutively glycoprotein producing cell lines, future studies in vaccine evaluation of gpI will be facilitated.
Requirements for cell rounding and surface protein down-regulation by Ebola virus glycoprotein.
Francica, Joseph R; Matukonis, Meghan K; Bates, Paul
2009-01-20
Ebola virus causes an acute hemorrhagic fever that is associated with high morbidity and mortality. The viral glycoprotein is thought to contribute to pathogenesis, though precise mechanisms are unknown. Cellular pathogenesis can be modeled in vitro by expression of the Ebola viral glycoprotein (GP) in cells, which causes dramatic morphological changes, including cell rounding and surface protein down-regulation. These effects are known to be dependent on the presence of a highly glycosylated region of the glycoprotein, the mucin domain. Here we show that the mucin domain from the highly pathogenic Zaire subtype of Ebola virus is sufficient to cause characteristic cytopathology when expressed in the context of a foreign glycoprotein. Similarly to full length Ebola GP, expression of the mucin domain causes rounding, detachment from the extracellular matrix, and the down-regulation of cell surface levels of beta1 integrin and major histocompatibility complex class 1. These effects were not seen when the mucin domain was expressed in the context of a glycophosphatidylinositol-anchored isoform of the foreign glycoprotein. In contrast to earlier analysis of full length Ebola glycoproteins, chimeras carrying the mucin domains from the Zaire and Reston strains appear to cause similar levels of down-modulation and cell detachment. Cytopathology associated with Ebola glycoprotein expression does not occur when GP expression is restricted to the endoplasmic reticulum. In contrast to a previously published report, our results demonstrate that GP-induced surface protein down-regulation is not mediated through a dynamin-dependent pathway. Overall, these results support a model in which the mucin domain of Ebola GP acts at the cell surface to induce protein down modulation and cytopathic effects.
Wang, Jianqiao; Hirabayashi, Sho; Mori, Toshio; Kawagishi, Hirokazu; Hirai, Hirofumi
2016-07-01
To improve ethanol production by Phanerochaete sordida YK-624, the pyruvate decarboxylase (PDC) gene was cloned from and reintroduced into this hyper lignin-degrading fungus; the gene encodes a key enzyme in alcoholic fermentation. We screened 16 transformant P. sordida YK-624 strains that each expressed a second, recombinant PDC gene (pdc) and then identified the transformant strain (designated GP7) with the highest ethanol production. Direct ethanol production from hardwood was 1.41 higher with GP7 than with wild-type P. sordida YK-624. RT-PCR analysis indicated that the increased PDC activity was caused by elevated recombinant pdc expression. Taken together, these results suggested that ethanol production by P. sordida YK-624 can be improved by the stable expression of an additional, recombinant pdc. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Wang, Zhongyi; Li, Jiaming; Fu, Yingying; Zhao, Zongzheng; Zhang, Chunmao; Li, Nan; Li, Jingjing; Cheng, Hongliang; Jin, Xiaojun; Lu, Bing; Guo, Zhendong; Qian, Jun; Liu, Linna
2018-05-16
MicroRNAs (miRNAs) may become efficient antiviral agents against the Ebola virus (EBOV) targeting viral genomic RNAs or transcripts. We previously conducted a genome-wide search for differentially expressed miRNAs during viral replication and transcription. In this study, we established a rapid screen for miRNAs with inhibitory effects against EBOV using a tetracistronic transcription- and replication-competent virus-like particle (trVLP) system. This system uses a minigenome comprising an EBOV leader region, luciferase reporter, VP40, GP, VP24, EBOV trailer region, and three noncoding regions from the EBOV genome and can be used to model the life cycle of EBOV under biosafety level (BSL) 2 conditions. Informatic analysis was performed to select up-regulated miRNAs targeting the coding regions of the minigenome with the highest binding energy to perform inhibitory effect screening. Among these miRNAs, miR-150-3p had the most significant inhibitory effect. Reverse transcription polymerase chain reaction (RT-PCR), Western blot, and double fluorescence reporter experiments demonstrated that miR-150-3p inhibited the reproduction of trVLPs via the regulation of GP and VP40 expression by directly targeting the coding regions of GP and VP40. This novel, rapid, and convenient screening method will efficiently facilitate the exploration of miRNAs against EBOV under BSL-2 conditions.
Elias, Camila G R; Chagas, Michel G; Souza-Gonçalves, Ana Luiza; Pascarelli, Bernardo M O; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S
2012-01-01
Phytomonas serpens synthesizes metallo- and cysteine-proteases that are related to gp63 and cruzipain, respectively, two virulence factors produced by pathogenic trypanosomatids. Here, we described the cellular distribution of gp63- and cruzipain-like molecules in P. serpens through immunocytochemistry and confocal fluorescence microscopy. Both proteases were detected in distinct cellular compartments, presenting co-localization in membrane domains and intracellular regions. Subsequently, we showed that exogenous proteins modulated the production of both protease classes, but in different ways. Regarding the metalloprotease, only fetal bovine serum (FBS) influenced the gp63 expression, reducing its surface exposition (≈30%). Conversely, the cruzipain-like molecule was differentially modulated according to the proteins: human and bovine albumins reduced its expression around 50% and 35%, respectively; mucin and FBS did not alter its production, while IgG and hemoglobin drastically enhanced its surface exposition around 7- and 11-fold, respectively. Additionally, hemoglobin induced an augmentation in the cell-associated cruzipain-like activity in a dose-dependent manner. A twofold increase of the secreted cruzipain-like protein was detected after parasite incubation with 1% hemoglobin compared to the parasites incubated in PBS-glucose. The results showed the ability of P. serpens in modulating the expression and the activity of proteolytic enzymes after exposition to exogenous proteins, with emphasis in its cruzipain-like molecules. Copyright © 2011 Elsevier Inc. All rights reserved.
Dail, Mary Beth; Meek, Edward Caldwell; Chambers, Howard Wayne; Chambers, Janice Elaine
2018-05-03
Novel-substituted phenoxyalkyl pyridinium oxime acetylcholinesterase (AChE) reactivators (US patent 9,227,937) that showed convincing evidence of penetration into the brains of intact rats were developed by our laboratories. The oximes separated into three groups based on their levels of brain AChE reactivation following exposure of rats to the sarin surrogate nitrophenyl isopropyl methylphosphonate (NIMP). P-glycoprotein (P-gp) is a major blood-brain barrier (BBB) transporter and requires ATP for efflux. To determine if P-gp affinity screening could be used to reduce animal use, we measured in vitro oxime-stimulated ATPase activity to see if the in vivo reactivation efficacies related to the oximes' functions as P-gp substrates. High efficacy oximes were expected to be poor P-gp substrates, thus remaining in the brain longer. The high efficacy oximes (24-35% brain AChE reactivation) were worse P-gp substrates than the low efficacy oximes (0-7% brain AChE reactivation). However, the oxime group with medium in vivo reactivation of 10-17% were even worse P-gp substrates than the high efficacy group so their reactivation ability was not reflected by P-gp export. The results suggest that in vitro P-gp ATPase activity can remove the low efficacy oximes from in vivo testing, but is not sufficient to differentiate between the top two tiers.
Hsu, Cheng-Chin; Yang, Hui-Ting; Ho, Jing-Jing; Yin, Mei-Chin; Hsu, Jen-Ying
2016-03-01
The anti-glycative and anti-oxidative effects from Houttuynia cordata leaves aqueous extract (HCAE) in heart and kidney of diabetic mice were examined. HCAE, at 1 or 2 %, was supplied in drinking water for 8 weeks. Plasma glucose and blood urea nitrogen (BUN) levels and creatine phosphokinase (CPK) activity were measured. The production of oxidative and inflammatory factors was determined. Activity and protein expression of associated enzymes or regulators were analyzed. HCAE intake at both doses lowered plasma glucose and BUN levels, and CPK activity and also restored creatinine clearance rate in diabetic mice. HCAE intake, only at 2 %, retained plasma insulin levels (P < 0.05). HCAE reduced reactive oxygen species, protein carbonyl, interleukin-6, tumor necrosis factor-alpha, N (ε) -(carboxymethyl)-lysine, pentosidine and fructose levels, and reserved glutathione content in heart and kidney of diabetic mice (P < 0.05). Diabetes enhanced aldose reductase (AR) activity and protein expression in heart and kidney (P < 0.05). HCAE intake at both doses decreased renal AR activity and protein expression, but only at 2 % lowered cardiac AR activity and protein expression (P < 0.05). Diabetes increased protein expression of RAGE, p47(phox) and gp91(phox), nuclear factor kappa-B (NF-κB) p50, NF-κB p65 and mitogen-activated protein kinase in heart and kidney (P < 0.05). HCAE intake only at 2 % limited RAGE expression, but at 1 and 2 % downregulated p47(phox), NF-κB p65 and p-p38 expression in these organs (P < 0.05). These findings suggest that Houttuynia cordata leaves aqueous extract could ameliorate cardiac and renal injury under diabetic condition.
TLR signaling modulates side effects of anticancer therapy in the small intestine
Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W.; Cario, Elke
2014-01-01
Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified and there is so far no successful therapeutic intervention. Here, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b+-myeloid cell infiltration and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/MDR1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b+-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wildtype mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies, by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. PMID:25589072
Combined QSAR and molecule docking studies on predicting P-glycoprotein inhibitors
NASA Astrophysics Data System (ADS)
Tan, Wen; Mei, Hu; Chao, Li; Liu, Tengfei; Pan, Xianchao; Shu, Mao; Yang, Li
2013-12-01
P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter. The over expression of P-gp leads to the development of multidrug resistance (MDR), which is a major obstacle to effective treatment of cancer. Thus, designing effective P-gp inhibitors has an extremely important role in the overcoming MDR. In this paper, both ligand-based quantitative structure-activity relationship (QSAR) and receptor-based molecular docking are used to predict P-gp inhibitors. The results show that each method achieves good prediction performance. According to the results of tenfold cross-validation, an optimal linear SVM model with only three descriptors is established on 857 training samples, of which the overall accuracy (Acc), sensitivity, specificity, and Matthews correlation coefficient are 0.840, 0.873, 0.813, and 0.683, respectively. The SVM model is further validated by 418 test samples with the overall Acc of 0.868. Based on a homology model of human P-gp established, Surflex-dock is also performed to give binding free energy-based evaluations with the overall accuracies of 0.823 for the test set. Furthermore, a consensus evaluation is also performed by using these two methods. Both QSAR and molecular docking studies indicate that molecular volume, hydrophobicity and aromaticity are three dominant factors influencing the inhibitory activities.
Feng, Cong; Wu, Bo; Fan, Hongxia; Li, Changfei; Meng, Songdong
2014-10-04
To investigate the mechanism of gp96 raised during hepatitis B virus (HBV) infection and the pathological mechanism. The mechanism of NF-KB activating gp96 expression was determined by bioinformatics analysis, luciferase reporter assay, real-time PCR and Western blot. The effect of over-expression and knockdown gp96 expression by transfection or RNA interference on hepatocyte proliferation, apoptosis and cell cycle was examined by CCK-8 and flow cytometry. The role of gp96 for HCC development was determined by epithelial-mesenchymal transition (EMT) and colony formation assay. NF-kB significantly increased the gp96 expression by binding to the NF-kappaB binding site. Over-expression and knockdown studies both show that gp96 promoted hepatocyte proliferation, inhibited apoptosis, and induced G0/G1 to S phase cell cycle progression. Moreover, gp96 induced epithelial-mesenchymal transition and increased colony formation ability of hepatocytes. Our results therefore provide insights in chronic HBV infection-induced gp96 expression, and indicate that elevated gp96 may contribute to HCC development during chronic inflammation.
Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K
2012-07-02
The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drug of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and Western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The Vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be 10- and 3-fold lower in MMC as compared to MDCK-WT and MDCK-MDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT, indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined activities of CYP3A4 and P-gp. Transport of cortisol increased 5-fold in the presence of naringin in MMC and doubled in MDCK-MDR1. Cortisol transport in MMC was significantly lower than that in MDCK-WT in the presence of naringin. The permeability increased 3-fold in the presence of morphine, which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in the presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes toward drug-drug interactions.
Kwatra, Deep; Budda, Balasubramanyam; Vadlapudi, Aswani Dutt; Vadlapatla, Ramya Krishna; Pal, Dhananjay; Mitra, Ashim K.
2012-01-01
The aim of this study was to characterize and utilize MDCK cell line expressing CYP3A4 and P-glycoprotein as an in vitro model for evaluating drug-herb and drug-drugs of abuse interactions. MDCK cell line simultaneously expressing P-gp and CYP3A4 (MMC) was developed and characterized by using expression and activity studies. Cellular transport study of 200 μM cortisol was performed to determine their combined activity. The study was carried across MDCK-WT, MDCK-MDR1 and MMC cell lines. Similar studies were also carried out in the presence of 50 μM naringin and 3 μM morphine. Samples were analyzed by HPLC for drug and its CYP3A4 metabolite. PCR, qPCR and western blot studies confirmed the enhanced expression of the proteins in the transfected cells. The vivid CYP3A4 assay and ketoconazole inhibition studies further confirmed the presence of active protein. Apical to basal transport of cortisol was found to be ten and three fold lower in MMC as compared to WT and MDCKMDR1 respectively. Higher amount of metabolite was formed in MMC than in MDCK-WT indicating enhanced expression of CYP3A4. Highest cortisol metabolite formation was observed in MMC cell line due to the combined metabolic activities of CYP3A4 and P-gp. Transport of cortisol increased fivefold in presence of naringin in MMC and doubled in MDCKMDR1. Cortisol transport in MMC was significantly lower than that in WT in presence of naringin. The permeability increased three fold in presence of morphine which is a weaker inhibitor of CYP3A4. Formation of 6β-hydroxy cortisol was found to decrease in presence of morphine and naringin. This new model cell line with its enhanced CYP3A4 and P-gp levels in addition to short culture time can serve as an invaluable model to study drug-drug interactions. This cell line can also be used to study the combined contribution of efflux transporter and metabolizing enzymes towards drug-drug interactions. PMID:22676443
Domicevica, Laura; Koldsø, Heidi; Biggin, Philip C
2018-03-01
P-glycoprotein (P-gp) can transport a wide range of very different hydrophobic organic molecules across the membrane. Its ability to extrude molecules from the cell creates delivery problems for drugs that target proteins in the central nervous system (CNS) and also causes drug-resistance in many forms of cancer. Whether a drug will be susceptible to export by P-gp is difficult to predict and currently this is usually assessed with empirical and/or animal models. Thus, there is a need to better understand how P-gp works at the molecular level in order to fulfil the 3Rs: Refinement, reduction and replacement of animals in research. As structural information increasingly becomes available, our understanding at the molecular level improves. Proteins like P-gp are however very dynamic entities and thus one of the most appropriate ways to study them is with molecular dynamics simulations, especially as this can capture the influence of the surrounding environment. Recent parameterization developments have meant that it is now possible to simulate lipid bilayers that more closely resemble in vivo membranes in terms of their composition. In this report we construct a complex lipid bilayer that mimics the composition of brain epithelial cells and examine the interactions of it with P-gp. We find that the negatively charged phosphatidylserine lipids in the inner leaflet of the membrane tend to form an annulus around P-gp. We also observed the interaction of cholesterol with three distinct areas of the P-gp. Potential of mean force (PMF) calculations suggest that a crevice between transmembrane helices 10 and 12 has particularly favourable interaction energy for cholesterol. Copyright © 2018 Elsevier Inc. All rights reserved.
Domicevica, Laura; Koldsø, Heidi; Biggin, Philip C
2017-09-02
P-glycoprotein (P-gp) can transport a wide range of very different hydrophobic organic molecules across the membrane. Its ability to extrude molecules from the cell creates delivery problems for drugs that target proteins in the central nervous system (CNS) and also causes drug-resistance in many forms of cancer. Whether a drug will be susceptible to export by P-gp is difficult to predict and currently this is usually assessed with empirical and/or animal models. Thus, there is a need to better understand how P-gp works at the molecular level in order to fulfil the 3Rs: Refinement, reduction and replacement of animals in research. As structural information increasingly becomes available, our understanding at the molecular level improves. Proteins like P-gp are however very dynamic entities and thus one of the most appropriate ways to study them is with molecular dynamics simulations, especially as this can capture the influence of the surrounding environment. Recent parameterization developments have meant that it is now possible to simulate lipid bilayers that more closely resemble in vivo membranes in terms of their composition. In this report we construct a complex lipid bilayer that mimics the composition of brain epithelial cells and examine the interactions of it with P-gp. We find that the negatively charged phosphatidylserine lipids in the inner leaflet of the membrane tend to form an annulus around P-gp. We also observed the interaction of cholesterol with three distinct areas of the P-gp. Potential of mean force (PMF) calculations suggest that a crevice between transmembrane helices 10 and 12 has particularly favourable interaction energy for cholesterol. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Yang, Hong; Deng, Liwei; Li, Tingting; Shen, Xue; Yan, Jie; Zuo, Liangming; Wu, Chunhui; Liu, Yiyao
2015-12-01
Multidrug resistance (MDR) is a major impediment to the success of cancer chemotherapy. One of the effective approaches to overcome MDR is to use nanoparticle-mediated the gene silence of chemotherapeutic export proteins by RNA interference to increase drug accumulation in drug resistant cancer cells. In this work, a new co-delivery system, DOX-PLGA/PEI/P-gp shRNA nanobubbles (NBs) around 327 nm, to overcome doxorubicin (DOX) resistance in MCF-7 human breast cancer was designed and developed. Positively charged polyethylenimine (PEI) were modified onto the surface of DOX-PLGA NBs through DCC/NHS crosslinking, and could efficiently condense P-gp shRNA into DOX-PLGA/PEI NBs at vector/shRNA weight ratios of 70:1 and above. An in vitro release profile demonstrated an efficient DOX release (more than 80%) from DOX-PLGA/PEI NBs at pH 4.4, suggesting a pH-responsive drug release for the multifunctionalized NBs. Cellular experimental results further showed that DOX-PLGA/PEI/P-gp shRNA NBs could facilitate cellular uptake of DOX into cells and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The IC50 of DOX-PLGA NBs against MCF-7/ADR cells was 2-fold lower than that of free DOX. The increased cellular uptake and nuclear accumulation of DOX delivered by DOX-PLGA/PEI/P-gp shRNA NBs in MCF-7/ADR cells was confirmed by fluorescence microscopy and fluorescence spectrophotometry, and might be owning to the down-regulation of P-gp and reduced the efflux of DOX. The cellular uptake mechanism of DOX-PLGA/PEI/P-gp shRNA NBs indicated that the macropinocytosis was one of the pathways for the uptake of NBs by MCF-7/ADR cells, which was also an energy-dependent process. Furthermore, the in vitro cellular ultrasound imaging suggested that the employment of the DOX-PLGA/PEI/P-gp shRNA NBs could efficiently enhance ultrasound imaging of cancer cells. These results demonstrated that the developed DOX-PLGA/PEI/P-gp shRNA NBs is a potential, safe and efficient theranotic agent for cancer therapy and diagnostics.
Perrone, Maria Grazia; Inglese, Carmela; Berardi, Francesco; Leopoldo, Marcello; Perrone, Roberto; Colabufo, Nicola Antonio
2013-01-01
P-glycoprotein (P-gp) plays a crucial role in beta-amyloid efflux from the blood-brain barrier thus becoming a promising pharmacological target in the treatment of Alzheimer's disease (AD). The increase of P-glycoprotein expression and activity by a P-gp inducer could be an effective pharmacological strategy in slowing or halting the progression of AD. Commonly used in vitro methods to classify a P-gp interacting molecule as substrate, inhibitor, modulator or inducer are not always confirmed by in vivo experiments. Here we validate the new dye-probe beta-amyloid (1-40) HiLyte Fluor™ TR-labeled (Ab-HiLyte) (Anaspec) P-gp mediated transport in the ex vivo rat everted gut sac assay by using MC18 or MC266, a fully characterized P-gp inhibitor and substrate, respectively, and compare it with the commonly used dye rhodamine. Male Wistar rats' everted intestines were divided into sacs, each sac was filled with 10μM Ab-HiLyte with or without 50μM of MC18 or MC266. Ab-HiLyte concentrations in mucosal fluid were measured spectrophotometrically at 594nm at each appropriate time. The Ab-HiLyte P-gp mediated efflux had a K=1.00×10(-2)min(-1) and t(1/2)=68.74min, while in the presence of MC18, the Ab-HiLyte efflux turned out to be reduced by an order of magnitude (K=1.65×10(-3)min(-1)) and the half life is extremely increased (t(1/2)=419min). A P-gp substrate, like MC266, determines no change in the efflux of Ab: the kinetic constant and the half life turned out to be unmodified (K=1.81×10(-2)min(-1) and t(1/2)=38.28min). The results demonstrate that the new dye probe, Ab-HiLyte, could be a probe of choice to unequivocally distinguish between a P-gp substrate and an inhibitor. This is particularly important as different groups obtain a controversial classification of the same compound. Copyright © 2013 Elsevier Inc. All rights reserved.
Sen-Majumdar, A; Weissman, I L; Hansteen, G; Marian, J; Waller, E K; Lieberman, M
1994-01-01
We have investigated the phenotypic changes that take place during the process of neoplastic transformation in the thymocytes of C57BL/Ka mice infected by the radiation leukemia virus (RadLV). By the combined use of antibodies against the envelope glycoprotein gp70 of RadLV, the transformation-associated cell surface marker 1C11, and the CD3-T-cell receptor (TCR) complex, we found that in the RadLV-infected thymus, the earliest expression of viral gp70 is in 1C11hi cells; a small but significant percentage of these cells also express CD3. A first wave of viral replication, manifested by the expression of high levels of gp70 in thymocytes (over 70% positive), reaches a peak at 2 weeks; during this period, no significant changes are observed in the expression of 1C11 or CD3. The population of gp70+ cells is drastically reduced at 3 to 4 weeks after infection. However, a second cohort of gp70+ cells appears after 4 weeks, and these cells express high levels of 1C11 and TCR determinants as well. RadLV-induced lymphomas differ from normal thymocytes in their CD4 CD8 phenotype, with domination by one or more subsets. Characterization of TCR gene rearrangements in RadLV-induced lymphomas shows that most of these tumors are clonal or oligoclonal with respect to the J beta 2 TCR gene, while the J beta 1 TCR gene is rearranged in a minority (4 of 11) of lymphomas. TCR V beta repertoire analysis of 12 tumors reveals that 6 (50%) express exclusively the V beta 6 gene product, 2 (17%) are V beta 5+, and 1 (8%) each are V beta 8+ and V beta 9+. In normal C57BL/Ka mice, V beta 6 is expressed on 12%, V beta 5 is expressed on 9%, V beta 8 is expressed on 22%, and V beta 9 is expressed on 4% of TCRhi thymocytes. Thus, it appears that RadLV-induced thymic lymphomas are not randomly selected with respect to expressed TCR V beta type. Images PMID:8289345
Lagoda, Gwen; Sezen, Sena F.; Cabrini, Marcelo R.; Musicki, Biljana; Burnett, Arthur L.
2015-01-01
Purpose Priapism is a vasculopathy occurring in approximately 40% of patients with SCD. Mouse models have suggested that dysregulated NOS and RhoA/ROCK signaling as well as increased oxidative stress may contribute to mechanisms of SCD-associated priapism. We examined changes in protein expressions of NOS and ROCK signaling pathways and a source of oxidative stress, NADPH oxidase, in penile erectile tissue from patients with priapism histories, etiologically related and unrelated to SCD. Materials and Methods Human penile erectile tissue was obtained from patients with SCD-associated priapism (SCD, n=5) and priapism of other etiologies (non-SCD, n=6) during non-emergent penile prosthesis surgery for ED or priapism management and urethroplasty, and from control patients without priapism histories (Control, n=5) during penectomy for penile cancer. Samples were collected, immediately placed in cold buffer and then frozen in liquid nitrogen. Expressions of PDE5, eNOS, nNOS, iNOS, RhoA, ROCK1, ROCK2, p47phox, p67phox, gp91phox and β-actin were determined by Western blot analysis and NO amount was measured using the Griess reaction. Results In the SCD group, PDE5 (p<0.05), eNOS (p<0.01) and RhoA (p<0.01) expressions were significantly decreased while gp91phox (p<0.05) expression was significantly increased compared to Control group values. In the non-SCD group, eNOS (p<0.05), ROCK1 (p<0.05) and p47phox (p<0.05) expressions were significantly decreased compared to Control group values. Total NO levels were not significantly different across study groups. Conclusions The mechanisms of SCD-associated priapism in the human penis may involve dysfunctional NOS and ROCK signaling and increased oxidative stress associated with NADPH oxidase-mediated signaling. PMID:22982429
Musicki, Biljana; Liu, Tongyun; Lagoda, Gwen A.; Strong, Travis D.; Sezen, Sena F.; Johnson, Justin M.; Burnett, Arthur L.
2010-01-01
INTRODUCTION Hypercholesterolemia induces erectile dysfunction (ED) mostly by increasing oxidative stress and impairing endothelial function in the penis, but the mechanisms regulating reactive oxygen species (ROS) production in the penis are not understood. AIMS We evaluated whether hypercholesterolemia activates nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase in the penis, providing an initial source of ROS to induce endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction resulting in ED. METHODS Low-density-lipoprotein receptor (LDLR)–null mice were fed Western diet for 4 weeks to induce early-stage hyperlipidemia. Wild type (WT) mice fed regular chow served as controls. Mice received NAD(P)H oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Erectile function was assessed in response to cavernous nerve electrical stimulation. Markers of endothelial function (phospho [P]-vasodilator-stimulated-protein [VASP]-Ser-239), oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NAD[P]H oxidase subunits p67phox, p47phox, and gp91phox), P-eNOS-Ser-1177, and eNOS were measured by Western blot in penes. MAIN OUTCOME MEASURES Molecular mechanisms of ROS generation and endothelial dysfunction in hypercholesterolemia-induced ED. RESULTS Erectile response was significantly (P<0.05) reduced in hypercholesterolemic LDLR-null mice compared to WT mice. Relative to WT mice, hypercholesterolemia increased (P<0.05) protein expressions of NAD(P)H oxidase subunits p67phox, p47phox and gp91phox, eNOS uncoupling, and 4-HNE-modified proteins, and reduced (P<0.05) P-VASP-Ser-239 expression in the penis. Apocynin treatment of LDLR-null mice preserved (P<0.05) maximal intracavernosal pressure, and reversed (P < 0.05) the abnormalities in protein expressions of gp67phox and gp47phox, 4-HNE, P-VASP-Ser-239, and eNOS uncoupling in the penis. Apocynin treatment of WT mice did not affect any of these parameters. Protein expressions of P-eNOS-Ser-1177 and total eNOS were unaffected by hypercholesterolemia. CONCLUSION Activated NAD(P)H oxidase in the penis is an initial source of oxidative stress resulting in eNOS uncoupling, thus providing a mechanism of eNOS uncoupling and endothelial dysfunction in hypercholesterolemia-induced ED. PMID:20626609
Staley, Elizabeth M.; Yarbrough, Vanisha R.; Schoeb, Trenton R.; Daft, Joseph G.; Tanner, Scott M.; Steverson, Dennis; Lorenz, Robin G.
2012-01-01
P-glycoprotein (P-gp) has been reported to increase stem cell proliferation and regulate apoptosis. Absence of P-gp results in decreased repair of intestinal epithelial cells after chemical injury. To further explore the mechanisms involved in the effects of P-gp on intestinal injury and repair, we used the well-characterized radiation injury model. In this model, injury repair is mediated by production of prostaglandins (PGE2) and lipopolysaccharide (LPS) has been shown to confer radioprotection. B6.mdr1a−/− mice and wild-type controls were subjected to 12 Gy total body X-ray irradiation and surviving crypts in the proximal jejunum and distal colon were evaluated 3.5 days after irradiation. B6.mdr1a−/−mice exhibited normal baseline stem cell proliferation and COX dependent crypt regeneration after irradiation. However, radiation induced apoptosis was increased and LPS-induced radioprotection was blunted in the C57BL6.mdr1a−/−distal colon, compared to B6 wild-type controls. The LPS treatment induced gene expression of the radioprotective cytokine IL-1α, in B6 wild-type controls but not in B6.mdr1a−/− animals. Lipopolysaccharid-induced radioprotection was absent in IL-1R1−/− animals, indicating a role for IL-1α in radioprotection, and demonstrating that P-gp deficiency interferes with IL-1α gene expression in response to systemic exposure to LPS. PMID:22780103
Development of Noninvasive Biomarkers for Diagnosing and Monitoring Nonindolent Prostate Cancer
2013-04-01
of higher-grade non-indolent tumors. By gene expression analysis (from microdissected Gleason-pattern (GP) 3 and GP4 PCa), in combination with...publically available Gleason-associated transcriptional profiles, we have created a 46- gene panel that differentiates high Gleason from low Gleason...We validated the GP4-associated upregulation of candidate genes by qPCR. Additionally, we have started to measure by qPCR the transcript levels for
Rondina, Matthew T; Grissom, Colin K; Men, Shaohua; Harris, Estelle S; Schwertz, Hansjorg; Zimmerman, Guy A; Weyrich, Andrew S
2012-06-01
Flow cytometry is often used to measure in vivo platelet activation in critically-ill patients. Variability in blood sampling techniques, which may confound these measurements, remains poorly characterized. Platelet activation was measured by flow cytometry performed on arterial and venous blood from 116 critically-ill patients. We determined how variability in vascular sampling site, processing times, and platelet counts influenced levels of platelet-monocyte aggregates (PMA), PAC-1 binding (for glycoprotein (GP) IIbIIIa), and P-selectin (P-SEL) expression. Levels of PMA, but not PAC-1 binding or P-SEL expression, were significantly affected by variability in vascular sampling site. Average PMA levels were approximately 60% higher in whole blood drawn from an arterial vessel compared to venous blood (16.2±1.8% vs. 10.7±1.2%, p<0.05). Levels of PMA in both arterial and venous blood increased significantly during ex vivo processing delays (1.7% increase for every 10 minute delay, p<0.05). In contrast, PAC-1 binding and P-SEL expression were unaffected by processing delays. Levels of PMA, but not PAC-1 binding or P-SEL expression, were correlated with platelet count quartiles (9.4±1.6% for the lowest quartile versus 15.4±1.6% for the highest quartile, p<0.05). In critically-ill patients, variability in vascular sampling site, processing times, and platelet counts influence levels of PMA, but not PAC-1 binding or P-SEL expression. These data demonstrate the need for rigorous adherence to blood sampling protocols, particularly when levels of PMA, which are most sensitive to variations in blood collection, are measured for detection of in vivo platelet activation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Breast Cancer Resistance Protein and P-glycoprotein in Brain Cancer: Two Gatekeepers Team Up
Agarwal, Sagar; Hartz, Anika M.S.; Elmquist, William F.; Bauer, Björn
2012-01-01
Brain cancer is a devastating disease. Despite extensive research, treatment of brain tumors has been largely ineffective and the diagnosis of brain cancer remains uniformly fatal. Failure of brain cancer treatment may be in part due to limitations in drug delivery, influenced by the ABC drug efflux transporters P-gp and BCRP at the blood-brain and blood-tumor barriers, in brain tumor cells, as well as in brain tumor stem-like cells. P-gp and BCRP limit various anti-cancer drugs from entering the brain and tumor tissues, thus rendering chemotherapy ineffective. To overcome this obstacle, two strategies – targeting transporter regulation and direct transporter inhibition – have been proposed. In this review, we focus on these strategies. We first introduce the latest findings on signaling pathways that could potentially be targeted to down-regulate P-gp and BCRP expression and/or transport activity. We then highlight in detail the new paradigm of P-gp and BCRP working as a “cooperative team of gatekeepers” at the blood-brain barrier, discuss its ramifications for brain cancer therapy, and summarize the latest findings on dual P-gp/BCRP inhibitors. Finally, we provide a brief summary with conclusions and outline the perspectives for future research endeavors in this field. PMID:21827403
Rosenberg, Steven A.; Zhai, Yifan; Yang, James C.; Schwartzentruber, Douglas J.; Hwu, Patrick; Marincola, Francesco M.; Topalian, Suzanne L.; Restifo, Nicholas P.; Seipp, Claudia A.; Einhorn, Jan H.; Roberts, Bruce; White, Donald E.
2008-01-01
Background: The characterization of the genes encoding melanoma-associated antigens MART-1 or gp100, recognized by T cells, has opened new possibilities for the development of immunization strategies for patients with metastatic melanoma. With the use of recombinant adenoviruses expressing either MART-1 or gp100 to immunize patients with metastatic melanoma, we evaluated the safety, immunologic, and potential therapeutic aspects of these immunizations. Methods: In phase I studies, 54 patients received escalating doses (between 107 and 1011 plaque-forming units) of recombinant adenovirus encoding either MART-1 or gp100 melanoma antigen administered either alone or followed by the administration of interleukin 2 (IL-2). The immunologic impact of these immunizations on the development of cellular and antibody reactivity was assayed. Results: Recombinant adenoviruses expressing MART-1 or gp100 were safely administered. One of 16 patients with metastatic melanoma receiving the recombinant adenovirus MART-1 alone experienced a complete response. Other patients achieved objective responses, but they had received IL-2 along with an adenovirus, and their responses could be attributed to the cytokine. Immunologic assays showed no consistent immunization to the MART-1 or gp100 transgenes expressed by the recombinant adenoviruses. High levels of neutralizing antibody were found in the pretreatment sera of the patients. Conclusions: High doses of recombinant adenoviruses could be safely administered to cancer patients. High levels of neutralizing antibody present in patients' sera prior to treatment may have impaired the ability of these viruses to immunize patients against melanoma antigens. PMID:9862627
AGGRECAN MODULATION OF GROWTH PLATE MORPHOGENESIS
Domowicz, Miriam S.; Cortes, Mauricio; Henry, Judith G.; Schwartz, Nancy B.
2009-01-01
Chick and mouse embryos with heritable deficiencies of aggrecan exhibit severe dwarfism and premature death, demonstrating the essential involvement of aggrecan in development. The aggrecan-deficient nanomelic (nm) chick mutant E12 fully formed growth plate (GP) is devoid of matrix and exhibits markedly altered cytoarchitecture, proliferative capacity, and degree of cell death. While differentiation of chondroblasts to pre-hypertrophic chondrocytes (IHH expression) is normal up to E6, the extended periosteum expression pattern of PTCH (a downstream effector of IHH) indicates altered propagation of IHH signaling, as well as accelerated down-regulation of FGFR3 expression, decreased BrdU incorporation and higher levels of ERK phosphorylation, all indicating early effects on FGF signaling. By E7 reduced IHH expression and premature expression of COL10A1 foreshadow the acceleration of hypertrophy observed at E12. By E8, exacerbated co-expression of IHH and COL10A1 lead to delayed separation and establishment of the two GPs in each element. By E9, increased numbers of cells express P-SMAD1/5/8, indicating altered BMP signaling. These results indicate that the IHH, FGF and BMP signaling pathways are altered from the very beginning of GP formation in the absence of aggrecan, thereby inducing premature hypertrophic chondrocyte maturation, leading to the nanomelic long bone growth disorder. PMID:19268444
Castro, Rafaela A.; Kubitschek-Barreira, Paula H.; Teixeira, Pedro A. C.; Sanches, Glenda F.; Teixeira, Marcus M.; Quintella, Leonardo P.; Almeida, Sandro R.; Costa, Rosane O.; Camargo, Zoilo P.; Felipe, Maria S. S.; de Souza, Wanderley; Lopes-Bezerra, Leila M.
2013-01-01
Sporotrichosis is a chronic infectious disease affecting both humans and animals. For many years, this subcutaneous mycosis had been attributed to a single etiological agent; however, it is now known that this taxon consists of a complex of at least four pathogenic species, including Sporothrix schenckii and Sporothrix brasiliensis. Gp70 was previously shown to be an important antigen and adhesin expressed on the fungal cell surface and may have a key role in immunomodulation and host response. The aim of this work was to study the virulence, morphometry, cell surface topology and gp70 expression of clinical isolates of S. brasiliensis compared with two reference strains of S. schenckii. Several clinical isolates related to severe human cases or associated with the Brazilian zoonotic outbreak of sporotrichosis were genotyped and clustered as S. brasiliensis. Interestingly, in a murine subcutaneous model of sporotrichosis, these isolates showed a higher virulence profile compared with S. schenckii. A single S. brasiliensis isolate from an HIV-positive patient not only showed lower virulence but also presented differences in cell morphometry, cell wall topography and abundant gp70 expression compared with the virulent isolates. In contrast, the highly virulent S. brasiliensis isolates showed reduced levels of cell wall gp70. These observations were confirmed by the topographical location of the gp70 antigen using immunoelectromicroscopy in both species. In addition, the gp70 molecule was sequenced and identified using mass spectrometry, and the sequenced peptides were aligned into predicted proteins using Blastp with the S. schenckii and S. brasiliensis genomes. PMID:24116065
Sugi, Tatsuki; Tu, Vincent; Ma, Yanfen; Tomita, Tadakimi; Weiss, Louis M
2017-08-29
In immunocompromised hosts, latent infection with Toxoplasma gondii can reactivate from tissue cysts, leading to encephalitis. A characteristic of T. gondii bradyzoites in tissue cysts is the presence of amylopectin granules. The regulatory mechanisms and role of amylopectin accumulation in this organism are not fully understood. The T. gondii genome encodes a putative glycogen phosphorylase (TgGP), and mutants were constructed to manipulate the activity of TgGP and to evaluate the function of TgGP in amylopectin storage. Both a stop codon mutant (Pru/TgGP S25stop [expressing a Ser-to-stop codon change at position 25 in TgGP]) and a phosphorylation null mutant (Pru/TgGP S25A [expressing a Ser-to-Ala change at position 25 in TgGp]) mutated at Ser25 displayed amylopectin accumulation, while the phosphorylation-mimetic mutant (Pru/TgGP S25E [expressing a Ser-to-Glu change at position 25 in TgGp]) had minimal amylopectin accumulation under both tachyzoite and bradyzoite growth conditions. The expression of active TgGP S25S or TgGP S25E restored amylopectin catabolism in Pru/TgGP S25A To understand the relation between GP and calcium-dependent protein kinase 2 (CDPK2), which was recently reported to regulate amylopectin consumption, we knocked out CDPK2 in these mutants. Pru Δcdpk2 /TgGP S25E had minimal amylopectin accumulation, whereas the Δcdpk2 phenotype in the other GP mutants and parental lines displayed amylopectin accumulation. Both the inactive S25A and hyperactive S25E mutant produced brain cysts in infected mice, but the numbers of cysts produced were significantly less than the number produced by the S25S wild-type GP parasite. Complementation that restored amylopectin regulation restored brain cyst production to the control levels seen in infected mice. These data suggest that T. gondii requires tight regulation of amylopectin expression for efficient production of cysts and persistent infections and that GP phosphorylation is a regulatory mechanism involved in amylopectin storage and utilization. IMPORTANCE Toxoplasma gondii is an obligate intracellular parasite that causes disease in immune-suppressed individuals, as well as a fetopathy in pregnant women who acquire infection for the first time during pregnancy. This parasite can differentiate between tachyzoites (seen in acute infection) and bradyzoites (seen in latent infection), and this differentiation is associated with disease relapse. A characteristic of bradyzoites is that they contain cytoplasmic amylopectin granules. The regulatory mechanisms and the roles of amylopectin granules during latent infection remain to be elucidated. We have identified a role of T. gondii glycogen phosphorylase (TgGP) in the regulation of starch digestion and a role of posttranslational modification of TgGP, i.e., phosphorylation of Ser25, in the regulation of amylopectin digestion. By manipulating TgGP activity in the parasite with genome editing, we found that the digestion and storage of amylopectin due to TgGP activity are both important for latency in the brain. Copyright © 2017 Sugi et al.
Song, Im-Sook; Lee, Young-Mi; Chung, Suk-Jae; Shim, Chang-Koo
2003-04-01
The influence of CCl(4)-induced experimental hepatic injury (CCl(4)-EHI) on the expression and transport activities of primary active transporters on the canalicular membrane, including P-glycoprotein (P-gp), a bile salt export pump (Bsep) and a multidrug resistance associated protein2 (Mrp2), was assessed. CCl(4)-EHI was induced by an intraperitoneal injection of CCl(4) to rats at a dose of 1 ml/kg 24 h prior to the preparation of canalicular liver plasma membrane (cLPM) vesicles and pharmacokinetic studies. The expression of each transporter was measured for the vesicles via Western blot analysis at 6, 12, 24, 36, and 48 h after the injection of CCl(4). The in vivo canalicular excretion clearance (CL(exc)) of [(3)H]daunomycin, [(3)H]taurocholate and [(3)H]17beta-estradiol-17beta-D-glucuronide (E(2)17betaG), representative substrates of P-gp, Bsep, and Mrp2, respectively, was determined following an i.v. infusion to rats. The uptake of each substrate into cLPM vesicles in the presence of ATP was also measured by a rapid filtration technique. As the result of the CCl(4)-EHI, the protein level of transporters was altered as a function of time in multiple manners; it was increased by 3.6-fold for P-gp, unchanged for Bsep, and decreased by 73% for Mrp2 at 24 h. The in vivo CL(exc) and the intrinsic uptake clearance into cLPM vesicles (CL(int)) at 24 h after the CCl(4) injection (CCl(4)-EHI(24 h)) were also influenced by the EHI in a similar manner; they were increased by 1.8- and 1.9-fold for daunomycin, unchanged for taurocholate, and decreased by 41 and 39% for E(2)17betaG, respectively, consistent with multiple alterations in the expression of the relevant transporters.
Morales, G; Carrillo, G; Requena, J M; Guzman, F; Gomez, L C; Patarroyo, M E; Alonso, C
1997-06-01
The gp63 gene encoding the major surface antigen of Leishmania infantum has been cloned and sequenced. In spite of the overall sequence homology with the gp63 genes from other Leishmania species, particularly with the constitutively expressed Leishmania chagasi Gp63 gene, the carboxy-terminal ends of these genes are clearly divergent (62% homology). To study the prevalence of anti-gp63 antibodies in the sera from dogs with visceral leishmaniasis, a recombinant L. infantum gp63 protein was expressed in Escherichia coli. It was found that 100% of the sera from these dogs recognized the recombinant gp63 protein, suggesting that it must function as a potent B cell immunogen during natural canine visceral leishmaniasis. However, heterogeneity in the level of response was observed. Fine mapping of the antigenic determinants was performed by means of 6 overlapping subfragments of the gp63 protein and by the use of a library of synthetic peptides. The data showed that there is some degree of immunological restriction in the recognition of the protein since reactivity was observed preferentially against the most divergent region. The epitope mapping of this region showed 2 immunodominant peptides the response to which seems to be preferentially of the IgG2 type.
GP96 is a GARP chaperone and controls regulatory T cell functions.
Zhang, Yongliang; Wu, Bill X; Metelli, Alessandra; Thaxton, Jessica E; Hong, Feng; Rachidi, Saleh; Ansa-Addo, Ephraim; Sun, Shaoli; Vasu, Chenthamarakshan; Yang, Yi; Liu, Bei; Li, Zihai
2015-02-01
Molecular chaperones control a multitude of cellular functions via folding chaperone-specific client proteins. CD4+FOXP3+ Tregs play key roles in maintaining peripheral tolerance, which is subject to regulation by multiple molecular switches, including mTOR and hypoxia-inducible factor. It is not clear whether GP96 (also known as GRP94), which is a master TLR and integrin chaperone, controls Treg function. Using murine genetic models, we demonstrated that GP96 is required for Treg maintenance and function, as loss of GP96 resulted in instability of the Treg lineage and impairment of suppressive functions in vivo. In the absence of GP96, Tregs were unable to maintain FOXP3 expression levels, resulting in systemic accumulation of pathogenic IFN-γ-producing and IL-17-producing T cells. We determined that GP96 serves as an essential chaperone for the cell-surface protein glycoprotein A repetitions predominant (GARP), which is a docking receptor for latent membrane-associated TGF-β (mLTGF-β). The loss of both GARP and integrins on GP96-deficient Tregs prevented expression of mLTGF-β and resulted in inefficient production of active TGF-β. Our work demonstrates that GP96 regulates multiple facets of Treg biology, thereby placing Treg stability and immunosuppressive functions strategically under the control of a major stress chaperone.
Němeček, Daniel; Gilcrease, Eddie B.; Kang, Sebyung; Prevelige, Peter E.; Casjens, Sherwood; Thomas, George J.
2007-01-01
Bacteriophage P22, a podovirus infecting strains of Salmonella typhimurium, packages a 42 kbp genome using a headful mechanism. DNA translocation is accomplished by the phage terminase, a powerful molecular motor consisting of large and small subunits. Although many of the structural proteins of the P22 virion have been well characterized, little is known about the terminase subunits and their molecular mechanism of DNA translocation. We report here structural and assembly properties of ectopically expressed and highly purified terminase large and small subunits. The large subunit (gp2), which contains the nuclease and ATPase activities of terminase, exists as a stable monomer with an α/β fold. The small subunit (gp3), which recognizes DNA for packaging and may regulate gp2 activity, exhibits a highly α-helical secondary structure and self-associates to form a stable oligomeric ring in solution. For wildtype gp3, the ring contains nine subunits, as demonstrated by hydrodynamic measurements, electron microscopy and native mass spectrometry. We have also characterized a gp3 mutant (Ala 112 → Thr) that forms a ten subunit ring, despite a subunit fold indistinguishable from wildtype. Both the nonameric and decameric gp3 rings exhibit nonspecific DNA binding activity, and gp2 is able to bind strongly to the DNA/gp3 complex but not to DNA alone. We propose a scheme for the roles of P22 terminase large and small subunits in the recruitment and packaging of viral DNA and discuss the model in relation to proposals for terminase-driven DNA translocation in other phages. PMID:17945256
Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis
Matthews, J B; Wright, H J; Roberts, A; Cooper, P R; Chapple, I L C
2007-01-01
Some evidence exists that peripheral neutrophils from patients with chronic periodontitis generate higher levels of reactive oxygen species (ROS) after Fcγ-receptor stimulation than those from healthy controls. We hypothesized that peripheral neutrophils in periodontitis also show both hyper-reactivity to plaque organisms and hyperactivity in terms of baseline, unstimulated generation and release of ROS. Peripheral neutrophils from chronic periodontitis patients and age/sex/smoking-matched healthy controls (18 pairs) were assayed for total ROS generation and extracellular ROS release, with and without stimulation (Fcγ-receptor and Fusobacterium nucleatum), using luminol and isoluminol chemiluminescence. Assays were performed with and without priming with Escherichia coli lipopolysaccharide (LPS) and granulocyte–macrophage colony-stimulating factor (GM-CSF). Phox gene expression (p22, p47, p67, gp91) was investigated using reverse transcription–polymerase chain reaction (RT–PCR). Neutrophils from patients produced higher mean levels of ROS in all assays. Total generation and extracellular release of ROS by patients' cells were significantly greater than those from controls after FcγR-stimulation, with (P = 0·023) and without (P ≤ 0·023) priming with GM-CSF. Differences in unstimulated total ROS generation were not significant. By contrast, patients' cells demonstrated greater baseline, extracellular ROS release than those from controls (P = 0·004). This difference was maintained after priming with LPS (P = 0·028) but not GM-CSF (P = 0·217). Phox gene expression was similar in patient and control cells at baseline and stimulation with F. nucleatum (3 h) consistently reduced gp91PHOX transcripts. Our data demonstrate that peripheral neutrophils from periodontitis patients exhibit hyper-reactivity following stimulation (Fcγ-receptor and F. nucleatum) and hyperactivity in terms of excess ROS release in the absence of exogenous stimulation. This hyperactive/-reactive neutrophil phenotype is not associated with elevated phox gene expression. PMID:17223966
Effect of grape pomace on fermentation quality and aerobic stability of sweet sorghum silage.
Li, Ping; Shen, Yixin; You, Minghong; Zhang, Yu; Yan, Jiajun; Li, Daxue; Bai, Shiqie
2017-10-01
The objective of this study was to evaluate the effect of grape pomace (GP) with different adding levels (0%, 5%, 10% and 15%, fresh matter basis), alone (GP-LAB) or in combine with an inoculant LAB (GP+LAB), on the fermentation quality and aerobic stability of sweet sorghum silage. After 90 days of ensiling in vacuumized mini-silos, silages were subject to a 7-day aerobic stability test, in which chemical, microbial and polyphenol composition were measured. In the GP-LAB group, adding GP decreased (P < 0.05) concentrations of water-soluble carbohydrate (WSC) and butyric acid in silage. In the GP+LAB group, adding GP increased (P < 0.05) concentrations of lactic acid, WSC and crude protein, decreased (P < 0.05) final pH value, NH 3 -N ratio and butyric acid concentration in silage. Polyphenol level was reduced (P < 0.05) after silage fermentation. During aerobic exposure, the fungi count, pH value and silage temperature increased (P < 0.05), the levels of lactic acid, acetic acid and polyphenols (quercetin 3-O-glucoside and quercetin 3-O-glucuronid) decreased (P < 0.05) in silage. GP+LAB treated silage had a lag phase for aerobic spoilage. When the fermentation products, microbial counts, chemical and polyphenol composition were considered, the use of 10% GP+LAB at ensiling could provide a valuable source for improved fermentation quality and aerobic stability of sweet sorghum silage. © 2017 Japanese Society of Animal Science.
The Role of Conserved N-Linked Glycans on Ebola Virus Glycoprotein 2.
Lennemann, Nicholas J; Walkner, Madeline; Berkebile, Abigail R; Patel, Neil; Maury, Wendy
2015-10-01
N-linked glycosylation is a common posttranslational modification found on viral glycoproteins (GPs) and involved in promoting expression, cellular attachment, protection from proteases, and antibody evasion. The GP subunit GP2 of filoviruses contains 2 completely conserved N-linked glycosylation sites (NGSs) at N563 and N618, suggesting that they have been maintained through selective pressures. We assessed mutants lacking these glycans for expression and function to understand the role of these sites during Ebola virus entry. Elimination of either GP2 glycan individually had a modest effect on GP expression and no impact on antibody neutralization of vesicular stomatitis virus pseudotyped with Ebola virus GP. However, loss of the N563 glycan enhanced entry by 2-fold and eliminated GP detection by a well-characterized monoclonal antibody KZ52. Loss of both sites dramatically decreased GP expression and abolished entry. Surprisingly, a GP that retained a single NGS at N563, eliminating the remaining 16 NGSs from GP1 and GP2, had detectable expression, a modest increase in entry, and pronounced sensitivity to antibody neutralization. Our findings support the importance of the GP2 glycans in GP expression/structure, transduction efficiency, and antibody neutralization, particularly when N-linked glycans are also removed from GP1. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lumen, Annie Albin; Li, Libin; Li, Jiben; Ahmed, Zeba; Meng, Zhou; Owen, Albert; Ellens, Harma; Hidalgo, Ismael J; Bentz, Joe
2013-01-01
We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter.
Lumen, Annie Albin; Li, Libin; Li, Jiben; Ahmed, Zeba; Meng, Zhou; Owen, Albert; Ellens, Harma; Hidalgo, Ismael J.; Bentz, Joe
2013-01-01
We have reported that the P-gp substrate digoxin required basolateral and apical uptake transport in excess of that allowed by digoxin passive permeability (as measured in the presence of GF120918) to achieve the observed efflux kinetics across MDCK-MDR1-NKI (The Netherlands Cancer Institute) confluent cell monolayers. That is, GF120918 inhibitable uptake transport was kinetically required. Therefore, IC50 measurements using digoxin as a probe substrate in this cell line could be due to inhibition of P-gp, of digoxin uptake transport, or both. This kinetic analysis is now extended to include three additional cell lines: MDCK-MDR1-NIH (National Institute of Health), Caco-2 and CPT-B2 (Caco-2 cells with BCRP knockdown). These cells similarly exhibit GF120918 inhibitable uptake transport of digoxin. We demonstrate that inhibition of digoxin transport across these cell lines by GF120918, cyclosporine, ketoconazole and verapamil is greater than can be explained by inhibition of P-gp alone. We examined three hypotheses for this non-P-gp inhibition. The inhibitors can: (1) bind to a basolateral digoxin uptake transporter, thereby inhibiting digoxin's cellular uptake; (2) partition into the basolateral membrane and directly reduce membrane permeability; (3) aggregate with digoxin in the donor chamber, thereby reducing the free concentration of digoxin, with concomitant reduction in digoxin uptake. Data and simulations show that hypothesis 1 was found to be uniformly acceptable. Hypothesis 2 was found to be uniformly unlikely. Hypothesis 3 was unlikely for GF120918 and cyclosporine, but further studies are needed to completely adjudicate whether hetero-dimerization contributes to the non-P-gp inhibition for ketoconazole and verapamil. We also find that P-gp substrates with relatively low passive permeability such as digoxin, loperamide and vinblastine kinetically require basolateral uptake transport over that allowed by +GF120918 passive permeability, while highly permeable P-gp substrates such as amprenavir, quinidine, ketoconazole and verapamil do not, regardless of whether they actually use the basolateral transporter. PMID:23976943
Pappas, Jane J.; Petropoulos, Sophie; Suderman, Matthew; Iqbal, Majid; Moisiadis, Vasilis; Turecki, Gustavo; Matthews, Stephen G.; Szyf, Moshe
2014-01-01
The Multidrug Resistance 1 (MDR1; alternatively ABCB1) gene product P-glycoprotein (P-gp), an ATP binding cassette transporter, extrudes multiple endogenous and exogenous substrates from the cell, playing an important role in normal physiology and xenobiotic distribution and bioavailability. To date, the predominant animal models used to investigate the role of P-gp have been the mouse and rat, which have two distinct genes, Abcb1a and Abcb1b. In contrast, the human has a single gene, ABCB1, for which only a single isoform has been validated. We and others have previously shown important differences between Abcb1a and Abcb1b, limiting the extrapolation from rodent findings to the human. Since the guinea pig has a relatively long gestation, hemomonochorial placentation and neuroanatomically mature offspring, it is more similar to the human, and may provide a more comparable model for investigating the regulation of P-gp in the brain and placenta, however, to date, the Abcb1 gene in the guinea pig remains to be characterized. The placenta and fetal brain are barrier sites that express P-gp and that play a critical role of protection of the fetus and the fetal brain from maternally administered drugs and other xenobiotics. Using RNA sequencing (RNA-seq), reverse transcription-polymerase chain reaction (RT-PCR) and quantitative PCR (QPCR) to sequence the expressed isoforms of guinea pig Abcb1, we demonstrate that like the human, the guinea pig genome contains one gene for Abcb1 but that it is expressed as at least three different isoforms via alternative splicing and alternate exon usage. Further, we demonstrate that these isoforms are more closely related to human than to rat or mouse isoforms. This striking, overall similarity and evolutionary relatedness between guinea pig Abcb1 and human ABCB1 indicate that the guinea pig represents a relevant animal model for investigating the function and regulation of P-gp in the placenta and brain. PMID:25353162
Wang, Li; Collins, Carol; Kelly, Edward J.; Chu, Xiaoyan; Ray, Adrian S.; Salphati, Laurent; Xiao, Guangqing; Lee, Caroline; Lai, Yurong; Liao, Mingxiang; Mathias, Anita; Evers, Raymond; Humphreys, William; Hop, Cornelis E. C. A.; Kumer, Sean C.
2016-01-01
Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance–associated protein (MRP)2, MRP3, MRP4, sodium taurocholate–cotransporting polypeptide (NTCP), organic anion–transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict transporter-mediated drug disposition in liver cirrhosis patients. PMID:27543206
Novel baculovirus-derived p67 subunit vaccines efficacious against East Coast fever in cattle.
Kaba, Stephen A; Musoke, Anthony J; Schaap, Dick; Schetters, Theo; Rowlands, John; Vermeulen, Arno N; Nene, Vishvanath; Vlak, Just M; van Oers, Monique M
2005-04-15
Two novel baculovirus-derived recombinant Theileria parva p67 constructs were tested for their vaccine potential against East Coast fever. Boran calves were immunized with a his-GFP-p67 fusion protein (GFP:p67deltaSS) or with GP64:p67C, a protein fusion between a C-terminal domain of p67 and the baculovirus envelope protein GP64. Both GFP:p67deltaSS and GP64:p67C induced antibodies with high ELISA titers that neutralized T. parva sporozoites with high efficiency. Upon challenge, a correlation was observed between the in vitro neutralizing capacity and the reduction in severe ECF for individual animals. A protection level upto 85% was obtained. This level of protection was achieved with only two inoculations of 100 microg per dose, which is a major improvement over previous recombinant p67 products.
Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L; Everall, Ian P; Masliah, Eliezer
2011-04-01
Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Marburg Virus Glycoprotein GP2: pH-Dependent Stability of the Ectodomain α-Helical Bundle†
Harrison, Joseph S.; Koellhoffer, Jayne F.; Chandran, Kartik; Lai, Jonathan R.
2012-01-01
Marburg virus (MARV) and Ebola virus (EBOV) constitute the family Filoviridae of enveloped viruses (filoviruses) that cause severe hemorrhagic fever. Infection by MARV is required for fusion between the host cell and viral membranes, a process that is mediated by the two subunits of the envelope glycoprotein GP1 (surface subunit) and GP2 (transmembrane subunit). Upon viral attachment and uptake, it is believed that the MARV viral fusion machinery is triggered by host factors and environmental conditions found in the endosome. Next, conformational rearrangements in the GP2 ectodomain result in the formation of a highly stable six-helix bundle; this refolding event provides the energetic driving force for membrane fusion. Both GP1 and GP2 from EBOV have been extensively studied, but there is little information available for the MARV glycoproteins. Here we have expressed two variants of the MARV GP2 ectodomain in Escherichia coli and analyzed their biophysical properties. Circular dichroism indicates that the MARV GP2 ectodomain adopts an α-helical conformation, and one variant sediments as a trimer by equilibrium analytical ultracentrifugation. Denaturation studies indicate the α-helical structure is highly stable at pH 5.3 (unfolding energy, ΔGunf H2O, of 33.4 ± 2.5 kcal/mol and melting temperature, Tm, of 75.3 ± 2.1 °C for one variant). Furthermore, we found the α-helical stability to be strongly dependent on pH with higher stability under lower pH conditions (Tm values ranging from ~92 °C at pH 4.0 to ~38 °C at pH 8.0). Mutational analysis suggests two glutamic acid residues (E579 and E580) are partially responsible for this pH-dependent behavior. Based on these results, we hypothesize that pH-dependent folding stability of the MARV GP2 ectodomain provides a mechanism to control conformational preferences such that the six-helix bundle ‘post-fusion’ state is preferred under conditions of appropriately matured endosomes. PMID:22369502
Nicklisch, Sascha C. T.; Rees, Steven D.; McGrath, Aaron P.; Gökirmak, Tufan; Bonito, Lindsay T.; Vermeer, Lydia M.; Cregger, Cristina; Loewen, Greg; Sandin, Stuart; Chang, Geoffrey; Hamdoun, Amro
2016-01-01
The world’s oceans are a global reservoir of persistent organic pollutants to which humans and other animals are exposed. Although it is well known that these pollutants are potentially hazardous to human and environmental health, their impacts remain incompletely understood. We examined how persistent organic pollutants interact with the drug efflux transporter P-glycoprotein (P-gp), an evolutionarily conserved defense protein that is essential for protection against environmental toxicants. We identified specific congeners of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers that inhibit mouse and human P-gp, and determined their environmental levels in yellowfin tuna from the Gulf of Mexico. In addition, we solved the cocrystal structure of P-gp bound to one of these inhibitory pollutants, PBDE (polybrominated diphenyl ether)–100, providing the first view of pollutant binding to a drug transporter. The results demonstrate the potential for specific binding and inhibition of mammalian P-gp by ubiquitous congeners of persistent organic pollutants present in fish and other foods, and argue for further consideration of transporter inhibition in the assessment of the risk of exposure to these chemicals. PMID:27152359
Choi, Kwangman; Kim, Hyeongki; Kang, Hyunju; Lee, So-Young; Lee, Sang Jun; Back, Sung Hoon; Lee, Seo Hyun; Kim, M Sun; Lee, Jeong Eun; Park, Ju Young; Kim, Jiye; Kim, Sunhong; Song, Jae-Hyung; Choi, Yura; Lee, Suui; Lee, Hyun-Jun; Kim, Jong Heon; Cho, Sungchan
2014-07-01
Triacylglycerol (TG) is the major form of stored energy in eukaryotic organisms and is synthesized by diacylglycerol acyltransferase (DGAT) in the endoplasmic reticulum (ER). DGAT2, one of the two DGAT enzymes, is barely detectable in cells, even though its mRNA transcripts are maintained at considerable levels. However, little is known about how DGAT2 expression is altered by protein stability. DGAT2 was highly unstable in cells and was rapidly degraded by proteasomes in an ubiquitin-dependent manner. Deletion mutation analysis identified transmembrane domain 1 (TMD1) as a protein degradation signal. TMD1 is also important for ER localization of DGAT2. Moreover, DGAT2 interacted with p97/VCP, a crucial component of the ER-associated degradation (ERAD) pathway, and polyubiquitinated DGAT2 accumulated following treatment with an ERAD inhibitor. Furthermore, gp78, an E3 ligase involved in ERAD, regulates the degradation of DGAT2 through direct interactions and ubiquitination. Consequently, the stabilization of DGAT2 increased the number of lipid droplets in hepatic cells. Therefore, DGAT2 is regulated by gp78-associated ERAD at the post-translational level. © 2014 FEBS.
Scott, Joseph W.; Poole, Farris L.; Adams, Michael W. W.
2014-01-01
Tmore » he hyperthermophilic archaeon Pyrococcus furiosus grows by fermenting peptides and carbohydrates to organic acids. In the terminal step, acyl-CoA synthetase (ACS) isoenzymes convert acyl-CoA derivatives to the corresponding acid and conserve energy in the form of AP. ACS1 and ACS2 were previously purified from P. furiosus and have α 2 β 2 structures but the genome contains genes encoding three additional α -subunits. he ten possible combinations of α and β genes were expressed in E. coli and each resulted in stable and active α 2 β 2 isoenzymes. he α -subunit of each isoenzyme determined CoA-based substrate specificity and between them they accounted for the CoA derivatives of fourteen amino acids. he β -subunit determined preference for adenine or guanine nucleotides. he GP-generating isoenzymes are proposed to play a role in gluconeogenesis by producing GP for GP-dependent phosphoenolpyruvate carboxykinase and for other GP-dependent processes. ranscriptional and proteomic data showed that all ten isoenzymes are constitutively expressed indicating that both AP and GP are generated from the metabolism of most of the amino acids. A phylogenetic analysis showed that the ACSs of P. furiosus and other members of the hermococcales are evolutionarily distinct from those found throughout the rest of biology, including those of other hyperthermophilic archaea.« less
Wu, Chunxiao; Wang, Shu
2012-01-01
Binding to heparan sulfate is essential for baculovirus transduction of mammalian cells. Our previous study shows that gp64, the major glycoprotein on the virus surface, binds to heparin in a pH-dependent way, with a stronger binding at pH 6.2 than at 7.4. Using fluorescently labeled peptides, we mapped the pH-dependent heparin-binding sequence of gp64 to a 22-amino-acid region between residues 271 and 292. Binding of this region to the cell surface was also pH dependent, and peptides containing this sequence could efficiently inhibit baculovirus transduction of mammalian cells at pH 6.2. When the heparin-binding peptide was immobilized onto the bead surface to mimic the high local concentration of gp64 on the virus surface, the peptide-coated magnetic beads could efficiently pull down cells expressing heparan sulfate but not cells pretreated with heparinase or cells not expressing heparan sulfate. Interestingly, although this heparin-binding function is essential for baculovirus transduction of mammalian cells, it is dispensable for infection of Sf9 insect cells. Virus infectivity on Sf9 cells was not reduced by the presence of heparin or the identified heparin-binding peptide, even though the peptide could bind to Sf9 cell surface and be efficiently internalized. Thus, our data suggest that, depending on the availability of the target molecules on the cell surface, baculoviruses can use two different methods, electrostatic interaction with heparan sulfate and more specific receptor binding, for cell attachment.
Bale, Shridhar; Liu, Tong; Li, Sheng; Wang, Yuhao; Abelson, Dafna; Fusco, Marnie; Woods, Virgil L; Saphire, Erica Ollmann
2011-11-01
Ebolavirus belongs to the family filoviridae and causes severe hemorrhagic fever in humans with 50-90% lethality. Detailed understanding of how the viruses attach to and enter new host cells is critical to development of medical interventions. The virus displays a trimeric glycoprotein (GP(1,2)) on its surface that is solely responsible for membrane attachment, virus internalization and fusion. GP(1,2) is expressed as a single peptide and is cleaved by furin in the host cells to yield two disulphide-linked fragments termed GP1 and GP2 that remain associated in a GP(1,2) trimeric, viral surface spike. After entry into host endosomes, GP(1,2) is enzymatically cleaved by endosomal cathepsins B and L, a necessary step in infection. However, the functional effects of the cleavage on the glycoprotein are unknown. We demonstrate by antibody binding and Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS) of glycoproteins from two different ebolaviruses that although enzymatic priming of GP(1,2) is required for fusion, the priming itself does not initiate the required conformational changes in the ectodomain of GP(1,2). Further, ELISA binding data of primed GP(1,2) to conformational antibody KZ52 suggests that the low pH inside the endosomes also does not trigger dissociation of GP1 from GP2 to effect membrane fusion. The results reveal that the ebolavirus GP(1,2) ectodomain remains in the prefusion conformation upon enzymatic cleavage in low pH and removal of the glycan cap. The results also suggest that an additional endosomal trigger is necessary to induce the conformational changes in GP(1,2) and effect fusion. Identification of this trigger will provide further mechanistic insights into ebolavirus infection.
Vraka, Chrysoula; Dumanic, Monika; Racz, Teresa; Pichler, Florian; Philippe, Cecile; Balber, Theresa; Klebermass, Eva-Maria; Wagner, Karl-Heinz; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus
2018-05-01
In drug development, biomarkers for cerebral applications have a lower success rate compared to cardiovascular drugs or tumor therapeutics. One reason is the missing blood brain barrier penetration, caused by the tracer's interaction with efflux transporters such as the P-gp (MDR1 or ABCB1). Aim of this study was the development of a reliable model to measure the interaction of radiotracers with the human efflux transporter P-gp in parallel to the radiolabeling process. LigandTracer® Technology was used with the wildtype cell line MDCKII and the equivalent cell line overexpressing human P-gp (MDCKII-hMDR1). The method was evaluated based on established PET tracers with known interaction with the human P-gp transporter and in nanomolar concentration (15 nM). [ 11 C]SNAP-7941 and [ 18 F]FE@SNAP were used as P-gp substrates by comparing the real-time model with an uptake assay and μPET images. [ 11 C]DASB [ 11 C]Harmine, [ 18 F]FMeNER,[ 18 F]FE@SUPPY and [ 11 C]Me@HAPTHI were used as tracers without interactions with P-gp in vitro. However, [ 11 C]Me@HAPTHI shows a significant increase in SUV levels after blocking with Tariquidar. The developed real-time kinetic model uses directly PET tracers in a compound concentration, which is reflecting the in vivo situation. This method may be used at an early stage of radiopharmaceutical development to measure interactions to P-gp before conducting animal experiments. Copyright © 2018 Elsevier Inc. All rights reserved.
Huang, Xing; Xu, Jing; Wang, Yu; Guo, Cheng; Chen, Lin; Gu, Xiaobin; Lai, Weimin; Peng, Xuerong; Yang, Guangyou
2016-12-01
Coenurosis is caused by coenurus, the metacestode of Taenia multiceps, which mainly parasitizes the brain and spinal cord of cattle, sheep and goats. To date, no widely-approved methods are available to identify early coenurus infection. In this study, we identified a full-length cDNA that encodes GP50 (TmGP50) from the transcriptome of T. multiceps, and then cloned and expressed in E. coli. The native proteins in adult stage and coenurus were located via immunofluorescence assays, while the potential of recombinant TmGP50 protein (rTmGP50) for indirect ELISA-based serodiagnostics was assessed using native goat sera. In addition, we orally infected 20 goats with mature T. multiceps eggs. Praziquantel (10%) was given to 10 of the goats 45 days post-infection (p.i.). Blood samples were collected for 17 weeks p.i. from the 20 goats and anti-rTmGP50 antibodies were evaluated using the indirect ELISA established here. The TmGP50 contains an 897 bp open reading frame, in which signal sequence resides in 1 ~ 48 sites and mature polypeptide consists of 282 amino acid residues. Immunofluorescence staining showed that native TmGP50 was localized to the microthrix and parenchymatous zone of the adult parasite and coenurus, and the coenurus cystic wall. The indirect ELISA based on rTmGP50 exhibited a sensitivity of 95.0% and a specificity of 92.6% when detecting GP50 antibodies in sera of naturally infected goats and sheep. In goats experimentally infected with T. multiceps, anti-TmGP50 antibody was detectable from 2 to 17 weeks p.i. in the control group, while the antibody fell below the cut-off value about 3 weeks after praziquantel treatment. Our results indicate that recombinant TmGP50 is a suitable early diagnostic antigen for coenurus infection in goats.
García-Arriaza, Juan; Perdiguero, Beatriz; Heeney, Jonathan; Seaman, Michael; Montefiori, David C.; Labranche, Celia; Yates, Nicole L.; Shen, Xiaoying; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; McDermott, Adrian; Kao, Shing-Fen; Roederer, Mario; Hawkins, Natalie; Self, Steve; Yao, Jiansheng; Farrell, Patrick; Phogat, Sanjay; Tartaglia, Jim; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony; Weiss, Deborah; Lee, Carter; Kibler, Karen; Jacobs, Bert; Asbach, Benedikt; Wagner, Ralf; Ding, Song; Pantaleo, Giuseppe
2015-01-01
ABSTRACT We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4+ T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8+ T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials. PMID:26041302
Hu, Rui; Gao, Jie; Rozimamat, Rushangul; Aisa, Haji Akber
2018-02-25
Five new (1-5) and ten known (6-15) jatrophane diterpenoids were isolated from the fructus of Euphorbia sororia and their structures were elucidated by extensive spectroscopic analysis. The absolute configurations of compounds 1 and 4 were confirmed by X-ray crystallographic analysis. Cytotoxicity and anti-multidrug resistance effects of these jatrophane diterpenoids were evaluated in multidrug-resistant MCF-7/ADR breast cancer cells with an overexpression of P-glycoprotein (P-gp). Eight compounds (1, 2, 4, 6, 8, 10, 11, and 15) showed promising chemoreversal abilities compared to verapamil (VRP). The most potent compound, Euphosorophane A (1), possessed many advantages, including (1) high potency (EC 50 = 92.68 ± 18.28 nM) in reversing P-gp-mediated resistance to doxorubicin (DOX), low cytotoxicity, and a high therapeutic index, (2) potency in reversing resistance to other cytotoxic agents associated with MDR, and (3) inhibition of P-gp-mediated Rhodamine123 (Rh123) efflux function in MCF-7/ADR cells. The results of the Western blot analysis indicated that the multidrug resistance (MDR) reversal induced by 1 was not due to the inhibiton of P-gp expression. Compound 1 stimulated P-gp-ATPase activity and caused the dose-dependent inhibition of DOX transport activity. Lineweaver-Burk and Dixon plots implied that 1 was a competitive inhibitor to DOX in the binding site of P-gp with a Ki of 0.49-0.50 μM. Our data suggested that 1 had a high binding affinity toward the DOX recognition site of P-gp. This resulted in inhibiting DOX transport, increasing intracellular DOX concentration, and finally resensitizing MCF-7/ADR to DOX. In addition, we discussed some added contents in the structure-activity relationship (SAR) of jatrophane diterpenoids. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Qosa, Hisham; Abuznait, Alaa H.; Hill, Ronald A.; Kaddoumi, Amal
2014-01-01
Rifampicin and caffeine are widely used drugs with reported protective effect against Alzheimer’s disease (AD). However, the mechanism underlying this effect is incompletely understood. In this study, we have hypothesized that enhanced amyloid-β (Aβ) clearance from the brain across the blood-brain barrier (BBB) of wild-type mice treated with rifampicin or caffeine is caused by both drugs potential to upregulate low-density lipoprotein receptor related protein-1 (LRP1) and/or P-glycoprotein (P-gp) at the BBB. Expression studies of LRP1 and P-gp in brain endothelial cells and isolated mice brain microvessels following treatment with rifampicin or caffeine demonstrated both drugs as P-gp inducers, and only rifampicin as an LRP1 inducer. Also, brain efflux index (BEI%) studies conducted on C57BL/6 mice treated with either drug to study alterations in Aβ clearance demonstrated the BEI% of Aβ in rifampicin (82.4 ± 4.3%) and caffeine (80.4 ± 4.8%) treated mice were significantly higher than those of control mice (62.4 ±6.1%, p <0.01). LRP1 and P-gp inhibition studies confirmed the importance of both proteins to the clearance of Aβ, and that enhanced clearance following drugs treatment was caused by LRP1 and/or P-gp upregulation at the mouse BBB. Furthermore, our results provided evidence for the presence of a yet to be identified transporter/receptor that plays significant role in Aβ clearance and is upregulated by caffeine and rifampicin. In conclusion, our results demonstrated the upregulation of LRP1 and P-gp at the BBB by rifampicin and caffeine enhanced brain Aβ clearance, and this effect could explain, at least in part, the protective effect of rifampicin and caffeine against AD. PMID:22504320
TLR signaling modulates side effects of anticancer therapy in the small intestine.
Frank, Magdalena; Hennenberg, Eva Maria; Eyking, Annette; Rünzi, Michael; Gerken, Guido; Scott, Paul; Parkhill, Julian; Walker, Alan W; Cario, Elke
2015-02-15
Intestinal mucositis represents the most common complication of intensive chemotherapy, which has a severe adverse impact on quality of life of cancer patients. However, the precise pathophysiology remains to be clarified, and there is so far no successful therapeutic intervention. In this study, we investigated the role of innate immunity through TLR signaling in modulating genotoxic chemotherapy-induced small intestinal injury in vitro and in vivo. Genetic deletion of TLR2, but not MD-2, in mice resulted in severe chemotherapy-induced intestinal mucositis in the proximal jejunum with villous atrophy, accumulation of damaged DNA, CD11b(+)-myeloid cell infiltration, and significant gene alterations in xenobiotic metabolism, including a decrease in ABCB1/multidrug resistance (MDR)1 p-glycoprotein (p-gp) expression. Functionally, stimulation of TLR2 induced synthesis and drug efflux activity of ABCB1/MDR1 p-gp in murine and human CD11b(+)-myeloid cells, thus inhibiting chemotherapy-mediated cytotoxicity. Conversely, TLR2 activation failed to protect small intestinal tissues genetically deficient in MDR1A against DNA-damaging drug-induced apoptosis. Gut microbiota depletion by antibiotics led to increased susceptibility to chemotherapy-induced mucosal injury in wild-type mice, which was suppressed by administration of a TLR2 ligand, preserving ABCB1/MDR1 p-gp expression. Findings were confirmed in a preclinical model of human chemotherapy-induced intestinal mucositis using duodenal biopsies by demonstrating that TLR2 activation limited the toxic-inflammatory reaction and maintained assembly of the drug transporter p-gp. In conclusion, this study identifies a novel molecular link between innate immunity and xenobiotic metabolism. TLR2 acts as a central regulator of xenobiotic defense via the multidrug transporter ABCB1/MDR1 p-gp. Targeting TLR2 may represent a novel therapeutic approach in chemotherapy-induced intestinal mucositis. Copyright © 2015 by The American Association of Immunologists, Inc.
Li, Chenrui; Wang, Zhijun; Wang, Qian; Ka Yan Ho, Rebecca Lucinda; Huang, Ying; Chow, Moses S.S.; Kei Lam, Christopher Wai; Zuo, Zhong
2018-01-01
Docetaxel (DTX) is widely used for metastatic castrated resistant prostate cancer, but its efficacy is often compromised by drug resistance associated with low intracellular concentrations. Piperine (PIP) could enhance the bioavailability of other drugs via the inhibition of CYPs and P-gp activities. Thus, we hypothesize a positive effect with the DTX-PIP combination on the anti-tumor efficacy and intra-tumor DTX concentrations in taxane-resistant prostate cancer. ICR-NOD/SCID mice implanted with taxane-resistant human prostate cancer cells were administrated with saline as well as PIP and DTX separately or in combination. The tumor growth was monitored together with intra-tumor concentrations of DTX. The inhibitory effects on CYPs and P-gp were further assessed in mouse liver microsome and MDCK-MDR1 cells. Compared with DTX alone, DTX-PIP combination significantly inhibited the tumor growth (114% vs. 217%, p = 0.002) with corresponding significantly higher intra-tumor DTX concentrations (5.854 ± 5.510 ng/ml vs. 1.312 ± 0.754 ng/mg, p = 0.037). The percentage of DTX metabolism was significantly decreased from 28.94 ± 1.06% to 18.14 ± 2.22% in mouse liver microsome after administration of PIP for two weeks. DTX accumulation in MDCK-MDR1 cell was significantly enhanced in the presence of PIP. Further microarray analysis revealed that PIP inhibited P-gp as well as CYP1B1 gene expression and induced a significant gene expression change relating to inflammatory response, angiogenesis, cell proliferation, or cell migration. In conclusion, DTX-PIP combination significantly induces activity against taxane-resistant prostate tumor. Such effect appeared to be attributed to the inhibitory effect of PIP on CYPs and P-gp activity as well as gene expression changes relating to tumorigenesis and cellular responses. PMID:29423050
Bexten, Maria; Oswald, Stefan; Grube, Markus; Jia, Jia; Graf, Tanja; Zimmermann, Uwe; Rodewald, Kathrin; Zolk, Oliver; Schwantes, Ulrich; Siegmund, Werner; Keiser, Markus
2015-01-05
The cationic, water-soluble quaternary trospium chloride (TC) is incompletely absorbed from the gut and undergoes wide distribution but does not pass the blood-brain barrier. It is secreted by the kidneys, liver, and intestine. To evaluate potential transport mechanisms for TC, we measured affinity of the drug to the human uptake and efflux transporters known to be of pharmacokinetic relevance. Affinity of TC to the uptake transporters OATP1A2, -1B1, -1B3, -2B1, OCT1, -2, -3, OCTN2, NTCP, and ASBT and the efflux carriers P-gp, MRP2 and MRP3 transfected in HEK293 and MDCK2 cells was measured. To identify relevant pharmacokinetic mechanisms in the bladder urothelium, mRNA expression of multidrug transporters, drug metabolizing enzymes, and nuclear receptors, and the uptake of TC into primary human bladder urothelium (HBU) cells were measured. TC was shown to be a substrate of OATP1A2 (Km = 6.9 ± 1.3 μmol/L; Vmax = 41.6 ± 1.8 pmol/mg·min), OCT1 (Km = 106 ± 16 μmol/L; Vmax = 269 ± 18 pmol/mg·min), and P-gp (Km = 34.9 ± 7.5 μmol/L; Vmax = 105 ± 9.1 pmol/mg·min, lipovesicle assay). The genetic OATP1A2 variants *2 and *3 were loss-of-function transporters for TC. The mRNA expression analysis identified the following transporter proteins in the human urothelium: ABCB1 (P-gp), ABCC1-5 (MRP1-5), ABCG2 (BCRP), SLCO2B1 (OATP2B1), SLCO4A1 (OATP4A1), SLC22A1 (OCT1), SLC22A3 (OCT3), SLC22A4 (OCTN1), SLC22A5 (OCTN2), and SLC47A1 (MATE1). Immuno-reactive P-gp and OATP1A2 were localized to the apical cell layers. Drug metabolizing enzymes CYP3A5, -2B6, -2B7 -2E1, SULT1A1-4, UGT1A1-10, and UGT2B15, and nuclear receptors NR1H3 and NR1H4 were also expressed on mRNA level. TC was taken up into HBU cells (Km = 18.5 ± 4.8 μmol/L; Vmax = 106 ± 11.3 pmol/mg·min) by mechanisms that could be synergistically inhibited by naringin (IC50 = 10.8 (8.4; 13.8) μmol/L) and verapamil (IC50 = 4.6 (2.8; 7.5) μmol/L), inhibitors of OATP1A2 and OCT1, respectively. Affinity of TC to OCT1 and P-glycoprotein may be the reason for incomplete oral absorption, wide distribution into liver and kidneys, and substantial intestinal and renal secretions. Absence of brain distribution may result from affinity to P-gp and a low affinity to OATP1A2. The human urothelium expresses many drug transporters and drug metabolizing enzymes that may interact with TC and other drugs eliminated into the urine.
Arenavirus Stable Signal Peptide Is the Keystone Subunit for Glycoprotein Complex Organization
Bederka, Lydia H.; Bonhomme, Cyrille J.; Ling, Emily L.
2014-01-01
ABSTRACT The rodent arenavirus glycoprotein complex encodes a stable signal peptide (SSP) that is an essential structural component of mature virions. The SSP, GP1, and GP2 subunits of the trimeric glycoprotein complex noncovalently interact to stud the surface of virions and initiate arenavirus infectivity. Nascent glycoprotein production undergoes two proteolytic cleavage events: first within the endoplasmic reticulum (ER) to cleave SSP from the remaining precursor GP1/2 (glycoprotein complex [GPC]) glycoprotein and second within the Golgi stacks by the cellular SKI-1/S1P for GP1/2 processing to yield GP1 and GP2 subunits. Cleaved SSP is not degraded but retained as an essential glycoprotein subunit. Here, we defined functions of the 58-amino-acid lymphocytic choriomeningitis virus (LCMV) SSP in regard to glycoprotein complex processing and maturation. Using molecular biology techniques, confocal microscopy, and flow cytometry, we detected SSP at the plasma membrane of transfected cells. Further, we identified a sorting signal (FLLL) near the carboxyl terminus of SSP that is required for glycoprotein maturation and trafficking. In the absence of SSP, the glycoprotein accumulated within the ER and was unable to undergo processing by SKI-1/S1P. Mutation of this highly conserved FLLL motif showed impaired glycoprotein processing and secretory pathway trafficking, as well as defective surface expression and pH-dependent membrane fusion. Immunoprecipitation of SSP confirmed an interaction between the signal peptide and the GP2 subunit; however, mutations within this FLLL motif disrupted the association of the GP1 subunit with the remaining glycoprotein complex. PMID:25352624
Cheng, Qilai; Liao, Meixiang; Hu, Haibo; Li, Hongliang; Wu, Longhuo
2018-01-01
P-glycoprotein (P-gp, i.e., MDR1) is associated with the phenotype of multidrug resistance (MDR) and causes chemotherapy failure in the management of cancers. Searching for effective MDR modulators and combining them with anticancer drugs is a promising strategy against MDR. Asiatic acid (AA), a natural triterpene isolated from the plant Centella asiatica, may have an antitumor activity. The present study assessed the reversing effect of AA on MDR and possible molecular mechanisms of AA action in MDR1-overexpressing cisplatin (DDP)-resistant lung cancer cells, A549/DDP. Human lung adenocarcinoma A549/DDP cells were either exposed to different concentrations of AA or treated with DDP, and their viability was measured by the MTT assay. A Rhodamine 123 efflux assay, immunofluorescent staining, ATPase assay, reverse-transcription PCR (RT-PCR), and western blot analysis were conducted to elucidate the mechanisms of action of AA on MDR. Our results showed that AA significantly enhanced the cytotoxicity of DDP toward A549/DDP cells but not its parental A549 cells. Furthermore, AA strongly inhibited P-gp expression by blocking MDR1 gene transcription and increased the intracellular accumulation of the P-gp substrate Rhodamine 123 in A549/DDP cells. Nuclear factor (NF)-kB (p65) activity, IkB degradation, and NF-kB/p65 nuclear translocation were markedly inhibited by pretreatment with AA. Additionally, AA inhibited the MAPK-ERK pathway, as indicated by decreased phosphorylation of ERK1 and -2, AKT, p38, and JNK, thus resulting in reduced activity of the Y-box binding protein 1 (YB1) via blockage of its nuclear translocation. AA reversed P-gp-mediated MDR by inhibition of P-gp expression. This effect was likely related to downregulation of YB1, and this effect was mediated by the NF-kB and MAPK-ERK pathways. AA may be useful as an MDR reversal agent for combination therapy in clinical trials. © 2018 The Author(s). Published by S. Karger AG, Basel.
The role of temperature increase rate in combinational hyperthermia chemotherapy treatment
NASA Astrophysics Data System (ADS)
Tang, Yuan; McGoron, Anthony J.
2010-02-01
Hyperthermia in combination with chemotherapy has been widely used in cancer treatment. Our previous study has shown that rapid rate hyperthermia in combination with chemotherapy can synergistically kill cancer cells whereas a sub-additive effect was found when a slow rate hyperthermia was applied. In this study, we explored the basis of this difference. For this purpose, in vitro cell culture experiments with a uterine cancer cell line (MES-SA) and its multidrug resistant (MDR) variant MES-SA/Dx5 were conducted. P-glycoprotein (P-gp) expression, Caspase 3 activity, and heat shock protein 70 (HSP 70) expression following the two different modes of heating were measured. Doxorubicin (DOX) was used as the chemotherapy drug. Indocyanine green (ICG), which absorbs near infrared light at 808nm (ideal for tissue penetration), was chosen for achieving rapid rate hyperthermia. Slow rate hyperthermia was provided by a cell culture incubator. Two sets of thermal doses were delivered by either slow rate or rapid rate hyperthermia. HSP70 expression was highly elevated under low dose slow rate incubator hyperthermia while maintained at the baseline level under the other three treatments. Caspase3 level slightly increased after low dose slow rate incubator hyperthermia while necrotic cell death was found in the other three types of heat treatment. In conclusion, when given at the same thermal dose, slow rate hyperthermia is more likely to induce thermotolerance. Meanwhile, hyperthermia showed a dose dependent capability in reversing P-gp mediated MDR; when MDR is reversed, the combinational treatment induced extensive necrotic cell death. During this process, the rate of heating also played a very important role; necrosis was more dramatic in rapid rate hyperthermia than in slow rate hyperthermia even though they were given at the same dose.
Zhang, Lu; Wang, Huijuan; Chen, Jianyi; Shen, Qida; Wang, Shigui; Xu, Hongxing
2017-01-01
RNA interference has been used to study insects’ gene function and regulation. Glycogen synthase (GS) and glycogen phosphorylase (GP) are two key enzymes in carbohydrates’ conversion in insects. Glycogen content and GP and GS gene expression in several tissues and developmental stages of the Brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) were analyzed in the present study, using quantitative reverse-transcription polymerase chain reaction to determine their response to double-stranded trehalases (dsTREs), trehalose-6-phosphate synthases (dsTPSs), and validamycin injection. The highest expression of both genes was detected in the wing bud, followed by leg and head tissues, and different expression patterns were shown across the developmental stages analyzed. Glycogen content significantly decreased 48 and 72 h after dsTPSs injection and 48 h after dsTREs injection. GP expression increased 48 h after dsTREs and dsTPSs injection and significantly decreased 72 h after dsTPSs, dsTRE1-1, and dsTRE1-2 injection. GS expression significantly decreased 48 h after dsTPS2 and dsTRE2 injection and 72 h after dsTRE1-1 and dsTRE1-2 injection. GP and GS expression and glycogen content significantly decreased 48 h after validamycin injection. The GP activity significantly decreased 48 h after validamycin injection, while GS activities of dsTPS1 and dsTRE2 injection groups were significantly higher than that of double-stranded GFP (dsGFP) 48 h after injection, respectively. Thus, glycogen is synthesized, released, and degraded across several insect tissues according to the need to maintain stable trehalose levels. PMID:28365765
Chia, Min-Yuan; Hsiao, Shih-Hsuan; Chan, Hui-Ting; Do, Yi-Yin; Huang, Pung-Ling; Chang, Hui-Wen; Tsai, Yi-Chieh; Lin, Chun-Ming; Pang, Victor Fei; Jeng, Chian-Ren
2011-04-15
Escherichia coli heat-labile enterotoxin B subunit (LTB) can be used as an adjuvant for co-administered antigens. Our previous study showed that the expression of neutralizing epitope GP5 of porcine reproductive and respiratory syndrome virus (PRRSV) in transgenic tobacco plant (GP5-T) could induce PRRSV-specific immune responses in pigs. A transgenic tobacco plant co-expressing LTB and PRRSV GP5 as a fusion protein (LTB-GP5-T) was further constructed and its immunogenicity was evaluated. Pigs were given orally three consecutive doses of equal concentration of recombinant GP5 protein expressed in leaves of LTB-GP5-T or GP5-T at a 2-week interval and challenged with PRRSV at 7 weeks post-initial immunization. Pigs receiving LTB-GP5-T or GP5-T developed PRRSV-specific antibody- and cell-mediated immunity and showed significantly lower viremia and tissue viral load and milder lung lesions than wild type tobacco plant (W-T). The LTB-GP5-T-treated group had relatively higher immune responses than the GP5-T-treated group, although the differences were not statistically significant. Copyright © 2011 Elsevier B.V. All rights reserved.
2015-02-01
This study evaluated the influence of the Programmed Nutrition Beef Program and exogenous growth promotants (ExGP) on water holding capacity characteristics of enhanced beef strip loins. Sixty, frozen strip loins, arranged in a 2 × 2 factorial treatment arrangement with dietary program serving as the first factor and use of ExGP as the second factor, were thawed, injected with an enhancement solution, and stored for 7 days. Loins from ExGP cattle possessed the ability to bind more (P < 0.05) water before pumping and bind less (P < 0.05) water after pumping and storage. Loin pH across treatments was similar (P > 0.10) before injection, but increased post-injection and after storage (P < 0.01). Treatments did not affect loin purge loss, steak cook loss, and expressible moisture (P > 0.10). The Programmed Nutrition Beef Program and use of ExGPs minimally impacted water holding capacity of enhanced frozen/thawed beef strip loins.
Bidmon, Sonja; Terlutter, Ralf
2016-01-01
Background Substantial research has focused on patients’ health information–seeking behavior on the Internet, but little is known about the variables that may predict patients’ willingness to undergo online treatment and willingness to pay additionally for online treatment. Objective This study analyzed sociodemographic variables, psychosocial variables, and variables of Internet usage to predict willingness to undergo online treatment and willingness to pay additionally for online treatment offered by the general practitioner (GP). Methods An online survey of 1006 randomly selected German patients was conducted. The sample was drawn from an e-panel maintained by GfK HealthCare. Missing values were imputed; 958 usable questionnaires were analyzed. Variables with multi-item measurement were factor analyzed. Willingness to undergo online treatment and willingness to pay additionally for online treatment offered by the GP were predicted using 2 multiple regression models. Results Exploratory factor analyses revealed that the disposition of patients’ personality to engage in information-searching behavior on the Internet was unidimensional. Exploratory factor analysis with the variables measuring the motives for Internet usage led to 2 separate factors: perceived usefulness (PU) of the Internet for health-related information searching and social motives for information searching on the Internet. Sociodemographic variables did not serve as significant predictors for willingness to undergo online treatment offered by the GP, whereas PU (B=.092, P=.08), willingness to communicate with the GP more often in the future (B=.495, P<.001), health-related information–seeking personality (B=.369, P<.001), actual use of online communication with the GP (B=.198, P<.001), and social motive (B=.178, P=.002) were significant predictors. Age, gender, satisfaction with the GP, social motive, and trust in the GP had no significant impact on the willingness to pay additionally for online treatment, but it was predicted by health-related information–seeking personality (B=.127, P=.07), PU (B=–.098, P=.09), willingness to undergo online treatment (B=.391, P<.001), actual use of online communication with the GP (B=.192, P=.001), highest education level (B=.178, P<.001), monthly household net income (B=.115, P=.01), and willingness to communicate with the GP online more often in the future (B=.076, P=.03). Conclusions Age, gender, and trust in the GP were not significant predictors for either willingness to undergo online treatment or to pay additionally for online treatment. Willingness to undergo online treatment was partly determined by the actual use of online communication with the GP, willingness to communicate online with the GP, health information–seeking personality, and social motivation for such behavior. Willingness to pay extra for online treatment was influenced by the monthly household net income category and education level. The results of this study are useful for online health care providers and physicians who are considering offering online treatments as a viable number of patients would appreciate the possibility of undergoing an online treatment offered by their GP. PMID:26846162
Roettl, Johanna; Bidmon, Sonja; Terlutter, Ralf
2016-02-04
Substantial research has focused on patients' health information-seeking behavior on the Internet, but little is known about the variables that may predict patients' willingness to undergo online treatment and willingness to pay additionally for online treatment. This study analyzed sociodemographic variables, psychosocial variables, and variables of Internet usage to predict willingness to undergo online treatment and willingness to pay additionally for online treatment offered by the general practitioner (GP). An online survey of 1006 randomly selected German patients was conducted. The sample was drawn from an e-panel maintained by GfK HealthCare. Missing values were imputed; 958 usable questionnaires were analyzed. Variables with multi-item measurement were factor analyzed. Willingness to undergo online treatment and willingness to pay additionally for online treatment offered by the GP were predicted using 2 multiple regression models. Exploratory factor analyses revealed that the disposition of patients' personality to engage in information-searching behavior on the Internet was unidimensional. Exploratory factor analysis with the variables measuring the motives for Internet usage led to 2 separate factors: perceived usefulness (PU) of the Internet for health-related information searching and social motives for information searching on the Internet. Sociodemographic variables did not serve as significant predictors for willingness to undergo online treatment offered by the GP, whereas PU (B=.092, P=.08), willingness to communicate with the GP more often in the future (B=.495, P<.001), health-related information-seeking personality (B=.369, P<.001), actual use of online communication with the GP (B=.198, P<.001), and social motive (B=.178, P=.002) were significant predictors. Age, gender, satisfaction with the GP, social motive, and trust in the GP had no significant impact on the willingness to pay additionally for online treatment, but it was predicted by health-related information-seeking personality (B=.127, P=.07), PU (B=-.098, P=.09), willingness to undergo online treatment (B=.391, P<.001), actual use of online communication with the GP (B=.192, P=.001), highest education level (B=.178, P<.001), monthly household net income (B=.115, P=.01), and willingness to communicate with the GP online more often in the future (B=.076, P=.03). Age, gender, and trust in the GP were not significant predictors for either willingness to undergo online treatment or to pay additionally for online treatment. Willingness to undergo online treatment was partly determined by the actual use of online communication with the GP, willingness to communicate online with the GP, health information-seeking personality, and social motivation for such behavior. Willingness to pay extra for online treatment was influenced by the monthly household net income category and education level. The results of this study are useful for online health care providers and physicians who are considering offering online treatments as a viable number of patients would appreciate the possibility of undergoing an online treatment offered by their GP.
Doxorubicin decreases paraquat accumulation and toxicity in Caco-2 cells.
Silva, Renata; Carmo, Helena; Vilas-Boas, Vânia; de Pinho, Paula Guedes; Dinis-Oliveira, Ricardo Jorge; Carvalho, Félix; Silva, Isabel; Correia-de-Sá, Paulo; Bastos, Maria de Lourdes; Remião, Fernando
2013-02-13
P-glycoprotein (P-gp) is an efflux pump belonging to the ATP-binding cassette transporter superfamily expressed in several organs. Considering its potential protective effects, the induction of de novo synthesis of P-gp could be used therapeutically in the treatment of intoxications by its substrates. The herbicide paraquat (PQ) is a P-gp substrate responsible for thousands of fatal intoxications worldwide that still lacks an effective antidote. The aim of the present work was to evaluate the effectiveness of such an antidote by testing whether doxorubicin (DOX), a known P-gp inducer, could efficiently protect Caco-2 cells against PQ cytotoxicity, 6 h after the incubation with the herbicide, reflecting a real-life intoxication scenario. Cytotoxicity was evaluated by the MTT assay and PQ intracellular concentrations were measured by gas chromatography-ion trap-mass spectrometry (GC-IT-MS). Also, the DOX modulatory effect on choline uptake transport system was assessed by measuring the uptake of [³H]-choline. The results show that DOX exerts protective effects against PQ cytotoxicity, preventing the intracellular accumulation of the herbicide. These protective effects were not completely prevented by the incubation with the UIC2 antibody, a specific P-gp inhibitor, suggesting the involvement of alternative protection mechanisms. In fact, DOX also efficiently inhibited the choline transport system that influences PQ cellular uptake. In conclusion, in this cellular model, DOX effectively protects against PQ toxicity by inducing P-gp and through the interaction with the choline transporter, suggesting that compounds presenting this double feature of promoting the efflux and limiting the uptake of PQ could be used as effective antidotes to treat intoxications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
dela Peña, Aileen; Leclercq, Isabelle A; Williams, Jacqueline; Farrell, Geoffrey C
2007-02-01
Hepatic oxidative stress is a key feature of metabolic forms of steatohepatitis, but the sources of pro-oxidants are unclear. The NADPH oxidase complex is critical for ROS generation in inflammatory cells; loss of any one component (e.g., gp91phox) renders NADPH oxidase inactive. We tested whether activated inflammatory cells contribute to oxidant stress in steatohepatitis. gp91phox-/- and wildtype (wt) mice were fed a methionine and choline-deficient (MCD) diet. Serum ALT, hepatic triglycerides, histopathology, lipid peroxidation, activation of NF-kappaB, expression of NF-kappaB-regulated genes and macrophage chemokines were measured. After 10 days of MCD dietary feeding, gp91phox-/- and wt mice displayed equivalent hepatocellular injury. After 8 weeks, there were fewer activated macrophages in livers of gp91phox-/- mice than controls, despite similar mRNA levels for MCP and MIP chemokines, but fibrosis was similar. NF-kappaB activation and increased expression of ICAM-1, TNF-alpha and COX-2 mRNA were evident in both genotypes, but in gp91phox-/- mice, expression of these genes was confined to hepatocytes. A functional NADPH oxidase complex does not contribute importantly to oxidative stress in this model and therefore is not obligatory for induction or perpetuation of dietary steatohepatitis.
Hertzman Johansson, Carolina; Azimi, Alireza; Frostvik Stolt, Marianne; Shojaee, Seyedmehdi; Wiberg, Henning; Grafström, Eva; Hansson, Johan; Egyházi Brage, Suzanne
2013-10-01
Previous studies in cell lines have suggested a role for melanosomes and related protein trafficking pathways in melanoma drug response. We have investigated the expression of six proteins related to melanosomes and melanogenesis (MITF, GPR143, gp100/PMEL, MLANA, TYRP1, and RAB27A) in pretreatment metastases from melanoma patients (n = 52) with different response to dacarbazine/temozolomide. Microphthalmia-associated transcription factor (MITF) and G-protein coupled receptor 143 (GPR143) showed significantly higher expression in nonresponders compared with responders. The premelanosome protein (gp100/PMEL) has been indicated previously in resistance to cisplatin in melanoma cells, but the expression levels of gp100/PMEL showed no association with response to dacarbazine/temozolomide in our clinical material. We also investigated the effects on chemosensitivity of siRNA inhibition of gp100/PMEL in the MNT-1 melanoma cell line. As expected from the study of the tumor material, no effect was detected with respect to response to temozolomide. However, knockdown of gp100/PMEL sensitized the cells to both paclitaxel and cisplatin. Overall, our results suggest that MITF, and several MITF-regulated factors, are associated with resistance to chemotherapy in melanoma and that different MITF targets can be of importance for different drugs.
Identification and cloning of a glycoprotein hormone receptor from sea lamprey, Petromyzon marinus.
Freamat, Mihael; Kawauchi, Hiroshi; Nozaki, Masumi; Sower, Stacia A
2006-08-01
A full-length transcript encoding a functional lamprey glycoprotein hormone receptor I (lGpH-R I, GenBank AY750688) was cloned from the testes of the sea lamprey, Petromyzon marinus, using the GpH-R protein fingerprint GLYCHORMONER from the PRINTS database. The present study is the first to identify a GpH-R transcript in an agnathan, which is one of the only two representatives of the oldest lineage of vertebrates. The 719-amino acid full-length cDNA encoding lGpH-R I is highly similar and is likely a homolog of the vertebrate GpH-Rs (including LH, FSH, and TSH receptors). The key motifs, sequence comparisons, and characteristics of the identified GpH-R reveal a mosaic of features common to all other classes of GpH-Rs in vertebrates. The lGpH-R I was shown to activate the cAMP signaling system using human chorionic gonadotropin in transiently transfected COS-7 cells. The highest expression of the receptor transcript was demonstrated in the testes using reverse transcriptase-PCR. Lower levels of the receptor transcript were also detected in brain, heart, intestine, kidney, liver, muscle, and thyroid. The high expression of lGpH-R I in the testis and the high similarity with gnathostome gonadotropin hormone receptors suggest that lGpH-R I functions as a receptor for lamprey gonadotropin hormones. We hypothesize from these data that there is lower specificity of gonadotropin and its receptor in agnathans and that during co-evolution of the ligand and its receptor in gnathostomes, there were increased specificities of interactions between each GpH (TSH, LH, and FSH) and its receptor.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout.
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho-p47(phox) levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47(phox)-gp91(phox) interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise.
NOX2 Inhibition Impairs Early Muscle Gene Expression Induced by a Single Exercise Bout
Henríquez-Olguín, Carlos; Díaz-Vegas, Alexis; Utreras-Mendoza, Yildy; Campos, Cristian; Arias-Calderón, Manuel; Llanos, Paola; Contreras-Ferrat, Ariel; Espinosa, Alejandra; Altamirano, Francisco; Jaimovich, Enrique; Valladares, Denisse M.
2016-01-01
Reactive oxygen species (ROS) participate as signaling molecules in response to exercise in skeletal muscle. However, the source of ROS and the molecular mechanisms involved in these phenomena are still not completely understood. The aim of this work was to study the role of skeletal muscle NADPH oxidase isoform 2 (NOX2) in the molecular response to physical exercise in skeletal muscle. BALB/c mice, pre-treated with a NOX2 inhibitor, apocynin, (3 mg/kg) or vehicle for 3 days, were swim-exercised for 60 min. Phospho–p47phox levels were significantly upregulated by exercise in flexor digitorum brevis (FDB). Moreover, exercise significantly increased NOX2 complex assembly (p47phox–gp91phox interaction) demonstrated by both proximity ligation assay and co-immunoprecipitation. Exercise-induced NOX2 activation was completely inhibited by apocynin treatment. As expected, exercise increased the mRNA levels of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx), citrate synthase (CS), mitochondrial transcription factor A (tfam) and interleukin-6 (IL-I6) in FDB muscles. Moreover, the apocynin treatment was associated to a reduced activation of p38 MAP kinase, ERK 1/2, and NF-κB signaling pathways after a single bout of exercise. Additionally, the increase in plasma IL-6 elicited by exercise was decreased in apocynin-treated mice compared with the exercised vehicle-group (p < 0.001). These results were corroborated using gp91-dstat in an in vitro exercise model. In conclusion, NOX2 inhibition by both apocynin and gp91dstat, alters the intracellular signaling to exercise and electrical stimuli in skeletal muscle, suggesting that NOX2 plays a critical role in molecular response to an acute exercise. PMID:27471471
2012-01-01
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96. PMID:22292497
Weekes, Michael P; Antrobus, Robin; Talbot, Suzanne; Hör, Simon; Simecek, Nikol; Smith, Duncan L; Bloor, Stuart; Randow, Felix; Lehner, Paul J
2012-03-02
The endoplasmic reticulum chaperone gp96 is required for the cell surface expression of a narrow range of proteins, including toll-like receptors (TLRs) and integrins. To identify a more comprehensive repertoire of proteins whose cell surface expression is dependent on gp96, we developed plasma membrane profiling (PMP), a technique that combines SILAC labeling with selective cell surface aminooxy-biotinylation. This approach allowed us to compare the relative abundance of plasma membrane (PM) proteins on gp96-deficient versus gp96-reconstituted murine pre-B cells. Analysis of unfractionated tryptic peptides initially identified 113 PM proteins, which extended to 706 PM proteins using peptide prefractionation. We confirmed a requirement for gp96 in the cell surface expression of certain TLRs and integrins and found a marked decrease in cell surface expression of four members of the extended LDL receptor family (LDLR, LRP6, Sorl1 and LRP8) in the absence of gp96. Other novel gp96 client proteins included CD180/Ly86, important in the B-cell response to lipopolysaccharide. We highlight common structural motifs in these client proteins that may be recognized by gp96, including the beta-propeller and leucine-rich repeat. This study therefore identifies the extended LDL receptor family as an important new family of proteins whose cell surface expression is regulated by gp96.
2017-01-01
The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies. PMID:28493713
Caetano-Pinto, Pedro; Jamalpoor, Amer; Ham, Janneke; Goumenou, Anastasia; Mommersteeg, Monique; Pijnenburg, Dirk; Ruijtenbeek, Rob; Sanchez-Romero, Natalia; van Zelst, Bertrand; Heil, Sandra G; Jansen, Jitske; Wilmer, Martijn J; van Herpen, Carla M L; Masereeuw, Rosalinde
2017-06-05
The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies.
Ringe, Rajesh P.; Sanders, Rogier W.; Yasmeen, Anila; Kim, Helen J.; Lee, Jeong Hyun; Cupo, Albert; Korzun, Jacob; Derking, Ronald; van Montfort, Thijs; Julien, Jean-Philippe; Wilson, Ian A.; Klasse, Per Johan; Ward, Andrew B.; Moore, John P.
2013-01-01
We compare the antigenicity and conformation of soluble, cleaved vs. uncleaved envelope glycoprotein (Env gp)140 trimers from the subtype A HIV type 1 (HIV-1) strain BG505. The impact of gp120–gp41 cleavage on trimer structure, in the presence or absence of trimer-stabilizing modifications (i.e., a gp120–gp41 disulfide bond and an I559P gp41 change, together designated SOSIP), was assessed. Without SOSIP changes, cleaved trimers disintegrate into their gp120 and gp41-ectodomain (gp41ECTO) components; when only the disulfide bond is present, they dissociate into gp140 monomers. Uncleaved gp140s remain trimeric whether SOSIP substitutions are present or not. However, negative-stain electron microscopy reveals that only cleaved trimers form homogeneous structures resembling native Env spikes on virus particles. In contrast, uncleaved trimers are highly heterogeneous, adopting a variety of irregular shapes, many of which appear to be gp120 subunits dangling from a central core that is presumably a trimeric form of gp41ECTO. Antigenicity studies with neutralizing and nonneutralizing antibodies are consistent with the EM images; cleaved, SOSIP-stabilized trimers express quaternary structure-dependent epitopes, whereas uncleaved trimers expose nonneutralizing gp120 and gp41ECTO epitopes that are occluded on cleaved trimers. These findings have adverse implications for using soluble, uncleaved trimers for structural studies, and the rationale for testing uncleaved trimers as vaccine candidates also needs to be reevaluated. PMID:24145402
Francica, Joseph R.; Varela-Rohena, Angel; Medvec, Andrew; Plesa, Gabriela; Riley, James L.; Bates, Paul
2010-01-01
Many viruses alter expression of proteins on the surface of infected cells including molecules important for immune recognition, such as the major histocompatibility complex (MHC) class I and II molecules. Virus-induced downregulation of surface proteins has been observed to occur by a variety of mechanisms including impaired transcription, blocks to synthesis, and increased turnover. Viral infection or transient expression of the Ebola virus (EBOV) glycoprotein (GP) was previously shown to result in loss of staining of various host cell surface proteins including MHC1 and β1 integrin; however, the mechanism responsible for this effect has not been delineated. In the present study we demonstrate that EBOV GP does not decrease surface levels of β1 integrin or MHC1, but rather impedes recognition by steric occlusion of these proteins on the cell surface. Furthermore, steric occlusion also occurs for epitopes on the EBOV glycoprotein itself. The occluded epitopes in host proteins and EBOV GP can be revealed by removal of the surface subunit of GP or by removal of surface N- and O- linked glycans, resulting in increased surface staining by flow cytometry. Importantly, expression of EBOV GP impairs CD8 T-cell recognition of MHC1 on antigen presenting cells. Glycan-mediated steric shielding of host cell surface proteins by EBOV GP represents a novel mechanism for a virus to affect host cell function, thereby escaping immune detection. PMID:20844579
Gram, Anna M.; Oosenbrug, Timo; Lindenbergh, Marthe F. S.; Büll, Christian; Comvalius, Anouskha; Dickson, Kathryn J. I.; Wiegant, Joop; Vrolijk, Hans; Lebbink, Robert Jan; Wolterbeek, Ron; Adema, Gosse J.; Griffioen, Marieke; Heemskerk, Mirjam H. M.; Tscharke, David C.; Hutt-Fletcher, Lindsey M.; Ressing, Maaike E.
2016-01-01
Cell-mediated immunity plays a key role in host control of viral infection. This is exemplified by life-threatening reactivations of e.g. herpesviruses in individuals with impaired T-cell and/or iNKT cell responses. To allow lifelong persistence and virus production in the face of primed immunity, herpesviruses exploit immune evasion strategies. These include a reduction in viral antigen expression during latency and a number of escape mechanisms that target antigen presentation pathways. Given the plethora of foreign antigens expressed in virus-producing cells, herpesviruses are conceivably most vulnerable to elimination by cell-mediated immunity during the replicative phase of infection. Here, we show that a prototypic herpesvirus, Epstein-Barr virus (EBV), encodes a novel, broadly acting immunoevasin, gp150, that is expressed during the late phase of viral replication. In particular, EBV gp150 inhibits antigen presentation by HLA class I, HLA class II, and the non-classical, lipid-presenting CD1d molecules. The mechanism of gp150-mediated T-cell escape does not depend on degradation of the antigen-presenting molecules nor does it require gp150’s cytoplasmic tail. Through its abundant glycosylation, gp150 creates a shield that impedes surface presentation of antigen. This is an unprecedented immune evasion mechanism for herpesviruses. In view of its likely broader target range, gp150 could additionally have an impact beyond escape of T cell activation. Importantly, B cells infected with a gp150-null mutant EBV displayed rescued levels of surface antigen presentation by HLA class I, HLA class II, and CD1d, supporting an important role for iNKT cells next to classical T cells in fighting EBV infection. At the same time, our results indicate that EBV gp150 prolongs the timespan for producing viral offspring at the most vulnerable stage of the viral life cycle. PMID:27077376
Gozalpour, Elnaz; Wilmer, Martijn J; Bilos, Albert; Masereeuw, Rosalinde; Russel, Frans G M; Koenderink, Jan B
2016-04-01
Digitalis-like compounds (DLCs), the ancient medication of heart failure and Na,K-ATPase inhibitors, are characterized by their toxicity. Drug-drug interactions (DDIs) at absorption and excretion levels play a key role in their toxicity, hence, knowledge about the transporters involved might prevent these unwanted interactions. In the present study, the transport of fourteen DLCs with human P-glycoprotein (P-gp; ABCB1) was studied using a liquid chromatography-mass spectrometry (LC-MS) quantification method. DLC transport by P-gp overexpressing Madin-Darby canine kidney (MDCK) and immortalized human renal cells (ciPTEC) was compared to vesicular DLC transport. Previously, we identified convallatoxin as a substrate using membrane vesicles overexpressing P-gp; however, we could not measure transport of other DLCs in this assay (Gozalpour et al., 2014a). Here, we showed that lipophilic digitoxin, digoxigenin, strophanthidin and proscillaridin A are P-gp substrates in cellular accumulation assays, whereas the less lipophilic convallatoxin was not. P-gp function in the cellular accumulation assays depends on the entrance of lipophilic compounds by passive diffusion, whereas the vesicular transport assay is more appropriate for hydrophilic substrates. In conclusion, we identified digitoxin, digoxigenin, strophanthidin and proscillaridin A as P-gp substrates using cellular accumulation assays and recognized lipophilicity as an important factor in selecting a suitable transport assay. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Yang, E-mail: muyang@nwsuaf.edu.cn; Experimental Station of Veterinary Pharmacology and Veterinary Biotechnology, Ministry of Agriculture of the People's Republic of China, No. 22 Xinong Road, Yangling, Shaanxi 712100; Li, Liangliang, E-mail: lifeiyang2007@126.com
Cell apoptosis is common after infection with porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV GP5 has been reported to induce cell apoptosis. To further understand the role of GP5 in PRRSV induced cell apoptosis, we established Marc-145 cell lines stably expressing full-length GP5, GP5{sup Δ84-96} (aa 84-96 deletion), and GP5{sup Δ97-119} (aa 97-119 deletion). Cell proliferation, cell cycle progression, cell apoptosis and virus replication in these cell lines were evaluated. Neither truncated nor full-length GP5 induced cell apoptosis in Marc-145 cells. However, GP5{sup Δ97-119}, but not full-length or GP5{sup Δ84-96}, induced a cell cycle arrest at the G2/M phasemore » resulting in a reduction in the growth of Marc-145 cells. Additionally, GP5{sup Δ84-96} inhibited the replication of PRRSV in Marc-145 cells through induction of IFN-β. These findings suggest that PRRSV GP5 is not responsible for inducing cell apoptosis in Marc-145 cells under these experimental conditions; however it has other important roles in virus/host cell biology. - Highlights: • Marc-145 cell lines stable expression PRRSV GP5 or truncated GP5 were constructed. • GP5{sup Δ97-119} expression in Marc-145 cell induced cell cycle arrest at G2/M phase. • Expression of GP5 and truncated GP5 could not induce Marc-145 cells apoptosis. • PRRSV replication in Marc-145-GP5{sup Δ84-96} was significantly inhibited.« less
P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers
Cario, Elke
2017-01-01
The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD. PMID:28321153
P-glycoprotein multidrug transporter in inflammatory bowel diseases: More questions than answers.
Cario, Elke
2017-03-07
The gastrointestinal barrier is constantly exposed to numerous environmental substrates that are foreign and potentially harmful. These xenobiotics can cause shifts in the intestinal microbiota composition, affect mucosal immune responses, disturb tissue integrity and impair regeneration. The multidrug transporter ABCB1/MDR1 p-glycoprotein (p-gp) plays a key role at the front line of host defence by efficiently protecting the gastrointestinal barrier from xenobiotic accumulation. This Editorial discusses how altered expression and function of ABCB1/MDR1 p-gp may contribute to the development and persistence of chronic intestinal inflammation in inflammatory bowel diseases (IBD). Recent evidence implies multiple interactions between intestinal microbiota, innate immunity and xenobiotic metabolism via p-gp. While decreased efflux activity may promote disease susceptibility and drug toxicity, increased efflux activity may confer resistance to therapeutic drugs in IBD. Mice deficient in MDR1A develop spontaneously chronic colitis, providing a highly valuable murine IBD model for the study of intestinal epithelial barrier function, immunoregulation, infectious co-triggers and novel therapeutic approaches. Possible associations of human ABCB1 gene polymorphisms with IBD susceptibility have been evaluated, but results are inconsistent. Future studies must focus on further elucidation of the pathophysiological relevance and immunological functions of p-gp and how its ambiguous effects could be therapeutically targeted in IBD.
Bayer, Wibke; Tenbusch, Matthias; Lietz, Ruth; Johrden, Lena; Schimmer, Simone; Uberla, Klaus; Dittmer, Ulf; Wildner, Oliver
2010-02-01
We present a new type of adenoviral vector that both encodes and displays a vaccine antigen on the capsid, thus combining in itself gene-based and protein vaccination; this vector resulted in an improved vaccination outcome in the Friend virus (FV) model. For presentation of the envelope protein gp70 of Friend murine leukemia virus on the adenoviral capsid, gp70 was fused to the adenovirus capsid protein IX. When compared to vaccination with conventional FV Env- and Gag-encoding adenoviral vectors, vaccination with the adenoviral vector that encodes and displays pIX-gp70 combined with an FV Gag-encoding vector resulted in significantly improved protection against systemic FV challenge infection, with highly controlled viral loads in plasma and spleen. This improved protection correlated with improved neutralizing antibody titers and stronger CD4(+) T-cell responses. Using a vector that displays gp70 without encoding it, we found that while the antigen display on the capsid alone was sufficient to induce high levels of binding antibodies, in vivo expression was necessary for the induction of neutralizing antibodies. This new type of adenovirus-based vaccine could be a valuable tool for vaccination.
Kanao, Megumi; Kanda, Hirotsugu; Huang, Wan; Liu, Shue; Yi, Hyun; Candiotti, Keith A; Lubarsky, David A; Levitt, Roy C; Hao, Shuanglin
2015-06-01
Human immunodeficiency virus (HIV)-related painful sensory neuropathies primarily consist of the HIV infection-related distal sensory polyneuropathy and antiretroviral toxic neuropathies. Pharmacotherapy provides only partial relief of pain in patients with HIV/acquired immune deficiency syndrome because little is known about the exact neuropathological mechanisms for HIV-associated neuropathic pain (NP). Hypofunction of γ-aminobutyric acid (GABA) GABAergic inhibitory mechanisms has been reported after peripheral nerve injury. In this study, we tested the hypothesis that HIV gp120 combined with antiretroviral therapy reduces spinal GABAergic inhibitory tone and that restoration of GABAergic inhibitory tone will reduce HIV-related NP in a rat model. The application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve plus systemic ddC (one antiretroviral drug) induced mechanical allodynia. The hind paws of rats were inoculated with replication-defective herpes simplex virus (HSV) vectors genetically encoding gad1 gene to express glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes the decarboxylation of glutamate to GABA. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The expression of GAD67 in both the lumbar spinal cord and the L4-5 dorsal root ganglia was examined using western blots. The expression of mitochondrial superoxide in the spinal dorsal horn was examined using MitoSox imaging. The immunoreactivity of spinal GABA, pCREB, and pC/EBPβ was tested using immunohistochemistry. In the gp120 with ddC-induced neuropathic pain model, GAD67 expression mediated by the HSV vector caused an elevation of mechanical threshold that was apparent on day 3 after vector inoculation. The antiallodynic effect of the single HSV vector inoculation expressing GAD67 lasted >28 days. The area under the time-effect curves in the HSV vector expressing GAD67 was increased compared with that in the control vectors (P = 0.0005). Intrathecal GABA-A/B agonists elevated mechanical threshold in the pain model. The HSV vectors expressing GAD67 reversed the lowered GABA immunoreactivity in the spinal dorsal horn in the neuropathic rats. HSV vectors expressing GAD67 in the neuropathic rats reversed the increased signals of mitochondrial superoxide in the spinal dorsal horn. The vectors expressing GAD67 reversed the upregulated immunoreactivity expression of pCREB and pC/EBPβ in the spinal dorsal horn in rats exhibiting NP. Based on our results, we suggest that GAD67 mediated by HSV vectors acting through the suppression of mitochondrial reactive oxygen species and transcriptional factors in the spinal cord decreases pain in the HIV-related neuropathic pain model, providing preclinical evidence for gene therapy applications in patients with HIV-related pain states.
Branco, Luis M; Matschiner, Alex; Fair, Joseph N; Goba, Augustine; Sampey, Darryl B; Ferro, Philip J; Cashman, Kathleen A; Schoepp, Randal J; Tesh, Robert B; Bausch, Daniel G; Garry, Robert F; Guttieri, Mary C
2008-01-01
Background There is a significant requirement for the development and acquisition of reagents that will facilitate effective diagnosis, treatment, and prevention of Lassa fever. In this regard, recombinant Lassa virus (LASV) proteins may serve as valuable tools in diverse antiviral applications. Bacterial-based systems were engineered for expression and purification of recombinant LASV nucleoprotein (NP), glycoprotein 1 (GP1), and glycoprotein 2 (GP2). Results Full-length NP and the ectodomains of GP1 and GP2 were generated as maltose-binding protein (MBP) fusions in the Rosetta strains of Escherichia coli (E. coli) using pMAL-c2x vectors. Average fusion protein yields per liter of culture for MBP-NP, MBP-GP1, and MBP-GP2 were 10 mg, 9 mg, and 9 mg, respectively. Each protein was captured from cell lysates using amylose resin, cleaved with Factor Xa, and purified using size-exclusion chromatography (SEC). Fermentation cultures resulted in average yields per liter of 1.6 mg, 1.5 mg, and 0.7 mg of purified NP, GP1 and GP2, respectively. LASV-specific antibodies in human convalescent sera specifically detected each of the purified recombinant LASV proteins, highlighting their utility in diagnostic applications. In addition, mouse hyperimmune ascitic fluids (MHAF) against a panel of Old and New World arenaviruses demonstrated selective cross reactivity with LASV proteins in Western blot and enzyme-linked immunosorbent assay (ELISA). Conclusion These results demonstrate the potential for developing broadly reactive immunological assays that employ all three arenaviral proteins individually and in combination. PMID:18538016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, L.O.; Pyle, S.W.; Nara, P.L.
1987-12-01
The major envelope glycoprotein of a human immunodeficiency virus (HIV) has been purified and was utilized as a prototype vaccine in chimpanzees. The 120,000-dalton glycoprotein (gp120) was purified from membranes of human T-lymphotropic virus (HTLV)-IIIB-infected cells and the final preparation contained low levels to no detectable HTLV-IIIB core antigen (p24) and low levels of endotoxin. Chimpanzees inoculated with gp120 responded by developing antibodies that precipitated radiolabeled gp120 and neutralized in vitro infection of HTLV-IIIB. Antibodies to HTLV-IIIB p24 were not detected in the gp120-immunized chimpanzees. Peripheral blood leukocytes from the vaccinated animals were examined for T4/sup +/ and T8/sup +/more » cells, and no decrease in the T4/T8 ratio was found, indicating that immunization with a ligand (gp120) that binds to T4 has not detectable adverse effect on the population of T4/sup +/ cells. The only current animal model that can be reproducibly infected with HIV is the chimpanzee. Immunization of chimpanzees with HIV proteins will provide an experimental system for testing the effectiveness of prototype vaccines for preventing HIV infection in vivo.« less
The anti-tumor effect and mechanisms of action of penta-acetyl geniposide.
Peng, C H; Huang, C N; Wang, C J
2005-06-01
Gardenia, the fruit of Gardenia jasminoides Ellis, has been widely used to treat liver and gall bladder disorders in Chinese medicine. It has been shown recently that geniposide, the main ingredient of Gardenia Fructus, exhibits the anti-tumor effect. In this review, we discuss the anti-tumor effect and possible mechanisms of a derivative from Gardenia Fructus, penta-acetyl geniposide ((Ac)5GP). It has been demonstrated that (Ac)5GP plays more potent roles than geniposide in chemoprevention. (Ac)5GP decreased DNA damage and hepatocarcinogenesis induced by aflatoxin B1 (AFB1) by activating the phase II enzymes glutathione S-transferase (GST) and GSH peroxidase (GSH-Px). It reduced the growth and development of inoculated C6 glioma cells especially in pre-treated rats. In addition to the preventive effect, (Ac)5GP exerts its actions on apoptosis and growth arrest. Treatment of (Ac)5GP caused DNA fragmentation of glioma cells. (Ac)5GP induced sub- G1 peak through the activation of apoptotic cascades PKCdelta/JNK/Fas/caspase8 and caspase 3. Besides, p53/Bax signaling was suggested to be involved in (Ac)5GP-induced apoptosis, though its downstream cascades needs further clarified. (Ac)5GP has also been shown to inhibit DNA synthesis of tumor cells. It arrested cell cycle at G0/ G1 by inducing the expression of p21, thus suppressing the cyclin D1/cdk4 complex formation and the phosphorylation of E2F. The phosphorylation status of p53 on serine 392 correlated with the process of growth arrest. Evidences from the in vivo experiments showed that (Ac)5GP is not harmful to liver, heart and kidney. In conclusion, (Ac)5GP is highly suggested to be an anti-tumor agent for development in the future.
Bower, Joseph F; Green, Thomas D; Ross, Ted M
2004-10-25
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.
Dolnik, Olga; Volchkova, Valentina A; Escudero-Perez, Beatriz; Lawrence, Philip; Klenk, Hans-Dieter; Volchkov, Viktor E
2015-10-01
The surface glycoprotein (GP) is responsible for Ebola virus (EBOV) attachment and membrane fusion during virus entry. Surface expression of highly glycosylated GP causes marked cytotoxicity via masking of a wide range of cellular surface molecules, including integrins. Considerable amounts of surface GP are shed from virus-infected cells in a soluble truncated form by tumor necrosis factor α-converting enzyme. In this study, the role of GP shedding was investigated using a reverse genetics approach by comparing recombinant viruses possessing amino acid substitutions at the GP shedding site. Virus with an L635V substitution showed a substantial decrease in shedding, whereas a D637V substitution resulted in a striking increase in the release of shed GP. Variations in shedding efficacy correlated with observed differences in the amounts of shed GP in the medium, GP present in virus-infected cells, and GP present on virions. An increase in shedding appeared to be associated with a reduction in viral cytotoxicity, and, vice versa, the virus that shed less was more cytotoxic. An increase in shedding also resulted in a reduction in viral infectivity, whereas a decrease in shedding efficacy enhanced viral growth characteristics in vitro. Differences in shedding efficacy and, as a result, differences in the amount of mature GP available for incorporation into budding virions did not equate to differences in overall release of viral particles. Likewise, data suggest that the resulting differences in the amount of mature GP on the cell surface led to variations in the GP content of released particles and, as a consequence, in infectivity. In conclusion, fine-tuning of the levels of EBOV GP expressed at the surface of virus-infected cells via GP shedding plays an important role in EBOV replication by orchestrating the balance between optimal virion GP content and cytotoxicity caused by GP. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Rico-Sanz, J; Zehnder, M; Buchli, R; Kühne, G; Boutellier, U
2008-09-01
The main aim of this study was to examine the hypothesis that creatine (Cr) feeding enhances myocellular glycogen storage in humans undergoing carbohydrate loading. Twenty trained male subjects were randomly assigned to have their diets supplemented daily with 252 g of glucose polymer (GP) and either 21 g of Cr (CR-GP, n = 10) or placebo (PL-GP, n = 10) for 5 days. Changes in resting myocellular glycogen and phosphocreatine (PCr) were determined with Magnetic Resonance Spectroscopy (13C- and 31P-MRS, respectively). After CR-GP, the levels of intramyocellular glycogen increased from 147 +/- 13 (standard error) mmol x (kg wet weight(-1)) to 172 +/- 13 m mol x (kg wet weight)(-1), while it increased from 134 +/- 17 mmol x (kg wet weight)(-) to 182 +/- 17 mmol x (kg wet weight)(-1) after PL-GP; the increments in intramyocellular glycogen concentrations were not statistically different. The increment in the PCr/ATP ratio after CR-GP (+ 0.20 +/- 0.12) was significantly different compared to PL-GP (- 0.34 +/- 0.16) (p < 0.05). The present results do not support the hypothesis that Cr loading increases muscle glycogen storage.
Expression of multidrug resistance proteins in retinoblastoma
Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir
2017-01-01
AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307
Effect of a thiolated polymer on oral paclitaxel absorption and tumor growth in rats.
Föger, Florian; Malaivijitnond, Suchinda; Wannaprasert, Thanakul; Huck, Christian; Bernkop-Schnürch, Andreas; Werle, Martin
2008-02-01
The anticancer agent paclitaxel is currently commercially available only as an infusion due to its low oral bioavailability. An oral formulation would be highly beneficial for patients. Besides the low solubility, the main reason for the limited oral bioavailability of paclitaxel is that it is a substrate of the efflux pump P-glycoprotein (P-gp). Recently, it has been demonstrated that P-gp can be inhibited by thiolated polymers. In this study, an oral paclitaxel formulation based on thiolated polycarbophil was evaluated in vivo in wild-type rats and in mammary cancer-induced rats. The paclitaxel plasma level after a single administration of paclitaxel was observed for 12 h in healthy rats. Moreover, cancer-induced rats were treated weekly for 5 weeks with the novel formulation. It was demonstrated that (1) co-administration of thiolated polycarbophil significantly improved paclitaxel plasma levels, (2) a more constant pharmacokinetic profile could be achieved and (3) the tumor growth was reduced. These effects can most likely be attributed to P-gp inhibition. According to the achieved results, thiolated polymers are believed to be interesting tools for the delivery of P-gp substrates such as paclitaxel.
Liao, Hua-Xin; Tomaras, Georgia D.; Bonsignori, Mattia; Tsao, Chun-Yen; Hwang, Kwan-Ki; Chen, Haiyan; Lloyd, Krissey E.; Bowman, Cindy; Sutherland, Laura; Jeffries, Thomas L.; Kozink, Daniel M.; Stewart, Shelley; Anasti, Kara; Jaeger, Frederick H.; Parks, Robert; Yates, Nicole L.; Overman, R. Glenn; Sinangil, Faruk; Berman, Phillip W.; Pitisuttithum, Punnee; Kaewkungwal, Jaranit; Nitayaphan, Sorachai; Karasavva, Nicos; Rerks-Ngarm, Supachai; Kim, Jerome H.; Michael, Nelson L.; Zolla-Pazner, Susan; Santra, Sampa; Letvin, Norman L.; Harrison, Stephen C.
2013-01-01
An immune correlates analysis of the RV144 HIV-1 vaccine trial revealed that antibody responses to the gp120 V1/V2 region correlated inversely with infection risk. The RV144 protein immunogens (A244-rp120 and MN-rgp120) were modified by an N-terminal 11-amino-acid deletion (Δ11) and addition of a herpes simplex virus (HSV) gD protein-derived tag (gD). We investigated the effects of these modifications on gp120 expression, antigenicity, and immunogenicity by comparing unmodified A244 gp120 with both Δ11 deletion and gD tag and with Δ11 only. Analysis of A244 gp120, with or without Δ11 or gD, demonstrated that the Δ11 deletion, without the addition of gD, was sufficient for enhanced antigenicity to gp120 C1 region, conformational V2, and V1/V2 gp120 conformational epitopes. RV144 vaccinee serum IgGs bound more avidly to A244 gp120 Δ11 than to the unmodified gp120, and their binding was blocked by C1, V2, and V1/V2 antibodies. Rhesus macaques immunized with the three different forms of A244 gp120 proteins gave similar levels of gp120 antibody titers, although higher antibody titers developed earlier in A244 Δ11 gp120-immunized animals. Conformational V1/V2 monoclonal antibodies (MAbs) gave significantly higher levels of blocking of plasma IgG from A244 Δ11 gp120-immunized animals than IgG from animals immunized with unmodified A244 gp120, thus indicating a qualitative difference in the V1/V2 antibodies induced by A244 Δ11 gp120. These results demonstrate that deletion of N-terminal residues in the RV144 A244 gp120 immunogen improves both envelope antigenicity and immunogenicity. PMID:23175357
Xue, Gondga; von Schubert, Conrad; Hermann, Pascal; Peyer, Martina; Maushagen, Regina; Schmuckli-Maurer, Jacqueline; Bütikofer, Peter; Langsley, Gordon; Dobbelaere, Dirk A.E.
2010-01-01
Using bioinformatics tools, we searched the predicted Theileria annulata and T. parva proteomes for putative schizont surface proteins. This led to the identification of gp34, a GPI-anchored protein that is stage-specifically expressed by schizonts of both Theileria species and is downregulated upon induction of merogony. Transfection experiments in HeLa cells showed that the gp34 signal peptide and GPI anchor signal are also functional in higher eukaryotes. Epitope-tagged Tp-gp34, but not Ta-gp34, expressed in the cytosol of COS-7 cells was found to localise to the central spindle and midbody. Overexpression of Tp-gp34 and Ta-gp34 induced cytokinetic defects and resulted in accumulation of binucleated cells. These findings suggest that gp34 could contribute to important parasite–host interactions during host cell division. PMID:20381541
Girard, Beatrice M.; Cheppudira, Bopaiah P.; Malley, Susan E.; Schutz, Kristin C.; May, Victor; Vizzard, Margaret A.
2011-01-01
Recent studies suggest that janus-activated kinases–signal transducer and activator of transcription signaling pathways contribute to increased voiding frequency and referred pain of cyclophosphamide (CYP)-induced cystitis in rats. Potential upstream chemical mediator(s) that may be activated by CYP-induced cystitis to stimulate JAK/STAT signaling are not known in detail. In these studies, members of the interleukin (IL)-6 family of cytokines including, leukemia inhibitory factor (LIF), IL-6, and ciliary neurotrophic factor (CNTF) and associated receptors, IL-6 receptor (R) α, LIFR, and gp130 were examined in the urinary bladder in control and CYP-treated rats. Cytokine and receptor transcript and protein expression and distribution were determined in urinary bladder after CYP-induced cystitis using quantitative, real-time polymerase chain reaction (Q-PCR), western blotting, and immunohistochemistry. Acute (4 h; 150 mg/kg; i.p.), intermediate (48 h; 150 mg/kg; i.p.), or chronic (75 mg/kg; i.p., once every 3 days for 10 days) cystitis was induced in adult, female Wistar rats with CYP treatment. Q-PCR analyses revealed significant (p ≤ 0.01) CYP duration- and tissue- (e.g., urothelium, detrusor) dependent increases in LIF, IL-6, IL-6Rα, LIFR, and gp130 mRNA expression. Western blotting demonstrated significant (p ≤ 0.01) increases in IL-6, LIF, and gp130 protein expression in whole urinary bladder with CYP treatment. CYP-induced cystitis significantly (p ≤ 0.01) increased LIF-immunoreactivity (IR) in urothelium, detrusor, and suburothelial plexus whereas increased gp130-IR was only observed in urothelium and detrusor. These studies suggest that IL-6 and LIF may be potential upstream chemical mediators that activate JAK/STAT signaling in urinary bladder pathways. PMID:21373362
Gurbel, Paul A; Cummings, Charles C; Bell, Christopher R; Alford, Amanda B; Meister, Andrew F; Serebruany, Victor L
2003-02-01
Despite the common practice of clopidogrel loading for coronary stenting, the time dependence and degree of platelet inhibition after this therapy are not well defined. We sought to establish an optimal clopidogrel dosing regimen for sustained platelet inhibition in stented patients. Platelets were assessed by conventional aggregation with 5 micromol/L adenosine diphosphate (ADP), 1 microg/mL collagen (COLL), and 750 micromol/L arachidonic acid; whole blood aggregation by 1 microg/mL collagen (WBA); shear-induced closure time (CT); contractile force (CF); and expression of 9 surface receptors by flow cytometry in 100 patients undergoing elective stent placement without glycoprotein (GP) IIb/IIIa receptor antagonists. Blood was obtained at baseline and serially over 5 days poststenting after different clopidogrel loading regimens: 300 mg 24 hours before (Group A), 12 hours before (Group B), 3 to 6 hours before (Group C), and 75 mg at the time of intervention (Group D). Before stenting, ADP, COLL, CT, and WBA were reduced by clopidogrel loading (P <.05). CF was not affected by clopidogrel. Before stenting, GP IIb/IIIa expression increased in groups A through C (P <.05), whereas PECAM-1 and CD107a were reduced (P <.05). At 2 hours and 2 days poststenting, platelets, in general, exhibited an increase in activity that was most inhibited by clopidogrel loading. Clopidogrel inhibited GP Ib, platelet/endothelial cell adhesion molecule-1, CD 107a, CD 151, and GP IIb/IIIa expression at day 5 poststenting. A 300 mg clopidogrel load given 3 to 24 hours before stenting inhibits platelets at the time of the procedure and reduces poststent activity more than a 75 mg dose given at the time of the procedure. The inhibition of adhesive molecule expression may also contribute an antithrombotic effect. Poststent activation of platelets may warrant higher periprocedural dosing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu; Kunstman, Kevin, E-mail: kunstman@northwestern.edu; Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu
Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 andmore » T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.« less
Karlsson, Louise; Hiemke, Christoph; Carlsson, Björn; Josefsson, Martin; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C
2011-05-01
P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic effects of any antidepressant drug in the P-gp knockout mice model. The aim of this study was to investigate the enantiomeric venlafaxine and metabolite concentrations in serum and brain of abcb1ab⁻/⁻ mice compared to wild-type mice upon chronic dosing, and to assess the effect of venlafaxine treatment on open-field behavior. P-gp knockout and wild-type mice received two daily intraperitoneal injections of venlafaxine (10 mg/kg) over ten consecutive days. Locomotor and rearing activities were assessed on days 7 and 9. After 10 days, drug and metabolite concentrations in brain and serum were determined using an enantioselective LC/MS/MS method. The brain concentrations of venlafaxine and its three demethylated metabolites were two to four times higher in abcb1ab⁻/⁻ mice compared to abcb1ab+/+ mice. The behavioral results indicated an impact on exploration-related behaviors in the open-field as center activity was increased, and rears were decreased by venlafaxine treatment. Our results show that P-gp at the blood-brain barrier plays an important role in limiting brain entry of the enantiomers of venlafaxine and its metabolites after chronic dosing. Taken together, the present pharmacokinetic and pharmacodynamic findings offer the possibility that the expression of P-gp in patients may be a contributing factor for limited treatment response.
In vitro and in vivo evaluations of the P-glycoprotein-mediated efflux of dibenzoylhydrazines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyata, Ken-ichi, E-mail: Miyata.Kenichi@otsuka.jp; Otsuka Pharmaceutical Co., Ltd., Tokushima 771-0182; Nakagawa, Yoshiaki
2016-05-01
P-glycoprotein (P-gp) is a member of the ATP-binding cassette transporter family. It actively transports a wide variety of compounds out of cells to protect humans from xenobiotics. Thus, determining whether chemicals are substrates and/or inhibitors of P-gp is important in risk assessments of pharmacokinetic interactions among chemicals because P-gp-mediated transport processes play a significant role in their absorption and disposition. We previously reported that dibenzoylhydrazines (DBHs) such as tebufenozide and methoxyfenozide (agrochemicals) stimulated P-gp ATPase activity. However, it currently remains unclear whether these derivatives are transport substrates of P-gp and inhibit transport of other chemicals by P-gp. In the presentmore » study, in order to evaluate the interactions of DBHs with other chemicals in humans, we determined whether DBHs are P-gp transport substrates using both the in vitro bidirectional transport assay and the in vivo study of rats. In the in vivo study, we investigated the influence of P-gp inhibitors on the brain to plasma ratio of methoxyfenozide in rats. We also examined the inhibitory effects of DBHs on quinidine (a P-gp substrate) transport by P-gp in order to ascertain whether these derivatives are inhibitors of P-gp. Based on the results, DBHs were concluded to be weak P-gp transport substrates and moderate P-gp inhibitors. However, the risk of DBHs caused by interaction with other chemicals including drugs was considered to be low by considering the DBHs' potential as the substrates and inhibitors of P-gp as well as their plasma concentrations as long as DBHs are properly used. - Highlights: • Transport of DBHs by P-gp was not detected in in vitro bidirectional transport assay. • DBHs were weak P-gp transport substrates based on in vivo studies in rats. • The in vivo studies are useful methods for evaluating P-gp transport substrates. • DBHs inhibit quinidine transport by P-gp in in vitro bidirectional transport assay.« less
Altuntas, Yunus Emre; Oncel, Mustafa; Haksal, Mustafa; Kement, Metin; Gundogdu, Ersin; Aksakal, Nihat; Gezen, Fazli Cem
2018-01-01
OBJECTIVE: This study aimed to reveal the risk factors and outcomes of gallbladder perforation (GP) during laparoscopic cholecystectomy. METHODS: Videotapes of all patients who underwent an elective cholecystectomy at our department were retrospectively analyzed, and the patients were divided into two groups based on the presence of GP. The possible risk factors and early outcomes were analyzed. RESULTS: In total, 664 patients [524 (78.9%) females, 49.7±13.4 years of age] were observed, and GP occurred in 240 (36.1%) patients, mostly while dissecting the gallbladder from its bed (n=197, 82.1%). GP was not recorded in the operation notes in 177 (73.8%) cases. Among the studied parameters, there was no significant risk factor for GP, except preoperatively elevated alanine transaminase level (p=0.005), but the sensitivity and specificity of this measure in predicting GP were 14.2% and 7.4%, respectively. The two groups had similar outcomes, but the operation time (35.4±17.5 vs 41.4±18.7 min, p=0.000) and incidence of drain use (25% vs 45.8%, p=0.000) increased in the GP group. CONCLUSION: The present study reveals that GP occurs in 36.1% of patients who undergo laparoscopic elective cholecystectomy, but it may not be recorded in most cases. We did not find any reliable risk factor that increases the possibility of GP. GP causes an increase in the operation time and incidence of drain use; however, the other outcomes were found to be similar in patients with GP and those without. PMID:29607432
Lagoda, Gwen; Sezen, Sena F; Cabrini, Marcelo R; Musicki, Biljana; Burnett, Arthur L
2013-02-01
Priapism is a vasculopathy that occurs in approximately 40% of patients with sickle cell disease. Mouse models suggest that dysregulated nitric oxide synthase and RhoA/ROCK signaling as well as increased oxidative stress may contribute to the mechanisms of sickle cell disease associated priapism. We examined changes in the protein expression of nitric oxide synthase and ROCK signaling pathways, and a source of oxidative stress, NADPH oxidase, in penile erectile tissue from patients with a priapism history etiologically related and unrelated to sickle cell disease. Human penile erectile tissue was obtained from 5 patients with sickle cell disease associated priapism and from 6 with priapism of other etiologies during nonemergent penile prosthesis surgery for erectile dysfunction or priapism management and urethroplasty. Tissue was also obtained from 5 control patients without a priapism history during penectomy for penile cancer. Samples were collected, immediately placed in cold buffer and then frozen in liquid nitrogen. The expression of phosphodiesterase 5, endothelial nitric oxide synthase, neuronal nitric oxide synthase, inducible nitric oxide synthase, RhoA, ROCK1, ROCK2, p47(phox), p67(phox), gp91(phox) and β-actin were determined by Western blot analysis. Nitric oxide was measured using the Griess reaction. In the sickle cell disease group phosphodiesterase 5 (p <0.05), endothelial nitric oxide synthase (p <0.01) and RhoA (p <0.01) expression was significantly decreased, while gp91(phox) expression (p <0.05) was significantly increased compared to control values. In the nonsickle cell disease group endothelial nitric oxide synthase, ROCK1 and p47(phox) expression (each p <0.05) was significantly decreased compared to control values. Total nitric oxide levels were not significantly different between the study groups. Mechanisms of sickle cell disease associated priapism in the human penis may involve dysfunctional nitric oxide synthase and ROCK signaling, and increased oxidative stress associated with NADPH oxidase mediated signaling. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Lewis, Brad; Whitney, Stephen; Hudacik, Lauren; Galmin, Lindsey; Huaman, Maria Cecilia; Cristillo, Anthony D
2014-01-01
The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation.
Haraguchi, Soichi; Ho, Sarah K; Morrow, Matthew; Goodenow, Maureen M; Sleasman, John W
2011-10-01
The thymus harbors HIV-1 and supports its replication. Treatment with PI-containing ART restores thymic output of naïve T cells. This study demonstrates that CXCR4-using WT viruses are more sensitive to PI in fetal thymcocytes than mature T cells with average IC(50) values for two PIs, RTV and IDV, of 1.5 nM (RTV) and 4.4 nM (IDV) in thymocytes versus 309.4 nM (RTV) and 27.3 nM (IDV) in mature T cells. P-gp activity, as measured using Rh123 efflux and quantitation of P-gp mRNA, increased with thymocyte maturation into CD4 and CD8 lineage T cells. P-gp activity is developmentally regulated in the thymus. Thymocytes developed increased levels of P-gp activity as maturation from DP to SP CD4 or CD8 T cells occurred, although CD4 T cells acquired activity more rapidly. Reduced P-gp activity in thymocytes is one mechanism for effectiveness of PI therapy in suppressing viral replication in the thymus and in reconstitution of naïve T cells, particularly among children receiving PI-containing ART.
Wang, Yongdi; Liao, Jinxu; Tang, Shao-Jun; Shu, Jianhong; Zhang, Wenping
2017-06-01
HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and β-catenin, suggesting the activation of the Wnt/β-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/β-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/β-catenin signaling pathway.
2013-01-01
Oleocanthal, a phenolic component of extra-virgin olive oil, has been recently linked to reduced risk of Alzheimer’s disease (AD), a neurodegenerative disease that is characterized by accumulation of β-amyloid (Aβ) and tau proteins in the brain. However, the mechanism by which oleocanthal exerts its neuroprotective effect is still incompletely understood. Here, we provide in vitro and in vivo evidence for the potential of oleocanthal to enhance Aβ clearance from the brain via up-regulation of P-glycoprotein (P-gp) and LDL lipoprotein receptor related protein-1 (LRP1), major Aβ transport proteins, at the blood-brain barrier (BBB). Results from in vitro and in vivo studies demonstrated similar and consistent pattern of oleocanthal in controlling Aβ levels. In cultured mice brain endothelial cells, oleocanthal treatment increased P-gp and LRP1 expression and activity. Brain efflux index (BEI%) studies of 125I-Aβ40 showed that administration of oleocanthal extracted from extra-virgin olive oil to C57BL/6 wild-type mice enhanced 125I-Aβ40 clearance from the brain and increased the BEI% from 62.0 ± 3.0% for control mice to 79.9 ± 1.6% for oleocanthal treated mice. Increased P-gp and LRP1 expression in the brain microvessels and inhibition studies confirmed the role of up-regulation of these proteins in enhancing 125I-Aβ40 clearance after oleocanthal treatment. Furthermore, our results demonstrated significant increase in 125I-Aβ40 degradation as a result of the up-regulation of Aβ degrading enzymes following oleocanthal treatment. In conclusion, these findings provide experimental support that potential reduced risk of AD associated with extra-virgin olive oil could be mediated by enhancement of Aβ clearance from the brain. PMID:23414128
Delayed inflammatory mRNA and protein expression after spinal cord injury
2011-01-01
Background Spinal cord injury (SCI) induces secondary tissue damage that is associated with inflammation. We have previously demonstrated that inflammation-related gene expression after SCI occurs in two waves - an initial cluster that is acutely and transiently up-regulated within 24 hours, and a more delayed cluster that peaks between 72 hours and 7 days. Here we extend the microarray analysis of these gene clusters up to 6 months post-SCI. Methods Adult male rats were subjected to mild, moderate or severe spinal cord contusion injury at T9 using a well-characterized weight-drop model. Tissue from the lesion epicenter was obtained 4 hours, 24 hours, 7 days, 28 days, 3 months or 6 months post-injury and processed for microarray analysis and protein expression. Results Anchor gene analysis using C1qB revealed a cluster of genes that showed elevated expression through 6 months post-injury, including galectin-3, p22PHOX, gp91PHOX, CD53 and progranulin. The expression of these genes occurred primarily in microglia/macrophage cells and was confirmed at the protein level using both immunohistochemistry and western blotting. As p22PHOX and gp91PHOX are components of the NADPH oxidase enzyme, enzymatic activity and its role in SCI were assessed and NADPH oxidase activity was found to be significantly up-regulated through 6 months post-injury. Further, treating rats with the nonspecific, irreversible NADPH oxidase inhibitor diphenylene iodinium (DPI) reduced both lesion volume and expression of chronic gene cluster proteins one month after trauma. Conclusions These data demonstrate that inflammation-related genes are chronically up-regulated after SCI and may contribute to further tissue loss. PMID:21975064
Serebruany, Victor L; Malinin, Alex I; Jerome, Scott D; Lowry, David R; Morgan, Athol W; Sane, David C; Tanguay, Jean-François; Steinhubl, Steven R; O'connor, Christopher M
2003-10-01
Persistent platelet activation may contribute to thrombotic events in patients with congestive heart failure (CHF). Chronic use of mild platelet inhibitors could therefore represent an independent avenue to improve morbidity, mortality, and quality of life in this expanding population. Although clopidogrel is widely used in patients with acute coronary syndromes and ischemic stroke, the ability of this novel ADP-receptor antagonist to inhibit platelet function in patients with CHF is unknown. We assessed antiplatelet properties of clopidogrel with aspirin (C+A) versus aspirin alone (A) in patients with CHF with heightened platelet activity. Patients with left ventricular ejection fraction <40%, or CHF symptoms in the setting of preserved systolic function and New York Heart Association class II-IV were screened. Patients were considered to have platelet activation when 4 of the following 5 parameters were met: ADP-induced platelet aggregation >60%; collagen-induced aggregation >70%; whole blood aggregation >18 ohms; expression of GP IIb/IIIa >220 log MFI; and P-selectin cell positivity >8%. All patients were treated with 325 mg of acetylsalycilic acid (ASA) for at least 1 month. Patients receiving an antithrombotic agent other than ASA were excluded. Patients meeting clinical and laboratory criteria were randomly assigned to C+A (n=25), A (n=25) groups, or represent screen failures (n=38). Platelet studies (conventional and whole blood aggregometry, shear-induced activation, expression of 10 major receptors and formation of platelet-leukocyte microparticles) were performed at baseline and after 30 days of therapy. There were no deaths, hospitalizations, or serious adverse events. There were no changes in platelet parameters in the A group. In contrast, therapy with C+A resulted in a significant inhibition of platelet activity assessed by ADP-induced (P =.00001), and epinephrine-induced (P =.0016) aggregation, closure time (P =.04), expression of PECAM-1 (P =.009), GP Ib (P =.006), GP IIb/IIIa antigen (P =.0001), GP IIb/IIIa activity with PAC-1 (P =.0021), and CD151 (P =.0026) when compared with the A group. Therapy with C+A also resulted in the reduced formation of platelet-leukocyte microparticles (P =.021). Collagen-induced aggregation in plasma and in whole blood, expression of vitronectin receptor, P-selectin, CD63, CD107a, and CD107b did not differ among groups. Treatment with C+A for 1 month provides significantly greater inhibition of platelet activity than ASA alone in patients with CHF. Patients with CHF with heightened platelet activity represent a potential target population in which addition of clopidogrel may decrease mortality rates by reducing the incidence of thrombotic vascular events.
Akazawa, Takanori; Uchida, Yasuo; Miyauchi, Eisuke; Tachikawa, Masanori; Ohtsuki, Sumio; Terasaki, Tetsuya
2018-01-02
Cynomolgus monkeys have been widely used for the prediction of drug absorption in humans. The purpose of this study was to clarify the regional protein expression levels of cytochromes P450 (CYPs), UDP-glucuronosyltransferases (UGTs), and transporters in small intestine of cynomolgus monkey using liquid chromatography-tandem mass spectrometry, and to compare them with the corresponding levels in human. UGT1A1 in jejunum and ileum were >4.57- and >3.11-fold and UGT1A6 in jejunum and ileum were >16.1- and >8.57-fold, respectively, more highly expressed in monkey than in human. Also, jejunal expression of monkey CYP3A8 (homologue of human CYP3A4) was >3.34-fold higher than that of human CYP3A4. Among apical drug efflux transporters, BCRP showed the most abundant expression in monkey and human, and the expression levels of BCRP in monkey and human were >1.74- and >1.25-fold greater than those of P-gp and >2.76- and >4.50-fold greater than those of MRP2, respectively. These findings should be helpful to understand species differences of the functions of CYPs, UGTs, and transporters between monkey and human. The UGT1A1/1A6 data would be especially important because it is difficult to identify isoforms responsible for species differences of intestinal glucuronidation by means of functional studies due to overlapping substrate specificity.
Zhao, Xiao-Dong; Zhang, Yi
2006-12-01
Drug selection, the key for chemotherapy, is one of the most difficult decision-making in clinic for the treatment of malignant tumors. How to choose is undetermined. Here a new strategy--predictive molecule-targeted chemotherapy (PMTC)--is put forward to choose relatively sensitive chemotherapeutic drugs and to avoid relatively resistant traditional drugs according to the expression of predictive molecules in individual tumor tissue. For example, paclitaxel is regarded as a relatively sensitive drug and may be chosen for the tumors with high expression of p53, while it is predicted as relatively resistant drug and should be avoided for the tumors with high expression of P-glycoprotein (P-gp). Here, we reviewed the predictive values of a variety of molecules, such as p53, P-gp, topoisomerase-1, topoisomerase-2, MSI, BRCA-1, ERCC1, FANC, hMHL1/2, XPD, Bcl-2, ErbB-2, MGMT, dihydropyridine dehydrogenase (DPD), thymidylate synthetase (TS), deoxycytidine kinase (dCK), Ras, Bax, Cyclin A, tubulin proteins, and so on, for the efficacy of some traditional chemotherapeutic drugs, such as platinum, oxaliplatin, cyclophosphamide, ifosfamide, dacarbazine, methotrexate, 5-flurouracil, gemcitabine, vincristine, vinorelbine, paclitaxel, etoposide, irinotecan, topotecan, and so on.
2006-11-22
multiple muta- tions were not studied, (iii) a vaccinia virus (VACV)- T7 system was used for transient expression, (iv) pseudotyped retrovi- ruses were used...those studies produced little to no detectable GP1 or GP2 in the transient VACV- T7 expression assays, whereas in our studies with the DNA con- structs...type GP2 was detected in pseudotyped retroviruses, a result seemingly in conflict with these authors’ findings with the VACV- T7 expression. Although
Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cingolani, Gino, E-mail: cingolag@upstate.edu; Andrews, Dewan; Casjens, Sherwood
2006-05-01
The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26more » forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.« less
Zhou, J-X; Xue, J-D; Yu, T; Zhang, J-B; Liu, Y; Jiang, N; Li, Y-L; Hu, R-L
2010-04-01
To develop a new type vaccine for porcine reproductive and respiratory syndrome (PRRS) prevention by using canine adenovirus 2(CAV-2) as vector, the Glycoprotein 5(GP5) gene from PRRSV strain JL was amplified by RT-PCR, and the expression cassette of GP5 was constructed using the human cytomegalovirus (HCMV) promoter and the simian virus 40 (SV40) early mRNA polyadenylation signal. The expression cassette of Glycoprotein 5 was cloned into the CAV-2 genome in which E3 region had been partly deleted, and the recombinant virus (CAV-2-GP5) was obtained by transfecting the recombinant CAV-2-GP5 genome into MDCK cells together with Lipofectamine 2000. Immunization trial in pigs with the recombinant virus CAV-2-GP5 showed that CAV-2-GP5 could stimulate a specific immune response to PRRSV. Immune response to the GP5 and PRRSV was confirmed by ELISA, neutralization test and lymphocyte proliferative responses, and western blotting confirmed expression of GP5 by the vector in cells. These results indicated that CAV-2 may serve as a vector for development of PRRSV vaccine in pigs, and the CAV-2-GP5 might be a candidate vaccine to be tested for preventing PRRSV infection.
Edgerton, Jeremy R.; Jaeger, Dieter
2011-01-01
Correlated firing among populations of neurons is present throughout the brain and is often rhythmic in nature, observable as an oscillatory fluctuation in the local field potential. Although rhythmic population activity is believed to be critical for normal function in many brain areas, synchronized neural oscillations are associated with disease states in other cases. In the globus pallidus (GP in rodents, homolog of the primate GPe), pairs of neurons generally have uncorrelated firing in normal animals despite an anatomical organization suggesting that they should receive substantial common input. By contrast, correlated and rhythmic GP firing is observed in animal models of Parkinson's disease (PD). Based in part on these findings it has been proposed that an important part of basal ganglia function is active decorrelation, whereby redundant information is compressed. Mechanisms that implement active decorrelation, and changes that cause it to fail in PD, are subjects of great interest. Rat GP neurons express fast, transient voltage-dependent sodium channels (NaF channels) in their dendrites, with the expression level being highest near asymmetric synapses. We recently showed that the dendritic NaF density strongly influences the responsiveness of model GP neurons to synchronous excitatory inputs. In the present study we use rat GP neuron models to show that dendritic NaF channel expression is a potential cellular mechanism of active decorrelation. We further show that model neurons with lower dendritic NaF channel expression have a greater tendency to phase lock with oscillatory synaptic input patterns like those observed in PD. PMID:21795543
Zhang, Lu; Wang, Huijuan; Chen, Jianyi; Shen, Qida; Wang, Shigui; Xu, Hongxing; Tang, Bin
2017-01-01
RNA interference has been used to study insects' gene function and regulation. Glycogen synthase (GS) and glycogen phosphorylase (GP) are two key enzymes in carbohydrates' conversion in insects. Glycogen content and GP and GS gene expression in several tissues and developmental stages of the Brown planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) were analyzed in the present study, using quantitative reverse-transcription polymerase chain reaction to determine their response to double-stranded trehalases (dsTREs), trehalose-6-phosphate synthases (dsTPSs), and validamycin injection. The highest expression of both genes was detected in the wing bud, followed by leg and head tissues, and different expression patterns were shown across the developmental stages analyzed. Glycogen content significantly decreased 48 and 72 h after dsTPSs injection and 48 h after dsTREs injection. GP expression increased 48 h after dsTREs and dsTPSs injection and significantly decreased 72 h after dsTPSs, dsTRE1-1, and dsTRE1-2 injection. GS expression significantly decreased 48 h after dsTPS2 and dsTRE2 injection and 72 h after dsTRE1-1 and dsTRE1-2 injection. GP and GS expression and glycogen content significantly decreased 48 h after validamycin injection. The GP activity significantly decreased 48 h after validamycin injection, while GS activities of dsTPS1 and dsTRE2 injection groups were significantly higher than that of double-stranded GFP (dsGFP) 48 h after injection, respectively. Thus, glycogen is synthesized, released, and degraded across several insect tissues according to the need to maintain stable trehalose levels. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.
Selenorhodamine Photosensitizers for Photodynamic Therapy of P-Glycoprotein-Expressing Cancer Cells
2015-01-01
We examined a series of selenorhodamines with amide and thioamide functionality at the 5-position of a 9-(2-thienyl) substituent on the selenorhodamine core for their potential as photosensitizers for photodynamic therapy (PDT) in P-glycoprotein (P-gp) expressing cells. These compounds were examined for their photophysical properties (absorption, fluorescence, and ability to generate singlet oxygen), for their uptake into Colo-26 cells in the absence or presence of verapamil, for their dark and phototoxicity toward Colo-26 cells, for their rates of transport in monolayers of multidrug-resistant, P-gp-overexpressing MDCKII-MDR1 cells, and for their colocalization with mitochondrial specific agents in Colo-26 cells. Thioamide derivatives 16b and 18b were more effective photosensitizers than amide derivatives 15b and 17b. Selenorhodamine thioamides 16b and 18b were useful in a combination therapy to treat Colo-26 cells in vitro: a synergistic therapeutic effect was observed when Colo-26 cells were exposed to PDT and treatment with the cancer drug doxorubicin. PMID:25250825
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, Joseph F.; Green, Thomas D.; Ross, Ted M.
2004-10-25
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d{sub 3}) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d{sub 3}. In addition, bothmore » sCD4-gp120 and sCD4-gp120-mC3d{sub 3} bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d{sub 3} or sCD4-gp120-mC3d{sub 3} elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d{sub 3}-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d{sub 3} had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d.« less
Shah, A; Kumar, S; Simon, S D; Singh, D P; Kumar, A
2013-01-01
HIV-1 glycoprotein 120 (gp120) is known to cause neurotoxicity via several mechanisms including production of proinflammatory cytokines/chemokines and oxidative stress. Likewise, drug abuse is thought to have a direct impact on the pathology of HIV-associated neuroinflammation through the induction of proinflammatory cytokines/chemokines and oxidative stress. In the present study, we demonstrate that gp120 and methamphetamine (MA) causes apoptotic cell death by inducing oxidative stress through the cytochrome P450 (CYP) and NADPH oxidase (NOX) pathways. The results showed that both MA and gp120 induced reactive oxygen species (ROS) production in concentration- and time-dependent manners. The combination of gp120 and MA also induced CYP2E1 expression at both mRNA (1.7±0.2- and 2.8±0.3-fold in SVGA and primary astrocytes, respectively) and protein (1.3±0.1-fold in SVGA and 1.4±0.03-fold in primary astrocytes) levels, suggesting the involvement of CYP2E1 in ROS production. This was further confirmed by using a selective inhibitor of CYP2E1, diallylsulfide (DAS), and CYP2E1 knockdown using siRNA, which significantly reduced ROS production (30–60%). As the CYP pathway is known to be coupled with the NOX pathway, including Fenton–Weiss–Haber (FWH) reaction, we examined whether the NOX pathway is also involved in ROS production induced by either gp120 or MA. Our results showed that selective inhibitors of NOX, diphenyleneiodonium (DPI), and FWH reaction, deferoxamine (DFO), also significantly reduced ROS production. These findings were further confirmed using specific siRNAs against NOX2 and NOX4 (NADPH oxidase family). We then showed that gp120 and MA both induced apoptosis (caspase-3 activity and DNA lesion using TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick-end labeling) assay) and cell death. Furthermore, we showed that DAS, DPI, and DFO completely abolished apoptosis and cell death, suggesting the involvement of CYP and NOX pathways in ROS-mediated apoptotic cell death. In conclusion, this is the first report on the involvement of CYP and NOX pathways in gp120/MA-induced oxidative stress and apoptotic cell death in astrocytes, which has clinical implications in neurodegenerative diseases, including neuroAIDS. PMID:24113184
Gobbato, Nathália Brandão; de Souza, Flávia Castro Ribas; Fumagalli, Stella Bruna Napolitano; Lopes, Fernanda Degobbi Tenório Quirino dos Santos; Prado, Carla Máximo; Martins, Milton Arruda; Tibério, Iolanda de Fátima Lopes Calvo; Leick, Edna Aparecida
2013-01-01
Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-κB, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-κB positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response. PMID:24151607
Wrobel, Jagoda K; Wolff, Gretchen; Xiao, Rijin; Power, Ronan F; Toborek, Michal
2016-08-01
Various dietary agents can modulate tumor invasiveness. The current study explored whether selenoglycoproteins (SeGPs) extracted from selenium-enriched yeast affect tumor cell homing and growth in the brain. Mice were fed diets enriched with specific SeGPs (SeGP40 or SeGP65, 1 mg/kg Se each), glycoproteins (GP40 or GP65, 0.2-0.3 mg/kg Se each) or a control diet (0.2-0.3 mg/kg Se) for 12 weeks. Then, murine Lewis lung carcinoma cells were infused into the brain circulation. Analyses were performed at early (48 h) and late stages (3 weeks) post tumor cell infusion. Imaging of tumor progression in the brain revealed that mice fed SeGP65-enriched diet displayed diminished metastatic tumor growth, fewer extravasating tumor cells and smaller metastatic lesions. While administration of tumor cells resulted in a significant upregulation of adhesion molecules in the early stage of tumor progression, overexpression of VCAM-1 (vascular call adhesion molecule-1) and ALCAM (activated leukocyte cell adhesion molecule) messenger RNA (mRNA) was diminished in SeGP65 supplemented mice. Additionally, mice fed SeGP65 showed decreased expression of acetylated NF-κB p65, 48 h post tumor cell infusion. The results indicate that tumor progression in the brain can be modulated by specific SeGPs. Selenium-containing compounds were more effective than their glycoprotein controls, implicating selenium as a potential negative regulator of metastatic process.
Attar, Mayssa; Ling, Kah-Hiing John; Tang-Liu, Diane D-S; Neamati, Nouri; Lee, Vincent H L
2005-12-01
Cytochrome P450 3A (CYP3A) is an enzyme of paramount importance to drug metabolism. The expression and activity of CYP3A, an enzyme responsible for active androgen clearance, was investigated in the rabbit lacrimal gland. Analysis of CYP3A expression and activity was performed on lacrimal gland tissues obtained from naïve untreated and treated New Zealand White rabbits. For 5 days, treated rabbits received daily administration of vehicle or 0.1% or 1.0% dexamethasone, in the lower cul-de-sac of each eye. Changes in mRNA expression were monitored by real-time RT-PCR. Protein expression was confirmed by Western blot. Functional activity was measured by monitoring the metabolism of CYP3A probe substrates-namely, 7-benzyloxyquinoline (BQ) and [3H]testosterone. Cytochrome P450 heme protein was detected at a concentration of 44.6 picomoles/mg protein, along with its redox partner NADPH reductase and specifically CYP3A6 in the naïve rabbit lacrimal gland. Genes encoding CYP3A6, in addition to the pregnane-X-receptor (PXR) and P-glycoprotein (P-gp) were expressed in the untreated tissue. BQ dealkylation was measured in the naïve rabbit lacrimal gland at a rate of 14 +/- 7 picomoles/mg protein per minute. Changes in CYP3A6, P-gp, and androgen receptor mRNA expression levels were detected after dexamethasone treatment. In addition, dexamethasone treatment resulted in significant increases in BQ dealkylation and CYP3A6-mediated [3H]testosterone metabolism. Concomitant increases in CYP3A6-mediated hydroxylated testosterone metabolites were observed in the treated rabbits. Furthermore, ketoconazole, all-trans retinoic acid, and cyclosporine inhibited CYP3A6 mediated [3H]testosterone 6beta hydroxylation in a concentration-dependent manner, with IC50 ranging from 3.73 to 435 microM. The results demonstrate, for the first time, the expression and activity of CYP3A6 in the rabbit lacrimal gland. In addition, this pathway was shown to be subject to modulation by a commonly prescribed glucocorticoid and can be inhibited by known CYP3A inhibitors.
A Chimeric HIV-1 gp120 Fused with Vaccinia Virus 14K (A27) Protein as an HIV Immunogen
Vijayan, Aneesh; García-Arriaza, Juan; C. Raman, Suresh; Conesa, José Javier; Chichón, Francisco Javier; Santiago, César; Sorzano, Carlos Óscar S.; Carrascosa, José L.; Esteban, Mariano
2015-01-01
In the HIV vaccine field, there is a need to produce highly immunogenic forms of the Env protein with the capacity to trigger broad B and T-cell responses. Here, we report the generation and characterization of a chimeric HIV-1 gp120 protein (termed gp120-14K) by fusing gp120 from clade B with the vaccinia virus (VACV) 14K oligomeric protein (derived from A27L gene). Stable CHO cell lines expressing HIV-1 gp120-14K protein were generated and the protein purified was characterized by size exclusion chromatography, electron microscopy and binding to anti-Env antibodies. These approaches indicate that gp120-14K protein is oligomeric and reacts with a wide spectrum of HIV-1 neutralizing antibodies. Furthermore, in human monocyte-derived dendritic cells (moDCs), gp120-14K protein upregulates the levels of several proinflammatory cytokines and chemokines associated with Th1 innate immune responses (IL-1β, IFN-γ, IL-6, IL-8, IL-12, RANTES). Moreover, we showed in a murine model, that a heterologous prime/boost immunization protocol consisting of a DNA prime with a plasmid expressing gp120-14K protein followed by a boost with MVA-B [a recombinant modified vaccinia virus Ankara (MVA) expressing HIV-1 gp120, Gag, Pol and Nef antigens from clade B], generates stronger, more polyfunctional, and greater effector memory HIV-1-specific CD4+ and CD8+ T-cell immune responses, than immunization with DNA-gp120/MVA-B. The DNA/MVA protocol was superior to immunization with the combination of protein/MVA and the latter was superior to a prime/boost of MVA/MVA or protein/protein. In addition, these immunization protocols enhanced antibody responses against gp120 of the class IgG2a and IgG3, together favoring a Th1 humoral immune response. These results demonstrate that fusing HIV-1 gp120 with VACV 14K forms an oligomeric protein which is highly antigenic as it activates a Th1 innate immune response in human moDCs, and in vaccinated mice triggers polyfunctional HIV-1-specific adaptive and memory T-cell immune responses, as well as humoral responses. This novel HIV-1 gp120-14K immunogen might be considered as an HIV vaccine candidate for broad T and B-cell immune responses. PMID:26208356
Alexander, Jeff; Mendy, Jason; Vang, Lo; Avanzini, Jenny B.; Garduno, Fermin; Manayani, Darly J.; Ishioka, Glenn; Farness, Peggy; Ping, Li-Hua; Swanstrom, Ronald; Parks, Robert; Liao, Hua-Xin; Haynes, Barton F.; Montefiori, David C.; LaBranche, Celia; Smith, Jonathan; Gurwith, Marc; Mayall, Tim
2013-01-01
Background There is a well-acknowledged need for an effective AIDS vaccine that protects against HIV-1 infection or limits in vivo viral replication. The objective of these studies is to develop a replication-competent, vaccine vector based on the adenovirus serotype 4 (Ad4) virus expressing HIV-1 envelope (Env) 1086 clade C glycoprotein. Ad4 recombinant vectors expressing Env gp160 (Ad4Env160), Env gp140 (Ad4Env140), and Env gp120 (Ad4Env120) were evaluated. Methods The recombinant Ad4 vectors were generated with a full deletion of the E3 region of Ad4 to accommodate the env gene sequences. The vaccine candidates were assessed in vitro following infection of A549 cells for Env-specific protein expression and for posttranslational transport to the cell surface as monitored by the binding of broadly neutralizing antibodies (bNAbs). The capacity of the Ad4Env vaccines to induce humoral immunity was evaluated in rabbits for Env gp140 and V1V2-specific binding antibodies, and HIV-1 pseudovirus neutralization. Mice immunized with the Ad4Env160 vaccine were assessed for IFNγ T cell responses specific for overlapping Env peptide sets. Results Robust Env protein expression was confirmed by western blot analysis and recognition of cell surface Env gp160 by multiple bNAbs. Ad4Env vaccines induced humoral immune responses in rabbits that recognized Env 1086 gp140 and V1V2 polypeptide sequences derived from 1086 clade C, A244 clade AE, and gp70 V1V2 CASE A2 clade B fusion protein. The immune sera efficiently neutralized tier 1 clade C pseudovirus MW965.26 and neutralized the homologous and heterologous tier 2 pseudoviruses to a lesser extent. Env-specific T cell responses were also induced in mice following Ad4Env160 vector immunization. Conclusions The Ad4Env vaccine vectors express high levels of Env glycoprotein and induce both Env-specific humoral and cellular immunity thus supporting further development of this new Ad4 HIV-1 Env vaccine platform in Phase 1 clinical trials. PMID:24312658
The association of cigarette smoking with enhanced platelet inhibition by clopidogrel.
Bliden, Kevin P; Dichiara, Joseph; Lawal, Lookman; Singla, Anand; Antonino, Mark J; Baker, Brian A; Bailey, William L; Tantry, Udaya S; Gurbel, Paul A
2008-08-12
The purpose of this study was to examine the effect of cigarette smoking on the platelet response to clopidogrel. Response variability to clopidogrel therapy has been demonstrated. Clopidogrel is metabolically activated by several hepatic cytochrome P450 (CYP) isoenzymes, including CYP1A2. Cigarette smoking induces CYP1A2 and may, therefore, enhance the conversion of clopidogrel to its active metabolite. Among 259 consecutive patients undergoing elective coronary stenting; 120 were on chronic clopidogrel therapy and were not loaded; and 139 were clopidogrel naïve and were loaded with 600 mg. There were 104 current smokers (CS) and 155 nonsmokers (NS). The adenosine diphosphate (ADP)-stimulated platelet aggregation (PA) was assessed by conventional aggregometry. The ADP-stimulated total and active glycoprotein (GP) IIb/IIIa expression were assessed with flow cytometry. Low PA was defined as the lowest quartile of 5 micromol/l ADP-induced post-treatment PA. Current smokers on chronic clopidogrel therapy displayed significantly lower PA and ADP-stimulated active GP IIb/IIIa expression compared with NS (p < or = 0.0008 for both). Similarly, CS treated with 600 mg of clopidogrel displayed greater platelet inhibition and lower active GP IIb/IIIa expression compared with NS (p < or = 0.05). In a multivariate Cox regression analysis, current smoking was an independent predictor of low PA (p = 0.0001). Clopidogrel therapy in CS is associated with increased platelet inhibition and lower aggregation as compared with NS. The mechanism of the smoking effect deserves further study and may be an important cause of response variability to clopidogrel therapy.
Redox signaling via lipid raft clustering in homocysteine-induced injury of podocytes.
Zhang, Chun; Hu, Jun-Jun; Xia, Min; Boini, Krishna M; Brimson, Christopher; Li, Pin-Lan
2010-04-01
Our recent studies have indicated that hyperhomocysteinemia (hHcys) may induce podocyte damage, resulting in glomerulosclerosis. However, the molecular mechanisms mediating hHcys-induced podocyte injury are still poorly understood. In the present study, we first demonstrated that an intact NADPH oxidase system is present in podocytes as shown by detection of its membrane subunit (gp91(phox)) and cytosolic subunit (p47(phox)). Then, confocal microscopy showed that gp91(phox) and p47(phox) could be aggregated in lipid raft (LR) clusters in podocytes treated with homocysteine (Hcys), which were illustrated by their colocalization with cholera toxin B, a common LR marker. Different mechanistic LR disruptors, either methyl-beta-cyclodextrin (MCD) or filipin abolished such Hcys-induced formation of LR-gp91(phox) or LR-p47(phox) transmembrane signaling complexes. By flotation of detergent-resistant membrane fractions we found that gp91(phox) and p47(phox) were enriched in LR fractions upon Hcys stimulation, and such enrichment of NADPH oxidase subunits and increase in its enzyme activity were blocked by MCD or filipin. Functionally, disruption of LR clustering significantly attenuated Hcys-induced podocyte injury, as shown by their inhibitory effects on Hcys-decreased expression of slit diaphragm molecules such as nephrin and podocin. Similarly, Hcys-increased expression of desmin was also reduced by disruption of LR clustering. In addition, inhibition of such LR-associated redox signaling prevented cytoskeleton disarrangement and apoptosis induced by Hcys. It is concluded that NADPH oxidase subunits aggregation and consequent activation of this enzyme through LR clustering is an important molecular mechanism triggering oxidative injury of podocytes induced by Hcys. 2009 Elsevier B.V. All rights reserved.
Redox signaling via lipid raft clustering in homocysteine-induced injury of podocytes
Zhang, Chun; Hu, Jun-Jun; Xia, Min; Boini, Krishna M.; Brimson, Christopher; Li, Pin-Lan
2010-01-01
Our recent studies have indicated that hyperhomocysteinemia (hHcys) may induce podocyte damage, resulting in glomerulosclerosis. However, the molecular mechanisms mediating hHcys-induced podocyte injury are still poorly understood. In the present study, we first demonstrated that an intact NADPH oxidase system is present in podocytes as shown by detection of its membrane subunit (gp91phox) and cytosolic subunit (p47phox). Then, confocal microscopy showed that gp91phox and p47phox could be aggregated in lipid raft (LR) clusters in podocytes treated with homocysteine (Hcys), which were illustrated by their co-localization with cholera toxin B, a common LR marker. Different mechanistic LR disruptors, either methyl-β-cyclodextrin (MCD) or filipin abolished such Hcys-induced formation of LR-gp91phox or LR-p47phox transmembrane signaling complexes. By flotation of detergent-resistant membrane fractions we found that gp91phox and p47phox were enriched in LR fractions upon Hcys stimulation, and such enrichment of NADPH oxidase subunits and increase in its enzyme activity were blocked by MCD or filipin. Functionally, disruption of LR clustering significantly attenuated Hcys-induced podocyte injury, as shown by their inhibitory effects on Hcys-decreased expression of slit diaphragm molecules such as nephrin and podocin. Similarly, Hcys-increased expression of desmin was also reduced by disruption of LR clustering. In addition, inhibition of such LR-associated redox signaling prevented cytoskeleton disarrangement and apoptosis induced by Hcys. It is concluded that NADPH oxidase subunits aggregation and consequent activation of this enzyme through LR clustering is an important molecular mechanism triggering oxidative injury of podocytes induced by Hcys. PMID:20036696
Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arulanandam, Rozanne; Geletu, Mulu; Feracci, Helene
2010-03-10
Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealedmore » for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.« less
Kralova, Eva; Doka, Gabriel; Pivackova, Lenka; Srankova, Jasna; Kuracinova, Kristina; Janega, Pavol; Babal, Pavel; Klimas, Jan; Krenek, Peter
2015-10-01
In view of previously reported increased capacity for nitric oxide production, we suggested that l-arginine (ARG), the nitric oxide synthase (NOS) substrate, supplementation would improve cardiac function in isoproterenol (ISO)-induced heart failure. Male Wistar rats were treated with ISO for 8 days (5 mg/kg/day, i.p.) or vehicle. ARG was given to control (ARG) and ISO-treated (ISO+ARG) rats in water (0.4 g/kg/day). ISO administration was associated with 40% mortality, ventricular hypertrophy, decreased heart rate, left ventricular dysfunction, fibrosis and ECG signs of ischaemia. RT-PCR showed increased mRNA levels of cardiac hypertrophy marker atrial natriuretic peptide, but not BNP, decreased expression of myosin heavy chain isoform MYH6 and unaltered expression of pathological MYH7. ISO increased the protein levels of endothelial nitric oxide synthase, but at the same time it markedly up-regulated mRNA and protein levels of gp91phox, a catalytical subunit of superoxide-producing NADPH oxidase. Fibrosis was markedly increased by ISO. ARG treatment moderately ameliorated left ventricular dysfunction, but was without effect on cardiac hypertrophy and fibrosis. Combination of ISO and ARG led to a decrease in cav-1 expression, a further increase in MYH7 expression and a down-regulation of MYH6 that inversely correlated with gp91phox mRNA levels. Although ARG, at least partially, improved ISO-impaired basal left ventricular systolic function, it failed to reduce cardiac hypertrophy, fibrosis, oxidative stress and mortality. The protection of contractile performance might be related to increased capacity for nitric oxide production and the up-regulation of MYH7 which may compensate for the marked down-regulation of the major MYH6 isoform. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Ling; Lin Jianguo; Sun Yuliang
2006-08-01
Recombinant baculoviruses (rBV) expressing Ebola virus VP40 (rBV-VP40) or GP (rBV-GP) proteins were generated. Infection of Sf9 insect cells by rBV-VP40 led to assembly and budding of filamentous particles from the cell surface as shown by electron microscopy. Ebola virus-like particles (VLPs) were produced by coinfection of Sf9 cells with rBV-VP40 and rBV-GP, and incorporation of Ebola GP into VLPs was demonstrated by SDS-PAGE and Western blot analysis. Recombinant baculovirus infection of insect cells yielded high levels of VLPs, which were shown to stimulate cytokine secretion from human dendritic cells similar to VLPs produced in mammalian cells. The immunogenicity ofmore » Ebola VLPs produced in insect cells was evaluated by immunization of mice. Analysis of antibody responses showed that most of the GP-specific antibodies were of the IgG2a subtype, while no significant level of IgG1 subtype antibodies specific for GP was induced, indicating the induction of a Th1-biased immune response. Furthermore, sera from Ebola VLP immunized mice were able to block infection by Ebola GP pseudotyped HIV virus in a single round infection assay, indicating that a neutralizing antibody against the Ebola GP protein was induced. These results show that production of Ebola VLPs in insect cells using recombinant baculoviruses represents a promising approach for vaccine development against Ebola virus infection.« less
Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis
2009-01-01
The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of HIV-1 protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-gp and MRP2, are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair™) and zafirlukast (Accolate™), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 μM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [3H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 mins post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419
Abdullahi, Wazir; Davis, Thomas P; Ronaldson, Patrick T
2017-07-01
Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis.
Mittal, Rahul; Prasadarao, Nemani V
2011-11-22
Despite the fundamental function of neutrophils (polymorphonuclear leukocytes (PMNs)) in innate immunity, their role in Escherichia coli K1 (EC-K1) -induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1 infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by downregulating rac1, rac2 and gp91(phox) transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface-expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.
gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis
Mittal, Rahul; Prasadarao, Nemani V.
2012-01-01
Despite the fundamental function of neutrophils (PMNs) in innate immunity, their role in Escherichia coli K1 (EC-K1) induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by down regulating rac1, rac2 and gp91phox transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis. PMID:22109526
Cummins, Nathan W.; Klicpera, Anna; Sainski, Amy M.; Bren, Gary D.; Khosla, Sundeep; Westendorf, Jennifer J.; Badley, Andrew D.
2011-01-01
Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05), which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism. PMID:21931863
Roles of unphosphorylated STATs in signaling.
Yang, Jinbo; Stark, George R
2008-04-01
The seven members of the signal transducer and activator of transcription (STAT) family of transcription factors are activated in response to many different cytokines and growth factors by phosphorylation of specific tyrosine residues. The STAT1 and STAT3 genes are specific targets of activated STATs 1 and 3, respectively, resulting in large increases in the levels of these unphosphorylated STATs (U-STATs) in response to the interferons (STAT1) or ligands that active gp130, such as IL-6 (STAT3). U-STATs drive gene expression by novel mechanisms distinct from those used by phosphorylated STAT (P-STAT) dimers. In this review, we discuss the roles of U-STATs in transcription and regulation of gene expression.
Shi, Guang-Xia; Wang, Xue-Rui; Yan, Chao-Qun; He, Tian; Yang, Jing-Wen; Zeng, Xiang-Hong; Xu, Qian; Zhu, Wen; Du, Si-Qi; Liu, Cun-Zhi
2015-12-10
In the current study, we aimed to investigate whether NADPH oxidase, a major ROS-producing enzyme, was involved in the antioxidant effect of acupuncture on cognitive impairment after cerebral ischaemia. The cognitive function, infract size, neuron cell loss, level of superoxide anion and expression of NADPH oxidase subunit in hippocampus of two-vessel occlusion (2VO) rats were determined after 2-week acupuncture. Furthermore, the cognitive function and production of O2(-) were determined in the presence and absence of NADPH oxidase agonist (TBCA) and antagonist (Apocynin). The effect of acupuncture on cognitive function after cerebral ischaemia in gp91phox-KO mice was evaluated by Morris water maze. Acupuncture reduced infarct size, attenuated overproduction of O2(-), and reversed consequential cognitive impairment and neuron cell loss in 2VO rats. The elevations of gp91phox and p47phox after 2VO were significantly decreased after acupuncture treatment. However, no differences of gp91phox mRNA were found among any experimental groups. Furthermore, these beneficial effects were reversed by TBCA, whereas apocynin mimicked the effect of acupuncture by improving cognitive function and decreasing O2(-) generation. Acupuncture failed to improve the memory impairment in gp91phox KO mice. Full function of the NADPH oxidase enzyme plays an important role in neuroprotective effects against cognitive impairment via inhibition of NAPDH oxidase-mediated oxidative stress.
Rincón, J; Correia, D; Arcaya, J L; Finol, E; Fernández, A; Pérez, M; Yaguas, K; Talavera, E; Chávez, M; Summer, R; Romero, F
2015-03-01
Activation of the renin-angiotensin system (RAS), renal oxidative stress and inflammation are constantly present in experimental hypertension. Nitric oxide (NO) inhibition with N(w)-nitro-L-arginine methyl ester (L-NAME) has previously been reported to produce hypertension, increased expression of Angiotensin II (Ang II) and renal dysfunction. The use of Losartan, an Ang II type 1 receptor (AT1R) antagonist has proven to be effective reducing hypertension and renal damage; however, the mechanism by which AT1R blockade reduced kidney injury and normalizes blood pressure in this experimental model is still complete unknown. The current study was designed to test the hypothesis that AT1R activation promotes renal NAD(P)H oxidase up-regulation, oxidative stress and cytokine production during L-NAME induced-hypertension. Male Sprague-Dawley rats were distributed in three groups: L-NAME, receiving 70 mg/100ml of L-NAME, L-NAME+Los, receiving 70 mg/100ml of L-NAME and 40 mg/kg/day of Losartan; and Controls, receiving water instead of L-NAME or L-NAME and Losartan. After two weeks, L-NAME induced high blood pressure, renal overexpression of AT1R, NAD(P)H oxidase sub-units gp91, p22 and p47, increased levels of oxidative stress, interleukin-6 (IL-6) and interleukin-17 (IL-17). Also, we found increased renal accumulation of lymphocytes and macrophages. Losartan treatment abolished the renal expression of gp91, p22, p47, oxidative stress and reduced NF-κB activation and IL-6 expression. These findings indicate that NO induced-hypertension is associated with up-regulation of NADPH oxidase, oxidative stress production and overexpression of key inflammatory mediators. These events are associated with up-regulation of AT1R, as evidenced by their reversal with AT1R blocker treatment. Copyright © 2015 Elsevier Inc. All rights reserved.
Advances in PET Imaging of P-Glycoprotein Function at the Blood-Brain Barrier
2012-01-01
Efflux transporter P-glycoprotein (P-gp) at the blood-brain barrier (BBB) restricts substrate compounds from entering the brain and may thus contribute to pharmacoresistance observed in patient groups with refractory epilepsy and HIV. Altered P-gp function has also been implicated in neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Positron emission tomography (PET), a molecular imaging modality, has become a promising method to study the role of P-gp at the BBB. The first PET study of P-gp function was conducted in 1998, and during the past 15 years two main categories of P-gp PET tracers have been investigated: tracers that are substrates of P-gp efflux and tracers that are inhibitors of P-gp function. PET, as a noninvasive imaging technique, allows translational research. Examples of this are preclinical investigations of P-gp function before and after administering P-gp modulating drugs, investigations in various animal and disease models, and clinical investigations regarding disease and aging. The objective of the present review is to give an overview of available PET radiotracers for studies of P-gp and to discuss how such studies can be designed. Further, the review summarizes results from PET studies of P-gp function in different central nervous system disorders. PMID:23421673
De Ravin, Suk See; Reik, Andreas; Liu, Pei-Qi; Li, Linhong; Wu, Xiaolin; Su, Ling; Raley, Castle; Theobald, Narda; Choi, Uimook; Song, Alexander H; Chan, Andy; Pearl, Jocelynn R; Paschon, David E; Lee, Janet; Newcombe, Hannah; Koontz, Sherry; Sweeney, Colin; Shivak, David A; Zarember, Kol A; Peshwa, Madhusudan V; Gregory, Philip D; Urnov, Fyodor D; Malech, Harry L
2016-04-01
Gene therapy with genetically modified human CD34(+) hematopoietic stem and progenitor cells (HSPCs) may be safer using targeted integration (TI) of transgenes into a genomic 'safe harbor' site rather than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno-associated virus (AAV) 6 delivery of donor constructs in human HSPCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58% Venus(+) HSPCs with 6-16% human cell marking were observed following engraftment into mice. In HSPCs from patients with X-linked chronic granulomatous disease (X-CGD), caused by mutations in the gp91phox subunit of the NADPH oxidase, TI of a gp91phox transgene into AAVS1 resulted in ∼15% gp91phox expression and increased NADPH oxidase activity in ex vivo-derived neutrophils. In mice transplanted with corrected HSPCs, 4-11% of human cells in the bone marrow expressed gp91phox. This method for TI into AAVS1 may be broadly applicable to correction of other monogenic diseases.
Khattar, Sunil K; DeVico, Anthony L; LaBranche, Celia C; Panda, Aruna; Montefiori, David C; Samal, Siba K
2016-02-01
Newcastle disease virus (NDV) expressing HIV-1 BaL gp160 was evaluated either alone or with monomeric BaL gp120 and BaL SOSIP gp140 protein in a prime-boost combination in guinea pigs to enhance envelope (Env)-specific humoral and mucosal immune responses. We showed that a regimen consisting of an NDV prime followed by a protein boost elicited stronger serum and mucosal Th-1-biased IgG responses and neutralizing antibody responses than NDV-only immunizations. Additionally, these responses were higher after the gp120 than after the SOSIP gp140 protein boost. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Jornot, L; Junod, A F
1997-01-01
Human selenium-dependent glutathione peroxidase (GP) is implicated as a mechanism of resistance against oxygen free radicals. The 5' flanking sequence upstream from the coding region of GP contained an oxygen-responsive element termed ORE1 that is responsive to hypoxia, as well as several copies of the activator protein-1 (AP-1)- and AP-1-like-binding sites. In this study, we sought to define the molecular events that lead to GP gene transcription in response to hyperoxia in human umbilical-vein endothelial cells, and asked whether such induction is mimicked and sustained by activation of protein kinase C (PKC) by phorbol esters. Treatment of cells with 100 nM phorbol 12,13-dibutyrate (PdBu) induced a delayed (24-48 h) but significant (2-fold) increase in steady-state GP mRNA levels. Steady-state GP mRNA levels also rose after exposure to 95% O2, again after considerable delay (48-72 h). For both PdBu and oxygen, induction was transcriptionally regulated, as demonstrated by nuclear run-on experiments. The simulations by PdBu and oxygen were additive. In contrast with PdBu, hyperoxia did not stimulate translocation of PKC from the cytosol to the particulate fraction, although the specific activity of both cytosolic and particulate-associated PKC was increased 2-fold in cells exposed to 95% O2 for 5 days. In addition, gel mobility-shift assays using double-stranded tumour-promoting-agent-responsive element (TRE) and nuclear extracts derived from phorbol- and oxygen-treated cells revealed that PdBu, but not hyperoxia, increased AP-1 DNA-binding activity. On the other hand, the up-regulation of GP expression by oxygen could not be accounted for by the ORE1 core sequence, since no specific protein-DNA binding activity could be detected using nuclear extracts from hyperoxic cells and ORE1. Taken together, these results suggest that there may be different molecular mechanisms controlling GP expression. After exposure to PdBu, GP undergoes transcriptional activation via a process that can be readily explained by a classic AP-1 interaction with the TRE sites in the GP promoter. During hyperoxia, GP also undergoes transcriptional activity, but via a process that appears to involve neither TRE nor ORE1. PMID:9337858
Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai
2014-01-01
Background: Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. Materials and Methods: The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. Results: The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. Conclusion: This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer. PMID:25298673
Kaewpiboon, Chutima; Winayanuwattikun, Pakorn; Yongvanich, Tikamporn; Phuwapraisirisan, Preecha; Assavalapsakul, Wanchai
2014-08-01
Cancer cells have the ability to develop resistance to chemotherapy drugs, which then leads to a reduced effectiveness and success of the treatment. Multidrug resistance (MDR) involves the resistance in the same cell/tissue to a diverse range of drugs of different structures. One of the characteristics of MDR is an overexpression of P-glycoprotein (P-gp), which causes the efflux of the accumulated drug out of the cell. The MDR human non-small cell lung carcinoma cell line with a high P-gp expression level (A549RT-eto) was used to investigate the bioactive compounds capable of reversing the etoposide resistance in this cell line. The leaves of Tiliacora triandra were sequentially extracted with hexane, dichloromethane, methanol and water. Only the hexane extract reduced the etoposide resistance of the A549RT-eto cell line, and was further fractionated by column chromatography using the TLC-pattern and the restoration of etoposide sensitivity as the selection criteria. The obtained active fraction (F22) was found by nuclear magnetic resonance and gas chromatography-mass spectroscopy analyses to be comprised of a 49.5:19.6:30.9 (w/w/w) mixture of hexadecanoic: octadecanoic acid: (Z)-6-octadecenoic acids. This stoichiometric mixture was recreated using pure fatty acids (MSFA) and gave a similar sensitization to etoposide and enhanced the relative rate of rhodamine-123 accumulation to a similar extent as F22, supporting the action via reducing P-gp activity. In contrast, the fatty acids alone did not show this effect. This is the first report of the biological activity from the leaves of T. triandra as a potential source of a novel chemosensitizer.
Loaiza, Brenda; Hernández-Gutierrez, Salomon; Montesinos, Juan Jose; Valverde, Mahara; Rojas, Emilio
2016-02-01
Nuclear transcription factor kappa B (NF-κB) is associated with many types of refractory cancer. However, despite multiple strategies to treat cancer and novel target drugs, multidrug resistance still causes relapses. The best-characterized mechanism responsible for multidrug resistance involves the expression of the MDR-1 gene product, P-glycoprotein (P-gp). Because the direct inhibition of this protein is very toxic, other methods of multidrug resistance (MDR) regulation have been proposed. The MDR-1 promoter sequence contains a κB site, which is recognized by NF-κB. The aim of this work was to characterize whether NF-κB modulation changes the response of bone marrow-derived cells (BMDCs) to chemotherapy. We exposed BMDCs to etoposide and doxorubicin, two of the most used antineoplastic drugs. BMDCs presented high tolerance to these drugs, which correlated with high intrinsic P-gp activity and strong protein expression of NF-κB. To determine the mechanism behind the poor sensitivity of BMDCs to chemotherapy, we blocked the activity of the heterodimer protein NF-κB using the pharmacological inhibitor Bay 11-7085 and through the transfection of an adenovirus negative mutant of I kappa B alpha. The multidrug resistance phenotype of BMDCs was reversed by inhibiting the NF-κB pathway, and this change was accompanied by a decrease in P-gp activity. NF-κB is a possible target for improving the antineoplastic response. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.
Chinchole, Mahadev; Pathak, Rajesh Kumar; Singh, Uma M; Kumar, Anil
2017-08-01
Finger millet grains contain exceptionally high levels of calcium which is much higher compared to other cereals and millets. Since calcium is an important macronutrient in human diet, it is necessary to explore the molecular basis of calcium accumulation in the seeds of finger millet. CIPK is a calcium sensor gene, having role in activating Ca 2+ exchanger protein by interaction with CBL proteins. To know the role of EcCIPK24 gene in seed Ca 2+ accumulation, sequence is retrieved from the transcriptome data of two finger millet genotypes GP1 (low Ca 2+ ) and GP45 (high Ca 2+ ), and the expression was determined through qRT-PCR. The higher expression was found in root, shoot, leaf and developing spike tissue of GP45 compared to GP1; structural analysis showed difference of nine SNPs and one extra beta sheet domain as well as differences in vacuolar localization was predicted; besides, the variation in amino acid composition among both the genotypes was also investigated. Molecular modeling and docking studies revealed that both EcCBL4 and EcCBL10 showed strong binding affinity with EcCIPK24 (GP1) compared to EcCIPK24 (GP45). It indicates a genotypic structural variation, which not only affects the affinity but also calcium transport efficiency after interaction of CIPK-CBL with calcium exchanger ( Ec CAX1b) to pull calcium in the vacuole. Based on the expression and in silico study, it can be suggested that by activating EcCAX1b protein, EcCIPK24 plays an important role in high seed Ca 2+ accumulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papaneri, Amy B.; Wirblich, Christoph; Cann, Jennifer A.
We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RV{Delta}G-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RV{Delta}G-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RV{Delta}G-GP in the brain bymore » quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RV{Delta}G-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.« less
Ji, Yang; Lu, Yuan; Yan, Yishu; Liu, Xinxin; Su, Nan; Zhang, Chong; Bi, Shengli; Xing, Xin-Hui
2018-03-03
The Ebola hemorrhagic fever caused by Ebola virus is an extremely dangerous disease, and effective therapeutic agents are still lacking. Platforms for the efficient production of vaccines are crucial to ensure quick response against an Ebola virus outbreak. Ebola virus glycoprotein (EbolaGP) on the virion surface is responsible for membrane binding and virus entry, thus becoming the key target for vaccine development. However, heterologous expression of this protein still faces engineering challenges such as low production levels and insoluble aggregation. Here, the authors design and compare various fusion strategies, attaching great importance to the solubility-enhancing effect, and tag removal process. It is found that a C-terminal intein-based tag greatly enhances the solubility of EbolaGP and allows one-step chromatographic purification of the untagged EbolaGP through thiol-catalyzed self-cleavage. The purified untagged EbolaGP alone or with Freund's adjuvant are highly immunogenic, as confirmed in a mouse model. Consequently, the present study puts forward a new strategy for the efficient and soluble expression of untagged immunogenic EbolaGP. The intein-based protein fusion approach may be of importance for the large-scale production of Ebola virus subunit vaccine. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coelho, J C; Tucker, R; Mattoon, J; Roberts, G; Waiting, D K; Mealey, K L
2009-10-01
P-glycoprotein (P-gp), the product of ABCB1 gene, is thought to play a role in the biliary excretion of a variety of drugs, but specific studies in dogs have not been performed. Because a number of endogenous (ABCB1 polymorphisms) and exogenous (pharmacological P-gp inhibition) factors can interfere with normal P-gp function, a better understanding of P-gp's role in biliary drug excretion is crucial in preventing adverse drug reactions and drug-drug interactions in dogs. The objectives of this study were to compare biliary excretion of technetium-99m-sestamibi ((99m)Tc-MIBI), a radio-labelled P-gp substrate, in wild-type dogs (ABCB1 wild/wild), and dogs with intrinsic and extrinsic deficiencies in P-gp function. Dogs with intrinsic P-gp deficiency included ABCB1 mut/mut dogs, and dogs with presumed intermediate P-gp phenotype (ABCB1 mut/wild). Dogs with extrinsic P-gp deficiency were considered to be ABCB1 wild/wild dogs treated with the P-gp inhibitor ketoconazole (5 mg/kg PO q12h x 9 doses). Results from this study indicate that ABCB1 mut/mut dogs have significantly decreased biliary excretion of (99m)Tc-MIBI compared with ABCB1 wild/wild dogs. Treatment with ketoconazole significantly decreased biliary excretion of (99m)Tc-MIBI in ABCB1 wild/wild dogs. P-gp appears to play an important role in the biliary excretion of (99m)Tc-MIBI in dogs. It is likely that concurrent administration of a P-gp inhibitor such as ketoconazole will decrease P-gp-mediated biliary excretion of other substrate drugs as well.
Bai, Yong-Ping; Hu, Chang-Ping; Yuan, Qiong; Peng, Jun; Shi, Rui-Zheng; Yang, Tian-Lun; Cao, Ze-Hong; Li, Yuan-Jian; Cheng, Guangjie; Zhang, Guo-Gang
2013-01-01
Myeloperoxidase (MPO) is an important enzyme involved in the genesis and development of atherosclerosis. Vascular peroxidase 1 (VPO1) is a newly discovered member of the peroxidase family that is mainly expressed in vascular endothelial cells and smooth muscle cells and has structural characteristics and biological activity similar to those of MPO. Our specific aims were to explore the effects of VPO1 on endothelial cell apoptosis induced by oxidized low-density lipoprotein (ox-LDL) and the underlying mechanisms. The results showed that ox-LDL induced endothelial cell apoptosis and the expression of VPO1 in endothelial cells in a concentration- and time-dependent manner concomitant with increased intracellular reactive oxygen species (ROS) and hypochlorous acid (HOCl) generation, and up-regulated protein expression of the NADPH oxidase gp91phox subunit and phosphorylation of p38 MAPK. All these effects of ox-LDL were inhibited by VPO1 gene silencing and NADPH oxidase gp91phox subunit gene silencing or by pretreatment with the NADPH oxidase inhibitor apocynin or diphenyliodonium. The p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor DEVD-CHO significantly inhibited ox-LDL-induced endothelial cell apoptosis, but had no effect on intracellular ROS and HOCl generation or the expression of NADPH oxidase gp91phox subunit or VPO1. Collectively, these findings suggest for the first time that VPO1 plays a critical role in ox-LDL-induced endothelial cell apoptosis and that there is a positive feedback loop between VPO1/HOCl and the now-accepted dogma that the NADPH oxidase/ROS/p38 MAPK/caspase-3 pathway is involved in ox-LDL-induced endothelial cell apoptosis. PMID:21820048
Nishigaki, Kazuo; Hanson, Charlotte; Jelacic, Tanya; Thompson, Delores; Ruscetti, Sandra
2005-01-01
Friend spleen focus-forming virus (SFFV) causes rapid erythroleukemia in mice due to expression of its unique envelope glycoprotein, gp55. Erythroid cells expressing SFFV gp55 proliferate in the absence of their normal regulator erythropoietin (Epo) because of constitutive activation of Epo signal transduction pathways. Although SFFV infects many cell types, deregulation of cell growth occurs only when SFFV infects erythroid cells, suggesting that these cells express unique proteins that the virus requires to mediate its biological effects. Not only do erythroid cells express the Epo receptor (EpoR), but those from mice susceptible to SFFV-induced erythroleukemia also express a short form of the receptor tyrosine kinase Stk (sf-Stk). In erythroid cells, SFFV gp55 interacts with the EpoR complex and sf-Stk, leading to activation of the kinase and constitutive activation of signal transducing molecules. In this study, we demonstrate that SFFV gp55 can also deregulate the growth of nonerythroid cells when it is coexpressed with sf-Stk. Expression of SFFV gp55 in rodent fibroblasts engineered to express sf-Stk induced their transformation, as demonstrated by focus formation and anchorage-independent growth in vitro. This transformation by SFFV gp55 requires the kinase activity of sf-Stk and the presence of its extracellular domain but not expression of the EpoR or the tyrosine kinase Jak2, which is required for activation of signal transduction pathways through the EpoR. Thus, expression of SFFV gp55 in nonerythroid cells coexpressing sf-Stk results in their uncontrolled growth, demonstrating a previously unrecognized mechanism for retrovirus transformation of rodent fibroblasts and providing insight into SFFV-induced disease. PMID:16223879
Biochemical properties of the nerve growth factor-inducible large external (NILE) glycoprotein.
Salton, S R; Shelanski, M L; Greene, L A
1983-12-01
In the presence of nerve growth factor (NGF), PC12 pheochromocytoma cells undergo neuronal differentiation with a concomitant 3- to 5-fold increase in the specific level of an Mr = 230,000 cell surface component named the NGF-inducible large external, or NILE, glycoprotein. Antisera raised against NILE glycoprotein (NILE GP) purified from PC12 cells have been found to recognize most, if not all, neurons derived from the peripheral and central nervous systems. In the current studies several of the biochemical properties of NILE GP were investigated. NILE GP was found to be phosphorylated in NGF-treated and -untreated PC12 cells and in cultured rat sympathetic neurons. The phosphate moiety of NILE GP is almost completely alkali labile, suggesting that phosphoserine groups predominate. Immunoprecipitation experiments revealed that incorporation of [32P]phosphate into NILE GP relative to total PC12 cell phosphoprotein was not significantly altered at 12 and 24 hr of NGF treatment but was enhanced 3-fold after 7 days and up to 5-fold after 2 to 3 weeks of NGF exposure. These changes in phosphorylated NILE GP paralleled, and therefore appeared to be mainly a consequence of, the NGF-induced increase in total cellular levels of NILE GP. By two-dimensional gel analysis, anti-NILE GP selectively immunoprecipitated two NGF-inducible spots (apparent Mr = 230,000; pI = 6.4 to 6.6) from PC12 cells labeled with either [3H] fucose, [35S]methionine, or [32P]phosphate. Anti-NILE GP immunoprecipitated a single band (apparent Mr = 205,000) from extracts of rat brain labeled with [3H] glucosamine. This confirms the previously established apparent molecular weight difference between central and peripheral NILE GP cross-reactive material. When PC12 cells, cerebellar cultures, and cultured cerebral cortex were treated with tunicamycin and labeled with [35S]methionine, nonglycosylated bands each with Mr = 160,000 were immunoprecipitated, implying that the differences in the mobilities on sodium dodecyl sulfate gels of cross-reactive NILE GP from different tissues is due to variation in glycosylation rather than to large differences in apoprotein structure. Prolonged treatment of PC12 cells with trypsin produced an immunoreactive fragment of NILE GP of apparent Mr = 28,000 that was phosphorylated but not glycosylated, and that remained in the membrane. NILE GP remained predominantly membrane associated under a variety of aqueous extraction conditions, suggesting that it is an integral membrane protein.
Template-directed synthesis on the pentanucleotide CpCpGpCpC
NASA Technical Reports Server (NTRS)
Inoue, T.; Joyce, G. F.; Grzeskowiak, K.; Orgel, L. E.; Brown, J. M.; Reese, C. B.
1984-01-01
Experiments in which CpCpGpCpC is used as a template to facilitate the co-oligomerization of 2-MeImpG and 2-MeImpC are described. It is shown that 3' to 5' prime-linked pGpGpCpGpG, whose sequence is complementary to that of the template, is substantially the most adundant pentameric product of the template-directed reaction. The yield of pGpGpCpGpG is never large (less than 20 percent), presumably becauase off-template reactions consume template-directed products. Thus pGpGpCpGpG is converted to the various isomers of G5C and G4C2 by off-template terminal addition of G or C. The 3' to 5' isomer of GpG is elongated on the template to give GpGpC, GpGpCpG, and GpGpCpGpG, while the 2' to 5' isomer does not initiate the synthesis of detectable amounts of longer oligomers.
Satisfaction in Older Persons and General Practitioners during the Implementation of Integrated Care
Caljouw, Monique A. A.; de Waard, Claudia S.; Wind, Annet W.; Gussekloo, Jacobijn
2016-01-01
Background Integrated care for older persons with complex care needs is widely advocated. Particularly professionals and policy makers have positive expectations. Care outcome results are ambiguous. Receiver and provider satisfaction is relevant but still poorly understood. Methods During implementation of integrated care in residential homes (The MOVIT project), we compared general satisfaction and satisfaction with specific aspects of General Practitioner (GP) care in older persons and GPs before (cohort I) and after at least 12 months of implementation (cohort II). Results The general satisfaction score for GP care given by older persons does not change (Cohort I (n = 762) mean score 8.0 (IQR:7.0–9.0) vs. Cohort II (n = 505) mean score 8.0 (IQR:7.0–8.0);P = 0.01). Expressions of general satisfaction in GPs do not show consistent change (Cohort I (n = 87) vs Cohort II (n = 66), percentage satisfied about; role as GP, 56% vs 67%;P = 0.194, ability to provide personal care, 60% vs 67%;P = 0.038, quality of care, 54% vs 62%;P = 0.316). Satisfaction in older persons about some specific aspects of care do show change; GP-patient relationship, points 61.6 vs 63.3;P = 0.001, willingness to talk about mistakes, score 3.47 vs 3.73;P = 0.001, information received about drugs, score 2.79 vs 2.46;P = 0.002. GPs also report changes in specific aspects: percentage satisfied about multidisciplinary meetings; occurrence, 21% vs 53%;P = <0.001, GP presence, 12% vs 41%;P = <0.001, and participation, 29% vs.51%;P = 0.046. Conclusion General satisfaction about care received and provided shows no consistent change in older persons and GPs during the implementation of integrated care. Specific changes in satisfaction are found. These show an emphasis on inter-personal aspects in older persons and organizational aspects in GPs. PMID:27737012
Kesby, James P.; Hubbard, David T.; Markou, Athina; Semenova, Svetlana
2012-01-01
Methamphetamine abuse and human immunodeficiency virus (HIV) infection induce neuropathological changes in corticolimbic brain areas involved in reward and cognitive function. Little is known about the combined effects of methamphetamine and HIV infection on cognitive and reward processes. The HIV/gp120 protein induces neurodegeneration in mice, similar to HIV-induced pathology in humans. We investigated the effects of gp120 expression on associative learning, preference for methamphetamine and non-drug reinforcers, and sensitivity to the conditioned rewarding properties of methamphetamine in transgenic (tg) mice expressing HIV/gp120 protein (gp120-tg). gp120-tg mice learned the operant response for food at the same rate as non-tg mice. In the two-bottle choice procedure with restricted access to drugs, gp120-tg mice exhibited greater preference for methamphetamine and saccharin than non-tg mice, whereas preference for quinine was similar between genotypes. Under conditions of unrestricted access to methamphetamine, the mice exhibited a decreased preference for increasing methamphetamine concentrations. However, male gp120-tg mice showed a decreased preference for methamphetamine at lower concentrations than non-tg male mice. gp120-tg mice developed methamphetamine-induced conditioned place preference at lower methamphetamine doses compared with non-tg mice. No differences in methamphetamine pharmacokinetics were found between genotypes. These results indicate that gp120-tg mice exhibit no deficits in associative learning or reward/motivational function for a natural reinforcer. Interestingly, gp120 expression resulted in increased preference for methamphetamine and a highly palatable non-drug reinforcer (saccharin) and increased sensitivity to methamphetamine-induced conditioned reward. These data suggest that HIV-positive individuals may have increased sensitivity to methamphetamine, leading to high methamphetamine abuse potential in this population. PMID:23252824
Cipriani, Sabrina; Mencarelli, Andrea; Chini, Maria Giovanna; Distrutti, Eleonora; Renga, Barbara; Bifulco, Giuseppe; Baldelli, Franco; Donini, Annibale; Fiorucci, Stefano
2011-01-01
Background GP-BAR1, a member G protein coupled receptor superfamily, is a cell surface bile acid-activated receptor highly expressed in the ileum and colon. In monocytes, ligation of GP-BAR1 by secondary bile acids results in a cAMP-dependent attenuation of cytokine generation. Aims To investigate the role GP-BAR1 in regulating intestinal homeostasis and inflammation-driven immune dysfunction in rodent models of colitis. Methods Colitis was induced in wild type and GP-BAR1−/− mice by DSS and TNBS administration. Potential GP-BAR1 agonists were identified by in silico screening and computational docking studies. Results GP-BAR1−/− mice develop an abnormal morphology of colonic mucous cells and an altered molecular architecture of epithelial tight junctions with increased expression and abnormal subcellular distribution of zonulin 1 resulting in increased intestinal permeability and susceptibility to develop severe colitis in response to DSS at early stage of life. By in silico screening and docking studies we identified ciprofloxacin as a GP-BAR1 ligand. In monocytes, ciprofloxacin increases cAMP concentrations and attenuates TNFα release induced by TLR4 ligation in a GP-BAR1 dependent manner. Treating mice rendered colitic by TNBS with ciprofloxacin and oleanolic acid, a well characterized GP-BAR1 ligand, abrogates signs and symptoms of colitis. Colonic expression of GP-BAR1 mRNA increases in rodent models of colitis and tissues from Crohn's disease patients. Flow cytometry analysis demonstrates that ≈90% of CD14+ cells isolated from the lamina propria of TNBS-treated mice stained positively for GP-BAR1. Conclusions GP-BAR1 regulates intestinal barrier structure. Its expression increases in rodent models of colitis and Crohn's disease. Ciprofloxacin is a GP-BAR1 ligand. PMID:22046243
Brandt, Moritz; Garlapati, Venkata; Oelze, Matthias; Sotiriou, Efthymios; Knorr, Maike; Kröller-Schön, Swenja; Kossmann, Sabine; Schönfelder, Tanja; Morawietz, Henning; Schulz, Eberhard; Schultheiss, Heinz-Peter; Daiber, Andreas; Münzel, Thomas; Wenzel, Philip
2016-01-01
Alcoholic cardiomyopathy (ACM) resulting from excess alcohol consumption is an important cause of heart failure (HF). Although it is assumed that the cardiotoxicity of the ethanol (EtOH)-metabolite acetaldehyde (ACA) is central for its development and progression, the exact mechanisms remain obscure. Murine cardiomyocytes (CMs) exposed to ACA or EtOH showed increased superoxide (O2•−) levels and decreased mitochondrial polarization, both being normalized by NADPH oxidase (NOX) inhibition. C57BL/6 mice and mice deficient for the ACA-degrading enzyme mitochondrial aldehyde dehydrogenase (ALDH-2−/−) were fed a 2% EtOH diet for 5 weeks creating an ACA-overload. 2% EtOH-fed ALDH-2−/− mice exhibited a decreased cardiac function, increased heart-to-body and lung-to-body weight ratios, increased cardiac levels of the lipid peroxidation product malondialdehyde (MDA) as well as increased NOX activity and NOX2/glycoprotein 91phox (NOX2/gp91phox) subunit expression compared to 2% EtOH-fed C57BL/6 mice. Echocardiography revealed that ALDH-2−/−/gp91phox−/− mice were protected from ACA-overload-induced HF after 5 weeks of 2% EtOH-diet, demonstrating that NOX2-derived O2•− contributes to the development of ACM. Translated to human pathophysiology, we found increased gp91phox expression in endomyocardial biopsies of ACM patients. In conclusion, ACM is promoted by ACA-driven mitochondrial dysfunction and can be improved by ablation of NOX2/gp91phox. NOX2/gp91phox therefore might be a potential pharmacological target to treat ACM. PMID:27624556
Reynard, O.; Mokhonov, V.; Mokhonova, E.; Leung, J.; Page, A.; Mateo, M.; Pyankova, O.; Georges-Courbot, M. C.; Raoul, H.; Khromykh, A. A.
2011-01-01
Pre- or postexposure treatments against the filoviral hemorrhagic fevers are currently not available for human use. We evaluated, in a guinea pig model, the immunogenic potential of Kunjin virus (KUN)–derived replicons as a vaccine candidate against Ebola virus (EBOV). Virus like particles (VLPs) containing KUN replicons expressing EBOV wild-type glycoprotein GP, membrane anchor-truncated GP (GP/Ctr), and mutated GP (D637L) with enhanced shedding capacity were generated and assayed for their protective efficacy. Immunization with KUN VLPs expressing full-length wild-type and D637L-mutated GPs but not membrane anchor–truncated GP induced dose-dependent protection against a challenge of a lethal dose of recombinant guinea pig-adapted EBOV. The surviving animals showed complete clearance of the virus. Our results demonstrate the potential for KUN replicon vectors as vaccine candidates against EBOV infection. PMID:21987742
A genetic programming approach to oral cancer prognosis.
Tan, Mei Sze; Tan, Jing Wei; Chang, Siow-Wee; Yap, Hwa Jen; Abdul Kareem, Sameem; Zain, Rosnah Binti
2016-01-01
The potential of genetic programming (GP) on various fields has been attained in recent years. In bio-medical field, many researches in GP are focused on the recognition of cancerous cells and also on gene expression profiling data. In this research, the aim is to study the performance of GP on the survival prediction of a small sample size of oral cancer prognosis dataset, which is the first study in the field of oral cancer prognosis. GP is applied on an oral cancer dataset that contains 31 cases collected from the Malaysia Oral Cancer Database and Tissue Bank System (MOCDTBS). The feature subsets that is automatically selected through GP were noted and the influences of this subset on the results of GP were recorded. In addition, a comparison between the GP performance and that of the Support Vector Machine (SVM) and logistic regression (LR) are also done in order to verify the predictive capabilities of the GP. The result shows that GP performed the best (average accuracy of 83.87% and average AUROC of 0.8341) when the features selected are smoking, drinking, chewing, histological differentiation of SCC, and oncogene p63. In addition, based on the comparison results, we found that the GP outperformed the SVM and LR in oral cancer prognosis. Some of the features in the dataset are found to be statistically co-related. This is because the accuracy of the GP prediction drops when one of the feature in the best feature subset is excluded. Thus, GP provides an automatic feature selection function, which chooses features that are highly correlated to the prognosis of oral cancer. This makes GP an ideal prediction model for cancer clinical and genomic data that can be used to aid physicians in their decision making stage of diagnosis or prognosis.
Resistance to minor groove binders.
Colmegna, Benedetta; Uboldi, Sarah; Erba, Eugenio; D'Incalci, Maurizio
2014-03-01
In this paper multiple resistance mechanisms to minor groove binders (MGBs) are overviewed. MGBs with antitumor properties are natural products or their derivatives and, as expected, they are all substrates of P-glycoprotein (P-gp). However, a moderate expression of P-gp does not appear to reduce the sensitivity to trabectedin, the only MGB so far approved for clinical use. Resistance to this drug is often related to transcriptional mechanisms and to DNA repair pathways, particularly defects in transcription-coupled nucleotide excision repair (TC-NER). Therefore tumors resistant to trabectedin may become hypersensitive to UV rays and other DNA damaging agents acting in the major groove, such as Platinum (Pt) complexes. If this is confirmed in clinic, that will provide the rationale to combine trabectedin sequentially with Pt derivates.
Kreisl, William C; Bhatia, Ritwik; Morse, Cheryl L; Woock, Alicia E; Zoghbi, Sami S; Shetty, H Umesha; Pike, Victor W; Innis, Robert B
2015-01-01
The permeability-glycoprotein (P-gp) efflux transporter is densely expressed at the blood-brain barrier, and its resultant spare capacity requires substantial blockade to increase the uptake of avid substrates, blunting the ability of investigators to measure clinically meaningful alterations in P-gp function. This study, conducted in humans, examined 2 P-gp inhibitors (tariquidar, a known inhibitor, and disulfiram, a putative inhibitor) and 2 routes of administration (intravenous and oral) to maximally increase brain uptake of the avid and selective P-gp substrate (11)C-N-desmethyl-loperamide (dLop) while avoiding side effects associated with high doses of tariquidar. Forty-two (11)C-dLop PET scans were obtained from 37 healthy volunteers. PET was performed with (11)C-dLop under the following 5 conditions: injected under baseline conditions without P-gp inhibition, injected 1 h after intravenous tariquidar infusion, injected during intravenous tariquidar infusion, injected after oral tariquidar, and injected after disulfiram. (11)C-dLop uptake was quantified with kinetic modeling using metabolite-corrected arterial input function or by measuring the area under the time-activity curve in the brain from 10 to 30 min. Neither oral tariquidar nor oral disulfiram increased brain uptake of (11)C-dLop. Injecting (11)C-dLop during tariquidar infusion, when plasma tariquidar concentrations reach their peak, resulted in a brain uptake of the radioligand approximately 5-fold greater than baseline. Brain uptake was similar with 2 and 4 mg of intravenous tariquidar per kilogram; however, the lower dose was better tolerated. Injecting (11)C-dLop after tariquidar infusion also increased brain uptake, though higher doses (up to 6 mg/kg) were required. Brain uptake of (11)C-dLop increased fairly linearly with increasing plasma tariquidar concentrations, but we are uncertain whether maximal uptake was achieved. We sought to increase the dynamic range of P-gp function measured after blockade. Performing (11)C-dLop PET during peak plasma concentrations of tariquidar, achieved with concurrent administration of intravenous tariquidar, resulted in greater P-gp inhibition at the human blood-brain barrier than delayed administration and allowed the use of a lower, more tolerable dose of tariquidar. On the basis of prior monkey studies, we suspect that plasma concentrations of tariquidar did not fully block P-gp; however, higher doses of tariquidar would likely be associated with unacceptable side effects. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Tran, Thuy Thanh; Mittal, Aditya; Aldinger, Tanya; Polli, Joseph W.; Ayrton, Andrew; Ellens, Harma; Bentz, Joe
2005-01-01
The human multi-drug resistance membrane transporter, P-glycoprotein, or P-gp, has been extensively studied due to its importance to human health and disease. Thus far, the kinetic analysis of P-gp transport has been limited to steady-state Michaelis-Menten approaches or to compartmental models, neither of which can prove molecular mechanisms. Determination of the elementary kinetic rate constants of transport will be essential to understanding how P-gp works. The experimental system we use is a confluent monolayer of MDCKII-hMDR1 cells that overexpress P-gp. It is a physiologically relevant model system, and transport is measured without biochemical manipulations of P-gp. The Michaelis-Menten mass action reaction is used to model P-gp transport. Without imposing the steady-state assumptions, this reaction depends upon several parameters that must be simultaneously fitted. An exhaustive fitting of transport data to find all possible parameter vectors that best fit the data was accomplished with a reasonable computation time using a hierarchical algorithm. For three P-gp substrates (amprenavir, loperamide, and quinidine), we have successfully fitted the elementary rate constants, i.e., drug association to P-gp from the apical membrane inner monolayer, drug dissociation back into the apical membrane inner monolayer, and drug efflux from P-gp into the apical chamber, as well as the density of efflux active P-gp. All three drugs had overlapping ranges for the efflux active P-gp, which was a benchmark for the validity of the fitting process. One novel finding was that the association to P-gp appears to be rate-limited solely by drug lateral diffusion within the inner monolayer of the plasma membrane for all three drugs. This would be expected if P-gp structure were open to the lipids of the apical membrane inner monolayer, as has been suggested by recent structural studies. The fitted kinetic parameters show how P-gp efflux of a wide range of xenobiotics has been maximized. PMID:15501934
2011-01-01
Background There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Findings Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Conclusions Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies. PMID:21693048
Encinas, Paloma; Gomez-Sebastian, Silvia; Nunez, Maria Carmen; Gomez-Casado, Eduardo; Escribano, Jose M; Estepa, Amparo; Coll, Julio
2011-06-21
There are currently no purification methods capable of producing the large amounts of fish rhabdoviral glycoprotein G (gpG) required for diagnosis and immunisation purposes or for studying structure and molecular mechanisms of action of this molecule (ie. pH-dependent membrane fusion). As a result of the unavailability of large amounts of the gpG from viral haemorrhagic septicaemia rhabdovirus (VHSV), one of the most dangerous viruses affecting cultured salmonid species, research interests in this field are severely hampered. Previous purification methods to obtain recombinant gpG from VHSV in E. coli, yeast and baculovirus grown in insect cells have not produced soluble conformations or acceptable yields. The development of large-scale purification methods for gpGs will also further research into other fish rhabdoviruses, such as infectious haematopoietic necrosis virus (IHNV), spring carp viremia virus (SVCV), hirame rhabdovirus (HIRRV) and snakehead rhabdovirus (SHRV). Here we designed a method to produce milligram amounts of soluble VHSV gpG. Only the transmembrane and carboxy terminal-deleted (amino acid 21 to 465) gpG was efficiently expressed in insect larvae. Recognition of G21-465 by ß-mercaptoethanol-dependent neutralizing monoclonal antibodies (N-MAbs) and pH-dependent recognition by sera from VHSV-hyperimmunized or VHSV-infected rainbow trout (Oncorhynchus mykiss) was demonstrated. Given that the purified G21-465 conserved some of its most important properties, this method might be suitable for the large-scale production of fish rhabdoviral gpGs for use in diagnosis, fusion and antigenicity studies.
Li, Guang-Yao; Zhang, Li; Liu, Ji-Zhu; Chen, Shou-Guo; Xiao, Tai-Wu; Liu, Guo-Zhen; Wang, Jing-Xia; Wang, Le-Xin; Hou, Ming
2016-07-01
Pharmacological management of acute leukemia remains a challenge. A seashell protein Haishengsu (HSS) has been found to exert anticancer activities in recent in vitro studies. The aim of this study was to determine whether the addition of HSS to the conventional chemotherapies would increase chemosensitivity and improves quality of life in patients with acute leukemia. Two hundred and forty-eight patients with acute leukemia were enrolled in a double-blind, and placebo-controlled study. In addition to conventional chemotherapy, 142 patients received HSS and 106 received placebo. In an in vitro study, the expression of P-gp was evaluated by flow cytometry in a drug-resistant leukemia cell line (K562/ADM cells). Sorcin was examined by Western blot. The complete remission rates in the HSS treatment group were all higher than in the placebo group with non-relapsing leukemia and relapsed leukemia (p<0.05). Less patients in the HSS group experienced gastrointestinal side effects from chemotherapy, whereas more patients had increased food take and an increase in Karnofsky performance status (KPS) score (p<0.01). In vitro, the expression of P-gp and sorcin in the HSS treated cells were lower than in the control group cells (p<0.01). When added to conventional chemotherapy, HSS improves the complete remission rates and quality of life in patients with acute leukemia. The in vitro findings indicate that suppression of P-gp and sorcin genes in leukemia cells may be involved in the beneficial effects of HSS. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Sex differences in the gastrointestinal tract of rats and the implications for oral drug delivery.
Afonso-Pereira, Francisco; Dou, Liu; Trenfield, Sarah J; Madla, Christine M; Murdan, Sudaxshina; Sousa, Jõao; Veiga, Francisco; Basit, Abdul W
2018-03-30
Pre-clinical research often uses rodents as animal models to guide the selection of appropriate oral drug and dose selection in humans. However, traditionally, such research fails to consider the gastrointestinal differences between the sexes of rats and the impact on oral drug delivery. This study aimed to identify and characterise the potential sex-related differences in the gastrointestinal environment of sacrificed male and female Wistar rats. Their gastrointestinal tracts were excised and segmented into the stomach, duodenum, jejunum, ileum, caecum and colon. The respective contents and tissue sections were collected and analysed for pH, buffer capacity, surface tension, osmolality and relative P-glycoprotein (P-gp) expression. The pH in the stomach of females was found to be lower than in males. Female rats also exhibited a higher buffer capacity in the caecum and colon when compared with their male counterparts. Males were found to have a higher osmolality than females in the duodenum, ileum and colon. Significant sex differences (p < 0.05) in surface tension were observed in the ileum, where females exhibited a higher surface tension. Interestingly, female rats displayed significantly higher relative P-gp expression levels (p < 0.05) when compared with male rats in the duodenum (1.24 ± 0.85 vs. 0.36 ± 0.26), jejunum (1.45 ± 0.88 vs. 0.38 ± 0.26) and ileum (0.92 ± 0.43 vs. 0.40 ± 0.18) but not in the colon (0.5 ± 0.32 vs. 0.33 ± 0.16) segments. The work reported has demonstrated the stark physiological differences between male and female rats at a physiological level, indicating how the 'sex of the gut' could influence oral drug delivery. These findings, therefore, are of critical importance in pre-clinical research and drug development. Copyright © 2018 Elsevier B.V. All rights reserved.
Xue, Huiying; Yu, Zhaoyang; Liu, Yong; Yuan, Weigang; Yang, Tan; You, Jia; He, Xingxing; Lee, Robert J; Li, Lei; Xu, Chuanrui
2017-01-01
Multidrug resistance (MDR) due to overexpression of P-glycoprotein (P-gp) is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). It has been shown that miR-375 inhibits P-gp expression via inhibition of astrocyte elevated gene-1 (AEG-1) expression in HCC, and induces apoptosis in HCC cells by targeting AEG-1 and YAP1. In this study, we prepared lipid-coated hollow mesoporous silica nanoparticles (LH) containing doxorubicin hydrochloride (DOX) and miR-375 (LHD/miR-375) to deliver the two agents into MDR HCC cells in vitro and in vivo. We found that LHD/miR-375 overcame drug efflux and delivered miR-375 and DOX into MDR HepG2/ADR cells or HCC tissues. MiR-375 delivered by LHD/miR-375 was taken up through phagocytosis and clathrin- and caveolae-mediated endocytosis. Following release from late endosomes, it repressed the expression of P-gp in HepG2/ADR cells. The synergistic effects of miR-375 and hollow mesoporous silica nanoparticles (HMSN) resulted in a profound increase in the uptake of DOX by the HCC cells and prevented HCC cell growth. Enhanced antitumor effects of LHD/miR-375 were also validated in HCC xenografts and primary tumors; however, no significant toxicity was observed. Mechanistic studies also revealed that miR-375 and DOX exerted a synergistic antitumor effect by promoting apoptosis. Our study illustrates that delivery of miR-375 using HMSN is a feasible approach to circumvent MDR in the management of HCC. It, therefore, merits further development for potential clinical application. PMID:28769563
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ooko, Edna
Background: Multidrug resistance (MDR) and drug transporter P-glycoprotein (P-gp) represent major obstacles in cancer chemotherapy. We investigated 19 synthetic curcumin derivatives in drug-sensitive acute lymphoblastic CCRF–CEM leukemia cells and their multidrug-resistant P-gp-overexpressing subline, CEM/ADR5000. Material and methods: Cytotoxicity was tested by resazurin assays. Doxorubicin uptake was assessed by flow cytometry. Binding modes of compounds to P-gp were analyzed by molecular docking. Chemical features responsible for bioactivity were studied by quantitative structure activity relationship (QSAR) analyses. A 7-descriptor QSAR model was correlated with doxorubicin uptake values, IC{sub 50} values and binding energies. Results: The compounds displayed IC{sub 50} values between 0.7more » ± 0.03 and 20.2 ± 0.25 μM. CEM/ADR5000 cells exhibited cross-resistance to 10 compounds, collateral sensitivity to three compounds and regular sensitivity to the remaining six curcumins. Molecular docking studies at the intra-channel transmembrane domain of human P-gp resulted in lowest binding energies ranging from − 9.00 ± 0.10 to − 6.20 ± 0.02 kcal/mol and pKi values from 0.24 ± 0.04 to 29.17 ± 0.88 μM. At the ATP-binding site of P-gp, lowest binding energies ranged from − 9.78 ± 0.17 to − 6.79 ± 0.01 kcal/mol and pKi values from 0.07 ± 0.02 to 0.03 ± 0.03 μM. CEM/ADR5000 cells accumulated approximately 4-fold less doxorubicin than CCRF–CEM cells. The control P-gp inhibitor, verapamil, partially increased doxorubicin uptake in CEM/ADR5000 cells. Six curcumins increased doxorubicin uptake in resistant cells or even exceeded uptake levels compared to sensitive one. QSAR yielded good activity prediction (R = 0.797 and R = 0.794 for training and test sets). Conclusion: Selected derivatives may serve to guide future design of novel P-gp inhibitors and collateral sensitive drugs to combat MDR. - Highlights: • Novel derivatives of curcumin in reversing multidrug resistance (MDR) • Biological and Insilco assays to assess effect on P-glycoprotein (P-gp) • Curcumin synthetic derivatives as possible lead compound against multidrug resistant cancer.« less
Kesby, James P; Markou, Athina; Semenova, Svetlana
2015-01-01
Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e. similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.
Kesby, James P.; Markou, Athina; Semenova, Svetlana
2014-01-01
Methamphetamine abuse is common among individuals infected by human immunodeficiency virus (HIV). Neurocognitive outcomes tend to be worse in methamphetamine users with HIV. However, it is unclear whether discrete cognitive domains are susceptible to impairment after combined HIV infection and methamphetamine abuse. The expression of HIV/gp120 protein induces neuropathology in mice similar to HIV-induced pathology in humans. We investigated the separate and combined effects of methamphetamine exposure and gp120 expression on cognitive function in transgenic (gp120-tg) and control mice. The mice underwent an escalating methamphetamine binge regimen and were tested in novel object/location recognition, object-in-place recognition, and Barnes maze tests. gp120 expression disrupted performance in the object-in-place test (i.e., similar time spent with all objects, regardless of location), indicating deficits in associative recognition memory. gp120 expression also altered reversal learning in the Barnes maze, suggesting impairments in executive function. Methamphetamine exposure impaired spatial strategy in the Barnes maze, indicating deficits in spatial learning. Methamphetamine-exposed gp120-tg mice had the lowest spatial strategy scores in the final acquisition trials in the Barnes maze, suggesting greater deficits in spatial learning than all of the other groups. Although HIV infection involves interactions between multiple proteins and processes, in addition to gp120, our findings in gp120-tg mice suggest that humans with the dual insult of HIV infection and methamphetamine abuse may exhibit a broader spectrum of cognitive deficits than those with either factor alone. Depending on the cognitive domain, the combination of both insults may exacerbate deficits in cognitive performance compared with each individual insult. PMID:25476577
Assis-Marques, Mariana Aprigio; Oliveira, Aline Ferreira; Ruas, Luciana Pereira; dos Reis, Thaila Fernanda; Roque-Barreira, Maria Cristina; Coelho, Paulo Sergio Rodrigues
2015-01-01
The dimorphic fungus Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis (PCM). It is believed that approximately 10 million people are infected with the fungus and approximately 2% will eventually develop the disease. Unlike viral and bacterial diseases, fungal diseases are the ones against which there is no commercially available vaccine. Saccharomyces cerevisiae may be a suitable vehicle for immunization against fungal infections, as they require the stimulation of different arms of the immune response. Here we evaluated the efficacy of immunizing mice against PCM by using S. cerevisiae yeast expressing gp43. When challenged by inoculation of P. brasiliensis yeasts, immunized animals showed a protective profile in three different assays. Their lung parenchyma was significantly preserved, exhibiting fewer granulomas with fewer fungal cells than found in non-immunized mice. Fungal burden was reduced in the lung and spleen of immunized mice, and both organs contained higher levels of IL-12 and IFN-γ compared to those of non-vaccinated mice, a finding that suggests the occurrence of Th1 immunity. Taken together, our results indicate that the recombinant yeast vaccine represents a new strategy to confer protection against PCM.
The peripheral clock regulates human pigmentation.
Hardman, Jonathan A; Tobin, Desmond J; Haslam, Iain S; Farjo, Nilofer; Farjo, Bessam; Al-Nuaimi, Yusur; Grimaldi, Benedetto; Paus, Ralf
2015-04-01
Although the regulation of pigmentation is well characterized, it remains unclear whether cell-autonomous controls regulate the cyclic on-off switching of pigmentation in the hair follicle (HF). As human HFs and epidermal melanocytes express clock genes and proteins, and given that core clock genes (PER1, BMAL1) modulate human HF cycling, we investigated whether peripheral clock activity influences human HF pigmentation. We found that silencing BMAL1 or PER1 in human HFs increased HF melanin content. Furthermore, tyrosinase expression and activity, as well as TYRP1 and TYRP2 mRNA levels, gp100 protein expression, melanocyte dendricity, and the number gp100+ HF melanocytes, were all significantly increased in BMAL1 and/or PER1-silenced HFs. BMAL1 or PER1 silencing also increased epidermal melanin content, gp100 protein expression, and tyrosinase activity in human skin. These effects reflect direct modulation of melanocytes, as BMAL1 and/or PER1 silencing in isolated melanocytes increased tyrosinase activity and TYRP1/2 expression. Mechanistically, BMAL1 knockdown reduces PER1 transcription, and PER1 silencing induces phosphorylation of the master regulator of melanogenesis, microphthalmia-associated transcription factor, thus stimulating human melanogenesis and melanocyte activity in situ and in vitro. Therefore, the molecular clock operates as a cell-autonomous modulator of human pigmentation and may be targeted for future therapeutic strategies.
Park, Sang Mee; Park, Hae Ryoun; Lee, Ji Hye
2017-02-01
Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled , a Drosophila homolog of human mitogen-activated protein kinase 3 ( MAPK3 ) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gα q , and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93 . In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2 , Gα q , and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.
Chen, Bao-an; Mao, Pei-pei; Cheng, Jian; Gao, Feng; Xia, Guo-hua; Xu, Wen-lin; Shen, Hui-lin; Ding, Jia-hua; Gao, Chong; Sun, Qian; Chen, Wen-ji; Chen, Ning-na; Liu, Li-jie; Li, Xiao-mao; Wang, Xue-mei
2010-08-09
In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of "classical" MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491-3509, 1539-1557, and 3103-3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1-1, PGY1-2, and PGY1-3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe(3)O(4)) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1-2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe(3)O(4)) or PGY1-2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe(3)O(4)) and PGY1-2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe(3)O(4)) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.
Lewis, Brad; Whitney, Stephen; Hudacik, Lauren; Galmin, Lindsey; Huaman, Maria Cecilia; Cristillo, Anthony D.
2014-01-01
The late assembly domain of many viruses is critical for budding. Within these domains, encoded in viral structural proteins, are the conserved motifs PTAP, PPxY and YPxL. These sequences are the key determinants for association of viral proteins with intracellular molecules such as Tsg101, Nedd4 and AIP1/ALIX. While roles for Tsg101 and AIP1/ALIX in HIV-1 budding have been well established, less is known about the role of Nedd4. Recent studies, however, have identified a function for Nedd4-like protein in HIV-1 release. In this study, we investigated post-transcriptional changes of Nedd4 following SHIVSF162P3 infection of rhesus macaques, its role on HIV-1 p24 and gp120 levels in vitro and its potential as an immune modulator in HIV vaccination of BALB/c mice. Increased Nedd4 protein levels were noted in both CD4+ and CD8+ T cells following SHIVSF162P3-infection of naïve macaques. Transient co-transfection studies in 293 cells with HXB2 and Nedd4 demonstrated a Nedd4-mediated increase in p24 and gp120 levels. This increase was found to be dependent on the Ca2+/calmodulin-regulated phospholipid binding C2 domain and not ubiquitin ligase activity or HIV LTR activity. Co-transfection of Nedd4 with plasmid DNA expressing Gag or Env was further shown to augment both intracellular and extracellular Gag or Env proteins. To assess the potential of Nedd4 as an immune modulator, BALB/c mice were immunized intramuscularly with plasmid DNA encoding HIV gag, env and Nedd4. Nedd4 co-administration was found to increase serum anti-p24 but not anti-gp120 antibodies. Nedd4 co-injection was found to have no affect on Gag- or Env-specific IFNγ but had a trend of increased Gag-specific IL-6, IL-17A and TNFα that was not seen following Env stimulation. Based on our initial findings, Nedd4-mediated changes in HIV protein levels and its potential use in HIV-1 vaccine development warrants further investigation. PMID:24614057
Moore, Paul A; Shah, Kalpana; Yang, Yinhua; Alderson, Ralph; Roberts, Penny; Long, Vatana; Liu, Daorong; Li, Jonathan C; Burke, Steve; Ciccarone, Valentina; Li, Hua; Fieger, Claudia B; Hooley, Jeff; Easton, Ann; Licea, Monica; Gorlatov, Sergey; King, Kathleen L; Young, Peter; Adami, Arash; Loo, Deryk; Chichili, Gurunadh R; Liu, Liqin; Smith, Douglas H; Brown, Jennifer G; Chen, Francine Z; Koenig, Scott; Mather, Jennie; Bonvini, Ezio; Johnson, Syd
2018-06-04
We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART® protein designed to redirect T-cells to target gpA33 expressing colon cancer. The gpA33 target was selected based on an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic CRC specimens, including putative cancer stem cell populations. MGD007 displays the anticipated bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T-cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 µg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33 expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD 1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 µg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. Copyright ©2018, American Association for Cancer Research.
Wang, Xiaoshuang; Yang, Liu; Yang, Li; Xing, Faping; Yang, Hua; Qin, Liyue; Lan, Yunyi; Wu, Hui; Zhang, Beibei; Shi, Hailian; Lu, Cheng; Huang, Fei; Wu, Xiaojun; Wang, Zhengtao
2017-12-01
Gypenoside IX (GP IX) is a pure compound isolated from Panax notoginseng. Gypenosides have been implicated to benefit the recovery of enormous neurological disorders. By suppressing the activation of astrocytes, gypenosides can improve the cognitive impairment. However, so far, little is known about whether GP IX could restrain the inflammatory responses in astrocytes or reactive astrogliosis. In present study, the anti-inflammatory effects of GP IX were investigated in reactive astrocytes induced by proinflammatory mediators both in vitro and in vivo. GP IX significantly reduced the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) at either protein or mRNA level in glial cell line C6 cells stimulated by lipopolysaccharide (LPS)/TNF-α combination. It also alleviated the astrogliosis and decreased the production of inflammatory mediators in brain cortex of LPS-treated mice. Further study disclosed that GP IX inhibited nuclear translocation of nuclear factor kappa B (NFκB) and reduced its transcriptional activity. Meanwhile, GP IX significantly attenuated the phosphorylation of NFκB, inhibitor of kappa B (IκB), Akt, and p38 mitogen-activated protein kinase (MAPK) under inflammatory conditions both in vitro and in vivo. These findings indicated that GP IX might suppress reactive astrogliosis by suppressing Akt/p38 MAPK/NFκB signaling pathways. And GP IX might be a promising drug candidate or prodrug for the therapy of neuroinflammatory disorders characterized with reactive astrogliosis.
Lázaro-Frías, Adrián; Gómez-Medina, Sergio; Sánchez-Sampedro, Lucas; Ljungberg, Karl; Ustav, Mart; Liljeström, Peter; Muñoz-Fontela, César; Esteban, Mariano; García-Arriaza, Juan
2018-06-01
Zaire and Sudan ebolavirus species cause a severe disease in humans and nonhuman primates (NHPs) characterized by a high mortality rate. There are no licensed therapies or vaccines against Ebola virus disease (EVD), and the recent 2013 to 2016 outbreak in West Africa highlighted the need for EVD-specific medical countermeasures. Here, we generated and characterized head-to-head the immunogenicity and efficacy of five vaccine candidates against Zaire ebolavirus (EBOV) and Sudan ebolavirus (SUDV) based on the highly attenuated poxvirus vector modified vaccinia virus Ankara (MVA) expressing either the virus glycoprotein (GP) or GP together with the virus protein 40 (VP40) forming virus-like particles (VLPs). In a human monocytic cell line, the different MVA vectors (termed MVA-EBOVs and MVA-SUDVs) triggered robust innate immune responses, with production of beta interferon (IFN-β), proinflammatory cytokines, and chemokines. Additionally, several innate immune cells, such as dendritic cells, neutrophils, and natural killer cells, were differentially recruited in the peritoneal cavity of mice inoculated with MVA-EBOVs. After immunization of mice with a homologous prime/boost protocol (MVA/MVA), total IgG antibodies against GP or VP40 from Zaire and Sudan ebolavirus were differentially induced by these vectors, which were mainly of the IgG1 and IgG3 isotypes. Remarkably, an MVA-EBOV construct coexpressing GP and VP40 protected chimeric mice challenged with EBOV to a greater extent than a vector expressing GP alone. These results support the consideration of MVA-EBOVs and MVA-SUDVs expressing GP and VP40 and producing VLPs as best-in-class potential vaccine candidates against EBOV and SUDV. IMPORTANCE EBOV and SUDV cause a severe hemorrhagic fever affecting humans and NHPs. Since their discovery in 1976, they have caused several sporadic epidemics, with the recent outbreak in West Africa from 2013 to 2016 being the largest and most severe, with more than 11,000 deaths being reported. Although some vaccines are in advanced clinical phases, less expensive, safer, and more effective licensed vaccines are desirable. We generated and characterized head-to-head the immunogenicity and efficacy of five novel vaccines against EBOV and SUDV based on the poxvirus MVA expressing GP or GP and VP40. The expression of GP and VP40 leads to the formation of VLPs. These MVA-EBOV and MVA-SUDV recombinants triggered robust innate and humoral immune responses in mice. Furthermore, MVA-EBOV recombinants expressing GP and VP40 induced high protection against EBOV in a mouse challenge model. Thus, MVA expressing GP and VP40 and producing VLPs is a promising vaccine candidate against EBOV and SUDV. Copyright © 2018 American Society for Microbiology.
miR-340 alleviates chemoresistance of osteosarcoma cells by targeting ZEB1.
Yan, Haibin; Zhang, Bingyun; Fang, Chongbin; Chen, Liqiu
2018-06-01
Chemoresistance during treatment of osteosarcoma (OS) is attracting more and more attention as the main clinical obstacle. The purpose of this study was to elucidate the role of miR-340 in chemoresistance of OS. Plasmid construction and transfection, miRNA arrays, PCR analyses, and western blot analysis, as well as MTT, apoptosis, and luciferase assays were carried out in MG-63 cells and MG-63/cisplatin (DDP)-resistant cells. The results showed that miR-340 was downregulated in OS tissues and drug-resistant OS cells. Moreover, a negative correlation was observed between miR-340 and ZEB1 expression in OS tissues. Forced expression of miR-340 in drug-resistant OS cells significantly reduced multidrug resistance-1 and P-gp expression. Overexpression of miR-340 enhanced sensitivity to DDP by inhibiting viability and promoting apoptosis. The luciferase assay and western blot analysis identified ZEB1 as a direct target of miR-340, and miR-340 negatively regulated ZEB1 expression. Ectopic expression of ZEB1 reversed the effects of miR-340 on P-gp expression, cell viability, and apoptosis. miR-340 alleviated chemoresistance of OS cells by targeting ZEB1. Our results indicate that targeting miR-340 may be a potential therapeutic approach to treat drug-resistant OS.
The permeability P-glycoprotein: a focus on enantioselectivity and brain distribution.
Choong, Eva; Dobrinas, Maria; Carrupt, Pierre-Alain; Eap, Chin B
2010-08-01
The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies.
Wu, Shipo; Kroeker, Andrea; Wong, Gary; He, Shihua; Hou, Lihua; Audet, Jonathan; Wei, Haiyan; Zhang, Zhe; Fernando, Lisa; Soule, Geoff; Tran, Kaylie; Bi, Shengli; Zhu, Tao; Yu, Xuefeng; Chen, Wei; Qiu, Xiangguo
2016-10-15
A licensed vaccine against Ebola virus (EBOV) remains unavailable, despite >11 000 deaths from the 2014-2016 outbreak of EBOV disease in West Africa. Past studies have shown that recombinant vaccine viruses expressing EBOV glycoprotein (GP) are able to protect nonhuman primates (NHPs) from a lethal EBOV challenge. However, these vaccines express the viral GP-based EBOV variants found in Central Africa, which has 97.3% amino acid homology to the Makona variant found in West Africa. Our previous study showed that a recombinant adenovirus serotype 5 (Ad5)-vectored vaccine expressing the Makona EBOV GP (MakGP) was safe and immunogenic during clinical trials in China, but it is unknown whether the vaccine protects against EBOV infection. Here, we demonstrate that guinea pigs immunized with Ad5-MakGP developed robust humoral responses and were protected against exposure to guinea pig-adapted EBOV. Ad5-MakGP also elicited specific B- and T-cell immunity in NHPs and conferred 100% protection when animals were challenged 4 weeks after immunization. These results support further clinical development of this candidate and highlight the utility of Ad5-MakGP as a prophylactic measure in future outbreaks of EBOV disease. © Crown copyright 2016.
Broad Neutralization of Ebolaviruses via a Fusion Loop Epitope Elicited by Immunization
2017-03-31
overnight. After incubation with blocking buffer (BB, 2% non- fat milk , 5% FBS in PBS), the WT or mutant supernatant in five-fold serial dilution in BB was...replication competent rVSV pseudotyped with filovirus GP, which also expressed the reporter protein GFP (rVSV-GP-GFP) (Miller et al., 2012). CA45 potently...for proper protein folding and expression. The epitope mapping identified EBOV GP residues R64 within the N-terminus of GP1 in addition to Y517
Loureiro, Ana I; Bonifácio, Maria João; Fernandes-Lopes, Carlos; Pires, Nuno; Igreja, Bruno; Wright, Lyndon C; Soares-da-Silva, Patrício
2015-01-01
1. This study explores the impact of permeability and P-glycoprotein (P-gp) efflux, upon brain exposure to etamicastat, a new dopamine-β-hydroxylase (DBH) inhibitor and consequently brain levels of catecholamines. 2. Brain exposure to etamicastat (10 mg/kg), following intravenous administration to mice, was residual and upon oral administration of the same dose no compound was detected, concurring with the absence of effects upon brain catecholamines. The intravenous co-administration of elacridar (1.0 mg/kg), a known P-gp/BCRP dual modulator, significantly increased brain etamicastat exposure, but the levels attained were very low when compared to those of nepicastat, a centrally active DBH inhibitor. 3. In vitro permeability studies from apical-to-basal direction conducted in Caco-2 cells and MDCK-II cells showed that etamicastat apparent permeability was 1.2 × 10(-5) and 1.1 × 10(-6 )cm/s, respectively, 5- and 50-fold lower as compared to nepicastat. The secretory efflux ratio in MDCK-II cells overexpressing human P-gp showed an efflux ratio greater than 2, for both compounds, which was significantly decreased by elacridar. Despite its lower bioavailability and higher clearance, as compared to nepicastat, etamicastat showed preferential distribution to peripheral tissues and high plasma free fraction (15.5%), which may explain its effects upon peripheral DBH and catecholamine levels. 4. Though P-gp-mediated efflux may contribute to the limited brain penetration of etamicastat, the low permeability along with the pharmacokinetic properties of etamicastat may be perceived as the main contributors for its peripheral selectivity, which is advantageous for a cardiovascular drug candidate.
Bankstahl, Jens P; Kuntner, Claudia; Abrahim, Aiman; Karch, Rudolf; Stanek, Johann; Wanek, Thomas; Wadsak, Wolfgang; Kletter, Kurt; Müller, Markus; Löscher, Wolfgang; Langer, Oliver
2008-08-01
The multidrug efflux transporter P-glycoprotein (P-gp) is expressed in high concentrations at the blood-brain barrier (BBB) and is believed to be implicated in resistance to central nervous system drugs. We used small-animal PET and (R)-11C-verapamil together with tariquidar, a new-generation P-gp modulator, to study the functional activity of P-gp at the BBB of rats. To enable a comparison with human PET data, we performed kinetic modeling to estimate the rate constants of radiotracer transport across the rat BBB. A group of 7 Wistar Unilever rats underwent paired (R)-11C-verapamil PET scans at an interval of 3 h: 1 baseline scan and 1 scan after intravenous injection of tariquidar (15 mg/kg, n = 5) or vehicle (n = 2). After tariquidar administration, the distribution volume (DV) of (R)-11C-verapamil was 12-fold higher than baseline (3.68 +/- 0.81 vs. 0.30 +/- 0.08; P = 0.0007, paired t test), whereas the DVs were essentially the same when only vehicle was administered. The increase in DV could be attributed mainly to an increased influx rate constant (K1) of (R)-11C-verapamil into the brain, which was about 8-fold higher after tariquidar. A dose-response assessment with tariquidar provided an estimated half-maximum effect dose of 8.4 +/- 9.5 mg/kg. Our data demonstrate that (R)-11C-verapamil PET combined with tariquidar administration is a promising approach to measure P-gp function at the BBB.
Assessment of public knowledge about the scope of practice of vascular surgeons.
Farber, Alik; Long, Brandon M; Lauterbach, Stephen R; Bohannon, Todd; Siegal, Carolyn L
2010-03-01
During the past decade, there has been a sharp increase in the number of vascular procedures performed in the United States. Due to the increase in the size of the aging population, this trend is predicted to continue. Despite this, general public knowledge about vascular surgery appears low. This gap may significantly affect the success of vascular surgery as a specialty. To objectively define knowledge about vascular surgery, we administered a questionnaire to both a sample of the general population and medical students. The Vascular Surgery Knowledge Questionnaire (VSQ), a 58-item multiple choice survey, was designed to assess knowledge about the field of vascular surgery, including types of procedures commonly performed, presenting illnesses, training, and financial compensation. VSQ was tested for reliability and validity. It was administered to a sample of the general population (GP) and first year medical students (MS) via a random digit dial telephone survey and a paper-based survey, respectively. VSQ Score was derived by calculating the percent of questions from the 38-item, non-demographic part of the questionnaire answered correctly and expressed in numerical form. The maximum score possible was 100. Statistical analysis was used to assess differences in VSQ scores. Two hundred GP and 160 MS subjects completed the questionnaire. The mean VSQ score for GP and MS groups was 54 and 67 (P < .01), respectively. Forty-one percent of the GP group received a score of less than 50. Only 50% of the GP and 51% of MS cohorts agreed with the statement that vascular surgeons perform procedures on all blood vessels with the exception of the heart and brain. Just 24% of the GP group agreed with the statement that vascular surgeons treat patients with wounds that do not heal. Finally, only half of the GP group agreed that vascular surgeons treat patients with abdominal aortic aneurysms. The GP cohort significantly underestimated the average length of postgraduate training (five years) to become a vascular surgeon. Level of education, income, and residence in the Western states significantly correlated with higher scores. General population subjects who admitted to knowing a vascular surgeon received similar scores to those who did not (58 vs. 53, P >.05). These findings support our hypothesis that there is a significant knowledge deficit among both the general population and medical students about the field of vascular surgery. This has protean implications for the future of our specialty and public health in the United States.
Innate immunity glycoprotein gp-340 variants may modulate human susceptibility to dental caries
Jonasson, Anette; Eriksson, Christer; Jenkinson, Howard F; Källestål, Carina; Johansson, Ingegerd; Strömberg, Nicklas
2007-01-01
Background Bacterial adhesion is an important determinant of colonization and infection, including dental caries. The salivary scavenger receptor cysteine-rich glycoprotein gp-340, which mediates adhesion of Streptococcus mutans (implicated in caries), harbours three major size variants, designated gp-340 I to III, each specific to an individual saliva. Here we have examined the association of the gp-340 I to III polymorphisms with caries experience and adhesion of S. mutans. Methods A case-referent study was performed in 12-year-old Swedish children with high (n = 19) or low (n = 19) caries experiences. We measured the gp-340 I to III saliva phenotypes and correlated those with multiple outcome measures for caries experience and saliva adhesion of S. mutans using the partial least squares (PLS) multivariate projection technique. In addition, we used traditional statistics and 2-year caries increment to verify the established PLS associations, and bacterial adhesion to purified gp-340 I to III proteins to support possible mechanisms. Results All except one subject were typed as gp-340 I to III (10, 23 and 4, respectively). The gp-340 I phenotype correlated positively with caries experience (VIP = 1.37) and saliva adhesion of S. mutans Ingbritt (VIP = 1.47). The gp-340 II and III phenotypes tended to behave in the opposite way. Moreover, the gp-340 I phenotype tended to show an increased 2-year caries increment compared to phenotypes II/III. Purified gp-340 I protein mediated markedly higher adhesion of S. mutans strains Ingbritt and NG8 and Lactococcus lactis expressing AgI/II adhesins (SpaP or PAc) compared to gp-340 II and III proteins. In addition, the gp-340 I protein appeared over represented in subjects positive for Db, an allelic acidic PRP variant associated with caries, and subjects positive for both gp-340 I and Db tended to experience more caries than those negative for both proteins. Conclusion Gp-340 I behaves as a caries susceptibility protein. PMID:17562017
Role of active drug transporters in refractory multiple myeloma.
Tucci, Marco; Quatraro, Cosima; Dammacco, Franco; Silvestris, Franco
2009-01-01
Drug resistance is a major drawback for cancer chemotherapy protocols and previous studies have demonstrated the overexpression of the P-glycoprotein (P-gp) as mechanism by which myeloma cells develop multidrug resistance (MDR). However, other molecules may apparently promote MDR in multiple myeloma (MM). They include both lung resistance-related protein (LRP) and p53 activation. The inhibition of P-gp in MM patients treated with melphalan (PAM) has been associated to increased toxicity, whereas defective apoptosis due to down-modulation of the NF-kB is a feature of MDR+ myeloma cells. On the contrary, clinical trials with proteasome inhibitors have been successfully carried out to overcome MDR despite their toxicity profile. Recently, sigma receptors (sigmaR)(S), namely sigmaR(1) and sigmaR(2), have been found to be overexpressed in breast cancer cells. In addition, their levels correlate with both P-gp upregulation and MDR development. By contrast, selective inhibitors of sigmaR(S) as PB28, disrupt the P-gp signals and restore the apoptosis machinery in malignant cells. We have reviewed the major pathogenetic events promoting MDR in MM and focused on the sigmaR(S) as potential mechanism driving this function. We demonstrate that MDR+ myeloma cells overexpress the sigmaR(2) and that the treatment with PB28 induces P-gp down-modulation through the activation of the caspases enrolled in both extrinsic and intrinsic apoptotic pathways. Thus, sigmaR(2) inhibitors may be tentatively proposed for the treatment of PAM-resistant MM patients.
De Ravin, Suk See; Reik, Andreas; Liu, Pei-Qi; Li, Linhong; Wu, Xiaolin; Su, Ling; Raley, Castle; Theobald, Narda; Choi, Uimook; Song, Alexander H.; Chan, Andy; Pearl, Jocelynn R.; Paschon, David E.; Lee, Janet; Newcombe, Hannah; Koontz, Sherry; Sweeney, Colin; Shivak, David A.; Zarember, Kol A.; Peshwa, Madhusudan V.; Gregory, Philip D.; Urnov, Fyodor D.; Malech, Harry L.
2016-01-01
Gene therapy with genetically modified human CD34+ hematopoietic stem cells (HSCs) may be safer using targeted integration (TI) of transgenes into a genomic ‘safe harbor’ site than random viral integration. We demonstrate that temporally optimized delivery of zinc finger nuclease mRNA via electroporation and adeno associated virus (AAV) 6 delivery of donor constructs in human HSCs approaches clinically relevant levels of TI into the AAVS1 safe harbor locus. Up to 58% Venus-positive HSCs with 6–16% human cell marking were observed following engraftment into mice. In HSCs from patients with X-linked chronic granulomatous disease (X-CGD), caused by mutations in the gp91phox subunit of the NADPH oxidase, TI of a gp91phox transgene into AAVS1 in resulted in ~15% gp91phox expression and increased NADPH oxidase activity in ex vivo–derived neutrophils. In mice transplanted with corrected HSCs, 4–11% of human cells in the bone marrow expressed gp91phox. This method for TI into AAVS1 may be broadly applicable to correction of other monogenic diseases. PMID:26950749
Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M. Javad
2014-01-01
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. PMID:25230936
Kamata, Teddy; Natesan, Mohan; Warfield, Kelly; Aman, M Javad; Ulrich, Robert G
2014-12-01
Infectious hemorrhagic fevers caused by the Marburg and Ebola filoviruses result in human mortality rates of up to 90%, and there are no effective vaccines or therapeutics available for clinical use. The highly infectious and lethal nature of these viruses highlights the need for reliable and sensitive diagnostic methods. We assembled a protein microarray displaying nucleoprotein (NP), virion protein 40 (VP40), and glycoprotein (GP) antigens from isolates representing the six species of filoviruses for use as a surveillance and diagnostic platform. Using the microarrays, we examined serum antibody responses of rhesus macaques vaccinated with trivalent (GP, NP, and VP40) virus-like particles (VLP) prior to infection with the Marburg virus (MARV) (i.e., Marburg marburgvirus) or the Zaire virus (ZEBOV) (i.e., Zaire ebolavirus). The microarray-based assay detected a significant increase in antigen-specific IgG resulting from immunization, while a greater level of antibody responses resulted from challenge of the vaccinated animals with ZEBOV or MARV. Further, while antibody cross-reactivities were observed among NPs and VP40s of Ebola viruses, antibody recognition of GPs was very specific. The performance of mucin-like domain fragments of GP (GP mucin) expressed in Escherichia coli was compared to that of GP ectodomains produced in eukaryotic cells. Based on results with ZEBOV and MARV proteins, antibody recognition of GP mucins that were deficient in posttranslational modifications was comparable to that of the eukaryotic cell-expressed GP ectodomains in assay performance. We conclude that the described protein microarray may translate into a sensitive assay for diagnosis and serological surveillance of infections caused by multiple species of filoviruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Mira, J J; Carrillo, I; Pérez-Pérez, P; Olivera, G; Silvestre, C; Nebot, C; González de Dios, J; Aranaz-Andrés, J
2018-04-30
To evaluate if the Quality Commitment Campaign (QCC) was sufficiently known among primary care professionals (PC), and second, to evaluate the knowledge about certain recommendations of what should not be done in PC. A observational study was conducted. General practitioners (GP), pediatricians (PED) and nursing (NUR) participated. A direct question was asked about whether QCC was known and a set of dichotomous questions based on the "do not do" recommendations to assess their knowledge. A sample size of 288 professionals from each group was the minimum required for a sampling error of 5%, 95% confidence level and p=0.75. The field study was conducted with the collaboration of health services and professional and scientific organizations. Data were described by frequencies and mean (standard deviation), and compared by means of ?2/Fisher or ANOVA and t-test. A total of 1,904 professionals (936 GP, 682 PED and 286 NUR) answered. The QCC initiative was known by 828 (43.5%) professionals: 524 (56.0%) GP, 234 (34.3%) PED and 70 (24.5%) NUR (p<0.001). All the questions were correctly answered by 652 (69.7%) GP, 631 (92.5%) PED and 116 (40.6%) NUR. Significantly more mistakes (p<0.001) were made by those who did not know the QCC, worked in the private sector or were not considered responsible for overuse. Despite not knowing the QCC, 60% GP and 90% PED answered all the questions of the test correctly. NUR and GP could benefit from a greater diffusion of the QCC. As could those working in the private sector and those who believe that professionals have little responsibility for unnecessary overuse.
Chen, Tan; Li, Dapeng; Song, Yufeng; Yang, Xi; Liu, Qingwei; Jin, Xia; Zhou, Dongming; Huang, Zhong
2017-09-01
Ebola virus (EBOV) is one of the most virulent pathogens known to humans. Neutralizing antibodies play a major role in the protection against EBOV infections. Thus, an EBOV vaccine capable of inducing a long-lasting neutralizing antibody response is highly desirable. We report here that a heterologous prime-boost vaccine regimen can elicit durable EBOV-neutralizing antibody response in mice. A chimpanzee serotype 7 adenovirus expressing EBOV GP (denoted AdC7-GP) was generated and used for priming. A truncated version of EBOV GP1 protein (denoted GP1t) was produced at high levels in Drosophila S2 cells and used for boosting. Mouse immunization studies showed that the AdC7-GP prime/GP1t boost vaccine regimen was more potent in eliciting neutralizing antibodies than either the AdC7-GP or GP1t alone. Neutralizing antibodies induced by the heterologous prime-boost regimen sustained at high titers for at least 18 weeks after immunization. Significantly, in vivo challenge studies revealed that the entry of reporter EBOV-like particles was efficiently blocked in mice receiving the heterologous prime-boost regimen even at 18 weeks after the final dose of immunization. These results suggest that this novel AdC7-GP prime/GP1t boost regimen represents an EBOV vaccine approach capable of establishing long-term protection, and therefore warrants further development. Copyright © 2017 Elsevier B.V. All rights reserved.
Herbert, Andrew S.; Kuehne, Ana I.; Barth, James F.; Ortiz, Ramon A.; Nichols, Donald K.; Zak, Samantha E.; Stonier, Spencer W.; Muhammad, Majidat A.; Bakken, Russell R.; Prugar, Laura I.; Olinger, Gene G.; Groebner, Jennifer L.; Lee, John S.; Pratt, William D.; Custer, Max; Kamrud, Kurt I.; Smith, Jonathan F.; Hart, Mary Kate
2013-01-01
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine. PMID:23408633
Herbert, Andrew S; Kuehne, Ana I; Barth, James F; Ortiz, Ramon A; Nichols, Donald K; Zak, Samantha E; Stonier, Spencer W; Muhammad, Majidat A; Bakken, Russell R; Prugar, Laura I; Olinger, Gene G; Groebner, Jennifer L; Lee, John S; Pratt, William D; Custer, Max; Kamrud, Kurt I; Smith, Jonathan F; Hart, Mary Kate; Dye, John M
2013-05-01
There are no vaccines or therapeutics currently approved for the prevention or treatment of ebolavirus infection. Previously, a replicon vaccine based on Venezuelan equine encephalitis virus (VEEV) demonstrated protective efficacy against Marburg virus in nonhuman primates. Here, we report the protective efficacy of Sudan virus (SUDV)- and Ebola virus (EBOV)-specific VEEV replicon particle (VRP) vaccines in nonhuman primates. VRP vaccines were developed to express the glycoprotein (GP) of either SUDV or EBOV. A single intramuscular vaccination of cynomolgus macaques with VRP expressing SUDV GP provided complete protection against intramuscular challenge with SUDV. Vaccination against SUDV and subsequent survival of SUDV challenge did not fully protect cynomolgus macaques against intramuscular EBOV back-challenge. However, a single simultaneous intramuscular vaccination with VRP expressing SUDV GP combined with VRP expressing EBOV GP did provide complete protection against intramuscular challenge with either SUDV or EBOV in cynomolgus macaques. Finally, intramuscular vaccination with VRP expressing SUDV GP completely protected cynomolgus macaques when challenged with aerosolized SUDV, although complete protection against aerosol challenge required two vaccinations with this vaccine.
Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D
2007-01-01
We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (P<0.005), and of a higher total O'Driscoll score (P<0.005 and P<0.01, respectively). Chitosan-GP/blood implants applied in conjunction with drilling, compared to drilling alone, elicited a more hyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.
Mohana, S; Ganesan, M; Agilan, B; Karthikeyan, R; Srithar, G; Beaulah Mary, R; Ananthakrishnan, D; Velmurugan, D; Rajendra Prasad, N; Ambudkar, Suresh V.
2016-01-01
P-glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various approaches of virtual screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and significantly reduced resistance in cytotoxicity assay to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer. PMID:27216424
Mohana, S; Ganesan, M; Agilan, B; Karthikeyan, R; Srithar, G; Beaulah Mary, R; Ananthakrishnan, D; Velmurugan, D; Rajendra Prasad, N; Ambudkar, Suresh V
2016-07-19
P-Glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and they significantly reduced resistance in cytotoxicity assays to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer.
Modok, Szabolcs; Heyward, Catherine; Callaghan, Richard
2004-10-01
P-glycoprotein (P-gp) appears to be associated within specialized raftlike membrane microdomains. The activity of P-gp is sensitive to its lipid environment, and a functional association in raft microdomains will require that P-gp retains activity in the microenvironment. Purified hamster P-gp was reconstituted in liposomes comprising sphingomyelin and cholesterol, both highly enriched in membrane microdomains and known to impart a liquid-ordered phase to bilayers. The activity of P-gp was compared with that of proteoliposomes composed of crude egg phosphatidylcholine (unsaturated) or dipalmitoyl phosphatidylcholine (saturated) in the presence or absence of cholesterol. The maximal rate of ATP hydrolysis was not significantly altered by the nature of the lipid species. However, the potencies of nicardipine and XR9576 to modulate the ATPase activity of P-gp were increased in the sphingolipid-based proteoliposomes. The drug-P-gp interaction was investigated by measurement of the rates of [(3)H]XR9576 association and dissociation from the transporter. The lipid environment of P-gp did not affect these kinetic parameters of drug binding. In summary, P-gp retains function in liquid-ordered cholesterol and sphingolipid model membranes in which the communication between the transmembrane and the nucleotide binding domains after drug binding to the protein is more efficient.
Tong, Chao; Lin, Yaqiu; Zhang, Cunfang; Shi, Jianquan; Qi, Hongfang; Zhao, Kai
2015-10-01
Toll-like receptors (TLR) are key components of innate immunity that play significant roles in immune defense against pathogens invasion. Recent frequent outbreaks of the "white spot disease" caused by parasitic infection in farmed Tibetan fishes had resulted in great economic losses. However, to our knowledge, the roles of TLRs in mediating immune response to parasitic infection in Tibetan fishes remain to be determined. Here, we performed data-mining on a widely-farmed Tibetan fish (Gymnocypris przewalskii or Gp) transcriptome to determine the genetic variation and expression pattern of TLRs. We totally obtained 14 GpTLRs and identified 5 with a complete coding sequence. Phylogenetic analysis verified their identities and supported the classification of TLRs into six families as in other vertebrates. The TLR family motifs, such as leucine rich repeat (LRR) and Toll/interleukin (IL)-1 receptor (TIR) domain, are conserved in GpTLR1-5. Selective pressure test demonstrated that all known GpTLRs are under purifying selection, except GpTLR4 underwent positive selection. Further, site model analysis suggested that 11 positively selected sites are found in LRR domain of GpTLR4. Three positively selected sites are located on outside surface of TLR4 3D structure, indicating that function of GpTLR4 may be affected. Tissue specific expression analysis showed all GpTLRs are present in gill, head-kidney and spleen but the relative abundance varied among tissues. In response to parasite Ichthyophthirius multifiliis infection, 5 GpTLR (GpTLR1, -2, -4, -9 and -20) expressions were induced. Intriguingly, GpTLR4 was significantly up-regulated in gills, while GpTLR19 and GpTLR21 unexpectedly showed no any change. In summary, these results revealed the first genomic resources of TLR family and several parasitic infection responsive TLRs in Tibetan fish. These findings provide key information for future studies aiming to understand the molecular mechanisms underlying the immune response to pathogen invasion in Tibetan fishes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dhungel, Bidur; Ohno, Yoshikazu; Matayoshi, Rie; Otaki, Joji M
2013-03-25
Candidate genes for color pattern formation in butterfly wings have been known based on gene expression patterns since the 1990s, but their functions remain elusive due to a lack of a functional assay. Several methods of transferring and expressing a foreign gene in butterfly wings have been reported, but they have suffered from low success rates or low expression levels. Here, we developed a simple, practical method to efficiently deliver and express a foreign gene using baculovirus-mediated gene transfer in butterfly wings in vivo. A recombinant baculovirus containing a gene for green fluorescent protein (GFP) was injected into pupae of the blue pansy butterfly Junonia orithya (Nymphalidae). GFP fluorescence was detected in the pupal wings and other body parts of the injected individuals three to five days post-injection at various degrees of fluorescence. We obtained a high GFP expression rate at relatively high virus titers, but it was associated with pupal death before color pattern formation in wings. To reduce the high mortality rate caused by the baculovirus treatment, we administered an anti-gp64 antibody, which was raised against baculovirus coat protein gp64, to infected pupae after the baculovirus injection. This treatment greatly reduced the mortality rate of the infected pupae. GFP fluorescence was observed in pupal and adult wings and other body parts of the antibody-treated individuals at various degrees of fluorescence. Importantly, we obtained completely developed wings with a normal color pattern, in which fluorescent signals originated directly from scales or the basal membrane after the removal of scales. GFP fluorescence in wing tissues spatially coincided with anti-GFP antibody staining, confirming that the fluorescent signals originated from the expressed GFP molecules. Our baculovirus-mediated gene transfer system with an anti-gp64 antibody is reasonably efficient, and it can be an invaluable tool to transfer, express, and functionally examine foreign genes in butterfly wings and also in other non-model insect systems.
Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies.
Ilinykh, Philipp A; Shen, Xiaoli; Flyak, Andrew I; Kuzmina, Natalia; Ksiazek, Thomas G; Crowe, James E; Bukreyev, Alexander
2016-04-01
Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Chimeric Filoviruses for Identification and Characterization of Monoclonal Antibodies
Ilinykh, Philipp A.; Shen, Xiaoli; Flyak, Andrew I.; Kuzmina, Natalia; Ksiazek, Thomas G.; Crowe, James E.
2016-01-01
ABSTRACT Recent experiments suggest that some glycoprotein (GP)-specific monoclonal antibodies (MAbs) can protect experimental animals against the filovirus Ebola virus (EBOV). There is a need for isolation of MAbs capable of neutralizing multiple filoviruses. Antibody neutralization assays for filoviruses frequently use surrogate systems such as the rhabdovirus vesicular stomatitis Indiana virus (VSV), lentiviruses or gammaretroviruses with their envelope proteins replaced with EBOV GP or pseudotyped with EBOV GP. It is optimal for both screening and in-depth characterization of newly identified neutralizing MAbs to generate recombinant filoviruses that express a reporter fluorescent protein in order to more easily monitor and quantify the infection. Our study showed that unlike neutralization-sensitive chimeric VSV, authentic filoviruses are highly resistant to neutralization by MAbs. We used reverse genetics techniques to replace EBOV GP with its counterpart from the heterologous filoviruses Bundibugyo virus (BDBV), Sudan virus, and even Marburg virus and Lloviu virus, which belong to the heterologous genera in the filovirus family. This work resulted in generation of multiple chimeric filoviruses, demonstrating the ability of filoviruses to tolerate swapping of the envelope protein. The sensitivity of chimeric filoviruses to neutralizing MAbs was similar to that of authentic biologically derived filoviruses with the same GP. Moreover, disabling the expression of the secreted GP (sGP) resulted in an increased susceptibility of an engineered virus to the BDBV52 MAb isolated from a BDBV survivor, suggesting a role for sGP in evasion of antibody neutralization in the context of a human filovirus infection. IMPORTANCE The study demonstrated that chimeric rhabdoviruses in which G protein is replaced with filovirus GP, widely used as surrogate targets for characterization of filovirus neutralizing antibodies, do not accurately predict the ability of antibodies to neutralize authentic filoviruses, which appeared to be resistant to neutralization. However, a recombinant EBOV expressing a fluorescent protein tolerated swapping of GP with counterparts from heterologous filoviruses, allowing high-throughput screening of B cell lines to isolate MAbs of any filovirus specificity. Human MAb BDBV52, which was isolated from a survivor of BDBV infection, was capable of partially neutralizing a chimeric EBOV carrying BDBV GP in which expression of sGP was disabled. In contrast, the parental virus expressing sGP was resistant to the MAb. Thus, the ability of filoviruses to tolerate swapping of GP can be used for identification of neutralizing MAbs specific to any filovirus and for the characterization of MAb specificity and mechanism of action. PMID:26819310
Huang, Lihong; Liu, Shukai; Zang, Fuyu; Xing, Jinchao; Zhang, Youyue; Liang, Jiaqi; Zhang, Guihong
2017-01-01
In the swine industry, porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease which causes heavy economic losses worldwide. Effective prevention and disease control is an important issue. In this study, we described the construction of a Japanese encephalitis virus (JEV) DNA-based replicon with a cytomegalovirus (CMV) promoter based on the genome of Japanese encephalitis live vaccine virus SA14-14-2, which is capable of offering a potentially novel way to develop and produce vaccines against a major pathogen of global health. This JEV DNA-based replicon contains a large deletion in the structural genes (C-prM-E). A PRRSV GP5/M was inserted into the deletion position of JEV DNA-based replicons to develop a chimeric replicon vaccine candidate for PRRSV. The results showed that BALB/c mice models with the replicon vaccines pJEV-REP-G-2A-M-IRES and pJEV-REP-G-2A-M stimulated antibody responses and induced a cellular immune response. Analysis of ELSA data showed that vaccination with the replicon vaccine expressing GP5/M induced a better antibodies response than traditional DNA vaccines. Therefore, the results suggested that this ectopic expression system based on JEV DNA-based replicons may represent a useful molecular platform for various biological applications, and the JEV DNA-based replicons expressing GP5/M can be further developed into a novel, safe vaccine candidate for PRRS. PMID:28740748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Usami, Katsuaki; Matsuno, Keita; Igarashi, Manabu
2011-04-01
Highlights: {yields} Ebola virus infection is mediated by binding to and fusion with the target cells. {yields} Structural feature of the viral glycoprotein determines the infectivity. {yields} Surface C-type lectin, MGL, of macrophages and dendritic cells mediate the infection. {yields} GP2, one of glycoprotein subunits, plays an essential role in MGL-mediated infection. {yields} There is a critical amino acid residue involved in high infectivity. -- Abstract: Ebola virus (EBOV) infection is initiated by the interaction of the viral surface envelope glycoprotein (GP) with the binding sites on target cells. Differences in the mortality among different species of the Ebola viruses,more » i.e., Zaire ebolavirus (ZEBOV) and Reston ebolavirus (REBOV), correspond to the in vitro infectivity of the pseudo-typed virus constructed with the GPs in cells expressing macrophage galactose-type calcium-type lectin (MGL/CD301). Through mutagenesis of GP2, the transmembrane-anchored subunit of GP, we found that residues 502-527 of the GP2 sequence determined the different infectivity between VSV-ZEBOV GP and -REBOV GP in MGL/CD301-expressing cells and a histidine residue at position 516 of ZEBOV GP2 appeared essential in the differential infectivity. These findings may provide a clue to clarify a molecular basis of different pathogenicity among EBOV species.« less
Ramond, Cyrille; Glaser, Nicolas; Berthault, Claire; Ameri, Jacqueline; Kirkegaard, Jeannette Schlichting; Hansson, Mattias; Honoré, Christian; Semb, Henrik; Scharfmann, Raphaël
2017-07-21
Information remains scarce on human development compared to animal models. Here, we reconstructed human fetal pancreatic differentiation using cell surface markers. We demonstrate that at 7weeks of development, the glycoprotein 2 (GP2) marks a multipotent cell population that will differentiate into the acinar, ductal or endocrine lineages. Development towards the acinar lineage is paralleled by an increase in GP2 expression. Conversely, a subset of the GP2 + population undergoes endocrine differentiation by down-regulating GP2 and CD142 and turning on NEUROG3 , a marker of endocrine differentiation. Endocrine maturation progresses by up-regulating SUSD2 and lowering ECAD levels. Finally, in vitro differentiation of pancreatic endocrine cells derived from human pluripotent stem cells mimics key in vivo events. Our work paves the way to extend our understanding of the origin of mature human pancreatic cell types and how such lineage decisions are regulated.
Jackson, William; Hamstra, Daniel A; Johnson, Skyler; Zhou, Jessica; Foster, Benjamin; Foster, Corey; Li, Darren; Song, Yeohan; Palapattu, Ganesh S; Kunju, Lakshmi P; Mehra, Rohit; Feng, Felix Y
2013-09-15
The presence of Gleason pattern 5 (GP5) at radical prostatectomy (RP) has been associated with worse clinical outcome; however, this pathologic variable has not been assessed in patients receiving salvage radiation therapy (SRT) after a rising prostate-specific antigen level. A total of 575 patients who underwent primary RP for localized prostate cancer and subsequently received SRT at a tertiary medical institution were reviewed retrospectively. Primary outcomes of interest were biochemical failure (BF), distant metastasis (DM), and prostate cancer-specific mortality (PCSM), which were assessed via univariate analysis and Fine and Grays competing risks multivariate models. On pathologic evaluation, 563 (98%) patients had a documented Gleason score (GS). The median follow-up post-SRT was 56.7 months. A total of 60 (10.7%) patients had primary, secondary, or tertiary GP5. On univariate analysis, the presence of GP5 was prognostic for BF (hazard ratio [HR] 3.3; P < .0001), DM (HR:11.1, P < .0001), and PCSM (HR:8.8, P < .0001). Restratification of the Gleason score to include GP5 as a distinct entity resulted in improved prognostic capability. Patients with GP5 had clinically worse outcomes than patients with GS8(4+4). On multivariate analysis, the presence of GP5 was the most adverse pathologic predictor of BF (HR 2.9; P < .0001), DM (HR 14.8; P < .0001), and PCSM (HR 5.7; P < .0001). In the setting of SRT for prostate cancer, the presence of GP5 is a critical pathologic predictor of BF, DM, and PCSM. Traditional GS risk stratification fails to fully utilize the prognostic capabilities of individual Gleason patterns among men receiving SRT post-RP. © 2013 American Cancer Society.
[Anti-MDR tumor mechanism of CIP-36, a podophyllotoxin derivative].
Mei, Xin; Jiang, Yun-gen; Lü, Jing-jing; Wu, Ke-zhu; Cao, Bo; Chen, Hong
2011-10-01
This study is to investigate the antitumor activity of CIP-36 on multidrug resistant human oral squamous carcinoma cell line (KBV200 cells) in vitro and the possible anticancer mechanisms. MTT assay, Hoechst fluorescein stain, RT-PCR and immunohistochemistry were carried out on KBV200 and KB cells. The growth of many tumor cells was obviously inhibited by CIP-36, especially the multidrug resistant cells KBV200. Obvious apoptosis could be observed in the Hoechst 33342 staining experiments. The results of RT-PCR showed that the levels of p53, p21, caspase-3 and bax mRNA increased, and meanwhile the expression of mdr-1 and bcl-2 mRNA decreased in a dose-dependent manner. The data were significantly different from that of vehicle. The expression of P-gp significantly decreased with the increasing dosage of CIP-36 examined by immunohistochemistry. It can be concluded that CIP-36 could change resistance-related genes and proteins to overcome multidrug resistance in the KBV200 cell line.
Faria, Melissa; Navarro, Ana; Luckenbach, Till; Piña, Benjamin; Barata, Carlos
2011-01-17
The study of the cellular mechanisms of tolerance of organisms to pollution is a key issue in aquatic environmental risk assessment. Recent evidence indicates that multixenobiotic resistance (MXR) mechanisms represent a general biological defense of many marine and freshwater organisms against environmental toxicants. In this work, toxicologically relevant xenobiotic efflux transporters were studied in early life stages of zebra mussels (Dreissena polymorpha). Expression of a P-gp1 (ABCB1) transporter gene and its associated efflux activities during development were studied, using qRT-PCR and the fluorescent transporter substrates rhodamine B and calcein-AM combined with specific transporter inhibitors (chemosensitizers). Toxicity bioassays with the model P-gp1 chemotherapeutic drug vinblastine applied singly and in combination with different chemosensitizers were performed to elucidate the tolerance role of the P-gp1 efflux transporter. Results evidenced that the gene expression and associated efflux activities of ABC transporters were low or absent in eggs and increased significantly in 1-3d old trochophora and veliger larvae. Specific inhibitors of Pgp1 and/or MRP transport activities including cyclosporine A, MK571, verapamil and reversin 205 and the musk celestolide resulted in a concentration dependent inhibition of related transport activities in zebra mussel veliger larvae, with IC50 values in the lower micromolar range and similar to those reported for mammals, fish and mussels. Binary mixtures of the tested transporter inhibitors except celestolide with the anticancer drug and P-gp1 substrate vinblastine increased the toxicity of the former compound more than additively. These results indicate that MXR transporter activity is high in early life-stages of the zebra mussel and that may play an important role in the tolerance to environmental contaminants. Copyright © 2010 Elsevier B.V. All rights reserved.
Serebruany, Victor; Malinin, Alex; Pokov, Alex; Arora, Umesh; Atar, Dan; Angiolillo, Dominick
2007-01-01
Ongoing search for the optimal dosing regimens, and valid concerns that some GPIIb/IIIa inhibitors may cause rebound platelet activation are limiting the use of these agents in patients with acute vascular events. We assessed the in vitro effects of preincubation with escalating (12.5-200 ng/mL) concentrations of tirofiban on platelet biomarkers in 20 diabetic patients. Platelet activity was assessed by ADP-, and collagen-induced conventional plasma aggregometry, and by whole blood flow cytometry measuring expression of PECAM-1, GPIb, GP IIb/IIIa antigen and activity, vitronectin, P-selectin, LAMP-1, GP 37, LAMP-3, activated and intact PAR-1 thrombin receptors, GPIV, and platelet-monocyte formation. All patients were treated with aspirin (at least 81 mg daily for 1 month); other antiplatelet agents were not allowed. Significant decrease of ADP-induced platelet aggregation was observed starting at the low 12.5 ng/mL concentration (p=0.0001), with total inhibition occurring at 50 ng/mL of tirofiban dose. Inhibition of collagen-induced platelet aggregability requires 25 ng/ml of tirofiban (p=0.002), and was complete at 100 ng/mL. Dose-dependent blockade of GP IIb/IIIa activity was observed with tirofiban concentrations over 50 ng/mL (p=0.003). Other receptors were unaffected even with the high doses of tirofiban (100-200 ng/mL). Tirofiban completely inhibits ADP- and, with the higher dose, collagen-induced platelet aggregation. Higher loading dose of tirofiban used in the ongoing TENACITY trial (100 ng/mL) may be superior with regard to clinical outcomes to the regimens used in PRISM-PLUS (25 ng/mL), or TARGET (50 ng/mL). Selective inhibition of GPIIb/IIIa activity, and lack of alternative platelet activation beyond the GP IIb/IIIa blockade may represent the therapeutic advantage of tirofiban over other agents.
Ferreira, Ana; Rodrigues, Márcio; Marques, Alexandre; Falcão, Amílcar; Alves, Gilberto
2017-08-01
Considering the potential of flavonoids in reversing the P-glycoprotein (P-gp)-mediated multidrug resistance, this work aimed to assess the combined effects of silymarin and (-)-epigallocatechin gallate (EPG) on the pharmacokinetics of the P-gp substrates oxcarbazepine (OXC) and licarbazepine (LIC). Rats were pre-treated intraperitoneally with silymarin (25 mg/kg), EPG (25 mg/kg), silymarin/EPG (12.5/12.5 mg/kg; 6.25/18.75 mg/kg; 18.75/6.25 mg/kg) or verapamil (25 mg/kg, reference P-gp inhibitor) before the intraperitoneal administration of OXC (50 mg/kg). Pre-treatment with dual silymarin/EPG combinations originated peak plasma concentrations of OXC and LIC (pharmacologically active metabolite of OXC) similar to those achieved in the presence of verapamil (positive control). Moreover, the effects promoted by silymarin/EPG combinations on the magnitude of systemic drug exposure to OXC and LIC were also reflected in the corresponding drug levels attained in the brain (biophase). These findings evidence the synergistic effect of silymarin and EPG in enhancing the degree of systemic exposure to OXC and LIC in rats, which occurred in a comparable extent to that observed with verapamil. Hence, our findings support the combination of flavonoid-type P-gp inhibitors and P-gp substrate antiepileptic drugs as a potential therapeutic strategy for the management of pharmacoresistant epilepsy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Water Exposure is a Common Risk Behavior Among Soft and Gas-Permeable Contact Lens Wearers
Richdale, Kathryn; Mitchell, Gladys Lynn; Kinoshita, Beth T.; Lam, Dawn Y.; Wagner, Heidi; Sorbara, Luigina; Chalmers, Robin L.; Collier, Sarah A.; Cope, Jennifer R.; Rao, Maya M.; Beach, Michael J.; Yoder, Jonathan S.
2017-01-01
Purpose: To understand soft contact lens (SCL) and gas-permeable (GP) lens wearers' behaviors and knowledge regarding exposure of lenses to water. Methods: The Contact Lens Risk Survey (CLRS) and health behavior questions were completed online by a convenience sample of 1056 SCL and 85 GP lens wearers aged 20 to 76 years. Participants were asked about exposing their lenses to water and their understanding of risks associated with these behaviors. Chi-square analyses examined relationships between patient behaviors and perceptions. Results: GP lens wearers were more likely than SCL wearers to ever rinse or store lenses in water (rinsing: 91% GP, 31% SCL, P < 0.001; storing: 33% GP, 15% SCL P < 0.001). Among SCL wearers, men were more likely to store (24% vs. 13%, P = 0.003) or rinse (41% vs. 29%, P = 0.012) their lenses in water. Showering while wearing lenses was more common in SCL wearers (86%) than GP lens wearers (67%) (P < 0.0001). Swimming while wearing lenses was reported by 62% of SCL wearers and 48% of GP lens wearers (P = 0.027). Wearers who rinsed (SCL; P < 0.0001, GP; P = 0.11) or stored lenses in water (SCL; P < 0.0001, GP P = 0.007) reported that this behavior had little or no effect on their infection risk, compared with those who did not. Both SCL (P < 0.0001) and GP lens wearers (P < 0.0001) perceived that distilled water was safer than tap water for storing or rinsing lenses. Conclusions: Despite previously published evidence of Acanthamoeba keratitis' association with water exposure, most SCL, and nearly all GP lens wearers, regularly expose their lenses to water, with many unaware of the risk. PMID:28410356
Water Exposure is a Common Risk Behavior Among Soft and Gas-Permeable Contact Lens Wearers.
Zimmerman, Aaron B; Richdale, Kathryn; Mitchell, Gladys Lynn; Kinoshita, Beth T; Lam, Dawn Y; Wagner, Heidi; Sorbara, Luigina; Chalmers, Robin L; Collier, Sarah A; Cope, Jennifer R; Rao, Maya M; Beach, Michael J; Yoder, Jonathan S
2017-08-01
To understand soft contact lens (SCL) and gas-permeable (GP) lens wearers' behaviors and knowledge regarding exposure of lenses to water. The Contact Lens Risk Survey (CLRS) and health behavior questions were completed online by a convenience sample of 1056 SCL and 85 GP lens wearers aged 20 to 76 years. Participants were asked about exposing their lenses to water and their understanding of risks associated with these behaviors. Chi-square analyses examined relationships between patient behaviors and perceptions. GP lens wearers were more likely than SCL wearers to ever rinse or store lenses in water (rinsing: 91% GP, 31% SCL, P < 0.001; storing: 33% GP, 15% SCL P < 0.001). Among SCL wearers, men were more likely to store (24% vs. 13%, P = 0.003) or rinse (41% vs. 29%, P = 0.012) their lenses in water. Showering while wearing lenses was more common in SCL wearers (86%) than GP lens wearers (67%) (P < 0.0001). Swimming while wearing lenses was reported by 62% of SCL wearers and 48% of GP lens wearers (P = 0.027). Wearers who rinsed (SCL; P < 0.0001, GP; P = 0.11) or stored lenses in water (SCL; P < 0.0001, GP P = 0.007) reported that this behavior had little or no effect on their infection risk, compared with those who did not. Both SCL (P < 0.0001) and GP lens wearers (P < 0.0001) perceived that distilled water was safer than tap water for storing or rinsing lenses. Despite previously published evidence of Acanthamoeba keratitis' association with water exposure, most SCL, and nearly all GP lens wearers, regularly expose their lenses to water, with many unaware of the risk.
Werner, Lael; Paclik, Daniela; Fritz, Christina; Reinhold, Dirk; Roggenbuck, Dirk; Sturm, Andreas
2012-09-15
Pancreatic autoantibodies are Crohn disease-specific serologic markers. The function and immunological role of their recently identified autoantigen, glycoprotein 2 (GP2), are unknown. We therefore investigated the impact of GP2 on modulation of innate and adaptive immune responses to evaluate its potential therapeutic use in mucosal inflammation. Our data indicate a previously unknown function for GP2 as an immunomodulator. GP2 was ubiquitously expressed on cells vital to mucosal immune responses. The expression of GP2 was upregulated on activated human T cells, and it was further influenced by pharmaceutical TNF-α inhibitors. Recombinant GP2 significantly decreased human intestinal epithelial cells, mucosal and peripheral T cell proliferation, apoptosis, and activation, and it distinctly modulated cytokine secretion. Furthermore, intestinal epithelial cells stimulated with GP2 potently attracted T cells. In conclusion, we demonstrate a novel role for GP2 in immune regulation that could provide a platform for new therapeutic interventions in the treatment of Crohn disease.
Interaction of Food Additives with Intestinal Efflux Transporters.
Sjöstedt, Noora; Deng, Feng; Rauvala, Oskari; Tepponen, Tuomas; Kidron, Heidi
2017-11-06
Breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2) and P-glycoprotein (P-gp) are ABC transporters that are expressed in the intestine, where they are involved in the efflux of many drugs from enterocytes back into the intestinal lumen. The inhibition of BCRP, MRP2, and P-gp can result in enhanced absorption and exposure of substrate drugs. Food additives are widely used by the food industry to improve the stability, flavor, and consistency of food products. Although they are considered safe for consumption, their interactions with intestinal transporters are poorly characterized. Therefore, in this study, selected food additives, including preservatives, colorants, and sweeteners, were studied in vitro for their inhibitory effects on intestinal ABC transporters. Among the studied compounds, several colorants were able to inhibit BCRP and MRP2, whereas P-gp was fairly insensitive to inhibition. Additionally, one sweetener was identified as a potent inhibitor of BCRP. Dose-response studies revealed that the IC 50 values of the inhibitors were lower than the estimated intestinal concentrations after the consumption of beverages containing food colorants. This suggests that there is potential for previously unrecognized transporter-mediated food additive-drug interactions.
Agnani, Deep; Acharya, Poulomi; Martinez, Esteban; Tran, Thuy Thanh; Abraham, Feby; Tobin, Frank; Ellens, Harma; Bentz, Joe
2011-01-01
P-glycoprotein, a human multidrug resistance transporter, has been extensively studied due to its importance to human health and disease. In order to understand transport kinetics via P-gp, confluent cell monolayers overexpressing P-gp are widely used. The purpose of this study is to obtain the mass action elementary rate constants for P-gp's transport and to functionally characterize members of P-gp's network, i.e., other transporters that transport P-gp substrates in hMDR1-MDCKII confluent cell monolayers and are essential to the net substrate flux. Transport of a range of concentrations of amprenavir, loperamide, quinidine and digoxin across the confluent monolayer of cells was measured in both directions, apical to basolateral and basolateral to apical. We developed a global optimization algorithm using the Particle Swarm method that can simultaneously fit all datasets to yield accurate and exhaustive fits of these elementary rate constants. The statistical sensitivity of the fitted values was determined by using 24 identical replicate fits, yielding simple averages and standard deviations for all of the kinetic parameters, including the efflux active P-gp surface density. Digoxin required additional basolateral and apical transporters, while loperamide required just a basolateral tranporter. The data were better fit by assuming bidirectional transporters, rather than active importers, suggesting that they are not MRP or active OATP transporters. The P-gp efflux rate constants for quinidine and digoxin were about 3-fold smaller than reported ATP hydrolysis rate constants from P-gp proteoliposomes. This suggests a roughly 3∶1 stoichiometry between ATP hydrolysis and P-gp transport for these two drugs. The fitted values of the elementary rate constants for these P-gp substrates support the hypotheses that the selective pressures on P-gp are to maintain a broad substrate range and to keep xenobiotics out of the cytosol, but not out of the apical membrane. PMID:22028772
Excipient-mediated alteration in drug bioavailability in the rat depends on the sex of the animal.
Mai, Yang; Afonso-Pereira, Francisco; Murdan, Sudaxshina; Basit, Abdul W
2017-09-30
The pharmaceutical excipient, polyethylene glycol 400 (PEG 400), unexpectedly alters the bioavailability of the BCS class III drug ranitidine in a sex-dependent manner. As ranitidine is a substrate for the efflux transporter P-glycoprotein (P-gp), we hypothesized that the sex-related influence could be due to interactions between PEG 400 and P-gp. In this study, we tested this hypothesis by: i) measuring the influence of PEG 400 on the oral bioavailability of another P-gp substrate (ampicillin) and of a non-P-gp substrate (metformin); and ii) measuring the effect of PEG 400 on drug bioavailability in the presence of a P-gp inhibitor (cyclosporine A) in male and female rats. We found that PEG 400 significantly increased (p<0.05) the bioavailability of ampicillin (the P-gp substrate) in male rats, but not in female ones. In contrast, PEG 400 had no influence on the bioavailability of the non-P-gp substrate, metformin in male or female rats. Inhibition of P-gp by oral pre-treatment with cyclosporine A increased the bioavailability of the P-gp substrates (ampicillin and ranitidine) in males and females (p<0.05), and to a greater extent in males, but had no influence on the bioavailability of metformin in either male or female rats. These results prove the hypothesis that the sex-specific effect of PEG 400 on the bioavailability of certain drugs is due to the interaction of PEG 400 with the efflux transporter P-gp. Copyright © 2017 Elsevier B.V. All rights reserved.
Targeting NADPH oxidase decreases oxidative stress in the transgenic sickle cell mouse penis.
Musicki, Biljana; Liu, Tongyun; Sezen, Sena F; Burnett, Arthur L
2012-08-01
Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) ), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Relative to hemi mice, SCD increased (P<0.05) protein expression of NADPH oxidase subunits p67(phox) , p47(phox) , and gp91(phox) , 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P<0.05) the abnormalities in protein expressions of p47(phox) , gp91(phox) (but not p67(phox) ) and 4-HNE, but only slightly (P>0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. © 2012 International Society for Sexual Medicine.
Targeting NADPH Oxidase Decreases Oxidative Stress in the Transgenic Sickle Cell Mouse Penis
Musicki, Biljana; Liu, Tongyun; Sezen, Sena F.; Burnett, Arthur L.
2012-01-01
Introduction Sickle cell disease (SCD) is a state of chronic vasculopathy characterized by endothelial dysfunction and increased oxidative stress, but the sources and mechanisms responsible for reactive oxygen species (ROS) production in the penis are unknown. Aims We evaluated whether SCD activates NADPH oxidase, induces endothelial nitric oxide synthase (eNOS) uncoupling, and decreases antioxidants in the SCD mouse penis. We further tested the hypothesis that targeting NADPH oxidase decreases oxidative stress in the SCD mouse penis. Methods SCD transgenic (sickle) mice were used as an animal model of SCD. Hemizygous (hemi) mice served as controls. Mice received an NADPH oxidase inhibitor apocynin (10 mM in drinking water) or vehicle. Penes were excised at baseline for molecular studies. Markers of oxidative stress (4-hydroxy-2-nonenal [HNE]), sources of ROS (eNOS uncoupling and NADPH oxidase subunits p67phox, p47phox, and gp91phox), and enzymatic antioxidants (superoxide dismutase [SOD]1, SOD2, catalase, and glutathione peroxidase-1 [GPx1]) were measured by Western blot in penes. Main Outcome Measures Sources of ROS, oxidative stress, and enzymatic antioxidants in the SCD penis. Results Relative to hemi mice, SCD increased (P < 0.05) protein expression of NADPH oxidase subunits p67phox, p47phox, and gp91phox, 4-HNE-modified proteins, induced eNOS uncoupling, and reduced Gpx1 expression in the penis. Apocynin treatment of sickle mice reversed (P < 0.05) the abnormalities in protein expressions of p47phox, gp91phox (but not p67phox) and 4-HNE, but only slightly (P > 0.05) prevented eNOS uncoupling in the penis. Apocynin treatment of hemi mice did not affect any of these parameters. Conclusion NADPH oxidase and eNOS uncoupling are sources of oxidative stress in the SCD penis; decreased GPx1 further contributes to oxidative stress. Inhibition of NADPH oxidase upregulation decreases oxidative stress, implying a major role for NADPH oxidase as a ROS source and a potential target for improving vascular function in the SCD mouse penis. PMID:22620981
Chaves Neto, Antonio Hernandes; Machado, Daisy; Yano, Cláudia Lumy; Ferreira, Carmen Veríssima
2011-01-01
MC3T3-E1 cells grown in the presence of ascorbic acid and β-glycerophosphate (AA/β-GP) express alkaline phosphatase and produce an extensive collagenous extracellular matrix. Differentiated MC3T3-E1 cells are more sensitive to hydrogen peroxide-induced oxidative stress than undifferentiated cells. In this study, we compared the profile of antioxidant enzymes and molecular markers of apoptosis in undifferentiated and differentiated MC3T3-E1 cells (cell differentiation was induced by treatment with AA/β-GP). Differentiated osteoblasts showed lower expression and activity of catalase, glutathione S-transferase and glutathione peroxidase. The total superoxide dismutase activity and the expression of Cu/Zn superoxide dismutase were also lower, while the expression of Mn superoxide dismutase was higher in differentiated osteoblasts. The level of malondialdehyde, a widely used marker for oxidative stress, was lower in the AA/β-GP group compared with control cells, but this difference was not significant. Western blotting showed that treatment with AA/β-GP increased the Bax/Bcl-2 ratio used as an index of cellular vulnerability to apoptosis. In addition, the activities of caspases 3, 8 and 9 and cleaved poly (ADP) ribose polymerase were significantly higher in differentiated cells. These findings provide new insights into how changes in the activities of major antioxidant enzymes and in the signaling pathways associated with apoptosis may influence the susceptibility of bone cells to oxidative stress. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Developmental Biologists.
Recombinant Modified Vaccinia Virus Ankara Generating Ebola Virus-Like Particles.
Schweneker, Marc; Laimbacher, Andrea S; Zimmer, Gert; Wagner, Susanne; Schraner, Elisabeth M; Wolferstätter, Michael; Klingenberg, Marieken; Dirmeier, Ulrike; Steigerwald, Robin; Lauterbach, Henning; Hochrein, Hubertus; Chaplin, Paul; Suter, Mark; Hausmann, Jürgen
2017-06-01
There are currently no approved therapeutics or vaccines to treat or protect against the severe hemorrhagic fever and death caused by Ebola virus (EBOV). Ebola virus-like particles (EBOV VLPs) consisting of the matrix protein VP40, the glycoprotein (GP), and the nucleoprotein (NP) are highly immunogenic and protective in nonhuman primates against Ebola virus disease (EVD). We have constructed a modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) recombinant coexpressing VP40 and GP of EBOV Mayinga and the NP of Taï Forest virus (TAFV) (MVA-BN-EBOV-VLP) to launch noninfectious EBOV VLPs as a second vaccine modality in the MVA-BN-EBOV-VLP-vaccinated organism. Human cells infected with either MVA-BN-EBOV-VLP or MVA-BN-EBOV-GP showed comparable GP expression levels and transport of complex N-glycosylated GP to the cell surface. Human cells infected with MVA-BN-EBOV-VLP produced large amounts of EBOV VLPs that were decorated with GP spikes but excluded the poxviral membrane protein B5, thus resembling authentic EBOV particles. The heterologous TAFV NP enhanced EBOV VP40-driven VLP formation with efficiency similar to that of the homologous EBOV NP in a transient-expression assay, and both NPs were incorporated into EBOV VLPs. EBOV GP-specific CD8 T cell responses were comparable between MVA-BN-EBOV-VLP- and MVA-BN-EBOV-GP-immunized mice. The levels of EBOV GP-specific neutralizing and binding antibodies, as well as GP-specific IgG1/IgG2a ratios induced by the two constructs, in mice were also similar, raising the question whether the quality rather than the quantity of the GP-specific antibody response might be altered by an EBOV VLP-generating MVA recombinant. IMPORTANCE The recent outbreak of Ebola virus (EBOV), claiming more than 11,000 lives, has underscored the need to advance the development of safe and effective filovirus vaccines. Virus-like particles (VLPs), as well as recombinant viral vectors, have proved to be promising vaccine candidates. Modified vaccinia virus Ankara-Bavarian Nordic (MVA-BN) is a safe and immunogenic vaccine vector with a large capacity to accommodate multiple foreign genes. In this study, we combined the advantages of VLPs and the MVA platform by generating a recombinant MVA-BN-EBOV-VLP that would produce noninfectious EBOV VLPs in the vaccinated individual. Our results show that human cells infected with MVA-BN-EBOV-VLP indeed formed and released EBOV VLPs, thus producing a highly authentic immunogen. MVA-BN-EBOV-VLP efficiently induced EBOV-specific humoral and cellular immune responses in vaccinated mice. These results are the basis for future advancements, e.g., by including antigens from various filoviral species to develop multivalent VLP-producing MVA-based filovirus vaccines. Copyright © 2017 American Society for Microbiology.
Manoharan, Vinoth K; Khattar, Sunil K; LaBranche, Celia C; Montefiori, David C; Samal, Siba K
2018-06-12
SIV infection in macaques is a relevant animal model for HIV pathogenesis and vaccine study in humans. To design a safe and effective vaccine against HIV, we evaluated the suitability of naturally-occurring avirulent Newcastle disease virus (NDV) strains and several modified versions of NDV as vectors for the expression and immunogenicity of SIV envelope protein gp160. All the NDV vectors expressed gp160 protein in infected cells. The gp160 expressed by these vectors formed oligomers and was incorporated into the NDV envelope. All the NDV vectors expressing gp160 were attenuated in chickens. Intranasal immunization of guinea pigs with modified NDV vectors such as rNDV-APMV-2CS/gp160 and rNDV-APMV-8CS/gp160 (NDV strain LaSota containing the cleavage site sequences of F protein of avian paramyxovirus (APMV) serotype 2 and 8, respectively), and rNDV-BC-F-HN/gp160 (NDV strain BC containing LaSota F cleavage site and LaSota F and HN genes) elicited improved SIV-specific humoral and mucosal immune responses compared to other NDV vectors. These modified vectors were also efficient in inducing neutralizing antibody responses to tier 1 A SIVmac251.6 and tier 1B SIVmac251/M766 strains. This study suggests that our novel modified NDV vectors are safe and immunogenic and can be used as vaccine vector to control HIV.
Zheng, Wenwen; Huang, Wan; Liu, Shue; Levitt, Roy C; Candiotti, Keith A; Lubarsky, David A; Hao, Shuanglin
2014-09-01
Human immunodeficiency virus (HIV)-associated sensory neuropathy is a common neurological complication of HIV infection affecting up to 30% of HIV-positive individuals. However, the exact neuropathological mechanisms remain unknown, which hinders our ability to develop effective treatments for HIV-related neuropathic pain (NP). In this study, we tested the hypothesis that inhibition of proinflammatory factors with overexpression of interleukin (IL)-10 reduces HIV-related NP in a rat model. NP was induced by the application of recombinant HIV-1 envelope protein gp120 into the sciatic nerve. The hindpaws of rats were inoculated with nonreplicating herpes simplex virus (HSV) vectors expressing anti-inflammatory cytokine IL-10 or control vector. Mechanical threshold was tested using von Frey filaments before and after treatments with the vectors. The mechanical threshold response was assessed over time using the area under curves. The expression of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 in both the lumbar spinal cord and the L4/5 dorsal root ganglia (DRG), was examined at 14 and 28 days after vector inoculation using Western blots. We found that in the gp120-induced NP model, IL-10 overexpression mediated by the HSV vector resulted in a significant elevation of the mechanical threshold that was apparent on day 3 after vector inoculation compared with the control vector (P < 0.001). The antiallodynic effect of the single HSV vector inoculation expressing IL-10 lasted >28 days. The area under curve in the HSV vector expressing IL-10 was increased compared with that in the control vector (P < 0.0001). HSV vectors expressing IL-10 reversed the upregulation of phosphorylated p38 mitogen-activated kinase, tumor necrosis factor-α, stromal cell-derived factor-1α, and C-X-C chemokine receptor type 4 expression at 14 and/or 28 days in the DRG and/or the spinal dorsal horn. Our studies demonstrate that blocking the signaling of these proinflammatory molecules in the DRG and/or the spinal cord using the HSV vector expressing IL-10 is able to reduce HIV-related NP. These results provide new insights on the potential mechanisms of HIV-associated NP and a proof of concept for treating painful HIV sensory neuropathy with this type of gene therapy.
[Effectiveness of implementing the reiki method to reduce the weaning failure. A clinical trial].
Saiz-Vinuesa, M D; Rodríguez-Moreno, E; Carrilero-López, C; García Vitoria, J; Garrido-Moya, D; Claramonte-Monedero, R; Piqueras-Carrión, A M
2016-01-01
Admission to intensive care unit (ICU) is a difficult and stressful time for the patient, with the application of different techniques, such as intubation and ventilation support withdrawal or "weaning", which may fail due to anxiety. To determine whether Reiki is useful in reducing weaning failure, as well as reducing the number of days of mechanical ventilation (MV), length of stay in ICU, amount of sedatives, amines, and antipsychotics. Randomized clinical trial. ICU of a Level III University Hospital. ICU patients connected to Mechanical Ventilation for more than 48hours, with a signed informed consent. Patients in a terminal condition or potential organ donors were excluded. 256 patients divided into two groups: intervention group (GI) and placebo (GP). The intervention involves the application of Reiki, and a simulated technique within the placebo group. An analysis was made of the absolute and relative frequencies, with a significance level of P<.05, 95% CI RESULTS: The percentage of failures at weaning was 9% in GI and 9.5% in GP (P=.42). The mean number of days on MV was 8.85 days for GI and 9.66 for the GP (P=.53). The mean dose of sedatives: GI 1078mg and 1491mg GP. The dose of Haloperidol was lower in the GI (5.30mg vs 16.81mg GP) (P=.03, 95% CI; -21.9 to -1.13). Reiki reduces the agitation of patients. A decrease was objectively observed in the number of days of Mechanical Ventilation, length of stay, lower doses of sedatives, and a slight decrease in the weaning failure in the GI. No statistically significant difference was found in the main variable. Copyright © 2015 Elsevier España, S.L.U. y SEEIUC. All rights reserved.
Banerjee, Atrayee; Zhang, Xinsheng; Manda, Kalyan Reddy; Banks, William A; Ercal, Nuran
2010-01-01
An increased risk of HIV-1 associated dementia (HAD) has been observed in patients abusing methamphetamine (METH). Since both HIV viral proteins (gp120, Tat) and METH induce oxidative stress, drug abusing patients are at a greater risk of oxidative stress-induced damage. The objective of this study was to determine if N-acetylcysteine amide (NACA) protects the blood brain barrier (BBB) from oxidative stress-induced damage in animals exposed to gp120, Tat and METH. To study this, CD-1 mice pre-treated with NACA/saline, received injections of gp120, Tat, gp120 + Tat or saline for 5 days, followed by three injections of METH/saline on the fifth day, and sacrificed 24 h after the final injection. Various oxidative stress parameters were measured, and animals treated with gp120+Tat+Meth were found to be the most challenged group, as indicated by their GSH and MDA levels. Treatment with NACA significantly rescued the animals from oxidative stress. Further, NACA-treated animals had significantly higher expression of TJ proteins and BBB permeability as compared to the group treated with gp120+Tat+METH alone, indicating that NACA can protect the BBB from oxidative stress-induced damage in gp120, Tat and METH exposed animals, and thus could be a viable therapeutic option for patients with HAD. PMID:20188164
Punfa, Wanisa; Yodkeeree, Supachai; Pitchakarn, Pornsiri; Ampasavate, Chadarat; Limtrakul, Pornngarm
2012-06-01
To compare the anti-cancer activity and cellular uptake of curcumin (Cur) delivered by targeted and non-targeted drug delivery systems in multidrug-resistant cervical cancer cells. Cur was entrapped into poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (Cur-NPs) in the presence of modified-pluronic F127 stabilizer using nano-precipitation technique. On the surface of Cur-NPs, the carboxy-terminal of modified pluronic F127 was conjugated to the amino-terminal of anti-P-glycoprotein (P-gp) (Cur-NPs-APgp). The physical properties of the Cur-NPs, including particle size, zeta potential, particle morphology and Cur release kinetics, were investigated. Cellular uptake and specificity of the Cur-NPs and Cur-NPs-APgp were detected in cervical cancer cell lines KB-V1 (higher expression of P-gp) and KB-3-1 (lower expression of P-gp) using fluorescence microscope and flow cytometry, respectively. Cytotoxicity of the Cur-NPs and Cur-NPs-APgp was determined using MTT assay. The particle size of Cur-NPs and Cur-NPs-APgp was 127 and 132 nm, respectively. The entrapment efficiency and actual loading of Cur-NPs-APgp (60% and 5 μg Cur/mg NP) were lower than those of Cur-NPs (99% and 7 μg Cur/mg NP). The specific binding of Cur-NPs-APgp to KB-V1 cells was significantly higher than that to KB-3-1 cells. Cellular uptake of Cur-NPs-APgp into KB-V1 cells was higher, as compared to KB-3-1 cells. However, the cellular uptake of Cur-NPs and Cur-NPs-IgG did not differ between the two types of cells. Besides, the cytotoxicity of Cur-NPs-APgp in KB-V1 cells was higher than those of Cur and Cur-NPs. The results demonstrate that Cur-NPs-APgp targeted to P-gp on the cell surface membrane of KB-V1 cells, thus enhancing the cellular uptake and cytotoxicity of Cur.
GP3 is a structural component of the PRRSV type II (US) virion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, M. de; Departamento de Microbiologia e Parasitologia, Universidade Federal Fluminense, Niteroi, RJ; Ansari, I.H.
2009-07-20
Glycoprotein 3 (GP3) is a highly glycosylated PRRSV envelope protein which has been reported as being present in the virions of PRRSV type I, while missing in the type II PRRSV (US) virions. We herein present evidence that GP3 is indeed incorporated in the virus particles of a North American strain of PRRSV (FL12), at a density that is consistent with the minor structural role assigned to GP3 in members of the Arterivirus genus. Two 15aa peptides corresponding to two different immunodominant linear epitopes of GP3 derived from the North American strain of PRRSV (FL12) were used as antigen tomore » generate a rabbit monospecific antiserum to this protein. The specificity of this anti-GP3 antiserum was confirmed by radioimmunoprecipitation (RIP) assay using BHK-21 cells transfected with GP3 expressing plasmid, MARC-145 cells infected with FL12 PRRSV, as well as by confocal microscopy on PRRSV-infected MARC-145 cells. To test if GP3 is a structural component of the virion, {sup 35}S-labelled PRRSV virions were pelleted through a 30% sucrose cushion, followed by a second round of purification on a sucrose gradient (20-60%). Virions were detected in specific gradient fractions by radioactive counts and further confirmed by viral infectivity assay in MARC 145 cells. The GP3 was detected in gradient fractions containing purified virions by RIP using anti-GP3 antiserum. Predictably, the GP3 was less abundant in purified virions than other major structural envelope proteins such as GP5 and M. Further evidence of the presence of GP3 at the level of PRRSV FL12 envelope was obtained by immunogold staining of purified virions from the supernatant of infected cells with anti-GP3 antiserum. Taken together, these results indicate that GP3 is a minor structural component of the PRRSV type II (FL12 strain) virion, as had been previously described for PRRSV type I.« less
Designing a Soluble Near Full-Length HIV-1 GP41 Trimer
2012-11-26
envelope; gp41 trimer; bacteriophage T4 display; prehairpin fusion intermediate. Background: The envelope glycoprotein gp41 is a key component of...protein into trimers and defined oligomers. These gp41 trimers were displayed on bacteriophage T4 capsid nanoparticles by attaching to the small...Construction of the Expression Vectors —All the gp41 constructs were generated by splicing-by- overlap extension PCR using wild-type HXB2 gp41 DNA
A genetic programming approach to oral cancer prognosis
Tan, Mei Sze; Tan, Jing Wei; Yap, Hwa Jen; Abdul Kareem, Sameem; Zain, Rosnah Binti
2016-01-01
Background The potential of genetic programming (GP) on various fields has been attained in recent years. In bio-medical field, many researches in GP are focused on the recognition of cancerous cells and also on gene expression profiling data. In this research, the aim is to study the performance of GP on the survival prediction of a small sample size of oral cancer prognosis dataset, which is the first study in the field of oral cancer prognosis. Method GP is applied on an oral cancer dataset that contains 31 cases collected from the Malaysia Oral Cancer Database and Tissue Bank System (MOCDTBS). The feature subsets that is automatically selected through GP were noted and the influences of this subset on the results of GP were recorded. In addition, a comparison between the GP performance and that of the Support Vector Machine (SVM) and logistic regression (LR) are also done in order to verify the predictive capabilities of the GP. Result The result shows that GP performed the best (average accuracy of 83.87% and average AUROC of 0.8341) when the features selected are smoking, drinking, chewing, histological differentiation of SCC, and oncogene p63. In addition, based on the comparison results, we found that the GP outperformed the SVM and LR in oral cancer prognosis. Discussion Some of the features in the dataset are found to be statistically co-related. This is because the accuracy of the GP prediction drops when one of the feature in the best feature subset is excluded. Thus, GP provides an automatic feature selection function, which chooses features that are highly correlated to the prognosis of oral cancer. This makes GP an ideal prediction model for cancer clinical and genomic data that can be used to aid physicians in their decision making stage of diagnosis or prognosis. PMID:27688975
Krell, Tino; Greco, Frédéric; Engel, Olivier; Dubayle, Jean; Dubayle, Joseline; Kennel, Audrey; Charloteaux, Benoit; Brasseur, Robert; Chevalier, Michel; Sodoyer, Regis; El Habib, Raphaëlle
2004-04-01
HIV gp41(24-157) unfolds cooperatively over the pH range of 1.0-4.0 with T(m) values of > 100 degrees C. At pH 2.8, protein unfolding was 80% reversible and the DeltaH(vH)/DeltaH(cal) ratio of 3.7 is indicative of gp41 being trimeric. No evidence for a monomer-trimer equilibrium in the concentration range of 0.3-36 micro m was obtained by DSC and tryptophan fluorescence. Glycosylation of gp41 was found to have only a marginal impact on the thermal stability. Reduction of the disulfide bond or mutation of both cysteine residues had only a marginal impact on protein stability. There was no cooperative unfolding event in the DSC thermogram of gp160 in NaCl/P(i), pH 7.4, over a temperature range of 8-129 degrees C. When the pH was lowered to 5.5-3.4, a single unfolding event at around 120 degrees C was noted, and three unfolding events at 93.3, 106.4 and 111.8 degrees C were observed at pH 2.8. Differences between gp41 and gp160, and hyperthermostable proteins from thermophile organisms are discussed. A series of gp41 mutants containing single, double, triple or quadruple point mutations were analysed by DSC and CD. The impact of mutations on the protein structure, in the context of generating a gp41 based vaccine antigen that resembles a fusion intermediate state, is discussed. A gp41 mutant, in which three hydrophobic amino acids in the gp41 loop were replaced with charged residues, showed an increased solubility at neutral pH.
Characteristics of alpha-glycerophosphate-evoked H2O2 generation in brain mitochondria.
Tretter, Laszlo; Takacs, Katalin; Hegedus, Vera; Adam-Vizi, Vera
2007-02-01
Characteristics of reactive oxygen species (ROS) production in isolated guinea-pig brain mitochondria respiring on alpha-glycerophosphate (alpha-GP) were investigated and compared with those supported by succinate. Mitochondria established a membrane potential (DeltaPsi(m)) and released H(2)O(2) in parallel with an increase in NAD(P)H fluorescence in the presence of alpha-GP (5-40 mm). H(2)O(2) formation and the increase in NAD(P)H level were inhibited by rotenone, ADP or FCCP, respectively, being consistent with a reverse electron transfer (RET). The residual H(2)O(2) formation in the presence of FCCP was stimulated by myxothiazol in mitochondria supported by alpha-GP, but not by succinate. ROS under these conditions are most likely to be derived from alpha-GP-dehydrogenase. In addition, huge ROS formation could be provoked by antimycin in alpha-GP-supported mitochondria, which was prevented by myxothiazol, pointing to the generation of ROS at the quinol-oxidizing center (Q(o)) site of complex III. FCCP further stimulated the production of ROS to the highest rate that we observed in this study. We suggest that the metabolism of alpha-GP leads to ROS generation primarily by complex I in RET, and in addition a significant ROS formation could be ascribed to alpha-GP-dehydrogenase in mammalian brain mitochondria. ROS generation by alpha-GP at complex III is evident only when this complex is inhibited by antimycin.
Liu, Bei; Staron, Matthew; Li, Zihai
2012-01-01
Basophil has been implicated in anti-parasite defense, allergy and in polarizing T(H)2 response. Mouse model has been commonly used to study basophil function although the difference between human and mouse basophils is underappreciated. As an essential chaperone for multiple Toll-like receptors and integrins in the endoplasmic reticulum, gp96 also participates in general protein homeostasis and in the ER unfolded protein response to ensure cell survival during stress. The roles of gp96 in basophil development are unknown. We genetically delete gp96 in mice and examined the expression of gp96 in basophils by Western blot and flow cytometry. We compared the expression pattern of gp96 between human and mouse basophils. We found that gp96 was dispensable for murine basophil development. Moreover, gp96 was cleaved by serine protease(s) in murine but not human basophils leading to accumulation of a nun-functional N-terminal ∼50 kDa fragment and striking induction of the unfolded protein response. The alteration of gp96 was unique to basophils and was not observed in any other cell types including mast cells. We also demonstrated that the ectopic expression of a mouse-specific tryptase mMCP11 does not lead to gp96 cleavage in human basophils. Our study revealed a remarkable biochemical event of gp96 silencing in murine but not human basophils, highlighting the need for caution in using mouse models to infer the function of basophils in human immune response. Our study also reveals a novel mechanism of shutting down gp96 post-translationally in regulating its function.
Bellantuono, I; Lashford, L S; Rafferty, J A; Fairbairn, L J
2000-05-01
As a single gene defect in mature bone marrow cells, chronic granulomatous disease (X-CGD) represents a disorder which may be amenable to gene therapy by the transfer of the missing subunit into hemopoietic stem cells. In the majority of cases lack of Gp91-phox causes the disease. So far, studies involving transfer of Gp91-phox cDNA, including a phase I clinical trial, have yielded disappointing results. Most often, low titers of virus have been reported. In the present study we investigated the possible reasons for low titer amphotropic viral production. To investigate the effect of Gp91 cDNA on the efficiency of retroviral production from the packaging cell line, GP+envAm12, we constructed vectors containing either the native cDNA, truncated versions of the cDNA or a mutated form (LATG) in which the natural translational start codon was changed to a stop codon. Following derivation of clonal packaging cell lines, these were assessed for viral titer by RNA slot blot and analyzed by non-parametrical statistical analysis (Whitney-Mann U-test). An improvement in viral titer of just over two-fold was found in packaging cells containing the start-codon mutant of Gp91 and no evidence of truncated viral RNA was seen in these cells. Further analysis revealed the presence of rearranged forms of the provirus in Gp91-expressing cells, and the production of truncated, unpackaged viral RNA. Protein analysis revealed that LATG-transduced cells did not express full-length Gp91-phox, whereas those containing the wild-type cDNA did. However, a truncated protein was seen in ATG-transduced cells which was also present in wild type cells. No evidence for the presence of a negative transcriptional regulatory element was found from studies with the deletion mutants. A statistically significant effect of protein production on the production of virus from Gp91-expressing cells was found. Our data point to a need to restrict expression of the Gp91-phox protein and its derivatives in order to enhance retroviral production and suggest that improvements in current vectors for CGD gene therapy may need to include controlled, directed expression only in mature neutrophils.
Rijavec, Matija; Silar, Mira; Triller, Nadja; Kern, Izidor; Cegovnik, Urška; Košnik, Mitja; Korošec, Peter
2011-09-01
The aim of this study was to investigate the mRNA expression levels of multidrug resistance-associated proteins in chemo-naïve metastatic lung cancer cells and to determine the correlation with response to chemotherapy and overall survival. Metastatic cells were obtained by transbronchial fine needle aspiration biopsy of enlarged mediastinal lymph nodes in 14 patients with small cell lung cancer (SCLC) and 7 patients with non-small cell lung cancer (NSCLC). After cytological confirmation of lung cancer type, total RNA was extracted from biopsy samples and reverse transcribed to cDNA, and real-time PCR for the genes of interest [P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP), lung resistance protein (LRP) and topoisomerase IIα (TOPIIα)], was performed. We observed significantly decreased expression of BCRP and significantly increased expression of TOPIIα in metastatic SCLC cells compared to NSCLC. Furthermore, in SCLC high topoisomerase IIα and low BCRP expression levels positively correlated with longer overall survival. Our results showed higher expression levels of BCRP as well as lower levels of topoisomerase IIα in chemo-naïve metastatic cells in NSCLC than in SCLC. These results correlate with previous observations that metastatic SCLC cells at the beginning of chemotherapy are potentially more sensitive to chemotherapeutic agents while in metastatic NSCLC cells resistance is usually inherent. We also showed that altered levels of topoisomerase IIα and BCRP in SCLC are important factors that contribute to resistance to chemotherapeutics that interfere with the enzyme and/or DNA and are highly associated with overall survival.
Thomas, David C.; Clare, Simon; Sowerby, John M.; Juss, Jatinder K.; Goulding, David A.; van der Weyden, Louise; Prakash, Ananth; Harcourt, Katherine; Mukhopadhyay, Subhankar; Antrobus, Robin; Bateman, Alex
2017-01-01
The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox. Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense. PMID:28351984
flp-32 Ligand/receptor silencing phenocopy faster plant pathogenic nematodes.
Atkinson, Louise E; Stevenson, Michael; McCoy, Ciaran J; Marks, Nikki J; Fleming, Colin; Zamanian, Mostafa; Day, Tim A; Kimber, Michael J; Maule, Aaron G; Mousley, Angela
2013-02-01
Restrictions on nematicide usage underscore the need for novel control strategies for plant pathogenic nematodes such as Globodera pallida (potato cyst nematode) that impose a significant economic burden on plant cultivation activities. The nematode neuropeptide signalling system is an attractive resource for novel control targets as it plays a critical role in sensory and motor functions. The FMRFamide-like peptides (FLPs) form the largest and most diverse family of neuropeptides in invertebrates, and are structurally conserved across nematode species, highlighting the utility of the FLPergic system as a broad-spectrum control target. flp-32 is expressed widely across nematode species. This study investigates the role of flp-32 in G. pallida and shows that: (i) Gp-flp-32 encodes the peptide AMRNALVRFamide; (ii) Gp-flp-32 is expressed in the brain and ventral nerve cord of G. pallida; (iii) migration rate increases in Gp-flp-32-silenced worms; (iv) the ability of G. pallida to infect potato plant root systems is enhanced in Gp-flp-32-silenced worms; (v) a novel putative Gp-flp-32 receptor (Gp-flp-32R) is expressed in G. pallida; and, (vi) Gp-flp-32R-silenced worms also display an increase in migration rate. This work demonstrates that Gp-flp-32 plays an intrinsic role in the modulation of locomotory behaviour in G. pallida and putatively interacts with at least one novel G-protein coupled receptor (Gp-flp-32R). This is the first functional characterisation of a parasitic nematode FLP-GPCR.
Bulatova, I A; Tretyakova, Yu I; Shchekotov, V V; Shchekotova, A P; Ulitina, P V; Krivtsov, A V; Nenasheva, O Yu
2015-01-01
To study the rs1001179 polymorphism of the catalase (CAT) gene and to estimate the serum levels of the enzymes catalase and glutathione peroxidase (GP) in patients with chronic hepatitis C (CHC) and in those with ulcerative colitis (UC) in the Perm Territory. Ninety patients with reactivation-phase CHC and 50 patients with exacerbation-phase UC were examined. The serum levels of catalase and GP were determined and the polymorphic variants of the marker of CAT gene rs1001179 in the DNA isolated from whole blood were found in all the patients. In the CHC and UC groups, the levels of catalase and GP were found to be lower than that in apparently healthy individuals. Furthermore, both groups showed a direct correlation between the activities of the enzymes. In the patients with CHC and in those with UC, the spread of genotypes and alleles generally failed to virtually differ from that in the control group. The G/G genotype was prevalent in all the groups. In the patients with CHC, the minor A allele demonstrated a significant inverse correlation with the enzyme catalase (r = -0.16; p = 0.02) and GP (r = -0.13; p = 0.047). The lower serum levels of catalase and GP are indicative of oxidative stress in the patients with CHC or UC. In the patients with CHC, the significant correlation of the pathological rs1701179 A allele marker with the processes of synthesis of antioxidant enzymes may suggest that CAT gene polymorphism in the A/A homozygotes might affect the regulation mechanism involved in the antioxidant system in the liver.
Dos Santos, Sandra; Bardet, Claire; Bertrand, Stephanie; Escriva, Hector; Habert, Damien; Querat, Bruno
2009-08-01
The vertebrate glycoprotein hormones (GpHs), gonadotropins and thyrotropin, are heterodimers composed of a common alpha- and specific beta-subunit. The recombinant heterodimer of two additional, structurally related proteins identified in vertebrate and protostome genomes, the glycoproteins-alpha2 (GPA2) and-beta5 (GPB5), was shown to activate the thyrotropin receptor and was therefore named thyrostimulin. However, differences in tissue distribution and expression levels of these proteins suggested that they might act as nonassociated factors, prompting further investigation on these proteins. In this study we show that GPA2 and GPB5 appeared with the emergence of bilateria and were maintained in most groups. These genes are tightly associated at the genomic level, an association, however, lost in tetrapods. Our structural and genomic environment comparison reinforces the hypothesis of their phylogenetic relationships with GpH-alpha and -beta. In contrast, the glycosylation status of GPA2 and GPB5 is highly variable further questioning heterodimer secretory efficiency and activity. As a first step toward understanding their function, we investigated the spatiotemporal expression of GPA2 and GPB5 genes at different developmental stages in a basal chordate, the amphioxus. Expression of GPB5 was essentially ubiquitous with an anteroposterior gradient in embryos. GPA2 embryonic and larvae expression was restricted to specific areas and, interestingly, partially overlapped that of a GpH receptor-related gene. In conclusion, we speculate that GPA2 and GPB5 have nondispensable and coordinated functions related to a novelty appeared with bilateria. These proteins would be active during embryonic development in a manner that does not require their heterodimerization.
Identification of P-Glycoprotein and Transport Mechanism of Paclitaxel in Syncytiotrophoblast Cells
Lee, Na-Young; Lee, Ha-Eun; Kang, Young-Sook
2014-01-01
When chemotherapy is administered during pregnancy, it is important to consider the fetus chemotherapy exposure, because it may lead to fetal consequences. Paclitaxel has become widely used in the metastatic and adjuvant settings for woman with cancer including breast and ovarian cancer. Therefore, we attempted to clarify the transport mechanisms of paclitaxel through blood-placenta barrier using rat conditionally immortalized syncytiotrophoblast cell lines (TR-TBTs). The uptake of paclitaxel was time- and temperature-dependent. Paclitaxel was eliminated about 50% from the cells within 30 min. The uptake of paclitaxel was saturable with Km of 168 μM and 371 μM in TR-TBT 18d-1 and TR-TBT 18d-2, respectively. [3H]Paclitaxel uptake was markedly inhibited by cyclosporine and verapamil, well-known substrates of P-glycoprotein (P-gp) transporter. However, several MRP substrates and organic anions had no effect on [3H]paclitaxel uptake in TR-TBT cells. These results suggest that P-gp may be involved in paclitaxel transport at the placenta. TR-TBT cells expressed mRNA of P-gp. These findings are important for therapy of breast and ovarian cancer of pregnant women, and should be useful data in elucidating teratogenicity of paclitaxel during pregnancy. PMID:24596624
Inhibition of P-Glycoprotein Mediated Efflux in Caco-2 Cells by Phytic Acid.
Li, Lujia; Fu, Qingxue; Xia, Mengxin; Xin, Lei; Shen, Hongyi; Li, Guowen; Ji, Guang; Meng, Qianchao; Xie, Yan
2018-01-31
Phytic acid (IP6) is a natural phosphorylated inositol, which is abundantly present in most cereal grains and seeds. This study investigated the effects of IP6 regulation on P-glycoprotein (P-gp) and its potential mechanisms using in situ and in vitro models. The effective permeability of the typical P-gp substrate rhodamine 123 (R123) in colon was significantly increased from (1.69 ± 0.22) × 10 -5 cm/s in the control group to (3.39 ± 0.417) × 10 -5 cm/s (p < 0.01) in the 3.5 mM IP6 group. Additionally, IP6 can concentration-dependently decrease the R123 efflux ratio in both Caco-2 and MDCK II-MDR1 cell monolayers and increase intracellular R123 accumulation in Caco-2 cells. Furthermore, IP6 noncompetitively inhibited P-gp by impacting R123 efflux kinetics. The noncompetitive inhibition of P-gp by IP6 was likely due to decreases in P-gp ATPase activity and P-gp molecular conformational changes induced by IP6. In summary, IP6 is a promising P-gp inhibitor candidate.
Qiu, Cuiting; Zheng, Haijun; Tao, Huiren; Yu, Wenjun; Jiang, Xiaoyu; Li, Aiqin; Jin, Hui; Lv, Anlin; Li, Huan
2017-09-01
Vascular calcification is associated with cardiovascular disease as a complication of hypertension, hyperlipidemia, diabetes mellitus, and chronic kidney disease. Vitamin K2 (VK2) delays vascular calcification by an unclear mechanism. Moreover, apoptosis modulates vascular smooth muscle cell (VSMC) calcification. This paper aimed to study VK2-modified VSMC calcification and survival cell signaling mediated by growth arrest-specific gene 6 (Gas6) and its tyrosine kinase receptor Axl. Primary-cultured VSMCs were dose-dependently treated with VK2 in the presence of calcification medium for 8 days, or pre-treated for 1 h with/without the Axl inhibitor R428 (2 μmol/L) or the caspase inhibitor Z-VAD-fmk (20 μmol/L) followed by treatment with VK2 (10 μmol/L) or rmGas6 (200 nmol/L) in calcification medium for 8 days. Calcium deposition was determined by the o-cresolphthalein complexone assay and Alizarin Red S staining. Apoptosis was determined by TUNEL and flow cytometry using Annexin V-FITC and propidium iodide staining. Western blotting detected the expressions of Axl, Gas6, p-Akt, Akt, and Bcl2. VK2 significantly inhibited CaCl 2 - and β-sodium glycerophosphate (β-GP)-induced VSMC calcification and apoptosis, which was dependent on restored Gas6 expression and activated downstream signaling by Axl, p-Akt, and Bcl2. Z-VAD-fmk significantly inhibited CaCl 2 - and β-GP-induced VSMC calcification and apoptosis. Augmented recombinant mouse Gas6 protein (rmGas6) expression significantly reduced VSMC calcification and apoptosis. Furthermore, the Gas6/Axl interaction was inhibited by R428, which abolished the preventive effect of VK2 on CaCl 2 - and β-GP-induced apoptosis and calcification. These results suggest that Gas6 is critical in VK2-mediated functions that attenuate CaCl 2 - and β-GP-induced VSMC calcification by blocking apoptosis.
Dealing with requests for euthanasia: interview study among general practitioners in Belgium.
Meeussen, Koen; Van den Block, Lieve; Bossuyt, Nathalie; Echteld, Michael; Bilsen, Johan; Deliens, Luc
2011-06-01
In many countries, physicians are confronted with requests for euthanasia. Notwithstanding that euthanasia is legally permitted in Belgium, it remains the subject of intense debate. To gather in-depth empirical data on how general practitioners (GPs) deal with these requests in Belgium. Mortality follow-back study in 2005-2006 via the nationwide Sentinel Network of General Practitioners. Standardized face-to-face interviews were conducted with GPs for all the reported patients who did not die suddenly or totally unexpectedly at home, as judged by the GP. We conducted 205 interviews. Of these, 27 patients had at some point expressed a wish to receive a drug administered by a physician with the explicit intention to end life, that is, euthanasia. Thirteen of these formulated their requests explicitly and repeatedly, according to their GP. Compared with patients who expressed a wish but not an explicit/repeated request for euthanasia, those patients' requests were more often documented (8 of 13 vs. 2 of 14; P=0.01), and reiterated until their final days of life (6 of 13 vs. 0 of 14; P=0.02). Five patients received euthanasia. For the other 22 patients, GPs gave different reasons for not acceding to the request, often related to criteria stipulated in the Belgian law on euthanasia, and sometimes related to personal reasons. It is not uncommon for patients to ask their GP for euthanasia, although explicit requests remain relatively rare. Requests tend to vary widely in form and content, and far more are expressed than complied with. For many GPs, the Belgian law on euthanasia serves as a guiding principle in this decision-making process, although in a minority of the cases, a GP's personal opinion toward euthanasia seems to be decisive. Copyright © 2011 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.
Senarathna, S M D K Ganga; Page-Sharp, Madhu; Crowe, Andrew
2016-01-01
The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine. PMID:27045516
Yamada, Toshihiro; Hirayama, Yumiko; Imaichi, Ryoko; Kato, Masahiro
2008-01-01
The expression of GpANTL1, a homolog of AINTEGUMENTA (ANT) found in the gymnosperm Gnetum parvifolium, was analyzed by RT-PCR and in situ hybridization. GpANTL1 was expressed in the leaf primordia, root tips, and young ovules. In the ovulate axis, expression was detected as four distinct rings around the outer, middle, and inner envelope primordia as well as around the nucellar tip. This pattern of expression is similar to that of ANT in Arabidopsis thaliana. A comparison of the expression of GpANTL1 with that of PtANTL1 in the conifer Pinus thunbergii suggests that the integrated expression of PtANTL1 may have been caused by congenital fusion of the integument, ovuliferous scale, and bract.
Yang, Jia-Ming; Ip, Siu-Po; Xian, Yanfang; Zhao, Ming; Lin, Zhi-Xiu; Yeung, John Hok Keung; Chan, Raphael Chiu Yeung; Lee, Shui-Shan; Che, Chun-Tao
2012-01-01
Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o.) and indinavir (40 mg/kg, p.o.) in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%–83% decrease in AUC0-∞ and 38%–78% reduction in Cmax. The CL (Clearance)/F (fraction of dose available in the systemic circulation) increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o.) also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h) was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products. PMID:22359586
Yang, Jia-Ming; Ip, Siu-Po; Xian, Yanfang; Zhao, Ming; Lin, Zhi-Xiu; Yeung, John Hok Keung; Chan, Raphael Chiu Yeung; Lee, Shui-Shan; Che, Chun-Tao
2012-01-01
Sophora flavescens is a Chinese medicinal herb used for the treatment of gastrointestinal hemorrhage, skin diseases, pyretic stranguria and viral hepatitis. In this study the herb-drug interactions between S. flavescens and indinavir, a protease inhibitor for HIV treatment, were evaluated in rats. Concomitant oral administration of Sophora extract (0.158 g/kg or 0.63 g/kg, p.o.) and indinavir (40 mg/kg, p.o.) in rats twice a day for 7 days resulted in a dose-dependent decrease of plasma indinavir concentrations, with 55%-83% decrease in AUC(0-∞) and 38%-78% reduction in C(max). The CL (Clearance)/F (fraction of dose available in the systemic circulation) increased up to 7.4-fold in Sophora-treated rats. Oxymatrine treatment (45 mg/kg, p.o.) also decreased indinavir concentrations, while the ethyl acetate fraction of Sophora extract had no effect. Urinary indinavir (24-h) was reduced, while the fraction of indinavir in faeces was increased after Sophora treatment. Compared to the controls, multiple dosing of Sophora extract elevated both mRNA and protein levels of P-gp in the small intestine and liver. In addition, Sophora treatment increased intestinal and hepatic mRNA expression of CYP3A1, but had less effect on CYP3A2 expression. Although protein levels of CYP3A1 and CYP3A2 were not altered by Sophora treatment, hepatic CYP3A activity increased in the Sophora-treated rats. All available data demonstrated that Sophora flavescens reduced plasma indinavir concentration after multiple concomitant doses, possibly through hepatic CYP3A activity and induction of intestinal and hepatic P-gp. The animal study would be useful for predicting potential interactions between natural products and oral pharmaceutics and understanding the mechanisms prior to human studies. Results in the current study suggest that patients using indinavir might be cautioned in the use of S. flavescens extract or Sophora-derived products.
Saneja, Ankit; Dubey, Ravindra Dhar; Alam, Noor; Khare, Vaibhav; Gupta, Prem N
2014-01-01
Scientific community is striving to understand the role of P-glycoprotein (P-gp) in drug discovery programs due to its impact on pharmacokinetic and multi-drug resistance (MDR) of anticancer drugs. A number of efforts to resolve the crystal structure and understanding the mechanism of P-gp mediated efflux have been made. Several generations of Pgp inhibitors have been developed to tackle this multi-specific efflux protein. Unfortunately, these inhibitors lack selectivity, exhibit poor solubility and severe pharmacokinetic interactions restricting their clinical use. The nanocarrier drug delivery systems (NDDS) are receiving increasing attention for P-gp modulating activity of pharmaceutical excipients which are used in their fabrication. In addition, NDDS can enhance the solubility and exhibited ability to bypass P-gp mediated efflux. The co-formulation of P-gp inhibitors and substrate anticancer drugs in single drug delivery system offers the advantage of bypassing P-gp mediated drug efflux as well as inhibiting the P-gp. Moreover, severe pharmacokinetic interactions between P-gp inhibitor and substrate anticancer drugs could be avoided by using this strategy. In this article we describe the co-formulation strategies using nanocarriers for modulation of pharmacokinetics as well as multi-drug resistance of anticancer drugs along with the challenges in this area.
Combined Active Humoral and Cellular Immunization Approaches for the Treatment of Synucleinopathies.
Rockenstein, Edward; Ostroff, Gary; Dikengil, Fusun; Rus, Florentina; Mante, Michael; Florio, Jazmin; Adame, Anthony; Trinh, Ivy; Kim, Changyoun; Overk, Cassia; Masliah, Eliezer; Rissman, Robert A
2018-01-24
Dementia with Lewy bodies, Parkinson's disease, and Multiple System Atrophy are age-related neurodegenerative disorders characterized by progressive accumulation of α-synuclein (α-syn) and jointly termed synucleinopathies. Currently, no disease-modifying treatments are available for these disorders. Previous preclinical studies demonstrate that active and passive immunizations targeting α-syn partially ameliorate behavioral deficits and α-syn accumulation; however, it is unknown whether combining humoral and cellular immunization might act synergistically to reduce inflammation and improve microglial-mediated α-syn clearance. Since combined delivery of antigen plus rapamycin (RAP) in nanoparticles is known to induce antigen-specific regulatory T cells (Tregs), we adapted this approach to α-syn using the antigen-presenting cell-targeting glucan microparticle (GP) vaccine delivery system. PDGF-α-syn transgenic (tg) male and female mice were immunized with GP-alone, GP-α-syn (active humoral immunization), GP+RAP, or GP+RAP/α-syn (combined active humoral and Treg) and analyzed using neuropathological and biochemical markers. Active immunization resulted in higher serological total IgG, IgG1, and IgG2a anti-α-syn levels. Compared with mice immunized with GP-alone or GP-α-syn, mice vaccinated with GP+RAP or GP+RAP/α-syn displayed increased numbers of CD25-, FoxP3-, and CD4-positive cells in the CNS. GP-α-syn or GP+RAP/α-syn immunizations resulted in a 30-45% reduction in α-syn accumulation, neuroinflammation, and neurodegeneration. Mice immunized with GP+RAP/α-syn further rescued neurons and reduced neuroinflammation. Levels of TGF-β1 were increased with GP+RAP/α-syn immunization, while levels of TNF-α and IL-6 were reduced. We conclude that the observed effects of GP+RAP/α-syn immunization support the hypothesis that cellular immunization may enhance the effects of active immunotherapy for the treatment of synucleinopathies. SIGNIFICANCE STATEMENT We show that a novel vaccination modality combining an antigen-presenting cell-targeting glucan particle (GP) vaccine delivery system with encapsulated antigen (α-synuclein) + rapamycin (RAP) induced both strong anti-α-synuclein antibody titers and regulatory T cells (Tregs). This vaccine, collectively termed GP+RAP/α-syn, is capable of triggering neuroprotective Treg responses in synucleinopathy models, and the combined vaccine is more effective than the humoral or cellular immunization alone. Together, these results support the further development of this multifunctional vaccine approach for the treatment of synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple systems atrophy. Copyright © 2018 the authors 0270-6474/18/381000-15$15.00/0.
Sänger, Christian; Mühlberger, Elke; Ryabchikova, Elena; Kolesnikova, Larissa; Klenk, Hans-Dieter; Becker, Stephan
2001-01-01
Marburg virus, a filovirus, causes severe hemorrhagic fever with hitherto poorly understood molecular pathogenesis. We have investigated here the vectorial transport of the surface protein GP of Marburg virus in polarized epithelial cells. To this end, we established an MDCKII cell line that was able to express GP permanently (MDCK-GP). The functional integrity of GP expressed in these cells was analyzed using vesicular stomatitis virus pseudotypes. Further experiments revealed that GP is transported in MDCK-GP cells mainly to the apical membrane and is released exclusively into the culture medium facing the apical membrane. When MDCKII cells were infected with Marburg virus, the majority of GP was also transported to the apical membrane, suggesting that the protein contains an autonomous apical transport signal. Release of infectious progeny virions, however, took place exclusively at the basolateral membrane of the cells. Thus, vectorial budding of Marburg virus is presumably determined by factors other than the surface protein. PMID:11152500
Ren, He-Lin; Hu, Yuan; Guo, Ya-Jun; Li, Lu-Lin
2016-06-01
Within Baculoviridae, little is known about the molecular mechanisms of replication in betabaculoviruses, despite extensive studies in alphabaculoviruses. In this study, the promoters of nine late genes of the betabaculovirus Plutella xylostella granulovirus (PlxyGV) were cloned into a transient expression vector and the alphabaculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genome, and compared with homologous late gene promoters of AcMNPV in Sf9 cells. In transient expression assays, all PlxyGV late promoters were activated in cells transfected with the individual reporter plasmids together with an AcMNPV bacmid. In infected cells, reporter gene expression levels with the promoters of PlxyGV e18 and AcMNPV vp39 and gp41 were significantly higher than those of the corresponding AcMNPV or PlxyGV promoters, which had fewer late promoter motifs. Observed expression levels were lower for the PlxyGV p6.9, pk1, gran, p10a, and p10b promoters than for the corresponding AcMNPV promoters, despite equal numbers of late promoter motifs, indicating that species-specific elements contained in some late promoters were favored by the native viral RNA polymerases for optimal transcription. The 8-nt sequence TAAATAAG encompassing the ATAAG motif was conserved in the AcMNPV polh, p10, and pk1 promoters. The 5-nt sequence CAATT located 4 or 5 nt upstream of the T/ATAAG motif was conserved in the promoters of PlxyGV gran, p10c, and pk1. The results of this study demonstrated that PlxyGV late gene promoters could be effectively activated by the RNA polymerase from AcMNPV, implying that late gene expression systems are regulated by similar mechanisms in alphabaculoviruses and betabaculoviruses.
Wang, Ying; Loo, Tip W; Bartlett, M Claire; Clarke, David M
2007-03-01
Cystic fibrosis transmembrane conductance regulator (CFTR) and P-glycoprotein (P-gp) are ATP-binding cassette (ABC) transporters that have two transmembrane domains (TMDs) and two nucleotide-binding domains (NBDs). Defective folding of CFTR lacking phenylalanine 508 (DeltaPhe508) in NBD1 is the most common cause of cystic fibrosis. The Phe508 position seems to be universally important in ABC transporters because deletion of the equivalent residue (Tyr490) in P-gp also inhibits maturation of the protein. The pharmacological chaperone VRT-325 can repair the DeltaPhe508-type folding defects in P-gp or CFTR. VRT-325 may repair the folding defects by promoting dimerization of the two NBDs or by promoting folding of the TMDs. To distinguish between these two mechanisms, we tested the ability of VRT-325 to promote folding of truncation mutants lacking one or both NBDs. Sensitivity to glycosidases was used as an indirect indicator of folding. It was found that VRT-325 could promote maturation of truncation mutants lacking NBD2. Truncation mutants of CFTR or P-gp lacking both NBDs showed deficiencies in core-glycosylation that could be partially reversed by carrying out expression in the presence of VRT-325. The results show that dimerization of the two NBDs to form a "nucleotide-sandwich" structure or NBD interactions with the TMDs are not essential for VRT-325 enhancement of folding. Instead, VRT-325 can promote folding of the TMDs alone. The ability of VRT-325 to promote core-glycosylation of the NBD-less truncation mutants suggests that one mechanism whereby the compound enhances folding is by promoting proper insertion of TM segments attached to the glycosylated loops so that they adopt an orientation favorable for glycosylation.
Musicki, Biljana; Burnett, Arthur L.
2016-01-01
Erectile dysfunction (ED) associated with type 2 diabetes mellitus (T2DM) involves dysfunctional nitric oxide (NO) signaling and increased oxidative stress in the penis. However, the mechanisms of endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) dysregulation, and the sources of oxidative stress, are not well defined, particularly at the human level. The objective of this study was to define whether uncoupled eNOS and nNOS, and NADPH oxidase upregulation, contribute to the pathogenesis of ED in T2DM men. Penile erectile tissue was obtained from 9 T2DM patients with ED who underwent penile prosthesis surgery for ED, and from 6 control patients without T2DM or ED who underwent penectomy for penile cancer. The dimer-to-monomer protein expression ratio, an indicator of uncoupling for both eNOS and nNOS, total protein expressions of eNOS and nNOS, as well as protein expressions of NADPH oxidase catalytic subunit gp91phox (an enzymatic source of oxidative stress) and 4-hydroxy-2-nonenal [4-HNE] and nitrotyrosine (markers of oxidative stress) were measured by Western blot in this tissue. In the erectile tissue of T2DM men, eNOS and nNOS uncoupling and protein expressions of NADPH oxidase subunit gp91phox, 4-HNE- and nitrotyrosine-modified proteins were significantly (p<0.05) increased compared to control values. Total eNOS and nNOS protein expressions were not significantly different between the groups. In conclusion, mechanisms of T2DM-associated ED in the human penis may involve uncoupled eNOS and nNOS and NADPH oxidase upregulation. Our description of molecular factors contributing to the pathogenesis of T2DM-associated ED at the human level is relevant for advancing clinically therapeutic approaches to restore erectile function in T2DM patients. PMID:28076881