Sample records for p-nitrophenyl chloroformate solvolysis

  1. Extended Grunwald-Winstein Analysis - LFER Used to Gauge Solvent Effects in p-Nitrophenyl Chloroformate Solvolysis

    PubMed Central

    D’Souza, Malcolm J.; Shuman, Kevin E.; Carter, Shannon E.; Kevill, Dennis N.

    2008-01-01

    Specific rates of solvolysis at 25 °C for p-nitrophenyl chloroformate (1) are analyzed using the extended (two-term) Grunwald-Winstein equation. For 39 solvents, the sensitivities (l = 1.68±0.06 and m = 0.46±0.04) towards changes in solvent nucleophilicity (l) and solvent ionizing power (m) obtained, are similar to those previously observed for phenyl chloroformate (2) and p-methoxyphenyl chloroformate (3). The observations incorporating new kinetic data in several fluoroalcohol-containing mixtures, are rationalized in terms of the reaction being sensitive to substituent effects and the mechanism of reaction involving the addition (association) step of an addition-elimination (association-dissociation) pathway being rate-determining. The l/m ratios obtained for 1, 2, and 3, are also compared to the previously published l/m ratios for benzyl chloroformate (4) and p-nitrobenzyl chloroformate (5). PMID:19330071

  2. Use of Linear Free Energy Relationships (LFERs) to Elucidate the Mechanisms of Reaction of a γ-Methyl-β-alkynyl and an ortho-Substituted Aryl Chloroformate Ester

    PubMed Central

    D’Souza, Malcolm J.; Knapp, Jaci A.; Fernandez-Bueno, Gabriel A.; Kevill, Dennis N.

    2012-01-01

    The specific rates of solvolysis of 2-butyn-1-yl-chloroformate (1) and 2-methoxyphenyl chloroformate (2) are studied at 25.0 °C in a series of binary aqueousorganic mixtures. The rates of reaction obtained are then analyzed using the extended Grunwald-Winstein (G-W) equation and the results are compared to previously published G-W analyses for phenyl chloroformate (3), propargyl chloroformate (4), p-methoxyphenyl choroformate (5), and p-nitrophenyl chloroformate (6). For 1, the results indicate that dual side-by-side addition-elimination and ionization pathways are occurring in some highly ionizing solvents due to the presence of the electron-donating γ-methyl group. For 2, the analyses indicate that the dominant mechanism is a bimolecular one where the formation of a tetrahedral intermediate is rate-determining. PMID:22312278

  3. Correlation of the rates of solvolysis of neopentyl chloroformate-a recommended protecting agent.

    PubMed

    D'Souza, Malcolm J; Carter, Shannon E; Kevill, Dennis N

    2011-02-15

    The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents.

  4. Correlation of the Rates of Solvolysis of Neopentyl Chloroformate—A Recommended Protecting Agent

    PubMed Central

    D’Souza, Malcolm J.; Carter, Shannon E.; Kevill, Dennis N.

    2011-01-01

    The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents. PMID:21541050

  5. Detailed Analysis for the Solvolysis of Isopropenyl Chloroformate

    PubMed Central

    D’Souza, Malcolm John; Shuman, Kevin Edward; Omondi, Arnold Ochieng; Kevill, Dennis Neil

    2011-01-01

    The specific rates of solvolysis (including those obtained from the literature) of isopropenyl chloroformate (1) are analyzed using the extended Grunwald-Winstein equation, involving the NT scale of solvent nucleophilicity (S-methyldibenzothiophenium ion) combined with a YCl scale based on 1-adamantyl chloride solvolysis. A similarity model approach, using phenyl chloroformate solvolyses for comparison, indicated a dominant bimolecular carbonyl-addition mechanism for the solvolyses of 1 in all solvents except 97% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). An extensive evaluation of the outcomes acquired through the application of the extended Grunwald-Winstein equation resulted in the proposal of an addition-elimination mechanism dominating in most of the solvents, but in 97-70% HFIP, and 97% 2,2,2-trifluoroethanol (TFE), it is proposed that a superimposed unimolecular (SN1) type ionization is making a significant contribution. PMID:21881623

  6. Grunwald-Winstein Analysis - Isopropyl Chloroformate Solvolysis Revisited

    PubMed Central

    D’Souza, Malcolm J.; Reed, Darneisha N.; Erdman, Kevin J.; Kyong, Jin Burm; Kevill, Dennis N.

    2009-01-01

    Specific rates of solvolysis at 25 °C for isopropyl chloroformate (1) in 24 solvents of widely varying nucleophilicity and ionizing power, plus literature values for studies in water and formic acid, are reported. Previously published solvolytic rate constants at 40.0 °C are supplemented with two additional values in the highly ionizing fluoroalcohols. These rates are now are analyzed using the one and two-term Grunwald-Winstein Equations. In the more ionizing solvents including ten fluoroalcohols negligible sensitivities towards changes in solvent nucleophilicity (l) and very low sensitivities towards changes in solvent ionizing power (m) values are obtained, evocative to those previously observed for 1-adamantyl and 2-adamantyl chloroformates 2 and 3. These observations are rationalized in terms of a dominant solvolysis-decomposition with loss of the CO2 molecule. In nine of the more nucleophilic pure alchohols and aqueous solutions an association-dissociation mechanism is believed to be operative. Deficiencies in the acid production indicate 2-33% isopropyl chloride formation, with the higher values in less nucleophilic solvents. PMID:19399225

  7. Correlations of the Specific Rates of Solvolysis of Aromatic Carbamoyl Chlorides, Chloroformates, Chlorothionoformates, and Chlorodithioformates Revisited

    PubMed Central

    Kevill, Dennis N.; Koyoshi, Fumie; D’Souza, Malcolm J.

    2007-01-01

    Additional specific rates of solvolysis are determined for phenyl chloroformate. These values are combined with literature values to give a total of 49 data points, which are used within simple and extended Grunwald-Winstein treatments. Literature values are also brought together to allow treatments in more solvents than previously for three N-aryl-N-methylcarbamoyl chlorides, phenyl chlorothionoformate, phenyl chlorodithioformate, and N,N-diphenylcarbamoyl chloride. For the last two listed, moderately strong evidence for a meaningful inclusion of a term governed by the aromatic ring parameter (I) was indicated. No evidence was found requiring inclusion of this parameter for ionization reactions with only one aromatic ring on the nitrogen of carbamoyl chlorides or for the solvolyses of the chloroformate or chlorothionoformate proceeding by an addition-elimination (association-dissociation) mechanism.

  8. LFER Studies Evaluating Solvent Effects on an α-Chloro-and two β,β,β-Trichloro-Ethyl Chloroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Sandosky, Brandon; Fernandez-Bueno, Gabriel A.; McAneny, Matthew J.; Kevill, Dennis N.

    2014-01-01

    To provide insight and to identify the occurrence of mechanistic changes in relation to variance in solvent-type, the solvent effects on the rates of solvolysis of three substrates, 2,2,2-trichloro-1,1-dimethylethyl chloroformate, 2,2,2-trichloroethyl chloroformate, and 1-chloroethyl chloroformate, are analyzed using linear free energy relationships (LFERs) such as the extended Grunwald-Winstein equation, and a similarity-based LFER model approach that is based on the solvolysis of phenyl chloroformate. At 25.0 °C, in four common solvents, the α-chloroethyl chloroformate was found to react considerably faster than the two β,β,β-trichloro-substituted analogs. This immense rate enhancement can be directly related to the proximity of the electron-withdrawing α-chlorine atom to the carbonyl carbon reaction center. In the thirteen solvents studied, 1-chloroethyl chloroformate was found to strictly follow a carbonyl addition process, with the addition-step being rate-determining. For the two β,β,β-trichloro-substrates, in aqueous mixtures that are very rich in a fluoroalcohol component, there is compelling evidence for the occurrence of side-by-side addition-elimination and ionization mechanisms, with the ionization pathway being predominant. The presence of the two methyl groups on the α-carbon of 2,2,2-trichloro-1,1-dimethylethyl chloroformate has additive steric and stereoelectronic implications, causing its rate of reaction to be significantly slower than that of 2,2,2-trichloroethyl chloroformate. PMID:24812595

  9. Analysis of the Nucleophilic Solvation Effects in Isopropyl Chlorothioformate Solvolysis

    PubMed Central

    D’Souza, Malcolm J.; Mahon, Brian P.; Kevill, Dennis N.

    2010-01-01

    Correlation of the solvent effects through application of the extended Grunwald-Winstein equation to the solvolysis of isopropyl chlorothioformate results in a sensitivity value of 0.38 towards changes in solvent nucleophilicity (l) and a sensitivity value of 0.72 towards changes in solvent ionizing power (m). This tangible l value coupled with the negative entropies of activation observed indicates a favorable predisposition towards a modest rear-side nucleophilic solvation of a developing carbocation. Only in 100% ethanol was the bimolecular pathway dominant. These observations are very different from those obtained for the solvolysis of isopropyl chloroformate, where dual reaction channels were proposed, with the addition-elimination reaction favored in the more nucleophilic solvents and a unimolecular fragmentation-ionization mechanism favored in the highly ionizing solvents. PMID:20717524

  10. Kinetic Studies that Evaluate the Solvolytic Mechanisms of Allyl and Vinyl Chloroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Givens, Aaron F.; Lorchak, Peter A.; Greenwood, Abigail E.; Gottschall, Stacey L.; Carter, Shannon E.; Kevill, Dennis N.

    2013-01-01

    At 25.0 °C the specific rates of solvolysis for allyl and vinyl chloroformates have been determined in a wide mix of pure and aqueous organic mixtures. In all the solvents studied, vinyl chloroformate was found to react significantly faster than allyl chloroformate. Multiple correlation analyses of these rates are completed using the extended (two-term) Grunwald-Winstein equation with incorporation of literature values for solvent nucleophilicity (NT) and solvent ionizing power (YCl). Both substrates were found to solvolyze by similar dual bimolecular carbonyl-addition and unimolecular ionization channels, each heavily dependent upon the solvents nucleophilicity and ionizing ability. PMID:23549265

  11. Kinetic evaluation of the solvolysis of isobutyl chloro- and chlorothioformate esters

    PubMed Central

    McAneny, Matthew J; Choi, Song Hee

    2011-01-01

    Summary The specific rates of solvolysis of isobutyl chloroformate (1) are reported at 40.0 °C and those for isobutyl chlorothioformate (2) are reported at 25.0 °C, in a variety of pure and binary aqueous organic mixtures with wide ranging nucleophilicity and ionizing power. For 1, we also report the first-order rate constants determined at different temperatures in pure ethanol (EtOH), methanol (MeOH), 80% EtOH, and in both 97% and 70% 2,2,2-trifluoroethanol (TFE). The enthalpy (ΔH≠) and entropy (ΔS≠) of activation values obtained from Arrhenius plots for 1 in these five solvents are reported. The specific rates of solvolysis were analyzed using the extended Grunwald–Winstein equation. Results obtained from correlation analysis using this linear free energy relationship (LFER) reinforce our previous suggestion that side-by-side addition–elimination and ionization mechanisms operate, and the relative importance is dependent on the type of chloro- or chlorothioformate substrate and the solvent. PMID:21647255

  12. Correlation of the Rates of Solvolysis of i-Butyl Fluoroformate and a Consideration of Leaving-Group Effects

    PubMed Central

    Lee, Yelin; Park, Kyoung-Ho; Seong, Mi Hye; Kyong, Jin Burm; Kevill, Dennis N.

    2011-01-01

    The specific rates of solvolysis of isobutyl fluoroformate (1) have been measured at 40.0 °C in 22 pure and binary solvents. These results correlated well with the extended Grunwald-Winstein (G-W) equation, which incorporated the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale. The sensitivities (l and m-values) to changes in solvent nucleophilicity and solvent ionizing power, and the kF/kCl values are very similar to those observed previously for solvolyses of n-octyl fluoroformate, consistent with the additional step of an addition-elimination pathway being rate-determining. The solvent deuterium isotope effect value (kMeOH/kMeOD) for methanolysis of 1 was determined, and for solvolyses in ethanol, methanol, 80% ethanol, and 70% TFE, the values of the enthalpy and the entropy of activation for the solvolysis of 1 were also determined. The results are compared with those reported earlier for isobutyl chloroformate (2) and other alkyl haloformate esters and mechanistic conclusions are drawn. PMID:22174633

  13. Learning Chemistry from Good and (Why Not?) Problematic Results: Kinetics of the pH-Independent Hydrolysis of 4-Nitrophenyl Chloroformate

    ERIC Educational Resources Information Center

    El Seoud, Omar A.; Galgano, Paula D.; Are^as, Elizabeth P. G.; Moraes, Jamille M.

    2015-01-01

    The determination of kinetic data is central to reaction mechanism; science courses usually include experiments on chemical kinetics. Thanks to PC-controlled data acquisition and availability of software, the students calculate rate constants, whether the experiment has been done properly or not. This contrasts with their experience in, e.g.,…

  14. Application of the Grunwald-Winstein Equations to Studies of Solvolytic Reactions of Chloroformate and Fluoroformate Esters

    PubMed Central

    D’Souza, Malcolm J.; Kevill, Dennis N.

    2014-01-01

    Chloroformates are important laboratory and industrial chemicals with almost one hundred listed in the catalogs of leading suppliers. They are, for example, of prime importance as protecting groups in peptide synthesis. In some instances, the more stable fluoroformate is preferred. In recent years, the specific rates of solvolysis (k) for chloroformates and fluoroformates in solvents of widely ranging nucleophilicity and ionizing power have been studied. Analysis of these rates using the extended (two-term) Grunwald-Winstein equation has led to important information concerning reaction mechanism. Also assisting in this effort have been studies of kinetic solvent isotope effects (KSIE), of leaving group effects (especially kF/kCl ratios), and of entropies of activation from studies of specific rate variations with temperature. For solvolyses of chloroformate esters, two mechanisms (addition-elimination and ionization) are commonly encountered. For solvolyses of fluoroformates, mainly because of a strong C–F bond, the ionization pathway is rare and the addition-elimination pathway is in most situations the one encountered. PMID:25364780

  15. Correlation of the rates of solvolysis of tert-butyl chlorothioformate and observations concerning the reaction mechanism

    PubMed Central

    Kyong, Jin Burm; Lee, Yelin; D’Souza, Malcolm John; Kevill, Dennis Neil; Kevill, Dennis Neil

    2012-01-01

    The “parent” tertiary alkyl chloroformate, tert-butyl chloroformate, is unstable, but the tert-butyl chlorothioformate (1) is of increased stability and a kinetic investigation of the solvolyses is presented. Analyses in terms of the simple and extended Grunwald-Winstein equations are carried out. The original one-term equation satisfactorily correlates the data with a sensitivity towards changes in solvent ionizing power of 0.73 ±0.03. When the two-term equation is applied, the sensitivity towards changes in solvent nucleophilicity of 0.13 ± 0.09 is associated with a high (0.17) probability that the term that it governs is not statistically significant. PMID:23538747

  16. Corrrelation of the Specific Rates of Solvolysis of Ethyl Fluoroformate Using the Extended Grunwald-Winstein Equation

    PubMed Central

    Seong, Mi Hye; Kyong, Jin Burm; Lee, Young Hoon; Kevill, Dennis N.

    2009-01-01

    The specific rates of solvolysis of ethyl fluoroformate have been measured at 24.2 °C in 21 pure and binary solvents. These give a satisfactory correlation over the full range of solvents when the extended Grunwald-Winstein equation is applied. The sensitivities to changes in the NT solvent nucleophilicity scale and the YCl solvent ionizing power scale, and the kF/kCl values are very similar to those for solvolyses of n-octyl fluoroformate, consistent with the addition step of an addition-elimination pathway being rate-determining. For methanolysis, a solvent deuterium isotope effect of 3.10 is compatible with the incorporation of general-base catalysis into the substitution process. For five representative solvents, studies were made at several temperatures and activation parameters determined. The results are also compared with those reported earlier for ethyl chloroformate and mechanistic conclusions are drawn. PMID:19399229

  17. Large First Hyperpolarizabilities in Push-Pull Polyenes by Tuning Bond Length Alternation and Aromaticity

    NASA Technical Reports Server (NTRS)

    Marder, S. R.; Tiemann, B. G.; Friedli, A. C.; Cheng, L. -T.; Blanchard-Desce, M.

    1993-01-01

    Conjugated organic compounds with 3-phenyl-5-isoxazolone, or N, N'-diethylthiobarbituric acid acceptors have large first molecular hyperpolarizabilities in comparison to compounds with 4-nitrophenyl acceptors as measured by electric feld induced second harmonic generation, (EFISH), in chloroform, with 1.907 micron fundamental radiation.

  18. Determination of Hammett Equation Rho Constant for the Hydrolysis of p-Nitrophenyl Benzoate Esters

    ERIC Educational Resources Information Center

    Keenan, Sheue L.; Peterson, Karl P.; Peterson, Kelly; Jacobson, Kyle

    2008-01-01

    Seven p-nitrophenyl benzoate esters (p-nitrophenyl benzoate, p-nitrophenyl m-anisate, p-nitrophenyl p-anisate, p-nitrophenyl m-chlorobenzoate, p-nitrophenyl p-chlorobenzoate, p-nitrophenyl m-toluate, p-nitrophenyl p-toluate) were synthesized and characterized by students in a second-semester organic laboratory course. In a subsequent laboratory…

  19. Legubicin, a Tumor-Activated Prodrug for Breast Cancer Therapy

    DTIC Science & Technology

    2007-04-01

    carcinomas, leukemias, lymphomas, melanomas, fibrosarcomas , neuroblastoma, and the like. The cancer can, for example, be autoimmune deficiency syndrome...their analogs. (a) 4-Nitrophenyl chloroformate, Py, CH2Cl2, 0°C; (b) (i) OsO4 ( cat ), NMO, citric acid, CH2Cl2-H2O (10:1), RT, (ii) NaIO4, THF- H2O (1:1

  20. Influence of Sulfur for Oxygen Substitution in the Solvolytic Reactions of Chloroformate Esters and Related Compounds

    PubMed Central

    D’Souza, Malcolm J.; Kevill, Dennis N.

    2014-01-01

    The replacement of oxygen within a chloroformate ester (ROCOCl) by sulfur can lead to a chlorothioformate (RSCOCl), a chlorothionoformate (ROCSCl), or a chlorodithioformate (RSCSCl). Phenyl chloroformate (PhOCOCl) reacts over the full range of solvents usually included in Grunwald-Winstein equation studies of solvolysis by an addition-elimination (A-E) pathway. At the other extreme, phenyl chlorodithioformate (PhSCSCl) reacts across the range by an ionization pathway. The phenyl chlorothioformate (PhSCOCl) and phenyl chlorothionoformate (PhOCSCl) react at remarkably similar rates in a given solvent and there is a dichotomy of behavior with the A-E pathway favored in solvents such as ethanol-water and the ionization mechanism favored in aqueous solvents rich in fluoroalcohol. Alkyl esters behave similarly but with increased tendency to ionization as the alkyl group goes from 1° to 2° to 3°. N,N-Disubstituted carbamoyl halides favor the ionization pathway as do also the considerably faster reacting thiocarbamoyl chlorides. The tendency towards ionization increases as, within the three contributing structures of the resonance hybrid for the formed cation, the atoms carrying positive charge (other than the central carbon) change from oxygen to sulfur to nitrogen, consistent with the relative stabilities of species with positive charge on these atoms. PMID:25310653

  1. The stability of N-[2-(4-o-fluorophenylpiperazin-1-yl)ethyl]-2,5-dimethyl-1 -phenylpyrrole-3,4-dicarboximide in aqueous-organic solutions.

    PubMed

    Zajac, Marianna; Sobczak, Agnieszka; Malinka, Wiesław; Redzicka, Aleksandra

    2010-01-01

    The first-order reaction of solvolysis of N-[2-(4-o-fluorophenylpiperazin-1-yl)ethyl]-2,5-dimethyl-1-phenylpyrrole-3,4-dicarboximide (PDI) was investigated as a function of pH at 333, 328, 323, 318 and 308 K in the pH range 1.11 - 12.78. The decomposition of PDI was followed by the HPLC method (Nucleosil 10-C8 column (250 x 4 mm I.D., dp = 10 microm), mobile phase: 0.018 mol/L ammonia acetate - acetonitrile (40: 60 v/v), UV detector: 240 nm, flow rate: 1 mL/min. Specific acid-base catalysis involves solvolysis of the undissociated molecules of PDI catalyzed by hydroxide ions and spontaneous solvolysis of the undissociated and monoprotonated forms of PDI under the influence of solvents. The thermodynamic parameters of the reactions--activation energy (E(a)), enthalpy (DH(#)), entropy (DS(#))--were calculated.

  2. An application of second-order UV-derivative spectrophotometry for study of solvolysis of a novel fluocinolone acetonide ester

    NASA Astrophysics Data System (ADS)

    Markovic, Bojan; Vladimirov, Sote; Cudina, Olivera; Savic, Vladimir; Karljikovic-Rajic, Katarina

    2010-02-01

    A novel topical corticosteroid FA-21-PhP, 2-phenoxypropionate ester of fluocinolone acetonide, has been synthesized in order to investigate the possibility of decreasing systemic side effects. In this study model system for in vitro solvolytic reaction of FA-21-PhP has been analyzed in ethanol/water (90:10, v/v) with excess of sodium hydrogen carbonate. The selected conditions have been used as in vitro model for activation of corticosteroid C-21 ester prodrug. The second-order derivative spectrophotometric method (DS) using zero-crossing technique was developed for monitoring ternary mixture of solvolysis. Fluocinolone acetonide (FA) as a solvolyte was determined in the mixture in the concentration range 0.062-0.312 mM using amplitude 2D 274.96. Experimentally determined LOD value was 0.0295 mM. The accuracy of proposed DS method was confirmed with HPLC referent method. Peak area of parent ester FA-21-PhP was used for solvolysis monitoring to ensure the initial stage of changes. Linear relationship in HPLC assay for parent ester was obtained in the concentration range 0.054-0.54 mM, with experimentally determined LOD value of 0.0041 mM. Investigated solvolytic reaction in the presence of excess of NaHCO 3 proceeded via a pseudo-first-order kinetic with significant correlation coefficients 0.9891 and 0.9997 for DS and HPLC, respectively. The values of solvolysis rate constant calculated according to DS and HPLC methods are in good accordance 0.038 and 0.043 h -1, respectively.

  3. Catalytic properties of IgMs with amylolytic activity isolated from patients with multiple sclerosis.

    PubMed

    Ivanen, Dina R; Kulminskaya, Anna A; Shabalin, Konstantin A; Isaeva-Ivanova, Luydmila V; Ershova, Nadezhda A; Saveliev, Andrew N; Nevinsky, Gregory A; Neustroev, Kirill N

    2004-08-01

    Recently, amylolytic activity was detected in IgMs isolated from the sera of the patients with multiple sclerosis. All purified samples of IgM were electrophoretically homogenous and did not contain any co-purified a-amylase and a-glucosidase activities, in accordance with a set of criteria developed for abzymes. The amylolytic activity of abzymes was studied in the hydrolysis of p-nitrophenyl a-D-maltooligosaccharides with different degrees of polymerization from 1 to 8 by TLC and reverse-phase HPLC techniques. All IgM samples isolated from 54 patients with clinically definite multiple sclerosis demonstrated hydrolytic activity towards the above artificial substrates. The Michaelis constant values (Km) in the hydrolysis of p-nitrophenyl a-D-maltoheptaoside were in the range of 10 p-nitrophenyl or p-nitrophenyl a-D-glucosides, thus indicating the presence of an a-D-glucosidase activity. For a number of the investigated samples, specific amylolytic activity increased depending on the length of substrates (from p-nitrophenyl maltopentaoside to p-nitrophenyl maltohexaoside); for other IgMs, the opposite dependence was observed. All IgMs studied did not exhibit any other glycoside hydrolase activities toward p-nitrophenyl glycoside substrates. Abzyme fractions from different donors demonstrated catalytic heterogeneity in Michaelis-Menten parameters and different modes of action in the hydrolysis of p-nitrophenyl maltooligosaccharides. Enzymatic properties of the IgMs tested varied from human a-amylases. All investigated abzyme samples did not show transglycosylating ability.

  4. 40 CFR 721.10063 - Halo substituted hydroxy nitrophenyl amide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... amide (generic). 721.10063 Section 721.10063 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10063 Halo substituted hydroxy nitrophenyl amide (generic). (a) Chemical... as halo substituted hydroxy nitrophenyl amide (PMN P-04-792) is subject to reporting under this...

  5. Comparative environmental and human health evaluations of thermolysis and solvolysis recycling technologies of carbon fiber reinforced polymer waste.

    PubMed

    Khalil, Y F

    2018-06-01

    This quantitative research aims to compare environmental and human health impacts associated with two recycling technologies of CFRP waste. The 'baseline' recycling technology is the conventional thermolysis process via pyrolysis and the 'alternative' recycling technology is an emerging chemical treatment via solvolysis using supercritical water (SCW) to digest the thermoset matrix. Two Gate-to-Gate recycling models are developed using GaBi LCA platform. The selected functional unit (FU) is 1 kg CFRP waste and the geographical boundary of this comparative LCIA is defined to be within the U.S. The results of this comparative assessment brought to light new insights about the environmental and human health impacts of CFRP waste recycling via solvolysis using SCW and, therefore, helped close a gap in the current state of knowledge about sustainability of SCW-based solvolysis as compared to pyrolysis. Two research questions are posed to identify whether solvolysis recycling offers more environmental and human health gains relative to the conventional pyrolysis recycling. These research questions lay the basis for formulating two null hypotheses (H 0,1 and H 0,2 ) and their associated research hypotheses (H 1,1 and H 1,2 ). LCIA results interpretation included 'base case' scenarios, 'sensitivity studies,' and 'scenarios analysis.' The results revealed that: (a) recycling via solvolysis using SCW exhibits no gains in environmental and human health impacts relative to those impacts associated with recycling via pyrolysis and (b) use of natural gas in lieu of electricity for pyrolyzer's heating reduces the environmental and human health impacts by 37% (lowest) and up to 95.7% (highest). It is recommended that on-going experimental efforts that focus only on identifying the best solvent for solvolysis-based recycling should also consider quantification of the energy intensity as well as environmental and human health impacts of the proposed solvents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Biochemical surface modification of Co-Cr-Mo.

    PubMed

    Puleo, D A

    1996-01-01

    Because of the limited mechanical properties of tissue substitutes formed by culturing cells on polymeric scaffolds, other approaches to tissue engineering must be explored for applications that require complete and immediate ability to bear weight, e.g. total joint replacements. Biochemical surface modification offers a way to partially regulate events at the bone-implant interface to obtain preferred tissue responses. Tresyl chloride, gamma-aminopropyltriethoxysilane (APS) and p-nitrophenyl chloroformate (p-NPC) immobilization schemes were used to couple a model enzyme, trypsin, on bulk samples of Co-Cr-Mo. For comparison, samples were simply adsorbed with protein. The three derivatization schemes resulted in different patterns and levels of activity. Tresyl chloride was not effective in immobilizing active enzyme on Co-Cr-Mo. Aqueous silanization with 12.5% APS resulted in optimal immobilized activity. Activity on samples derivatized with 0.65 mg p-NPC cm-2 was four to five times greater than that on samples simple adsorbed with enzyme or optimally derivatized with APS and was about eight times that on tresylated samples. This work demonstrates that, although different methods have different effectiveness, chemical derivatization can be used to alter the amount and/or stability of biomolecules immobilized on the surface of Co-Cr-Mo.

  7. Influence of ammonium salts on the lipase/esterase activity assay using p-nitrophenyl esters as substrates.

    PubMed

    De Yan, Hong; Zhang, Yin Jun; Liu, Hong Cai; Zheng, Jian Yong; Wang, Zhao

    2013-01-01

    p-Nitrophenyl esters with a short-chain carboxylic group, such as p-nitrophenyl acetate (p-NPA) and p-nitrophenyl butyrate (p-NPB), could be effectively hydrolyzed by ammonium salts. p-Nitrophenyl esters were usually used as substrates to assay the lipase/esterase activity. Ammonium sulfate precipitation was often used to purify proteins, and some ammonium salts were usually used as nitrogen sources or inorganic salts for the lipase/esterase production. To study the effect of ammonium salts on the assay of the lipase/esterase activity, the contributing factors of hydrolysis of p-NPA/p-NPB catalyzed by ammonium salts were investigated. The lipase activities were compared in the presence and absence of ammonium sulfate. The hydrolysis reaction could be catalyzed under neutral and alkaline circumstances. The hydrolysis rate increased with the increase in the reaction temperature or the concentration of ammonium ion. When p-NPA was employed as the substrate for the analysis of the lipase/esterase activity, the effect of ammonium sulfate on the analysis could be neutralized by setting a control when the concentration of ammonium sulfate was less than 40% saturation. However, when the concentration of ammonium sulfate increased from 40% to 100% saturation, the enzyme activities decreased about 13-40%, which could not be ignored for accurate analysis of the enzyme activity. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  8. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  9. Treatability Study of Pentaborane(9)

    NASA Technical Reports Server (NTRS)

    McDonald, Joseph K.; Wright, Jeffery S.; Gaines, Donald F.

    2000-01-01

    Procedures for the safe destruction of liquid pentaborane(9), B5H9, by solvolysis were investigated. The objective of the study was to establish the optimum conditions for a pilot plant operation that would use water, or alcohol, or water-alcohol mixtures as the solvolysis reagent Small amounts of B5H9 sprayed from a syringe will not necessarily enflame, nor will a small pool on a spot plate. Therefore, a procedure was developed to reproducibly demonstrate the flammability of B5H9 In these tests every sample of neat B5H9 ignited and burned with a very sooty flame till the sample was consumed. The spontaneous self-ignition of B5H9 was quenched by the addition of small concentrations of the ethers THF (tetrahydrofuran) or DME (1,2-dimethoxy ethane). It was found that 10% (volume) of either provided total quenching with a large margin of safety. When these stabilized solutions were exposed to air, they decomposed and evaporated leaving a residue that was identified by NMR analysis as boric acid. Most of the laboratory solvolysis experiments used the 90% B5H9, 10% THF solution. This mixture was safer to handle and its solvolysis reactivity was virtually identical to that of 100% B5H9. Reaction rates were analyzed by measurement of hydrogen evolved during the solvolysis reactions. In terms of the minimum overall complete reaction time, the data indicate that 50150 alcohol/water is the optimum solvolysis reagent. This reaction produced a mixture of boric acid, B(OH)3, and triethoxyborane, B(OEt)3 [Et = C2H5], and mixed exchange derivatives thereof.

  10. Treatability Study of Pentaborane(9)

    NASA Technical Reports Server (NTRS)

    McDonald, Joseph K.; Wright, Jeffery S.; Gaines, Donald F.

    2000-01-01

    Procedures for the safe destruction of liquid pentaborane(9), B5H9, by solvolysis were investigated. The objective of the study was to establish the optimum conditions for a pilot plant operation that would use water, or alcohol, or water-alcohol mixtures as the solvolysis reagent. Small amounts of B5H9 sprayed from a syringe will not necessarily enflame, nor will a small pool on a spot plate. Therefore, a procedure was developed to reproducibly demonstrate the flammability of B5H9. In these tests every sample of neat B5H9 ignited and burned with a very sooty flame till the sample was consumed. The spontaneous self-ignition of B5H9 was quenched by the addition of small concentrations of ethers THF (tetrahydrofuran) or DME (1,2-dimethoxy ethane). It was found that ten percent (volume) of either provided total quenching with a large margin of safety. When these stabilized solutions were exposed to air, they decomposed and evaporated leaving a residue that was identified by nuclear magnetic resonance (NMR) analysis as boric acid. Most of the laboratory solvolysis experiments used the 90 percent B5H9, 10 percent THF solution. This mixture was safer to handle and its solvolysis reactivity was virtually identical to that of 100 percent B5H9. Reaction rates were analyzed by measurement of hydrogen evolved during the solvolysis reactions. In terms of the minimum overall complete reaction time, the data indicate that 50/50 alcohol/water is the optimum solvolysis reagent. This reaction produced a mixture of boric acid, B(OH)3, and triethoxyborane, B(OEt)3[Et = C2H5], and mixed exchange derivatives thereof.

  11. Kinetic studies and predictions on the hydrolysis and aminolysis of esters of 2-S-phosphorylacetates.

    PubMed

    Trmčić, Milena; Hodgson, David R W

    2010-08-16

    Heterobifunctional cross-linking agents are useful in both protein science and organic synthesis. Aminolysis of reactive esters in aqueous systems is often used in bioconjugation chemistry, but it must compete against hydrolysis processes. Here we study the kinetics of aminolysis and hydrolysis of 2-S-phosphorylacetate ester intermediates that result from displacement of bromide by a thiophosphate nucleophile from commonly used bromoacetate ester cross-linking agents. We found cross-linking between uridine-5'-monophosphorothioate and D-glucosamine using N-hydroxybenzotriazole and N-hydroxysuccinimde bromoacetates to be ineffective. In order to gain insight into these shortfalls, 2-S-(5'-thiophosphoryluridine)acetic acid esters were prepared using p-nitrophenyl bromoacetate or m-nitrophenyl bromoacetate in combination with uridine-5'-monophosphorothioate. Kinetics of hydrolysis and aminolysis of the resulting p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates were determined by monitoring the formation of phenolate ions spectrophotometrically as a function of pH. The p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates showed similar reactivity profiles despite the significant difference in the pK(aH) values of their nitrophenolate leaving groups. Both were more reactive with respect to hydrolysis and aminolysis in comparison to their simple acetate progenitors, but their calculated selectivity towards aminolysis vs hydrolysis, while reasonable, would not lead to clean reactions that do not require purification. Extrapolations of the kinetic data were used to predict leaving group pK(a) values that could lead to improved selectivity towards aminolysis while retaining reasonable reaction times. Both p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates show some selectivity towards aminolysis over hydrolysis, with the m-nitrophenolate system displaying slightly better selectivity. Extrapolation of the data for hydrolysis and aminolysis of these esters suggests that the use of readily accessible trifluoroethyl 2-S-(5'-thiophosphoryluridine)acetate with a leaving group pK(aH) of 12.4 should afford better selectivity while maintaining reasonable reaction times. Kinetically, p- and m-nitrophenyl 2-S-(5'-thiophosphoryluridine)acetates show similar properties to o-nitrophenyl 2-S-ethylacetate, and show no evidence for intramolecular catalysis of hydrolysis or aminolysis by the phosphoryl groups.

  12. Ethyl p-nitrophenyl phenylphosphorothioate (EPN)

    Integrated Risk Information System (IRIS)

    Ethyl p - nitrophenyl phenylphosphorothioate ( EPN ) ; CASRN 2104 - 64 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Ha

  13. RATES OF SOLVOLYSIS OF SOME DEUTERATED 2-PHENYLETHYL p-TOLUENESULFONATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saunders, W.H. Jr.; Asperger, S.; Edison, D.H.

    1958-05-20

    Rates of solvolysis of 2-phenylethyl (Ia), b 2/ (Ic) p-toluenesulfonates were determined in formic and in acetic acid. In formolysis Ia and Ic react at the same rate, but Ia reacts 17 plus or minus 2% faster than Ib. In acetolysis small effects are observed with both deuterated com. pounds: Ia is 3 plus or minus 1% faster than Ib and 4 plus or minus 3% faster than Ic. The formates and acetates produced in the solvolyses were converted to the corresponding 2phenylethanols II. Comparison of the infrared spectra of the products with those of synthetic mixture of IIb andmore » IIc revealed that ca. 45% phenyl migration had occurred in the formolysis and ca. 10% phenyl migration in acetolysis. These results suggest that phenyl participation predominates in formolysis, but is unimportant in acetolysis. The nature of the transition state in phenyl- participation reactions and the factors contributing to secondary deuterium isotope effects are discussed. (auth)« less

  14. Single-step method for β-galactosidase assays in Escherichia coli using a 96-well microplate reader.

    PubMed

    Schaefer, Jorrit; Jovanovic, Goran; Kotta-Loizou, Ioly; Buck, Martin

    2016-06-15

    Historically, the lacZ gene is one of the most universally used reporters of gene expression in molecular biology. Its activity can be quantified using an artificial substrate, o-nitrophenyl-ß-d-galactopyranoside (ONPG). However, the traditional method for measuring LacZ activity (first described by J. H. Miller in 1972) can be challenging for a large number of samples, is prone to variability, and involves hazardous compounds for lysis (e.g., chloroform, toluene). Here we describe a single-step assay using a 96-well microplate reader with a proven alternative cell permeabilization method. This modified protocol reduces handling time by 90%. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Absence of S[subscript N]1 Involvement in the Solvolysis of Secondary Alkyl Compounds

    ERIC Educational Resources Information Center

    Murphy, Thomas J.

    2009-01-01

    There are significant contradictions in undergraduate organic chemistry textbooks as to the mechanism of nucleophilic substitution reactions at saturated secondary carbons. Some texts say that only the S[subscript N]2 mechanism operates, others say that solvolysis reactions go entirely by the S[subscript N]1 mechanism, while most texts say that…

  16. Biochemical and kinetic analysis of the GH3 family beta-xylosidase from Aspergillus awamori X-100.

    PubMed

    Eneyskaya, Elena V; Ivanen, Dina R; Bobrov, Kirill S; Isaeva-Ivanova, Lyudmila S; Shabalin, Konstantin A; Savel'ev, Andrew N; Golubev, Alexander M; Kulminskaya, Anna A

    2007-01-15

    The beta-xylosidase from Aspergillus awamori X-100 belonging to the family 3 glycoside hydrolase revealed a distinctive transglycosylating ability to produce xylooligosaccharides with degree of polymerization more than 7. In order to explain this fact, the enzyme has been subjected to the detailed biochemical study. The enzymatic hydrolysis of p-nitrophenyl beta-D-xylopyranoside was found to occur with overall retention of substrate anomeric configuration suggesting cleavage of xylosidic bonds through a double-displacement mechanism. Kinetic study with aryl beta-xylopyranosides substrates, in which leaving group pK(a)s were in the range of 3.96-10.32, revealed monotonic function of log(k(cat)) and no correlation of log(k(cat)/Km) versus pKa values indicating deglycosylation as a rate-limiting step for the enzymatic hydrolysis. The classical bell-shaped pH dependence of k(cat)/Km indicated two ionizable groups in the beta-xylosidase active site with apparent pKa values of 2.2 and 6.4. The kinetic parameters of hydrolysis, Km and k(cat), of p-nitrophenyl beta-D-1,4-xylooligosaccharides were very close to those for hydrolysis of p-nitrophenyl-beta-D-xylopyranoside. Increase of p-nitrophenyl-beta-D-xylopyranoside concentration up to 80 mM led to increasing of the reaction velocity resulting in k(cat)(app)=81 s(-1). Addition of alpha-methyl D-xylopyranoside to the reaction mixture at high concentration of p-nitrophenyl-beta-D-xylopyranoside (50 mM) caused an acceleration of the beta-xylosidase-catalyzed reactions and appearance of a new transglycosylation product, alpha-methyl D-xylopyranosyl-1,4-beta-D-xylopyranoside, that was identified by 1H NMR spectroscopy. The kinetic model suggested for the enzymatic reaction was consistent with the results obtained.

  17. Characterization of a new caged proton capable of inducing large pH jumps.

    PubMed Central

    Barth, Andreas; Corrie, John E T

    2002-01-01

    A new caged proton, 1-(2-nitrophenyl)ethyl sulfate (caged sulfate), is characterized by infrared spectroscopy and compared with a known caged, proton 2-hydroxyphenyl 1-(2-nitrophenyl)ethyl phosphate (caged HPP). In contrast to caged HPP, caged sulfate can induce large pH jumps and protonate groups that have pK values as low as 2.2. The photolysis mechanism of caged sulfate is analogous to that of P(3)-[1-(2-nitrophenyl)ethyl] ATP (caged ATP), and the photolysis efficiency is similar. The utility of this new caged compound for biological studies was demonstrated by its ability to drive the acid-induced conformational change of metmyoglobin. This transition from the native conformation to a partially unfolded form takes place near pH 4 and was monitored by near-UV absorption spectroscopy. PMID:12414718

  18. Cloning and characterization of ginsenoside Ra1-hydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110.

    PubMed

    Hyun, Yang-Jin; Kim, Bomi; Kim, Dong-Hyun

    2012-04-01

    beta-D-Xylosidase (E.C. 3.2.1.37) from Bifidobacterium breve K-110, which hydrolyzes ginsenoside Ra1 to ginsenoside Rb2, was cloned and expressed in Escherichia coli. The (His6)-tagged recombinant enzyme, designated as XlyBK- 110, was efficiently purified using Ni²⁺-affinity chromatography (109.9-fold, 84% yield). The molecular mass of XylBK- 100 was found to be 55.7 kDa by SDS-PAGE. Its sequence revealed a 1,347 bp open reading frame (ORF) encoding a protein containing 448 amino acids, which showed 82% identity (DNA) to the previously reported glycosyl hydrolase family 30 of Bifidobacterium adolescentis ATCC 15703. The Km and Vmax values toward p-nitrophenyl-beta-D-xylopyranoside (pNPX) were 1.45mM and 10.75 micromol/min/mg, respectively. This enzyme had pH and temperature optima at 6.0 and 45 degrees C, respectively. XylBK-110 acted to the greatest extent on xyloglucosyl kakkalide, followed by pNPX and ginsenoside Ra1, but did not act on p-nitrophenyl-alpha-Larabinofuranoside, p-nitrophenyl-beta-D-glucopyranoside, or p-nitrophenyl-beta-D-fucopyranoside. In conclusion, this is the first report on the cloning and expression of beta-Dxylosidase- hydrolyzing ginsenoside Ra1 and kakkalide from human intestinal microflora.

  19. Mechanism of chloroform-induced renal toxicity: Non-involvement of hepatic cytochrome P450-dependent metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang Cheng; Behr, Melissa; Xie Fang

    2008-02-15

    Chloroform causes hepatic and renal toxicity in a number of species. In vitro studies have indicated that chloroform can be metabolized by P450 enzymes in the kidney to nephrotoxic intermediate, although direct in vivo evidence for the role of renal P450 in the nephrotoxicity has not been reported. This study was to determine whether chloroform renal toxicity persists in a mouse model with a liver-specific deletion of the P450 reductase (Cpr) gene (liver-Cpr-null). Chloroform-induced renal toxicity and chloroform tissue levels were compared between the liver-Cpr-null and wild-type mice at 24 h following differing doses of chloroform. At a chloroform dosemore » of 150 mg/kg, the levels of blood urea nitrogen (BUN) were five times higher in the exposed group than in the vehicle-treated one for the liver-Cpr-null mice, but they were only slightly higher in the exposed group than in the vehicle-treated group for the wild-type mice. Severe lesions were found in the kidney of the liver-Cpr-null mice, while only mild lesions were found in the wild-type mice. At a chloroform dose of 300 mg/kg, severe kidney lesions were observed in both strains, yet the BUN levels were still higher in the liver-Cpr-null than in the wild-type mice. Higher chloroform levels were found in the tissues of the liver-Cpr-null mice. These findings indicated that loss of hepatic P450-dependent chloroform metabolism does not protect against chloroform-induced renal toxicity, suggesting that renal P450 enzymes play an essential role in chloroform renal toxicity.« less

  20. Ionizing power and nucleophilicity in water in oil AOT-based microemulsions.

    PubMed

    García-Río, Luis; Hervella, Pablo; Leis, José Ramón

    2005-08-16

    A study was carried out on the solvolysis of substituted phenyl chloroformates in AOT/isooctane/water microemulsions. (AOT is the sodium salt of bis(2-ethyhexyl)sulfosuccinate.) The results obtained have been interpreted by taking into account the distribution of the chloroformates between the continuous medium and the interface of the microemulsions, where the reactions take place. The values obtained for the rate constant in the interface, k(i), decreases as the water content of the microemulsions increases, as a consequence of the decrease in its nucleophilic capacity. This behavior is consistent with a rate-determining step of water addition to the carbonyl group. The values of k(i) allow us to obtain the slopes of the Hammett correlations at the interface of the microemulsions, rho = 2.25, whose values are greater than those obtained in an aqueous medium, rho = 0.82. This increase in the Hammett slope is similar to that observed in ethanol/water mixtures and is a consequence of a variation in the structure of the transition state of the reaction where there is a smaller extension of the expulsion of the leaving group. The values of the rate constants at the interface of the microemulsions have allowed us, by means of the Grunwald-Winstein equation, to obtain the solvent ionizing power and the nucleophilicity of the solvent. The values obtained for Y(Cl) increase together with the water content of the microemulsion, whereas the values of N(T) decrease. These variations are a consequence of the interaction between the AOT headgroups and the interfacial water, where the water molecules act like electronic acceptors. The intensity of this interaction is greater if the system has a small water content, which explains the variation of Y(Cl) and N(T).

  1. From Solvolysis to Self-Assembly*

    PubMed Central

    Stang, Peter J.

    2009-01-01

    My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062

  2. Directed evolution of new and improved enzyme functions using an evolutionary intermediate and multidirectional search.

    PubMed

    Porter, Joanne L; Boon, Priscilla L S; Murray, Tracy P; Huber, Thomas; Collyer, Charles A; Ollis, David L

    2015-02-20

    The ease with which enzymes can be adapted from their native roles and engineered to function specifically for industrial or commercial applications is crucial to enabling enzyme technology to advance beyond its current state. Directed evolution is a powerful tool for engineering enzymes with improved physical and catalytic properties and can be used to evolve enzymes where lack of structural information may thwart the use of rational design. In this study, we take the versatile and diverse α/β hydrolase fold framework, in the form of dienelactone hydrolase, and evolve it over three unique sequential evolutions with a total of 14 rounds of screening to generate a series of enzyme variants. The native enzyme has a low level of promiscuous activity toward p-nitrophenyl acetate but almost undetectable activity toward larger p-nitrophenyl esters. Using p-nitrophenyl acetate as an evolutionary intermediate, we have generated variants with altered specificity and catalytic activity up to 3 orders of magnitude higher than the native enzyme toward the larger nonphysiological p-nitrophenyl ester substrates. Several variants also possess increased stability resulting from the multidimensional approach to screening. Crystal structure analysis and substrate docking show how the enzyme active site changes over the course of the evolutions as either a direct or an indirect result of mutations.

  3. Enhanced Oxidation and Solvolysis Reactions in Chemically Inert Microheterogeneous Systems.

    DTIC Science & Technology

    1987-01-13

    Mackay, Adv.Coll.Interf.Sc{. 15, 131 (1981) 11 C. Bodea and J. Silberg , "Recent Advances in the Chemistry of Phenothiazines" in "Advances in Heterocyclic... Chemistry ", A.R. Katritzky and A.J. Boulton, , eds., Vol. 9, Academic Press, New York, 1968, p. 321 12 A.M. Braun, M.-A. Gilson, M. Krieg, M.-T

  4. Characterization of a thermostable glycoside hydrolase (CMbg0408) from the hyperthermophilic archaeon Caldivirga maquilingensis IC-167.

    PubMed

    Letsididi, Rebaone; Hassanin, Hinawi Am; Koko, Marwa Yf; Ndayishimiye, Jean B; Zhang, Tao; Jiang, Bo; Stressler, Timo; Fischer, Lutz; Mu, Wanmeng

    2017-05-01

    Hyperthermophilic archaea capable of functioning optimally at very high temperatures are a good source of unique and industrially important thermostable enzymes. A glycoside hydrolase family 1 β-galactosidase gene (BglB) from a hyperthermophilic archaeon Caldivirga maquilingensis IC-167 was cloned and expressed in Escherichia coli. The recombinant enzyme (CMbg0408) displayed optimum activity at 110 °C and pH 5.0. It also retained 92% and 70% of its maximal activity at 115 and 120 °C, respectively. The enzyme was completely thermostable and active after 120 min of incubation at 80 and 90 °C. It also showed broad substrate specificity with activities of 8876 ± 185 U mg -1 for p-nitrophenyl-β-d-galactopyranoside, 4464 ± 172 U mg -1 for p-nitrophenyl-β-d-glucopyranoside, 1486 ± 68 U mg -1 for o-nitrophenyl-β-d-galactopyranoside, 2250 ± 86 U mg -1 for o-nitrophenyl-β-d-xylopyranoside and 175 ± 4 U mg -1 for lactose. A catalytic efficiency (k cat /K m ) of 3059 ± 122 mmol L -1  s -1 and K m value of 8.1 ± 0.08 mmol L -1 were displayed towards p-nitrophenyl-β-d-galactopyranoside. As a result of its remarkable thermostability and high activity at high temperatures, this novel β-galactosidase may be useful for food and pharmaceutical applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  5. The Mutagenic Potential of 4 nitrophenyl bis(2-thienyl)-phosphinate; 4-nitrophenyl 2-furyl(methyl)-phosphinates; 4-cyanophenyl bis(2-furyl)-phosphinate; 4-nitrophenyl bis(2-furyl)-phosphinate.

    DTIC Science & Technology

    1981-09-01

    by an enzymatic process, a mammalian microsome system is incorporated. These microsomal enzymes are obtained from livers of rats induced with Aroclor...1254; the enzymes allow for the expression of the metabolites in the mammalian system. This activated rat liver microsomal enzyme homogenate is termed...C) NOME== - - c.J ~ -C) (n in C).*0 ’ r- 0 -0 -. -. : - kz ’.01. -C- - , C) ~~i - - o C40--. C) - ~ flj- ~ - - ~C) -* oj co 00 -r- -j P.. -C ’ opC

  6. Mass Spectrometry to Identify New Biomarkers of Nerve Agent Exposure

    DTIC Science & Technology

    2008-04-01

    of its structural chemistry using p-nitrophenyl esters as substrates. Pharm Res 21:285-292. Salvi A, Carrupt PA, Mayer JM and Testa B (1997) Esterase...Otagiri, M. (2004) Esterase-like activity of serum albumin: characterization of its structural chemistry using p-nitrophenyl esters as substrates. Pharm...The diethylphosphate group was found on Tyr 411 and Tyr 138. Annual report Oksana Lockridge W81XWH-07-2-0034 13 RESULTS The structures of the

  7. Tetrazolium Reduction-Malachite Green Method for Assessing the Viability of Filamentous Bacteria in Activated Sludge

    PubMed Central

    Bitton, Gabriel; Koopman, Ben

    1982-01-01

    A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999

  8. Solvolysis kinetics of three components of biomass using polyhydric alcohols as solvents.

    PubMed

    Shi, Yan; Xia, Xueying; Li, Jingdan; Wang, Jing; Zhao, Tiantian; Yang, Hongmin; Jiang, Jianchun; Jiang, Xiaoxiang

    2016-12-01

    The solvolysis behavior and reaction kinetics of the three components of biomass (cellulose, hemicelluloses and lignin) liquefied in polyhydric alcohols (PEG 400 or glycerol) were investigated in this paper. Three stages were observed during the solvolysis process and the main degradation stage could be further divided into two zones. The influences of solvents on the liquefaction process of three main components were compared. Based on Starink and Malek methods, kinetic parameters and mechanism functions were obtained. The derived average activation energy of cellulose, hemicellulose and lignin were 108.73, 95.66 and 94.13kJmol -1 in PEG 400, while the values were 102.16, 77.43 and 89.10kJmol -1 in glycerol, respectively. Higher efficiency was observed when using glycerol as solvent, which could be ascribed to the higher polarity value of glycerol. The conversion curves calculated with obtained mechanism models and kinetic parameters were in good agreement with the experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Partial Purification and Properties of an Alkaline α-Galactosidase from Mature Leaves of Cucurbita pepo1

    PubMed Central

    Gaudreault, Pierre-Richard; Webb, John A.

    1983-01-01

    A fourth molecular from of α-galactosidase, designated LIV, an alkaline α-galactosidase, was isolated from leaves of Cucurbita pepo and purified 165-fold. It was active over a narrow pH range with optimal hydrolysis of p-nitrophenyl-α-d-galactoside and stachyose at pH 7.5. The rate of stachyose hydrolysis was 10 times that of raffinose. Km determinations in McIlvaine buffer (200 millimolar Na2-phosphate, 100 millimolar citric acid, pH 7.5) for p-nitrophenyl-α-d-galactoside, stachyose, and raffinose were 1.40, 4.5, and 36.4 millimolar, respectively. LIV was partially inhibited by Ca2+, Mg2+, and Mn2+, more so by Ni2+, Zn2+, and Co2+, and highly so by Cu2+, Ag2+, Hg2+ and by p-chloromercuribenzoate. It was not inhibited by high concentrations of the substrate p-nitrophenyl-α-d-galactoside or by myo-inositol, but α-d-galactose was a strong inhibitor. As observed for most other forms of α-galactosidase, LIV only catalyzed the hydrolysis of glycosides possessing the α-d-galactose configuration at C1, C2, and C4, and did not hydrolyze p-nitrophenyl-α-d-fucoside (α-d-galactose substituted at C6). The enzyme was highly sensitive to buffers and chelating agents. Maximum hydrolytic activity for p-nitrophenyl-α-d-galactoside was obtained in McIlvaine buffer (pH 7.5). In 10 millimolar triethanolaminehydrochloride-NaOH (pH 7.5) or 10 millimolar Hepes-NaOH (pH 7.5), hydrolytic activity was virtually eliminated, but the addition of low concentrations of either ethylenediaminetetraacetate or citrate to these buffers restored activity almost completely. Partial restoration of activity was also observed, but at higher concentrations, with pyruvate and malate. Similar effects were found for stachyose hydrolysis, but in addition some inhibition of LIV in McIlvaine buffer, possibly due to the high phosphate concentration, was observed with this substrate. It is questionable whether the organic acid anions possess any regulatory control of LIVin vivo. It was possible that the results reflected the ability of these anions, and ethylene-diaminetetraacetate, to restore LIV activity through coordination with some toxic cation introduced as a buffer contaminant. Images Fig. 1 PMID:16662884

  10. Convergent Synthesis of N-Linked Glycopeptides via Aminolysis of ω-Asp p-Nitrophenyl Thioesters in Solution.

    PubMed

    Du, Jing-Jing; Gao, Xiao-Fei; Xin, Ling-Ming; Lei, Ze; Liu, Zheng; Guo, Jun

    2016-10-07

    An efficient N-linked glycosylation reaction between glycosylamines and p-nitrophenyl thioester peptides has been developed. The reaction conditions are mild and compatible with the C-terminal free carboxylic acid group and the unprotected N-linked sialyloligosaccharide. By means of this convergent strategy, a versatile N-glycopeptide fragment containing an N-terminal Thz and a C-terminal thioester was readily prepared, which is available for the synthesis of long glycopeptides and glycoproteins using the protocol of native chemical ligation.

  11. Density functional calculations on the effect of sulfur substitution for 2'-hydroxypropyl-p-nitrophenyl phosphate: C-O vs. P-O bond cleavage.

    PubMed

    Xia, Futing; Zhu, Hua

    2012-02-01

    Density functional theory calculations have been used to investigate the intra-molecular attack of 2'-hydroxypropyl-p-nitrophenyl phosphate (HPpNP) and its analogous compound 2-thiouridyl-p-nitrophenyl phosphate (s-2'pNP). Bulk solvent effect has been tested at the geometry optimization level with the polarized continuum model. It is found that the P-path involving the intra-molecular attack at the phosphorus atom and C-path involving the attack at the beta carbon atom proceed through the S(N)2-type mechanism for HPpNP and s-2'pNP. The calculated results indicate that the P-path with the free energy barrier of about 11 kcal/mol is more accessible than the C-path for the intra-molecular attack of HPpNP, which favors the formation of the five-membered phosphate diester. While for s-2'pNP, the C-path with the free energy barrier of about 21 kcal/mol proceeds more favorably than the P-path. The calculated energy barriers of the favorable pathways for HPpNP and s-2'pNP are both in agreement with the experimental results. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  12. Deleting the para-nitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose

    Treesearch

    Jennifer Van Vleet; Thomas W. Jeffries; Lisbeth Olsson

    2008-01-01

    Overexpression of D-xylulokinase in Saccharomyces cerevisiae engineered for assimilation of xylose results in growth inhibition that is more pronounced at higher xylose concentrations. Mutants deficient in the para-nitrophenyl phosphatase, PHO13, resist growth inhibition on xylose. We studied this inhibition under aerobic growth conditions in well-controlled...

  13. Solvolysis of para-substituted cumyl chlorides. Brown and Okamoto's electrophilic substituent constants revisited using continuum solvent models.

    PubMed

    DiLabio, Gino A; Ingold, K U

    2004-03-05

    Brown and Okamoto (J. Am. Chem. Soc. 1958, 80, 4979) derived their electrophilic substitutent constants, sigma(p)+, from the relative rates of solvolysis of ring-substituted cumyl chlorides in an acetone/water solvent mixture. Application of the Hammett equation to the rates for the meta-substituted cumyl chlorides, where there could be no resonance interaction with the developing carbocation, gave a slope, rho(+) = -4.54 ( identical with 6.2 kcal/mol free energy). Rates for the para-substituted chlorides were then used to obtain sigma(p)+ values. We have calculated gas-phase C-Cl heterolytic bond dissociation enthalpy differences, Delta BDE(het) (= BDE(het)(4-YC(6)H(4)CMe(2)Cl) - BDE(het)(C(6)H(5)CMe(2)Cl)), for 16 of the 4-Y substituents employed by Brown and Okamoto. The plot of Delta BDE(het) vs sigma(p)+ gave rho(+) (SD) = 16.3 (2.3) kcal/mol, i.e., a rho(+) value roughly 2.5 times greater than experiment. Inclusion of solvation (water) energies, calculated using three continuum solvent models, reduced rho(+) and SD. The computationally least expensive model used, SM5.42R (Li et al. Theor. Chem. Acc. 1999, 103, 9) gave the best agreement with experiment. This model yielded rho(+) (SD) = 7.7 (0.9) kcal/mol, i.e., a rho(+) value that is only 24% larger than experiment.

  14. Ecofriendly Fruit Switches: Graphene Oxide-Based Wrapper for Programmed Fruit Preservative Delivery To Extend Shelf Life.

    PubMed

    Sharma, Sandeep; Biswal, Badal Kumar; Kumari, Divya; Bindra, Pulkit; Kumar, Satish; Stobdan, Tsering; Shanmugam, Vijayakumar

    2018-05-21

    According to Food and Agriculture Organization 2015 report, post-harvest agricultural loss accounts for 20-50% annually; on the other hand, reports about preservatives toxicity are also increasing. Hence, preservative release with response to fruit requirement is desired. In this study, acid synthesized in the overripe fruits was envisaged to cleave acid labile hydrazone to release preservative salicylaldehyde from graphene oxide (GO). To maximize loading and to overcome the challenge of GO reduction by hydrazine, two-step activation with ethylenediamine and 4-nitrophenyl chloroformate respectively, are followed. The final composite shows efficient preservative release with the stimuli of the overripe fruit juice and improves the fruit shelf life. The composite shows less toxicity as compared to the free preservative along with the additional scope to reuse. The composite was vacuum-filtered through a 0.4 μm filter paper, to prepare a robust wrapper for the fruit storage.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Custelcean, Radu; Bartsch, Richard A.

    Two series of novel mono-ionizable calix[4]arene-benzocrown-6 ligands in 1,3-alternate conformations are synthesized. In one series, the proton-ionizable group (PIG) is attached to the para position of one aromatic ring in the calixarene framework, thereby positioning it over the polyether ring cavity. In the other series, the PIG is a substituent on the benzo group in the polyether ring. This orients the PIG away from the crown ether cavity. In addition to carboxylic acid functions, the PIGs include N-(X)sulfonyl carboxamide groups. With X group variation from methyl to phenyl to 4-nitrophenyl to trifluoromethyl, the acidity of the PIG is 'tuned'. Solventmore » extraction of Ag{sup +} from aqueous solutions into chloroform is used to probe the influence of structural variation within the mono-ionizable calixcrown ligand on metal ion extraction efficiency, including the identity and acidity of the PIG and its orientation with respect to the polyether ring.« less

  16. Facile solvolysis of a surprisingly twisted tertiary amide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloomfield, Aaron J.; Chaudhuri, Subhajyoti; Mercado, Brandon Q.

    2016-01-05

    In this study, a bicyclo[2.2.2]octane derivative containing both a tertiary amide and a methyl ester was shown crystallographically to adopt a conformation in which the amide is in the cis configuration, which is sterically disfavored, but electronically favored. The steric strain induces a significant torsion (15.9°) of the amide, thereby greatly increasing the solvolytic lability of the amide to the extent that we see competitive amide solvolysis in the presence of the normally more labile methyl ester also present in the molecule.

  17. An improved radiosynthesis of O-(2-[18 F]fluoroethyl)-O-(p-nitrophenyl)methylphosphonate: A first-in-class cholinesterase PET tracer.

    PubMed

    Neumann, Kiel D; Thompson, Charles M; Blecha, Joseph E; Gerdes, John M; VanBrocklin, Henry F

    2017-06-15

    O-(2-Fluoroethyl)-O-(p-nitrophenyl) methylphosphonate 1 is an organophosphate cholinesterase inhibitor that creates a phosphonyl-serine covalent adduct at the enzyme active site blocking cholinesterase activity in vivo. The corresponding radiolabeled O-(2-[ 18 F]fluoroethyl)-O-(p-nitrophenyl) methylphosphonate, [ 18 F]1, has been previously prepared and found to be an excellent positron emission tomography imaging tracer for assessment of cholinesterases in live brain, peripheral tissues, and blood. However, the previously reported [ 18 F]1 tracer synthesis was slow even with microwave acceleration, required high-performance liquid chromatography separation of the tracer from impurities, and gave less optimal radiochemical yields. In this paper, we report a new synthetic approach to circumvent these shortcomings that is reliant on the facile reactivity of bis-(O,O-p-nitrophenyl) methylphosphonate, 2, with 2-fluoroethanol in the presence of DBU. The cold synthesis was successfully translated to provide a more robust radiosynthesis. Using this new strategy, the desired tracer, [ 18 F]1, was obtained in a non-decay-corrected radiochemical yield of 8 ± 2% (n = 7) in >99% radiochemical and >95% chemical purity with a specific activity of 3174 ± 345 Ci/mmol (EOS). This new facile radiosynthesis routinely affords highly pure quantities of [ 18 F]1, which will further enable tracer development of OP cholinesterase inhibitors and their evaluation in vivo. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Hydrolysis of p-nitrophenyl esters promoted by semifluorinated quaternary ammonium polymer latexes and films.

    PubMed

    Kaur, Baljinder; McBride, Sean P; Paul, Abhijit; Ford, Warren T

    2010-10-19

    Semifluorinated polymer latexes were prepared by emulsion polymerization of 2.5-25% of a fluoroalkyl methacrylate, 25% chloromethylstyrene, 1% styrylmethyl(trimethyl)ammonium chloride, and the remainder 2-ethylhexyl methacrylate under surfactant-free conditions. The chloromethylstyrene units were converted to quaternary ammonium ions with trimethylamine. In aqueous dispersions at particle concentrations of less than 1 mg mL(-1) the quaternary ammonium ion latexes promoted hydrolyses of p-nitrophenyl hexanoate (PNPH) in pH 9.4 borate buffer and of diethyl p-nitrophenyl phosphate (Paraoxon) in 0.1 M NaOH at 30 °C with half-lives of less than 10 min. Thin 0.7-2 μm films of the latexes on glass promoted fast hydrolysis of Paraoxon but not of PNPH under the same conditions. Even after annealing the quaternary ammonium ion polymer films at temperatures well above their glass transition temperatures, AFM images of the film surfaces had textures of particles. Contact angle measurements of the annealed films against water and against hexadecane showed that the surfaces were not highly fluorinated.

  19. The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: Utility of renal specific P450 reductase knockout mouse models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Senyan; Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York, Albany, NY 12201; Yao, Yunyi

    The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. We developed two new mouse models, one having proximal tubule-specific deletion of the cytochrome P450 reductase (Cpr) gene (the enzyme required for all microsomal P450 activities), designated proximal tubule-Cpr-null (PTCN), and the other having proximal tubule-specific rescue of CPR activity withmore » the global suppression of CPR activity in all extra-proximal tubular tissues, designated extra-proximal tubule-Cpr-low (XPT-CL). The PTCN, XPT-CL, Cpr-low (CL), and wild-type (WT) mice were treated with a single oral dose of chloroform at 200 mg/kg. Blood, liver and kidney samples were obtained at 24 h after the treatment. Renal toxicity was assessed by measuring BUN and creatinine levels, and by pathological examination. The blood and tissue levels of chloroform were determined. The severity of toxicity was less in PTCN and CL mice, compared with that of WT and XPT-CL mice. There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity. - Highlights: • New mouse models were developed with varying P450 activities in the proximal tubule. • These mouse models were treated with chloroform, a nephrotoxicant. • Studies showed the importance of local P450s in chloroform-induced nephrotoxicity.« less

  20. The influence of steric hindrance on kinetics and isotope effects in the reaction of 2,2-bis(4-dimethylaminophenyl)-1-nitro-1-(4-nitrophenyl)ethane with DBU base in acetonitrile

    NASA Astrophysics Data System (ADS)

    Nowak, Iwona; Jarczewski, Arnold

    2014-11-01

    The pKa value for 2,2-bis(4-dimethylaminophenyl)-1-nitro-1-(4-nitrophenyl)ethane, (dmap)2 (pKa = 25.11) has been measured spectrophotometrically using buffer solutions of a few strong amine bases: 1,8-diazabicyclo[5.4.0]undec-7-ene, (DBU); 1,1,3,3-tetramethylguanidine, (TMG); 1,5,7-triazabicyclo[4.4.0]dec-5-ene, (TBD); 7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene, (MTBD) and their salts. The low energy conformers of nitrophenyl nitroalkanes have been determined using the semiempirical PM6 methods, (B3-LYP) density functional theory (DFT) together with the 6-31G(d,p) basis set. The participation of the low energy conformer in the proton transfer reaction to DBU base has been discussed. The kinetic data for proton transfer reactions between (dmap)2 and DBU in acetonitrile (MeCN) at pseudo-first order conditions have been presented. The influence of steric hindrance brought by reacting C-acid and organic base on the stability of the transition state has been discussed. The rates of second-order rate constants for series of nitrophenyl nitroalkanes, NO2PhCHRNO2 (R = Me; Et; iPr; dimethylaminophenyl = (dmap)2) are presented and discussed.

  1. Rate-limiting steps of stereochemistry retaining ß-D-xylosidase from Geobacillus stearothermophilus acting as substrates

    USDA-ARS?s Scientific Manuscript database

    Kinetic experiments of GSXynB2, a ß-xylosidase, acting on 2-nitrophenyl-ß-D-xylopyranoside (2NPX), 4-nitrophenyl-ß-D-xylopyranoside (4NPX), 4-methylumbelliferyl-ß-D-xylopyanoside (MuX) and xylobiose (X2) were conducted at pH 7.0 and 25 °C. Catalysis proceeds in two steps: E + substrate TO E-xylose ...

  2. [Activity and thermal stability of acid phosphatase in homogenates of Amoeba proteus, acclimated to various temperatures].

    PubMed

    Sopina, V A

    2001-01-01

    Activity and thermoresistance of acid phosphatase were determined in supernatant of Amoeba proteus homogenates using 1-naphthyl phosphate (pH 4.0) and p-nitrophenyl phosphate (pH 5.5). Although tartrate-resistant and tartrate-sensitive acid phosphatases hydrolyse both substrates, the former mainly hydrolyses p-nitrophenyl phosphate and the latter 1-naphthyl phosphate. A decrease in the activity of the total and tartrate-sensitive acid phosphatases, when using 1-naphthyl phosphate, and of the total and tartrate-resistant acid phosphatases, when using p-nitrophenyl phosphate, was found in amoebae acclimated to 10 degrees C (10 degrees-amoebae) compared to those acclimated to 25 degrees C (25 degrees-amoebae). Using 1-naphthyl phosphate, the thermoresistance of the total acid phosphatase was lower in 10 degrees-amoebae than in 25 degrees-amoebae, but the thermostability of tartrate-resistant enzyme was the same in both groups of amoebae. Using p-nitrophenyl phosphate, the thermoresistance of the total and tartrate-resistant acid phosphatases was lower (the latter only slightly) in 10 degrees-amoebae than in 25 degrees-amoebae. It is suggested that at least with the use of 1-naphthyl phosphate a decrease in thermostability of the total acid phosphatase may be due to a decrease in thermoresistance of tartrate-sensitive enzyme. The results obtained confirm the author's previous data on the activity and thermostability of electrophoretic forms of acid phosphatase using 2-naphthyl phosphate in 10- and 25 degrees-amoebae (Sopina, 2001). It is the first case of discovering a correlation between changes in primary cell thermoresistance of amoebae cultured at different temperatures and changes in the activity and thermostability of acid phosphatase in their homogenates, with the number of electrophoretic forms of this enzyme and their mobility being permanent.

  3. Preparation of the 3-monosulphates of cholic acid, chenodeoxycholic acid and deoxycholic acid.

    PubMed Central

    Haslewood, E S; Haslewood, G A

    1976-01-01

    1. The 3-sulphates of cholic, chenodeoxycholic and deoxycholic acids were prepared as crystalline disodium salts. 2. The method described shows that it is possible to prepare specific sulphate esters of polyhydroxy bile acids and to remove protecting acyl groups without removing the sulphate. 3. A study of bile acid sulphate solvolysis showed that none of the usual methods give the original bile acid in major yield in a single step. 4. An understanding of the preparation, properties and methods of solvolysis of bile acid sulphates is basic for investigations of cholestasis and liver disease. PMID:938488

  4. Laser photolysis of caged calcium: rates of calcium release by nitrophenyl-EGTA and DM-nitrophen.

    PubMed Central

    Ellis-Davies, G C; Kaplan, J H; Barsotti, R J

    1996-01-01

    Nitrophenyl-EGTA and DM-nitrophen are Ca2+ cages that release Ca2+ when cleaved upon illumination with near-ultraviolet light. Laser photolysis of nitrophenyl-EGTA produced transient intermediates that decayed biexponentially with rates of 500,000 s-1 and 100,000 s-1 in the presence of saturating Ca2+ and 290,000 s-1 and 68,000 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. Laser photolysis of nitrophenyl-EGTA in the presence of Ca2+ and the Ca2+ indicator Ca-orange-5N produced a monotonic increase in the indicator fluorescence, which had a rate of 68,000 s-1 at pH 7.2 and 25 degrees C. Irradiation of DM-nitrophen produced similar results with somewhat slower kinetics. The transient intermediates decayed with rates of 80,000 s-1 and 11,000 s-1 in the presence of Ca2+ and 59,000 s-1 and 3,600 s-1 in the absence of Ca2+ at pH 7.2 and 25 degrees C. The rate of increase in Ca(2+)-indicator fluorescence produced upon photolysis of the DM-nitrophen: Ca2+ complex was 38,000 s-1 at pH 7.2 and 25 degrees C. In contrast, pulses in Ca2+ concentration were generated when the chelator concentrations were more than the total Ca2+ concentration. Photoreleased Ca2+ concentration stabilized under these circumstances to a steady state within 1-2 ms. PMID:8789118

  5. Reactive carriers of immobilized compounds.

    PubMed

    Coupek, J; Labský, J; Kálal, J; Turková, J; Valentová, O

    1977-04-12

    Sphericanl macroporous reactive carriers capable of forming covalent bonds with amino acids and proteins were prepared by the suspension copolymerization of 2-hydroxyethyl methacrylate, ethylene dimethacrylate and p-nitrophenyl esters of methacrylic acid and methacryloyl derivatives of glycine, beta-alanine and epsilon-aminocaproic acid. The effect of the spacer length, pH and the type of the buffer used, concentration of reactive groups in the copolymer, concentration of the ligand and the participation of the hydrolytic and aminolytic reaction of p-nitrophenyl functional groups in the attachment of glycine, D,L-phenylalanine and serumalbumin was studied. Macroporous copolymers containing reactive functional groups can be used as active enzyme carriers, if their activity is not blocked by the presence of p-nitrophenol split off in the attachment reaction.

  6. Theoretical study on the mechanism of the gas-phase elimination kinetics of alkyl chloroformates

    NASA Astrophysics Data System (ADS)

    Alcázar, Jackson J.; Marquez, Edgar; Mora, José R.; Cordova-Sintjago, Tania; Chuchani, Gabriel

    2016-03-01

    The theoretical calculations on the mechanism of the homogeneous and unimolecular gas-phase elimination kinetics of alkyl chloroformates- ethyl chloroformate (ECF), isopropyl chloroformate (ICF), and sec-butyl chloroformate (SCF) - have been carried out by using CBS-QB3 level of theory and density functional theory (DFT) functionals CAM-B3LYP, M06, MPW1PW91, and PBE1PBE with the basis sets 6-311++G(d,p) and 6-311++G(2d,2p). The chlorofomate compounds with alkyl ester Cβ-H bond undergo thermal decomposition producing the corresponding olefin, HCl and CO2. These homogeneous eliminations are proposed to undergo two different types of mechanisms: a concerted process, or via the formation of an unstable intermediate chloroformic acid (ClCOOH), which rapidly decomposes to HCl and CO2 gas. Since both elimination mechanisms may occur through a six-membered cyclic transition state structure, it is difficult to elucidate experimentally which is the most reasonable reaction mechanism. Theoretical calculations show that the stepwise mechanism with the formation of the unstable intermediate chloroformic acid from ECF, ICF, and SCF is favoured over one-step elimination. Reasonable agreements were found between theoretical and experimental values at the CAM-B3LYP/6-311++G(d,p) level.

  7. Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds.

    PubMed Central

    Garcia-Sastre, A; Villar, E; Manuguerra, J C; Hannoun, C; Cabezas, J A

    1991-01-01

    Influenza C virus (strain C/Johannesburg/1/66) was grown, harvested, purified and used as source for the enzyme O-acetylesterase (N-acyl-O-acetylneuraminate O-acetylhydrolase; EC 3.1.1.53). This activity was studied and characterized with regard to some new substrates. The pH optimum of the enzyme is around 7.6, its stability at different pH values shows a result similar to that of the pH optimum, and its activity is well maintained in the pH range from 7.0 to 8.5 (all these tests were performed with 4-nitrophenyl acetate as substrate). Remarkable differences were found in the values of both Km and Vmax, with the synthetic substrates 4-nitrophenyl acetate, 2-nitrophenyl acetate, 4-methylumbelliferyl acetate, 1-naphthyl acetate and fluorescein diacetate. The use of 4-nitrophenyl acetate, 4-methylumbelliferyl acetate or 1-naphthyl acetate as substrate seems to be convenient for routine work, but it is better to carry out the measurements in parallel with those on bovine submandibular gland mucin (the latter is a natural and commercially available substrate). It was found that 4-acetoxybenzoic acid, as well as the methyl ester of 2-acetoxybenzoic acid, but not 2-acetoxybenzoic acid itself, are cleaved by this enzyme. Triacetin, di-O-acetyladenosine, tri-O-acetyladenosine, and di-O-acetyl-N-acetyladenosine phosphate, hitherto unreported as substrates for this viral esterase, are hydrolysed at different rates by this enzyme. We conclude that the O-acetylesterase from influenza C virus has a broad specificity towards both synthetic and natural non-sialic acid-containing substrates. Zn2+, Mn2+ and Pb2+ (as their chloride salts), N-acetylneuraminic acid, 4-methyl-umbelliferone and 2-acetoxybenzoic acid (acetylsalicylic acid) did not act as inhibitors. Images Fig. 1. PMID:1991039

  8. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under Acidic Conditions

    EPA Science Inventory

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and etha...

  9. Arylsulfotransferase from Clostridium innocuum-A new enzyme catalyst for sulfation of phenol-containing compounds.

    PubMed

    Mozhaev, Vadim V; Khmelnitsky, Yuri L; Sanchez-Riera, Fernando; Maurina-Brunker, Julie; Rosson, Reinhardt A; Grund, Alan D

    2002-06-05

    Arylsulfotransferase (AST, EC 2.8.2.22), an enzyme capable of sulfating a wide range of phenol-containing compounds was purified from a Clostridium innocuum isolate (strain 554). The enzyme has a molecular weight of 320 kDa and is composed of four subunits. Unlike many mammalian and plant arylsulfotransferases, AST from Clostridium utilizes arylsulfates, including p-nitrophenyl sulfate, as sulfate donors, and is not reactive with 3-phosphoadenosine-5'-phosphosulfate (PAPS). The enzyme possesses broad substrate specificity and is active with a variety of phenols, quinones and flavonoids, but does not utilize primary and secondary alcohols and sugars as substrates. Arylsulfotransferase tolerates the presence of 10 vol% of polar cosolvents (dimethyl formamide, acetonitrile, methanol), but loses significant activity at higher solvent concentrations of 30-40 vol%. The enzyme retains high arylsulfotransferase activity in biphasic systems composed of water and nonpolar solvents, such as cyclohexane, toluene and chloroform, while in biphasic systems with more polar solvents (ethyl acetate, 2-pentanone, methyl tert-butyl ether, and butyl acetate) the enzyme activity is completely lost. High yields of AST-catalyzed sulfation were achieved in reactions with several phenols and tyrosine-containing peptides. Overall, AST studied in this work is a promising biocatalyst in organic synthesis to afford efficient sulfation of phenolic compounds under mild reaction conditions. Copyright 2002 Wiley Periodicals, Inc. Biotechnol Bioeng 78: 567-575, 2002.

  10. Cloning, Expression and Characterization of a Thermostable Esterase HydS14 from Actinomadura sp. Strain S14 in Pichia pastoris.

    PubMed

    Sriyapai, Pichapak; Kawai, Fusako; Siripoke, Somjai; Chansiri, Kosum; Sriyapai, Thayat

    2015-06-12

    A thermostable esterase gene (hydS14) was cloned from an Actinomadura sp. S14 gene library. The gene is 777 bp in length and encodes a polypeptide of 258 amino acid residues with no signal peptide, no N-glycosylation site and a predicted molecular mass of 26,604 Da. The encoded protein contains the pentapeptide motif (GYSLG) and catalytic triad (Ser88-Asp208-His235) of the esterase/lipase superfamily. The HydS14 sequence shows 46%-64% identity to 23 sequences from actinomycetes (23 α/β-hydrolases), has three conserved regions, and contains the novel motif (GY(F)SLG), which distinguishes it from other clusters in the α/β-hydrolase structural superfamily. A plasmid containing the coding region (pPICZαA-hydS14) was used to express HydS14 in Pichia pastoris under the control of the AOXI promoter. The recombinant HydS14 collected from the supernatant had a molecular mass of ~30 kDa, which agrees with its predicted molecular mass without N-glycosylation. HydS14 had an optimum temperature of approximately 70 °C and an optimum pH of 8.0. HydS14 was stable at 50 and 60 °C for 120 min, with residual activities of above 80% and above 90%, respectively, as well as 50% activity at pH 6.0-8.0 and pH 9.0, respectively. The enzyme showed higher activity with p-nitrophenyl-C2 and C4. The Km and Vmax values for p-nitrophenyl-C4 were 0.21 ± 0.02 mM and 37.07 ± 1.04 μmol/min/mg, respectively. The enzyme was active toward short-chain p-nitrophenyl ester (C2-C6), displaying optimal activity with p-nitrophenyl-C4 (Kcat/Km = 11.74 mM(-1) · S(-1)). In summary, HydS14 is a thermostable esterase from Actinomadura sp. S14 that has been cloned and expressed for the first time in Pichia pastoris.

  11. Composition of Lignin-to-Liquid Solvolysis Oils from Lignin Extracted in a Semi-Continuous Organosolv Process

    PubMed Central

    Løhre, Camilla; Vik Halleraker, Hilde; Barth, Tanja

    2017-01-01

    The interest and on-going research on utilisation of lignin as feedstock for production of renewable and sustainable aromatics is expanding and shows great potential. This study investigates the applicability of semi-continuously organosolv extracted lignin in Lignin-to-Liquid (LtL) solvolysis, using formic acid as hydrogen donor and water as solvent under high temperature–high pressure (HTHP) conditions. The high purity of the organosolv lignin provides high conversion yields at up to 94% based on lignin mass input. The formic acid input is a dominating parameter in lignin conversion. Carbon balance calculations of LtL-solvolysis experiments also indicate that formic acid can give a net carbon contribution to the bio-oils, in addition to its property as hydrogenation agent. Compound specific quantification of the ten most abundant components in the LtL-oils describe up to 10% of the bio-oil composition, and reaction temperature is shown to be the dominating parameter for the structures present. The structural and quantitative results from this study identify components of considerable value in the LtL-oil, and support the position of this oil as a potentially important source of building blocks for the chemical and pharmaceutical industry. PMID:28124994

  12. A Novel Multifunctional β-N-Acetylhexosaminidase Revealed through Metagenomics of an Oil-Spilled Mangrove

    PubMed Central

    Soares, Fábio Lino; Marcon, Joelma; Khakhum, Nittaya; Cerdeira, Louise Teixeira; Domingos, Daniela Ferreira; Taketani, Rodrigo Gouvea; de Oliveira, Valéria Maia; Lima, André Oliveira de Souza

    2017-01-01

    The use of culture-independent approaches, such as metagenomics, provides complementary access to environmental microbial diversity. Mangrove environments represent a highly complex system with plenty of opportunities for finding singular functions. In this study we performed a functional screening of fosmid libraries obtained from an oil contaminated mangrove site, with the purpose of identifying clones expressing hydrolytic activities. A novel gene coding for a β-N-acetylhexosaminidase with 355 amino acids and 43KDa was retrieved and characterized. The translated sequence showed only 38% similarity to a β-N-acetylhexosaminidase gene in the genome of Veillonella sp. CAG:933, suggesting that it might constitute a novel enzyme. The enzyme was expressed, purified, and characterized for its enzymatic activity on carboxymethyl cellulose, p-Nitrophenyl-2acetamide-2deoxy-β-d-glucopyranoside, p-Nitrophenyl-2acetamide-2deoxy-β-d-galactopyranoside, and 4-Nitrophenyl β-d-glucopyranoside, presenting β-N-acetylglucosaminidase, β-glucosidase, and β-1,4-endoglucanase activities. The enzyme showed optimum activity at 30 °C and pH 5.5. The characterization of the putative novel β-N-acetylglucosaminidase enzyme reflects similarities to characteristics of the environment explored, which differs from milder conditions environments. This work exemplifies the application of cultivation-independent molecular techniques to the mangrove microbiome for obtaining a novel biotechnological product. PMID:28952541

  13. Metabolism of aspirin and procaine in mice pretreated with O-4-nitrophenyl methyl(phenyl)phosphinate or O-4-nitrophenyl diphenylphosphinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joly, J.M.; Brown, T.M.

    Concentrations of (carboxyl-/sup 14/C)procaine in blood of mice were increased threefold for 27 min by exposure to O-4-nitrophenyl diphenylphosphinate 2 hr prior to (carboxyl-/sup 14/C)procaine injection ip, while there was no effect of O-4-nitrophenyl methyl(phenyl)phosphinate pretreatment. There was no effect of either organophosphinate on the primary hydrolysis of (acetyl-l-/sup 14/C)aspirin when assessed by the expiration of (/sup 14/C)carbon dioxide; however, O-4-nitrophenyl diphenylphosphinate pretreatment produced transient increases in blood concentrations of both (carboxyl-/sup 14/C)aspirin and (carboxyl-/sup 14/C)salicylic acid following administration of (carboxyl-/sup 14/C)aspirin. Liver carboxylesterase activity in O-4-nitrophenyl diphenylphosphinate pretreated mice was 11% of control activity. These results indicate the potentialmore » for drug interaction with O-4-nitrophenyl diphenylphosphinate but not with O-4-nitrophenyl methyl(phenyl)phosphinate. It appears that liver carboxylesterase activity has a minor role in hydrolysis of aspirin in vivo, but may be more important in procaine metabolism.« less

  14. Dissolution of root canal sealer cements in volatile solvents.

    PubMed

    Whitworth, J M; Boursin, E M

    2000-01-01

    There are few published data on the solubility profiles of endodontic sealers in solvents commonly employed in root canal retreatment. This study tested the hypothesis that root canal sealer cements are insoluble in the volatile solvents chloroform and halothane. Standardized samples (n = 5) of glass ionomer (Ketac Endo), zinc oxide-eugenol (Tubli-Seal EWT), calcium hydroxide (Apexit) and epoxy resin (AH Plus) based sealers were immersed in chloroform or halothane for 30 s, 1 min, 5 min and 10 min. Mean loss of weight was plotted against time of exposure, and differences in behaviour assessed by multiple paired t-tests (P < 0.01). Clear differences were shown in the solubility profiles of major classes of root canal sealer cements in two common volatile solvents. In comparison with other classes of material, Ketac Endo was the least soluble in chloroform and halothane (P < 0.01), with less than 1% weight loss after 10 min exposure to either solvent. Apexit had low solubility with 11.6% and 14.19% weight loss after 10 min exposure to chloroform and halothane, respectively. The difference between solvents was not significant (P > 0.01). Tubli-Seal EWT was significantly less soluble in halothane than chloroform (5.19% and 62.5% weight loss after 10 min exposure, respectively (P < 0.01)). Its solubility in halothane was not significantly different from that of Apexit. AH Plus was significantly more soluble than all other materials in both chloroform and halothane (96% and 68% weight loss after 10 min exposure, respectively (P < 0.01)). There are significant differences in the solubility profiles of major classes of root canal sealer in common organic solvents. Efforts should continue to find a more universally effective solvent for use in root canal treatment.

  15. A comparison of the effectiveness of chloroform and eucalyptus oil in dissolving root canal sealers.

    PubMed

    Schäfer, Edgar; Zandbiglari, Tannaz

    2002-05-01

    The solubility of 8 different root canal sealers in chloroform and in eucalyptus oil was compared. For standardized samples (n=12), ring molds were filled with mixed sealers based on epoxy resin, silicone, calcium hydroxide, zinc oxide-eugenol, glass ionomer, and polyketone. These samples were immersed in chloroform or eucalyptus oil for 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, and 20 minutes. Then, the mean weight loss was determined and statistically analyzed. With the exception of the silicone, all the sealers showed significantly higher solubilities (P <.05) in chloroform than in eucalyptus oil. Epoxy resin was the most soluble sealer in chloroform. In eucalyptus oil, calcium hydroxide, and zinc oxide-eugenol showed the highest solubility. Under the conditions of this study, chloroform was a far more effective solvent of root canal sealers than eucalyptus oil. Because of the potential hazards of chloroform, further studies on the dissolution of root canal sealers in different solvents seem to be necessary.

  16. Effects of micelles and vesicles on the oximolysis of p-nitrophenyl diphenyl phosphate: A model system for surfactant-based skin-defensive formulations against organophosphates.

    PubMed

    Gonçalves, Larissa Martins; Kobayakawa, Talita Guedes; Zanette, Dino; Chaimovich, Hernan; Cuccovia, Iolanda Midea

    2009-03-01

    The rates of oximolysis of p-nitrophenyl diphenyl phosphate (PNPDPP) by Acetophenoxime; 10-phenyl-10-hydroxyiminodecanoic acid; 4-(9-carboxynonanyl)-1-(9-carboxy-1-hydroyiminononanyl) benzene; 1-dodecyl-2-[(hydroxyimino)methyl]-pyridinium chloride (IV) and N-methylpyridinium-2-aldoxime chloride were determined in micelles of N-hexadecyl-N,N,N-trimethylammonium chloride (CTAC), N-hexadecyl-N,N-dimethylammonium propanesulfonate and dioctadecyldimethylammonium chloride (DODAC) vesicles. The effects of CTAC micelles and DODAC vesicles on the rates of oxymolysis of O,O-Diethyl O-(4-nitrophenyl) phosphate (paraoxon) by oxime IV were also determined. Analysis of micellar and vesicular effects on oximolysis of PNPDPP, using pseudophase or pseudophase with explicit consideration of ion exchange models, required the determination of the aggregate's effects on the pK(a) of oximes and on the rates of PNPDPP hydrolysis. All aggregates increased the rate of oximolysis of PNPDPP and the results were analyzed quantitatively. In particular, DODAC vesicles catalyzed the reaction and increased the rate of oximolysis of PNPDPP by IV several million fold at pH's compatible with pharmaceutical formulations. The rate increase produced by DODAC vesicles on the rate of oximolysis paraoxon by IV demonstrates the pharmaceutical potential of this system, since the substrate is used as an agricultural defensive agent and the surfactant is extensively employed in cosmetic formulations. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  17. Formation and transformation of chloroform during managed aquifer recharge (MAR).

    PubMed

    Liu, Dan; Liang, Xiujuan; Zhang, Wenjing; Wang, Zhuo; Ma, Tianyi; Li, Fulin; Chen, Xuequn

    2018-05-09

    Chlorination is an effective method to protect the safety of groundwater systems during managed aquifer recharge. However, chlorination leads to the formation of disinfection by-products, whose behavior in aquifers remains unclear and has caused public concern. In this study, an in-site test was performed on an anoxic aquifer in Shouguang City, China, to investigate the formation and transformation of chloroform during managed aquifer recharge. The field tests showed that the formation of chloroform in groundwater caused by the recharge of chlorinated water, and that the fate of chloroform was affected by adsorption and biodegradation. The retardation factor was 1.27, and the half-life was 29 days. The formation and transformation of chloroform during continuous recharge under different hydrochemical conditions was further investigated by batch experiments. These experiments showed that the formation of chloroform increased with contact time, tended to be stable after 10 h, and was facilitated by high chloride/TOC ratios, high pH, and low ionic strength (IS) for a given contact time. The adsorption experiments showed that the process accords with the pseudo-second-order kinetic equations and the Freundlich model. The adsorption capacity was pH dependent (1.01-1.66 μg/g at pH 5 and 2.17-3.05 μg/g at pH 9). Increasing the IS promotes adsorption. The results from biodegradation experiments indicated that the biodegradation was well fitted by the Monod equation. The retardation factor in the batch experiments was close to that of the field test, but the half-life was less than the field test. This is mainly due to the difference in the concentration of dissolved oxygen. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. THE ENHANCEMENT OF CHLOROFORM-INDUCED PLASMA PROTEOLYTIC ACTIVITY BY EPSILON AMINOCAPROIC ACID

    PubMed Central

    Donaldson, Virginia H.; Ratnoff, Oscar D.

    1962-01-01

    The proteolytic activity in chloroform-treated plasma euglobulins has been attributed to plasmin. Plasmin can digest both casein and fibrin. Epsilon aminocaproic acid, which inhibits the activation of plasminogen, the precursor of plasmin, by streptokinase, urokinase, and tissue activators enhanced the development of casein hydrolytic activity in a mixture of chloroform and plasma euglobulins. Fibrinolytic activity was also enhanced, but this was evident only if the epsilon aminocaproic acid was removed from the chloroform-treated euglobulins prior to assay. The reasons for the paradoxical enhancement of chloroform-induced casein hydrolysis by euglobulins containing epsilon aminocaproic acid are unclear. However, studies of optimal pH, heat stability, and the effect of ionic strength on the activation of the precursor of this proteolytic enzyme do not differentiate it from plasminogen. PMID:13887179

  19. Chromatographic finger print analysis of anti-inflammatory active extract fractions of aerial parts of Tribulus terrestris by HPTLC technique.

    PubMed

    Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal

    2014-03-01

    To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The results obtained in this experiment strongly support and validate the traditional uses of this Sudanese medicinal plant.

  20. Chromatographic finger print analysis of anti-inflammatory active extract fractions of aerial parts of Tribulus terrestris by HPTLC technique

    PubMed Central

    Mohammed, Mona Salih; Alajmi, Mohamed Fahad; Alam, Perwez; Khalid, Hassan Subki; Mahmoud, Abelkhalig Muddathir; Ahmed, Wadah Jamal

    2014-01-01

    Objective To develop HPTLC fingerprint profile of anti-inflammatory active extract fractions of Tribulus terrestris (family Zygophyllaceae). Methods The anti-inflammatory activity was tested for the methanol and its fractions (chloroform, ethyl acetate, n-butanol and aqueous) and chloroform extract of Tribulus terrestris (aerial parts) by injecting different groups of rats (6 each) with carrageenan in hind paw and measuring the edema volume before and 1, 2 and 3 h after carrageenan injection. Control group received saline i.p. The extracts treatment was injected i.p. in doses of 200 mg/kg 1 h before carrageenan administration. Indomethacin (30 mg/kg) was used as standard. HPTLC studies were carried out using CAMAG HPTLC system equipped with Linomat IV applicator, TLC scanner 3, Reprostar 3, CAMAG ADC 2 and WIN CATS-4 software for the active fractions of chloroform fraction of methanol extract. Results The methanol extract showed good antiedematous effect with percentage of inhibition more than 72%, indicating its ability to inhibit the inflammatory mediators. The methanol extract was re-dissolved in 100 mL of distilled water and fractionated with chloroform, ethyl acetate and n-butanol. The four fractions (chloroform, ethyl acetate, n-butanol and aqueous) were subjected to anti-inflammatory activity. Chloroform fraction showed good anti-inflammatory activity at dose of 200 mg/kg. Chloroform fraction was then subjected to normal phase silica gel column chromatography and eluted with petroleum ether-chloroform, chloroform-ethyl acetate mixtures of increasing polarity which produced 15 fractions (F1-F15). Only fractions F1, F2, F4, F5, F7, F9, F11 and F14 were found to be active, hence these were analyzed with HPTLC to develop their finger print profile. These fractions showed different spots with different Rf values. Conclusions The different chloroform fractions F1, F2, F4, F5, F7, F9, F11 and F14 revealed 4, 7, 7, 8, 9, 7, 7 and 6 major spots, respectively. The results obtained in this experiment strongly support and validate the traditional uses of this Sudanese medicinal plant. PMID:25182438

  1. Mechanism and stereochemical course at phosphorus of the reaction catalyzed by a bacterial phosphotriesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, V.E.; Donarski, W.J.; Wild, J.R.

    The reaction mechanism for the phosphotriesterase from Pseudomonas diminuta has been examined. When paraoxon (diethyl 4-nitrophenyl phosphate) is hydrolyzed by this enzyme in oxygen-18-labeled water, the oxygen-18 label is found exclusively in the diethyl phosphate product. The absolute configurations for the (+) and (-) enantiomers of O-ethyl phenylphosphonothioic acid have been determined by X-ray diffraction structural determination of the individual crystalline 1-phenylethylamine salts. The (+) enantiomer of the free acid corresponds to the R/sub P/ configuration. The R/sub P/ enantiomer of O-ethyl phenylphosphonothioic acid has been converted to the S/sub P/ enantiomer of EPN (O-ethyl O-(4-nitrophenyl) phenylphosphonothioate). (S/sub P/)-EPN ismore » hydrolyzed by the phosphotriesterase to the S/sub P/ enantiomer of O-ethyl phenylphosphonothioic acid. The enzymatic reaction therefore proceeds with inversion of configuration. These results have been interpreted as an indication of a single in-line displacement by an activated water molecule directly at the phosphorus center of the phosphotriester substrate. (R/sub P/)-EPN is not hydrolyzed by the enzyme at an appreciable rate.« less

  2. The effect of chloroform, orange oil and eucalyptol on root canal transportation in endodontic retreatment.

    PubMed

    Karataş, Ertuğrul; Kol, Elif; Bayrakdar, İbrahim Şevki; Arslan, Hakan

    2016-04-01

    The purpose of the present study was to assess the effect of solvents on root canal transportation in endodontic retreatment. Sixty extracted human permanent mandibular first molars with curved root canals were selected. All of the root canals were prepared using Twisted File Adaptive instruments (SybronEndo, Orange, CA, USA) and filled with gutta-percha and AH Plus sealer (Dentsply DeTrey, Konstanz, Germany) using the cold lateral compaction technique. The teeth were assigned to four retreatment groups as follows (n = 15): eucalyptol, chloroform, orange oil and control. The canals were scanned using cone-beam computed tomography scanning before and after instrumentation. The chloroform group showed a significantly higher mean transportation value than the orange oil and control groups at the 3 and 5 mm levels (P = 0.011 and P = 0.003, respectively). There was no significant difference among the orange oil, eucalyptol and control groups in terms of canal transportation (P > 0.61). The chloroform led to more canal transportation than the eucalyptol and orange oil during endodontic retreatment. © 2015 Australian Society of Endodontology.

  3. All-transglycolytic synthesis and characterization of sialyl(alpha2-3)galactosyl(beta1-4)xylosyl-p-nitrophenyl(beta1-), an oligosaccharide derivative related to glycosaminoglycan biosynthesis.

    PubMed

    Vetere, A; Ferro, S; Bosco, M; Cescutti, P; Paoletti, S

    1997-08-01

    Beta-D-Xylopyranosides, such as p-nitrophenyl-beta-D-xylopyranoside (Xyl-Np) or 4-methylumbelliferyl-beta-D-xylopyranoside (Xyl-MeUmb), when added to the culture medium of human skin fibroblasts have previously been shown to produce some Np- or MeUmb-oligosaccharides related to the regulation of glycosaminoglycan biosynthesis. Among these oligosaccharide derivatives, we synthesized the trisaccharide derivative NeuAc(alpha2-3)Gal(beta1-4)Xyl-Np(beta1- as a potential inhibitor of human skin fibroblast glycosaminoglycan biosynthesis. This synthesis was achieved by sequential use of transglycosylating activities of Escherichia coli beta-galactosidase and Trypanosoma cruzi trans-sialidase. The structure of the oligosaccharide obtained was determined by HPLC, ion-spray mass spectrometry, and NMR.

  4. Iodine(III) Derivatives as Halogen Bonding Organocatalysts.

    PubMed

    Heinen, Flemming; Engelage, Elric; Dreger, Alexander; Weiss, Robert; Huber, Stefan M

    2018-03-26

    Hypervalent iodine(III) derivatives are known as versatile reagents in organic synthesis, but there is only one previous report on their use as Lewis acidic organocatalysts. Herein, we present first strong indications for the crucial role of halogen bonding in this kind of catalyses. To this end, the solvolysis of benzhydryl chloride and the Diels-Alder reaction of cyclopentadiene with methyl vinyl ketone served as benchmark reactions for halide abstraction and the activation of neutral compounds. Iodolium compounds (cyclic diaryl iodonium species) were used as activators or catalysts, and we were able to markedly reduce or completely switch off their activity by sterically blocking one or two of their electrophilic axes. Compared with previously established bidentate cationic halogen bond donors, the monodentate organoiodine derivatives used herein are at least similarly active (in the Diels-Alder reaction) or even decidedly more active (in benzhydryl chloride solvolysis). © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Optimised deconjugation of androgenic steroid conjugates in bovine urine.

    PubMed

    Pedersen, Mikael; Frandsen, Henrik L; Andersen, Jens H

    2017-04-01

    After administration of steroids to animals the steroids are partially metabolised in the liver and kidney to phase 2 metabolites, i.e., glucuronic acid or sulphate conjugates. During analysis these conjugated metabolites are normally deconjugated enzymatically with aryl sulphatase and glucuronidase resulting in free steroids in the extract. It is well known that some sulphates are not deconjugated using aryl sulphatase; instead, for example, solvolysis can be used for deconjugation of these aliphatic sulphates. The effectiveness of solvolysis on androgenic steroid sulphates was tested with selected aliphatic steroid sulphates (boldenone sulphate, nortestosteron sulphate and testosterone sulphate), and the method was validated for analysis of androgenic steroids in bovine urine using free steroids, steroid sulphates and steroid glucuronides as standards. Glucuronidase and sulphuric acid in ethyl acetate were used for deconjugation and the extract was purified by solid-phase extraction. The final extract was evaporated to dryness, re-dissolved and analysed by LC-MS/MS.

  6. Molecular dynamics simulations of theoretical cellulose nanotube models.

    PubMed

    Uto, Takuya; Kodama, Yuta; Miyata, Tatsuhiko; Yui, Toshifumi

    2018-06-15

    Nanotubes are remarkable nanoscale architectures for a wide range of potential applications. In the present paper, we report a molecular dynamics (MD) study of the theoretical cellulose nanotube (CelNT) models to evaluate their dynamic behavior in solution (either chloroform or benzene). Based on the one-quarter chain staggering relationship, we constructed six CelNT models by combining the two chain polarities (parallel (P) and antiparallel (AP)) and three symmetry operations (helical right (H R ), helical left (H L ), and rotation (R)) to generate a circular arrangement of molecular chains. Among the four models that retained the tubular form (P-H R , P-H L , P-R, and AP-R), the P-R and AP-R models have the lowest steric energies in benzene and chloroform, respectively. The structural features of the CelNT models were characterized in terms of the hydroxymethyl group conformation and intermolecular hydrogen bonds. Solvent structuring more clearly occurred with benzene than chloroform, suggesting that the CelNT models may disperse in benzene. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation.

    PubMed

    Duirk, Stephen E; Bridenstine, David R; Leslie, Daniel C

    2013-02-01

    The transformation of two benzophenone UV filters (Oxybenzone and Dioxybenzone) was examined over the pH range 6-11 in the presence of excess aqueous chlorine. Under these conditions, both UV filters were rapidly transformed by aqueous chlorine just above circumneutral pH while transformation rates were significantly lower near the extremes of the pH range investigated. Observed first-order rate coefficients (k(obs)) were obtained at each pH for aqueous chlorine concentrations ranging from 10 to 75 μM. The k(obs) were used to determine the apparent second-order rate coefficient (k(app)) at each pH investigated as well as determine the reaction order of aqueous chlorine with each UV filter. The reaction of aqueous chlorine with either UV filter was found to be an overall second-order reaction, first-order with respect to each reactant. Assuming elemental stoichiometry described the reaction between aqueous chlorine and each UV filter, models were developed to determine intrinsic rate coefficients (k(int)) from the k(app) as a function of pH for both UV filters. The rate coefficients for the reaction of HOCl with 3-methoxyphenol moieties of oxybenzone (OXY) and dioxybenzone (DiOXY) were k(1,OxY) = 306 ± 81 M⁻¹s⁻¹ and k(1,DiOxY) = 154 ± 76 M⁻¹s⁻¹, respectively. The k(int) for the reaction of aqueous chlorine with the 3-methoxyphenolate forms were orders of magnitude greater than the un-ionized species, k(2,OxY) = 1.03(±0.52) × 10⁶ M⁻¹s⁻¹ and k(2_1,DiOxY) = 4.14(±0.68) × 10⁵ M⁻¹s⁻¹. Also, k(int) for the reaction of aqueous chlorine with the DiOXY ortho-substituted phenolate moiety was k(2_2,DiOxY) = 2.17(±0.30) × 10³ M⁻¹s⁻¹. Finally, chloroform formation potential for OXY and DiOXY was assessed over the pH range 6-10. While chloroform formation decreased as pH increased for OXY, chloroform formation increased as pH increased from 6 to 10 for DiOXY. Ultimate molar yields of chloroform per mole of UV filter were pH dependent; however, chloroform to UV filter molar yields at pH 8 were 0.221 CHCl₃/OXY and 0.212 CHCl₃/DiOXY. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Studies on the metabolism of diethyl 4-nitrophenyl phosphorothionate (parathion) in vitro

    PubMed Central

    Neal, R. A.

    1967-01-01

    1. The metabolism of the phosphorothionate parathion in vitro was examined by using [32P]parathion and microsomes isolated from the livers of various animal species. 2. The major metabolic products of parathion in this system in vitro were identified as diethyl 4-nitrophenyl phosphate (paraoxon), diethyl hydrogen phosphate, diethyl hydrogen phosphorothionate and p-nitrophenol. 3. The reaction leading to the formation of diethyl hydrogen phosphorothionate and p-nitrophenol requires the same cofactors (NADPH and oxygen) required for metabolism of parathion to its active anti-acetylcholinesterase paraoxon. 4. The enzyme activity towards parathion per unit weight of liver is increased some 65–130% by pretreatment of male rats with phenobarbital and 3,4-benzopyrene. 5. The metabolism of parathion is inhibited by incubation in a nitrogen atmosphere and in an atmosphere containing carbon monoxide. Pure oxygen is also inhibitory. These results are discussed in terms of a deficiency of oxygen for maximal activity as well as the lability of some component of the system to oxidation. PMID:4382289

  9. New Unsymmetrically Benzene-Fused Bis (Tetrathiafulvalene): Synthesis, Characterization, Electrochemical Properties and Electrical Conductivity of Their Materials

    PubMed Central

    Abbaz, Tahar; Bendjeddou, Amel; Gouasmia, Abdelkrim; Villemin, Didier; Shirahata, Takashi

    2014-01-01

    The synthesis of new unsymmetrically benzene-fused bis (tetrathiafulvalene) has been carried out by a cross-coupling reaction of the respective 4,5-dialkyl-1,3-dithiole- 2-selenone 6–9 with 2-(4-(p-nitrophenyl)-1,3-dithiole-2-ylidene)-1,3,5,7-tetrathia-s-indacene- 6-one 5 prepared by olefination of 4-(p-nitrophenyl)-1,3-dithiole-2-selenone 3 and 1,3,5,7-tetrathia-s-indacene-2,6-dione 4. The conversion of the nitro moiety 10a–d to amino 11a–d then dibenzylamine 12a–d groups respectively used reduction and alkylation methods. The electron donor ability of these new compounds has been measured by cyclic voltammetry (CV) technique. Charge transfer complexes with tetracyanoquino-dimethane (TCNQ) were prepared by chemical redox reactions. The complexes have been proven to give conducting materials. PMID:24642878

  10. Selective Induction of Tumor Cell Apoptosis by a Novel P450-mediated Reactive Oxygen Species (ROS) Inducer Methyl 3-(4-Nitrophenyl) Propiolate*

    PubMed Central

    Sun, Xiaoxiao; Ai, Midan; Wang, Ying; Shen, Shensi; Gu, Yuan; Jin, Yi; Zhou, Zuyu; Long, Yaqiu; Yu, Qiang

    2013-01-01

    Induction of tumor cell apoptosis has been recognized as a valid anticancer strategy. However, therapeutic selectivity between tumor and normal cells has always been a challenge. Here, we report a novel anti-cancer compound methyl 3-(4-nitrophenyl) propiolate (NPP) preferentially induces apoptosis in tumor cells through P450-catalyzed reactive oxygen species (ROS) production. A compound sensitivity study on multiple cell lines shows that tumor cells with high basal ROS levels, low antioxidant capacities, and p53 mutations are especially sensitive to NPP. Knockdown of p53 sensitized non-transformed cells to NPP-induced cell death. Additionally, by comparing NPP with other ROS inducers, we show that the susceptibility of tumor cells to the ROS-induced cell death is influenced by the mode, amount, duration, and perhaps location of ROS production. Our studies not only discovered a unique anticancer drug candidate but also shed new light on the understanding of ROS generation and function and the potential application of a ROS-promoting strategy in cancer treatment. PMID:23382387

  11. A novel, extremely alkaliphilic and cold-active esterase from Antarctic desert soil.

    PubMed

    Hu, Xiao Ping; Heath, Caroline; Taylor, Mark Paul; Tuffin, Marla; Cowan, Don

    2012-01-01

    A novel, cold-active and highly alkaliphilic esterase was isolated from an Antarctic desert soil metagenomic library by functional screening. The 1,044 bp gene sequence contained several conserved regions common to lipases/esterases, but lacked clear classification based on sequence analysis alone. Moderate (<40%) amino acid sequence similarity to known esterases was apparent (the closest neighbour being a hypothetical protein from Chitinophaga pinensis), despite phylogenetic distance to many of the lipolytic "families". The enzyme functionally demonstrated activity towards shorter chain p-nitrophenyl esters with the optimal activity recorded towards p-nitrophenyl propionate (C3). The enzyme possessed an apparent T(opt) at 20°C and a pH optimum at pH 11. Esterases possessing such extreme alkaliphily are rare and so this enzyme represents an intriguing novel locus in protein sequence space. A metagenomic approach has been shown, in this case, to yield an enzyme with quite different sequential/structural properties to known lipases. It serves as an excellent candidate for analysis of the molecular mechanisms responsible for both cold and alkaline activity and novel structure-function relationships of esterase activity.

  12. Identification and characterization of a novel β-galactosidase from Victivallis vadensis ATCC BAA-548, an anaerobic fecal bacterium.

    PubMed

    Temuujin, Uyangaa; Chi, Won-Jae; Park, Jae-Sun; Chang, Yong-Keun; Song, Jae Yang; Hong, Soon-Kwang

    2012-12-01

    Victivallis vadensis ATCC BAA-548 is a Gram-negative, anaerobic bacterium that was isolated from a human fecal sample. From the genomic sequence of V. vadensis, one gene was found to encode agarase; however, its enzymatic properties have never been characterized. The gene encoding the putative agarase (NCBI reference number ZP_01923925) was cloned by PCR and expressed in E. coli Rosetta-gami by using the inducible T(7) promoter of pET28a(+). The expressed protein with a 6×His tag at the N-terminus was named His6-VadG925 and purified as a soluble protein by Ni(2+)-NTA agarose affinity column chromatography. The purification of the enzyme was 26.8-fold, with a yield of 73.2% and a specific activity of 1.02 U/mg of protein. The purified His6-VadG925 produced a single band with an approximate MW of 155 kDa, which is consistent with the calculated value (154,660 Da) including the 6×His tag. Although VadG925 and many of its homologs were annotated as agarases, it did not hydrolyze agarose. Instead, purified His(6)-VadG925 hydrolyzed an artificial chromogenic substrate, p-nitrophenyl-β-D-galactopyranoside, but not p-nitrophenyl-α-D-galactopyranoside. The optimum pH and temperature for this β-galactosidase activity were pH 7.0 and 40°C, respectively. The K(m) and V(max) of His6-VadG925 towards p-nitrophenyl-β-D-galactopyranoside were 1.69 mg/ml (0.0056 M) and 30.3 U/mg, respectively. His6-VadG925 efficiently hydrolyzed lactose into glucose and galactose, which was demonstrated by TLC and mass spectroscopy. These results clearly demonstrated that VadG925 is a novel β-galactosidase that can hydrolyze lactose, which is unusual because of its low homology to validated β-galactosidases.

  13. Antihyperlipidemic Effect of Different Fractions Obtained from Teucrium polium Hydroalcoholic Extract in Rats.

    PubMed

    Safaeian, Leila; Ghanadian, Mustafa; Shafiee-Moghadam, Zahra

    2018-01-01

    This study was aimed to screen the antihyperlipidemic effect of different fractions of Teucrium polium to obtain the most efficient herbal fraction for isolation of bioactive constituents responsible for hypolipidemic activity. Chloroform, butanol, and aqueous fractions were obtained from hydroalcoholic extract of T. polium aerial parts using partitioning process. To induce hyperlipidemia, dexamethasone (Dex) was injected 10 mg/kg/day (s.c.) for 8 days. In the test groups, animals received 50, 100 and 150 mg/kg of T. polium hydroalcoholic extract and different fractions orally simultaneously with Dex. Serum lipid profile and hepatic marker enzymes were evaluated using biochemical kits. All treatments, especially chloroform and aqueous fractions, reversed serum lipid markers in hyperlipidemic rats. Maximum reduction in triglyceride (60.2%, P < 0.001) and maximum elevation in high-density lipoprotein (HDL) (35.0%, P < 0.01) was observed for chloroform fraction. Maximum cholesterol-lowering effect (29.0%, P < 0.001) and maximum reduction in low-density lipoprotein were found for hydroalcoholic extract (72.9%, P < 0.001). Aqueous fraction improved all lipid markers at the highest dose. Butanol fraction decreased triglyceride at the lowest dose (43.9%, P < 0.001) and increased HDL (33%, P < 0.05) at the highest dose. There was a significant increase in alanine aminotransferase and aspartate aminotransferase levels in all tested groups compared to normal group ( P < 0.001). This study showed strong antihyperlipidemic effect of various fractions derived from hydroalcoholic extract of T. polium . Chloroform and aqueous fractions may be worthy candidates for isolation of bioactive hypolipidemic constituents. However, possible hepatotoxicity should be considered for clinical application.

  14. A novel xylan degrading β-D-xylosidase: purification and biochemical characterization.

    PubMed

    Michelin, Michele; Peixoto-Nogueira, Simone C; Silva, Tony M; Jorge, João A; Terenzi, Héctor F; Teixeira, José A; Polizeli, Maria de Lourdes T M

    2012-11-01

    Aspergillus ochraceus, a thermotolerant fungus isolated in Brazil from decomposing materials, produced an extracellular β-xylosidase that was purified using DEAE-cellulose ion exchange chromatography, Sephadex G-100 and Biogel P-60 gel filtration. β-xylosidase is a glycoprotein (39 % carbohydrate content) and has a molecular mass of 137 kDa by SDS-PAGE, with optimal temperature and pH at 70 °C and 3.0-5.5, respectively. β-xylosidase was stable in acidic pH (3.0-6.0) and 70 °C for 1 h. The enzyme was activated by 5 mM MnCl₂ (28 %) and MgCl₂ (20 %) salts. The β-xylosidase produced by A. ochraceus preferentially hydrolyzed p-nitrophenyl-β-D-xylopyranoside, exhibiting apparent K(m) and V(max) values of 0.66 mM and 39 U (mg protein)⁻¹ respectively, and to a lesser extent p-nitrophenyl-β-D-glucopyranoside. The enzyme was able to hydrolyze xylan from different sources, suggesting a novel β-D-xylosidase that degrades xylan. HPLC analysis revealed xylans of different compositions which allowed explaining the differences in specificity observed by β-xylosidase. TLC confirmed the capacity of the enzyme in hydrolyzing xylan and larger xylo-oligosaccharides, as xylopentaose.

  15. Chemoselective amide formation using O-(4-nitrophenyl)hydroxylamines and pyruvic acid derivatives.

    PubMed

    Kumar, Sonali; Sharma, Rashi; Garcia, Megan; Kamel, Joseph; McCarthy, Caroline; Muth, Aaron; Phanstiel, Otto

    2012-12-07

    A series of O-(4-nitrophenyl)hydroxylamines were synthesized from their respective oximes using a pulsed addition of excess NaBH(3)CN at pH 3 in 65-75% yield. Steric hindrance near the oxime functional group played a key role in both the ease by which the oxime could be reduced and the subsequent reactivity of the respective hydroxylamine. Reaction of the respective hydroxylamines with pyruvic acid derivatives generated the desired amides in good yields. A comparison of phenethylamine systems bearing different leaving groups revealed significant differences in the rates of these systems and suggested that the leaving group ability of the N-OR substituent plays an important role in determining their reactivity with pyruvic acid. Competition experiments (in 68% DMSO/phosphate buffered saline) using 1 equiv of N-phenethyl-O-(4-nitrophenyl)hydroxylamine and 2 equiv of pyruvic acid in the presence of other nucleophiles such as glycine, cysteine, phenol, hexanoic acid, and lysine demonstrated that significant chemoselectivity is present in this reaction. The results suggest that this chemoselective reaction can occur in the presence of excess α-amino acids, phenols, acids, thiols, and amines.

  16. 40 CFR 721.10078 - Butanamide, 2-[(2-methoxy-4-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl)substituted...-nitrophenyl)azo]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl)substituted...]-N-(2-methoxyphenyl)-3-oxo-, 4-[(17-substituted-3,6,9,12,15-pentaazaheptadec-1-yl)substituted]phenyl...

  17. Detection of wood cell wall porosity using small carbohydrate molecules and confocal fluorescence microscopy.

    PubMed

    Donaldson, L A; Kroese, H W; Hill, S J; Franich, R A

    2015-09-01

    A novel approach to nanoscale detection of cell wall porosity using confocal fluorescence microscopy is described. Infiltration of cell walls with a range of nitrophenyl-substituted carbohydrates of different molecular weights was assessed by measuring changes in the intensity of lignin fluorescence, in response to the quenching effect of the 4-nitrophenyl group. The following carbohydrates were used in order of increasing molecular weight; 4-nitrophenyl β-D-glucopyrano-side (monosaccharide), 4-nitrophenyl β-D-lactopyranoside (disaccharide), 2-chloro-4-nitrophenyl β-D-maltotrioside (trisaccharide), and 4-nitrophenyl α-D-maltopentaoside (pentasaccharide). This technique was used to compare cell wall porosity in wood which had been dewatered to 40% moisture content using supercritical CO2, where cell walls remain fully hydrated, with kiln dried wood equilibrated to 12% moisture content. Infiltration of cell walls as measured by fluorescence quenching, was found to decrease with increasing molecular weight, with the pentasaccharide being significantly excluded compared to the monosaccharide. Porosity experiments were performed on blocks and sections to assess differences in cell wall accessibility. Dewatered and kiln dried wood infiltrated as blocks showed similar results, but greater infiltration was achieved by using sections, indicating that not all pores were easily accessible by infiltration from the lumen surface. In wood blocks infiltrated with 4-nitrophenyl α-D-maltopentaoside, quenching of the secondary wall was quite variable, especially in kiln dried wood, indicating limited connectivity of pores accessible from the lumen surface. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  18. Correlation of the rates of solvolysis of α-bromoisobutyrophenone using both simple and extended forms of the Grunwald-Winstein equation and the application of correlation analysis to related studies.

    PubMed

    Kevill, Dennis Neil; Kim, Chang-Bae; D'Souza, Malcolm John

    2018-03-01

    A Grunwald-Winstein treatment of the specific rates of solvolysis of α-bromoisobutyrophenone in 100% methanol and in several aqueous ethanol, methanol, acetone, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) mixtures gives a good logarithmic correlation against a linear combination of N T (solvent nucleophilicity) and Y Br (solvent ionizing power) values. The l and m sensitivity values are compared to those previously reported for α-bromoacetophenone and to those obtained from parallel treatments of literature specific rate values for the solvolyses of several tertiary mesylates containing a C(=O)R group attached at the α-carbon. Kinetic data obtained earlier by Pasto and Sevenair for the solvolyses of the same substrate in 75% aqueous ethanol (by weight) in the presence of silver perchlorate and perchloric acid are analyzed using multiple regression analysis.

  19. Novel Lipolytic Enzymes Identified from Metagenomic Library of Deep-Sea Sediment

    PubMed Central

    Jeon, Jeong Ho; Kim, Jun Tae; Lee, Hyun Sook; Kim, Sang-Jin; Kang, Sung Gyun; Choi, Sang Ho; Lee, Jung-Hyun

    2011-01-01

    Metagenomic library was constructed from a deep-sea sediment sample and screened for lipolytic activity. Open-reading frames of six positive clones showed only 33–58% amino acid identities to the known proteins. One of them was assigned to a new group while others were grouped into Families I and V or EstD Family. By employing a combination of approaches such as removing the signal sequence, coexpression of chaperone genes, and low temperature induction, we obtained five soluble recombinant proteins in Escherichia coli. The purified enzymes had optimum temperatures of 30–35°C and the cold-activity property. Among them, one enzyme showed lipase activity by preferentially hydrolyzing p-nitrophenyl palmitate and p-nitrophenyl stearate and high salt resistance with up to 4 M NaCl. Our research demonstrates the feasibility of developing novel lipolytic enzymes from marine environments by the combination of functional metagenomic approach and protein expression technology. PMID:21845199

  20. Synthesis, characterization and biological activities of semicarbazones and their copper complexes.

    PubMed

    Venkatachalam, Taracad K; Bernhardt, Paul V; Noble, Chris J; Fletcher, Nicholas; Pierens, Gregory K; Thurecht, Kris J; Reutens, David C

    2016-09-01

    Substituted semicarbazones/thiosemicarbazones and their copper complexes have been prepared and several single crystal structures examined. The copper complexes of these semicarbazone/thiosemicarbazones were prepared and several crystal structures examined. The single crystal X-ray structure of the pyridyl-substituted semicarbazone showed two types of copper complexes, a monomer and a dimer. We also found that the p-nitrophenyl semicarbazone formed a conventional 'magic lantern' acetate-bridged dimer. Electron Paramagnetic Resonance (EPR) of several of the copper complexes was consistent with the results of single crystal X-ray crystallography. The EPR spectra of the p-nitrophenyl semicarbazone copper complex in dimethylsulfoxide (DMSO) showed the presence of two species, confirming the structural information. Since thiosemicarbazones and semicarbazones have been reported to exhibit anticancer activity, we examined the anticancer activity of several of the derivatives reported in the present study and interestingly only the thiosemicarbazone showed activity while the semicarbazones were not active indicating that introduction of sulphur atom alters the biological profile of these thiosemicarbazones. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Investigation on the inclusion interaction of 4-sulfonatocalix[n]arenes with 1-(4-nitrophenyl)piperazine

    NASA Astrophysics Data System (ADS)

    Zhang, Yongbin; Chao, Jianbin; Zhao, Shuhui; Xu, Penghao; Wang, Hongfang; Guo, Zhiqiang; Liu, Diansheng

    2014-11-01

    The inclusion behaviors of 4-Sulfonatocalix[n]arenes (SCXn) (n = 4, 6, 8) with 1-(4-nitrophenyl)piperazine (NPP) were investigated by UV spectroscopy and fluorescence spectroscopy at different pH values (pH = 3.05, 6.50, 8.40). The UV absorption and fluorescence intensity of NPP remarkably increased in presence of SCXn revealing formation of the inclusion complexes between NPP and SCXn. Moreover, the formation constants (K) of inclusion complexes were also determined by the non-linear fitting method, and the obtained data showed that the formation constants decreased gradually with the increasing of the pH value. When the pH value was 3.05, the formation constant of NPP with SCX8 reached a maximum of 1.7 × 107 L mol-1. The stoichiometric ratio was verified to be 1:1 by the continuous variation method. Meanwhile FT-IR and DSC analysis also indicated that NPP could form the inclusion complex with SCXn. In order to explore the inclusion mechanism of NPP with SCXn, 1H NMR and molecular modeling studies were carried out and experimental results showed that the part of benzene ring of NPP penetrated into the hydrophobic cavity of SCXn.

  2. Overexpression, purification, and characterization of SHPTP1, a Src homology 2-containing protein-tyrosine-phosphatase.

    PubMed Central

    Pei, D; Neel, B G; Walsh, C T

    1993-01-01

    A protein-tyrosine-phosphatase (PTPase; EC 3.1.3.48) containing two Src homology 2 (SH2) domains, SHPTP1, was previously identified in hematopoietic and epithelial cells. By placing the coding sequence of the PTPase behind a bacteriophage T7 promoter, we have overexpressed both the full-length enzyme and a truncated PTPase domain in Escherichia coli. In each case, the soluble enzyme was expressed at levels of 3-4% of total soluble E. coli protein. The recombinant proteins had molecular weights of 63,000 and 45,000 for the full-length protein and the truncated PTPase domain, respectively, as determined by SDS/PAGE. The recombinant enzymes dephosphorylated p-nitrophenyl phosphate, phosphotyrosine, and phosphotyrosyl peptides but not phosphoserine, phosphothreonine, or phosphoseryl peptides. The enzymes showed a strong dependence on pH and ionic strength for their activity, with pH optima of 5.5 and 6.3 for the full-length enzyme and the catalytic domain, respectively, and an optimal NaCl concentration of 250-300 mM. The recombinant PTPases had high Km values for p-nitrophenyl phosphate and exhibited non-Michaelis-Menten kinetics for phosphotyrosyl peptides. Images PMID:8430079

  3. Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata.

    PubMed

    Banerjee, Malabika; Moulick, Soumitra; Bhattacharya, Kunal Kumar; Parai, Debaprasad; Chattopadhyay, Subrata; Mukherjee, Samir Kumar

    2017-12-01

    Quorum-sensing (QS) is known to play an essential role in regulation of virulence factors and toxins during Pseudomonas aeruginosa infection which may frequently cause antibiotic resistance and hostile outcomes of inflammatory injury. Therefore, it is an urgent need to search for a novel agent with low risk of resistance development that can target QS and inflammatory damage prevention as well. Andrographis paniculata, a herbaceous plant under the family Acanthaceae, native to Asian countries and also cultivated in Scandinavia and some parts of Europe, has a strong traditional usage with its known antibacterial, anti-inflammatory, antipyretic, antiviral and antioxidant properties. In this study, three different solvent extracts (viz., chloroform, methanol and aqueous) of A. paniculata were examined for their anti-QS and anti-inflammatory activities. Study was carried out to assess the effect on some selected QS-regulatory genes at transcriptional level using Real Time-PCR. In addition, ability to attenuate MAPK pathways upon P. aeruginosa infection was performed to check its potential anti-inflammatory activity. Chloroform and methanol extracts showed significant reduction (p < 0.05) of the QS-controlled extracellular virulence factors in P. aeruginosa including the expression of pyocyanin, elastase, total protease, rhamnolipid and hemolysin without affecting bacterial viability. They also significantly (p < 0.05) reduced swarming motility and biofilm formation of P. aeruginosa. The chloroform extract, which was found to be more effective, decreased expression of lasI, lasR, rhlI and rhlR by 61%, 75%, 41%, and 44%, respectively. Moreover, chloroform extract decreased activation of p-p38 and p-ERK1/2 expression levels in MAPK signal pathways in P. aeruginosa infected macrophage cells. As the present study demonstrates that A. paniculata extracts inhibit QS in P. aeruginosa and exhibit anti-inflammatory activities, therefore it represents itself as a prospective therapeutic agent against P. aeruginosa infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Fabrication of biodegradable micelles with reduction-triggered release of 6-mercaptopurine profile based on disulfide-linked graft copolymer conjugate.

    PubMed

    Zhang, Xuzhu; Du, Fang; Huang, Jin; Lu, Wei; Liu, Shiyuan; Yu, Jiahui

    2012-12-01

    This research is aimed to develop a biodegradable micelle delivery system with sheddable poly (ethylene glycol) shell to achieve the reduction-triggered intracellular sustained release of 6-mercaptopurine (6-MP) and decreased toxicity. Firstly, the amino-disulfide linked poly (ethylene glycol) monomethyl ether (mPEG-SS-NH(2)) was synthesized by the amidation reaction between cystamine and active ester of mPEG and p-nitrophenyl chloroformate (p-NPC) (mPEG-NPC). And then, the five-member rings in poly (l-succinimide) (PSI) were successively opened by mPEG-SS-NH(2) and 2-(pyridyldithio)-ethylamine (PDA) to produce the graft copolymer of mPEG-SS-NH-graft-PAsp-PDA. To avoid the drug initial burst, 6-MP was covalently conjugated with mPEG-SS-NH-graft-PAsp-PDA by thoil-disulfide exchange reaction to give the resultant product mPEG-SS-NH-graft-PAsp-MP. The product was found to form spherical micelles in aqueous media because of its amphiphilic nature with average particle size of 160 nm measured by dynamic light scattering (DLS). It was found that the mPEG-SS-NH-graft-PAsp-MP micelles, though stable in phosphate buffer solution (PBS), were prone to aggregation in the presence of dithiothreitol (DTT). The in vitro drug release studies revealed the release of 6-MP were distinct from the conventional micelles whose drugs loaded by physical encapsulation. Sustained release profile of 6-MP over 85 h was found in the presence of DTT (40 mM) simulating the intracellular condition while minimal drug release was observed within 24h at the level of DTT corresponding to extracellular environment. Remarkably, the cell viability results showed there was essential decrease of cytotoxicity to HL-60 cell line compared to free 6-MP. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Transesterification of plant oils using Staphylococcus haemolyticus L62 lipase displayed on Escherichia coli cell surface using the OmpA signal peptide and EstAβ8 anchoring motif.

    PubMed

    Jo, Jin Chul; Kim, Soon-Ja; Kim, Hyung Kwoun

    2014-12-01

    Staphylococcus haemolyticus L62 (SHL62) lipase was displayed on the outer membrane of Escherichia coli using the OmpA signal peptide and the autotransporter EstAβ8 protein. Localization of SHL62 lipase on the outer membrane of E. coli was confirmed using immunofluorescence microscopy and flow cytometry analysis. Lipase activity of the displayed SHL62 lipase was also measured using spectrophotometry and pH titration. SHL62 lipase activity of whole cells reached 2.0U/ml culture (OD600nm of 10) when it was measured by the p-nitrophenyl caprylate assay after being induced with 1mM IPTG for 24h. The optimum temperature and pH for the lipase was 45°C and 10, respectively. Furthermore, it maintained more than 90% of maximum lipase activity at up to 50°C and in a pH range of 5-9. The hydrolytic activity assay conduted with various substrates confirmed that p-nitrophenyl caprylate and corn oil were preferred substrates among various synthetic and natural substrates, respectively. The displayed SHL62 lipase produced fatty acid esters from various alcohols and plant oils through transesterification. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: Overexpression of the gene in Escherichia coli and characterization of the gene product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luethi, E.; Jasmat, N.B.; Bergquist, P.L.

    A xylanase encoded by the xynA gene of the extreme thermophile Caldocellum saccharolyticum was overexpressed in Escherichia coli by cloning the gene downstream from the temperature-inducible {lambda} P{sub R} and P{sub L} promoters of the expression vector pJLA602. Induction of up to 55 times was obtained by growing the cells at 42{degrees}C, and the xylanase made up of 20% of the whole-cell protein content. The enzyme was located in the cytoplasmic fraction in E.coli. The temperature and pH optima were determined to be 70{degrees}C and pH 5.5 to 6, respectively. The xylanase was stable for at least 72 h ifmore » incubated at 60{degrees}C, with half-lives of 8 to 9 h at 70{degrees}C and 2 to 3 min at 80{degrees}C. The enzyme had high activity on xylan and ortho-nitrophenyl {beta}-D-xylopyranoside and some activity on carboxymethyl cellulose and para-nitrophenyl {beta}-D-cellobioside. The gene was probably expressed from its own promoter in E. coli. Translation of the xylanase overproduced in E. coli seemed to initiate at a GTG codon and not at an ATG codon as previously determined.« less

  7. Substrate-Dependence of Competitive Nucleotide Pyrophosphatase/Phosphodiesterase1 (NPP1) Inhibitors

    PubMed Central

    Lee, Sang-Yong; Sarkar, Soumya; Bhattarai, Sanjay; Namasivayam, Vigneshwaran; De Jonghe, Steven; Stephan, Holger; Herdewijn, Piet; El-Tayeb, Ali; Müller, Christa E.

    2017-01-01

    Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5′-thymidine monophosphate (p-Nph-5′-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5′-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5′-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5′-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5′-adenosine monophosphate (p-Nph-5′-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP. PMID:28261095

  8. Genotoxicity of drinking water disinfection by-products (bromoform and chloroform) by using both Allium anaphase-telophase and comet tests.

    PubMed

    Khallef, Messaouda; Liman, Recep; Konuk, Muhsin; Ciğerci, İbrahim Hakkı; Benouareth, Djameleddine; Tabet, Mouna; Abda, Ahlem

    2015-03-01

    Genotoxic effects of bromoform and chloroform, disinfection by-products of the chlorination of drinking water, were examined by using mitotic index (MI), mitotic phase, chromosome aberrations (CAs) and comet assay on root meristematic cells of Allium cepa. Different concentrations of bromoform (25, 50, 75 and 100 μg/mL) and chloroform (25, 50, 100 and 200 μg/mL) were introduced to onion tuber roots. Distilled water was used as a negative control and methyl methansulfonate (MMS-10 μg/mL) as positive control. All obtained data were subjected to statistical analyses by using SPSS 15.0 for Windows software. For comparison purposes, Duncan multiple range tests by using one-way analysis of variance were employed and p < 0.05 was accepted as significant value. Exposure of both chemicals (except 25 μg/mL applications of bromoform) significantly decreased MI. Bromoform and chloroform (except 25 μg/mL applications) increased total CAs in Allium anaphase-telophase test. A significant increase in DNA damage was also observed at all concentrations of both bromoform and chloroform examined by comet assay. The damages were higher than that of positive control especially at 75-100 μg/mL for bromoform and 100-200 μg/mL for chloroform.

  9. Biofiltration of Chloroform in a Trickle Bed Air Biofilter Under ...

    EPA Pesticide Factsheets

    In this paper, the application of biofiltration is investigated for controlled removal of gas phase chloroform through cometabolic degradation with ethanol. A trickle bed air biofilter (TBAB) operated under acidic pH 4 is subjected to aerobic biodegradation of chloroform and ethanol. The TBAB is composed of pelleted diatomaceous earth filter media inoculated with filamentous fungi species, which served as the principle biodegrading microorganism. The removal efficiencies of 5 ppmv of chloroform mixed with different ratios of ethanol as cometabolite (25, 50, 100, 150, and 200 ppmv) ranged between 69.9 and 80.9%. The removal efficiency, reaction rate kinetics, and the elimination capacity increased proportionately with an increase in the cometabolite concentration. The carbon recovery from the TBAB amounted to 69.6% of the total carbon input. It is postulated that the remaining carbon contributed to excess biomass yield within the system. Biomass control strategies such as starvation and stagnation were employed at different phases of the experiment. The chloroform removal kinetics provided a maximum reaction rate constant of 0.0018 s−1. The highest ratio of chemical oxygen demand (COD)removal/nitrogenutilization was observed at 14.5. This study provides significant evidence that the biodegradation of a highly chlorinated methane can be favored by cometabolism in a fungi-based TBAB. Chloroform is volatile hazardous chemical emitted from publicly owned treatment

  10. In Vitro Screening of Anti-lice Activity of Pongamia pinnata Leaves

    PubMed Central

    Radhamani, Suraj; Gopinath, Rejitha; Kalusalingam, Anandarajagopal; Vimala, Anita Gnana Kumari Anbumani; Husain, Hj Azman

    2009-01-01

    Growing patterns of pediculocidal drug resistance towards head louse laid the foundation for research in exploring novel anti-lice agents from medicinal plants. In the present study, various extracts of Pongamia pinnata leaves were tested against the head louse Pediculus humanus capitis. A filter paper diffusion method was conducted for determining the potential pediculocidal and ovicidal activity of chloroform, petroleum ether, methanol, and water extracts of P. pinnata leaves. The findings revealed that petroleum ether extracts possess excellent anti-lice activity with values ranging between 50.3% and 100% where as chloroform and methanol extracts showed moderate pediculocidal effects. The chloroform and methanol extracts were also successful in inhibiting nymph emergence and the petroleum ether extract was the most effective with a complete inhibition of emergence. Water extract was devoid of both pediculocidal and ovicidal activities. All the results were well comparable with benzoyl benzoate (25% w/v). These results showed the prospect of using P. pinnata leave extracts against P. humanus capitis in difficult situations of emergence of resistance to synthetic anti-lice agents. PMID:19967085

  11. (η(6)-Benzene)(carbonato-κ(2) O,O')[di-cyclohex-yl(naphthalen-1-ylmeth-yl)phosphane-κP]ruthenium(II) chloro-form tris-olvate.

    PubMed

    Gowrisankar, Saravanan; Neumann, Helfried; Spannenberg, Anke; Beller, Matthias

    2014-07-01

    The title compound, [Ru(CO3)(η(6)-C6H6){(C6H11)2P(CH2C10H7)}]·3CHCl3, was synthesized by carbonation of [RuCl2(η(6)-C6H6){(C6H11)2P(CH2C10H7)}] with NaHCO3 in methanol at room temperature. The Ru(II) atom is surrounded by a benzene ligand, a chelating carbonate group and a phosphane ligand in a piano-stool configuration. The crystal packing is consolidated by C-H⋯O and C-H⋯Cl hydrogen-bonding inter-actions between adjacent metal complexes and between the complexes and the solvent mol-ecules. The asymmetric unit contains one metal complex and three chloro-form solvent mol-ecules of which only one was modelled. The estimated diffraction contributions of the other two strongly disordered chloro-form solvent mol-ecules were substracted from the observed diffraction data using the SQUEEZE procedure in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].

  12. Onset of hydrogen bonded collective network of water in 1,4-dioxane.

    PubMed

    Luong, Trung Quan; Verma, Pramod Kumar; Mitra, Rajib Kumar; Havenith, Martina

    2011-12-22

    We have studied the evolution of water hydrogen bonded collective network dynamics in mixtures of 1,4-dioxane (Dx) as the mole fraction of water (X(w)) increases from 0.005 to 0.54. The inter- and intramolecular vibrations of water have been observed using terahertz time domain spectroscopy (THz-TDS) in the frequency range 0.4-1.4 THz (13-47 cm(-1)) and Fourier transform infrared (FTIR) spectroscopy in the far-infrared (30-650 cm(-1)) and mid-infrared (3000-3700 cm(-1)) regions. These results have been correlated with the reactivity of water in these mixtures as determined by kinetic studies of the solvolysis reaction of benzoyl chloride (BzCl). Our studies show an onset of intermolecular hydrogen bonded water network dynamics beyond X(w) ≥ 0.1. At the same concentration, we observe a rapid increase of the rate constant of solvolysis of BzCl in water-Dx mixtures. Our results establish a correlation between the onset of collective hydrogen bonded network with the solvation dynamics and the activity of clustered water.

  13. Lactosylamidine-based affinity purification for cellulolytic enzymes EG I and CBH I from Hypocrea jecorina and their properties.

    PubMed

    Ogata, Makoto; Kameshima, Yumiko; Hattori, Takeshi; Michishita, Kousuke; Suzuki, Tomohiro; Kawagishi, Hirokazu; Totani, Kazuhide; Hiratake, Jun; Usui, Taichi

    2010-12-10

    Selective adsorption and separation of β-glucosidase, endo-acting endo-β-(1→4)-glucanase I (EG I), and exo-acting cellobiohydrolase I (CBH I) were achieved by affinity chromatography with β-lactosylamidine as ligand. A crude cellulase preparation from Hypocrea jecorina served as the source of enzyme. When crude cellulase was applied to the lactosylamidine-based affinity column, β-glucosidase appeared in the unbound fraction. By contrast, EG I and CBH I were retained on the column and then separated from each other by appropriately adjusting the elution conditions. The relative affinities of the enzymes, based on their column elution conditions, were strongly dependent on the ligand. The highly purified EG I and CBH I, obtained by affinity chromatography, were further purified by Mono P and DEAE chromatography, respectively. EG I and CBH I cleave only at the phenolic bond in p-nitrophenyl glycosides with lactose and N-acetyllactosamine (LacNAc). By contrast, both scissile bonds in p-nitrophenyl glycosides with cellobiose were subject to hydrolysis although with important differences in their kinetic parameters. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. A molecular approach to self-supported cobalt-substituted ZnO materials as remarkably stable electrocatalysts for water oxidation.

    PubMed

    Pfrommer, Johannes; Lublow, Michael; Azarpira, Anahita; Göbel, Caren; Lücke, Marcel; Steigert, Alexander; Pogrzeba, Martin; Menezes, Prashanth W; Fischer, Anna; Schedel-Niedrig, Thomas; Driess, Matthias

    2014-05-12

    In regard to earth-abundant cobalt water oxidation catalysts, very recent findings show the reorganization of the materials to amorphous active phases under catalytic conditions. To further understand this concept, a unique cobalt-substituted crystalline zinc oxide (Co:ZnO) precatalyst has been synthesized by low-temperature solvolysis of molecular heterobimetallic Co(4-x)Zn(x) O4 (x = 1-3) precursors in benzylamine. Its electrophoretic deposition onto fluorinated tin oxide electrodes leads after oxidative conditioning to an amorphous self-supported water-oxidation electrocatalyst, which was observed by HR-TEM on FIB lamellas of the EPD layers. The Co-rich hydroxide-oxidic electrocatalyst performs at very low overpotentials (512 mV at pH 7; 330 mV at pH 12), while chronoamperometry shows a stable catalytic current over several hours. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of olive oil mill waste amendment on fate of oxyfluorfen in Southern Spain soils

    USDA-ARS?s Scientific Manuscript database

    The influence of olive oil mill waste (OOMW) amendment on soil processes affecting the herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl-3-ethoxy-4-nitrophenyl ether) in two soils (P2 and SJ) was assessed under laboratory conditions. The soils used were from two diverse locations in Guadalqui...

  16. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    ERIC Educational Resources Information Center

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  17. EFFECTS ON THE FETAL RAT INTESTINE OF MATERNAL MALNUTRITION AND EXPOSURE TO NITROFEN (2,4-DICHLOROPHENYL-P-NITROPHENYL ETHER)

    EPA Science Inventory

    The effects of maternal protein-energy malnutrition and exposure to nitrofen on selected aspects of intestinal morphology and function were studied in the fetal rat. Pregnant rats were fed, throughout gestation, diets containing 24% or 6% casein as the sole source of protein. Red...

  18. Extracts of Actinidia arguta stems inhibited LPS-induced inflammatory responses through nuclear factor-κB pathway in Raw 264.7 cells.

    PubMed

    Kim, Hae-Young; Hwang, Kwang Woo; Park, So-Young

    2014-11-01

    The inflammatory response protects our body from bacteria and tumors, but chronic inflammation driven by the persistent activation of macrophages can lead to serious adverse effects including gastrointestinal problems, cardiac disorders, and a sore throat. Part of the ongoing research is focused on searching for antiinflammatory compounds from natural sources, so we investigated the effects of hardy kiwis (Actinidia arguta, Lauraceae) stems on inflammation induced by lipopolysaccharide (LPS) in Raw 264.7 cells to test the hypothesis that antiinflammatory effects of A. arguta stems were exerted through the inhibition of the nuclear factor (NF)-κB pathway. The methanol extract of A. arguta (20 μg/mL) stems lowered nitric oxide production in LPS-stimulated Raw 264.7 cells by 40%. It was then partitioned with hexane, chloroform, ethyl acetate, butanol, and water based on the polarity of each compound. Among the 5 layers, the chloroform layer had the greatest inhibitory effect on LPS-stimulated nitric oxide production and inducible nitric oxide synthase mRNA expression in Raw 264.7 cells. However, the levels of prostaglandin E2 and cyclooxygease 2 were not altered. On the other hand, treatment of cells with the chloroform layer of A. arguta before LPS stimulation also reduced them RNA expression of proinflammatory cytokines including tumor necrosis factor α and interleukin 1β. Nuclear translocation of NF-κB p50 and p65 subunits induced by LPS was also inhibited by treatment with the chloroform layer of A. arguta. This was accompanied with the reduced phosphorylation of mitogen-activated protein kinases including extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal protein kinase, and p38. Taken together, these results suggest that chloroform layer of A. arguta exerted antiinflammatory effects by the inhibition of mitogen-activated protein kinase phosphorylation and nuclear translocation of NF-κB.

  19. Absorption spectra of PTCDI: A combined UV-Vis and TD-DFT study

    NASA Astrophysics Data System (ADS)

    Oltean, Mircea; Calborean, Adrian; Mile, George; Vidrighin, Mihai; Iosin, Monica; Leopold, Loredana; Maniu, Dana; Leopold, Nicolae; Chiş, Vasile

    2012-11-01

    Absorption spectra of PTCDI (3,4,9,10-perylene-tetracarboxylic-diimide) have been investigated in chloroform, N,N'-dimethylformamide (DMF) and dimethylsulfoxide (DMSO). While no signature of assembled PTCDI molecules is observed in chloroform solution, distinct bands assigned to their aggregation have been identified in DMF and DMSO solutions. PTCDI monomers show very similar absorption patterns in chloroform and DMSO solutions. Experimental data, including the vibronic structure of the absorption spectra were explained based on the Franck-Condon approximation and quantum chemical results obtained at PBE0-DCP/6-31+G(d,p) level of theory. Geometry optimization of the first excited state leads to a nice agreement between the calculated adiabatic transition energies and experimental data.

  20. Study of the Kinetics of an S[subscript N]1 Reaction by Conductivity Measurement

    ERIC Educational Resources Information Center

    Marzluff, Elaine M.; Crawford, Mary A.; Reynolds, Helen

    2011-01-01

    Substitution reactions, a central part of organic chemistry, provide a model system in physical chemistry to study reaction rates and mechanisms. Here, the use of inexpensive and readily available commercial conductivity probes coupled with computer data acquisition for the study of the temperature and solvent dependence of the solvolysis of…

  1. Organic Lecture Demonstrations of Common-Ion Effect, Ionizing Power of Solvents, and First-Order Reaction Kinetics.

    ERIC Educational Resources Information Center

    Danen, Wayne C.; Blecha, M. Therese, Sr.

    1982-01-01

    Background information and experimental procedures are provided for three lecture-demonstrations (involving hydrolysis of tetra-butyl chloride) illustrating: (1) common-ion or mass law effect; (2) effect of changing ionizing power of a solvent on a solvolysis reaction; and (3) collecting/plotting data to illustrate a first-order reaction.…

  2. Phosphatase synthesis in Klebsiella (Aerobacter) aerogenes growing in continuous culture

    PubMed Central

    Bolton, P. G.; Dean, A. C. R.

    1972-01-01

    1. Phosphatase synthesis was studied in Klebsiella aerogenes grown in a wide range of continuous-culture systems. 2. Maximum acid phosphatase synthesis was associated with nutrient-limited, particularly carbohydrate-limited, growth at a relatively low rate, glucose-limited cells exhibiting the highest activity. Compared with glucose as the carbon-limiting growth material, other sugars not only altered the activity but also changed the pH–activity profile of the enzyme(s). 3. The affinity of the acid phosphatase in glucose-limited cells towards p-nitrophenyl phosphate (Km 0.25–0.43mm) was similar to that of staphylococcal acid phosphatase but was ten times greater than that of the Escherichia coli enzyme. 4. PO43−-limitation derepressed alkaline phosphatase synthesis but the amounts of activity were largely independent of the carbon source used for growth. 5. The enzymes were further differentiated by the effect of adding inhibitors (F−, PO43−) and sugars to the reaction mixture during the assays. In particular, it was shown that adding glucose, but not other sugars, stimulated the rate of hydrolysis of p-nitrophenyl phosphate by the acid phosphatase in carbohydrate-limited cells at low pH values (<4.6) but inhibited it at high pH values (>4.6). Alkaline phosphatase activity was unaffected. 6. The function of phosphatases in general is discussed and possible mechanisms for the glucose effect are outlined. PMID:4342213

  3. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry.

    PubMed

    Juárez, J; Galaz, J G; Machi, L; Burboa, M; Gutiérrez-Millán, L E; Goycoolea, F M; Valdez, M A

    2007-03-15

    Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai, also showed differences with pH and the NDA concentration. Both, the storage and loss dilatational elastic modulus were obtained at the air-water and at the chloroform-water interfaces. The interaction of NDA/BSA with DPPC at the chloroform-water produced a less rigid monolayer than the one obtained with pure DPPC (1 x 10(-5) M), indicating a significant penetration of NDA/BSA molecules at the interface. At short times and pH 4.6, the values of the storage elastic modulus were larger and more sensible to the NDA addition than the ones at pH 7.1 and 8.4, probably due to a gel-like network formation at the air-water interface.

  4. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  5. In Vitro Comparison of Gutta-Percha Removal with H-File and ProTaper with or without Chloroform

    PubMed Central

    Khalilak, Zohreh; Vatanpour, Mehdi; Dadresanfar, Bahareh; Moshkelgosha, Pouneh; Nourbakhsh, HamidReza

    2013-01-01

    Introduction Removal of root filling materials is one of the key steps in success of root canal retreatment. The purpose of this study was to evaluate the efficacy of H-File and ProTaper with or without chloroform in the removal of gutta-percha during retreatment of mandibular premolars. Materials and Methods Sixty mandibular premolars with one canal, and curvatures less than 30 degrees were used in this experimental study. They were instrumented with K-files and laterally obturated with condensed gutta-percha using AH26 as the sealer and were stored in 100% humidity at 37°C for 2 weeks. The teeth were randomly divided into four groups of 15 teeth each. Removal of gutta-percha was performed with H-File and ProTaper. All techniques were used with or without chloroform. The teeth were split longitudinally and the area of remaining gutta-percha/sealer on the root canal wall was explored under stereomicroscope. Retreatment time duration was also recorded for each sample. Data were analyzed statistically by Two-way ANOVA, t-test and Tukey’s. Results In all groups, no significant difference was found in remaining gutta-percha and sealer with or without using chloroform, but chloroform shortened the time of retreatment. ProTaper left significantly less remaining filling materials than H-File (P<0.05). Retreatment time was significantly different between the studied groups (P<0.001). Conclusion ProTaper Ni-Ti instruments proved to be more efficient and time-saving devices for removal of gutta-percha compared to H-File in canals with no or slight curvature. PMID:23413203

  6. Thiourea based novel chromogenic sensor for selective detection of fluoride and cyanide anions in organic and aqueous media.

    PubMed

    Kumar, Vinod; Kaushik, M P; Srivastava, A K; Pratap, Ajay; Thiruvenkatam, V; Row, T N Guru

    2010-03-17

    Novel chromogenic thiourea based sensors 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl ether 1 and 4,4'-bis-[3-(4-nitrophenyl) thiourea] diphenyl methane 2 having nitrophenyl group as signaling unit have been synthesized and characterized by spectroscopic techniques and X-ray crystallography. The both sensors show visual detection, UV-vis and NMR spectral changes in presence of fluoride and cyanide anions in organic solvent as well as in aqueous medium. The absorption spectra indicated the formation of complex between host and guest is in 1:2 stoichiometric ratios. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Spectrophotometric and cytochemical analyses of phosphatase activity in Beta vulgaris L.

    PubMed

    Pesacreta, T C; Bennett, A B; Lucas, W J

    1986-03-01

    Spectrophotometric and cytochemical methods were used to investigate the localization and/or the sensitivity of phosphatase activities in aldehyde-fixed beet leaves and membrane fractions. The nonspecific acid phosphatase substrates, p-nitrophenyl phosphate and beta-glycerol phosphate, each exhibited unique spectrophotometric patterns of hydrolysis as a function of pH. Additionally, beta-glycerol phosphatase activity was primarily present on the tonoplast, whereas p-nitrophenyl phosphatase was present on the plasma membrane. Because of the unique pH response of each enzyme and their different localization, we conclude that they cannot be entirely "nonspecific." The spectrophotometric pattern of ATP hydrolysis differed from that of p-nitrophenol phosphate in that it decreased at pH 5.0-5.5 and was greatly inhibited by 10 mM sodium fluoride; however, both activities were on the plasma membrane. Therefore, we conclude that these activities represent either two enzymes or only one enzyme that differs in its ability to hydrolyze these two substrates. Generally, enzymatically produced lead deposits on the plasma membrane of non-vascular cells were as frequent and large as those on phloem cells; frequently, deposits on sieve element plasma membranes were relatively small. We therefore conclude that there is no evidence for the presence of relatively intense ATPase activity on the plasma membrane of phloem cells in beet leaf, in contrast to other species. Studies with membrane fractions indicated that formaldehyde could completely inhibit the inhibitor-sensitive phosphatase activities in mitochondrial and vacuolar fractions while preserving significant activity in the plasma membrane fraction.

  8. Production and characterization of a tributyrin esterase from Lactobacillus plantarum suitable for cheese lipolysis.

    PubMed

    Esteban-Torres, M; Mancheño, J M; de las Rivas, B; Muñoz, R

    2014-11-01

    Lactobacillus plantarum is a lactic acid bacterium that can be found during cheese ripening. Lipolysis of milk triacylglycerols to free fatty acids during cheese ripening has fundamental consequences on cheese flavor. In the present study, the gene lp_1760, encoding a putative esterase or lipase, was cloned and expressed in Escherichia coli BL21 (DE3) and the overproduced Lp_1760 protein was biochemically characterized. Lp_1760 hydrolyzed p-nitrophenyl esters of fatty acids from C2 to C16, with a preference for p-nitrophenyl butyrate. On triglycerides, Lp_1760 showed higher activity on tributyrin than on triacetin. Although optimal conditions for activity were 45°C and pH 7, Lp_1760 retains activity under conditions commonly found during cheese making and ripening. The Lp_1760 showed more than 50% activity at 5°C and exhibited thermal stability at high temperatures. Enzymatic activity was strongly inhibited by sodium dodecyl sulfate and phenylmethylsulfonyl fluoride. The Lp_1760 tributyrin esterase showed high activity in the presence of NaCl, lactic acid, and calcium chloride. The results suggest that Lp_1760 might be a useful tributyrin esterase to be used in cheese manufacturing. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Beta-D-xylosidase from Selenomonas ruminantium: thermodynamics of enzyme-catalyzed and noncatalyzed reactions

    USDA-ARS?s Scientific Manuscript database

    Beta-D-xylosidase/alpha-L-arabinofuranosidase from Selenomonas ruminantium (SXA) is the most active enzyme known for catalyzing hydrolysis of 1,4-beta-D-xylooligosaccharides to D-xylose. Temperature dependence for hydrolysis of 4-nitrophenyl-beta-D-xylopyranoside (4NPX), 4-nitrophenyl-alpha-L-arabi...

  10. The mechanism of cell death in human cultured colon adenocarcinoma cell line COLO 201 induced by beta-D-N-acetylglucosaminyl-p-nitrophenol.

    PubMed

    Kukidome, J; Kakizaki, I; Takagaki, K; Matsuki, A; Munakata, A; Endo, M

    2001-05-01

    COLO 201, human colon adenocarcinoma cells were incubated with artificial primers, p-nitrophenyl-glycoside derivatives at 1.0 mmol (mM) in the medium containing 10% fetal bovine serum to detect sugar chain elongation. However, when p-nitrophenyl-beta-N-acetylglucosamine (beta-GlcNAc-PNP) was added, the medium changed color to yellow and the cells were dead. To explain this finding, the cells were incubated with 1.0 mM each of beta-GlcNAc-PNP and 4-methylumbelliferyl-beta-N-acetylglucosamine, then the number of living cells was measured in a time course. In beta-GlcNAc-PNP, the living cells were decreased at 24 hours. The cells were survived with N-acetylglucosamine, whereas in the presence of p-nitrophenol (PNP) the living cells were decreased. It was suggested that PNP released from beta-GlcNAc-PNP induced the cell death. Activity of beta-D-N-acetylglucosaminidase was detected in fetal bovine serum. It was shown that PNP induced the cell death in time-and-dose dependent manner. Genomic DNA from COLO 201 analyzed by agarose gel electrophoresis was fragmentated. PNP analogues were tested for toxicity, and the results suggested that the phenolic OH-group linked to benzene ring and nitro-group linked to the structure in para-form (PNP) was the most effective.

  11. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica

    PubMed Central

    Pinheiro, Guilherme L.; Correa, Raquel F.; Cunha, Raquel S.; Cardoso, Alexander M.; Chaia, Catia; Clementino, Maysa M.; Garcia, Eloi S.; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes. PMID:26347735

  12. Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica.

    PubMed

    Pinheiro, Guilherme L; Correa, Raquel F; Cunha, Raquel S; Cardoso, Alexander M; Chaia, Catia; Clementino, Maysa M; Garcia, Eloi S; de Souza, Wanderley; Frasés, Susana

    2015-01-01

    The enzymatic hydrolysis of cellulose by cellulases is one of the major limiting steps in the conversion of lignocellulosic biomass to yield bioethanol. To overcome this hindrance, significant efforts are underway to identify novel cellulases. The snail Achatina fulica is a gastropod with high cellulolytic activity, mainly due to the abundance of glycoside hydrolases produced by both the animal and its resident microbiota. In this study, we partially assessed the cellulolytic aerobic bacterial diversity inside the gastrointestinal tract of A. fulica by culture-dependent methods and evaluated the hydrolytic repertoire of the isolates. Forty bacterial isolates were recovered from distinct segments of the snail gut and identified to the genus level by 16S rRNA gene sequence analysis. Additional phenotypic characterization was performed using biochemical tests provided by the Vitek2 identification system. The overall enzymatic repertoire of the isolated strains was investigated by enzymatic plate assays, containing the following substrates: powdered sugarcane bagasse, carboxymethylcellulose (CMC), p-nitrophenyl-β-D-glucopyranoside (pNPG), p-nitrophenyl-β-D-cellobioside (pNPC), 4-methylumbelliferyl-β-D-glucopyranoside (MUG), 4-methylumbelliferyl-β-D-cellobioside (MUC), and 4-methylumbelliferyl-β-D-xylopyranoside (MUX). Our results indicate that the snail A. fulica is an attractive source of cultivable bacteria that showed to be valuable resources for the production of different types of biomass-degrading enzymes.

  13. Piper nigrum, Piper betle and Gnetum gnemon- Natural Food Sources with Anti-Quorum Sensing Properties

    PubMed Central

    Tan, Li Ying; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Various parts of Piper nigrum, Piper betle and Gnetum gnemon are used as food sources by Malaysians. The purpose of this study is to examine the anti-quorum sensing (anti-QS) properties of P. nigrum, P. betle and G. gnemon extracts. The hexane, chloroform and methanol extracts of these plants were assessed in bioassays involving Pseudomonas aeruginosa PA01, Escherichia coli [pSB401], E. coli [pSB1075] and Chromobacterium violaceum CV026. It was found that the extracts of these three plants have anti-QS ability. Interestingly, the hexane, chloroform and methanol extracts from P. betle showed the most potent anti-QS activity as judged by the bioassays. Since there is a variety of plants that serve as food sources in Malaysia that have yet to be tested for anti-QS activity, future work should focus on identification of these plants and isolation of the anti-QS compounds. PMID:23519352

  14. Piper nigrum, Piper betle and Gnetum gnemon--natural food sources with anti-quorum sensing properties.

    PubMed

    Tan, Li Ying; Yin, Wai-Fong; Chan, Kok-Gan

    2013-03-20

    Various parts of Piper nigrum, Piper betle and Gnetum gnemon are used as food sources by Malaysians. The purpose of this study is to examine the anti-quorum sensing (anti-QS) properties of P. nigrum, P. betle and G. gnemon extracts. The hexane, chloroform and methanol extracts of these plants were assessed in bioassays involving Pseudomonas aeruginosa PA01, Escherichia coli [pSB401], E. coli [pSB1075] and Chromobacterium violaceum CV026. It was found that the extracts of these three plants have anti-QS ability. Interestingly, the hexane, chloroform and methanol extracts from P. betle showed the most potent anti-QS activity as judged by the bioassays. Since there is a variety of plants that serve as food sources in Malaysia that have yet to be tested for anti-QS activity, future work should focus on identification of these plants and isolation of the anti-QS compounds.

  15. Chloroform-Treated Filamentous Phage as a Bioreceptor for Piezoelectric Sensors

    DTIC Science & Technology

    2005-01-01

    Gels were rinsed in double-deionized water (DDH2O) then treated by immersion in 0.2 N NaOH for 1 h, 1 M Tris-HCl (pH 7.5) for 15 min, and 0.05 M...Filamentous bacteriophage contract into hollow spherical particles upon exposure to a chloroform- water interface. Cell 23, 747- 753. Manning, M...Chrysogelos, S., Griffith, J., 1981. Mechanism of coliphage M13 contraction: intermediate structures trapped at low temperatures. J. Virol. 40, 912-919. Naylor

  16. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed Central

    Selwood, T; Sinnott, M L

    1990-01-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2114090

  17. A solvent-isotope-effect study of proton transfer during catalysis by Escherichia coli (lacZ) beta-galactosidase.

    PubMed

    Selwood, T; Sinnott, M L

    1990-06-01

    1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl beta-D-galactopyranoside and 3,4-dinitrophenyl beta-D-galactopyranoside Escherichia coli (lacZ) beta-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl beta-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl beta-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the 'conformation change' in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS)

  18. A Research-Based Undergraduate Organic Laboratory Project: Investigation of a One-Pot, Multicomponent, Environmentally Friendly Prins-Friedel-Crafts-Type Reaction

    ERIC Educational Resources Information Center

    Dintzner, Matthew R.; Maresh, Justin J.; Kinzie, Charles R.; Arena, Anthony F.; Speltz, Thomas

    2012-01-01

    Students in the undergraduate organic laboratory synthesize tetrahydro-2-(4-nitrophenyl)-4-phenyl-2"H"-pyran via the Montmorillonite K10 clay-catalyzed reaction of p-nitrobenzaldehye with methanol, 3-buten-1-ol, and benzene. The synthesis comprises an environmentally friendly tandem Prins-Friedel-Crafts-type multicomponent reaction (MCR) and sets…

  19. Human Cytochrome P450 Enzyme Modulation by Gymnema sylvestre: A Predictive Safety Evaluation by LC-MS/MS.

    PubMed

    Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen

    2016-07-01

    Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n -hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n -hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo . Abbreviations used: GS: Gymnema sylvestre , GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n -hexane extract, AE: aqueous extract, ME: methanol extract.

  20. The natural chlorine cycle - Formation of the carcinogenic and greenhouse gas compound chloroform in drinking water reservoirs.

    PubMed

    Forczek, Sándor T; Pavlík, Milan; Holík, Josef; Rederer, Luděk; Ferenčík, Martin

    2016-08-01

    Chlorine cycle in natural ecosystems involves formation of low and high molecular weight organic compounds of living organisms, soil organic matter and atmospherically deposited chloride. Chloroform (CHCl3) and adsorbable organohalogens (AOX) are part of the chlorine cycle. We attempted to characterize the dynamical changes in the levels of total organic carbon (TOC), AOX, chlorine and CHCl3 in a drinking water reservoir and in its tributaries, mainly at its spring, and attempt to relate the presence of AOX and CHCl3 with meteorological, chemical or biological factors. Water temperature and pH influence the formation and accumulation of CHCl3 and affect the conditions for biological processes, which are demonstrated by the correlation between CHCl3 and ΣAOX/Cl(-) ratio, and also by CHCl3/ΣAOX, CHCl3/AOXLMW, CHCl3/ΣTOC, CHCl3/TOCLMW and CHCl3/Cl(-) ratios in different microecosystems (e.g. old spruce forest, stagnant acidic water, humid and warm conditions with high biological activity). These processes start with the biotransformation of AOX from TOC, continue via degradation of AOX to smaller molecules and further chlorination, and finish with the formation of small chlorinated molecules, and their subsequent volatilization and mineralization. The determined concentrations of chloroform result from a dynamic equilibrium between its formation and degradation in the water; in the Hamry water reservoir, this results in a total amount of 0.1-0.7 kg chloroform and 5.2-15.4 t chloride. The formation of chloroform is affected by Cl(-) concentration, by concentrations and ratios of biogenic substrates (TOC and AOX), and by the ratios of the substrates and the product (feedback control by chloroform itself). Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Glycosidases in Brachionus plicatilis (Rotifera).

    PubMed

    Kühle, K; Kleinow, W

    1990-01-01

    1. Tests for glycosidases were performed in homogenates of Brachionus plicatilis. 2. Hydrolytic activity was detected with the following substrates: (a) with synthetic substrates (NP = 4-nitrophenyl): NP-alpha- and NP-beta-D-glucopyranoside, NP-alpha- and NP-beta-D-galactopyranoside, NP-N-acetyl-beta-D-glucosaminide, NP-N-acetyl-beta-D-galactosaminide, NP-alpha- and NP-beta-D-mannopyranoside and NP-alpha-L-fucopyranoside; (b) with disaccharides: sucrose, maltose, trehalose, isomaltose, cellobiose, gentiobiose and lactose; (c) with polysaccharides: laminarine, carboxymethyl-cellulose, avicel, Micrococcus luteus (for lysozyme) and 4-nitrophenyl-alpha-D-maltoheptaoside (for amylase). 3. The pH dependence of the glycosidase activities was determined. 4. The distribution of enzyme activities within fractions from the homogenate was studied in order to localize them within the cell. 5. Proteins from Brachionus homogenate were separated by SDS-gel electrophoresis and the positions of the following glycosidase activities were detected by assays performed on the gels (estimated molecular weights in parentheses): alpha-glucosidase (250,000); beta-glucosidase (200,000); beta-galactosidase (70,000); N-acetyl-beta-glucosaminidase (60,000).

  2. Silica-bound copper(II)triazacyclononane as a phosphate esterase: effect of linker length and surface hydrophobicity.

    PubMed

    Bodsgard, Brett R; Clark, Robert W; Ehrbar, Anthony W; Burstyn, Judith N

    2009-04-07

    A series of silica-bound Cu(ii) triazacyclononane materials was prepared to study the effect of linker length and surface hydrophobicity on the hydrolysis of phosphate esters. The general synthetic approach for these heterogeneous reagents was rhodium-catalyzed hydrosilation between an alkenyl-modified triazacyclononane and hydride-modified silica followed by metallation with a Cu(ii) salt. Elemental analysis confirmed that organic functionalization of the silica gel was successful and provided an estimate of the surface concentration of triazacyclononane. EPR spectra were consistent with square pyramidal Cu(ii), indicating that Cu(ii) ions were bound to the immobilized macrocycles. The hydrolytic efficacies of these heterogeneous reagents were tested with bis(p-nitrophenyl)phosphate (BNPP) and diethyl 4-nitrophenyl phosphate (paraoxon). The agent that performed best was an octyl-linked, propanol-blocked material. This material had the most hydrophilic surface and the most accessible active site, achieving a rate maximum on par with the other materials, but in fewer cycles and without an induction period.

  3. Potentiometric Response Characteristics of Membrane-Based Cs + -Selective Electrodes Containing Ionophore-Functionalized Polymeric Microspheres

    DOE PAGES

    Peper, Shane; Gonczy, Chad

    2011-01-01

    Csmore » + -selective solvent polymeric membrane-based ion-selective electrodes (ISEs) were developed by doping ethylene glycol-functionalized cross-linked polystyrene microspheres (P-EG) into a plasticized poly(vinyl chloride) (PVC) matrix containing sodium tetrakis-(3,5-bis(trifluoromethyl)phenyl) borate (TFPB) as the ion exchanger. A systematic study examining the effects of the membrane plasticizers bis(2-ethylhexyl) sebacate (DOS), 2-nitrophenyl octyl ether (NPOE), and 2-fluorophenyl nitrophenyl ether (FPNPE) on the potentiometric response and selectivity of the corresponding electrodes was performed. Under certain conditions, P-EG-based ion-selective electrodes (ISEs) containing TFPB and plasticized with NPOE exhibited a super-Nernstian response between 1 × 10 − 3 and 1 × 10 − 4  M + , a response characteristic not observed in analogous membranes plasticized with either DOS or FPNPE. Additionally, the performance of P-EG-based ISEs was compared to electrodes based on two mobile ionophores, a neutral lipophilic ethylene glycol derivative (ethylene glycol monooctadecyl ether (U-EG)) and a charged metallacarborane ionophore, sodium bis(dicarbollyl)cobaltate(III) (CC). In general, P-EG-based electrodes plasticized with FPNPE yielded the best performance, with a linear range from 10 -1 –10 -5  M + , a conventional lower detection limit of 8.1 × 10 − 6  M + , and a response slope of 57.7 mV/decade. The pH response of P-EG ISEs containing TFPB was evaluated for membranes plasticized with either NPOE or FPNPE. In both cases, the electrodes remained stable throughout the pH range 3–12, with only slight proton interference observed below pH 3.« less

  4. Receptor model for the molecular basis of tissue selectivity of 1,4-dihydropyridine calcium channel drugs

    NASA Astrophysics Data System (ADS)

    Langs, David A.; Strong, Phyllis D.; Triggle, David J.

    1990-09-01

    Our analysis of the solid state conformations of nifedipine [dimethyl 1,4-dihydro-2,6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinecarboxylate] and its 1,4-dihydropyridine (1,4-DHP) analogues produced a cartoon description of the important interactions between these drugs and their voltage-dependent calcium channel receptor. In the present study a molecular-level detailed model of the 1,4-DHP receptor binding site has been built from the published amino acid sequence of the 215-1 subunit of the voltage-dependent calcium channel isolated from rabbit skeletal muscle transverse tubule membranes. The voltage-sensing component of the channel described in this work differs from others reported for the homologous sodium channel in that it incorporates a water structure and a staggered, rather than eclipsed, hydrogen bonded S4 helix conformation. The major recognition surfaces of the receptor lie in helical grooves on the S4 or voltagesensing α-helix that is positioned in the center of the bundle of transmembrane helices that define each of the four calcium channel domains. Multiple binding clefts defined by Arg-X-X-Arg-P-X-X-S `reading frames' exist on the S4 strand. The tissue selectivity of nifedipine and its analogues may arise, in part, from conservative changes in the amino acid residues at the P and S positions of the reading frame that define the ester-binding regions of receptors from different tissues. The crystal structures of two tissue-selective nifedipine analogues, nimodipine [isopropyl (2-methoxyethyl) 1,4-dihydro-2,6- dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] and nitrendipine [ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinecarboxylate] are reported. Nimodipine was observed to have an unusual ester side chain conformation that enhances the fit to the proposed ester-sensing region of the receptor.

  5. Subcellular fractionation by differential and zonal centrifugation of aerobically grown glucose-de-repressed Saccharomyces carlsbergensis

    PubMed Central

    Cartledge, T. G.; Lloyd, D.

    1972-01-01

    1. Homogenates were prepared from sphaeroplasts of aerobically grown glucose-de-repressed Saccharomyces carlsbergensis and the distributions of marker enzymes were investigated after differential centrifugation. Cytochrome c oxidase and cytochrome c were sedimented almost completely at 105g-min, and this fraction also contained 37% of the catalase, 27% of the acid p-nitrophenyl phosphatase, 53 and 54% respectively of the NADH– and NADPH–cytochrome c oxidoreductases. 2. Zonal centrifugation indicated complex density distributions of the sedimentable portions of these enzymes and of adenosine triphosphatases and suggested the presence of two mitochondrial populations, as well as a bimodal distribution of peroxisomes and heterogeneity of the acid p-nitrophenyl phosphatase-containing particles. 3. Several different adenosine triphosphatases were distinguished in a post-mitochondrial supernatant that contained no mitochondrial fragments; these enzymes varied in their sensitivities to oligomycin and ouabain and their distributions were different from those of pyrophosphatase, adenosine phosphatase and adenosine pyrophosphatase. 4. The distribution of NADPH–cytochrome c oxidoreductase demonstrated that it cannot be used in S. carlsbergensis as a specific marker enzyme for the microsomal fraction. Glucose 6-phosphatase, inosine pyrophosphatase, cytochrome P-450 and five other enzymes frequently assigned to microsomal fractions of mammalian origin were not detected in yeast under these growth conditions. ImagesPLATE 2PLATE 1 (cont.)PLATE 1PLATE 2 (cont.) PMID:4400904

  6. Lipolytic Potential of Aspergillus japonicus LAB01: Production, Partial Purification, and Characterisation of an Extracellular Lipase

    PubMed Central

    Souza, Lívia Tereza Andrade; Oliveira, Jamil S.; dos Santos, Vera L.; Regis, Wiliam C. B.; Santoro, Marcelo M.; Resende, Rodrigo R.

    2014-01-01

    Lipolytic potential of Aspergillus japonicus LAB01 was investigated by describing the catalytic properties and stability of a secreted extracellular lipase. Enzyme production was considered high under room temperature after 4 days using sunflower oil and a combination of casein with sodium nitrate. Lipase was partially purified by 3.9-fold, resulting in a 44.2% yield using ammonium sulphate precipitation (60%) quantified with Superose 12 HR gel filtration chromatography. The activity of the enzyme was maximised at pH 8.5, and the enzyme demonstrated stability under alkaline conditions. The optimum temperature was found to be 45°C, and the enzyme was stable for up to 100 minutes, with more than 80% of initial activity remaining after incubation at this temperature. Partially purified enzyme showed reasonable stability with triton X-100 and was activated in the presence of organic solvents (toluene, hexane, and methanol). Among the tested ions, only Cu2+, Ni2+, and Al3+ showed inhibitory effects. Substrate specificity of the lipase was higher for C14 among various p-nitrophenyl esters assayed. The KM and V max values of the purified enzyme for p-nitrophenyl palmitate were 0.13 mM and 12.58 umol/(L·min), respectively. These features render a novel biocatalyst for industrial applications. PMID:25530954

  7. Zinc complex chemistry of N,N,O ligands providing a hydrophobic cavity.

    PubMed

    Gross, Florian; Vahrenkamp, Heinrich

    2005-05-02

    Three new highly substituted bis(2-picolyl)(2-hydroxybenzyl)amine ligands were synthesized, and their biomimetic zinc complex chemistry was explored. They have tert-butyl substituents at the 3-and 5-positions of their phenyl rings, and they bear one phenyl group (HL2), two methyl groups (HL3), or two phenyl groups (HL4) at the 6-positions of their pyridyl rings. Their reactions with hydrated zinc perchlorate yield three distinctively different complex types. L2 forms a trigonal-bipyramidal aqua complex, and L3, a square-pyramidal aqua complex. The substituents on L4 leave no room for a water ligand, and the resulting zinc complex is trigonal-monopyramidal with a vacant coordination site. The water ligands on the L2Zn and L3Zn units can be replaced by anionic halide, thiocyanate, p-nitrophenolate, benzoate, and organophosphate as well as uncharged pyridine ligands. The L4Zn unit forms labile halide, p-nitrophenolate, and pyridine complexes. Triethylamine converts the aqua complexes to the labile hydroxides L2Zn-OH and L3Zn-OH, and in polar media [L3Zn-OH2]+ seems to be in equilibrium with L3Zn-OH. The hydroxides, but not the water complexes, effect the hydrolytic cleavage of tris(p-nitrophenyl) phosphate to bis(p-nitrophenyl) phosphate. The kinetic investigation of the cleavage reactions has shown them to be second-order reactions, thereby supporting the proposed four-center mechanism.

  8. Experimental and computational approaches to the analysis of the molecular structure of (E)-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile

    NASA Astrophysics Data System (ADS)

    Al-Azmi, Amal; Shalaby, Mona Abbas

    2018-03-01

    A green, fast and straightforward procedure for the synthesis of (E)-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile is described in this paper. The method uses a coupling reaction between 4- nitrophenyl diazonium chloride and 5-aminopyrazole-4-carbonitrile. The structure is confirmed by different spectroscopic studies such as IR, NMR, HRMS and UV-vis spectroscopy in addition to X-ray single-crystal determination. The molecular geometry, vibrational frequencies and gauge-invariant atomic orbital (GIAO) 1H and 13C NMR chemical shift values of (E)-3-(3-(4-nitrophenyl)triaz-1-en-1-yl)-1H-pyrazole-4-carbonitrile are calculated in the ground state using the Hartree-Fock (HF) method and density functional theory (DFT) with the 6-31G(d) basis set, and are compared with the experimental data. The natural bond orbital (NBO) analysis is performed so as to discuss the stability of the molecule that arises from hyper conjugative interactions and charge delocalization. The electronic properties, such as HOMO and LUMO energies, were calculated using time dependent density functional theory (TD-DFT) approach.

  9. DNA-binding studies and biological activities of new nitrosubstituted acyl thioureas

    NASA Astrophysics Data System (ADS)

    Tahir, Shaista; Badshah, Amin; Hussain, Raja Azadar; Tahir, Muhammad Nawaz; Tabassum, Saira; Patujo, Jahangir Ali; Rauf, Muhammad Khawar

    2015-11-01

    Four new nitrosubstituted acylthioureas i.e. 1-acetyl-3-(4-nitrophenyl)thiourea (TU1), 1-acetyl-3-(2-methyl-4-nitrophenyl)thiourea (TU2), 1-acetyl-3-(2-methoxy-4-nitrophenyl)thiourea (TU3) and 1-acetyl-3-(4-chloro-3-nitrophenyl)thiourea (TU4) have been synthesized and characterized (by C13 and H1 nuclear magnetic resonance, Fourier transform infrared spectroscopy and single crystal X-ray diffraction). As a preliminary investigation of the anti-cancer potencies of the said compounds, DNA interaction studies have been carried out using cyclic voltammetry and UV-vis spectroscopy along with verification from computational studies. The drug-DNA binding constants are found to be in the order, KTU3 9.04 × 106 M-1 > KTU4 8.57 × 106 M-1 > KTU2 6.05 × 106 M-1 > KTU1 1.16 × 106 M-1. Furthermore, the antioxidant, cytotoxic, antibacterial and antifungal activities have been carried out against DPPH (1,1-diphenyl-2-dipicrylhydrazyl), Brine shrimp eggs, gram positive (Micrococcus luteus, Staphylococcus aureus) and gram negative (Bordetella bronchiseptica, Salmonella typhimurium, Enterobacter aerogens) and fungal cultures (Aspergillus fumigatus, Mucor species, Aspergillus niger, Aspergillus flavus) respectively.

  10. Enhanced Oxidation and Solvolysis Reactions in Chemically Inert Microheterogeneous Systems.

    DTIC Science & Technology

    1986-01-15

    has been found in a O/W microemulsion containing sodium lauryl sulfate , cyclohexane, n-butanol and water. SHORT TERM PROJECTS New O/W and W/O...microemulsion containing lauryl acid sodium salt, cyclohexane, n-butanol and water towards hydrogen peroxide has been tested. Kinetic measurements...using hydrogen peroxide The system lauryl acid sodium salt, cyclohexane, n-butanol, water has been selected as one of those potentially compatible

  11. Regioselective SN2 reactions for rapid syntheses of azido-inositols by one-pot sequence-specific nucleophilysis.

    PubMed

    Ravi, Arthi; Hassan, Syed Zahid; Vanikrishna, Ajithkumar N; Sureshan, Kana M

    2017-04-04

    Triflates of myo-inositol undergo facile solvolysis in DMSO and DMF yielding S N 2 products substituted with O-nucleophiles; DMF showed slower kinetics. Axial O-triflate undergoes faster substitution than equatorial O-triflate. By exploiting this difference in kinetics, solvent-tuning and sequence-controlled nucleophilysis, rapid synthesis of three azido-inositols of myo-configuration from myo-inositol itself has been achieved.

  12. Structure and gene cluster of the O-antigen of Escherichia coli O54.

    PubMed

    Naumenko, Olesya I; Guo, Xi; Senchenkova, Sof'ya N; Geng, Peng; Perepelov, Andrei V; Shashkov, Alexander S; Liu, Bin; Knirel, Yuriy A

    2018-06-15

    Mild acid hydrolysis of the lipopolysaccharide of Escherichia coli O54 afforded an O-polysaccharide, which was studied by sugar analysis, solvolysis with anhydrous trifluoroacetic acid, and 1 H and 13 C NMR spectroscopy. Solvolysis cleaved predominantly the linkage of β-d-Ribf and, to a lesser extent, that of β-d-GlcpNAc, whereas the other linkages, including the linkage of α-l-Rhap, were stable under selected conditions (40 °C, 5 h). The following structure of the O-polysaccharide was established: →4)-α-d-GalpA-(1 → 2)-α-l-Rhap-(1 → 2)-β-d-Ribf-(1 → 4)-β-d-Galp-(1 → 3)-β-d-GlcpNAc-(1→ The O-antigen gene cluster of E. coli O54 was analyzed and found to be consistent in general with the O-polysaccharide structure established but there were two exceptions: i) in the cluster, there were genes for phosphoserine phosphatase and serine transferase, which have no apparent role in the O-polysaccharide synthesis, and ii) no ribofuranosyltransferase gene was present in the cluster. Both uncommon features are shared by some other enteric bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Thermal properties of biopolyol from oil palm fruit fibre (OPFF) using solvolysis liquefaction technique

    NASA Astrophysics Data System (ADS)

    Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.

    2017-09-01

    Liquefaction is known to be an effective method for converting biomass into a biopolyol. The biomass liquefaction of oil palm fruit waste (PFW) in the presence of liquefaction solvent/polyhydric alcohol (PA): polyethylene glycol 400 (PEG400) using sulfuric acid as catalyst was studied. For all experiments, the liquefaction was conducted at 150°C and atmospheric pressure. The mass ratio of OPFW to liquefaction solvents used in all the experiments was, 1/3. Thermogravimetric analyses (TGA) were used to analyze their biopolyol and residue behaviors. It was found that thermal stability of oil palm mesocarp fibre (PM), oil palm shell (PS) and oil palm kernel (PK) fibre exhibited the first degradation of hard segment at (232, 104, 230°C) and the second degradation of soft segment at (314, 226, 412°C) as compared to PM, PS and PK residue which (229, 102, 227°C) of hard segment and (310, 219, 299°C) of segment, respectively. This behavior of thermal degradation of the hard segment and soft segment of biopolyol was changes after undergo solvolysis liquefaction process. The result analysis showed that the resulting biopolyol and its residue was suitable monomer for polyurethane (PU) synthesis for the production of PU foams.

  14. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, M.N.; Vire, D.E.

    This article reviews the role chloroform has played in dentistry and describes an occupational health clinical investigation into the possible hazards of chloroform use in the operatory. Due to a Food and Drug Administration ban on drugs and cosmetics containing chloroform, there has been some confusion as to whether the use of chloroform in the practice of dentistry is considered unsafe or has been prohibited. Utilizing common endodontic treatment methods employing chloroform, this study reports no negative health effects to the dentist or assistant and air vapor levels well below Occupational Health and Safety Administration mandated maximum levels. The reportmore » concludes that, with careful and controlled use, chloroform can be a useful adjunct in the practice of dentistry. The Food and Drug Administration has no jurisdiction over a dentist's use of chloroform in clinical practice and has not proven that chloroform is a human carcinogen.« less

  16. [Study on of the current status of volatile organic compounds pollution in typical rural drinking water and the relationship between its concentration and health of the population, in Huai'an, Jiangsu].

    PubMed

    Pan, Enchun; Zhang, Qin; Yang, Fangying; Hu, Wei; Xu, Qiujin; Liang, Cunzhen; He, Yuan; Wang, Chuang

    2014-10-01

    This study was to understand the status of pollution on drinking water, by volatile organic compounds (VOCs), among rural residents living in the basin of Huaihe River. Relationship between the morbidity, morbidity of cancers and VOCs were also explored. 28 villages were chosen from Xuyi,Jinhu, Chuzhou along the Huaihe River, with water samples collected from ditch pond water, shallow wells, deep wells in November-December 2010. VOCs indicators were evaluated according to the Standard Quality GB 5749-2006 for Drinking Water. Methylene chloride, chloroform, benzene and carbon tetrachloride were all detected in 76 water samples. The rates of chloroform, benzene, carbon tetrachloride which exceeding the quality standards were 3.95% , 21.05% and 22.37% , but no significant differences were found among these three water resources in chloroform, benzene or carbon tetrachloride. Results from the correlation analysis showed that benzene had positive correlation with tumor deaths (r = 0.24, P < 0.05). Results from the risk assessment on health showed that some chloroform, benzene, carbon tetrachloride products which were related to the risks of cancers were exceeding the acceptable ranges of risk, with the rates as 28.95%, 22.37% and 64.47% but with no significant differences among the three water resources (P > 0.05). Drinking waters for rural residents along the Huaihe River were polluted while VOCs might have related to tumor incidence with potential impact and risk to the health of local residents.

  17. Antiulcer activity of the chloroform extract of Bauhinia purpurea leaf.

    PubMed

    Hisam, Elly Ezlinda Abdul; Zakaria, Zainul Amiruddin; Mohtaruddin, Norhafizah; Rofiee, Mohd Salleh; Hamid, Hasiah Ab; Othman, Fezah

    2012-12-01

    Bauhinia purpurea L. (Fabaceae) is a native plant species of many Asian countries, including Malaysia and India. In India, the root, stem, bark, and leaf of B. purpurea are used to treat various ailments, including ulcers and stomach cancer. In an attempt to establish its pharmacological potential, we studied the antiulcer activity of lipid-soluble extract of B. purpurea obtained via extraction of air-dried leaves using chloroform. The rats were administered the chloroform extract (dose range of 100-1000 mg/kg) orally after 24 h fasting. They were subjected to the absolute ethanol- and indomethacin-induced gastric ulcer, and pyloric ligation assays after 30 min. The acute toxicity study was conducted using a single oral dose of 5000 mg/kg extract and the rats were observed for the period of 14 days. omeprazole (30 mg/kg) was used as the standard control. At 5000 mg/kg, the extract produced no sign of toxicity in rats. The extract exhibited significant (p < 0.05) dose-dependent antiulcer activity for the ethanol-induced model. The extract also significantly (p < 0.05) increased the gastric wall mucus production and pH of gastric content, while significantly (p < 0.05) reducing the total volume and total acidity of the gastric content in the pylorus ligation assay. The extract possesses antiulcer, antisecretory and cytoprotective activities, which could be attributed to its flavonoid and tannin content. These findings provide new information regarding the potential of lipid-soluble compounds of B. purpurea for the prevention and treatment of gastric ulcers.

  18. Studies on the catalytic behavior of a membrane-bound lipolytic enzyme from the microalgae Nannochloropsis oceanica CCMP1779.

    PubMed

    Savvidou, Maria G; Katsabea, Alexandra; Kotidis, Pavlos; Mamma, Diomi; Lymperopoulou, Theopisti V; Kekos, Dimitris; Kolisis, Fragiskos N

    2018-09-01

    The catalytic behavior of a membrane-bound lipolytic enzyme (MBL-Enzyme) from the microalgae Nannochloropsis oceanica CCMP1779 was investigated. The biocatalyst showed maximum activity at 50 °C and pH 7.0, and was stable at pH 7.0 and temperatures from 40 to 60 °C. Half-lives at 60 °C, 70 °C and 80 °C were found 866.38, 150.67 and 85.57 min respectively. Thermal deactivation energy was 68.87 kJ mol -1 . The enzyme's enthalpy (ΔΗ*), entropy (ΔS*) and Gibb's free energy (ΔG*) were in the range of 65.86-66.27 kJ mol -1 , 132.38-140.64 J mol -1  K -1 and 107.80-115.81 kJ mol -1 , respectively. Among p-nitrophenyl esters of fatty acids tested, MBL-Enzyme exhibited the highest hydrolytic activity against p-nitrophenyl palmitate (pNPP). The K m and V max values were found 0.051 mM and of 0.054 mmole pNP mg protein -1  min -1 , respectively with pNPP as substrate. The presence of Mn 2+ increased lipolytic activity by 68.25%, while Fe 3+ and Cu 2+ ions had the strongest inhibitory effect. MBL-Enzyme was stable in the presence of water miscible (66% of the initial activity in ethanol) and water immiscible (71% of the initial activity in n-octane) solvents. Myristic acid was found to be the most efficient acyl donor in esterification reactions with ethanol. Methanol was the best acyl acceptor among the primary alcohols tested. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. ElaC encodes a novel binuclear zinc phosphodiesterase.

    PubMed

    Vogel, Andreas; Schilling, Oliver; Niecke, Manfred; Bettmer, Jorg; Meyer-Klaucke, Wolfram

    2002-08-09

    ElaC is a widespread gene found in eubacteria, archaebacteria, and mammals with a highly conserved sequence. Two human ElaC variants were recently associated with cancer (Tavtigian, S. V., Simard, J., Teng, D. H., Abtin, V., Baumgard, M., Beck, A., Camp, N. J., Carillo, A. R., Chen, Y., Dayananth, P., Desrochers, M., Dumont, M., Farnham, J. M., Frank, D., Frye, C., Ghaffari, S., Gupte, J. S., Hu, R., Iliev, D., Janecki, T., Kort, E. N., Laity, K. E., Leavitt, A., Leblanc, G., McArthur-Morrison, J., Pederson, A., Penn, B., Peterson, K. T., Reid, J. E., Richards, S., Schroeder, M., Smith, R., Snyder, S. C., Swedlund, B., Swensen, J., Thomas, A., Tranchant, M., Woodland, A. M., Labrie, F., Skolnick, M. H., Neuhausen, S., Rommens, J., and Cannon-Albright, L. A. (2001) Nat. Genet. 27, 172-180; Yanaihara, N., Kohno, T., Takakura, S., Takei, K., Otsuka, A., Sunaga, N., Takahashi, M., Yamazaki, M., Tashiro, H., Fukuzumi, Y., Fujimori, Y., Hagiwara, K., Tanaka, T., and Yokota, J. (2001) Genomics 72, 169-179). Analysis of the primary sequence indicates homology to an arylsulfatase and predicts a metallo-beta-lactamase fold. At present, no ElaC gene product has been investigated. We cloned the Escherichia coli ElaC gene and purified the recombinant gene product. An enzymatic analysis showed that ElaC does not encode an arylsulfatase but rather encodes a phosphodiesterase that hydrolyzes bis(p-nitrophenyl)phosphate with a k(cat) of 59 s(-1) and K' of 4 mm. Kinetic analysis of the dimeric enzyme revealed positive cooperativity for the substrate bis(p-nitrophenyl)phosphate with a Hill coefficient of 1.6, whereas hydrolysis of the substrate thymidine-5'-p-nitrophenyl phosphate followed Michaelis-Menten kinetics. Furthermore, the enzyme is capable of binding two zinc or two iron ions. However, it displays phosphodiesterase activity only in the zinc form. The metal environment characterized by zinc K-edge x-ray absorption spectroscopy was modeled with two histidine residues, one carboxylate group, and 1.5 oxygen atoms. This corresponds to the coordination found in other metallo-beta-lactamase domain proteins. Phosphodiesterase activity is strongly dependent on the presence of zinc. These results identify the currently unassigned gene product ElaC to be a novel binuclear zinc phosphodiesterase.

  20. Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics.

    PubMed

    Simão, Ana Maria S; Yadav, Manisha C; Narisawa, Sonoko; Bolean, Mayte; Pizauro, Joao Martins; Hoylaerts, Marc F; Ciancaglini, Pietro; Millán, José Luis

    2010-03-05

    We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5'-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5'-monophosphate, and PP(i) by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5'-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PP(i) were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PP(i) by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.

  1. Proteoliposomes Harboring Alkaline Phosphatase and Nucleotide Pyrophosphatase as Matrix Vesicle Biomimetics*

    PubMed Central

    Simão, Ana Maria S.; Yadav, Manisha C.; Narisawa, Sonoko; Bolean, Mayte; Pizauro, Joao Martins; Hoylaerts, Marc F.; Ciancaglini, Pietro; Millán, José Luis

    2010-01-01

    We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5′-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5′-monophosphate, and PPi by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5′-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment. PMID:20048161

  2. Reduction in hypericin-induced phototoxicity by Hypericum perforatum extracts and pure compounds

    PubMed Central

    Schmitt, Laura A.; Liu, Yi; Murphy, Patricia A.; Petrich, Jacob W.; Dixon, Philip M.; Birt, Diane F.

    2006-01-01

    Clinical evidence suggests that administration of Hypericum perforatum (Hp) extracts containing the photo-activated hypericin compounds may cause fewer skin photosensitization reactions than administration of pure hypericin. This study was conducted to determine whether the phototoxicity of hypericin in HaCaT keratinocytes could be attenuated by H. perforatum extracts and constituents. Two extracts, when supplemented with 20 μM hypericin: (1) an ethanol re-extraction of residue following a chloroform extraction (denoted ethanol(-chloroform)) (3.35 μM hypericin and 124.0 μM total flavonoids); and (2) a chloroform extract (hypericin and flavonoids not detected), showed 25% and 50% (p < 0.0001) less phototoxicity than 20 μM hypericin alone. Two H. perforatum constituents, when supplemented with 20 μM hypericin: (1) 10 μM chlorogenic acid; and (2) 0.25 μM pyropheophorbide, exhibited 24% (p < 0.05) and 40% (p < 0.05) less phototoxicity than 20 μM hypericin alone. The peroxidation of arachidonic acid was assessed as a measure of oxidative damage by photo-activated hypericin, but this parameter of lipid peroxidation was not influenced by the extracts or constituents. However α-tocopherol, a known antioxidant also did not influence the amount of lipid peroxidation induced in this system. These observations indicate that hypericin combined with H. perforatum extracts or constituents may exert less phototoxicity than pure hypericin, but possibly not through a reduction in arachidonic acid peroxidation. PMID:16859921

  3. Diazonium functionalized graphene: microstructure, electric, and magnetic properties.

    PubMed

    Huang, Ping; Jing, Long; Zhu, Huarui; Gao, Xueyun

    2013-01-15

    The unique honeycomb lattice structure of graphene gives rise to its outstanding electronic properties such as ultrahigh carrier mobility, ballistic transport, and more. However, a crucial obstacle to its use in the electronics industry is its lack of an energy bandgap. A covalent chemistry strategy could overcome this problem, and would have the benefits of being highly controllable and stable in the ambient environment. One possible approach is aryl diazonium functionalization. In this Account, we investigate the micromolecular/lattice structure, electronic structure, and electron-transport properties of nitrophenyl-diazonium-functionalized graphene. We find that nitrophenyl groups mainly adopt random and inhomogeneous configurations on the graphene basal plane, and that their bonding with graphene carbon atoms leads to slight elongation of the graphene lattice spacing. By contrast, hydrogenated graphene has a compressed lattice. Low levels of functionalization suppressed the electric conductivity of the resulting functionalized graphene, while highly functionalized graphene showed the opposite effect. This difference arises from the competition between the charge transfer effect and the scattering enhancement effect introduced by nitrophenyl groups bonding with graphene carbon atoms. Detailed electron transport measurements revealed that the nitrophenyl diazonium functionalization locally breaks the symmetry of graphene lattice, which leads to an increase in the density of state near the Fermi level, thus increasing the carrier density. On the other hand, the bonded nitrophenyl groups act as scattering centers, lowering the mean free path of the charge carriers and suppressing the carrier mobility. In rare cases, we observed ordered configurations of nitrophenyl groups in local domains on graphene flakes due to fluctuations in the reaction processes. We describe one example of such a superlattice, with a lattice constant nearly twice of that of pristine graphene. We performed comprehensive theoretical calculations to investigate the lattice and the electronic structure of the superlattice structure. Our results reveal that it is a thermodynamically stable, spin-polarized semiconductor with a bandgap of ∼0.5 eV. Our results demonstrate the possibility of controlling graphene's electronic properties using aryl diazonium functionalization. Asymmetric addition of aryl groups to different sublattices of graphene is a promising approach for producing ferromagnetic, semiconductive graphene, which will have broad applications in the electronic industry.

  4. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate.

    PubMed

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J

    2015-01-27

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05-1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed.

  5. Monitoring Lipase/Esterase Activity by Stopped Flow in a Sequential Injection Analysis System Using p-Nitrophenyl Butyrate

    PubMed Central

    Pliego, Jorge; Mateos, Juan Carlos; Rodriguez, Jorge; Valero, Francisco; Baeza, Mireia; Femat, Ricardo; Camacho, Rosa; Sandoval, Georgina; Herrera-López, Enrique J.

    2015-01-01

    Lipases and esterases are biocatalysts used at the laboratory and industrial level. To obtain the maximum yield in a bioprocess, it is important to measure key variables, such as enzymatic activity. The conventional method for monitoring hydrolytic activity is to take out a sample from the bioreactor to be analyzed off-line at the laboratory. The disadvantage of this approach is the long time required to recover the information from the process, hindering the possibility to develop control systems. New strategies to monitor lipase/esterase activity are necessary. In this context and in the first approach, we proposed a lab-made sequential injection analysis system to analyze off-line samples from shake flasks. Lipase/esterase activity was determined using p-nitrophenyl butyrate as the substrate. The sequential injection analysis allowed us to measure the hydrolytic activity from a sample without dilution in a linear range from 0.05–1.60 U/mL, with the capability to reach sample dilutions up to 1000 times, a sampling frequency of five samples/h, with a kinetic reaction of 5 min and a relative standard deviation of 8.75%. The results are promising to monitor lipase/esterase activity in real time, in which optimization and control strategies can be designed. PMID:25633600

  6. Site-directed mutagenesis studies of the aromatic residues at the active site of a lipase from Malassezia globosa.

    PubMed

    Gao, Chongliang; Lan, Dongming; Liu, Lu; Zhang, Houjin; Yang, Bo; Wang, Yonghua

    2014-07-01

    The lipase from Malassezia globosa (SMG1) has specific activity on mono- and diacylglycerol but not on triacylglycerol. The structural analysis of SMG1 structure shows that two bulky aromatic residues, W116 and W229, lie at the entrance of the active site. To study the functions of these two residues in the substrate recognition and the catalytic reaction, they were mutated to a series of amino acids. Subsequently, biochemical properties of these mutants were investigated. Although the activities decrease, W229L and W116A show a significant shift in substrate preference. W229L has an increased preference for short-chain substrates whereas W116A has preference for long-chain substrates. Besides, the half-lives of W116A and W116H at 45 °C are 346.6 min and 115.5 min respectively, which improve significantly compared to that of native enzyme. Moreover, the optimum substrate of W116A, W116F and W229F mutants shifted from p-nitrophenyl caprylate to p-nitrophenyl myristate. These findings not only shed light onto the lipase structure/function relationship but also lay the framework for the potential industrial applications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. High pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabourin, P.J.; Bechtold, W.E.; Henderson, R.F.

    1988-05-01

    The glucuronide and sulfate conjugates of benzene metabolite as well as muconic acid and pre-phenyl- and phenylmercapturic acids were separated by ion-pairing HPLC. The HPLC method developed was suitable for automated analysis of a large number of tissue or excreta samples. p-Nitrophenyl (/sup 14/C)glucuronide was used as an internal standard for quantitation of these water-soluble metabolites. Quantitation was verified by spiking liver tissue with various amounts of phenylsulfate or glucuronides of phenol, catechol, or hydroquinone and analyzing by HPLC. Values determined by HPLC analysis were within 10% of the actual amount with which the liver was spiked. The amount ofmore » metabolite present in urine following exposure to (/sup 3/H)benzene was determined using p-nitrophenyl (/sup 14/C)glucuronide as an internal standard. Phenylsulfate was the major water-soluble metabolite in the urine of F344 rats exposed to 50 ppm (/sup 3/H)benzene for 6 h. Muconic acid and an unknown metabolite which decomposed in acidic media to phenylmercapturic acid were also present. Liver, however, contained a different metabolic profile. This indicates that urinary metabolite profiles may not be a true reflection of what is seen in individual tissues.« less

  8. Efficacy and Mode of Action of Immune Response Modifying Compounds against Alphaviruses and Flaviviruses.

    DTIC Science & Technology

    1986-12-31

    monophosphate (AMP) as the substrate and p-nitrophenyl phosphate as the competitive inhibitor of phosphatase activity (23). The S.A. was expressed as n...4JM -4’ nLn 0 = 0 c to V-4 u 1.-1 ( 4.40 91a,*uQ 4401- o01 V~ P: v-r4 4.4 0 u oWt Q) 4 W 0 tW4 - u4~ ccv4 - 41 0-v- 0’’.4 .o cc 0 *o 4J 44.- V0 𔃺 > * 0

  9. Human Cytochrome P450 Enzyme Modulation by Gymnema sylvestre: A Predictive Safety Evaluation by LC-MS/MS

    PubMed Central

    Rammohan, Bera; Samit, Karmakar; Chinmoy, Das; Arup, Saha; Amit, Kundu; Ratul, Sarkar; Sanmoy, Karmakar; Dipan, Adhikari; Tuhinadri, Sen

    2016-01-01

    Background: Traditionally GS is used to treat diabetes mellitus. Drug-herb interaction of GS via cytochrome P450 enzyme system by substrate cocktail method using HLM has not been reported. Objective: To evaluate the in-vitro modulatory effects of GS extracts (aqueous, methanol, ethyl acetate, chloroform and n-hexane) and deacylgymnemic acid (DGA) on human CYP1A2, 2C8, 2C9, 2D6 and 3A4 activities in HLM. Material and Methods: Probe substrate-based LCMS/MS method was established for all CYPs. The metabolite formations were examined after incubation of probe substrates with HLM in the presence or absence of extracts and DGA. The inhibitory effects of GS extracts and DGA were characterized with kinetic parameters IC50 and Ki values. Results: GS extracts showed differential effect on CYP activities in the following order of inhibitory potency: ethyl acetate > Chloroform > methanol > n-hexane > aqueous > DGA. This differential effect was observed against CYP1A2, 2C9 and less on CYP3A4 and 2C8 but all CYPs were unaffected by aqueous extract and DGA. The ethyl acetate and chloroform extract exhibited moderate inhibition towards CYP1A2 and 3A4. The aqueous extract and DGA however showed negligible inhibition towards all five major human CYPs with very high IC50 values (>90μg/ml). Conclusion: The results of our study revealed that phytoconstituents contained in GS, particularly in ethyl acetate and chloroform extracts, were able to inhibit CYP1A2, 3A4 and 2C9. The presence of relatively small, lipophillic yet slightly polar compounds within the GS extracts may be attributed for inhibition activities. These suggest that the herb or its extracts should be examined for potential pharmacokinetic drug interactions in vivo. Abbreviations used: GS: Gymnema sylvestre, GSE: Gymnema sylvestre extract, DGA: deacyl gymnemic acid, CYP: cytochrome P450, DMSO: dimethylsulphoxide, HLM: human liver microsomes, LC-MS/MS: liquid chromatography tandem mass spectroscopy, NADPH: reduced nicotinamide adeninedinucleotide phosphate, NRS: nicotinamide adeninedinucleotide phosphate regenerating system, CHE: chloroform extract, EAE: ethyl acetate extract, NHE- n-hexane extract, AE: aqueous extract, ME: methanol extract PMID:27761064

  10. Nucleophilic Participation in the Solvolyses of (Arylthio)methyl Chlorides and Derivatives: Application of Simple and Extended Forms of the Grunwald-Winstein Equations

    PubMed Central

    Kevill, Dennis N.; Park, Young Hoon; Park, Byoung-Chun; D’Souza, Malcolm J.

    2012-01-01

    The specific rates of solvolysis of chloromethyl phenyl sulfide [(phenylthio)methyl chloride] and its p-chloro-derivative have been determined at 0.0 °C in a wide range of hydroxylic solvents, including several containing a fluroalcohol. Treatment in terms of a two-term Grunwald-Winstein equation, incorporating terms based on solvent ionizing power (YCl) and solvent nucleophilicity (NT) suggest a mechanism similar to that for the solvolyses of tert-butyl chloride, involving in the rate-determining step a nucleophilic solvation of the incipient carbocation in an ionization process. A previous suggestion, that a third-term governed by the aromatic ring parameter (I) is required, is shown both for the new and for the previously studied related substrates to be an artifact, resulting from an appreciable degree of multicollinearity between I values and a linear combination of NT and YCl values. PMID:22711999

  11. Rhenium(VII) Catalysis of Prins Cyclization Reactions

    PubMed Central

    Tadpetch, Kwanruthai; Rychnovsky, Scott D.

    2009-01-01

    The rhenium(VII) complex O3ReOSiPh3 are particularly effective catalyst for Prins cyclizations using aromatic and α,β-unsaturated aldehydes. The reaction conditions are mild and the highly substituted 4-hydroxy tetrahydropyran products are formed stereoselectively. Rhenium(VII) complexes appear to spontaneously form esters with alcohols and to directly activate electron rich alcohols for solvolysis. Re2O7 and perrhenic acid were equally effective in catalyzing these cyclizations. PMID:18816133

  12. Novel and economic acid-base indicator based on (p-toluidine) oligomer: Synthesis; characterization and solvatochromism applications

    NASA Astrophysics Data System (ADS)

    Zoromba, M. Sh.

    2017-12-01

    A new (p-toluidine) oligomer (PTO) was facile synthesized and economically routed via chemical oxidative polymerization by potassium dichromate as an initiator in an acidic aqueous medium at room temperature. The characterization of (p-toluidine) oligomer (PTO) has been described by various techniques including Fourier transform infra-red (FTIR), UV-Visible measurements, Mass spectra, H NMR, and thermal gravimetric analysis (TGA). Solvatochromism of PTO was studied in different polaritiy solvents such as acetic acid, acetone, dimethyl formamide, ethanol, isopropanol, chloroform, p-xylene, dichloromethane and carbon teterachloride. The absorption bands were bathochromically shifted with increased polarity of the solvent (positive solvatochromism). PTO shows three isosbestic points at 333, 388 and 472 nm in a binary mixture of acetone and chloroform. The deprotonation constants of PTO were found to be 3.1 and 5.8, based on spectrophotometric calculations. PTO was successfully used as an acid-base indicator; the acid solution color sharply turned from pink (acidic medium) to yellow (basic medium) at the end point.

  13. Disinfection by-product formation from the chlorination and chloramination of amines.

    PubMed

    Bond, Tom; Mokhtar Kamal, Nurul Hana; Bonnisseau, Thomas; Templeton, Michael R

    2014-08-15

    This study investigated the relative effect of chlorination and chloramination on DBP formation from seven model amine precursor compounds, representative of those commonly found in natural waters, at pH 6, 7 and 8. The quantified DBPs included chloroform, dichloroacetonitrile (DCAN), trichloroacetonitrile (TCAN) and chloropicrin (trichloronitromethane). The aggregate formation (i.e. the mass sum of the formation from the individual precursors) of chloroform, DCAN and TCAN from all precursors was reduced by respectively 75-87%, 66-90% and 89-93% when considering pre-formed monochloramine compared to chlorine. The formation of both haloacetonitriles decreased with increasing pH following chlorination, but formation after chloramination was relatively insensitive to pH change. The highest formation of chloropicrin was from chloramination at pH 7. These results indicate that, while chloramination is effective at reducing the concentrations of trihalomethanes and haloacetonitriles in drinking water compared with chlorination, the opposite is true for the halonitromethanes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Hypolipidemic Activity of Chloroform Extract of Mimosa pudica Leaves

    PubMed Central

    Rajendran, Rekha; Krishnakumar, Ekambaram

    2010-01-01

    Mimosa pudica Lin., known as chue Mue, is a stout straggling prostrate shrubby plant, with spinous stipules and globose pinkish flower heads, and grows as weed in almost all parts of the country. It is traditionally used for its various properties and hence in the present study, chloroform extract of Mimosa pudica leaves has been screened for its hypolipidemic activity. Hypolipidemic activity is screened by inducing hyperlipidemia with the help of atherogenic diet in wistar albino rats and serum levels of various biochemical parameters such as total cholesterol, triglycerides, LDL, VLDL and HDL cholesterol were determined. Atherogenic index shows the measure of the athero-genic potential of the drugs. Chloroform extract showed significant (p < 0.05) hypolipidemic effect by lowering the serum levels of biochemical parameters such as significant reduction in the level of serum cholesterol, triglyceride, LDL, VLDL and increase in HDL level which was similar to the standard drug Atorvastatin. Chloroform extract exhibited significant atherogenic index and percentage protection against hyperlipidemia. These biochemical observations were in turn confirmed by histopathological examinations of aorta, liver and kidney sections and are comparable with the standard hypolipidemic drug Atorvastatin. Preliminary phytochemical analysis revealed the presence of phytoconstituents such as steroids, flavonoids, glycosides, alkaloids, phenolic compounds which is further confirmed by the thin layer chromatography, High Performance Thin Layer Chromatography (HPTLC). The overall experimental results suggests that the biologically active phytoconstituents such as flavonoids, glycosides alkaloids present in the chloroform extract of Mimosa pudica, may be responsible for the significant hypolipidemic activity and the results justify the use of Mimosa pudica as a significant hypolipidemic agent. PMID:23408779

  15. 3,3,6,6-Tetra-methyl-9-(2-nitro-phen-yl)-3,4,6,7-tetra-hydro-2H-xanthene-1,8(5H,9H)-dione.

    PubMed

    Mo, Yingming; Zang, Hong-Jun; Cheng, Bo-Wen

    2010-07-31

    In the title compound, C(23)H(25)NO(5), the pyran ring adopts a flattened boat conformation, while the two cyclo-hexenone rings are in envelope conformations. The 3-nitro-phenyl ring is almost perpendicular to the pyran ring, making a dihedral angle of 87.1 (3)°.

  16. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  17. Apparent pollution of groundwater caused by natural formation of chloroform in forest soils

    NASA Astrophysics Data System (ADS)

    Jacobsen, O.; Laier, T.; Albers, C. N.; Hunkeler, D.

    2011-12-01

    Halogenated compounds are known to be formed in natural environments. Many of these compounds are similar to industrially produced compounds and are toxic or carcinogenic. High concentration of chloroform in groundwater is usually attributed to anthropogenic input, but we have found that the groundwater beneath some pristine areas contained chloroform exceeding 1 μg/L. We investigated four coniferous forests over a period of several years in order to measure the net-formation of chloroform. Field measurements of atmospheric and soil air concentrations of chloroform were monitored. Analyses of soil air at 40 cm depth in different parts of the forests and adjacent areas revealed an extremely large variation in chloroform concentration exceeding two orders of magnitude. Up to 100 ppbv was found in soil air under the spruce forest, to be compared to an ambient atmospheric concentration of 0.02 ppbv. The concentration of chloroform in soil air showed seasonal variation similar to that of CO2. Chloroform formation during incubation of undisturbed top-soil samples was found to be largest in soils from dense conifers stands with well-developed humus layers, while low chloroform formation occurred in soils from beech forest and agricultural grassland. We suggest that the mechanism behind the formation of chloroform is an unspecific chlorination of organic matter, caused by microbial activity in the soil. The aquifers are in fluvio-glacial sands with few layers of silt and a groundwater table from 4 to 7 m below the surface. In the shallowest parts of the aquifer, the groundwater has chloroform concentrations of 0.1 to 5 μg/L, and the groundwater is oxic with an age from 5 to 45 years using CFC-dating. Analyses of oxic groundwater > 40 years showed that it still contained chloroform at concentrations of 1 μg/L. Stable carbon isotopic analyses of chloroform from the uppermost groundwater in different parts of the forests and from soil water showed values from δ13C = -13 % to -27 %, corresponding to the ratio in natural organic materials and quite different from those of industrial products and from contaminated groundwater (δ13C = -46 % to -63 %). The isotopic ratio showed a minor decrease with depth due to a decomposition of chloroform. Measurements in a groundwater transect in one of the forest areas indicated that anoxic conditions in the groundwater depleted chloroform totally.

  18. Structural, vibrational and NMR spectroscopic investigations of newly synthesized 3-((ethylthio)(4-nitrophenyl)methyl)-1H-indole

    NASA Astrophysics Data System (ADS)

    Bhat, Sheeraz Ahmad; Dar, Ajaz A.; Ahmad, Shabbir; Khan, Abu T.

    2017-10-01

    The compound 3-((ethylthio)(4-nitrophenyl)methyl)-1H-indole was synthesized at room temperature through one-pot three-component reaction from 1H-indole, 4-nitrobenzaldehyde, and ethanethiol using hydrated ferric sulfate as a Lewis acid catalyst. The structure was characterised by single crystal XRD, FTIR (4000-400 cm-1), FT-Raman (4000-50 cm-1) and 1H and 13C NMR analysis. The compound crystallizes in the monoclinic with volume 3238.3(9) Å3. The experimental vibrational data find the theoretical support through anharmonic frequency calculations using DFT/B3LYP level of theory in combination with 6-31G(d,p) basis set. It is observed that the predicted geometry well reproduces the XRD structural parameters. The experimental 1H and 13C NMR spectra in CDCl3 solvent and the simulated spectra predicted using gauge independent atomic orbital (GIAO) approach are also found in agreement with each other. HOMO-LUMO, MEP, atomic charges and various other thermodynamic and NLO properties of the title molecule are also reported in this paper.

  19. The new 3-(tert-butyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine: Experimental and computational studies

    NASA Astrophysics Data System (ADS)

    Cuenú, Fernando; Muñoz-Patiño, Natalia; Torres, John Eduard; Abonia, Rodrigo; Toscano, Rubén A.; Cobo, J.

    2017-11-01

    The molecular and supramolecular structure of the title compound, 3-(tertbutyl)-1-(2-nitrophenyl)-1H-pyrazol-5-amine (2NPz) from the single crystal X-ray diffraction (SC-XRD) and spectroscopic data analysis is reported. The computational analysis of the structure, geometry optimization, vibrational frequencies, nuclear magnetic resonance and UV-Vis is also described and compared with experimental data. Satisfactory theoretical aspects were made for the molecule using density functional theory (DFT), with B3LYP and B3PW91 functionals, and Hartree-Fock (HF), with 6-311++G(d,p) basis set, using GAUSSIAN 09 program package without any constraint on the geometry. With VEDA 4 software, vibrational frequencies were assigned in terms of the potential energy distribution while, with the GaussSum software, the percentage contribution of the frontier orbitals at each transition of the electronic absorption spectrum was established. The obtained results indicated that optimized geometry could well reflect the molecular structural parameters from SC-XRD. Theoretical data obtained for the vibrational analysis and NMR spectra are consistent with experimental data.

  20. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-05

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Crystal and molecular structure of N-(4-nitrophenyl)-β-alanine—Its vibrational spectra and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Marchewka, M. K.; Drozd, M.; Janczak, J.

    2011-08-01

    The N-(4-nitrophenyl)-β-alanine in crystalline form directly by the addition of 4-nitroaniline to the acrylic acid in aqueous solution has been obtained. The title β-alanine derivative crystallizes in the P2 1/ c space group of monoclinic system with four molecules per unit cell. The X-ray geometry of β-alanine derivative molecule has been compared with those obtained by molecular orbital calculations corresponding to the gas phase. In the crystal the molecules related by an inversion center interact via symmetrically equivalent O-H⋯O hydrogen bonds with O⋯O distance of 2.656(2) Å forming a dimeric structure. The dimers of β-alanine derivative weakly interact via N-H⋯O hydrogen bonds between the H atom of β-amine groups and one of O atom of nitro groups. The room temperature powder vibrational (infrared and Raman) measurements are in accordance with the X-ray analysis. In aqueous solution of 4-nitroaniline and acrylic acid, the double C dbnd C bond of vinyl group of acrylic acid breaks as result of 4-nitroaniline addition.

  2. Purification and characterization of the tween-hydrolyzing esterase of Mycobacterium smegmatis.

    PubMed Central

    Tomioka, H

    1983-01-01

    An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme. PMID:6885719

  3. Heterologous expression and characterization of a glucose-stimulated β-glucosidase from the termite Neotermes koshunensis in Aspergillus oryzae.

    PubMed

    Uchima, Cristiane Akemi; Tokuda, Gaku; Watanabe, Hirofumi; Kitamoto, Katsuhiko; Arioka, Manabu

    2011-03-01

    Neotermes koshunensis is a lower termite that secretes endogenous β-glucosidase in the salivary glands. This β-glucosidase (G1NkBG) was successfully expressed in Aspergillus oryzae. G1NkBG was purified to homogeneity from the culture supernatant through ammonium sulfate precipitation and anion exchange, hydrophobic, and gel filtration chromatographies with a 48-fold increase in purity. The molecular mass of the native enzyme appeared as a single band at 60 kDa after gel filtration analysis, indicating that G1NkBG is a monomeric protein. Maximum activity was observed at 50 °C with an optimum pH at 5.0. G1NkBG retained 80% of its maximum activity at temperatures up to 45 °C and lost its activity at temperatures above 55 °C. The enzyme was stable from pH 5.0 to 9.0. G1NkBG was most active towards laminaribiose and p-nitrophenyl-β-D-fucopyranoside. Cellobiose, as well as cello-oligosaccharides, was also well hydrolyzed. The enzyme activity was slightly stimulated by Mn(2+) and glycerol. The K(m) and V(max) values were 0.77 mM and 16 U/mg, respectively, against p-nitrophenyl-β-D-glucopyranoside. An unusual finding was that G1NkBG was stimulated by 1.3-fold when glucose was present in the reaction mixture at a concentration of 200 mM. These characteristics, particularly the stimulation of enzyme activity by glucose, make G1NkBG of great interest for biotechnological applications, especially for bioethanol production.

  4. The ligand effect on the hydrolytic reactivity of Zn(II) complexes toward phosphate diesters.

    PubMed

    Bonfá, Lodovico; Gatos, Maddalena; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2003-06-16

    The catalytic effects of the Zn(II) complexes of a series of poliaminic ligands in the hydrolysis of the activated phosphodiesters bis-p-nitrophenyl phosphate (BNP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNP) have been investigated. The reactions show first-order rate dependency on both substrate and metal ion complex and a pH dependence which is diagnostic of the acid dissociation of the reactive species. The mechanism of the metal catalyzed transesterification of HPNP has been assessed by solvent isotopic kinetic effect studies and involves the intramolecular nucleophilic attack of the substrate alcoholic group, activated by metal ion coordination. The intrinsic reactivity of the different complexes is controlled by the nature and structure of the ligand: complexes of tridentate ligands, particularly if characterized by a facial coordination mode, are more reactive than those of tetradentate ligands which can hardly allow binding sites for the substrate. In the case of tridentate ligands that form complexes with a facial coordination mode, a linear Brønsted correlation between the reaction rate (log k) and the pK(a) of the active nucleophile is obtained. The beta(nuc) values are 0.75 for the HPNP transesterification and 0.20 for the BNP hydrolysis. These values are indicated as the result of the combination of two opposite Lewis acid effects of the Zn(II) ion: the activation of the substrate and the efficiency of the metal coordinated nucleophile. The latter factor apparently prevails in determining the intrinsic reactivity of the Zn(II) complexes.

  5. Biochemical analysis of a papain-like protease isolated from the latex of Asclepias curassavica L.

    PubMed

    Liggieri, Constanza; Obregon, Walter; Trejo, Sebastian; Priolo, Nora

    2009-02-01

    Most of the species belonging to Asclepiadaceae family usually secrete an endogenous milk-like fluid in a network of laticifer cells in which sub-cellular organelles intensively synthesize proteins and secondary metabolites. A new papain-like endopeptidase (asclepain c-II) has been isolated and characterized from the latex extracted from petioles of Asclepias curassavica L. (Asclepiadaceae). Asclepain c-II was the minor proteolytic component in the latex, but showed higher specific activity than asclepain c-I, the main active fraction previously studied. Both enzymes displayed quite distinct biochemical characteristics, confirming that they are different enzymes. Crude extract was purified by cation exchange chromatography (FPLC). Two active fractions, homogeneous by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and mass spectrometry, were isolated. Asclepain c-II displayed a molecular mass of 23,590 Da, a pI higher than 9.3, maximum proteolytic activity at pH 9.4-10.2, and showed poor thermostability. The activity of asclepain c-II is inhibited by cysteine proteases inhibitors like E-64, but not by any other protease inhibitors such as 1,10-phenantroline, phenylmethanesulfonyl fluoride, and pepstatine. The Nterminal sequence (LPSFVDWRQKGVVFPIRNQGQCGSCWTFSA) showed a high similarity with those of other plant cysteine proteinases. When assayed on N-alpha-CBZ-amino acid-p-nitrophenyl esters, the enzyme exhibited higher preference for the glutamine derivative. Determinations of kinetic parameters were performed with N-alpha-CBZ-L-Gln-p-nitrophenyl ester as substrate: K(m)=0.1634 mM, k(cat)=121.48 s(-1), and k(cat)/K(m)=7.4 x 10(5) s(-1)/mM.

  6. Environmental Compliance Assessment System (ECAS).

    DTIC Science & Technology

    1993-03-01

    1.2-Dibromoethane: EDB 50 66. 1 .2-Dibromno-3- chloropropane : DBCP 67. 2.3-Dibromopropionitnile 68. Diacetoxypropane: DAP 2- 11 Appendix 2- 1 (continued...Azinphopsmethyl, Guthion 14. 1 .2-Dibromoethane 15. 1 2-Dibromno-3- chloropropane : DBCP 16. 0.0-Diethyl O-p-nitrophenyl thiophosphate: Parathion 17...I ý Arrny Regulation 200- 1 , one unified Army-wide D T IC .rntmechanism, The resulting system comrbines EL.ECT E 011 diDepartment of Defense (DOD), and

  7. Antidiarrheal and antinociceptive activities of ethanol extract and its chloroform and pet ether fraction of Phrynium imbricatum (Roxb.) leaves in mice.

    PubMed

    Hossain, Mohammed Munawar; Kabir, Mohammad Shah Hafez; Dinar, Md Abu Monsur; Arman, Md Saiful Islam; Rahman, Md Mominur; Hosen, S M Zahid; Dash, Raju; Uddin, Mir Muhammad Nasir

    2017-09-26

    The objective of the study was to evaluate the antidiarrheal and antinociceptive activities of ethanol extract and its chloroform and pet ether fraction of Phrynium imbricatum (Roxb.) leaves in mice. In the present study, the dried leaves of P. imbricatum were subjected to extraction with ethanol, and then it was fractioned by chloroform and pet ether solvent. Antidiarrheal effects were tested by using castor oil-induced diarrhea, castor oil-induced enteropooling, and gastrointestinal transit test. Antinociceptive activity was evaluated by using the acetic acid-induced writhing test and formalin-induced paw licking test. The standard drug loperamide (5 mg/kg) showed significant (p<0.001) inhibitory activity against castor oil-induced diarrhea, in which all the examined treatments decreased the frequency of defecation and were found to possess an anti-castor oil-induced enteropooling effect in mice by reducing both weight and volume of intestinal content significantly, and reducing the propulsive movement in castor oil-induced gastrointestinal transit using charcoal meal in mice. The results showed that the ethanol extract of P. imbricatum leaves has significant dose-dependent antinociceptive activity, and among its two different fractions, the pet ether fraction significantly inhibited the abdominal writhing induced by acetic acid and the licking times in formalin test at both phases. These findings suggest that the plant may be a potential source for the development of a new antinociceptive drug and slightly suitable for diarrhea, as it exhibited lower activity. Our observations resemble previously published data on P. imbricatum leaves.

  8. Synthesis and radical scavenging activity of 6-hydroxyl-4-methylcoumarin and its derivatives

    NASA Astrophysics Data System (ADS)

    Jumal, Juliana; Ayomide, Adetunji Fridaos

    2018-06-01

    Four compounds of coumarin derivatives namely 6-hydroxyl-4-methylcoumarin (I), 6-hydroxyl-4-methyl-5-(p-nitrophenyl azocoumarin) (II), 6-hydroxyl-4-methyl-5,7-(bis-p-nitrophenyl azocoumarin) (III) and 6-hydroxyl-4-methyl-5,7-(bis-p-chlorophenyl azocoumarin) (IV) were successfully synthesized. These compounds were prepared by reacting hydroquinone with ethylacetoacetate and selected anilines which are chloro and nitro aniline. All synthesized compounds were characterized by CHN micro-elemental analysis, 1H Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR) spectroscopic methods. The infrared spectra of these compounds exhibited five important stretching vibrations: ʋ(-OH), ʋ(C=O), ʋ(C=C), ʋ(C-O) and ʋ(C-N) at 3441-3359 cm-1, 1604-1632 cm-1, 1581-1496 cm-1, 1331-1225 cm-1, 1251-1109 cm-1, respectively. 1H NMR spectra of these compounds show the presence of proton aromatic, proton methyl and proton pyrone ring with the chemical shift at δH 7.00-8.70 ppm, δH 2.20-2.50 ppm and δH 6.10-6.90 ppm, respectively. CHN analysis results of all compounds are in good agreement with the calculated values. All the synthesized compounds were evaluated for their antioxidant activity using DPPH method and ascorbic acid used as the standard. UV-Vis spectroscopic technique was used to investigate the absorbance of these compounds. Compound (II) shows high antioxidant activities compared to compound (I), (III) and (IV) which show moderate to low activities.

  9. Est16, a New Esterase Isolated from a Metagenomic Library of a Microbial Consortium Specializing in Diesel Oil Degradation.

    PubMed

    Pereira, Mariana Rangel; Mercaldi, Gustavo Fernando; Maester, Thaís Carvalho; Balan, Andrea; Lemos, Eliana Gertrudes de Macedo

    2015-01-01

    Lipolytic enzymes have attracted attention from a global market because they show enormous biotechnological potential for applications such as detergent production, leather processing, cosmetics production, and use in perfumes and biodiesel. Due to the intense demand for biocatalysts, a metagenomic approach provides methods of identifying new enzymes. In this study, an esterase designated as Est16 was selected from 4224 clones of a fosmid metagenomic library, revealing an 87% amino acid identity with an esterase/lipase (accession number ADM63076.1) from an uncultured bacterium. Phylogenetic studies showed that the enzyme belongs to family V of bacterial lipolytic enzymes and has sequence and structural similarities with an aryl-esterase from Pseudomonas fluorescens and a patented Anti-Kazlauskas lipase (patent number US20050153404). The protein was expressed and purified as a highly soluble, thermally stable enzyme that showed a preference for basic pH. Est16 exhibited activity toward a wide range of substrates and the highest catalytic efficiency against p-nitrophenyl butyrate and p-nitrophenyl valerate. Est16 also showed tolerance to the presence of organic solvents, detergents and metals. Based on molecular modeling, we showed that the large alpha-beta domain is conserved in the patented enzymes but not the substrate pocket. Here, it was demonstrated that a metagenomic approach is suitable for discovering the lipolytic enzyme diversity and that Est16 has the biotechnological potential for use in industrial processes.

  10. Bactericidal effect of extracts and metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis causing dental plaque and periodontal inflammatory diseases.

    PubMed

    Patra, Jayanta Kumar; Kim, Eun Sil; Oh, Kyounghee; Kim, Hyeon-Jeong; Dhakal, Radhika; Kim, Yangseon; Baek, Kwang-Hyun

    2015-04-08

    The mouth cavity hosts many types of anaerobic bacteria, including Streptococcus mutans and Porphyromonas gingivalis, which cause periodontal inflammatory diseases and dental caries. The present study was conducted to evaluate the antibacterial potential of extracts of Robinia pseudoacacia and its different fractions, as well as some of its natural compounds against oral pathogens and a nonpathogenic reference bacteria, Escherichia coli. The antibacterial activity of the crude extract and the solvent fractions (hexane, chloroform, ethyl acetate and butanol) of R. pseudoacacia were evaluated against S. mutans, P. gingivalis and E. coli DH5α by standard micro-assay procedure using conventional sterile polystyrene microplates. The results showed that the crude extract was more active against P. gingivalis (100% growth inhibition) than against S. mutans (73% growth inhibition) at 1.8 mg/mL. The chloroform and hexane fractions were active against P. gingivalis, with 91 and 97% growth inhibition, respectively, at 0.2 mg/mL. None of seven natural compounds found in R. pseudoacacia exerted an antibacterial effect on P. gingivalis; however, fisetin and myricetin at 8 µg/mL inhibited the growth of S. mutans by 81% and 86%, respectively. The crude extract of R. pseudoacacia possesses bioactive compounds that could completely control the growth of P. gingivalis. The antibiotic activities of the hexane and chloroform fractions suggest that the active compounds are hydrophobic in nature. The results indicate the effectiveness of the plant in clinical applications for the treatment of dental plaque and periodontal inflammatory diseases and its potential use as disinfectant for various surgical and orthodontic appliances.

  11. In vitro evaluation of the effectiveness of ProTaper universal rotary retreatment system for gutta-percha removal with or without a solvent.

    PubMed

    Takahashi, Cristiane Midori; Cunha, Rodrigo Sanches; de Martin, Alexandre Sigrist; Fontana, Carlos Eduardo; Silveira, Cláudia Fernandes M; da Silveira Bueno, Carlos Eduardo

    2009-11-01

    Effective removal of gutta-percha in endodontic retreatment is a significant factor to ensure a favorable outcome from failed procedures. The purpose of this study was to evaluate the efficacy of a nickel-titanium rotary instrument system with or without a solvent versus stainless steel hand files for gutta-percha removal. Forty extracted human maxillary anterior teeth were prepared and filled. They were divided into 4 groups: Gates-Glidden and K-files, Gates-Glidden and K-files with chloroform, ProTaper Universal rotary retreatment system, and ProTaper Universal rotary retreatment system with chloroform. The operating time was recorded. The teeth were longitudinally sectioned and photographed. The images were analyzed and the filling remnants were quantified by using the IMAGE TOOL software. With Kruskall-Wallis test, statistical analysis showed that there was no significant difference between the techniques in regard to the amount of the endodontic filling remnants (P < .05); however, the ProTaper Universal rotary retreatment system was faster than the hand files (P < .05). All of the techniques proved helpful for the removal of endodontic filling material, and they were similar in material remaining after retreatment, but the ProTaper Universal rotary retreatment system without chloroform was faster.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuskey, S.M.; Schamhart, D.H.J.; Chase, T. Jr.

    A simple technique, using an esculin-ferric salt visualization system, for selective isolation of mutants of Trichoderma reesei was employed. The ..beta..-glucosidase crude enzyme complexes of the 17 mutants isolated from some 66,000 colonies screened were characterized. Type of inhibition (competitive, noncompetitive) by glucose, and kinetic parameters K/sub m/ (mM pNPG), V/sub max/ (units/mg extracellular protein), and K/sub i/ slopes (mM glucose) were determined for the mutants using p-nitrophenyl ..beta..-D-glucoside (pNPG) as substrate. All the isolates were inhibited competitively by glucose, but certain of them were less sensitive than parent and wild-type to inhibition by glucose. 5 figures, 1 table.

  13. Preparation of Biopolyol by Solvolysis Liquefaction of Oil Palm Mesocarp Fibre using Polyhydric Alchohol

    NASA Astrophysics Data System (ADS)

    Kormin, Shaharuddin; Rus, Anika Zafiah M.; Azahari, M. Shafiq M.

    2017-08-01

    Liquefied oil palm mesocarp fibre (LOPMF) is a promising natural material that can be used as biopolyol of polyurethane foam. The aim of this study was to utilizing solvolysis liquefaction conversion technology of oil palm mesocarp fibre (OPMF) for polyurethane (PU) foam. LOPMF was obtained with liquefaction of fibre in polyhydric alchohol (PA) such as ethylene glycol (EG), polyethylene glycol (PEG) and glycerol (GLY) as liquefaction solvent and sulphuric acid (H2SO4) in three different OPMF/PA ratio (1/2, 1/3 and 1/4) in conventional glass reactor. During the liquefaction, cellulose, semi-cellulose and lignin are decomposed, which results in changes of acid value and hydroxyl value. Liquefied OPMF and residues were characterized by Fourier transform infrared (FT-IR) spectroscopy. The results revealed that almost 50% of the OPMF converted into biopolyol product within 2 hours with OPMF/PA ratio of 1/4. Biopolyol produced under different condition showed viscosities from 210 to 450 Pa.s. The hydroxyl and acid values of the liquefied OPMF varied with the liquefied conditions. It was observed that with an increase in the liquefaction solvent (PA) amount in the mixture resulted in a high acid value and hydroxyl value for the OPMF. High reaction temperature combining with low OPMF material to solvent ratio resulted low hydroxyl number of LOPMF. The result in this study showed that biopolyol was suitable monomer for polyurethane synthesis.

  14. LIPID METHODOLOGY AND POLLUTANT NORMALIZATION RELATIONSHIPS FOR NEUTRAL NONPOLAR ORGANIC POLLUTANTS

    EPA Science Inventory

    This work compares the ability of hexane and chloroform with methanol (C/M) to extract lipid, polychlorinated biphenyls (PCBs), and p,p'-DDE from white croaker (Geneonus lineatus) muscle tissue. Hexane extracted on average 25% of the lipid and 73% of the PCB congeners that were e...

  15. Mycoplasma hyopneumoniae p65 Surface Lipoprotein Is a Lipolytic Enzyme with a Preference for Shorter-Chain Fatty Acids

    PubMed Central

    Schmidt, Jono A.; Browning, Glenn F.; Markham, Philip F.

    2004-01-01

    Mycoplasma hyopneumoniae is the most significant bacterial pathogen of the respiratory tract of swine. p65 is an immunodominant surface lipoprotein of M. hyopneumoniae that is specifically recognized during disease. Analysis of the translated amino acid sequence of the gene encoding p65 revealed similarity to the GDSL family of lipolytic enzymes. To examine the lipolytic activity of p65, the gene was cloned and expressed in Escherichia coli after truncation of the prokaryotic lipoprotein signal sequence and mutagenesis of the mycoplasma TGA tryptophan codons. After treatment with thrombin, the recombinant glutathione S-transferase (GST)-p65 protein yielded a 66-kDa fusion protein cleavage product corresponding in size to the mature p65 protein. The esterase activity of recombinant GST-p65 was indicated by the formation of a cleared zone on tributyrin agar plates and the hydrolysis of p-nitrophenyl esters of caproate (pNPC) and p-nitrophenyl esters of palmitate (pNPP). Lipase activity was indicated by the hydrolysis of the artificial triglyceride 1,2-O-dilauryl-rac-glycero-3-glutaric acid resorufin ester. Using pNPC and pNPP as substrates, recombinant GST-p65 had optimal activity between pHs 9.2 and 10.2 and at a temperature higher than 39°C. Calcium ions did not increase the activity of recombinant GST-p65. Rabbit anti-p65 antibodies inhibited the activity of recombinant GST-p65 and also inhibited the growth of M. hyopneumoniae in vitro. Examination of the kinetic parameters of recombinant GST-p65 for the hydrolysis of pNPC and pNPP indicated a preference for the shorter fatty acid chain of pNPC. The physiological and/or pathogenic role of mycoplasma lipolytic enzymes has not been determined, but they are likely to play an important role in mycoplasmas' nutritional requirements for long-chain fatty acids and may reduce the function of lung surfactants in mycoplasma-induced respiratory diseases. This is the first report of the lipolytic activity of a lipid-modified surface immunogen of a mycoplasma. PMID:15317784

  16. Inhibition of aflatoxin biosynthesis in Aspergillus flavus by phenolic compounds extracted of Piper betle L.

    PubMed

    Yazdani, Darab; Mior Ahmad, Zainal Abidin; Yee How, Tan; Jaganath, Indu Bala; Shahnazi, Sahar

    2013-12-01

    Food contamination by aflatoxins is an important food safety concern for agricultural products. In order to identify and develop novel antifungal agents, several plant extracts and isolated compounds have been evaluated for their bioactivities. Anti-infectious activity of Piper betle used in traditional medicine of Malaysia has been reported previously. Crude methanol extract from P. betel powdered leaves was partitioned between chloroform and water. The fractions were tested against A. flavus UPMC 89, a strong aflatoxin producing strain. Inhibition of mycelial growth and aflatoxin biosynthesis were tested by disk diffusion and macrodillution techniques, respectively. The presence of aflatoxin was determined by thin-layer chromatography (TLC) and fluorescence spectroscopy techniques using AFB1 standard. The chloroform soluble compounds were identified using HPLC-Tandem mass spectrometry technique. The results, evaluated by measuring the mycelial growth and quantification of aflatoxin B1(AFLB1) production in broth medium revealed that chloroform soluble compounds extract from P. betle dried leaves was able to block the aflatoxin biosynthesis pathway at concentration of 500μg/ml without a significant effect on mycelium growth. In analyzing of this effective fractions using HPLC-MS(2) with ESI ionization technique, 11 phenolic compounds were identified. The results showed that the certain phenolic compounds are able to decline the aflatoxin production in A. flavus with no significant effect on the fungus mycelia growth. The result also suggested P. betle could be used as potential antitoxin product.

  17. Chlorination and chloramination of aminophenols in aqueous solution: oxidant demand and by-product formation.

    PubMed

    Mehrez, O Abou; Dossier-Berne, F; Legube, B

    2015-01-01

    Chlorination and monochloramination of aminophenols (AP) were carried out in aqueous solution at 25°C and at pH 8.5. Oxidant demand and disinfection by-product formation were determined in excess of oxidant. Experiments have shown that chlorine consumption of AP was 40-60% higher than monochloramine consumption. Compared with monochloramination, chlorination of AP formed more chloroform and haloacetic acids (HAA). Dichloroacetic acid was the major species of HAA. Chloroform and HAA represented, respectively, only 1-8% and 14-15% of adsorbable organic halides (AOX) by monochloramination but up to 29% and 39% of AOX by chlorination.

  18. In vitro and in vivo anti-malarial activity of plants from the Brazilian Amazon.

    PubMed

    Lima, Renata B S; Rocha e Silva, Luiz F; Melo, Marcia R S; Costa, Jaqueline S; Picanço, Neila S; Lima, Emerson S; Vasconcellos, Marne C; Boleti, Ana Paula A; Santos, Jakeline M P; Amorim, Rodrigo C N; Chaves, Francisco C M; Coutinho, Julia P; Tadei, Wanderli P; Krettli, Antoniana U; Pohlit, Adrian M

    2015-12-18

    The anti-malarials quinine and artemisinin were isolated from traditionally used plants (Cinchona spp. and Artemisia annua, respectively). The synthetic quinoline anti-malarials (e.g. chloroquine) and semi-synthetic artemisinin derivatives (e.g. artesunate) were developed based on these natural products. Malaria is endemic to the Amazon region where Plasmodium falciparum and Plasmodium vivax drug-resistance is of concern. There is an urgent need for new anti-malarials. Traditionally used Amazonian plants may provide new treatments for drug-resistant P. vivax and P. falciparum. Herein, the in vitro and in vivo antiplasmodial activity and cytotoxicity of medicinal plant extracts were investigated. Sixty-nine extracts from 11 plant species were prepared and screened for in vitro activity against P. falciparum K1 strain and for cytotoxicity against human fibroblasts and two melanoma cell lines. Median inhibitory concentrations (IC50) were established against chloroquine-resistant P. falciparum W2 clone using monoclonal anti-HRPII (histidine-rich protein II) antibodies in an enzyme-linked immunosorbent assay. Extracts were evaluated for toxicity against murine macrophages (IC50) and selectivity indices (SI) were determined. Three extracts were also evaluated orally in Plasmodium berghei-infected mice. High in vitro antiplasmodial activity (IC50 = 6.4-9.9 µg/mL) was observed for Andropogon leucostachyus aerial part methanol extracts, Croton cajucara red variety leaf chloroform extracts, Miconia nervosa leaf methanol extracts, and Xylopia amazonica leaf chloroform and branch ethanol extracts. Paullinia cupana branch chloroform extracts and Croton cajucara red variety leaf ethanol extracts were toxic to fibroblasts and or melanoma cells. Xylopia amazonica branch ethanol extracts and Zanthoxylum djalma-batistae branch chloroform extracts were toxic to macrophages (IC50 = 6.9 and 24.7 µg/mL, respectively). Andropogon leucostachyus extracts were the most selective (SI >28.2) and the most active in vivo (at doses of 250 mg/kg, 71% suppression of P. berghei parasitaemia versus untreated controls). Ethnobotanical or ethnopharmacological reports describe the anti-malarial use of these plants or the antiplasmodial activity of congeneric species. No antiplasmodial activity has been demonstrated previously for the extracts of these plants. Seven plants exhibit in vivo and or in vitro anti-malarial potential. Future work should aim to discover the anti-malarial substances present.

  19. Subchronic chloroform priming protects mice from a subsequently administered lethal dose of chloroform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philip, Binu K.; Anand, Sathanandam S.; Palkar, Prajakta S.

    2006-10-01

    Protection offered by pre-exposure priming with a small dose of a toxicant against the toxic and lethal effects of a subsequently administered high dose of the same toxicant is autoprotection. Although autoprotection has been extensively studied with diverse toxicants in acute exposure regimen, not much is known about autoprotection after priming with repeated exposure. The objective of this study was to investigate this concept following repeated exposure to a common water contaminant, chloroform. Swiss Webster (SW) mice, exposed continuously to either vehicle (5% Emulphor, unprimed) or chloroform (150 mg/kg/day po, primed) for 30 days, were challenged with a normally lethalmore » dose of chloroform (750 mg chloroform/kg po) 24 h after the last exposure. As expected, 90% of the unprimed mice died between 48 and 96 h after administration of the lethal dose in contrast to 100% survival of mice primed with chloroform. Time course studies indicated lower hepato- and nephrotoxicity in primed mice as compared to unprimed mice. Hepatic CYP2E1, glutathione levels (GSH), and covalent binding of {sup 14}C-chloroform-derived radiolabel did not differ between livers of unprimed and primed mice after lethal dose exposure, indicating that protection in liver is neither due to decreased bioactivation nor increased detoxification. Kidney GSH and glutathione reductase activity were upregulated, with a concomitant reduction in oxidized glutathione in the primed mice following lethal dose challenge, leading to decreased renal covalent binding of {sup 14}C-chloroform-derived radiolabel, in the absence of any change in CYP2E1 levels. Buthionine sulfoximine (BSO) intervention led to 70% mortality in primed mice challenged with lethal dose. These data suggest that higher detoxification may play a role in the lower initiation of kidney injury observed in primed mice. Exposure of primed mice to a lethal dose of chloroform led to 40% lower chloroform levels (AUC{sub 15-360min}) in the systemic circulation. Exhalation of {sup 14}C-chloroform was unchanged in primed as compared to unprimed mice (AUC{sub 1-6h}). Urinary excretion of {sup 14}C-chloroform was higher in primed mice after administration of the lethal dose. However, neither slightly higher urinary elimination nor unchanged expiration can account for the difference in systemic levels of chloroform. Liver and kidney regeneration was inhibited by the lethal dose in unprimed mice leading to progressive injury, organ failure, and 90% mortality. In contrast, sustained and highly stimulated compensatory hepato- and nephrogenic repair prevented the progression of injury resulting in 100% survival of primed mice challenged with the lethal dose. These findings affirm the critical role of tissue regeneration and favorable detoxification (only in kidney) of the lethal dose of chloroform in subchronic chloroform priming-induced autoprotection.« less

  20. Predictors of blood trihalomethane concentrations in NHANES 1999-2006.

    PubMed

    Riederer, Anne M; Dhingra, Radhika; Blount, Benjamin C; Steenland, Kyle

    2014-07-01

    Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999-2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%-76% in blood and 38%-52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002-2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study.

  1. Degradation of bis-p-nitrophenyl phosphate using zero-valent iron nanoparticles

    NASA Astrophysics Data System (ADS)

    Valle-Orta, Maiby; Díaz, David; Zumeta Dubé, Inti; Ortiz Quiñonez, José Luis; Saldivar Guerrero, Rubén

    2017-06-01

    Phosphate esters are employed in some agrochemical formulations and have long life time in the Environment. They are neurotoxic to mammals and it is very difficult to hydrolyze them. It is easy to find papers in the literature dealing with transition metal complexes used in the hydrolysis processes of organophosphorous compounds. However, there are few reports related with degradation of phosphate esters with inorganic nanoparticles. In this work bis-4-nitrophenyl phosphate (BNPP) was used as an agrochemical agent model. The BNPP interaction with zero-valent iron nanoparticles (ZVI NPs), in aqueous media, was searched. The concentration of BNPP was 1000 times higher than the ZVI NPs concentration. The average size of the used iron nanoparticles was 10.2 ± 3.2 nm. The BNPP degradation process was monitored by means of UV-visible method. Initially, the BNPP hydrolysis happens through the P-O bonds breaking-off under the action of the ZVI NPs. Subsequently, the nitro groups were reduced to amine groups. The overall process takes place in 10 minutes. The reaction products were identified employing standard substances in adequate concentrations. The iron by-products were isolated and characterized by X-RD. These iron derivatives were identified as magnetite (Fe3O4) and/or maghemite (γ-Fe2O3) and lepidocrocite (γ-FeOOH). A suggested BNPP degradation mechanism will be discussed.

  2. Bacterial Cellular Materials as Precursors of Chloroform

    NASA Astrophysics Data System (ADS)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  3. Structural Characterization and Function Determination of a Nonspecific Carboxylate Esterase from the Amidohydrolase Superfamily with a Promiscuous Ability To Hydrolyze Methylphosphonate Esters

    PubMed Central

    2015-01-01

    The uncharacterized protein Rsp3690 from Rhodobacter sphaeroides is a member of the amidohydrolase superfamily of enzymes. In this investigation the gene for Rsp3690 was expressed in Escherichia coli and purified to homogeneity, and the three-dimensional structure was determined to a resolution of 1.8 Å. The protein folds as a distorted (β/α)8-barrel, and the subunits associate as a homotetramer. The active site is localized to the C-terminal end of the β-barrel and is highlighted by the formation of a binuclear metal center with two manganese ions that are bridged by Glu-175 and hydroxide. The remaining ligands to the metal center include His-32, His-34, His-207, His-236, and Asp-302. Rsp3690 was shown to catalyze the hydrolysis of a wide variety of carboxylate esters, in addition to organophosphate and organophosphonate esters. The best carboxylate ester substrates identified for Rsp3690 included 2-naphthyl acetate (kcat/Km = 1.0 × 105 M–1 s–1), 2-naphthyl propionate (kcat/Km = 1.5 × 105 M–1 s–1), 1-naphthyl acetate (kcat/Km = 7.5 × 103 M–1 s–1), 4-methylumbelliferyl acetate (kcat/Km = 2.7 × 103 M–1 s–1), 4-nitrophenyl acetate (kcat/Km = 2.3 × 105 M–1 s–1), and 4-nitrophenyl butyrate (kcat/Km = 8.8 × 105 M–1 s–1). The best organophosphonate ester substrates included ethyl 4-nitrophenyl methylphosphonate (kcat/Km = 3.8 × 105 M–1 s–1) and isobutyl 4-nitrophenyl methylphosphonate (kcat/Km = 1.1 × 104 M–1 s–1). The (SP)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate was hydrolyzed 10 times faster than the less toxic (RP)-enantiomer. The high inherent catalytic activity of Rsp3690 for the hydrolysis of the toxic enantiomer of methylphosphonate esters make this enzyme an attractive target for directed evolution investigations. PMID:24832101

  4. Case-control study of multiple chemical sensitivity, comparing haematology, biochemistry, vitamins and serum volatile organic compound measures.

    PubMed

    Baines, Cornelia Johanna; McKeown-Eyssen, Gail Elizabeth; Riley, Nicole; Cole, David Edward C; Marshall, Lynn; Loescher, Barry; Jazmaji, Vartouhi

    2004-09-01

    Multiple chemical sensitivity (MCS), although poorly understood, is associated with considerable morbidity. To investigate potential biological mechanisms underlying MCS in a case-control study. Two hundred and twenty-three MCS cases and 194 controls (urban females, aged 30-64 years) fulfilled reproducible eligibility criteria with discriminant validity. Routine laboratory results and serum levels of volatile organic compounds (VOCs) were compared. Dose-response relationships, a criterion for causality, were examined linking exposures to likelihood of case status. Routine laboratory investigations revealed clinically unimportant case-control differences in means. Confounder-adjusted odds ratios (OR) showed MCS was negatively associated with lymphocyte count and total plasma homocysteine, positively associated with mean cell haemoglobin concentration, alanine aminotransferase and serum vitamin B6, and not associated with thyroid stimulating hormone, folate or serum vitamin B12. More cases than controls had detectable serum chloroform (P = 0.001) with the OR for detectability 2.78 (95% confidence interval = 1.73-4.48, P < 0.001). Chloroform levels were higher in cases. However, cases had significantly lower means of detectable serum levels of ethylbenzene, m&p-xylene, 3-methylpentane and hexane, and means of all serum levels of 1,3,5- and 1,2,3-trimethylbenzene, 2- and 3-methylpentane, and m&p-xylene. Our findings are inconsistent with proposals that MCS is associated with vitamin deficiency or thyroid dysfunction, but the association of lower lymphocyte counts with an increased likelihood of MCS is consistent with theories of immune dysfunction in MCS. Whether avoidance of exposures or different metabolic pathways in cases explain the observed lower VOC levels or the higher chloroform levels should be investigated.

  5. Addition reaction of methyl cinnamate with 2-amino-4- nitrophenol

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Rakhman Wibowo, Fajar; Pranoto; Robingatun Isnaeni, Siti; Ratna Kumala Sari, Meiyanti; Handayani, Sekar

    2016-02-01

    A novel compound which have one N-H fragment and nitrophenyl group has been designed and synthesized from cinnamaldehyde. The reaction was conducted in 3 step reactions to give the final product. Firstly, cinnamaldehyde was converted into cinnamic acid, which was then esterified with methyl alcohol to obtained methyl cinnamate. The last step was the addition reaction between methyl cinnamate and 2-amino-4-nitrophenol to give a cinnamaldehyde derivative, namely methyl-3-(2-hidroksi-5-nitrophenyl amino)-3- phenylpropanoate.

  6. GTE_PEMTB_P3B Parameters 17

    Atmospheric Science Data Center

    2013-02-19

    ... NMHC/Halocarbons/Alkyl Nitrates: Methyl Chloride F-12 F-114 F-11 HCFC-141B HCFC-134a HCFC-22 ... 2,2,4-trimethylpentane 2,3,4-trimethylpethane Methylene Chloride Chloroform Perchloroethylene HFC-134A HCFC22 ...

  7. Acute chloroform ingestion successfully treated with intravenously administered N-acetylcysteine.

    PubMed

    Dell'Aglio, Damon M; Sutter, Mark E; Schwartz, Michael D; Koch, David D; Algren, D A; Morgan, Brent W

    2010-06-01

    Chloroform, a halogenated hydrocarbon, causes central nervous system depression, cardiac arrhythmias, and hepatotoxicity. We describe a case of chloroform ingestion with a confirmatory serum level and resultant hepatotoxicity successfully treated with intravenously administered N-acetylcysteine (NAC). A 19-year-old man attempting suicide ingested approximately 75 mL of chloroform. He was unresponsive and intubated upon arrival. Intravenously administered NAC was started after initial stabilization was complete. His vital signs were normal. Admission laboratory values revealed normal serum electrolytes, AST, ALT, PT, BUN, creatinine, and bilirubin. Serum ethanol level was 15 mg/dL, and aspirin and acetaminophen were undetectable. The patient was extubated but developed liver function abnormalities with a peak AST of 224 IU/L, ALT of 583 IU/L, and bilirubin level reaching 16.3 mg/dL. NAC was continued through hospital day 6. Serum chloroform level obtained on admission was 91 μg/mL. The patient was discharged to psychiatry without known sequelae and normal liver function tests. The average serum chloroform level in fatal cases of inhalational chloroform poisoning was 64 μg/mL, significantly lower than our patient. The toxicity is believed to be similar in both inhalation and ingestion routes of exposure, with mortality predominantly resulting from anoxia secondary to central nervous system depression. Hepatocellular toxicity is thought to result from free radical-induced oxidative damage. Previous reports describe survival after treatment with orally administered NAC, we report the first use of intravenously administered NAC for chloroform ingestion. Acute oral ingestion of chloroform is extremely rare. Our case illustrates that with appropriate supportive care, patients can recover from chloroform ingestion, and intravenously administered NAC may be of benefit in such cases.

  8. A Novel Cold-Active Lipase from Candida albicans: Cloning, Expression and Characterization of the Recombinant Enzyme

    PubMed Central

    Lan, Dong-Ming; Yang, Ning; Wang, Wen-Kai; Shen, Yan-Fei; Yang, Bo; Wang, Yong-Hua

    2011-01-01

    A novel lipase gene lip5 from the yeast Candida albicans was cloned and sequenced. Alignment of amino acid sequences revealed that 86–34% identity exists with lipases from other Candida species. The lipase and its mutants were expressed in the yeast Pichia pastoris, where alternative codon usage caused the mistranslation of 154-Ser and 293-Ser as leucine. 154-Ser to leucine resulted in loss of expression of Lip5, and 293-Ser to leucine caused a marked reduction in the lipase activity. Lip5-DM, which has double mutations that revert 154 and 293 to serine residues, showed good lipase activity, and was overexpressed and purified by (NH4)2SO4 precipitation and ion-exchange chromatography. The pure Lip5-DM was stable at low temperatures ranging from 15–35 °C and pH 5–9, with the optimal conditions being 15–25 °C and pH 5–6. The activation energy of recombinant lipase was 8.5 Kcal/mol between 5 and 25 °C, suggesting that Lip5-DM was a cold–active lipase. Its activity was found to increase in the presence of Zn2+, but it was strongly inhibited by Fe2+, Fe3+, Hg2+ and some surfactants. In addition, the Lip5-DM could not tolerate water-miscible organic solvents. Lip5-DM exhibited a preference for the short-and medium-chain length p-nitrophenyl (C4 and C8 acyl group) esters rather than the long chain length p-nitrophenyl esters (C12, C16 and C18 acyl group) with highest activity observed with the C8 derivatives. The recombinant enzyme displayed activity toward triacylglycerols, such as olive oil and safflower oil. PMID:21747717

  9. [Substrate specifity in Amoeba proteus].

    PubMed

    Sopina, V A

    2006-01-01

    Three different phosphatases ("slow", "middle" and "fast") were found in Amoeba proteus (strain B) after PAGE and a subsequent gel staining in 1-naphthyl phosphate containing incubation mixture (pH 9.0). Substrate specificity of these phosphatases was determined in supernatants of homogenates using inhibitors of phosphatase activity. All phosphatases showed a broad substrate specificity. Of 10 tested compounds, p-nitrophenyl phosphate was a preferable substrate for all 3 phosphatases. All phosphatases were able to hydrolyse bis-p-nitrophenyl phosphate and, hence, displayed phosphodiesterase activity. All phosphatases hydrolysed O-phospho-L-tyrosine to a greater or lesser degree. Only little differences in substrate specificity of phosphatases were noticed: 1) "fast" and "middle" phosphatases hydrolysed naphthyl phosphates and O-phospho-L-tyrosine less efficiently than did "slow" phosphatase; 2) "fast" and "middle" phosphatases hydrolysed 2- naphthyl phosphate to a lesser degree than 1-naphthyl phosphate 3) "fast" and "middle" phosphatases hydrolysed O-phospho-L-serine and O-phospho-L-threonine with lower intensity as compared with "slow" phosphatase; 4) as distinct from "middle" and "slow" phosphatases, the "fast" phosphatase hydrolysed glucose-6-phosphate very poorly. The revealed broad substrate specificity of "slow" phosphatase together with data of inhibitory analysis and results of experiments with reactivation of this phosphatase by Zn2+-ions after its inactivation by EDTA strongly suggest that only the "slow" phosphatase is a true alkaline phosphatase (EC 3.1.3.1). The alkaline phosphatase of A. proteus is secreted into culture medium where its activity is low. The enzyme displays both phosphomono- and phosphodiesterase activities, in addition to supposed protein phosphatase activity. It still remains unknown, to which particular phosphatase class the amoeban "middle" and "fast" phosphatases (pH 9.0) may be assigned.

  10. Thermodynamics of alpha-Cyclodextrin-p-Nitrophenyl Glycoside Complexes. A Simple System To Understand the Energetics of Carbohydrate Interactions in Water.

    PubMed

    Junquera, Elena; Laynez, José; Menéndez, Margarita; Sharma, Sunil; Penadés, Soledad

    1996-10-04

    Thermodynamic studies of the binding of a series of p-nitrophenyl glycosides (PNPGly) of varying stereochemistry to alpha-cyclodextrin (alpha-CD) were performed at three different temperatures (25, 35, and 42 degrees C) using a microcalorimetric technique. The system p-nitrophenol (PNP) at pH = 3 and alpha-CD was also studied for the sake of comparison. All these complexes were found to be enthalpy driven with a favorable enthalpic term clearly dominant over an unfavorable entropic term. A clear enthalpy-entropy compensation effect was observed at all the temperatures, with a slope close to unity (alpha = 1.02) and an intercept TDeltaS degrees (o) = 2.91 kcal mol(-)(1). This thermodynamic pattern is in agreement with those usually found for lectin-carbohydrate associations and for the binding processes of several host-guest systems. This pattern is explained in terms of the contribution of primarily two driving forces: the van der Waals interactions between the host and the guest, and the solvation/desolvation processes which accompany the association reaction. The presence of the carbohydrate molecule in the PNP ring causes a slight destabilization of the complex at 25 degrees C with respect to the alpha-CD-PNP (pH = 3) complex, although a different behavior has been observed depending on the axial/equatorial configuration of the glycoside and the temperature. This behavior is modulated by the stereochemistry of the glycoside. Differences were observed between the deoxy-derivatives (LAra and LFuc) and those derivatives with a hydroxymethyl group (Glc, Gal, Man). DeltaC(p) degrees values were obtained from the dependency of DeltaH degrees on temperature (=( partial differentialDeltaH degrees / partial differentialT)(p)). These values are small and negative except for alphaMan complex. For the latter complex, discrepancy between the calorimetric and the calculated van't Hoff enthalpies was observed. Parallels are drawn between the thermodynamics of our model and those proposed for carbohydrate-protein associations.

  11. Investigation on ultrasonication mediated biosurfactant disintegration method in sludge flocs for enhancing hydrolytic enzymes activity and polyhydroxyalkanoates.

    PubMed

    Sethupathy, A; Sivashanmugam, P

    2018-06-04

    In this study, a novel biosurfactant potential bacterial strain Pseudomonas pachastrellae RW43 was isolated from pulp and paper sludge and the biosurfactant namely rhamnolipid produced by Pseudomonas pachastrellae RW43 was investigated by varying pH and incubation time in batch liquid fermentation process. The maximal yield of rhamnolipid was found to be 12.1 g/L at an optimized condition of pH 7 and incubation time of 168 h. NMR analysis was performed for identification of molecular structure of produced rhamnolipid and its results concluded that the product was identified as di rhamnolipid. Then, statistically the global optimum conditions for hydrolytic enzymes extraction parameters (sonication power (100 W), extraction time (15 min) and rhamnolipid dosage (2% v/v)) were established. At 30,456 kJ/kg TS specific energy, ultrasonication with rhamnolipid disintegration method extracted maximal consortium activity of hydrolytic enzymes from mixed sludge (municipal and pulp & paper sludge) and the maximum observed were found to be 42.22, 51.75, 34.26, 24.21, 11.35 Units/g VSS respectively for protease, α-amylase, cellulase, lipase and α-glucosidase. Polyhydroxyalkanoates was recovered from enzymes extracted sludge using various solvents namely chloroform, sodium hypochlorite with chloroform and sodium lauryl sulfate with sodium hypochlorite. The maximum recovery was found to be 74 g/kg using sodium hypochlorite and chloroform extraction solvents.

  12. Demonstration of separate phosphotyrosyl- and phosphoseryl- histone phosphatase activities in the plasma membranes of a human astrocytoma.

    PubMed

    Leis, J F; Knowles, A F; Kaplan, N O

    1985-06-01

    A plasma membrane preparation from a human astrocytoma contained p-nitrophenyl phosphate (pNPP), phosphotyrosyl histone, and phosphoseryl histone hydrolysis activities. The pNPPase and phosphotyrosyl histone phosphatase activities were inhibited by vanadate, whereas the phosphoseryl histone phosphatase activity was not; the latter activity was inhibited by pyrophosphate and nucleoside di- and triphosphates. When the membranes were solubilized by Triton X-100 and the solubilized proteins were subjected to column chromatography on DEAE-Sephadex, Sepharose 6B-C1, and wheat germ agglutinin-Sepharose 4B columns, the pNPPase activity from the phosphoseryl histone phosphatase activity. The results from column chromatography also indicated that there may be multiple phosphotyrosyl and phosphoseryl protein phosphatases in the plasma membranes.

  13. Microbial reductive dehalogenation of trihalomethanes by a Dehalobacter-containing co-culture.

    PubMed

    Zhao, Siyan; Rogers, Matthew J; He, Jianzhong

    2017-07-01

    Trihalomethanes such as chloroform and bromoform, although well-known as a prominent class of disinfection by-products, are ubiquitously distributed in the environment due to widespread industrial usage in the past decades. Chloroform and bromoform are particularly concerning, of high concentrations detected and with long half-lives up to several hundred days in soils and groundwater. In this study, we report a Dehalobacter- and Desulfovibrio-containing co-culture that exhibits dehalogenation of chloroform (~0.61 mM) to dichloromethane and bromoform (~0.67 mM) to dibromomethane within 10-15 days. This co-culture was further found to dechlorinate 1,1,1-trichloroethane (1,1,1-TCA) (~0.65 mM) to 1,1-dichloroethane within 12 days. The Dehalobacter species present in this co-culture, designated Dehalobacter sp. THM1, was found to couple growth with dehalogenation of chloroform, bromoform, and 1,1,1-TCA. Strain THM1 harbors a newly identified reductive dehalogenase (RDase), ThmA, which catalyzes chloroform, bromoform, and 1,1,1-TCA dehalogenation. Additionally, based on the sequences of thmA and other identified chloroform RDase genes, ctrA, cfrA, and tmrA, a pair of chloroform RDase gene-specific primers were designed and successfully applied to investigate the chloroform dechlorinating potential of microbial communities. The comparative analysis of chloroform RDases with tetrachloroethene RDases suggests a possible approach in predicting the substrate specificity of uncharacterized RDases in the future.

  14. Isolation and functional characterization of the proenzyme form of the catalytic domains of human C1r.

    PubMed Central

    Lacroix, M B; Aude, C A; Arlaud, G J; Colomb, M G

    1989-01-01

    The proenzyme form of C1r catalytic domains was generated by limited proteolysis of native C1r with thermolysin in the presence of 4-nitrophenyl-4'-guanidinobenzoate. The final preparation, isolated by high-pressure gel permeation in the presence of 2 M-NaCl, was 70-75% proenzyme and consisted of a dimeric association of two gamma B domains, each resulting from cleavage of peptide bonds at positions 285 and 286 of C1r. Like native C1r, the isolated domains autoactivated upon incubation at 37 degrees C. Activation was inhibited by 4-nitrophenyl-4'-guanidinobenzoate but was nearly insensitive to di-isopropyl phosphorofluoridate; likewise, compared to pH 7.4, the rate of activation was decreased at pH 5.0, but was not modified at pH 10.0. In contrast, activation of the (gamma B)2 domains was totally insensitive to Ca2+. Activation of the catalytic domains, which was correlated with an irreversible increase of intrinsic fluorescence, comparable with that previously observed with native C1r [Villiers, Arlaud & Colomb (1983) Biochem. J. 215, 369-375], was reversibly inhibited at high ionic strength (2 M-NaCl), presumably through stabilization of a non-activatable conformational state. Detailed comparison of the properties of native C1r and its catalytic domains indicates that the latter contain all the structural elements that are necessary for intramolecular activation, but probably lack a regulatory mechanism associated with the N-terminal alpha beta region of C1r. Images Fig. 2. PMID:2539098

  15. Extraction and LC determination of lysine clonixinate salt in water/oil microemulsions.

    PubMed

    Pineros, I; Ballesteros, P; Lastres, J L

    2002-02-01

    A new reversed-phase high performance liquid chromatography method has been developed and validated for the quantitative determination of lysine clonixinate salt in water/oil microemulsions. The mobile phase was acetonitrile-buffer phosphate pH 3.3. Detection was UV absorbance at 252 nm. The precision and accurately of the method were excellent. The established linearity range was 5-60 microg ml(-1) (r(2)=0.999). Microemulsions samples were dispersed with chloroform and extracted lysine clonixinate salt with water. This easy method employing chloroformic extraction has been done three times. The recovery of lysine clonixinate salt from spiked placebo and microemulsion were >90% over the linear range.

  16. Use of beer bran as an adsorbent for the removal of organic compounds from wastewater.

    PubMed

    Adachi, Atsuko; Ozaki, Hiroaki; Kasuga, Ikuno; Okano, Toshio

    2006-08-23

    Beer bran was found to effectively adsorb several organic compounds, such as dichloromethane, chloroform, trichloroethylene, benzene, pretilachlor, and esprocarb. Equilibrium adsorption isotherms conformed to the Freundlich isotherm (log-log linear). Adsorption of these organic compounds by beer bran was observed in the pH range of 1-11. At equilibrium, the adsorption efficiency of beer bran for benzene, chloroform, and dichiloromethane was higher than that of activated carbon. The removal of these organic compounds by beer bran was attributed to the uptake by intracellular particles called spherosomes. The object of this work was to investigate several adsorbents for the effective removal of organic compounds from wastewater.

  17. The extraction of aromatic carboxylic acids by the copper complex with Curtis macrocyclic tetramine and its utilization for photometric determination of nonsteroidal anti-inflammatory drugs.

    PubMed

    Zseltvay, Ivan; Zheltvay, Olga; Antonovich, Valerij

    2011-01-01

    Copper complex with Curtis macrocyclic tetramine is offered as reagent for extraction-photometric determination of nonsteroidal anti-inflammatory drugs (NSAIDs), belonging to the class of aromatic carboxylic acids. The studies indicate that this method is suitable for quantitative determination of NSAIDs, which have the constant distribution in the system chloroform/water (log P) no less than 3 and dissolubility in chloroform (S) no less than 10 mg/mL. Under optimum conditions, there are liner relationships between the absorption of chloroform extracts and concentration of NSAID in the range of 0.2-4 mg/mL for indometacin (Ind), 0.2-3 mg/mL for mefenamic acid (Mef) and 0.5-3 mg/mL for diclofenac (Dic). The detection limits (S/N = 3) of Ind, Mef and Dic are 0.2, 0.1 and 0.15 mg/mL, respectively. With the help of calculating method (SPARC V4.2) it was predicted the possibility of utilization of this method for extractive-photometric determination of its detached specimen NSAID.

  18. HPLC and anti-inflammatory studies of the flavonoid rich chloroform extract fraction of Orthosiphon stamineus leaves.

    PubMed

    Yam, Mun Fei; Lim, Vuanghao; Salman, Ibrahim Muhammad; Ameer, Omar Ziad; Ang, Lee Fung; Rosidah, Noersal; Abdulkarim, Muthanna Fawzy; Abdullah, Ghassan Zuhair; Basir, Rusliza; Sadikun, Amirin; Asmawi, Mohd Zaini

    2010-06-21

    The aim of the present study was to verify the anti-inflammatory activity of Orthosiphon stamineus leaf extracts and to identify the active compound(s) contributing to its anti-inflammatory activity using a developed HPLC method. Active chloroform extract of O. stamineus was fractionated into three fractions using a dry flash column chromatography method. These three fractions were investigated for anti-peritoneal capillary permeability, in vitro nitric oxide scavenging activity, anti-inflammatory and nitric oxide (NO) inhibition using carrageenan-induced hind paw edema method. The flavonoid rich chloroform extract fraction (CF2) [containing sinensetin (2.86% w/w), eupatorin (5.05% w/w) and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone (1.101% w/w)], significantly reduced rat hind paw edema, NO and decreased dye leakage to peritoneal cavity at p < 0.05. IC(50) of in vitro NO scavenging of CF2 was 0.3 mg/mL. These results suggest that the anti-inflammatory properties of these CF2 may possibly be due to the presence of flavonoid compounds capable of affecting the NO pathway.

  19. Antiprotozoal and antimycobacterial activities of Persea americana seeds.

    PubMed

    Jiménez-Arellanes, Adelina; Luna-Herrera, Julieta; Ruiz-Nicolás, Ricardo; Cornejo-Garrido, Jorge; Tapia, Amparo; Yépez-Mulia, Lilián

    2013-05-16

    Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml.

  20. Chloroform-induced insanity defence confounds lawyer Lincoln.

    PubMed

    Spiegel, A D; Suskind, P B

    1997-12-01

    During an 1857 trial, the defence claimed that the accused should be absolved of wilful murder because an overdose of chloroform during surgery induced insanity. In a rare appearance as a prosecutor, Abraham Lincoln tried the case for the State of Illinois. Expert medical witnesses testified about the side effects of chloroform and chloroform-induced insanity. Significantly, Lincoln was not knowledgeable about medical jurisprudence and overlooked potential sources of evidence and expert witnesses. Defence lawyers presented an impressive array of physicians to testify about insanity, about chloroform and about the results of an overdosage during anaesthesia. Considering the state of scientific knowledge at the time, the trial was notable.

  1. Characterization of hot spots for natural chloroform formation: Relevance for groundwater quality

    NASA Astrophysics Data System (ADS)

    Jacobsen, Ole S.; Albers, Christian N.; Laier, Troels

    2015-04-01

    Chloroform soil hot spot may deteriorate groundwater quality and may even result in chloroform concentration exceeding the Danish maximum limit of 1 µg/L in groundwater for potable use. In order to characterize the soil properties important for the chloroform production, various ecosystems were examined with respect to soil air chloroform and soil organic matter type and content. Coniferous forest areas, responsible for highest chloroform concentrations, were examined on widely different scales from km to cm scale. Furthermore, regular soil gas measurements including chloroform were performed during 4 seasons at various depths, together with various meteorological measurements and soil temperature recordings. Laboratory incubation experiments were also performed on undisturbed soil samples in order to examine the role of various microbiota, fungi and bacteria. To identify hot spots responsible for the natural contamination we have measured the production of chloroform in the upper soil from different terrestrial systems. Field measurements of chloroform in top soil air were used as production indicators. The production was however not evenly distributed at any scale. The ecosystems seem to have quite different net-productions of chloroform from very low in grassland to very high in some coniferous forests. Within the forest ecosystem we found large variation in chloroform concentrations depending on vegetation. In beech forest we found the lowest values, somewhat higher in an open pine forest, but the highest concentrations were detected in spruce forest without any vegetation beneath. Within this ecotype, it appeared that the variation was also large; hot spots with 2-4 decades higher production than the surrounding area. These hot spots were not in any way visually different from the surroundings and were of variable size from 3 to 20 meters in diameter. Besides this, measurements within a seemingly homogenous hot spot showed that there was still high variability at 10 cm level. We suggest that the mechanism behind the formation of chloroform is an unspecific chlorination of organic matter, caused by microbial activity in the soil forming trichloroacetyl compounds. Laboratory measurements on intact soil cores have identified that the F and H horizons in the forest soil are the main producers of chloroform. Despite various attempts to identify the mechanisms responsible for the variability within a visually and chemically homogeneous area we have not yet succeeded. Parameters like soil respiration, inorganic and total organic chlorine, organic matter and soil structure were studied without any significant difference in favour of hot spots. By the use of 13C-isotopes we could identify the natural origin of the chloroform, and over a three years period we could conclude that the hot spots were permanent on the sites. At the same time a significant seasonal variation were measured depending on temperature and soil moisture.

  2. Efficient encapsulation of chloroform with cryptophane-M and the formation of exciplex studied by fluorescence spectroscopy.

    PubMed

    Shi, Yanqi; Li, Xueming; Yang, Jianchun; Gao, Fang; Tao, Chuanyi

    2011-03-01

    Efficient encapsulation of small molecules with supermolecules is one of significantly important subjects due to strong application potentials. This article presents the interaction between cryptophane-M and chloroform by fluorescence spectroscopy. The sonicated cryptophane-M solution exhibits light green color in chloroform, and the solid obtained from the evaporation of chloroform also has different color from that of cryptophane-M. In contrast, the sonicated cryptophane-M solutions in other solvents are colorless, and the solid obtained from the evaporation of these solvents has the same color as that of cryptophane-M. Furthermore, the freshly prepared cryptophane-M solution in different solvents is almost colorless, and the solid obtained from the evaporation of these solvents displays the same color as that of cryptophane-M. Although the sonicated cryptophane-M solutions in different solvents have very similar absorption spectra, they exhibit quite different emission spectra in chloroform. In contrast, the freshly-prepared cryptophane-M solutions show similar absorption and emission spectroscopy in various solvents. The variation of the fluorescence spectroscopy in binary solvents with the increasing chloroform ratio suggests that cryptophane-M and chloroform form a 1:1 exciplex, and the binding constant is estimated to be 292.95 M(-1). Although all solvents are able to enter into the cavity of cryptophane-M, only chloroform can stay in the cavity of cryptophane-M for a while, which is mostly due to the strong intermolecular interaction between cryptophane-M and chloroform, and this results in the formation of the exciplex between them. © Springer Science+Business Media, LLC 2010

  3. Retreatability of two endodontic sealers, EndoSequence BC Sealer and AH Plus: a micro-computed tomographic comparison.

    PubMed

    Oltra, Enrique; Cox, Timothy C; LaCourse, Matthew R; Johnson, James D; Paranjpe, Avina

    2017-02-01

    Recently, bioceramic sealers like EndoSequence BC Sealer (BC Sealer) have been introduced and are being used in endodontic practice. However, this sealer has limited research related to its retreatability. Hence, the aim of this study was to evaluate the retreatability of two sealers, BC Sealer as compared with AH Plus using micro-computed tomographic (micro-CT) analysis. Fifty-six extracted human maxillary incisors were instrumented and randomly divided into 4 groups of 14 teeth: 1A, gutta-percha, AH Plus retreated with chloroform; 1B, gutta-percha, AH Plus retreated without chloroform; 2A, gutta-percha, EndoSequence BC Sealer retreated with chloroform; 2B, gutta-percha, EndoSequence BC Sealer retreated without chloroform. Micro-CT scans were taken before and after obturation and retreatment and analyzed for the volume of residual material. The specimens were longitudinally sectioned and digitized images were taken with the dental operating microscope. Data was analyzed using an ANOVA and a post-hoc Tukey test. Fisher exact tests were performed to analyze the ability to regain patency. There was significantly less residual root canal filling material in the AH Plus groups retreated with chloroform as compared to the others. The BC Sealer samples retreated with chloroform had better results than those retreated without chloroform. Furthermore, patency could be re-established in only 14% of teeth in the BC Sealer without chloroform group. The results of this study demonstrate that the BC Sealer group had significantly more residual filling material than the AH Plus group regardless of whether or not both sealers were retreated with chloroform.

  4. IRIS Toxicological Review of Chloroform (Final Report)

    EPA Science Inventory

    EPA is announcing the release of the final report, Toxicological Review of Chloroform: in support of the Integrated Risk Information System (IRIS). The updated Summary for Chloroform and accompanying Quickview have also been added to the IRIS Database.

  5. A first continuous 4-aminoantipyrine (4-AAP)-based screening system for directed esterase evolution.

    PubMed

    Lülsdorf, Nina; Vojcic, Ljubica; Hellmuth, Hendrik; Weber, Thomas T; Mußmann, Nina; Martinez, Ronny; Schwaneberg, Ulrich

    2015-06-01

    Esterases hydrolyze ester bonds with an often high stereoselectivity as well as regioselectivity and are therefore industrially employed in the synthesis of pharmaceuticals, in food processing, and in laundry detergents. Continuous screening systems based on p-nitrophenyl- (e.g., p-nitrophenyl acetate) or umbelliferyl-esters are commonly used in directed esterase evolution campaigns. Ongoing challenges in directed esterase evolution are screening formats which offer a broad substrate spectrum, especially for complex aromatic substrates. In this report, a novel continuous high throughput screening system for indirect monitoring of esterolytic activity was developed and validated by detection of phenols employing phenyl benzoate as substrate and p-nitrobenzyl esterase (pNBEBL from Bacillus licheniformis) as catalyst. The released phenol directly reacts with 4-aminoantipyrine yielding the red compound 1,5-dimethyl-4-(4-oxo-cyclohexa-2,5-dienylidenamino)-2-phenyl-1,2-dihydro-pyrazol-3-one. In this continuous B. licheniformis esterase activity detection system (cBLE-4AAP), the product formation is followed through an increase in absorbance at 509 nm. The cBLE-4AAP screening system was optimized in 96-well microtiter plate format in respect to standard deviation (5 %), linear detection range (15 to 250 μM), lower detection limit (15 μM), and pH (7.4 to 10.4). The cBLE-4AAP screening system was validated by screening a random epPCR pNBEBL mutagenesis library (2000 clones) for improved esterase activity at elevated temperatures. Finally, the variant T3 (Ser378Pro) was identified which nearly retains its specific activity at room temperature (WT 1036 U/mg and T3 929 U/mg) and shows compared to WT a 4.7-fold improved residual activity after thermal treatment (30 min incubation at 69.4 °C; WT 170 U/mg to T3 804 U/mg).

  6. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  7. The Acid-Base Properties, Hydrolytic Mechanism, and Susceptibility to O2 Oxidation of Fe4S4(SR)4-2 Clusters

    PubMed Central

    Bruice, Thomas C.; Maskiewicz, Richard; Job, Robert

    1975-01-01

    The iron-sulfur cluster compounds Fe4S4(SR)4-2 [where —SR = —SCH3, —S—C(CH3)3, and —S— CH2—CH(CH3)2] have been found to represent the base species of weak acids of pKa comparable to that of carboxylic acids. The acid species Fe4S4(SR)4H- is most subject to reaction with O2 and to acid-catalyzed solvolysis, while the base species Fe4S4(SR)4-2 most readily undergoes ligand exchange. The kinetics for hydrolysis of the isobutyl mercaptide cluster salt has been investigated in detail and a mechanism involving the stepwise process [Formula: see text] has been proposed. The importance of the acid-base equilibria in determining the reactivity of the iron-sulfur clusters and its possible importance as a factor in the determination of the potentials of ferredoxins and high potential iron protein are discussed. PMID:16592211

  8. Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring.

    PubMed

    Roda-Serrat, Maria Cinta; Christensen, Knud Villy; El-Houri, Rime Bahij; Fretté, Xavier; Christensen, Lars Porskjær

    2018-02-01

    Phycocyanins from cyanobacteria are possible sources for new natural blue colourants. Their chromophore, phycocyanobilin (PCB), was cleaved from the apoprotein by solvolysis in alcohols and alcoholic aqueous solutions. In all cases two PCB isomers were obtained, while different solvent adducts were formed upon the use of different reagents. The reaction is believed to take place via two competing pathways, a concerted E2 elimination and a S N 2 nucleophilic substitution. Three cleavage methods were compared in terms of yield and purity: conventional reflux, sealed vessel heated in an oil bath, and microwave assisted reaction. The sealed vessel method is a new approach for fast cleavage of PCB from phycocyanin and gave at 120°C the same yield within 30min compared to 16h by the conventional reflux method (P<0.05). In addition the sealed vessel method resulted in improved purity compared to the other methods. Microwave irradiation increased product degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Dynamic real-time monitoring of chloroform in an indoor swimming pool air using open-path Fourier transform infrared spectroscopy.

    PubMed

    Chen, M-J; Duh, J-M; Shie, R-H; Weng, J-H; Hsu, H-T

    2016-06-01

    This study used open-path Fourier transform infrared (OP-FTIR) spectroscopy to continuously assess the variation in chloroform concentrations in the air of an indoor swimming pool. Variables affecting the concentrations of chloroform in air were also monitored. The results showed that chloroform concentrations in air varied significantly during the time of operation of the swimming pool and that there were two peaks in chloroform concentration during the time of operation of the pool. The highest concentration was at 17:30, which is coincident with the time with the highest number of swimmers in the pool in a day. The swimmer load was one of the most important factors influencing the chloroform concentration in the air. When the number of swimmers surpassed 40, the concentrations of chloroform were on average 4.4 times higher than the concentration measured without swimmers in the pool. According to the results of this study, we suggest that those who swim regularly should avoid times with highest number of swimmers, in order to decrease the risk of exposure to high concentrations of chloroform. It is also recommended that an automatic mechanical ventilation system is installed to increase the ventilation rate during times of high swimmer load. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Novel oxidized derivatives of antifungal pyrrolnitrin from the bacterium Burkholderia cepacia K87.

    PubMed

    Sultan, Zakir; Park, Kyungseok; Lee, Sang Yeob; Park, Jung Kon; Varughese, Titto; Moon, Surk-Sik

    2008-07-01

    The screening of antifungal active compounds from the fermentation extracts of soil-borne bacterium Burkholderia cepacia K87 afforded pyrrolnitrin (1) and two new pyrrolnitrin analogs, 3-chloro-4-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (2) and 4-chloro-3-(3-chloro-2-nitrophenyl)-5-methoxy-3-pyrrolin-2-one (3). Pyrrolnitrin showed strong antifungal activity against Rhizoctonia solani but the analogs (2 and 3) were found to be marginally active. The isolates, 2 and 3, are believed to be biodegraded derivatives of pyrrolnitrin.

  11. Chemical Glucosylation of Labile Natural Products Using a (2-Nitrophenyl)acetyl-Protected Glucosyl Acetimidate Donor.

    PubMed

    Weber, Julia; Schwarz, Markus; Schiefer, Andrea; Hametner, Christian; Häubl, Georg; Fröhlich, Johannes; Mikula, Hannes

    2018-06-07

    The synthesis of (2-nitrophenyl)acetyl (NPAc)-protected glucosyl donors is described that were designed for the neighboring-group assisted glucosylation of base-labile natural products also being sensitive to hydrogenolysis. Glycosylation conditions were optimized using a trichloroacetimidate glucosyl donor, and cyclohexylmethanol and (+)-menthol as model acceptors. The approach was then extended to a one-pot procedure for the synthesis of 1,2- trans -glycosides. This method was finally applied for improved synthesis of the masked mycotoxin T2- O -β,d-glucoside.

  12. CANCER RISK ASSESSMENT FOR CHLOROFORM

    EPA Science Inventory

    Chloroform is a common chlorination by-product in drinking water. EPA has regulated chloroform as a probable human carcinogen under the Safe Drinking Water Act. The cancer risk estimate via ingestion was based on the 1985 Jorgenson study identifying kidney tumors in male Osborne ...

  13. CONTROLLED, SHORT-TERM DERMAL AND INHALATION EXPOSURE TO CHLOROFORM

    EPA Science Inventory

    Studies were conducted to determine the uptake by humans of chloroform as a result of controlled short-term dermal and inhalation exposures. The approach used continuous real-time breath analysis to determine exhaled-breath profiles and evaluate chloroform kinetics in the huma...

  14. Crystal structure of metagenomic β-xylosidase/ α-l-arabinofuranosidase activated by calcium.

    PubMed

    Matsuzawa, Tomohiko; Kaneko, Satoshi; Kishine, Naomi; Fujimoto, Zui; Yaoi, Katsuro

    2017-09-01

    The crystal structure of metagenomic β-xylosidase/α-l-arabinofuranosidase CoXyl43, activated by calcium ions, was determined in its apo and complexed forms with xylotriose or l-arabinose in the presence and absence of calcium. The presence of calcium ions dramatically increases the kcat of CoXyl43 for p-nitrophenyl β-d-xylopyranoside and reduces the Michaelis constant for p-nitrophenyl α-l-arabinofuranoside. CoXyl43 consists of a single catalytic domain comprised of a five-bladed β-propeller. In the presence of calcium, a single calcium ion was observed at the centre of this catalytic domain, behind the catalytic pocket. In the absence of calcium, the calcium ion was replaced with one sodium ion and one water molecule, and the positions of these cations were shifted by 1.3 Å. The histidine-319 side chain, which coordinates to the 2-hydroxyl oxygen atom of the bound xylose molecule in the catalytic pocket, also coordinates to the calcium ion, but not to the sodium ion. The calcium-dependent increase in activity appears to be caused by the structural change in the catalytic pocket induced by the tightly bound calcium ion and coordinating water molecules, and by the protonation state of glutamic acid-268, the catalytic acid of the enzyme. Our findings further elucidate the complex relationship between metal ions and glycosidases. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Dao Feng; Patskovsky, Yury; Nemmara, Venkatesh V.

    Pmi1525, an enzyme of unknown function from Proteus mirabilis HI4320 and the amidohydrolase superfamily, was cloned, purified to homogeneity, and functionally characterized. The three-dimensional structure of Pmi1525 was determined with zinc and cacodylate bound in the active site (PDB id: 3RHG). We also determined the structure with manganese and butyrate in the active site (PDB id: 4QSF). Pmi1525 folds as a distorted (β/α)8-barrel that is typical for members of the amidohydrolase superfamily and cog1735. Moreover, the substrate profile for Pmi1525 was determined via a strategy that marshaled the utilization of bioinformatics, structural characterization, and focused library screening. The protein wasmore » found to efficiently catalyze the hydrolysis of organophosphonate and carboxylate esters. The best substrates identified for Pmi1525 are ethyl 4-nitrophenylmethyl phosphonate (k cat and k cat /Km values of 580 s –1 and 1.2 × 10 5 M –1 s –1, respectively) and 4-nitrophenyl butyrate (k cat and k cat /K m values of 140 s –1 and 1.4 × 105 M –1 s –1, respectively). Pmi1525 is stereoselective for the hydrolysis of chiral methylphosphonate esters. The enzyme hydrolyzes the (S P)-enantiomer of isobutyl 4-nitrophenyl methylphosphonate 14 times faster than the corresponding (R P)-enantiomer. The catalytic properties of this enzyme make it an attractive template for the evolution of novel enzymes for the detection, destruction, and detoxification of organophosphonate nerve agents.« less

  16. Retreatability of two endodontic sealers, EndoSequence BC Sealer and AH Plus: a micro-computed tomographic comparison

    PubMed Central

    Oltra, Enrique; Cox, Timothy C.; LaCourse, Matthew R.; Johnson, James D.

    2017-01-01

    Objectives Recently, bioceramic sealers like EndoSequence BC Sealer (BC Sealer) have been introduced and are being used in endodontic practice. However, this sealer has limited research related to its retreatability. Hence, the aim of this study was to evaluate the retreatability of two sealers, BC Sealer as compared with AH Plus using micro-computed tomographic (micro-CT) analysis. Materials and Methods Fifty-six extracted human maxillary incisors were instrumented and randomly divided into 4 groups of 14 teeth: 1A, gutta-percha, AH Plus retreated with chloroform; 1B, gutta-percha, AH Plus retreated without chloroform; 2A, gutta-percha, EndoSequence BC Sealer retreated with chloroform; 2B, gutta-percha, EndoSequence BC Sealer retreated without chloroform. Micro-CT scans were taken before and after obturation and retreatment and analyzed for the volume of residual material. The specimens were longitudinally sectioned and digitized images were taken with the dental operating microscope. Data was analyzed using an ANOVA and a post-hoc Tukey test. Fisher exact tests were performed to analyze the ability to regain patency. Results There was significantly less residual root canal filling material in the AH Plus groups retreated with chloroform as compared to the others. The BC Sealer samples retreated with chloroform had better results than those retreated without chloroform. Furthermore, patency could be re-established in only 14% of teeth in the BC Sealer without chloroform group. Conclusion The results of this study demonstrate that the BC Sealer group had significantly more residual filling material than the AH Plus group regardless of whether or not both sealers were retreated with chloroform. PMID:28194360

  17. [Tricholoma equestre--animal toxicity study].

    PubMed

    Chodorowski, Zygmunt; Sznitowska, Małgorzata; Wiśniewski, Marek; Sein Anand, Jacek; Waldman, Wojciech; Ronikier, Anna

    2004-01-01

    Animal toxicity study of Tricholoma equestre mushrooms stored for 12 months at (-)20 degrees C was performed using 30 male BALB/c mice. Three groups of 5 mice each were given suspension of T. equestre powder in water, boiled aqueous extract and chloroform-methanol extract dissolved in Miglyol 812 by gavage for three consecutive days. Mice in control groups were given water, Miglyol 812 and p-phenylenediamine (CAS 106-50-3). Creatine kinase activity was determined in serum collected 72 hours after the final dose. Mean activity of serum creatine kinase in mice treated with T. equestre powder, aqueous extract, chloroform-methanol extract and Miglyol 812 were 157 +/- 93, 129 +/- 30, 96 +/- 38, 111 +/- 66 U/L respectively and did not differ significantly from mean activity in mice which were given water (107 +/- 38 U/L). Mean serum creatine kinase activity in p-phenylenediamine group (265 +/- 63 U/L) was significantly higher than in group treated with water (p<0.01). Extracts of Tricholoma equestre mushrooms stored for 12 months at (-)20 degrees C did not cause rhabdomyolysis in male BALB/c mice.

  18. Crystal structure of bis-[μ-(4-meth-oxy-phen-yl)methane-thiol-ato-κ(2) S:S]bis-[chlorido-(η(6)-1-isopropyl-4-methyl-benzene)-ruthenium(II)] chloro-form disolvate.

    PubMed

    Stíbal, David; Süss-Fink, Georg; Therrien, Bruno

    2015-10-01

    The mol-ecular structure of the title complex, [Ru2(C8H9OS)2Cl2(C10H14)2]·2CHCl3 or (p-MeC6H4Pr (i) )2Ru2(SCH2-p-C6H5-OCH3)2Cl2·2CHCl3, shows inversion symmetry. The two symmetry-related Ru(II) atoms are bridged by two 4-meth-oxy-α-toluene-thiol-ato [(4-meth-oxy-phen-yl)methane-thiol-ato] units. One chlorido ligand and the p-cymene ligand complete the typical piano-stool coordination environment of the Ru(II) atom. In the crystal, the CH moiety of the chloro-form mol-ecule inter-acts with the chlorido ligand of the dinuclear complex, while one Cl atom of the solvent inter-acts more weakly with the methyl group of the bridging 4-meth-oxy-α-toluene-thiol-ato unit. This assembly leads to the formation of supra-molecular chains extending parallel to [021].

  19. The solution structure of a local anesthetic and phospholipids: Conformational analysis by one- and two-dimensional nuclear magnetic resonance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basti, M.M.

    1988-01-01

    Both sections of this study include the use of several high-resolution nuclear magnetic resonance (NMR) techniques. The first part is concerned with the conformational analysis of dibucaine (a local anesthetic) by the use of the lanthanide shift reagent Yb(fod){sub 3} and by computer calculations. The second part of the dissertation is concerned with the study of dioctanoylphosphatidylcholine and dodecylphosphorylcholine and the sulfur analogues of these molecules in deuterated chloroform and chloroform/methanol (2:1 v/v). 2D COSY and {sup 1}H-{sup 13}C heteronuclear correlation experiments were used to make {sup 1}H and {sup 13}C assignments. In both analogues of the phosphatidylcholine molecule, themore » three-bond {sup 1}H-{sup 1}H, {sup 31}P-{sup 13}C, and {sup 31}P-{sup 1}H coupling constants were measured using {sup 1}H, {sup 13}C and {sup 31}P NMR spectroscopy. A number of these coupling constants were significantly different between the two analogues.« less

  20. Predictors of Blood Trihalomethane Concentrations in NHANES 1999–2006

    PubMed Central

    Dhingra, Radhika; Blount, Benjamin C.; Steenland, Kyle

    2014-01-01

    Background: Trihalomethanes (THMs) are water disinfection by-products that have been associated with bladder cancer and adverse birth outcomes. Four THMs (bromoform, chloroform, bromodichloromethane, dibromochloromethane) were measured in blood and tap water of U.S. adults in the National Health and Nutrition Examination Survey (NHANES) 1999–2006. THMs are metabolized to potentially toxic/mutagenic intermediates by cytochrome p450 (CYP) 2D6 and CYP2E1 enzymes. Objectives: We conducted exploratory analyses of blood THMs, including factors affecting CYP2D6 and CYP2E1 activity. Methods: We used weighted multivariable regressions to evaluate associations between blood THMs and water concentrations, survey year, and other factors potentially affecting THM exposure or metabolism (e.g., prescription medications, cruciferous vegetables, diabetes, fasting, pregnancy, swimming). Results: From 1999 to 2006, geometric mean blood and water THM levels dropped in parallel, with decreases of 32%–76% in blood and 38%–52% in water, likely resulting, in part, from the lowering of the total THM drinking water standard in 2002–2004. The strongest predictors of blood THM levels were survey year and water concentration (n = 4,232 total THM; n = 4,080 bromoform; n = 4,582 chloroform; n = 4,374 bromodichloromethane; n = 4,464 dibromochloromethane). We detected statistically significant inverse associations with diabetes and eating cruciferous vegetables in all but the bromoform model. Medications did not consistently predict blood levels. Afternoon/evening blood samples had lower THM concentrations than morning samples. In a subsample (n = 230), air chloroform better predicted blood chloroform than water chloroform, suggesting showering/bathing was a more important source than drinking. Conclusions: We identified several factors associated with blood THMs that may affect their metabolism. The potential health implications require further study. Citation: Riederer AM, Dhingra R, Blount BC, Steenland K. 2014. Predictors of blood trihalomethane concentrations in NHANES 1999–2006. Environ Health Perspect 122:695–702; http://dx.doi.org/10.1289/ehp.1306499 PMID:24647036

  1. Report - Antibacterial activity of sea buckthorn (Hippophae rhamnoides L.) against methicillin resistant Staphylococcus aureus (MRSA).

    PubMed

    Qadir, Muhammad Imran; Abbas, Khizar; Younus, Adnan; Shaikh, Rehan Sadiq

    2016-09-01

    Objective of the present study was to investigate the antibacterial activity of Sea buckthorn (Hippophae rhamnoides L.) berries and leaves against methicillin resistant Staphylococcus aureus (MRSA) by using the standard disc diffusion method. Chloroform, n-hexane and aqueous extract of the plant parts were used. Doses of 2mg/ml, 4 mg/ml and 6mg/ml were tested against the microorganism, and the zone of inhibition was compared against the standard drug vancomycin. Results indicated that n-hexane and chloroform extracts of berries and n-hexane extract leaves showed significant (p<0.05) antibacterial activity comparable with vancomycin. It was concluded from the study that extracts berries and leaves of Hippophae rhamnoides have antibacterial activity against MRSA.

  2. GTE_TRACEP_P3B Parameters 4

    Atmospheric Science Data Center

    2013-02-19

    ... Trichloroethylene (C2HCl3) Carbon tetrachloride (CCl4) Methylene bromide (CH2Br2) Chlorobromomethane (CH2BrCl) Dichloromethane ... Methylbromide (CH3Br) Chloroform (CH3CCl3) Methyl Chloride (CH3Cl) Methyl Iodide (CH3I) Chlorodibromomethane (CHBr2Cl) ...

  3. Preliminary study on fractions' activities of red betel vine (Piper crocatum Ruiz & Pav) leaves ethanol extract toward Mycobacterium tuberculosis

    NASA Astrophysics Data System (ADS)

    Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory

    2018-04-01

    This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.

  4. Chloroform Hydrodechlorination over Palladium–Gold Catalysts: A First-Principles DFT Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Lang; Yao, Xiaoqian; Khan, Ahmad

    2016-04-20

    Hydrodechlorination is a promising method for treating toxic chlorocarbon compounds. Pd is among the most effective catalysts for chloroform hydrodechlorination, and experiments have shown that the Pd–Au alloy catalyst yields superior catalytic performance over pure Pd. In this paper, we examine the chloroform hydrodechlorination mechanism over Pd(1 1 1) and Pd ML/Au(1 1 1) surfaces using periodic, self-consistent density functional theory calculations (DFT, GGA–PW91) and maximum rate analysis. We suggest that the reaction occurs on both surfaces through complete dechlorination of chloroform followed by hydrogenation of CH* to methane, and that the initial dechlorination step is likely the rate-limiting step.more » Finally, on Pd(1 1 1), the chloroform dechlorination barrier is 0.24 eV higher than the desorption barrier, whereas on Pd ML/Au(1 1 1), the chloroform dechlorination barrier is 0.07 eV lower than the desorption barrier, which can explain the higher hydrodechlorination activity of the Pd–Au alloy catalyst.« less

  5. Toxicokinetics and biotransformation of p-nitrophenol in white sturgeon (Acipenser transmontanus).

    PubMed

    TenBrook, P L; Kendall, S M; Tjeerdema, R S

    2006-07-01

    White sturgeon (Acipencer transmontanus) were exposed to 7.2 microM (1.0 ppm) 14C-labeled p-nitrophenol (PNP) in brackish water for 24 h and then allowed to depurate in clean brackish water for another 24h. Absorption, conditional uptake clearance, and conditional elimination rate constants were 0.08+/-0.04 h(-1), 8.1+/-3.6 mL g(-1) h(-1), and 0.46+/-0.21 h(-1), respectively. A whole-organism total concentration factor of 18.7+/-2.6 was determined from equilibrium tissue and water concentrations. Sturgeon depurated 89.4% of absorbed PNP within 24h, of which 53.0+/-8.3% was unmetabolized parent compound, 9.6+/-3.6% was p-nitrophenyl-beta-d-glucuronide, and 39.1+/-8.3% was p-nitrophenylsulfate.

  6. No-carrier-added (/sup 18/F)-N-methylspiroperidol

    DOEpatents

    Shiue, C.Y.; Fowler, J.S.; Wolf, A.P.

    1985-10-04

    The present invention is directed to the synthesis of a radioligand, labeled with a positron emitting radionuclide which is suitable for dynamic studies in humans using positron emission transaxial tomography. No-carrier-added (NCA) (/sup 18/F)-N-methylspiroperiodl is prepared from four different sustrates: p-nitrobenzonitrile, cyclopropyl p-nitrophenyl ketone, p-cyclopropanoyl-N,N,N-trimethylanilinium iodide and p-cyclopropanoyl-N,N,N-trimethylanilinium perchlorate. The process for the production of NCA (/sup 18/F)-N-methylspiroperidol is a nucleophilic aromatic substitution reaction. Furthermore, the compound of this invention is shown to be effective as a new drug of choice for in vivo examination of dopamine binding sites in a human brain. In particular, this drug is primarily useful in the noninvasive technique of positron emission transaxial tomography (PETT).

  7. Thermotropic Liquid Crystals with Nitrocinnamylidene Unit

    DTIC Science & Technology

    1988-10-14

    added through dropping funnel. Stir for 2 hrs before precipitated from distilled water . The crude yellow product was redissolved in chloroform and dried...rate 1O*C/hr) for overnight. Filter through celite and ceramic filtration funnel before precipitating with distilled water . The crude product was...Table 1. Cinnamylidene-P-octyloxyaniline was synthesized primarily by reacting cinnamaldehyde with p-octyloxyaniline and exhibits no mesomorphic property

  8. Investigating chloroperoxidase-catalyzed formation of chloroform from humic substances using stable chlorine isotope analysis.

    PubMed

    Breider, Florian; Hunkeler, Daniel

    2014-01-01

    Chloroperoxidase (CPO) is suspected to play an important role in the biosynthesis of natural chloroform. The aims of the present study are to evaluate the variability of the δ(37)Cl value of naturally produced chloroform and to better understand the reaction steps that control the chlorine isotope signature of chloroform. The isotope analyses have shown that the chlorination of the humic substances (HS) in the presence of high H3O(+) and Cl(-) concentrations induces a large apparent kinetic isotope effect (AKIE = 1.010-1.018) likely associated with the transfer of chlorine between two heavy atoms, whereas in the presence of low H3O(+) and Cl(-) concentrations, the formation of chloroform induces a smaller AKIE (1.005-1.006) likely associated with the formation of an HOCl-ferriprotoporphyrin IX intermediate. As the concentration of H3O(+) and Cl(-) in soils are generally at submillimolar levels, the formation of the HOCl-ferriprotoporphyrin IX intermediate is likely rate-limiting in a terrestrial environment. Given that the δ(37)Cl values of naturally occurring chloride tend to range between -1 and +1‰, the δ(37)Cl value of natural chloroform should vary between -5‰ and -8‰. As the median δ(37)Cl value of industrial chloroform is -3.0‰, the present study suggests that chlorine isotopic composition of chloroform might be used to discriminate industrial and natural sources in the environment.

  9. Involvement of conformational isomerism in the complexity of the crystal network of 1-(4-nitrophenyl)-1H-1,3-benzimidazole derivatives driven by C-H...A (A = NO2, Npy and π) and orthogonal Npy...NO2 and ONO...Csp2 interactions.

    PubMed

    García-Aranda, Mónica I; Gómez-Castro, Carlos Z; García-Báez, Efrén V; Gómez, Yolanda Gómez Y; Castrejón-Flores, José L; Padilla-Martínez, Itzia I

    2018-04-01

    A detailed structural analysis of the benzimidazole nitroarenes 1-(4-nitrophenyl)-1H-1,3-benzimidazole, C 13 H 9 N 3 O 2 , (I), 1-(4-nitrophenyl)-2-phenyl-1H-1,3-benzimidazole, C 19 H 13 N 3 O 2 , (II), and 2-(3-methylphenyl)-1-(4-nitrophenyl)-1H-1,3-benzimidazole, C 20 H 15 N 3 O 2 , (III), has been performed. They are nonplanar structures whose crystal arrangement is governed by Csp 2 -H...A (A = NO 2 , N py and π) hydrogen bonding. The inherent complexity of the supramolecular arrangements of compounds (I) (Z' = 2) and (II) (Z' = 4) into tapes, helices and sheets is the result of the additional participation of π-π NO2 and n-π* (n = O and N py ; π* = Csp 2 and N NO2 ) interactions that contribute to the stabilization of the equi-energetic conformations adopted by each of the independent molecules in the asymmetric unit. In contrast, compound (III) (Z' = 1) is self-paired, probably due to the effect of the steric demand of the methyl group on the crystal packing. Theoretical ab initio calculations confirmed that the presence of the arene ring at the benzimidazole 2-position increases the rotational barrier of the nitrobenzene ring and also supports the electrostatic nature of the orthogonal ONO...Csp 2 and N py ...NO 2 interactions.

  10. DBP formation in hot and cold water across a simulated distribution system: effect of incubation time, heating time, pH, chlorine dose, and incubation temperature.

    PubMed

    Liu, Boning; Reckhow, David A

    2013-10-15

    This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.

  11. Antiprotozoal and antimycobacterial activities of Persea americana seeds

    PubMed Central

    2013-01-01

    Background Persea americana seeds are widely used in traditional Mexican medicine to treat rheumatism, asthma, infectious processes as well as diarrhea and dysentery caused by intestinal parasites. Methods The chloroformic and ethanolic extracts of P. americana seeds were prepared by maceration and their amoebicidal, giardicidal and trichomonicidal activity was evaluated. These extracts were also tested against Mycobacterium tuberculosis H37Rv, four mono-resistant and two multidrug resistant strains of M. tuberculosis as well as five non tuberculosis mycobacterium strains by MABA assay. Results The chloroformic and ethanolic extracts of P. americana seeds showed significant activity against E. histolytica, G. lamblia and T. vaginalis (IC50 <0.634 μg/ml). The chloroformic extract inhibited the growth of M. tuberculosis H37Rv, M. tuberculosis MDR SIN 4 isolate, three M. tuberculosis H37Rv mono-resistant reference strains and four non tuberculosis mycobacteria (M. fortuitum, M. avium, M. smegmatis and M. absessus) showing MIC values ≤50 μg/ml. Contrariwise, the ethanolic extract affected only the growth of two mono-resistant strains of M. tuberculosis H37Rv and M. smegmatis (MIC ≤50 μg/ml). Conclusions The CHCl3 and EtOH seed extracts from P. americana showed amoebicidal and giardicidal activity. Importantly, the CHCl3 extract inhibited the growth of a MDR M. tuberculosis isolate and three out of four mono-resistant reference strains of M. tuberculosis H37Rv, showing a MIC = 50 μg/ml. This extract was also active against the NTM strains, M. fortuitum, M. avium, M. smegmatis and M. abscessus, with MIC values <50 μg/ml. PMID:23680126

  12. α-l-Arabinofuranosidase from Radish (Raphanus sativus L.) Seeds

    PubMed Central

    Hata, Keishi; Tanaka, Mika; Tsumuraya, Yoichi; Hashimoto, Yohichi

    1992-01-01

    An α-l-arabinofuranosidase has been purified 1043-fold from radish (Raphanus sativus L.) seeds. The purified enzyme was a homogeneous glycoprotein consisting of a single polypeptide with an apparent molecular weight of 64,000 and an isoelectric point value of 4.7, as evidenced by denaturing gel electrophoresis and reversed-phase or size-exclusion high-performance liquid chromatography and isoelectric focusing. The enzyme characteristically catalyzes the hydrolysis of p-nitrophenyl α-l-arabinofuranoside and p-nitrophenyl β-d-xylopyranoside in a constant ratio (3:1) of the initial velocities at pH 4.5, whereas the corresponding α-l-arabinopyranoside and β-d-xylofuranoside are unsusceptible. The following evidence was provided to support that a single enzyme with one catalytic site was responsible for the specificity: (a) high purity of the enzyme preparation, (b) an invariable ratio of the activities toward the two substrates throughout the purification steps, (c) a parallelism of the activities in activation with bovine serum albumin and in heat inactivation of the enzyme as well as in the inhibition with heavy metal ions and sugars such as Hg2+, Ag+, l-arabino-(1→4)-lactone, and d-xylose, and (d) results of the mixed substrate kinetic analysis using the two substrates. The enzyme was shown to split off α-l-arabinofuranosyl residues in sugar beet arabinan, soybean arabinan-4-galactan, and radish seed and leaf arabinogalactan proteins. Arabinose and xylose were released by the action of the enzyme on oat-spelt xylan. Synergistic action of α-l-arabinofuranosidase and β-d-galactosidase on radish seed arabinogalactan protein resulted in the extensive degradation of the carbohydrate moiety. Images Figure 2 PMID:16652973

  13. Comparison of methods for extracting DNA from formalin-fixed paraffin sections for nonisotopic PCR.

    PubMed

    Frank, T S; Svoboda-Newman, S M; Hsi, E D

    1996-09-01

    DNA was extracted from unstained 5-microns sections of neutral buffered 10% formalin-fixed paraffin-embedded tissue by proteinase K digestion without detergents followed by boiling, proteinase K digestion with ionic detergents with and without phenol chloroform extraction and ethanol precipitation, sonication with proteinase K followed by boiling, or boiling alone. Serial 1:10 dilutions of the extracted DNA were subject to polymerase chain reaction (PCR) amplification of a 255-bp portion of the p53 gene. Digestion with proteinase K without ionic detergents followed by boiling (without phenol chloroform extraction) gave the best yield, enabling visualization of ethidium bromide-stained PCR product from a DNA dilution corresponding to 0.1 mm2 of tissue containing of the order of 10(3) nuclear profiles. Proteinase K digestion with detergents followed by phenol-chloroform extraction was no more effective than simple boiling. Although the success of PCR from preserved tissue will vary with the fixative and size of the amplified fragment, DNA extracted with this optimized method can be used for identification of viruses, loss of heterozygosity, and immunoglobulin gene rearrangements in paraffin-embedded tissue without radioisotopes.

  14. [Gastroprotective and antisecretory effect of a phytochemical made from matico leaves (Piper aduncum)].

    PubMed

    Arroyo, Jorge; Bonilla, Pablo; Moreno-Exebio, Luis; Ronceros, Gerardo; Tomás, Gloria; Huamán, Juana; Raez, Ernesto; Quino, Mariano; Rodriguez-Calzado, Javier

    2013-01-01

    To determine the gastroprotective and antisecretory effect of ethanol extract from matico leaves (Piper aduncum) in animal models. To evaluate the gastroprotective effect, 220 mice of the Balb C57 strain were used. They were randomized in 22 groups of ten animals each, in which the formation of gastric ulcers was induced with indomethacin. Gastroprotection was determined by evaluating three aspects: inflammation, number of hemorrhagic shocks and number of ulcers. To evaluate the antisecretory effect, 64 white male Holtzman rats were used, which were randomized in eight groups of eight animals, one control and seven groups of treatment with one extract dose level and two phytochemical dose levels. Antisecretion was obtained through the pylorus ligation. Regarding gastroprotection, dichloromethane, chloroform, hexane and methanol extracts decreased inflammation to over 66% (p<0,05). The ethanolic extract shows 100% activity in reducing the number of hemorrhagic bands (p<0,05). The chloroform extract shows antiulcer activity at 75% (p<0,05). In terms of antisecretion, the phytochemical in capsules containing the ethanolic extract achieved 72% reduction of the gastric secretion volume (p<0,01) and 104,3% (p<0,01) PH increase. In experimental conditions, ethanolic extracts, their fractions and phytochemicals have a gastroprotective effect in mice and antisecretory effect in rats.

  15. Enantioselective micellar electrokinetic chromatography of dl-amino acids using (+)-1-(9-fluorenyl)-ethyl chloroformate derivatization and UV-induced fluorescence detection.

    PubMed

    Prior, Amir; van de Nieuwenhuijzen, Erik; de Jong, Gerhardus J; Somsen, Govert W

    2018-05-22

    Chiral analysis of dl-amino acids was achieved by micellar electrokinetic chromatography coupled with UV-excited fluorescence detection. The fluorescent reagent (+)-1-(9-fluorenyl)ethyl chloroformate was employed as chiral amino acid derivatizing agent and sodium dodecyl sulfate served as pseudo-stationary phase for separating the formed amino acid diastereomers. Sensitive analysis of (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids was achieved applying a xenon-mercury lamp for ultraviolet excitation, and a spectrograph and charge-coupled device for wavelength-resolved emission detection. Applying signal integration over a 30-nm emission wavelength interval, signal-to-noise ratios for derivatized amino acids were up to 23 times higher as obtained using a standard photomultiplier for detection. The background electrolyte composition (electrolyte, pH, sodium dodecyl sulfate concentration, and organic solvent) was studied in order to attain optimal chemo- and enantioseparation. Enantioseparation of twelve proteinogenic dl-amino acids was achieved with chiral resolutions between 1.2 and 7.9, and detection limits for most derivatized amino acids in the 13-60 nM range (injected concentration). Linearity (coefficients of determination > 0.985) and peak-area and migration-time repeatabilities (relative standard deviations lower than 2.6 and 1.9%, respectively) were satisfactory. The employed fluorescence detection system provided up to 100-times better signal-to-noise ratios for (+)-1-(9-fluorenyl)ethyl chloroformate-amino acids than ultraviolet absorbance detection, showing good potential for d-amino acid analysis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. Modulated growth of nanoparticles. Application for sensing nerve gases.

    PubMed

    Virel, Ana; Saa, Laura; Pavlov, Valeri

    2009-01-01

    Hydrolysis of acetylthiocholine mediated by acetylcholine esterase yields the thiol-bearing compound thiocholine. At trace concentrations, thiocholine modulates the growth of Au-Ag nanoparticles on seeding gold nanoparticles in the presence of ascorbic acid. Inhibition of the enzyme by 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51) or by diethyl p-nitrophenyl phosphate (paraoxon) produces lower yields of thiocholine, promoting the catalytic growth of Au-Ag nanoparticles. Here, we describe the development of a simple and sensitive colorimetric assay for the detection of AChE inhibitors.

  17. Synthesis and Purification of Tunable High Tg Electro-Optical Polymers by Ring Opening Metathesis Polymerization

    DTIC Science & Technology

    2011-09-01

    The amic acid was dissolved in DMF (100 mL) at 100 °C. Acetic anhydride (14.8 g, 0.145 mol) and anhydrous sodium acetate (0.8 g, 0.01 mol) were...exo-N-[(E)-2-(ethyl(4-((4-nitrophenyl)diazenyl)phenyl)amino)ethyl benzoate ] nadimide (5). DPTS (0.44 g, 1.41 mmol), exo-N-(p-Carboxyphenyl...agent for a Ru-based catalyst when extracted with aqueous sodium bicarbonate (28, 29). We reasoned that MNA could enhance the solubility of the

  18. Synthesis of Fucosyl-N-Acetylglucosamine Disaccharides by Transfucosylation Using α-l-Fucosidases from Lactobacillus casei

    PubMed Central

    Rodríguez-Díaz, Jesús; Carbajo, Rodrigo J.; Pineda-Lucena, Antonio; Monedero, Vicente

    2013-01-01

    AlfB and AlfC α-l-fucosidases from Lactobacillus casei were used in transglycosylation reactions, and they showed high efficiency in synthesizing fucosyldisaccharides. AlfB and AlfC activities exclusively produced fucosyl-α-1,3-N-acetylglucosamine and fucosyl-α-1,6-N-acetylglucosamine, respectively. The reaction kinetics showed that AlfB can convert 23% p-nitrophenyl-α-l-fucopyranoside into fucosyl-α-1,3-N-acetylglucosamine and AlfC at up to 56% into fucosyl-α-1,6-N-acetylglucosamine. PMID:23542622

  19. Rapid Methods for Biochemical Testing of Anaerobic Bacteria

    PubMed Central

    Schreckenberger, Paul C.; Blazevic, Donna J.

    1974-01-01

    Rapid biochemical tests for nitrate, indole, gelatin, starch, esculin, and o-nitrophenyl-β-D-galactopyranoside were performed on 112 strains of anaerobic bacteria. All tests were incubated under aerobic conditions, and results were recorded within 4 h. The tests for nitrate, indole, and starch showed a 95% or greater correlation when compared to the standard biochemical tests. Tests for esculin and gelatin showed an agreement of 86 and 77%, respectively. PathoTec test strips for nitrate, indole, esculin, o-nitrophenyl-β-D-galactopyranoside, Voges-Proskauer, and urease were also tested and showed encouraging results. PMID:4613268

  20. Novel 5-oxo-hexahydroquinoline derivatives: design, synthesis, in vitro P-glycoprotein-mediated multidrug resistance reversal profile and molecular dynamics simulation study

    PubMed Central

    Shahraki, Omolbanin; Edraki, Najmeh; Khoshneviszadeh, Mehdi; Zargari, Farshid; Ranjbar, Sara; Saso, Luciano; Firuzi, Omidreza; Miri, Ramin

    2017-01-01

    Overexpression of the efflux pump P-glycoprotein (P-gp) is one of the important mechanisms of multidrug resistance (MDR) in many tumor cells. In this study, 26 novel 5-oxo-hexahydroquinoline derivatives containing different nitrophenyl moieties at C4 and various carboxamide substituents at C3 were designed, synthesized and evaluated for their ability to inhibit P-gp by measuring the amount of rhodamine 123 (Rh123) accumulation in uterine sarcoma cells that overexpress P-gp (MES-SA/Dx5) using flow cytometry. The effect of compounds with highest MDR reversal activities was further evaluated by measuring the alterations of MES-SA/Dx5 cells’ sensitivity to doxorubicin (DXR) using MTT assay. The results of both biological assays indicated that compounds bearing 2-nitrophenyl at C4 position and compounds with 4-chlorophenyl carboxamide at C3 demonstrated the highest activities in resistant cells, while they were devoid of any effect in parental nonresistant MES-SA cells. One of the active derivatives, 5c, significantly increased intracellular Rh123 at 100 µM, and it also significantly reduced the IC50 of DXR by 70.1% and 88.7% at 10 and 25 µM, respectively, in MES-SA/Dx5 cells. The toxicity of synthesized compounds against HEK293 as a noncancer cell line was also investigated. All tested derivatives except for 2c compound showed no cytotoxicity. A molecular dynamics simulation study was also performed to investigate the possible binding site of 5c in complex with human P-gp, which showed that this compound formed 11 average H-bonds with Ser909, Thr911, Arg547, Arg543 and Ser474 residues of P-gp. A good agreement was found between the results of the computational and experimental studies. The findings of this study show that some 5-oxo-hexahydroquinoline derivatives could serve as promising candidates for the discovery of new agents for P-gp-mediated MDR reversal. PMID:28243063

  1. USE OF BIOLOGICALLY BASED COMPUTATIONAL MODELING IN MODE OF ACTION-BASED RISK ASSESSMENT – AN EXAMPLE OF CHLOROFORM

    EPA Science Inventory

    The objective of current work is to develop a new cancer dose-response assessment for chloroform using a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model. The PBPK/PD model is based on a mode of action in which the cytolethality of chloroform occurs when the ...

  2. Antileukemia activity in the Osillatoriaceae: isolation of Debromoaplysiatoxin from Lyngbya.

    PubMed

    Mynderse, J S; Moore, R E; Kashiwagi, M; Norton, T R

    1977-04-29

    Chloroform extracts of several seaweeds, of the family Oscillatoriaceae, from Enewetak Atoll, Marshall Islands, display activity against P-388 lymphocytic mouse leukemia. A P-388 active compound, debromoaplysiatoxin, has been isolated from Lyngbya gracilis and characterized. This compound also has dermonecrotic activity and may be the dermatitis-producing substance in L. majuscula, the causative agent of "swimmers' itch" outbreaks in Hawaiian waters.

  3. Methanol fractionations of Catha edulis Frosk (Celastraceae) contracted Lewis rat aorta in vitro: a comparison between crimson and green leaves.

    PubMed

    Mahmood, Samira Abdulla; Pavlovic, Dragan; Hoffmann, Ulrich

    2009-05-07

    The study investigated the effect of methanol extract and its fractionations obtained from Yemeni khat on the smooth muscle isometric tension in Lewis rat aortal ring preparations and compared the effects of the crimson and green leaves. Khat leaves were sorted into green (khat Light; KL) and crimson (khat Dark; KD) leaves, extracted with methanol, followed with solvent-solvent extraction (benzene, chloroform and ethylacetate). The contractile activity of the fractions was tested using aortal ring preparations. The control (phenylepherine contraction) methanol extracts contracted aortas at concentrations 250, 125 and 67.5 microg/ml buffer by 80.2%, 57.3%, 26.4% and 81.5%, 65.6%, 24.6% for KL and KD, respectively. Fractions of benzene (BF) and ethylacetate (EaF) contracted the aorta with 2 microgm, whereas, chloroform (ChF) with 1 microgm/1 ml buffer was less potent. The shape of contraction curve produced by EaF differed from that of ChF and BF of both (KL and KD). The EaF induced-contraction peaked after 3.3 +/- 0.94 mins, whereas those of BF and CHF peaked after 18.0 +/- 2.2, 19.7 +/- 0.94 mins, respectively. Pre-incubation with nifedipine (10(-6) M) insignificantly reduced the contraction induced by all fractionations, but prazosin (10(-6) M) reduced the contraction by 81.9%, 63.1%, 71.8% with p = 0.23, 0.09, 0.15 for BF, ChF and EaF of KL, respectively. It significantly reduced contraction of ChF, 64.1%; p = 0.02, and of EaF, 73.5%; p = 0.04 of KD, while the reduction in contraction of BF was 63.1%; p = 0.06. In conclusion, fractions of green and crimson Yemeni khat leaves contracted aortas of Lewis rats. Both leaves behave almost similarly. Contraction induced by chloroform fraction produced alpha-sympathetic activity.

  4. Study of the Gastroprotective Effect of Extracts and Semipurified Fractions of Chresta martii DC. and Identification of Its Principal Compounds.

    PubMed

    Franco, E S; Mélo, M E B; Jatobá, B J A; Santana, A L B D; Silva, A A R; Silva, T G; Nascimento, M S; Maia, M B S

    2015-01-01

    Chresta martii (Asteraceae) is a species widely used by the population of the Xingu region of Sergipe, Brazil, in the form of a decoction (aerial parts) for the treatment of gastrointestinal diseases. The study aims to assess the gastroprotective activity of organic extracts and semipurified fractions and identify the principal compounds present in C. martii responsible for such activity. The organic extracts (cyclohexane: ECCm, ethyl acetate: EACm, and ethanol: EECm) were obtained from the dried aerial parts (500 g) of C. martii. For evaluation of the gastroprotective activity of extracts (50, 100, or 200 mg/kg; p.o.), male Swiss Webster mice (25-30 g) were used which had gastric ulcers induced by indomethacin (40 mg/kg, s.c.) or ethanol (0.2 mL/animal; p.o.). Among the extracts evaluated, EACm exhibited significant (P < 0.05) gastroprotective activity in the models used. The fractionation of EACm was performed in a silica gel column 60 eluted with the following compounds: [chloroform-F1 yield (10%)], [chloroform/ethyl acetate (1/1)-F2 yield (6%)], [ethyl acetate-F3 yield (8%)], and [ethyl/methanol acetate (1/1)-F4 yield (5%)]. Of the fractions described above, the F1 (25 mg/kg; p.o.) had greater gastroprotective activity (P < 0.05) than that displayed by ranitidine (80 mg/kg; p.o.) in the ethanol-induced ulcer model. The refractionation of F1 produced 23 subfractions and from these two yellow amorphous compounds were obtained by recrystallization, Rf: 0.46 and 0.31 (ethyl acetate : chloroform 5 : 5). The compounds isolated were characterized by nuclear magnetic resonance spectroscopy ((1)H-NMR and (13)C-NMR) and identified as flavones: chrysoeriol (yield: 0.43%) and 3',4'-dimethoxyluteolin (yield: 0.58%). Conclusion. Flavone 3',4'-dimethoxyluteolin is the principal compound present in the species C. martii and is probably responsible for gastroprotective activity observed in this species.

  5. Influence of Natural Organic Matter (NOM) Character on the Distribution of Chlorinated and Chloraminated Disinfection By-Products (DBPs) at Rand Water

    NASA Astrophysics Data System (ADS)

    Marais, Savia S.; Ncube, Esper J.; Haarhoff, Johannes; Msagati, Titus AM; Mamba, Bhekie B.; Nkambule, Thabo I.

    2016-04-01

    Certain disinfection by-products (DBPs) are likely human carcinogens or present mutagenic effects while many DBPs are unidentified. Considering the possibility of DBPs being harmful to human health and the fact that trihalomethanes (THMs) are the only regulated DBP in the South African National Standard (SANS:241) for drinking water, special interest in the precursors to these DBPs' formation is created. It is essential to understand the reactivity and character of the precursors responsible for the formation of DBPs in order to enhance precursor removal strategies during the treatment of drinking water. In this study the character of NOM within surface water and the subsequent distribution of THMs formed in the drinking water from Rand Waters' full scale treatment plant were investigated. Molecular size distribution (MSD) of NOM within the surface water was determined by high performance size exclusion chromatography (HPSEC). Specific ultraviolet absorbance (SUVA) and UV254 measurements formed part of the NOM character study as they provide an indication of the aromaticity of organic matter. The four THMs; bromoform, chloroform, dibromochloromethane (DBCM) and bromodichloromethane (BDCM)were measured by gas chromatography. The sum of these four THMs was expressed as total trihalomethane (TTHM). On average the chloroform constituted 76.2% of the total TTHM, BDCM 22.5% while DBCM and bromoform measured below the detection limit. THM speciation after chlorination and chloramination concentrations increased in the sequence bromoform < DBCM < BDCM < chloroform. Results of the MSD showed a significant correlation between NOM of high molecular size (peak I) and TTHM formation specifically during the summer months (R2= 0.971, p < 0.05). High molecular weight (HMW) NOM also related well to chloroform formation (R2 = 0.963, p < 0.05) however, the formation of BDCM was not due to HWM fraction as indicated by weak regression coefficient. A positive correlation existed between SUVA and UV254 removal percentage (R2 = 0.937, p < 0.05). Seasonal variability in NOM character was evident in the source water in summer when high temperatures and rainfall occurred. The results displayed are an indication that aromatic NOM were the main precursor to TTHM formation, more prominently during summer. Keywords: disinfection by-products, molecular size distribution, natural organic matter, UV254

  6. Selective chloroform sensor using thiol functionalized reduced graphene oxide at room temperature

    NASA Astrophysics Data System (ADS)

    Midya, Anupam; Mukherjee, Subhrajit; Roy, Shreyasee; Santra, Sumita; Manna, Nilotpal; Ray, Samit K.

    2018-02-01

    This paper presents a highly selective chloroform sensor using functionalised reduced graphene oxide (RGO) as a sensing layer. Thiol group is covalently attached on the basal plan of RGO film by a simple one-step aryl diazonium chemistry to improve its selectivity. Several spectroscopic techniques like X-ray photoelectron, Raman and Fourier transform infrared spectroscopy confirm successful thiol functionalization of RGO. Finally, the fabricated chemiresistor type sensor is exposed to chloroform in the concentration range 200-800 ppm (parts per million). The sensor shows a 4.3% of response towards 800 ppm chloroform. The selectivity of the sensor is analyzed using various volatile organic compounds as well. The devices show enhanced response and faster recovery attributed to the physiosorption of chloroform onto thiol functionalized graphene making them attractive for 2D materials based sensing applications.

  7. Pretreatment of different biological matrices for exogenous testosterone analysis: a review.

    PubMed

    Pizzato, Edna Carolina; Filonzi, Marcelo; Rosa, Hemerson Silva da; de Bairros, André Valle

    2017-11-01

    The presence of exogenous testosterone has been monitored mainly in the urine and blood. However, other biological matrices such as hair, nail, and saliva samples can be used successfully for in vivo measurement. Chromatographic analysis requires pretreatment to obtain free testosterone and its metabolites. Among the pretreatment procedures, digestion, hydrolysis and solvolysis steps are conducted to reach the analytical purpose. Digestion assay is indicated for hair and nail samples. First, it is recommended to perform the decontamination step. After that, alkaline solution (NaOH), organic solvents and other reagents can be added to the samples and incubated under determined conditions for the digestion step. Hydrolysis assay is recommended to urine and blood samples. Acid hydrolysis cleaves conjugated testosterone and its metabolites using HCl or H 2 SO 4 solution at appropriate time and temperature. However, there is formation of interferent compounds, degradation of dehydroepiandrosterone and decrease of peak resolution for epitestosterone. Enzymatic hydrolysis is an alternative technique able to promote free testosterone and its metabolites with low degradation. It is important to establish the best conditions according to the biological fluid and the amount of the sample. Sulfatase enzyme is recommended together with β-glucuronidase to cleave sulfoconjugate steroids. Solvolysis assay is similar to acid hydrolysis, but organic solvents are responsible to promote steroid deconjugation. Other approaches such as combination of different pretreatments, surface response or ultrasonic energy have been used to obtain the total of free steroids. So, the biological matrix defines the best procedure for pretreatment to achieve the analytical purpose, knowing its advantages and limitations.

  8. Bioactive plants from Argentina and Bolivia.

    PubMed

    Bardón, Alicia; Borkosky, Susana; Ybarra, María I; Montanaro, Susana; Cartagena, Elena

    2007-04-01

    Antibacterial and molluscicidal activities of methanol and chloroform extracts of 16 plant species belonging to the families Compositae and Melastomataceae were evaluated. The chloroform extract of Vernonanthura tweediana and the methanol extract of Senecio santelisis resulted to be very toxic to brine shrimp nauplii (LC(50)=1 microg/ml). Chloroform extracts of S. santelisis and Senecio leucostachys as well as the methanol extract of Wedelia subvaginata displayed molluscicidal effects on Biomphalaria peregrina showing LC(100)<100 microg/ml. Moderate antibacterial action was produced by the chloroform extracts of Flaveria bidentis, Grindelia scorzonerifolia and Vernonia incana against two strains of Staphylococcus aureus.

  9. Self-Diffusion and Heteroassociation in an Acetone-Chloroform Mixture at 298 K

    NASA Astrophysics Data System (ADS)

    Golubev, V. A.; Gurina, D. L.; Kumeev, R. S.

    2018-01-01

    The self-diffusion coefficients of acetone and chloroform in a binary acetone-chloroform mixture at 298 K are determined via pulsed field gradient NMR spectroscopy. It is estimated that the hydrodynamic radii of the mixture's components, calculated using the Stokes-Einstein equation, grow as the concentrations of the components fall. It is shown that such behavior of hydrodynamic radii is due to acetone-chloroform heteroassociation. The hydrodynamic radii of monomers and heteroassociates in a 1: 1 ratio are determined along with the constant of heteroassociation, using the proposed model of an associated solution.

  10. USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY-BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY

    EPA Science Inventory

    USE OF SENSITIVITY ANALYSIS ON A PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODEL FOR CHLOROFORM IN RATS TO DETERMINE AGE-RELATED TOXICITY.
    CR Eklund, MV Evans, and JE Simmons. US EPA, ORD, NHEERL, ETD,PKB, Research Triangle Park, NC.

    Chloroform (CHCl3) is a disinfec...

  11. Immunotoxicological Profile of Chloroform in Female B6c3f1 Mice When Administered In Drinking Water

    EPA Science Inventory

    Chloroform can be formed as a disinfection by-product during water chlorination, one of the primary modalities for purifying municipal water supplies for human consumption. The goal of this study was to characterize the immunotoxic effects of chloroform in female B6C3F1 mice when...

  12. Preserving ground water samples with hydrochloric acid does not result in the formation of chloroform

    USGS Publications Warehouse

    Squillace, Paul J.; Pankow, James F.; Barbash, Jack E.; Price, Curtis V.; Zogorski, John S.

    1999-01-01

    Water samples collected for the determination of volatile organic compounds (VOCs) are often preserved with hydrochloric acid (HCl) to inhibit the biotransformation of the analytes of interest until the chemical analyses can he performed. However, it is theoretically possible that residual free chlorine in the HCl can react with dissolved organic carbon (DOC) to form chloroform via the haloform reaction. Analyses of 1501 ground water samples preserved with HCl from the U.S. Geological Survey's National Water-Quality Assessment Program indicate that chloroform was the most commonly detected VOC among 60 VOCs monitored. The DOC concentrations were not significantly larger in samples with detectable chloroform than in those with no delectable chloroform, nor was there any correlation between the concentrations of chloroform and DOC. Furthermore, chloroform was detected more frequently in shallow ground water in urban areas (28.5% of the wells sampled) than in agricultural areas (1.6% of the wells sampled), which indicates that its detection was more related to urban land-use activities than to sample acidification. These data provide strong evidence that acidification with HCl does not lead to the production of significant amounts of chloroform in ground water samples. To verify these results, an acidification study was designed to measure the concentrations of all trihalomethanes (THMs) that can form as a result of HCl preservation in ground water samples and to determine if ascorbic acid (C6H8O6) could inhibit this reaction if it did occur. This study showed that no THMs were formed as a result of HCl acidification, and that ascorbic acid had no discernible effect on the concentrations of THMs measured.

  13. Substrate specificity and kinetic properties of enzymes belonging to the hormone-sensitive lipase family: comparison with non-lipolytic and lipolytic carboxylesterases.

    PubMed

    Chahinian, Henri; Ali, Yassine Ben; Abousalham, Abdelkarim; Petry, Stefan; Mandrich, Luigi; Manco, Guiseppe; Canaan, Stephane; Sarda, Louis

    2005-12-30

    We have studied the kinetics of hydrolysis of triacylglycerols, vinyl esters and p-nitrophenyl butyrate by four carboxylesterases of the HSL family, namely recombinant human hormone-sensitive lipase (HSL), EST2 from Alicyclobacillus acidocaldarius, AFEST from Archeoglobus fulgidus, and protein RV1399C from Mycobacterium tuberculosis. The kinetic properties of enzymes of the HSL family have been compared to those of a series of lipolytic and non-lipolytic carboxylesterases including human pancreatic lipase, guinea pig pancreatic lipase related protein 2, lipases from Mucor miehei and Thermomyces lanuginosus, cutinase from Fusarium solani, LipA from Bacillus subtilis, porcine liver esterase and Esterase A from Aspergilus niger. Results indicate that human HSL, together with other lipolytic carboxylesterases, are active on short chain esters and hydrolyze water insoluble trioctanoin, vinyl laurate and olive oil, whereas the action of EST2, AFEST, protein RV1399C and non-lipolytic carboxylesterases is restricted to solutions of short chain substrates. Lipolytic and non-lipolytic carboxylesterases can be differentiated by their respective value of K(0.5) (apparent K(m)) for the hydrolysis of short chain esters. Among lipolytic enzymes, those possessing a lid domain display higher activity on tributyrin, trioctanoin and olive oil suggesting, then, that the lid structure contributes to enzyme binding to triacylglycerols. Progress reaction curves of the hydrolysis of p-nitrophenyl butyrate by lipolytic carboxylesterases with lid domain show a latency phase which is not observed with human HSL, non-lipolytic carboxylesterases, and lipolytic enzymes devoid of a lid structure as cutinase.

  14. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storrs, Richard Wood

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by 31P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal of cis,more » syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 Å of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an α-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.« less

  15. Structural studies of polypeptides: Mechanism of immunoglobin catalysis and helix propagation in hybrid sequence, disulfide containing peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storrs, R.W.

    1992-08-01

    Catalytic immunoglobin fragments were studied Nuclear Magnetic Resonance spectroscopy to identify amino acid residues responsible for the catalytic activity. Small, hybrid sequence peptides were analyzed for helix propagation following covalent initiation and for activity related to the protein from which the helical sequence was derived. Hydrolysis of p-nitrophenyl carbonates and esters by specific immunoglobins is thought to involve charge complementarity. The pK of the transition state analog P-nitrophenyl phosphate bound to the immunoglobin fragment was determined by [sup 31]P-NMR to verify the juxtaposition of a positively charged amino acid to the binding/catalytic site. Optical studies of immunoglobin mediated photoreversal ofmore » cis, syn cyclobutane thymine dimers implicated tryptophan as the photosensitizing chromophore. Research shows the chemical environment of a single tryptophan residue is altered upon binding of the thymine dimer. This tryptophan residue was localized to within 20 [Angstrom] of the binding site through the use of a nitroxide paramagnetic species covalently attached to the thymine dimer. A hybrid sequence peptide was synthesized based on the bee venom peptide apamin in which the helical residues of apamin were replaced with those from the recognition helix of the bacteriophage 434 repressor protein. Oxidation of the disufide bonds occured uniformly in the proper 1-11, 3-15 orientation, stabilizing the 434 sequence in an [alpha]-helix. The glycine residue stopped helix propagation. Helix propagation in 2,2,2-trifluoroethanol mixtures was investigated in a second hybrid sequence peptide using the apamin-derived disulfide scaffold and the S-peptide sequence. The helix-stop signal previously observed was not observed in the NMR NOESY spectrum. Helical connectivities were seen throughout the S-peptide sequence. The apamin/S-peptide hybrid binded to the S-protein (residues 21-166 of ribonuclease A) and reconstituted enzymatic activity.« less

  16. Tri- and tetra-substituted cyclen based lanthanide(III) ion complexes as ribonuclease mimics: a study into the effect of log Ka, hydration and hydrophobicity on phosphodiester hydrolysis of the RNA-model 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP).

    PubMed

    Fanning, Ann-Marie; Plush, Sally E; Gunnlaugsson, Thorfinnur

    2015-05-28

    A series of tetra-substituted 'pseudo' dipeptide ligands of cyclen (1,4,7,10,-tetraazacyclododecane) and a tri-substituted 3'-pyridine ligand of cyclen, and the corresponding lanthanide(III) complexes were synthesised and characterised as metallo-ribonuclease mimics. All complexes were shown to promote hydrolysis of the phosphodiester bond of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP, τ1/2 = 5.87 × 10(3) h), a well known RNA mimic. The La(III) and Eu(III) tri-substituted 3'-pyridine lanthanide(III) complexes being the most efficient in promoting such hydrolysis at pH 7.4 and at 37 °C; with τ1/2 = 1.67 h for La(III) and 1.74 h for Eu(III). The series was developed to provide the opportunity to investigate the consequences of altering the lanthanide(III) ion, coordination ability and hydrophobicity of a metallo-cavity on the rate of hydrolysis using the model phosphodiester, HPNP, at 37 °C. To further provide information on the role that the log Ka of the metal bound water plays in phosphodiester hydrolysis the protonation constants and the metal ion stability constants of both a tri and tetra-substituted 3'pyridine complex were determined. Our results highlighted several key features for the design of lanthanide(III) ribonucelase mimics; the presence of two metal bound water molecules are vital for pH dependent rate constants for Eu(III) complexes, optimal pH activity approximating physiological pH (∼7.4) may be achieved if the log Ka values for both MLOH and ML(OH)2 species occur in this region, small changes to hydrophobicity within the metallo cavity influence the rate of hydrolysis greatly and an amide adjacent to the metal ion capable of forming hydrogen bonds with the substrate is required for achieving fast hydrolysis.

  17. Dispersing surface-modified imogolite nanotubes in polar and non-polar solvents

    NASA Astrophysics Data System (ADS)

    Li, Ming; Brant, Jonathan A.

    2018-02-01

    Furthering the development of nanocomposite structures, namely membranes for water treatment applications, requires that methods be developed to ensure nanoparticle dispersion in polar and non-polar solvents, as both are widely used in associated synthesis techniques. Here, we report on a two-step method to graft polyvinylpyrrolidone (PVP), and a one-step method for octadecylphosphonic acid (OPA), onto the outer surfaces of imogolite nanotubes. The goal of these approaches was to improve and maintain nanotube dispersion in polymer compatible polar and non-polar solvents. The PVP coating modified the imogolite surface charge from positive to weakly negative at pH ≤ 9; the OPA made it weakly positive at acidic pH values to negative at pH ≥ 7. The PVP surface coating stabilized the nanotubes through steric hindrance in polar protic, dipolar aprotic, and chloroform. In difference to the PVP, the OPA surface coating allowed the nanotubes to be dispersed in n-hexane and chloroform, but not in the polar solvents. The lack of miscibility in the polar solvents, as well as the better dispersion in n-hexane, was attributed to the stronger hydrophobicity of the OPA polymer relative to the PVP. [Figure not available: see fulltext.

  18. Theodore Roosevelt Chloroforming Uncle Sam "In the Hopeless Ward".

    PubMed

    Drew, Benjamin A; Bause, George S

    2016-10-01

    In March of 1905 in Judge magazine, Louis Dalrymple published his political cartoon of Theodore Roosevelt chloroforming "Uncle Sam." Having sampled a host of Democratic remedies, the 125-year-old Sam can expect that Roosevelt's chloroform will either cure him with major Republican surgery or kill him with Osler-linked euthanasia. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. THE FAILURE OF CHLOROFORM ADMINISTERED IN THE DRINKING WATER TO INDUCE RENAL TUBULAR CELL NEOPLASIA IN MALE F344/N RATS

    EPA Science Inventory

    The failure of chloroform administered in drinking water to induce renal tubular cell neoplasia in male F344/N rats

    Chloroform (TCM) has been demonstrated to be a renal carcinogen in the male Osborne-
    Mendel rat when administered either by corn oil gavage or in drin...

  20. Chemical control of rate and onset temperature of nadimide polymerization

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1985-01-01

    The chemistry of norbornenyl capped imide compounds (nadimides) is briefly reviewed with emphasis on the contribution of Diels-Alder reversion in controlling the rate and onset of the thermal polymerization reaction. Control of onset temperature of the cure exotherm by adjusting the concentration of maleimide is demonstrated using selected model compounds. The effects of nitrophenyl compounds as free radical retarders on nadimide reactivity are discussed. A simple copolymerization model is proposed for the overall nadimide cure reaction. An approximate numerical analysis is carried out to demonstrate the ability of the model to simulate the trends observed for both maleimide and nitrophenyl additions.

  1. Synthesis of 1-phenyl-3-(4'-nitrophenyl)-5-(3',4'-dimethoxy-6'-nitrophenyl)-2-pyrazoline and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Fauzi'ah, Lina; Wahyuningsih, Tutik Dwi

    2017-03-01

    Synthesis of pyrazoline substituted with nitro groups as antibacterial agent has been carried out by cycloaddition reaction. The compound was synthesized from chalcone and phenylhyrazine by refluxing them in 2-butanol for 24 h. The product was purified and characterized using FTIR and 1H-NMR spectrometers. The result showed that pyrazoline has been succesfully synthesized in 33.06% yield. The compund has antibacterial activity againts Bacillus subtilis and Shigella flexneri. However, it has tendency of activity for Gram-negative bacteria. In conclusion, the nitro groups that substituted in aromatic ring were predicted as a part of pharmacophore.

  2. Asymmetric and symmetric triazenido cyclopalladated complexes: Synthesis, structural analysis and DFT calculations

    NASA Astrophysics Data System (ADS)

    Härter Vaniel, Ana Paula; Mauro, Antonio Eduardo; de Godoy Netto, Adelino Vieira; de Almeida, Eduardo Tonon; Piquini, Paulo Cesar; Zambiazi, Priscilla; Back, Davi Fernando; Hörner, Manfredo

    2015-03-01

    The reaction of [Pd{dmba}(μ-N3)]2 (dmba = N,N-dimethylbenzylamine) with 1-(2-fluorophenyl)-3-(4-nitrophenyl)triazenido (L1) or 1,3-bis(4-nitrophenyl)triazenido (L2) anions, in methanol, and subsequent treatment with pyridine (py) allows the preparation of the corresponding cyclopalladated compounds [Pd(dmba)(L1)(py)] (1) and [Pd(dmba)(L2)(py)]ṡpy (2). The acentric mononuclear entities of (1) and (2) are connected by weak intermolecular non-classical Csbnd H⋯C hydrogen bonds, which results in 2-D arrangements by translation, along the [1 0 0] and [0 0 1] crystallographic directions, respectively.

  3. Quantitative extraction and concentration of synthetic water-soluble acid dyes from aqueous media using a quinine-chloroform solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, F.; Ozawa, N.; Hanai, J.

    Twenty-one water-soluble acid dyes, including eleven azo, five triphenylmethane four xanthene, one naphthol derivatives, used at practical concentrations for food coloration, were quantitatively extracted from water and various carbonated beverages into a 0.1 M quinine-chloroform solution in the presence of 0.5 M boric acid by brief shaking. Quantitative extraction of these dyes was also accomplished by the 0.1 M quinine-chloroform solution made conveniently from chloroform, quinine hydrochloride, and sodium hydroxide added successively to water or beverages containing boric acid. Quinine acted as a countercation on the dyes having sulfonic and/or carboxylic acid group(s) to form chloroform-soluble ion-pair complexes. The diacidicmore » base alkaloid interacted with each acid group of mono-, di-, tri-, and tetrasulfonic acid dyes approximately in the ratio 0.8-0.9 to 1. The dyes in the chloroform solution were quantitatively concentrated into a small volume of sodium hydroxide solution also by brief shaking. The convenient quinine-chloroform method was applicable to the quantitative extraction of a mixture of 12 dyes from carbonated beverages, which are all currently used for food coloration. A high-pressure liquid chromatographic method is also presented for the systematic separation and determination of these 12 dyes following their concentration into the aqueous alkaline solution. The chromatogram was monitored by double-wavelength absorptiometry in the visible and ultraviolet ray regions.« less

  4. Trihalomethanes in public drinking water and stillbirth and low birth weight rates: an intervention study.

    PubMed

    Iszatt, Nina; Nieuwenhuijsen, Mark J; Bennett, James E; Toledano, Mireille B

    2014-12-01

    During 2003-2004, United Utilities water company in North West England introduced enhanced coagulation (EC) to four treatment works to mitigate disinfection by-product (DBP) formation. This enabled examination of the relation between DBPs and birth outcomes whilst reducing socioeconomic confounding. We compared stillbirth, and low and very low birth weight rates three years before (2000-2002) with three years after (2005-2007) the intervention, and in relation to categories of THM change. We created exposure metrics for EC and trihalomethane (THM) concentration change (n=258 water zones). We linked 429,599 live births and 2279 stillbirths from national birth registers to the water zone at birth. We used Poisson regression to model the differences in birth outcome rates with an interaction between before/after the intervention and EC or THM change. EC treatment reduced chloroform concentrations more than non-treatment (mean -29.7 µg/l vs. -14.5 µg/l), but not brominated THM concentrations. Only 6% of EC water zones received 100% EC water, creating exposure misclassification concerns. EC intervention was not associated with a statistically significant reduction in birth outcome rates. Areas with the highest chloroform decrease (30 - 65 μg/l) had the greatest percentage decrease in low -9 % (-12, -5) and very low birth weight -16% (-24, -8) rates. The interaction between before/after intervention and chloroform change was statistically significant only for very low birth weight, p=0.02. There were no significant decreases in stillbirth rates. In a novel approach for studying DBPs and adverse reproductive outcomes, the EC intervention to reduce DBPs did not affect birth outcome rates. However, a measured large decrease in chloroform concentrations was associated with statistically significant reductions in very low birth weight rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents.

    PubMed

    Hezaveh, Samira; Samanta, Susruta; Milano, Giuseppe; Roccatano, Danilo

    2012-03-28

    In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.

  6. Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents

    NASA Astrophysics Data System (ADS)

    Hezaveh, Samira; Samanta, Susruta; Milano, Giuseppe; Roccatano, Danilo

    2012-03-01

    In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.

  7. Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers

    DTIC Science & Technology

    2013-04-17

    morphology to a disordered bicontinuous morphology can be achieved.15,16,26−28 For poly(styrene- b -2-vinylpyridine) ( PS - b - P2VP ) materials, precise control of an...of SNPs, slow evaporation of chloroform from emulsion droplets containing PS - b - P2VP diblock copolymers resulted in solid particles with a spherical...lamellae of PS - b - P2VP and SNP necklaces decorating the outer surface could be obtained. The role of interfacially active SNPs in the morphology

  8. Antioxidant activity and total phenols from the methanolic extract of Miconia albicans (Sw.) Triana leaves.

    PubMed

    Pieroni, Laís Goyos; de Rezende, Fernanda Mendes; Ximenes, Valdecir Farias; Dokkedal, Anne Lígia

    2011-11-10

    Miconia is one of the largest genus of the Melastomataceae, with approximately 1,000 species. Studies aiming to describe the diverse biological activities of the Miconia species have shown promising results, such as analgesic, antimicrobial and trypanocidal properties. M. albicans leaves were dried, powdered and extracted to afford chloroformic and methanolic extracts. Total phenolic contents in the methanolic extract were determined according to modified Folin-Ciocalteu method. The antioxidant activity was measured using AAPH and DPPH radical assays. Chemical analysis was performed with the n-butanol fraction of the methanolic extract and the chloroformic extract, using different chromatographic techniques (CC, HPLC). The structural elucidation of compounds was performed using 500 MHz NMR and HPLC methods. The methanolic extract showed a high level of total phenolic contents; the results with antioxidant assays showed that the methanolic extract, the n-butanolic fraction and the isolated flavonoids from M. albicans had a significant scavenging capacity against AAPH and DPPH. Quercetin, quercetin-3-O-glucoside, rutin, 3-(E)-p-coumaroyl-α-amyrin was isolated from the n-butanolic fraction and α-amyrin, epi-betulinic acid, ursolic acid, epi-ursolic acid from the chloroformic extract. The results presented in this study demonstrate that M. albicans is a promising species in the search for biologically active compounds.

  9. Health assessment for Welsh Road/Barkman Landfill, Honey Brook, Chester County, Pennsylvania, Region 3. CERCLIS No. PAD980829527. Preliminary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-02

    The Welsh Road/Barkman Landfill site in Honey Brook, Pennsylvania was an unpermitted residential and commercial refuse disposal facility that operated from 1963 to sometime in the 1980s. After 1977, the landfill continued to operate in defiance of legal action to support a closure plan. Various investigations conducted in the 1980s revealed that industrial and hazardous waste had been accepted by the site. The environmental contamination on-site consists of copper, lead, 1,2-dichloropropane, toluene, chloroform and methylene chloride in drummed wastes; and mercury, toluene, dichlorofluoromethane, methylene chloride, trichlorofluoromethane, 5-methyl-2-hexanone, trichloroethylene, 1,2-dichloroethane, and 1,3,5-cycloheptatriene in groundwater. One time sampling indicated the presence ofmore » volatile compounds in air (hydrogen chloride and chloroform). The environmental contamination off-site consists of cadmium in sediment; and chloromethane, chloroform, xylenes, dichlorofluoromethane, 1,1-dichloroethane, tetrachloroethylene, p-cresol, toluene, methyl isobutyl ketone, di-n-butyl phthalate, lead, mercury, and zinc in residential well water. The site is considered to be of potential public health concern because of the risk to human health caused by the possibility of exposure to hazardous substances via contaminated groundwater, surface water, soil, sediment, and airborne gases, vapors, and particulate.« less

  10. Solvent Effect on Morphology and Optical Properties of Poly(3-hexylthiophene):TIPS-Pentacene Blends

    NASA Astrophysics Data System (ADS)

    Ozório, Maíza Silva; Camacho, Sabrina Alessio; Cordeiro, Neusmar Junior Artico; Duarte, José Leonil; Alves, Neri

    2018-02-01

    Optical, electrical, and morphological properties of poly(3-hexylthiophene):6,13-bis(triisopropylsilylethynyl) (TIPS)-pentacene (P3HT:TP) blend films, in the proportion of 1:1 (w/w), have been investigated using chloroform, toluene, or trichlorobenzene as solvent. The main morphological feature was formation of aggregates that tended to segregate vertically, exhibiting characteristics that were strongly influenced by the type of solvent applied. The phase segregation of TP observed for the P3HT:TP blend film obtained using chloroform, the most volatile of the investigated solvents, can be explained based on the Marangoni effect and the Flory-Huggins model. The TP molecules induce better organization of P3HT, as evidenced by the ultraviolet-visible (UV-Vis) absorption spectra. Photoluminescence (PL) measurements revealed quenching and an increase in the lifetime of the carriers. The PL measurements also showed that the exciton dissociation was dependent on the characteristics of the surface on which the film was deposited. P3HT:TP blend film prepared using trichlorobenzene showed the best morphology with moderate phase segregation and better P3HT ordering. The output current from organic field-effect transistors (OFETs) with blend film prepared using trichlorobenzene was three times (3×) larger than when using the other solvents, with carrier mobility of 5.0 × 10-3 cm2 V-1 s-1.

  11. Analgesic, antipyretic, anti-inflammatory effects of methanol, chloroform and ether extracts of Vernonia cinerea less leaf.

    PubMed

    Iwalewa, E O; Iwalewa, O J; Adeboye, J O

    2003-06-01

    The chloroform, methanolic and ether extracts of Vernonia cinerea (Asteraceae; Less) leaf (100, 200 and 400mg/kg intraperitoneally) were tested in: acetic acid-induced writhing in mice, carrageenin-induced oedema and brewer's yeast-induced pyrexia in rats to assess their analgesic, anti-inflammatory, antipyretic and behavioral activities, respectively. The changes in writhings and behavioural activities in mice, the pyrexia and paw volumes in rats were reduced significantly (P<0.05) compared to the control. There was an increase in pain threshold on the oedematous right hind limb paw of the rats. These results indicate that the extracts could possess analgesic, antipyretic and anti-inflammatory properties. All these effects and the changes in the behavioural activities could be suggested as contributory effects to the use of V. cinerea leaf in the treatment of malaria.

  12. A Photo-Favorskii Ring Contraction Reaction: The Effect of Ring Size

    PubMed Central

    Kammath, Viju Balachandran; Šolomek, Tomáš; Ngoy, Bokolombe Pitchou; Heger, Dominik; Klán, Petr; Rubina, Marina; Givens, Richard S.

    2012-01-01

    The effect of ring size on the photo-Favorskii induced ring-contraction reaction of the hydroxybenzocycloalkanonyl acetate and mesylate esters (7a–d, 8a–c) has provided new insight into the mechanism of the rearrangement. By monotonically decreasing the ring size in these cyclic derivatives, the increasing ring strain imposed on the formation of the elusive bicyclic spirocyclopropanone 20 results in a divergence away from rearrangement and toward solvolysis. Cycloalkanones of seven or eight carbons undergo a highly efficient photo-Favorskii rearrangement with ring contraction paralleling the photochemistry of p-hydroxyphenacyl esters. In contrast, the five-carbon ring does not rearrange but is diverted to the photosolvolysis channel avoiding the increased strain energy that would accompany the formation of the spirobicyclic ketone, the “Favorskii intermediate 20”. The six-carbon analogue demonstrates the bifurcation in reaction channels, yielding a solvent-sensitive mixture of both. Employing a combination of time-resolved absorption measurements, quantum yield determinations, isotopic labeling, and solvent variation studies coupled with theoretical treatment, a more comprehensive mechanistic description of the rearrangement has emerged. PMID:22686289

  13. Effect of ferroelectric BaTiO3 particles on the threshold voltage of a smectic A liquid crystal.

    PubMed

    Imamaliyev, Abbas Rahim; Ramazanov, Mahammadali Ahmad; Humbatov, Shirkhan Arastun

    2018-01-01

    The influence of small ferroelectric BaTiO 3 particles on the planar-homeotropic transition threshold voltage in smectic A liquid crystals consisting of p -nitrophenyl p -decyloxybenzoate and 4-cyano-4'-pentylbiphenyl were studied by using capacitance-voltage ( C - V ) measurements. It was shown that the BaTiO 3 particles significantly reduce the threshold voltage. The obtained result is explained by two factors: an increase of dielectric anisotropy of the liquid crystals and the formation of a strong electric field near polarized particles of BaTiO 3 . It was shown that the role of the second factor is dominant. The explanations of some features observed in the C - V characteristics are given.

  14. Synthesis of (benzimidazol-2-yl)aniline derivatives as glycogen phosphorylase inhibitors.

    PubMed

    Galal, Shadia A; Khattab, Muhammad; Andreadaki, Fotini; Chrysina, Evangelia D; Praly, Jean-Pierre; Ragab, Fatma A F; El Diwani, Hoda I

    2016-11-01

    A series of (benzimidazol-2-yl)-aniline (1) derivatives has been synthesized and evaluated as glycogen phosphorylase (GP) inhibitors. Kinetics studies revealed that compounds displaying a lateral heterocyclic residue with several heteroatoms (series 3 and 5) exhibited modest inhibitory properties with IC 50 values in the 400-600μM range. Arylsulfonyl derivatives 7 (Ar: phenyl) and 9 (Ar: o-nitrophenyl) of 1 exhibited the highest activity (series 2) among the studied compounds (IC 50 324μM and 357μM, respectively) with stronger effect than the p-tolyl analogue 8. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Application of response surface methodology for determination of methyl red in water samples by spectrophotometry method.

    PubMed

    Khodadoust, Saeid; Ghaedi, Mehrorang

    2014-12-10

    In this study a rapid and effective method (dispersive liquid-liquid microextraction (DLLME)) was developed for extraction of methyl red (MR) prior to its determination by UV-Vis spectrophotometry. Influence variables on DLLME such as volume of chloroform (as extractant solvent) and methanol (as dispersive solvent), pH and ionic strength and extraction time were investigated. Then significant variables were optimized by using a Box-Behnken design (BBD) and desirability function (DF). The optimized conditions (100μL of chloroform, 1.3mL of ethanol, pH 4 and 4% (w/v) NaCl) resulted in a linear calibration graph in the range of 0.015-10.0mgmL(-1) of MR in initial solution with R(2)=0.995 (n=5). The limits of detection (LOD) and limit of quantification (LOQ) were 0.005 and 0.015mgmL(-1), respectively. Finally, the DLLME method was applied for determination of MR in different water samples with relative standard deviation (RSD) less than 5% (n=5). Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Drawing the battle lines: tracing the "Science War" in the construction of the chloroform and human health risks debate.

    PubMed

    Driedger, S Michelle; Eyles, John

    2003-04-01

    The United States Environmental Protection Agency (US EPA) and the Chlorine Chemistry Council, the Chemical Manufacturers Association, and others have been embroiled in a legal challenge concerning the US EPA's "reversal" regarding the scientific assessment of chloroform's carcinogenicity. This issue arose during the US EPA's November 1998 promulgation of a Maximum Contaminant Level Goal for chloroform in the Stage 1 Final Rules for Disinfectants and Disinfection Byproducts in drinking water. In this paper we adopt a claimsmaking approach: to trace the development and outcome of the chloroform court challenge in the USA, to examine the construction of scientific knowledge claims concerning chloroform risk assessments, and to investigate how different interpretations of scientific uncertainties regarding the evidence are contested when such uncertainties are brought into a regulatory and judicial arena. This "science war" (Chlorine Chemistry Council and others v. US EPA and others) took place in the US Court of Appeals for the District of Columbia Circuit. The scientific "authority" in the construction of scientific claims in this dispute is based on the International Life Sciences Institute expert panel report on chloroform. Examining these science wars is important because they signal critical shifts in science policy agendas. The regulatory outcome of the chloroform science war in the United States can have profound implications for the construction and acceptance of scientific claims regarding drinking water in other jurisdictions (e.g., Canada). In this challenge, we argue that the actors involved in the dispute constructed "boundaries" around accepted and credible scientific claims.

  17. Computational study on hydroxybenzotriazoles as reagents for ester hydrolysis.

    PubMed

    Kumar, V Praveen; Ganguly, Bishwajit; Bhattacharya, Santanu

    2004-12-10

    1-Hydroxybenzotriazole (1) and several of its derivatives (2-5) demonstrate potent esterolytic activity toward activated esters such as p-nitrophenyl diphenyl phosphate (PNPDPP) and p-nitrophenyl hexanoate (PNPH) in cationic micelles at pH 8.2 and 25 degrees C. The deprotonated anionic forms of such reagents act as reactive species in the hydrolysis of ester. To rationalize the origin of their nucleophilic character, a detailed ab initio/DFT computational study has been performed on 1-5 along with additional hydroxybenzotriazole derivatives (6-13). The geometries of 1-hydroxybenzotriazoles (1-13) and their corresponding bases are discussed in detail. All calculations were carried out using different methods, i.e., restricted Hartree-Fock (RHF) and hybrid ab initio/DFT (B3LYP) using 6-31G and 6-31+G basis sets. Free energy of protonation ("fep") of the 1-hydroxybenzotriazoles (1-13), free energy of solvation DeltaG(aq), and the corresponding pK(a) values have been calculated. Solvation-free energies were calculated using density functional theory and the polarizable continuum model. In addition, to examine the reliability of calculated fep, benzaldehyde oxime (14) and 2-methyl propionaldehyde oxime (15) have been computed as reference systems using different methods and basis sets, the experimental feps of which are known. Our experimental finding shows that the compound 4 is the most effective catalyst for the hydrolytic cleavages of PNPDPP and PNPH. This has been predicted from our calculated fep, pK(a), and natural charge analysis results as well. In general, the introduction of electron-withdrawing substituents on 1-hydroxybenzotriazoles facilitates the lowering of pK(a) and fep. As the pK(a) values are lowered, a greater percentage of such hydroxybenzotriazoles remain in their deprotonated, anionic forms at pH 8.2. Since the anionic forms are nucleophilic, pK(a) lowering should enhance their ester cleaving capacity. However, such substitution also decreases the charge density on the catalytically active oxido atom (O(7)). Taking these two factors together, the derivatives are only modestly better nucleophiles in comparison to the parent 1-hydroxybenzotriazole. Interestingly, the introduction of electron-donating groups does not significantly enhance the charge accumulation on the oxido atom (O(7)) of 1-hydroxybenzotriazoles.

  18. Methyl Chloroform Elimination from the Production of Space Shuttle Sold Rocket Motors

    NASA Technical Reports Server (NTRS)

    Golde, Rick P.; Burt, Rick; Key, Leigh

    1997-01-01

    Thiokol Space Operations manufactures the Reusable Solid Rocket Motors used to launch America's fleet of Space Shuttles. In 1989, Thiokol used more than 1.4 Mlb of methyl chloroform to produce rocket motors. The ban placed by the Environmental Protection Agency on the sale of methyl chloroform had a significant effect on future Reusable Solid Rocket Motor production. As a result, changes in the materials and processes became necessary. A multiphased plan was established by Thiokol in partnership with NASA's Marshall Space Flight Center to eliminate the use of methyl chloroform in the Reusable Solid Rocket Motor production process. Because of the extensive scope of this effort, the plan was phased to target the elimination of the majority of methyl chloroform use (90 percent) by January 1, 1996, the 3 Environmental Protection Agency deadline. Referred to as Phase I, this effort includes the elimination of two large vapor degreasers, grease diluent processes, and propellant tooling handcleaning using methyl chloroform. Meanwhile, a request was made for an essential use exemption to allow the continued use of the remaining 10 percent of methyl chloroform after the 1996 deadline, while total elimination was pursued for this final, critical phase (Phase II). This paper provides an update to three previous presentations prepared for the 1993, 1994, and 1995 CFC/Halon Alternative Conferences, and will outline the overall Ozone Depleting Compounds Elimination Program from the initial phases through the final testing and implementation phases, including facility and equipment development. Processes and materials to be discussed include low-pressure aqueous wash systems, high-pressure water blast systems- environmental shipping containers, aqueous and semi-aqueous cleaning solutions, and bond integrity and inspection criteria. Progress toward completion of facility implementation and lessons learned during the scope of the program, as well as the current development efforts and basic requirements of future methyl chloroform handcleaning elimination, will also be outlined.

  19. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  20. Nitroaryl-1,4-dihydropyridines as antioxidants against rat liver microsomes oxidation induced by iron/ascorbate, nitrofurantoin and naphthalene.

    PubMed

    Letelier, María Eugenia; Entrala, Paz; López-Alarcón, Camilo; González-Lira, Víctor; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Santander, Paola; Núñez-Vergara, Luis

    2007-12-01

    1,4-Dihydropyridines (DHPs) used in the treatment of cardiovascular diseases, are calcium channel antagonists and also antioxidant agents. These drugs are metabolized through cytochrome P(450) oxidative system, majority localized in the hepatic endoplasmic reticulum. Several lipophilic drugs generate oxidative stress to be metabolized by this cellular system. Thus, DHP antioxidant properties may prevent the oxidative stress associated with hepatic biotransformation of drugs. In this work, we tested the antioxidant capacity of several synthetic nitro-phenyl-DHPs. These compounds (I-IV) inhibited the microsomal lipid peroxidation, UDPGT oxidative activation and microsomal thiols oxidation; all phenomena induced by Fe(3+)/ascorbate, a generator system of oxygen free radicals. As the same manner, these compounds inhibited the oxygen consumption induced by Cu(2+)/ascorbate in the absence of microsomes. Furthermore, compound III (2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridin-3,5-ethyl-dicarboxylate) and compound V (N-ethyl-2,6-dimethyl-4-(4-nitrophenyl)-1,4-dihydropyridin-3,5-methyl-dicarboxylate) inhibited the microsomal lipid peroxidation induced by Nitrofurantoin and naphthalene in the presence of NADPH. Oxidative stress induced on endoplasmic reticulum may alter the biotransformation of drugs, so, modifying their plasmatic concentrations and therapeutic effects. When drugs which are activated by biotransformation are administered together with antioxidant drugs, such as DHPs, oxidative stress induced in situ may be prevented.

  1. Dinuclear Nickel(II) Complexes as Models for the Active Site of Urease.

    PubMed

    Volkmer, Dirk; Hommerich, Birgit; Griesar, Klaus; Haase, Wolfgang; Krebs, Bernt

    1996-06-19

    Dinuclear nickel(II) complexes of the ligands 2,6-bis[bis((2-benzimidazolylmethyl)amino)methyl]-p-cresol (bbapOH), N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (tbpOH), N-methyl-N,N',N'-tris(2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane (m-tbpOH) and 1-[N,N-bis(2-benzimidazolylmethyl)amino]-3-[2-(3,5-dimethyl-1H-pyrazol-1-yl)ethoxy]-2-hydroxypropane (bpepOH) were prepared in order to model the active site of urease. The novel asymmetric structures of the dinuclear complexes were characterized by X-ray structure analysis. The complex [Ni(2)(bbapO)(ClO(4))(H(2)O)(MeOH)](ClO(4))(2).Et(2)O, 1, crystallizes in the monoclinic space group P2(1)/c, with a = 10.258(2) Å, b = 19.876(3) Å, c = 25.592(4) Å, and beta = 97.12(2) degrees. The nickel ions in 1 are bridged by the phenoxy donor of the ligand and a perchlorate anion. The complexes [Ni(2)(tbpO)(MeCOO)(H(2)O)](ClO(4))(2).H(2)O.Et(2)O, 2, [Ni(2)(m-tbpO)(PhCOO)(EtOH)(2)](ClO(4))(2).EtOH, 3, and [Ni(2)(bpepO)(MeCOO)(H(2)O)(2)](ClO(4))(2).H(2)O.Et(2)O.2EtOH, 4, also crystallize in the monoclinic crystal system with the following unit cell parameters: 2, C2/c, a = 35.360(13) Å, b = 10.958(3) Å, c = 24.821(10) Å, beta = 103.55(3) degrees; 3, Cc, a = 14.663(5) Å, b = 32.630(13) Å, c = 9.839(3) Å, beta = 92.49(2) degrees; 4, C2/c, a = 27.689(13) Å, b = 12.187(5) Å, c = 31.513(14) Å, beta = 115.01(3) degrees. The dinuclear centers of all these complexes are bridged by the alkoxy donor of the ligand and a carboxylate function. Compounds 2 and 3 have one of the nickel ions in a five-coordinated, trigonal bipyramidal coordination environment and thus show a high structural similarity to the dinuclear active site of urease from Klebsiella aerogenes. Furthermore, their magnetic and spectroscopic properties were determined and related to those of the urease enzymes. Activity toward hydrolysis of test substrates (4-nitrophenyl)urea, 4-nitroacetanilide, 4-nitrophenyl phosphate or bis(4-nitrophenyl) phosphate by the dinuclear complexes were examined by UV spectroscopic measurements.

  2. Ameliorative Effects of Chloroform Fraction of Cocos nucifera L. Husk Fiber Against Cisplatin-induced Toxicity in Rats.

    PubMed

    Adaramoye, Oluwatosin Adekunle; Azeez, Adesola Fausat; Ola-Davies, Olufunke Elizabeth

    2016-01-01

    Cisplatin (Cis) is used in the treatment of solid tumors and is known to elicit serious side effects. The present study investigated the protective effects of chloroform fraction of Cocos nucifera husk fiber (CFCN) against Cis-induced organs' damage and chromosomal defect in rats. Quercetin (QUE), standard antioxidant, served as positive control. Thirty male Wistar rats were assigned into six groups and treated with corn oil (control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE, and QUE alone. QUE and CFCN were given at 50 and 200 mg/kg/day, respectively, by oral gavage for 7 days before the rats were exposed to a single dose of Cis (10 mg/kg, intraperitoneal) at the last 36 h of study. Administration of Cis alone caused a significant (P < 0.05) increase in the levels of serum creatinine and urea by 72% and 70%, respectively, when compared with the control. The activity of serum aspartate aminotransferase was significantly (P < 0.05) increased while alanine aminotransferase and alkaline phosphatase were insignificantly (P > 0.05) affected in Cis-treated rats. Furthermore, the activities of hepatic and renal catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, and levels of reduced glutathione were significantly (P < 0.05) decreased in Cis-treated rats with concomitant elevation of malondialdehyde. Cis exposure increased the frequency of micro nucleated polychromatic erythrocytes (mPCE) by 92%. Pretreatment with CFCN inhibited lipid peroxidation, enhanced the activities of some antioxidative enzymes and reduced the frequency of mPCE. Chloroform fraction of CFCN may protect against organs damage by Cis. Further studies are required to determine the component of the plant responsible for this activity. Cisplatin (Cis) is used in the treatment of solid tumors and is known to elicit serious side effects. This study investigated the protective effects of chloroform fraction of Cocos nucifera husk fiber (CFCN) against Cis-induced organs' damage while quercetin (QUE) served as standard antioxidant.Thirty male Wistar rats were assigned into six groups and treated with corn oil (Control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE and QUE alone.QUE and CFCN were given at 50 and 200 mg/kg/day respectively by oral gavage for seven days before the rats were exposed to a single dose of Cis (10mg/kg, i.p.) at the last 36 h of study. Results indicate that administration of Cis caused a significant (P<0.05) increase in the levels of serum creatinine and urea by 72% and 70% respectively.The activity of serum aspartate aminotransferase was significantly (P <0.05) increased while alanine aminotransferase and alkaline phosphatase were insignificantly (P>0.05) affected in Cis-treated rats.The activities of hepatic and renal catalase, superoxide dismutase, glutathione-s-transferase, glutathione peroxidase and levels of reduced glutathione were significantly (P<0.05) decreased in Cis-treated rats with concomitant elevation of malondialdehyde.Cis exposure increased the frequency of micronucleated polychromatic erythrocytes (mPCE) by 92%.Pretreatment with CFCN inhibited lipid peroxidation, enhanced the activities of some antioxidative enzymes and reduced the frequency of mPCE. The findings suggest that CFCN may protect against organs damage by cisplatin.Further studies are required to determine the component of the plant responsible for this activity.

  3. Ameliorative Effects of Chloroform Fraction of Cocos nucifera L. Husk Fiber Against Cisplatin-induced Toxicity in Rats

    PubMed Central

    Adaramoye, Oluwatosin Adekunle; Azeez, Adesola Fausat; Ola-Davies, Olufunke Elizabeth

    2016-01-01

    Background: Cisplatin (Cis) is used in the treatment of solid tumors and is known to elicit serious side effects. Objective: The present study investigated the protective effects of chloroform fraction of Cocos nucifera husk fiber (CFCN) against Cis-induced organs’ damage and chromosomal defect in rats. Quercetin (QUE), standard antioxidant, served as positive control. Materials and Methods: Thirty male Wistar rats were assigned into six groups and treated with corn oil (control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE, and QUE alone. QUE and CFCN were given at 50 and 200 mg/kg/day, respectively, by oral gavage for 7 days before the rats were exposed to a single dose of Cis (10 mg/kg, intraperitoneal) at the last 36 h of study. Results: Administration of Cis alone caused a significant (P < 0.05) increase in the levels of serum creatinine and urea by 72% and 70%, respectively, when compared with the control. The activity of serum aspartate aminotransferase was significantly (P < 0.05) increased while alanine aminotransferase and alkaline phosphatase were insignificantly (P > 0.05) affected in Cis-treated rats. Furthermore, the activities of hepatic and renal catalase, superoxide dismutase, glutathione S-transferase, glutathione peroxidase, and levels of reduced glutathione were significantly (P < 0.05) decreased in Cis-treated rats with concomitant elevation of malondialdehyde. Cis exposure increased the frequency of micro nucleated polychromatic erythrocytes (mPCE) by 92%. Pretreatment with CFCN inhibited lipid peroxidation, enhanced the activities of some antioxidative enzymes and reduced the frequency of mPCE. Conclusions: Chloroform fraction of CFCN may protect against organs damage by Cis. Further studies are required to determine the component of the plant responsible for this activity. SUMMARY Cisplatin (Cis) is used in the treatment of solid tumors and is known to elicit serious side effects. This study investigated the protective effects of chloroform fraction of Cocos nucifera husk fiber (CFCN) against Cis-induced organs’ damage while quercetin (QUE) served as standard antioxidant.Thirty male Wistar rats were assigned into six groups and treated with corn oil (Control), Cis alone, Cis + CFCN, CFCN alone, Cis + QUE and QUE alone.QUE and CFCN were given at 50 and 200 mg/kg/day respectively by oral gavage for seven days before the rats were exposed to a single dose of Cis (10mg/kg, i.p.) at the last 36 h of study. Results indicate that administration of Cis caused a significant (P<0.05) increase in the levels of serum creatinine and urea by 72% and 70% respectively.The activity of serum aspartate aminotransferase was significantly (P <0.05) increased while alanine aminotransferase and alkaline phosphatase were insignificantly (P>0.05) affected in Cis-treated rats.The activities of hepatic and renal catalase, superoxide dismutase, glutathione-s-transferase, glutathione peroxidase and levels of reduced glutathione were significantly (P<0.05) decreased in Cis-treated rats with concomitant elevation of malondialdehyde.Cis exposure increased the frequency of micronucleated polychromatic erythrocytes (mPCE) by 92%.Pretreatment with CFCN inhibited lipid peroxidation, enhanced the activities of some antioxidative enzymes and reduced the frequency of mPCE. The findings suggest that CFCN may protect against organs damage by cisplatin.Further studies are required to determine the component of the plant responsible for this activity. PMID:27034598

  4. A Novel Alkaliphilic Bacillus Esterase Belongs to the 13th Bacterial Lipolytic Enzyme Family

    PubMed Central

    Rao, Lang; Xue, Yanfen; Zheng, Yingying; Lu, Jian R.; Ma, Yanhe

    2013-01-01

    Background Microbial derived lipolytic hydrolysts are an important class of biocatalysts because of their huge abundance and ability to display bioactivities under extreme conditions. In spite of recent advances, our understanding of these enzymes remains rudimentary. The aim of our research is to advance our understanding by seeking for more unusual lipid hydrolysts and revealing their molecular structure and bioactivities. Methodology/Principal Findings Bacillus. pseudofirmus OF4 is an extreme alkaliphile with tolerance of pH up to 11. In this work we successfully undertook a heterologous expression of a gene estof4 from the alkaliphilic B. pseudofirmus sp OF4. The recombinant protein called EstOF4 was purified into a homologous product by Ni-NTA affinity and gel filtration. The purified EstOF4 was active as dimer with the molecular weight of 64 KDa. It hydrolyzed a wide range of substrates including p-nitrophenyl esters (C2–C12) and triglycerides (C2–C6). Its optimal performance occurred at pH 8.5 and 50°C towards p-nitrophenyl caproate and triacetin. Sequence alignment revealed that EstOF4 shared 71% identity to esterase Est30 from Geobacillus stearothermophilus with a typical lipase pentapeptide motif G91LS93LG95. A structural model developed from homology modeling revealed that EstOF4 possessed a typical esterase 6α/7β hydrolase fold and a cap domain. Site-directed mutagenesis and inhibition studies confirmed the putative catalytic triad Ser93, Asp190 and His220. Conclusion EstOF4 is a new bacterial esterase with a preference to short chain ester substrates. With a high sequence identity towards esterase Est30 and several others, EstOF4 was classified into the same bacterial lipolytic family, Family XIII. All the members in this family originate from the same bacterial genus, bacillus and display optimal activities from neutral pH to alkaline conditions with short and middle chain length substrates. However, with roughly 70% sequence identity, these enzymes showed hugely different thermal stabilities, indicating their diverse thermal adaptations via just changing a few amino acid residues. PMID:23577139

  5. Repeated-batch operation of immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor for lactose hydrolysis.

    PubMed

    Yeon, Ji-Hyeon; Jung, Kyung-Hwan

    2011-09-01

    In this study, we investigated the performance of an immobilized β-galactosidase inclusion bodies-containing Escherichia coli cell reactor, where the cells were immobilized in alginate beads, which were then used in repeated-batch operations for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose over the long-term. In particular, in the Tris buffer system, disintegration of the alginate beads was not observed during the operation, which was observed for the phosphate buffer system. The o-nitrophenyl-β-D-galactoside hydrolysis was operated successfully up to about 80 h, and the runs were successfully repeated at least eight times. In addition, hydrolysis of lactose was successfully carried out up to 240 h. Using Western blotting analyses, it was verified that the beta-galactosidase inclusion bodies were sustained in the alginate beads during the repeated-batch operations. Consequently, we experimentally verified that β-galactosidase inclusion bodies-containing Escherichia coli cells could be used in a repeated-batch reactor as a biocatalyst for the hydrolysis of o-nitrophenyl-β-D-galactoside or lactose. It is probable that this approach can be applied to enzymatic synthesis reactions for other biotechnology applications, particularly reactions that require long-term and stable operation.

  6. Chloroform in the hydrologic system--sources, transport, fate, occurrence, and effects on human health and aquatic organisms

    USGS Publications Warehouse

    Ivahnenko, Tamara; Barbash, Jack E.

    2004-01-01

    Chloroform is one of the volatile organic compounds (VOCs) detected most frequently in both ground and surface water. Because it is also one of the four trihalomethanes (THMs) produced in the highest concentrations during the chlorination of drinking water and wastewater, the frequent detection of this compound in ground and surface water of the United States is presumed to be caused primarily by the input of chlorinated water to the hydrologic system. Although anthropogenic sources of the compound are substantial, they are currently estimated to constitute only 10 percent of the total global input to the hydrologic system. Natural sources of the compound include volcanic gases, biomass burning, marine algae, and soil microorganisms. Under most conditions (except in the presence of unusually high bromide concentrations), chloroform is the THM produced in the highest concentrations during chlorination. Furthermore, in most cases where more than one THM is produced from chlorination, the relative concentrations among the different compounds usually decrease with increasing bromination (chloroform > dichlorobromomethane > chlorodibromomethane > bromoform). This phenomenon is presumed to be responsible for the common observation that when more than one THM is detected during investigations of the occurrence of these compounds in the hydrologic system, this same trend is typically observed among their relative concentrations or, for a uniform reporting limit, their relative frequencies of detection. This pattern could provide a valuable means for distinguishing between chlorinated water and other potential sources of chloroform in the environment. Chloroform has been widely detected in national, regional, and local studies of VOCs in ground, surface, source, and drinking waters. Total THM (TTHM) concentrations of the compound, however, were typically less than the Maximum Contaminant Level (MCL) of 80 ?g/L (micrograms per liter) established by the U.S. Environmental Protection Agency (USEPA) for TTHMs. In the studies that compared land-use settings, frequencies of detection of chloroform were higher beneath urban and residential areas than beneath agricultural or undeveloped areas. Because chloroform is a suspected human carcinogen, its presence in drinking water is a potential human health concern. Liver damage, however, is known to occur at chloroform exposures lower than those required to cause cancer, an observation that has been considered by the USEPA as the basis for setting a new, non-zero Maximum Contaminant Level Goal of 70 ?g/L for the compound. As part of its National Water-Quality Assessment Program, the U.S. Geological Survey has been assembling and analyzing data on the occurrence of VOCs (including chloroform) in ground and surface water on a national scale from studies conducted between 1991 and the present. This report presents a summary of current (2004) information on the uses, sources, formation, transport, fate, and occurrence of chloroform, as well as its effects on human health and aquatic organisms.

  7. Characterization of the interdependency between residues that bind the substrate in a beta-glycosidase.

    PubMed

    Tomassi, M H; Rozenfeld, J H K; Gonçalves, L M; Marana, S R

    2010-01-01

    The manner by which effects of simultaneous mutations combine to change enzymatic activity is not easily predictable because these effects are not always additive in a linear manner. Hence, the characterization of the effects of simultaneous mutations of amino acid residues that bind the substrate can make a significant contribution to the understanding of the substrate specificity of enzymes. In the beta-glycosidase from Spodoptera frugiperda (Sfbetagly), both residues Q39 and E451 interact with the substrate and this is essential for defining substrate specificity. Double mutants of Sfbetagly (A451E39, S451E39 and S451N39) were prepared by site-directed mutagenesis, expressed in bacteria and purified using affinity chromatography. These enzymes were characterized using p-nitrophenyl beta-galactoside and p-nitrophenyl beta-fucoside as substrates. The k cat/Km ratio for single and double mutants of Sfbetagly containing site-directed mutations at positions Q39 and E451 was used to demonstrate that the effect on the free energy of ESdouble dagger (enzyme-transition state complex) of the double mutations (Gdouble daggerxy) is not the sum of the effects resulting from the single mutations (Gdouble daggerx and Gdouble daggery). This difference in Gdouble dagger indicates that the effects of the single mutations partially overlap. Hence, this common effect counts only once in Gdouble daggerxy. Crystallographic data on beta-glycosidases reveal the presence of a bidentate hydrogen bond involving residues Q39 and E451 and the same hydroxyl group of the substrate. Therefore, both thermodynamic and crystallographic data suggest that residues Q39 and E451 exert a mutual influence on their respective interactions with the substrate.

  8. A beta-l-Arabinopyranosidase from Streptomyces avermitilis is a novel member of glycoside hydrolase family 27.

    PubMed

    Ichinose, Hitomi; Fujimoto, Zui; Honda, Mariko; Harazono, Koichi; Nishimoto, Yukifumi; Uzura, Atsuko; Kaneko, Satoshi

    2009-09-11

    Arabinogalactan proteins (AGPs) are a family of plant cell surface proteoglycans and are considered to be involved in plant growth and development. Because AGPs are very complex molecules, glycoside hydrolases capable of degrading AGPs are powerful tools for analyses of the AGPs. We previously reported such enzymes from Streptomyces avermitilis. Recently, a beta-l-arabinopyranosidase was purified from the culture supernatant of the bacterium, and its corresponding gene was identified. The primary structure of the protein revealed that the catalytic module was highly similar to that of glycoside hydrolase family 27 (GH27) alpha-d-galactosidases. The recombinant protein was successfully expressed as a secreted 64-kDa protein using a Streptomyces expression system. The specific activity toward p-nitrophenyl-beta-l-arabinopyranoside was 18 micromol of arabinose/min/mg, which was 67 times higher than that toward p- nitrophenyl-alpha-d-galactopyranoside. The enzyme could remove 0.1 and 45% l-arabinose from gum arabic or larch arabinogalactan, respectively. X-ray crystallographic analysis reveals that the protein had a GH27 catalytic domain, an antiparallel beta-domain containing Greek key motifs, another antiparallel beta-domain forming a jellyroll structure, and a carbohydrate-binding module family 13 domain. Comparison of the structure of this protein with that of alpha-d-galactosidase showed a single amino acid substitution (aspartic acid to glutamic acid) in the catalytic pocket of beta-l-arabinopyranosidase, and a space for the hydroxymethyl group on the C-5 carbon of d-galactose bound to alpha-galactosidase was changed in beta-l-arabinopyranosidase. Mutagenesis study revealed that the residue is critical for modulating the enzyme activity. This is the first report in which beta-l-arabinopyranosidase is classified as a new member of the GH27 family.

  9. Assessment of global and gene-specific DNA methylation in rat liver and kidney in response to non-genotoxic carcinogen exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozden, Sibel, E-mail: stopuz@istanbul.edu.tr; Turgut Kara, Neslihan; Sezerman, Osman Ugur

    Altered expression of tumor suppressor genes and oncogenes, which is regulated in part at the level of DNA methylation, is an important event involved in non-genotoxic carcinogenesis. This may serve as a marker for early detection of non-genotoxic carcinogens. Therefore, we evaluated the effects of non-genotoxic hepatocarcinogens, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), hexachlorobenzene (HCB), methapyrilene (MPY) and male rat kidney carcinogens, d-limonene, p-dichlorobenzene (DCB), chloroform and ochratoxin A (OTA) on global and CpG island promoter methylation in their respective target tissues in rats. No significant dose-related effects on global DNA hypomethylation were observed in tissues of rats compared to vehicle controls using LC–MS/MSmore » in response to short-term non-genotoxic carcinogen exposure. Initial experiments investigating gene-specific methylation using methylation-specific PCR and bisulfite sequencing, revealed partial methylation of p16 in the liver of rats treated with HCB and TCDD. However, no treatment related effects on the methylation status of Cx32, e-cadherin, VHL, c-myc, Igfbp2, and p15 were observed. We therefore applied genome-wide DNA methylation analysis using methylated DNA immunoprecipitation combined with microarrays to identify alterations in gene-specific methylation. Under the conditions of our study, some genes were differentially methylated in response to MPY and TCDD, whereas d-limonene, DCB and chloroform did not induce any methylation changes. 90-day OTA treatment revealed enrichment of several categories of genes important in protein kinase activity and mTOR cell signaling process which are related to OTA nephrocarcinogenicity. - Highlights: • Studied non-genotoxic carcinogens caused no change on global DNA hypomethylation. • d-Limonene, DCB and chloroform did not show any genome-wide methylation changes. • Some genes were differentially methylated in response to MPY, TCDD and OTA. • Protein kinase activity and mTOR cell signaling are involved in OTA carcinogenicity. • Our data highlight Cpne4 may be a potential biomarker for non-genotoxic carcinogens.« less

  10. Chloroform ingestion causing severe gastrointestinal injury, hepatotoxicity and dermatitis confirmed with plasma chloroform concentrations.

    PubMed

    Jayaweera, Dushan; Islam, Shawkat; Gunja, Naren; Cowie, Chris; Broska, James; Poojara, Latesh; Roberts, Michael S; Isbister, Geoffrey K

    2017-02-01

    Poisoning due to chloroform ingestion is rare. The classic features of acute chloroform toxicity include central nervous system (CNS) and respiratory depression, and delayed hepatotoxicity. A 30-year-old female ingested 20-30 mL of 99% chloroform solution, which caused rapid loss of consciousness, transient hypotension and severe respiratory depression requiring endotracheal intubation and ventilation. She was alert by 12 h and extubated 16 h post-overdose. At 38-h post-ingestion, her liver function tests started to rise and she was commenced on intravenous acetylcysteine. Her alanine transaminase (1283 U/L), aspartate transaminase (734 U/L) and international normalized ratio (2.3) peaked 67- to 72-h post-ingestion. She also developed severe abdominal pain, vomiting and diarrhoea. An abdominal CT scan was consistent with severe enterocolitis, and an upper gastrointestinal endoscopy showed erosive oesophagitis, severe erosive gastritis and ulceration. She was treated with opioid analgesia, proton pump inhibitors, sucralfate and total parenteral nutrition. Secretions caused a contact dermatitis of her face and back. Nine days post-ingestion she was able to tolerate food. Her liver function tests normalized and the dermatitis resolved. Chloroform was measured using headspace gas chromatograph mass spectrometry, with a peak concentration of 2.00 μg/mL, 4 h 20 min post-ingestion. The concentration-time data fitted a 1-compartment model with elimination half-life 6.5 h. In addition to early CNS depression and delayed hepatotoxicity, we report severe gastrointestinal injury and dermatitis with chloroform ingestion. Recovery occurred with good supportive care, acetylcysteine and management of gastrointestinal complications.

  11. Antibacterial screening of traditional herbal plants and standard antibiotics against some human bacterial pathogens.

    PubMed

    Awan, Uzma Azeem; Andleeb, Saiqa; Kiyani, Ayesha; Zafar, Atiya; Shafique, Irsa; Riaz, Nazia; Azhar, Muhammad Tehseen; Uddin, Hafeez

    2013-11-01

    Chloroformic and isoamyl alcohol extracts of Cinnnamomum zylanicum, Cuminum cyminum, Curcuma long Linn, Trachyspermum ammi and selected standard antibiotics were investigated for their in vitro antibacterial activity against six human bacterial pathogens. The antibacterial activity was evaluated and based on the zone of inhibition using agar disc diffusion method. The tested bacterial strains were Streptococcus pyogenes, Staphylococcus epidermidis, Klebsiella pneumonia, Staphylococcus aurues, Serratia marcesnces, and Pseudomonas aeruginosa. Ciprofloxacin showed highly significant action against K. pneumonia and S. epidermidis while Ampicillin and Amoxicillin indicated lowest antibacterial activity against tested pathogens. Among the plants chloroform and isoamyl alcohol extracts of C. cyminum, S. aromaticum and C. long Linn had significant effect against P. aeruginosa, S. marcesnces and S. pyogenes. Comparison of antibacterial activity of medicinal herbs and standard antibiotics was also recorded via activity index. Used medicinal plants have various phytochemicals which reasonably justify their use as antibacterial agent.

  12. Effect of Piper betle L. and its extracts on the growth and aflatoxin production by Aspergillus parasiticus.

    PubMed

    Chou, C C; Yu, R C

    1984-01-01

    Ground powder of the leaf and fruit of Piper betle L., a tropical spice plant grown in Southeast Asia, was prepared and extracted by chloroform, ethanol and water with one solvent only or with 3 solvents in sequence. The betel powder and various extracts were added to YES broth to determine their effects on the growth and aflatoxin production by Aspergillus parasiticus. Results showed that betel leaf powder exhibited higher antimycotic activity than fruit. One half percent of ground leaf powder completely inhibited the growth and aflatoxin production by A. parasiticus. Among the solvent extracts, chloroform and ethanol extracts of betel leaf prepared from a single solvent extraction showed more antimycotic activity. The ethanol extract of betel leaf at the level of 450 micrograms/ml would eliminate A. parasiticus growth and aflatoxin production. The antimycotic activity of this ethanol extract was most pronounced at pH 4.

  13. Amides from Piper nigrum L. with dissimilar effects on melanocyte proliferation in-vitro.

    PubMed

    Lin, Zhixiu; Liao, Yonghong; Venkatasamy, Radhakrishnan; Hider, Robert C; Soumyanath, Amala

    2007-04-01

    Melanocyte proliferation stimulants are of interest as potential treatments for the depigmentary skin disorder, vitiligo. Piper nigrum L. (Piperaceae) fruit (black pepper) water extract and its main alkaloid, piperine (1), promote melanocyte proliferation in-vitro. A crude chloroform extract of P. nigrum containing piperine was more stimulatory than an equivalent concentration of the pure compound, suggesting the presence of other active components. Piperine (1), guineensine (2), pipericide (3), N-feruloyltyramine (4) and N-isobutyl-2E, 4E-dodecadienamide (5) were isolated from the chloroform extract. Their activity was compared with piperine and with commercial piperlongumine (6) and safrole (7), and synthetically prepared piperettine (8), piperlonguminine (9) and 1-(3, 4-methylenedioxyphenyl)-decane (10). Compounds 6-10 either occur in P. nigrum or are structurally related. Compounds 1, 2, 3, 8 and 9 stimulated melanocyte proliferation, whereas 4, 5, 6, 7 and 10 did not. Comparison of structures suggests that the methylenedioxyphenyl function is essential for melanocyte stimulatory activity. Only those compounds also possessing an amide group were active, although the amino component of the amide group and chain linking it to the methylenedioxyphenyl group can vary. P. nigrum, therefore, contains several amides with the ability to stimulate melanocyte proliferation. This finding supports the traditional use of P. nigrum extracts in vitiligo and provides new lead compounds for drug development for this disease.

  14. Characterization of the extracellular bactericidal factors of rat alveolar lining material.

    PubMed Central

    Coonrod, J D; Lester, R L; Hsu, L C

    1984-01-01

    The surfactant fraction (55,000-g pellet) of leukocyte-free rat bronchoalveolar lavage fluid contains factors that rapidly kill and lyse pneumococci. These factors were purified and identified biochemically by using a quantitative bactericidal test to monitor fractionation procedures. 91% of the antipneumococcal activity of rat surfactant was recovered in chloroform after extraction of rat surfactant with chloroform-methanol (Bligh-Dyer procedure). After chromatography on silicic acid with chloroform, acetone, and methanol, all detectable antibacterial activity (approximately 80% of the initial activity) eluted with the neutral lipids in chloroform. When rechromatographed on silicic acid with hexane, hexane-chloroform, and chloroform, the antibacterial activity eluted with FFA. Thin-layer chromatography (TLC) established that the antibacterial activity was confined to the FFA fraction. Gas-liquid chromatography showed that the fatty acid fraction contained a mixture of long-chain FFA (C12 to C22) of which 66.7% were saturated and 32.4% were unsaturated. The quantity of TLC-purified FFA needed to kill 50% of 10(8) pneumococci under standardized conditions (one bactericidal unit) was 10.6 +/- 0.5 micrograms. Purified FFA acted as detergents, causing release of [3H]choline from pneumococcal cell walls and increased bacterial cell membrane permeability, evidenced by rapid unloading of 3-O-[3H]methyl-D-glucose. FFA acting as detergents appear to account for the bactericidal and bacteriolytic activity of rat pulmonary surfactant for pneumococci. PMID:6548228

  15. Description of trihalomethane levels in three UK water suppliers.

    PubMed

    Whitaker, Heather; Nieuwenhuijsen, Mark J; Best, Nicola; Fawell, John; Gowers, Alison; Elliot, Paul

    2003-01-01

    Samples of drinking water are routinely analysed for four trihalomethanes (THMs), which are indicators of by-products of disinfection with chlorine, by UK water suppliers to demonstrate compliance with regulations. The THM data for 1992-1993 to 1997-1998 for three water suppliers in the north and midlands of England were made available for a UK epidemiological study of the association between disinfection by-products and adverse birth outcomes. This paper describes the THM levels in these three supply regions and discusses possible sources of variation. THM levels varied between different suppliers' water, and average THM levels were within the regulatory limits. Chloroform was the predominant THM in all water types apart from the ground water of one supplier. The supplier that distributed more ground and lowland surface water had higher dibromochloromethane (DBCM) and bromoform levels and lower chloroform levels than the other two suppliers. In the water of two suppliers, seasonal fluctuations in bromodichloromethane (BDCM) and DBCM levels were found with levels peaking in the summer and autumn. In the other water supplier, chloroform levels followed a similar seasonal trend whereas BDCM and DBCM levels did not. For all three water suppliers, chloroform levels declined throughout 1995 when there was a drought period. There was a moderate positive correlation between the THMs most similar in their structure (chloroform and BDCM, BDCM and DBCM, and DBCM and bromoform) and a slight negative correlation between chloroform and bromoform levels.

  16. In vitro activities of plant extracts from Saudi Arabia against malaria, leishmaniasis, sleeping sickness and Chagas disease.

    PubMed

    Abdel-Sattar, Essam; Maes, Louis; Salama, Maha Mahmoud

    2010-09-01

    The in vitro activity of the methanol extracts of 51 plants randomly collected from the Kingdom of Saudi Arabia and some of their fractions (petroleum ether, chloroform, ethyl acetate and aqueous) were evaluated against Plasmodium falciparum, Trypanosoma brucei brucei, T. cruzi and Leishmania infantum, as well as toxicity against MRC-5 fibroblast cells. Ten crude methanolic extracts that demonstrated potent and adequately selective antiprotozoal activity were subjected to solvent fractionation using petroleum ether, ethyl acetate and chloroform. Only three samples showed promising antiprotozoal activity. Argemone ochroleuca (CHCl(3) fraction) showed pronounced activity against P. falciparum(GHA) (IC(50) 0.32 microg/mL) and T. cruzi (IC(50) 0.30 microg/mL) with low cytotoxicity against MRC-5 cells (CC(50) 11.6 microg/mL). Capparis spinosa (EtOAc fraction) showed pronounced activity against P. falciparum(GHA) with an IC(50) 0.50 microg/mL in the absence of toxicity against MRC-5 cell line (CC(50) > 30 microg/mL). Heliotropium curassavicum (CHCl(3) fraction) showed similar activity against P. falciparum (IC(50) 0.65 microg/mL; MRC-5 CC(50) > 30 microg /mL). These three extracts will be subjected for further extensive studies to isolate and identify their active constituents. Copyright 2010 John Wiley & Sons, Ltd.

  17. Manipulation of Rumen Microbial Fermentation by Polyphenol Rich Solvent Fractions from Papaya Leaf to Reduce Green-House Gas Methane and Biohydrogenation of C18 PUFA.

    PubMed

    Jafari, Saeid; Meng, Goh Yong; Rajion, Mohamed Ali; Jahromi, Mohammad Faseleh; Ebrahimi, Mahdi

    2016-06-08

    Different solvents (hexane, chloroform, ethyl acetate, butanol, and water) were used to identify the effect of papaya leaf (PL) fractions (PLFs) on ruminal biohydrogenation (BH) and ruminal methanogenesis in an in vitro study. PLFs at a concentration of 0 (control, CON) and 15 mg/250 mg dry matter (DM) were mixed with 30 mL of buffered rumen fluid and were incubated for 24 h. Methane (CH4) production (mL/250 mg DM) was the highest (P < 0.05) for CON (7.65) and lowest for the chloroform fraction (5.41) compared to those of other PLFs at 24 h of incubation. Acetate to propionate ratio was the lowest for PLFs compared to that of CON. Supplementation of the diet with PLFs significantly (P < 0.05) decreased the rate of BH of C18:1n-9 (oleic acid; OA), C18:2n-6 (linoleic acid; LA), and C18:3n-3 (α-linolenic acid; LNA) compared to that of CON after 24 h of incubation. Real time PCR indicated that total protozoa and total methanogen population in PLFs decreased (P < 0.05) compared to those of CON.

  18. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems. Electronic supplementary information (ESI) available: Experimental procedures, synthesis, and characterization of molecules 1, 2 and 3. Explanation of the electrochemical method for approximating nanopore diameter. Additional XPS spectra. See DOI: 10.1039/C5NR02939B

  19. Release of volatile mercury from vascular plants

    NASA Technical Reports Server (NTRS)

    Siegel, S. M.; Puerner, N. J.; Speitel, T. W.

    1974-01-01

    Volatile, organic solvent soluble mercury has been found in leaves and seeds of several angiosperms. Leaves of garlic vine, avocado, and haole-koa release mercury in volatile form rapidly at room temperature. In garlic vine, the most active release is temperature dependent, but does not parallel the vapor-pressure temperature relationship for mercury. Mercury can be trapped in nitric-perchloric acid digestion fluid, or n-hexane, but is lost from the hexane unless the acid mixture is present. Seeds of haole-koa also contain extractable mercury but volatility declines in the series n-hexane (90%), methanol (50%), water (10%). This suggests that reduced volatility may accompany solvolysis in the more polar media.

  20. Lactose carrier protein of Escherichia coli. Transport and binding of 2'-(N-dansyl)aminoethyl beta-D-thiogalactopyranoside and p-nitrophenyl alpha-d-galactopyranoside.

    PubMed

    Overath, P; Teather, R M; Simoni, R D; Aichele, G; Wilhelm, U

    1979-01-09

    The elevated level of lactose carrier protein present in cytoplasmic membranes derived from Escherichia coli strain T31RT, which carries the Y gene of the lac operon on a plasmid vector (Teather, R. M., et al. (1978) Mol. Gen. Genet. 159, 239--248), has allowed the detection of a complex between the carrier and the fluorescent substrate 2'-(N-dansyl)-aminoethyl beta-D-thiogalactopyranoside (Dns2-S-Gal). Binding is accompanied by a 50-nm blue shift in the emission maximum of the dansyl residue. The complex (dissociation constant, KD = 30 micron) rapidly dissociates upon addition of competing substrates such as beta-D-galactopyranosyl 1-thio-beta-D-galactopyranoside or upon reaction with the thiol reagent p-chloromercuribenzenesulfonate. Binding of both Dns2-S-Gal and p-nitrophenyl alpha-D-galactopyranoside (alpha-NPG) occurs spontaneously in the absence of an electrochemical potential gradient across the membrane. Comparison of equilibrium binding experiments using Dns2-S-Gal or alpha-NPG and differential labeling of the carrier with radioactive amino acids shows that the carrier binds 1 mol of substrate per mol of polypeptide (molecular weight 30 000). In addition to specific binding to the lactose carrier, Dns2-S-gal binds unspecifically to lipid vesicles or membranes, as described by a partition coefficient, K = 60, resulting in a 25-nm blue shift in the emission maximum of the dansyl group. Both Dns2-S-Gal and alpha-NPG are not only bound by the lactose carrier but also transported across the membrane by this transport protein in cells and membrane vesicles. The fluorescence changes observed with dansylated galactosides in membrane vesicles in the presence of an electrochemical gradient (Schuldiner et al. (1975) J. Biol. Chem. 250, 1361--1370)) are interpreted as an increase in unspecific binding after translocation.

  1. Solution Behavior and Activity of a Halophilic Esterase under High Salt Concentration

    PubMed Central

    Rao, Lang; Zhao, Xiubo; Pan, Fang; Li, Yin; Xue, Yanfen; Ma, Yanhe; Lu, Jian R.

    2009-01-01

    Background Halophiles are extremophiles that thrive in environments with very high concentrations of salt. Although the salt reliance and physiology of these extremophiles have been widely investigated, the molecular working mechanisms of their enzymes under salty conditions have been little explored. Methodology/Principal Findings A halophilic esterolytic enzyme LipC derived from archeaon Haloarcula marismortui was overexpressed from Escherichia coli BL21. The purified enzyme showed a range of hydrolytic activity towards the substrates of p-nitrophenyl esters with different alkyl chains (n = 2−16), with the highest activity being observed for p-nitrophenyl acetate, consistent with the basic character of an esterase. The optimal esterase activities were found to be at pH 9.5 and [NaCl] = 3.4 M or [KCl] = 3.0 M and at around 45°C. Interestingly, the hydrolysis activity showed a clear reversibility against changes in salt concentration. At the ambient temperature of 22°C, enzyme systems working under the optimal salt concentrations were very stable against time. Increase in temperature increased the activity but reduced its stability. Circular dichroism (CD), dynamic light scattering (DLS) and small angle neutron scattering (SANS) were deployed to determine the physical states of LipC in solution. As the salt concentration increased, DLS revealed substantial increase in aggregate sizes, but CD measurements revealed the maximal retention of the α-helical structure at the salt concentration matching the optimal activity. These observations were supported by SANS analysis that revealed the highest proportion of unimers and dimers around the optimal salt concentration, although the coexistent larger aggregates showed a trend of increasing size with salt concentration, consistent with the DLS data. Conclusions/Significance The solution α-helical structure and activity relation also matched the highest proportion of enzyme unimers and dimers. Given that all the solutions studied were structurally inhomogeneous, it is important for future work to understand how the LipC's solution aggregation affected its activity. PMID:19759821

  2. Piperolein B and piperchabamide D isolated from black pepper (Piper nigrum L.) as larvicidal compounds against the diamondback moth (Plutella xylostella).

    PubMed

    Hwang, Ki Seon; Kim, Young Kook; Park, Kee Woong; Kim, Young Tae

    2017-08-01

    There is growing demand for the development of alternative pest control agents that are effective as well as non-toxic to human health and the environment. Plant protection products derived from plant extracts are an eco-friendly alternative to synthetic pesticides. The aim of this study was to identify larvicidal compounds isolated from a natural source against Plutella xylostella L. In a larvicidal activity assay, several solvent fractions from the methanol extract of Piper nigrum L. fruit showed larvicidal effects against P. xylostella. Screening results indicated that chloroform extract was the most effective against P. xylostella larvae. Two compounds with insecticidal activity in the chloroform fraction were identified as piperolein B and piperchabamide D by spectroscopic analyses, including mass spectrometry and NMR, and by comparison to published data. At applications of 0.1 mg mL -1 concentration, piperolein B and piperchabamide D, respectively, induced 96.7 ± 5.8% and 79.2 ± 16.6% mortality rates of P. xylostella larvae 4 days post-application. Our results demonstrate that piperolein B and piperchabamide D isolated from P. nigrum are the major constituents of the extract demonstrating insecticidal properties for the control of P. xylostella larvae. These plant-derived compounds should become useful alternatives to synthetic chemicals after studying their insecticidal mechanisms. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  4. 21 CFR 177.1595 - Polyetherimide resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... Polyetherimide resin identified in paragraph (a) of this section shall have an intrinsic viscosity in chloroform... Viscosity of ULTEM Polyetherimide Using Chloroform as the Solvent,” which is incorporated by reference...

  5. Development of New Decon Green (registered trademark): A How-To Guide for the Rapid Decontamination of CARC Paint

    DTIC Science & Technology

    2008-09-01

    sodium carbonate, and extracted with 2-mL chloroform. The chloroform layer was analyzed for residual agent by Gas Chromatography /Atomic Emission...agent remaining on the panel. Solutions were analyzed by Gas Chromatography /Flame-Ionization Detector (GC/FID) to determine the amounts of agent...transferred to glass scintillation vials. A 100-µL aliquot of the DEP was diluted with 900-µL chloroform (1:10 dilution) in a Gas Chromatography

  6. Purification and properties of beta-galactosidase from Aspergillus nidulans.

    PubMed

    Díaz, M; Pedregosa, A M; de Lucas, J R; Torralba, S; Monistrol, I F; Laborda, F

    1996-12-01

    Beta-Galactosidase from mycelial extract of Aspergillus nidulans has been purified by substrate affinity chromatography and used to obtain anti-beta-galactosidase polyclonal antibodies. A. nidulans growing in lactose as carbon source synthesizes one active form of beta-galactosidase which seems to be a multimeric enzyme of 450 kDa composed of monomers with 120 and 97 kDa. Although the enzyme was not released to the culture medium, some enzymatic activity was detected in a cell-wall extract, thus suggesting that it can be an extracellular enzyme. Beta-Galactosidase of A. nidulans is a very unstable enzyme with an optimum pH value of 7.5 and an optimum temperature of 30 degrees C. It was only active against beta-galactoside substrates like lactose and p-nitrophenyl-beta-D-galactoside (PNPG).

  7. Effect of ferroelectric BaTiO3 particles on the threshold voltage of a smectic A liquid crystal

    PubMed Central

    Imamaliyev, Abbas Rahim; Ramazanov, Mahammadali Ahmad

    2018-01-01

    The influence of small ferroelectric BaTiO3 particles on the planar–homeotropic transition threshold voltage in smectic A liquid crystals consisting of p-nitrophenyl p-decyloxybenzoate and 4-cyano-4′-pentylbiphenyl were studied by using capacitance–voltage (C–V) measurements. It was shown that the BaTiO3 particles significantly reduce the threshold voltage. The obtained result is explained by two factors: an increase of dielectric anisotropy of the liquid crystals and the formation of a strong electric field near polarized particles of BaTiO3. It was shown that the role of the second factor is dominant. The explanations of some features observed in the C–V characteristics are given. PMID:29600143

  8. Substrate specificity and kinetic properties of alpha-galactosidases from Vicia faba.

    PubMed

    Dey, P M; Pridham, J B

    1969-10-01

    1. The hydrolysis of a variety of galactosides and other glycosides by alpha-galactosidases I and II of Vicia faba was studied. 2. The effect of temperature on kinetic parameters was also examined. 3. Both enzymes are inhibited by excess of substrate (p-nitrophenyl alpha-d-galactoside); with enzyme I this is competitive and is caused by the galactosyl moiety. 4. Enzyme I is inhibited by oligosaccharides possessing terminal non-reducing galactose residues and to a smaller extent by l-arabinose and d-fucose. 5. The effect of pH on K(m) and V(max.) values suggests that carboxyl and imidazole groups are involved in the catalytic activity of enzyme I. 6. Photo-oxidation experiments with enzyme I also suggest that an imidazole group is present at the active site.

  9. Design, synthesis and nonlinear optical properties of (E)-1-(4-substituted)-3-(4-hydroxy-3-nitrophenyl) prop-2-en-1-one compounds

    NASA Astrophysics Data System (ADS)

    Saha, Amrita; Shukla, Vijay; Choudhury, Sudip; Jayabalan, J.

    2016-06-01

    A new series of (E)-1-(4-substituted)-3-(4-hydroxy-3-nitrophenyl) prop-2-en-1-one compounds have been synthesized by Claisen-Schmidt condensation reaction. Nonlinear optical characterization were carried out using z-scan technique with nanosecond pulses. These samples are found to exhibit strong nonlinear absorption at 532 nm and the nonlinear absorption coefficient of these samples exponentially increases with the increase of phonon characteristic energy. This relation speaks the role of phonon in the origin of nonlinear absorption in these compounds. The reported dependence of optical nonlinearity of the chalcone derivatives on the phonon characteristic energy will help in designing similar class of new molecules with high nonlinear coefficients.

  10. Benzofurazane as a new redox label for electrochemical detection of DNA: towards multipotential redox coding of DNA bases.

    PubMed

    Balintová, Jana; Plucnara, Medard; Vidláková, Pavlína; Pohl, Radek; Havran, Luděk; Fojta, Miroslav; Hocek, Michal

    2013-09-16

    Benzofurazane has been attached to nucleosides and dNTPs, either directly or through an acetylene linker, as a new redox label for electrochemical analysis of nucleotide sequences. Primer extension incorporation of the benzofurazane-modified dNTPs by polymerases has been developed for the construction of labeled oligonucleotide probes. In combination with nitrophenyl and aminophenyl labels, we have successfully developed a three-potential coding of DNA bases and have explored the relevant electrochemical potentials. The combination of benzofurazane and nitrophenyl reducible labels has proved to be excellent for ratiometric analysis of nucleotide sequences and is suitable for bioanalytical applications. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Phloroglucinol Degradation in the Rumen Promotes the Capture of Excess Hydrogen Generated from Methanogenesis Inhibition.

    PubMed

    Martinez-Fernandez, Gonzalo; Denman, Stuart E; Cheung, Jane; McSweeney, Christopher S

    2017-01-01

    Strategies to manage metabolic hydrogen ([H]) in the rumen should be considered when reducing ruminant methane (CH 4 ) emissions. However, little is known about the use of dietary treatments to stimulate rumen microorganisms capable of capturing the [H] available when CH 4 is inhibited in vivo . The effects of the phenolic compound phloroglucinol on CH 4 production, [H] flows and subsequent responses in rumen fermentation and microbial community composition when methanogenesis is inhibited were investigated in cattle. Eight rumen fistulated Brahman steers were randomly allocated in two groups receiving chloroform as an antimethanogenic compound for 21 days. Following that period one group received chloroform + phloroglucinol for another 16 days, whilst the other group received only chloroform during the same period. The chloroform treatment resulted in a decrease in CH 4 production and an increase in H 2 expelled with a shift in rumen fermentation toward higher levels of propionate and formate and lower levels of acetate at day 21 of treatment. Bacterial operational taxonomic units (OTUs) assigned to Prevotella were promoted whilst Archaea and Synergistetes OTUs were decreased with the chloroform treatment as expected. The shift toward formate coincided with increases in Ruminococcus flavefaciens , Butyrivibrio fibrisolvens , and Methanobrevibacter ruminantium species. The addition of chloroform + phloroglucinol in the rumen resulted in a decrease of H 2 expelled (g) per kg of DMI and moles of H 2 expelled per mol of CH 4 decreased compared with the chloroform only treated animals. A shift toward acetate and a decrease in formate were observed for the chloroform + phloroglucinol-treated animals at day 37. These changes in the rumen fermentation profile were accompanied by a relative increase of OTUs assigned to Coprococcus spp., which could suggest this genus is a significant contributor to the metabolism of this phenolic compound in the rumen. This study demonstrates for the first time in vivo that under methanogenesis inhibition, H 2 gas accumulation can be decreased by redirecting [H] toward alternative sinks through the nutritional stimulation of specific microbial groups. This results in the generation of metabolites of value for the host while also helping to maintain a low H 2 partial pressure in the methane-inhibited rumen.

  12. Synthesis and properties of dithymidine phosphate analogues containing 3'-thiothymidine.

    PubMed Central

    Cosstick, R; Vyle, J S

    1990-01-01

    Dithymidine-3'-S-phosphorothioate (d(TspT)) has been prepared from a 5'-O-monomethoxytritylthymidine-3'-S-phosphorothioamidite (7) by activation with 5-(p-nitrophenyl)tetrazole in the presence of 3'-O-acetylthymidine. The resulting dinucleoside phosphorothioite is readily oxidised to the corresponding 3'-S-phosphorothioate using either tetrabutylammonium (TBA) periodate or TBA oxone and has been deprotected under standard conditions to yield d(TspT). This dithymidine phosphate analogue is comparatively resistant to hydrolysis by nuclease P1, but the P-S bond is readily cleaved by aqueous solutions of either iodine or silver nitrate. Dithymidine-3'-S-phosphorodithioate (d[Tsp(s)T]) was prepared in an analogous fashion using sulphur to oxidise the intermediate dinucleoside phosphorothioite. Absolute stereochemistry has been assigned to the diastereoisomers of d[Tsp(s)T] by comparing their physical and chemical properties to those of the dinucleoside phosphorothioates. PMID:2315041

  13. Isolation and partial characterization of a mutant of Penicillium funiculosum for the saccharification of straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, R.M.; Wood, T.M.

    1985-01-01

    Clearing of agar plates containing ball-milled, delignified straw has been used for screening mutants of Penicillium funiculosum IMI 87160 III. The effects of glycerol and a number of sugars on the clearing were investigated for selecting derepressed mutants. The ..beta..-glucosidase synthesis by one such mutant, C22c, in shake flasks containing straw was not repressed by 5% glycerol, whereas activities on filter paper, CM-cellulose, and p-nitrophenyl-..beta..-xylosidase were only partially derepressed; xylanase was extensively derepressed. The evidence for separate control of the enzymes involved in the solubilization of straw is discussed. 23 references.

  14. Substantial production of drosophilin A methyl ether (tetrachloro-1,4-dimethoxybenzene) by the lignicolous basidiomycete Phellinus badius in the heartwood of mesquite (Prosopis juliflora) trees

    Treesearch

    Laurence A.J. Garvie; Barry Wilkens; Thomas L. Groy; Jessie A. Glaeser

    2015-01-01

    Toxic organohalogen pollutants produced as byproducts of industrial processes, such as chloroform and polychlorinated dibenzo-p-dioxins, also have significant natural sources. A substantial terrestrial source of halogenated organics originates from fungal decay of wood and leaf litter. Here we show that the lignicolous basidiomycete ...

  15. Transition state analogue imprinted polymers as artificial amidases for amino acid p-nitroanilides: morphological effects of polymer network on catalytic efficiency.

    PubMed

    Mathew, Divya; Thomas, Benny; Devaky, K S

    2017-11-13

    The morphology of the polymer network - porous/less porous - plays predominant role in the amidase activities of the polymer catalysts in the hydrolytic reactions of amino acid p-nitroanilides. Polymers with the imprints of stable phosphonate analogue of the intermediate of hydrolytic reactions were synthesized as enzyme mimics. Molecular imprinting was carried out in thermodynamically stable porogen dimethyl sulphoxide and unstable porogen chloroform, to investigate the morphological effects of polymers on catalytic amidolysis. It was found that the medium of polymerization has vital influence in the amidase activities of the enzyme mimics. The morphological studies of the polymer catalysts were carried out by scanning electron microscopy and Bruner-Emmett-Teller analysis. The morphology of the polymer catalysts and their amidase activities are found to be dependent on the composition of reaction medium. The polymer catalyst prepared in dimethyl sulphoxide is observed to be efficient in 1:9 acetonitrile (ACN)-Tris HCl buffer and that prepared in chloroform is noticed to be stereo specifically and shape-selectively effective in 9:1 ACN-Tris HCl buffer. The solvent memory effect in catalytic amidolysis was investigated using the polymer prepared in acetonitrile.

  16. Antibacterial activity of some selected medicinal plants of Pakistan

    PubMed Central

    2011-01-01

    Background Screening of the ethnobotenical plants is a pre-requisite to evaluate their therapeutic potential and it can lead to the isolation of new bioactive compounds. Methods The crude extracts and fractions of six medicinal important plants (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, Pistacia integerrima, Aesculus indica, and Toona ciliata) were tested against three Gram positive and two Gram negative ATCC bacterial species using the agar well diffusion method. Results The crude extract of P. integerrima and A. indica were active against all tested bacterial strains (12-23 mm zone of inhibition). Other four plant's crude extracts (Arisaema flavum, Debregeasia salicifolia, Carissa opaca, and Toona ciliata) were active against different bacterial strains. The crude extracts showed varying level of bactericidal activity. The aqueous fractions of A. indica and P. integerrima crude extract showed maximum activity (19.66 and 16 mm, respectively) against B. subtilis, while the chloroform fractions of T. ciliata and D. salicifolia presented good antibacterial activities (13-17 mm zone of inhibition) against all the bacterial cultures tested. Conclusion The methanol fraction of Pistacia integerrima, chloroform fractions of Debregeasia salicifolia &Toona ciliata and aqueous fraction of Aesculus indica are suitable candidates for the development of novel antibacterial compounds. PMID:21718504

  17. Speciation of trihalomethane mixtures for the Mississippi, Missouri, and Ohio Rivers

    USGS Publications Warehouse

    Rathbun, R.E.

    1996-01-01

    Trihalomethane formation potentials were determined for the chlorination of water samples from the Mississippi, Missouri, and Ohio Rivers. Samples were collected during the summer and fall of 1991 and the spring of 1992 at 12 locations on the Mississippi from New Orleans, LA, to Minneapolis, MN, and on the Missouri and Ohio 1.6 km upstream from their confluences with the Mississippi. Formation potentials were determined as a function of pH and initial free-chlorine concentration. Chloroform concentrations decreased with distance downstream and approximately paralleled the decrease of the dissolved organic-carbon concentration. Bromide concentrations were 3.7-5.7 times higher for the Missouri and 1.4-1.6 times higher for the Ohio than for the Mississippi above their confluences, resulting in an overall increase of the bromide concentration with distance downstream. Variations of the concentrations of the brominated trihalomethanes with distance downstream approximately paralleled the variation of the bromide concentration. Concentrations of all four trihalomethanes increased as the pH increased. Concentrations of chloroform and bromodichloromethane increased slightly and the concentration of bromoform decreased as the initial free-chlorine concentration increased; the chlorodibromomethane concentration had little dependence on the free-chlorine concentration.

  18. Phytochemical Constituents and Antimicrobial Activity of the Ethanol and Chloroform Crude Leaf Extracts of Spathiphyllum cannifolium (Dryand. ex Sims) Schott.

    PubMed

    Dhayalan, Arunachalam; Gracilla, Daniel E; Dela Peña, Renato A; Malison, Marilyn T; Pangilinan, Christian R

    2018-01-01

    The study investigated the medicinal properties of Spathiphyllum cannifolium (Dryand. ex Sims) Schott as a possible source of antimicrobial compounds. The phytochemical constituents were screened using qualitative methods and the antibacterial and antifungal activities were determined using agar well diffusion method. One-way analysis of variance and Fisher's least significant difference test were used. The phytochemical screening showed the presence of sterols, flavonoids, alkaloids, saponins, glycosides, and tannins in both ethanol and chloroform leaf extracts, but triterpenes were detected only in the ethanol leaf extract. The antimicrobial assay revealed that the chloroform leaf extract inhibited Candida albicans, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa , whereas the ethanol leaf extract inhibited E. coli , S. aureus , and B. subtilis only. The ethanol and chloroform leaf extracts exhibited the highest zone of inhibition against B. subtilis . The antifungal assay showed that both the leaf extracts have no bioactivity against Aspergillus niger and C. albicans . Results suggest that chloroform is the better solvent for the extraction of antimicrobial compounds against the test organisms used in this study. Findings of this research will add new knowledge in advancing drug discovery and development in the Philippines.

  19. Acaricidal activity of extracts of neem (Azadirachta indica) oil against the larvae of the rabbit mite Sarcoptes scabiei var. cuniculi in vitro.

    PubMed

    Du, Yong-Hua; Jia, Ren-Yong; Yin, Zhong-Qiong; Pu, Zhong-Hui; Chen, Jiao; Yang, Fan; Zhang, Yu-Qun; Lu, Yang

    2008-10-20

    The acaricidal activity of the petroleum ether extract, the chloroform extract and the acetic ether extract of neem (Azadirachta indica) oil against Sarcoptes scabiei var. cuniculi larvae was tested in vitro. A complementary log-log (CLL) model was used to analyze the data of the toxicity tests. The results showed that at all test time points, the petroleum ether extract demonstrated the highest activity against the larvae of S. scabiei var. cuniculi, while the activities of the chloroform extract and the acetic ether extract were similar. The activities of both the petroleum ether extract and the chloroform extract against the larvae showed the relation of time and concentration dependent. The median lethal concentration (LC50) of the petroleum ether extract (1.3 microL/mL) was about three times that of the chloroform extract (4.1 microL/mL) at 24 h post-treatment. At the concentrations of 500.0 microL/mL, the median lethal time (LT50) of the petroleum ether extract and the chloroform extract was 8.4 and 9.6 h, respectively.

  20. Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry.

    PubMed

    Uutela, Päivi; Ketola, Raimo A; Piepponen, Petteri; Kostiainen, Risto

    2009-02-09

    The efficiencies of three derivatisation reagents that react with either the amine (9-fluorenylmethyl chloroformate (FMOC)) or the carboxylic acid group (butanol) of amino acid or with both types of functional groups (propyl chloroformate) were compared in the analysis of amino acids by liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS). Separation of 20 amino acids derivatised with these three reagents was studied on reversed-phase chromatography. Linearity, repeatability and limits of detection of the LC-ESI-MS/MS method were determined by analysing FMOC-, butanol- and propyl chloroformate-derivatised lysine, beta-aminobutyric acid, threonine and glutamic acid. The limits of detection for the derivatised amino acids (7.5-75fmol) were as much as 2-60 times lower than those of the corresponding underivatised molecules. The best linearity was observed for amino acids derivatised with propyl chloroformate or butanol (r(2)=0.996-0.999, range=100-8500nmolL(-1)). Propyl chloroformate was the best suited of the reagents tested for the analysis of amino acids with LC-MS/MS and was used for the analysis of amino acids in rat brain microdialysis samples.

  1. Electrophoretic deposition of silicon substituted hydroxyapatite coatings from n-butanol-chloroform mixture.

    PubMed

    Xiao, Xiu Feng; Liu, Rong Fang; Tang, Xiao Lian

    2008-01-01

    Silicon Substituted Hydroxyapatite (Si-HA) coatings were prepared on titanium substrates by electrophoretic deposition (EPD). The stability of Si-HA suspension in n-butanol and chloroform mixture has been studied by electricity conductivity and sedimentation test. The microstructure, shear strength and bioactivity in vitro has been tested. The stability of Si-HA suspension containing n-butanol and chloroform mixture as medium is better than that of pure n-butanol as medium. The good adhesion of the particles with the substrate and good cohesion between the particles were obtained in n-butanol and chloroform mixture. Adding triethanolamine (TEA) as additive into the suspension is in favor of the formation of uniform and compact Si-HA coatings on the titanium substrates by EPD. The shear strength of the coatings can reach 20.43 MPa after sintering at 700 degrees C for 2 h, when the volume ratio of n-butanol: chloroform is 2:1 and the concentration of TEA is 15 ml/L. Titanium substrates etched in H(2)O(2)/NH(3) solution help to improve the shear strength of the coatings. After immersion in simulated body fluid for 7 days, Si-HA coatings have the ability to induce the bone-like apatite formation.

  2. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...

  3. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...

  4. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...

  5. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...

  6. 21 CFR 700.18 - Use of chloroform as an ingredient in cosmetic products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... animals. Studies conducted by the National Cancer Institute have demonstrated that the oral administration of chloroform to mice and rats induced hepatocellular carcinomas (liver cancer) in mice and renal...

  7. Binary mixtures of azinphos-methyl oxon and chlorpyrifos oxon produce in vitro synergistic cholinesterase inhibition in Planorbarius corneus.

    PubMed

    Cacciatore, Luis Claudio; Kristoff, Gisela; Verrengia Guerrero, Noemí R; Cochón, Adriana C

    2012-07-01

    In this study, the cholinesterase (ChE) and carboxylesterase (CES) activities present in whole organism homogenates from Planorbarius corneus and their in vitro sensitivity to organophosphorous (OP) pesticides were studied. Firstly, a characterization of ChE and CES activities using different substrates and selective inhibitors was performed. Secondly, the effects of azinphos-methyl oxon (AZM-oxon) and chlorpyrifos oxon (CPF-oxon), the active oxygen analogs of the OP insecticides AZM and CPF, on ChE and CES activities were evaluated. Finally, it was analyzed whether binary mixtures of the pesticide oxons cause additive, antagonistic or synergistic ChE inhibition in P. corneus homogenates. The results showed that the extracts of P. corneus preferentially hydrolyzed acetylthiocholine (AcSCh) over propionylthiocholine (PrSCh) and butyrylthiocholine (BuSCh). Besides, AcSCh hydrolyzing activity was inhibited by low concentrations of BW284c51, a selective inhibitor of AChE activity, and also by high concentrations of substrate. These facts suggest the presence of a typical AChE activity in this species. However, the different dose-response curves observed with BW284c51 when using PrSCh or BuSCh instead of AcSCh suggest the presence of at least another ChE activity. This would probably correspond to an atypical BuChE. Regarding CES activity, the highest specific activity was obtained when using 2-naphthyl acetate (2-NA), followed by 1-naphthyl acetate (1-NA); p-nitrophenyl acetate (p-NPA), and p-nitrophenyl butyrate (p-NPB). The comparison of the IC(50) values revealed that, regardless of the substrate used, CES activity was approximately one order of magnitude more sensitive to AZM-oxon than ChE activity. Although ChE activity was very sensitive to CPF-oxon, CES activity measured with 1-NA, 2-NA, and p-NPA was poorly inhibited by this pesticide. In contrast, CES activity measured with p-NPB was equally sensitive to CPF-oxon than ChE activity. Several specific binary combinations of AZM-oxon and CPF-oxon caused a synergistic effect on the ChE inhibition in P. corneus homogenates. The degree of synergism tended to increase as the ratio of AZM-oxon to CPF-oxon decreased. These results suggest that synergism is likely to occur in P. corneus snails exposed in vivo to binary mixtures of the OPs AZM and CPF. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Synthesis, structure, and DNA cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands featuring pairs of guanidine pendants.

    PubMed

    Tjioe, Linda; Joshi, Tanmaya; Brugger, Joël; Graham, Bim; Spiccia, Leone

    2011-01-17

    Two new ligands, L(1) and L(2), have been prepared via N-functionalization of 1,4,7-triazacyclononane (tacn) with pairs of ethyl- or propyl-guanidine pendants, respectively. The X-ray crystal structure of [CuL(1)](ClO4)2 (C1) isolated from basic solution (pH 9) indicates that a secondary amine nitrogen from each guanidine pendants coordinates to the copper(II) center in addition to the nitrogen atoms in the tacn macrocycle, resulting in a five-coordinate complex with intermediate square-pyramidal/trigonal bipyramidal geometry. The guanidines adopt an unusual coordination mode in that their amine nitrogen nearest to the tacn macrocycle binds to the copper(II) center, forming very stable five-membered chelate rings. A spectrophotometric pH titration established the pK(app) for the deprotonation and coordination of each guanidine group to be 3.98 and 5.72, and revealed that [CuL(1)](2+) is the only detectable species present in solution above pH ∼ 8. The solution speciation of the CuL(2) complex (C2) is more complex, with at least 5 deprotonation steps over the pH range 4-12.5, and mononuclear and binuclear complexes coexisting. Analysis of the spectrophotometric data provided apparent deprotonation constants, and suggests that solutions at pH ∼ 7.5 contain the maximum proportion of polynuclear complexes. Complex C1 exhibits virtually no cleavage activity toward the model phosphate diesters, bis(p-nitrophenyl)phosphate (BNPP) and 2-hydroxypropyl-p-nitrophenyl phosphate (HPNPP), while C2 exhibits moderate activity. For C2, the respective kobs values measured at pH 7.0 (7.24 (± 0.08) × 10(-5) s(-1) (BNPP at 50 °C) and 3.2 (± 0.3) × 10(-5) s(-1) (HPNPP at 25 °C)) are 40- and 10-times faster than [Cu(tacn)(OH2)2](2+) complex. Both complexes cleave supercoiled pBR 322 plasmid DNA, indicating that the guanidine pendants of [CuL(1)](2+) may have been displaced from the copper coordination sphere to allow for DNA binding and subsequent cleavage. The rate of DNA cleavage by C2 is twice that measured for [Cu(tacn)(OH2)2](2+), suggesting some degree of cooperativity between the copper center and guanidinium pendants in the hydrolysis of the phosphate ester linkages of DNA. A predominantly hydrolytic cleavage mechanism was confirmed through experiments performed either in the presence of various radical scavengers or under anaerobic conditions.

  9. High-level expression of a novel thermostable and mannose-tolerant β-mannosidase from Thermotoga thermarum DSM 5069 in Escherichia coli

    PubMed Central

    2013-01-01

    Background Mannan is one of the primary polysaccharides in hemicellulose and is widely distributed in plants. β-Mannosidase is an important constituent of the mannan-degrading enzyme system and it plays an important role in many industrial applications, such as food, feed and pulp/paper industries as well as the production of second generation bio-fuel. Therefore, the mannose-tolerant β-mannosidase with high catalytic efficiency for bioconversion of mannan has a great potential in the fields as above. Results A β-mannosidase gene (Tth man5) of 1,827 bp was cloned from the extremely thermophilic bacterium Thermotoga thermarum DSM 5069 that encodes a protein containing 608 amino acid residues, and was over-expressed in Escherichia coli BL21 (DE3). The results of phylogenetic analysis, amino acid alignment and biochemical properties indicate that the Tth Man5 is a novel β-mannosidase of glycoside hydrolase family 5. The optimal activity of the Tth Man5 β-mannosidase was obtained at pH 5.5 and 85°C and was stable over a pH range of 5.0 to 8.5 and exhibited 2 h half-life at 90°C. The kinetic parameters Km and Vmax values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 4.36±0.5 mM and 227.27±1.59 μmol min-1 mg-1, 58.34±1.75 mg mL-1 and 285.71±10.86 μmol min-1 mg-1, respectively. The kcat/Km values for p-nitrophenyl-β-D-mannopyranoside and 1,4-β-D-mannan were 441.35±0.04 mM-1 s-1 and 41.47±1.58 s-1 mg-1 mL, respectively. It displayed high tolerance to mannose, with a Ki value of approximately 900 mM. Conclusions This work provides a novel and useful β-mannosidase with high mannose tolerance, thermostability and catalytic efficiency, and these characteristics constitute a powerful tool for improving the enzymatic conversion of mannan through synergetic action with other mannan-degrading enzymes. PMID:24099409

  10. Modeling the interaction of ozone with chloroform and bromoform under conditions close to stratospheric

    NASA Astrophysics Data System (ADS)

    Strokova, N. E.; Yagodovskaya, T. V.; Savilov, S. V.; Lukhovitskaya, E. E.; Vasil'ev, E. S.; Morozov, I. I.; Lunin, V. V.

    2013-02-01

    The reactions of ozone with chloroform and bromoform are studied using a flow gas discharge vacuum unit under conditions close to stratospheric (temperature range, 77-250 K; pressure, 10-3-0.1 Torr in the presence of nitrate ice). It is shown that the reaction with bromoform begins at 160 K; the reaction with chloroform, at 190 K. The reaction products are chlorine and bromine oxides of different composition, identified by low-temperature FTIR spectroscopy. The presence of nitrate ice raises the temperature of reaction onset to 210 K.

  11. Chloroform

    Integrated Risk Information System (IRIS)

    Chloroform ; CASRN 67 - 66 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  12. 21 CFR 177.1595 - Polyetherimide resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... shall have an intrinsic viscosity in chloroform at 25 °C (77 °F) of not less than 0.35 deciliter per gram as determined by a method titled “Intrinsic Viscosity of ULTEM Polyetherimide Using Chloroform as...

  13. 21 CFR 177.1595 - Polyetherimide resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... shall have an intrinsic viscosity in chloroform at 25 °C (77 °F) of not less than 0.35 deciliter per gram as determined by a method titled “Intrinsic Viscosity of ULTEM Polyetherimide Using Chloroform as...

  14. 21 CFR 177.1595 - Polyetherimide resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... shall have an intrinsic viscosity in chloroform at 25 °C (77 °F) of not less than 0.35 deciliter per gram as determined by a method titled “Intrinsic Viscosity of ULTEM Polyetherimide Using Chloroform as...

  15. Simultaneous degradation of commercially produced CNP herbicide and of contaminated dioxin by treatment using the white-rot fungus Phlebia brevispora.

    PubMed

    Kamei, Ichiro; Kondo, Ryuichiro

    2006-11-01

    An experiment was carried out to study the degradation of commercially produced chlornitrofen (2,4,6-trichlorophenyl p-nitrophenyl ether; CNP) herbicide contaminated with 1,3,6,8-tetrachlorodibenzo-p-dioxin (1,3,6,8-tetraCDD) by means of the white rot fungus Phlebia brevispora TMIC33929. Recently, we reported that 1,3,6,8-tetraCDD was degraded by P. brevispora. In the degradation experiment using CNP standard compounds, CNP was transformed into several metabolites including monomethoxylated compounds and 2,4,6-trichlorophenol by P. brevispora. When the mixture of CNP and 1,3,6,8-tetraCDD was treated with P. brevispora, each substrate was degraded and metabolites were detected. The treatment of the commercially produced CNP herbicide by P. brevispora led to the degradation of CNP and contaminated 1,3,6,8-tetraCDD as a result. These results indicate that P. brevispora can degrade CNP and 1,3,6,8-tetraCDD at the same time, and that biological treatment of commercially produced CNP herbicide is possible.

  16. Antibody-mediated reduction of {alpha}-ketoamides

    DOEpatents

    Schultz, P.G.; Gallop, M.A.

    1998-06-09

    Monoclonal antibodies raised against a 4-nitrophenyl phosphonate hapten catalyze the stereospecific reduction of an {alpha}-ketoamide to the corresponding {alpha}-hydroxyamide in the presence of an appropriate reducing agent.

  17. Antibody-mediated reduction of .alpha.-ketoamides

    DOEpatents

    Schultz, Peter G.; Gallop, Mark A.

    1998-01-01

    Monoclonal antibodies raised against a 4-nitrophenyl phosphonate hapten catalyze the stereospecific reduction of an .alpha.-ketoamide to the corresponding .alpha.-hydroxyamide in the presence of an appropriate reducing agent.

  18. Polymorphism of a new Mannich base - [-4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol

    NASA Astrophysics Data System (ADS)

    Ayeni, Ayowole O.; Watkins, Gareth M.; Hosten, Eric C.

    2018-05-01

    Two polymorphs (forms I and II) of a new Mannich base 4-methyl-2-((4-(4-nitrophenyl)piperazin-1-yl)methyl)phenol have been isolated and characterized by single crystal and powder (experimental and theoretical) X-ray diffraction, thermal analysis (differential scanning calorimetry), Fourier transform infrared spectroscopy. 1H and 13C nuclear magnetic resonance spectroscopy was employed in characterising the new Mannich base. Single crystal X-ray diffraction revealed that the two polymorphs contain different conformers of the Mannich base whose hydrogen bonding schemes and packing arrangements in their respective crystals are different. Thermal analysis led to the conclusion that the two polymorphs are enantiotropically related, with a transition temperature of 138.5 °C.

  19. Orientation of N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide on silver nanoparticles: SERS studies.

    PubMed

    Anuratha, M; Jawahar, A; Umadevi, M; Sathe, V G; Vanelle, P; Terme, T; Meenakumari, V; Milton Franklin Benial, A

    2014-10-15

    In the present study, the silver nanoparticles were synthesized using a solution combustion method with urea as fuel. The prepared silver nanoparticles show an FCC crystalline structure with particle size of 59nm. FESEM image shows the prepared silver is a rod like structure. The surface-enhanced Raman scattering (SERS) spectrum indicates that the N-(1-(2-chlorophenyl)-2-(2-nitrophenyl)ethyl)-4-methylbenzenesulfonamide (CS) molecule adsorbed on the silver nanoparticles. The spectral analysis reveals that the sulfonamide is adsorbed by tilted orientation on the silver surface. The Hatree Fock calculations were also performed to predict the vibrational motions of CS. This present investigation has been a model system to deduce the interaction of drugs with DNA. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Developing Novel Fluorescent Materials with Near Infrared Emission by Using m-Phenylene

    NASA Technical Reports Server (NTRS)

    Pang, Yi; Liao, Ling; Meador, Michael A.

    2003-01-01

    Our research focuses on development of novel p-conjugated polymers with desired emission. In the current study, the structure of a highly green-emitting poly[(m-phenylenevinylene)- alt-( p-phenylenevinylene)] has been modified by increasing the content of p-phenylene to achieve red- and infrared-emission. The polymer is synthesized via Wittig-Horner condensation, which is known to lead to trans-olefin linkage. The polymer is soluble in common organic solvents such as toluene, chloroform and THF. The spectroscopic properties of the polymer in both solution and film states will be discussed in comparison with its model compound.

  1. Antitubercular activity of the semi-polar extractives of Uvaria rufa.

    PubMed

    Macabeo, Allan Patrick G; Tudla, Florie A; Krohn, Karsten; Franzblau, Scott G

    2012-10-01

    To investigate the inhibitory activity of the chloroform extract, petroleum ether and chloroform sub-extracts, lead-acetate treated chloroform extract, fractions and secondary metabolites of Uvaria rufa (U. rufa) against Mycobacterium tuberculosis (M. tuberculosis) H(37)Rv. The antituberculosis susceptibility assay was carried out using the colorimetric Microplate Alamar blue assay (MABA). In addition, the cytotoxicity of the most active fraction was evaluated using the VERO cell toxicity assay. The in vitro inhibitory activity against M. tuberculosis H(37)Rv increased as purification progressed to fractionation (MIC up to 23 μg/mL). The chloroform extract and its sub-extracts showed moderate toxicity while the most active fraction from chloroform sub-extract exhibited no cytotoxicity against VERO cells. Meanwhile, the lead acetate-treated crude chloroform extract and its fractions showed complete inhibitions (100%) with MIC values up to 8 μg/mL. Phytochemical screening of the most active fraction showed, in general, the presence of terpenoids, steroids and phenolic compounds. Evaluation of the antimycobacterial activity of known secondary metabolites isolated showed no promising inhibitory activity against the test organism. The present results demonstrate the potential of U. rufa as a phytomedicinal source of compounds that may exhibit promising antituberculosis activity. In addition, elimination of polar pigments revealed enhanced inhibition against M. tuberculosis H(37)Rv. While several compounds known for this plant did not show antimycobacterial activity, the obtained results are considered sufficient reason for further study to isolate the metabolites from U. rufa responsible for the antitubercular activity. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  2. Laboratory Evaluations of the Fractions Efficacy of Annona senegalensis (Annonaceae) Leaf Extract on Immature Stage Development of Malarial and Filarial Mosquito Vectors.

    PubMed

    Lame, Younoussa; Nukenine, Elias Nchiwan; Pierre, Danga Yinyang Simon; Elijah, Ajaegbu Eze; Esimone, Charles Okechukwu

    2015-12-01

    Within the framework to control mosquitoes, ovicidal, larvicidal and pupicidal activity of Annona senegalensis leaf extract and its 4 fractions against Anopheles gambiae and Culex quinquefasciatus were evaluated in the laboratory conditions. Ovicidal test was performed by submitting at least 100 eggs of mosquitoes to 125, 250, 500, 1000 and 2000 ppm concentrations, while larvicidal and pupicidal effects were assessed by submitting 25 larvae or pupae to the concentrations of 2500, 1250, 625 and 312.5 ppm of plant extract or fractions of A. senegalensis. The eggs of An. gambiae were most affected by N-hexane (0.00% hatchability) and chloroform (03.67% hatchability) fractions compared to Cx. quinquefasciatus where at least 25 % hatchability were recorded at 2000 ppm. For larvicidal test, N-hexane (LC50= 298.8 ppm) and chloroform (LC50= 418.3 ppm) fractions were more effective than other fractions on An. gambiae larvae while, a moderate effectiveness was also observed with N-hexane (LC50= 2087.6 ppm), chloroform (LC50= 9010.1 ppm) fractions on Cx. quinquefasciatus larvae. The highest mortality percent of the pupae were also recorded with N-hexane and chloroform fractions on An. gambiae at 2500 ppm. As for Cx. quinquefasciatus only 50 % and 36 % mortality were recorded with N-hexane and chloroform fractions respectively. The extract of A. senegalensis was toxic on immature stage of mosquito species tested. By splitting methanolic crude extract, only N-hexane and chloroform fractions were revealed to possess a mosquitocidal effects and could be considered and utilized for future immature mosquito vectors control.

  3. Organic Chemical Attribution Signatures for the Sourcing of a Mustard Agent and Its Starting Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraga, Carlos G.; Bronk, Krys; Dockendorff, Brian P.

    Chemical attribution signatures (CAS) are being investigated for the sourcing of chemical warfare (CW) agents and their starting materials that may be implicated in chemical attacks or CW proliferation. The work reported here demonstrates for the first time trace impurities produced during the synthesis of tris(2-chloroethyl)amine (HN3) that point to specific reagent stocks used in the synthesis of this CW agent. Thirty batches of HN3 were synthesized using different combinations of commercial stocks of triethanolamine (TEA), thionyl chloride, chloroform, and acetone. The HN3 batches and reagent stocks were then analyzed for impurities by gas chromatography/mass spectrometry. Reaction-produced impurities indicative ofmore » specific TEA and chloroform stocks were exclusively discovered in HN3 batches made with those reagent stocks. In addition, some reagent impurities were found in the HN3 batches that were presumably not altered during synthesis and believed to be indicative of reagent type regardless of stock. Supervised classification using partial least squares discriminant analysis (PLSDA) on the impurity profiles of chloroform samples from seven stocks resulted in an average classification error by cross-validation of 2.4%. A classification error of zero was obtained using the seven-stock PLSDA model on a validation set of samples from an arbitrarily selected chloroform stock. In a separate analysis, all samples from two of seven chloroform stocks that were purposely not modeled had their samples matched to a chloroform stock rather than assigned a “no class” classification.« less

  4. Carcinogenicity of by-products of disinfection in mouse and rat liver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herren-Freund, S.L.; Pereira, M.A.

    1986-11-01

    By-products of disinfection were tested for initiating and/or promoting activity in rat liver by using the rat liver foci bioassay. The assay uses an increased incidence of ..gamma..-glutamyltranspeptidase-positive foci (GGT foci) as an indicator of carcinogenicity. The by-products of disinfection, including chloramine, halogenated humic acids, halogenated ethanes, halogenated acetonitriles, halogenated methanes, halogenated ethylene, and N-Cl piperidine, did not initiate GGT foci, which would indicate that they are not capable of initiating carcinogenesis. Chloroform and halogenated benzenes were tested in this assay for their ability to promote the occurrence of GGT foci and tumors initiated by diethylnitrosamine (DENA). Chloroform either hadmore » no effect or inhibited the occurrence of GGT foci when administered subsequent to a single dose of DENA. However, when the chloroform was administered in drinking water concurrently with weekly doses of DENA, it enhanced the formation of liver tumors. Of 20 halogenated benzenes tested, only 1,2,4,5-tetrachlorobenzene and hexachlorobenzene promoted the occurrence of DENA-initiated GGT foci. Thus in rat liver, the tested by-products of drinking water disinfection did not demonstrate tumor-initiating activity, although a few appeared to possess tumor-promoting activity. Chloroform was also tested for tumor-promoting activity in 15-days-old Swiss mice initiated with ethylnitrosourea (ENU). ENU at 5 and 20 ..mu..g/g caused a dose-dependent increase in liver tumors. In male mice, chloroform inhibited both spontaneous and ENU-induced liver tumors. When administered in the drinking water, chloroform inhibited, whereas phenobarbital promoted, hepatocarcinogenesis in mice.« less

  5. Phloroglucinol Degradation in the Rumen Promotes the Capture of Excess Hydrogen Generated from Methanogenesis Inhibition

    PubMed Central

    Martinez-Fernandez, Gonzalo; Denman, Stuart E.; Cheung, Jane; McSweeney, Christopher S.

    2017-01-01

    Strategies to manage metabolic hydrogen ([H]) in the rumen should be considered when reducing ruminant methane (CH4) emissions. However, little is known about the use of dietary treatments to stimulate rumen microorganisms capable of capturing the [H] available when CH4 is inhibited in vivo. The effects of the phenolic compound phloroglucinol on CH4 production, [H] flows and subsequent responses in rumen fermentation and microbial community composition when methanogenesis is inhibited were investigated in cattle. Eight rumen fistulated Brahman steers were randomly allocated in two groups receiving chloroform as an antimethanogenic compound for 21 days. Following that period one group received chloroform + phloroglucinol for another 16 days, whilst the other group received only chloroform during the same period. The chloroform treatment resulted in a decrease in CH4 production and an increase in H2 expelled with a shift in rumen fermentation toward higher levels of propionate and formate and lower levels of acetate at day 21 of treatment. Bacterial operational taxonomic units (OTUs) assigned to Prevotella were promoted whilst Archaea and Synergistetes OTUs were decreased with the chloroform treatment as expected. The shift toward formate coincided with increases in Ruminococcus flavefaciens, Butyrivibrio fibrisolvens, and Methanobrevibacter ruminantium species. The addition of chloroform + phloroglucinol in the rumen resulted in a decrease of H2 expelled (g) per kg of DMI and moles of H2 expelled per mol of CH4 decreased compared with the chloroform only treated animals. A shift toward acetate and a decrease in formate were observed for the chloroform + phloroglucinol-treated animals at day 37. These changes in the rumen fermentation profile were accompanied by a relative increase of OTUs assigned to Coprococcus spp., which could suggest this genus is a significant contributor to the metabolism of this phenolic compound in the rumen. This study demonstrates for the first time in vivo that under methanogenesis inhibition, H2 gas accumulation can be decreased by redirecting [H] toward alternative sinks through the nutritional stimulation of specific microbial groups. This results in the generation of metabolites of value for the host while also helping to maintain a low H2 partial pressure in the methane-inhibited rumen. PMID:29051749

  6. Multicomponent synthesis of 2-imidazolines.

    PubMed

    Bon, Robin S; van Vliet, Bart; Sprenkels, Nanda E; Schmitz, Rob F; de Kanter, Frans J J; Stevens, Christian V; Swart, Marcel; Bickelhaupt, F Matthias; Groen, Marinus B; Orru, Romano V A

    2005-04-29

    [reaction: see text] A multicomponent reaction (MCR) between amines, aldehydes, and isocyanides bearing an acidic alpha-proton gives easy access to a diverse range of highly substituted 2-imidazolines. The limitations of the methodology seem to be determined by the reactivity of the isocyanide and by the steric bulk on the in situ generated imine rather than by the presence of additional functional groups on the imine. Less reactive isocyanides, for example p-nitrobenzyl isocyanide 25a, react successfully with amines and aldehydes, using a catalytic amount of silver(I) acetate. Some of the resulting p-nitrophenyl-substituted 2-imidazolines undergo air oxidation to the corresponding imidazoles. Differences in reactivity of the employed isocyanides are explained with use of DFT calculations. Difficult reactions with ketones instead of aldehydes as the oxo-compound in this MCR are promoted by silver(I) acetate as well.

  7. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification.

    PubMed

    Silva, Zelinda Isabel; Rebelo, Maria Helena; Silva, Manuela Manso; Alves, Ana Martins; Cabral, Maria da Conceição; Almeida, Ana Cristina; Aguiar, Fátima Rôxo; de Oliveira, Anabela Lopes; Nogueira, Ana Cruz; Pinhal, Hermínia Rodrigues; Aguiar, Pedro Manuel; Cardoso, Ana Sofia

    2012-01-01

    Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.

  8. Malva sylvestris Inhibits Inflammatory Response in Oral Human Cells. An In Vitro Infection Model

    PubMed Central

    Benso, Bruna; Rosalen, Pedro Luiz; Alencar, Severino Matias; Murata, Ramiro Mendonça

    2015-01-01

    The aim of this study was to investigate the in vitro anti-inflammatory activity of Malva sylvestris extract (MSE) and fractions in a co-culture model of cells infected by Aggregatibacter actinomycetemcomitans. In addition, we evaluated the phytochemical content in the extract and fractions of M. sylvestris and demonstrated that polyphenols were the most frequent group in all samples studied. An in vitro dual-chamber model to mimic the periodontal structure was developed using a monolayer of epithelial keratinocytes (OBA-9) and a subepithelial layer of fibroblasts (HGF-1). The invasive periodontopathogen A. actinomycetemcomitans (D7S-1) was applied to migrate through the cell layers and induce the synthesis of immune factors and cytokines in the host cells. In an attempt to analyze the antimicrobial properties of MSE and fractions, a susceptibility test was carried out. The extract (MIC 175 μg/mL, MBC 500μg/mL) and chloroform fraction (MIC 150 μg/mL, MBC 250 μg/mL) were found to have inhibitory activity. The extract and all fractions were assessed using a cytotoxicity test and results showed that concentrations under 100 μg/mL did not significantly reduce cell viability compared to the control group (p > 0.05, viability > 90%). In order to analyze the inflammatory response, transcriptional factors and cytokines were quantified in the supernatant released from the cells. The chloroform fraction was the most effective in reducing the bacterial colonization (p< 0.05) and controlling inflammatory mediators, and promoted the down-regulation of genes including IL-1beta, IL-6, IL-10, CD14, PTGS, MMP-1 and FOS as well as the reduction of the IL-1beta, IL-6, IL-8 and GM-CSF protein levels (p< 0.05). Malva sylvestris and its chloroform fraction minimized the A. actinomycetemcomitans infection and inflammation processes in oral human cells by a putative pathway that involves important cytokines and receptors. Therefore, this natural product may be considered as a successful dual anti-inflammatory–antimicrobial candidate. PMID:26479870

  9. The interaction of insulin with phospholipids

    PubMed Central

    Perry, M. C.; Tampion, W.; Lucy, J. A.

    1971-01-01

    1. A simple two-phase chloroform–aqueous buffer system was used to investigate the interaction of insulin with phospholipids and other amphipathic substances. 2. The distribution of 125I-labelled insulin in this system was determined after incubation at 37°C. Phosphatidic acid, dicetylphosphoric acid and, to a lesser extent, phosphatidylcholine and cetyltrimethylammonium bromide solubilized 125I-labelled insulin in the chloroform phase, indicating the formation of chloroform-soluble insulin–phospholipid or insulin–amphipath complexes. Phosphatidylethanolamine, sphingomyelin, cholesterol, stearylamine and Triton X-100 were without effect. 3. Formation of insulin–phospholipid complex was confirmed by paper chromatography. 4. The two-phase system was adapted to act as a simple functional system with which to investigate possible effects of insulin on the structural and functional properties of phospholipid micelles in chloroform, by using the distribution of [14C]glucose between the two phases as a monitor of phospholipid–insulin interactions. The ability of phospholipids to solubilize [14C]glucose in chloroform increased in the order phosphatidylcholine

  10. Antimutagenic, antigenotoxic and antioxidant activities of Acacia salicina extracts (ASE) and modulation of cell gene expression by H2O2 and ASE treatment.

    PubMed

    Bouhlel, Ines; Valenti, Kita; Kilani, Soumaya; Skandrani, Ines; Ben Sghaier, Mohamed; Mariotte, Anne-Marie; Dijoux-Franca, Marie-Genevieve; Ghedira, Kamel; Hininger-Favier, Isabelle; Laporte, François; Chekir-Ghedira, Leila

    2008-08-01

    The total oligomers flavonoids (TOF), chloroform, petroleum ether and aqueous extracts from Acacia salicina, were investigated for the antioxidative, cytotoxic, antimutagenic and antigenotoxic activities. The viability of K562 cells were affected by all extracts after 48 h exposure. Our results showed that A. salicina extracts have antigenotoxic and/or antimutagenic activities. TOF and chloroform extracts exhibit antioxidant properties, expressed by the capacity of these extracts to inhibit xanthine oxidase activity. To further explore the mechanism of action of A. salicina extracts, we characterized expression profiles of genes involved in antioxidant protection and DNA repair in the human lymphoblastic cell line K562 exposed to H2O2. Transcription of several genes related to the thioredoxin antioxidant system and to the DNA base-excision repair pathway was up-regulated after incubation with chloroform, TOF and petroleum ether extracts. Moreover genes involved in the nucleotide-excision repair pathway and genes coding for catalase and Mn-superoxide-dismutase, two important antioxidant enzymes, were induced after incubation with the chloroform extract. Taken together, these observations provide evidence that the chloroform and TOF extracts of A. salicina leaves contain bioactive compounds that are able to protect cells against the consequences of an oxidative stress.

  11. Effect of casting solvent on crystallinity of ondansetron in transdermal films.

    PubMed

    Pattnaik, Satyanarayan; Swain, Kalpana; Mallick, Subrata; Lin, Zhiqun

    2011-03-15

    The purpose of the present investigation is to assess the influence of casting solvent on crystallinity of ondansetron hydrochloride in transdermal polymeric matrix films fabricated using povidone and ethyl cellulose as matrix forming polymers. Various casting solvents like chloroform (CHL), dichloromethane (DCM), methanol (MET); and mixture of chloroform and ethanol (C-ETH) were used for fabrication of the transdermal films. Analytical tools like scanning electron microscopy (SEM), X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), etc. were utilized to characterize the crystalline state of ondansetron in the film. Recrystallisation was observed in all the transdermal films fabricated using the casting solvents other than chloroform. Long thin slab-looking, long wire-like or spherulite-looking crystals with beautiful impinged boundaries were observed in SEM. Moreover, XRD revealed no crystalline peaks of ondansetron hydrochloride in the transdermal films prepared using chloroform as casting solvent. The significantly decreased intensity and sharpness of the DSC endothermic peaks corresponding to the melting point of ondansetron in the formulation (specifically in CHL) indicated partial dissolution of ondansetron crystals in the polymeric films. The employed analytical tools suggested chloroform as a preferred casting solvent with minimum or practically absence of recrystallization indicating a relatively amorphous state of ondansetron in transdermal films. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Comparison of a modified phenol/chloroform and commercial-kit methods for extracting DNA from horse fecal material.

    PubMed

    Janabi, Ali H D; Kerkhof, Lee J; McGuinness, Lora R; Biddle, Amy S; McKeever, Kenneth H

    2016-10-01

    There are many choices for methods of extracting bacterial DNA for Next Generation Sequencing (NGS) from fecal samples. Here, we compare our modifications of a phenol/chloroform extraction method plus an inhibitor removal solution (C3) (ph/Chl+C3) to the PowerFecal® DNA Isolation Kit (MoBio-K). DNA quality and quantity coupled to NGS results were used to assess differences in relative abundance, Shannon diversity index, unique species, and principle coordinate analysis (PCoA) between biological replicates. Six replicate samples, taken from a single ball of horse feces manually collected from the rectum, were subjected to each extraction method. The Ph/Chl+C3 method produced 100× higher DNA yields with less shearing than the MoBio-K method. To assess the methods, the two method samples were sent for sequencing of the bacterial V3-V4 region of 16S rRNA gene using the Illumina MiSeq platform. The relative abundance of Bacteroidetes was greater and there were more unique species assigned to this group in MoBio-K than in Ph/Chl+C3 (P<0.05). In contrast, Firmicutes had greater relative abundance and more unique species in Ph/Chl+C3 extracts than in MoBio-K (P<0.05). The other major bacterial phyla were equally abundant in samples using both extraction methods. Alpha diversity and Shannon Weaver indices showed greater evenness of bacterial distribution in Ph/Chl+C3 compared with MoBio-K (P<0.05), but there was no difference in the OTU richness. Principle coordinate analysis (PCoA) indicated a distinct separation between the two methods (P<0.05) and tighter clustering (less variability) in Ph/Chl+C3 than in MoBio-K. These results suggest that the Ph/Chl+C3 may be preferred for research to identify specific Firmicutes taxa such as Clostridium, and Bacillus. However; MoBio-K may be a better choice for projects focusing on Bacteroidetes abundance. The Ph/Chl+C3 method required less time, but has some safety concerns associated with exposure and disposal of phenol and chloroform. While the MoBio-K may be better choice for researchers with less access to safety equipment like a fume hood. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The Role of Tim50 in Chemoresistance and Oncogenesis of Breast Cancer

    DTIC Science & Technology

    2011-02-01

    digested with Hind III and Kpn I and ligated into the pGL3 vector (Promega, Madison WI) upstream of the luciferase reporter gene. This construct was...expressing vector (HC5) or mutant p53-R273H (3 x 106) were cross-linked with 1% formaldehyde for 15 min and the reaction stopped by addition of glycine to...10 mg/ml) and treated with proteinase K (20 mg/ml). Proteins were removed by phenol – chloroform extraction and the DNA isolated by ethanol

  14. Mechanism of Action of Ribavirin: An Antiviral Drug of Military Importance,

    DTIC Science & Technology

    1980-06-01

    was suspended in 120 mM Tris, 60 mM sodium ace- tate, 3 mM EDTA (pH 7.4) plus 10% glycerol and 0.1% bromophenol blue. Following electrophoresis, gels ... polyacryl - amide gels . J. Mol. Biol. 26:373-387. 2. Browne, M. J. 1979. Mechanism and specificity of action of ri- bavirin. Antimicrob. Agents...of 10 mM EDTA, 1% sodi- um dodecylsulfate (SDS) and 0.4 N sodium acetate (pH 5.2) then ex- tracted twice with a mixture of 50% phenol, 49% chloroform

  15. [Lipase and phospholipase C from Staphylococcus aureus of different origin. I. Determination and occurrence (author's transl)].

    PubMed

    Berete, Y J; Schaeg, W; Brückler, J; Blobel, H

    1980-11-01

    Lipase and phospholipase C from Staphylococcus aureus of different origin were demonstrated qualitatively by agar diffusion on tributyrin- and lecithin agar. On test media with either 0,3% Na-azide or 0,3% KCN lipase-activity was not inhibited, phospholipase C, on the other hand, completely blocked (Table 1, Fig. 2). In this manner a tentative differentiation was possible between lipase and phospholipase C. For the quantitative determination of lipase the hydrolysis of p-nitrophenyl palmitate proved to be most useful (Fig. 1). S. aureus-cultures of human origin produced more often and more actively lipase and phospholipase C than those from cattle (Table 2).

  16. The n-hexane and chloroform fractions of Piper betle L. trigger different arms of immune responses in BALB/c mice and exhibit antifilarial activity against human lymphatic filarid Brugia malayi.

    PubMed

    Singh, Meghna; Shakya, Shilpy; Soni, Vishal Kumar; Dangi, Anil; Kumar, Nikhil; Bhattacharya, Shailja-Misra

    2009-06-01

    Modulation of immune functions by using herbal plants and their products has become fundamental regime of therapeutic approach. Piper betle Linn. (Piperaceae) is a widely distributed plant in the tropical and subtropical regions of the world and has been attributed as traditional herbal remedy for many diseases. We have recently reported the antifilarial and antileishmanial efficacy in the leaf extract of Bangla Mahoba landrace of P. betle which is a female plant. The present report describes the in vivo immunomodulatory efficacy of the crude methanolic extract and its n-hexane, chloroform, n-butanol fractions of the female plant at various dose levels ranging between 0.3 and 500 mg/kg in BALB/c. Attempts were also made to observe antifilarial activity of the active extracts and correlate it with the antigen specific immune responses in another rodent Mastomys coucha infected with human lymphatic filarial parasite Brugia malayi. The crude methanol extract and n-hexane fraction were found to potentiate significant (p<0.001) enhancement of both humoral (plaque forming cells, hemagglutination titre) as well as cell-mediated (lymphoproliferation, macrophage activation, delayed type hypersensitivity) immune responses in mice. The flow cytometric analysis of splenocytes of treated mice indicated enhanced population of T-cells (CD4(+), CD8(+)) and B-cells (CD19(+)). The n-hexane fraction (3 mg/kg) was found to induce biased type 2 cytokine response as revealed by increased IL-4(+) and decreased IFN-gamma(+) T-cell population while the chloroform fraction (10 mg/kg) produced a predominant type 1 cytokines. Crude methanolic extract (100 mg/kg) demonstrated a mixed type 1 and type 2 cytokine responses thus suggesting a remarkable immunomodulatory property in this plant. The induction of differential T-helper cell immune response appears ideal to overcome immunosuppression as observed in case of lymphatic, filarial Brugia malayi infection which may also be extended to other infections as well.

  17. The early steps of chloroform anaesthesia in Turkey during the Ottoman Empire in the 19th century.

    PubMed

    Ulman, Yesim Isil

    2005-04-01

    The aim of this study was to research the pioneering steps for the employment of chloroform in Turkey in comparison with the developments in the West i.e. in the United States and in Europe. The development of anaesthesiology in the West started in the first half of the 19th century. As an anaesthetic substance, ether was first employed in a medical operation by R. Liston in December 1846. But taking into consideration of its bronchially irritant effect, British gynaecologist Dr. J.Y. Simpson preferred to utilize chloroform in obstetrical operations in 1847. The paper aims at shedding light on the earlier steps for modern anaesthesiology in Turkey in that sense. The survey used evaluation of archival documents, first hand-original sources such as the annual medical reports of the Medical School, books, official journals, and newspapers of the time, and also secondary sources concerned with the subject. In view of the findings of the survey, chloroform, as an anaesthetic material, began to be administered surgically in Turkey much earlier than it was already known. It was experienced and used in operations at the surgical clinic of the Imperial School of Medicine at the Capital city, Istanbul in 1848. The Crimean War (1853-1855) induced to the prevalent surgical use of chloroform in Istanbul on the soldiers back from the front. In other words, it was evidenced that surgeons started to make use of this anaesthetic substance in the Ottoman Empire, shortly after it was put into medical practice in Europe. This study deals with that phenomenal progress of chloroform anaesthesia in the medical history in Turkey during the second half of the 19th century.

  18. Laboratory Evaluations of the Fractions Efficacy of Annona senegalensis (Annonaceae) Leaf Extract on Immature Stage Development of Malarial and Filarial Mosquito Vectors

    PubMed Central

    Lame, Younoussa; Nukenine, Elias Nchiwan; Pierre, Danga Yinyang Simon; Elijah, Ajaegbu Eze; Esimone, Charles Okechukwu

    2015-01-01

    Background: Within the framework to control mosquitoes, ovicidal, larvicidal and pupicidal activity of Annona senegalensis leaf extract and its 4 fractions against Anopheles gambiae and Culex quinquefasciatus were evaluated in the laboratory conditions. Methods: Ovicidal test was performed by submitting at least 100 eggs of mosquitoes to 125, 250, 500, 1000 and 2000 ppm concentrations, while larvicidal and pupicidal effects were assessed by submitting 25 larvae or pupae to the concentrations of 2500, 1250, 625 and 312.5 ppm of plant extract or fractions of A. senegalensis. Results: The eggs of An. gambiae were most affected by N-hexane (0.00% hatchability) and chloroform (03.67% hatchability) fractions compared to Cx. quinquefasciatus where at least 25 % hatchability were recorded at 2000 ppm. For larvicidal test, N-hexane (LC50= 298.8 ppm) and chloroform (LC50= 418.3 ppm) fractions were more effective than other fractions on An. gambiae larvae while, a moderate effectiveness was also observed with N-hexane (LC50= 2087.6 ppm), chloroform (LC50= 9010.1 ppm) fractions on Cx. quinquefasciatus larvae. The highest mortality percent of the pupae were also recorded with N-hexane and chloroform fractions on An. gambiae at 2500 ppm. As for Cx. quinquefasciatus only 50 % and 36 % mortality were recorded with N-hexane and chloroform fractions respectively. Conclusion: The extract of A. senegalensis was toxic on immature stage of mosquito species tested. By splitting methanolic crude extract, only N-hexane and chloroform fractions were revealed to possess a mosquitocidal effects and could be considered and utilized for future immature mosquito vectors control. PMID:26623434

  19. Bilateral Olfactory Mucosa Damage Induces the Disappearance of Olfactory Glomerulus and Reduces the Expression of Extrasynaptic α5GABAARs in the Hippocampus in Early Postnatal Sprague Dawley Rats.

    PubMed

    Zheng, Xiaomin; Liang, Liang; Hei, Changchun; Yang, Wenjuan; Zhang, Tingyuan; Wu, Kai; Qin, Yi; Chang, Qing

    2018-04-17

    Chloroform-induced olfactory mucosal degeneration has been reported in adult rats following gavage. We used fixed-point chloroform infusions on different postnatal days (PNDs) to investigate the effects of early olfactory bilateral deprivation on the main olfactory bulbs in Sprague Dawley rats. The experimental groups included rats infused with chloroform (5 μl) or saline (sham, 5 μl) on PNDs 3 and 8, and rats not receiving infusions (control) (n = 6 in all groups). Rats receiving chloroform on PND 3 showed significant hypoevolutism when compared to those in other groups (P < 0.05). There was a complete disappearance and a significant reduction in the size of olfactory glomeruli in the PND 3 and 8 groups, respectively, when compared to the respective sham groups. Rats receiving chloroform on PND 3 had significant memory impairment (P < 0.01) and increased levels of learned helplessness (P < 0.05), as measured using the Morris water maze and tail suspension tests, respectively. GABA A receptor alpha5 subunit (α5GABA A R) expression in hippocampal neurons was significantly lower in rats receiving chloroform on PND 3 than in rats in other groups (P < 0.01), as measured using immunohistochemistry and polymerase chain reaction. There was thus a critical period for the preservation of regenerative ability in olfactory receptor neurons, during which damage and olfactory deprivation led to altered rhinencephalon structure and disappearance of olfactory glomeruli, which induced hypoevolutism. Olfactory deprivation after the critical period had no significant effect on olfactory receptor neuron regeneration, leading to reduced developmental and behavioral effects in Sprague Dawley rats.

  20. Infrared spectrum, NBO, HOMO-LUMO, MEP and molecular docking studies (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one.

    PubMed

    Panicker, C Yohannan; Varghese, Hema Tresa; Nayak, Prakash S; Narayana, B; Sarojini, B K; Fun, H K; War, Javeed Ahamad; Srivastava, S K; Van Alsenoy, C

    2015-09-05

    FT-IR spectrum of (2E)-3-(3-nitrophenyl)-1-[4-piperidin-1-yl]prop-2-en-1-one was recorded and analyzed. The vibrational wavenumbers were computed using HF and DFT quantum chemical calculations. The data obtained from wavenumber calculations are used to assign IR bands. Potential energy distribution was done using GAR2PED software. The geometrical parameters of the title compound are in agreement with the XRD results. NBO analysis, HOMO-LUMO, first and second hyperpolarizability and molecular electrostatic potential results are also reported. The possible electrophile attacking sites of the title molecule is identified using MEP surface plot study. Molecular docking results predicted the anti-leishmanic activity for the compound. Copyright © 2015. Published by Elsevier B.V.

  1. π-stacking and C-X...D (X = H, NO2; D = O, π) interactions in the crystal network of both C-H...N and π-stacked dimers of 1,2-bis(4-bromophenyl)-1H-benzimidazole and 2-(4-bromophenyl)-1-(4-nitrophenyl)-1H-benzimidazole.

    PubMed

    González-Padilla, Jazmin E; Rosales-Hernández, Martha C; Padilla-Martínez, Itzia I; García-Báez, Efren V; Rojas-Lima, Susana; Salazar-Pereda, Veronica

    2014-01-01

    Molecules of 1,2-bis(4-bromophenyl)-1H-benzimidazole, C19H12Br2N2, (I), and 2-(4-bromophenyl)-1-(4-nitrophenyl)-1H-benzimidazole, C19H12BrN3O2, (II), are arranged in dimeric units through C-H...N and parallel-displaced π-stacking interactions favoured by the appropriate disposition of N- and C-bonded phenyl rings with respect to the mean benzimidazole plane. The molecular packing of the dimers of (I) and (II) arises by the concurrence of a diverse set of weak intermolecular C-X...D (X = H, NO2; D = O, π) interactions.

  2. Site specific ligand substitution in cubane-type Mo3FeS(4)(4+) clusters: kinetics and mechanism of reaction and isolation of mixed ligand Cl/SPh complexes.

    PubMed

    Algarra, Andrés G; Basallote, Manuel G; Fernandez-Trujillo, M J; Llusar, Rosa; Pino-Chamorro, Jose A; Sorribes, Ivan; Vicent, Cristian

    2010-04-21

    The synthesis, crystal structure and solution characterization of the cubane-type [Mo(3)(FeCl)S(4)(dmpe)(3)Cl(3)] (1) (dmpe = 1,2-bis(dimethylphophane-ethane)) cluster are reported and the ligand substitution processes of chloride by thiophenolate investigated. The kinetics and the intimate mechanism of these substitutions reveal that compound 1 undergoes a number of Fe and Mo site specific ligand substitution reactions in acetonitrile solutions. In particular, PhS(-) coordination at the tetrahedral Fe site proceeds in a single resolved kinetic step whereas such substitutions at the Mo sites proceed more slowly. The effect of the presence of acids in the reaction media is also investigated and reveals that an acid excess hinders substitution reactions both at the Fe and Mo sites; however, an acid-promoted solvolysis of the Fe-Cl bonds is observed. Electrospray ionization (ESI) and tandem (ESI-MS/MS) mass spectrometry allow the identification of all the reaction intermediates proposed on the basis of stopped-flow measurements. The distinctive site specific reactivity made it possible to isolate two new clusters of the Mo(3)FeS(4)(4+) family featuring mixed chlorine/thiophenolate ligands, namely Mo(3)S(4)(FeSPh)(dmpe)(3)Cl(3) (2) and [Mo(3)S(4)(FeSPh)(dmpe)(3)(SPh)(3)] (3). A detailed computational study has also been carried out to understand the details of the mechanism of substitution at the M-Cl (M = Mo and Fe) bonds as well as the solvolysis at the Fe-Cl sites, with particular emphasis on the role of acids on the substitution process. The results of the calculations are in agreement with the experimental observations, thus justifying the non-existence of an accelerating effect of acids on the thiophenolate substitution reaction, which differs from previous proposals for the Fe(4)S(4) and MoFe(3)S(4) clusters and some related compounds.

  3. IRIS Assessment Plan for Chloroform (Scoping and Problem Formulation Materials)

    EPA Science Inventory

    In September 2017, EPA released the draft IRIS Assessment Plan (IAP) for Chloroform for public review and comment. ...

  4. IRIS Assessment Plan for Chloroform (Scoping and Problem Formulation Materials)

    EPA Science Inventory

    In September 2017, EPA released the draft IRIS Assessment Plan (IAP) for Chloroform for public review and comment. Th...

  5. Did the use of chloroform by Queen Victoria influence its acceptance in obstetric practice?

    PubMed

    Connor, H; Connor, T

    1996-10-01

    Examination of contemporaneous publications suggests that the use of chloroform by Queen Victoria in 1853 did not result in the major breakthrough in the acceptability of obstetric anaesthesia with which the event has been credited by some later writers.

  6. Temperature Dependence of Densities and Excess Molar Volumes of the Ternary Mixture (1-Butanol + Chloroform + Benzene) and its Binary Constituents (1-Butanol + Chloroform and 1-Butanol + Benzene)

    NASA Astrophysics Data System (ADS)

    Smiljanić, Jelena D.; Kijevčanin, Mirjana Lj.; Djordjević, Bojan D.; Grozdanić, Dušan K.; Šerbanović, Slobodan P.

    2008-04-01

    Densities ρ of the 1-butanol + chloroform + benzene ternary mixture and the 1-butanol + chloroform and 1-butanol + benzene binaries have been measured at six temperatures (288.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure, using an oscillating U-tube densimeter. From these densities, excess molar volumes ( V E) were calculated and fitted to the Redlich Kister equation for all binary mixtures and to the Nagata and Tamura equation for the ternary system. The Radojković et al. equation has been used to predict excess molar volumes of the ternary mixtures. Also, V E data of the binary systems were correlated by the van der Waals (vdW1) and Twu Coon Bluck Tilton (TCBT) mixing rules coupled with the Peng Robinson Stryjek Vera (PRSV) equation of state. The prediction and correlation of V E data for the ternary system were performed by the same models.

  7. Analysis of phytochemical constituents of Eucalyptus citriodora L. responsible for antifungal activity against post-harvest fungi.

    PubMed

    Javed, S; Shoaib, A; Mahmood, Z; Mushtaq, S; Iftikhar, S

    2012-01-01

    In vitro antifungal activity and phytochemical constituents of essential oil, aqueous, methanol and chloroform extract of Eucalyptus citriodora Hook leaves were investigated. A qualitative phytochemical analysis was performed for the detection of alkaloids, cardiac glycosides, flavonoids, saponins, sterols, tannins and phenols. Methanolic extract holds all identified biochemical constituents except for the tannin. While these biochemical constituents were found to be absent in essential oil, aqueous and chloroform extracts with the exception of sterols, cardiac glycosides and phenols in essential oil and sterols and phenols in aqueous and chloroform extracts. Antimycotic activity of four fractions of E. citriodora was investigated through agar-well diffusion method against four post-harvest fungi, namely, Aspergillus flavus Link ex Gray, Aspergillus fumigatus Fres., Aspergillus nidulans Eidam ex Win and Aspergillus terreus Thom. The results revealed maximum fungal growth inhibition by methanolic extract (14.5%) followed by essential oil (12.9%), chloroform extract (10.15%) and aqueous extract (10%).

  8. [Early contributions from Erlangen to the theory and practice of ether and chloroform anesthesia. 1. Heyfelder's clinical trial with ether and chloroform].

    PubMed

    Hintzenstern, U v; Schwarz, W

    1996-02-01

    The era of modern anaesthesia in Germany began on January 24th, 1847. This day, professor in ordinary Johann Ferdinand Heyfelder anaesthetized a patient with sulphuric ether in the clinic of surgery and ophthalmology of the University of Erlangen. By March 17th, 1847, Heyfelder had performed 121 surgical procedures under ether. The operations in majority were teeth-extractions, and a few more complex operations such as the treatment of a harelip or of lip cancer or the resection of the shoulder joint. Heyfelder described in detail 108 of these inhalations in a little book entitled The experiments with sulphuric ether. This monograph published in March, 1847, represents one of the first complete dissertations on sulphuric ether in the German literature. In a special chapter he analyzed the development of various physiological and psychological parameters during etherization. Heyfelder also examined blood and urine of some etherized patients and reported that he did not find any important or specific alterations. In 1847, Heyfelder was probably the first to apply salt-ether in man. After 4 administrations he concluded that salt ether acted more quickly but shorter than sulphuric ether. Advantageous were its application without problems and ease of induction. Disadvantageous were its high volatility, its price and the difficulty of getting it in a pure form. From December, 1847, on Heyfelder started to use chloroform. He was now able to perform more major operations, for example, the total resection of the hip-joint. In his book The experiments with sulphuric ether, salt ether, and chloroform he describes a great number of anaesthetic administrations using these 3 agents. In his summary Heyfelder concluded, that chloroform was undoubtly superior to sulphuric ether mainly because it was a quicker acting and longer lasting agent and leads to deeper narcosis. Moreover its application was much easier for it needed no special apparatus. However, because of its great anaesthetic potency, Heyfelder particularly demanded great caution in the application of chloroform. Explicitely he expected an assistant for chloroformizations, whose only duty was to supervise the inhalations and the patient--a forerunner of the modern specialized anaesthesiologist.

  9. Molecular dynamics study of a heteroditopic-calix[4]diquinone-assisted transfer of KCl and dopamine through a water-chloroform liquid-liquid interface.

    PubMed

    Santos, Sérgio M; Costa, Paulo J; Lankshear, Michael D; Beer, Paul D; Félix, Vítor

    2010-09-02

    The ability of two heteroditopic calix[4]diquinone receptors to transport a KCl ion-pair and a dopamine zwitterion through a water-chloroform interface was investigated via molecular dynamics (MD) simulations. Gas-phase conformational analysis has been carried on KCl and dopamine receptor binding associations and the lowest energy structures found in both cases show that the recognition of KCl and dopamine zwitterion occurs through multiple and cooperative N-H...anion and O...cation bonding interactions, with the receptor adopting equivalent folded conformations stabilized by pi-stacking interactions. The unconstrained MD simulations performed on KCl and dopamine complexes inserted in either the chloroform or water phase revealed that receptors are preferentially located at the interface with the hydrophobic tert-butyl groups of the calix[4]diquinone moiety immersed in the chloroform bulk while the polar anion binding cavity is directed toward the water phase. When the KCl complex is placed in chloroform, the release of the ion-pair occurs only after the first contact with the water interface, being a nonsimultaneous event, with the chloride anion leaving the receptor before the potassium cation. The dopamine, via the -NH(3)(+) binding entity, remains bound to the receptor during the entire time of the MD simulation (10 ns). In contrast, when both complexes were inserted in the water bulk, the full release of KCl and dopamine are fast events. The potentials of mean force (PMFs), associated with the migration of the complexes from chloroform to water through the interface, were calculated from steered molecular dynamics (SMD) simulations. The PMFs for the free KCl and zwitterionic dopamine migrations were also obtained for comparison purposes. The transport of KCl from water to chloroform (the reverse path) mediated by the receptor has a free energy barrier estimated in 6.50 kcal mol(-1), which is 3.0 kcal mol(-1) smaller than that found for the free KCl. The transport of dopamine complex along the reverse path is characterized by downhill energy profile, with a small free energy barrier of 6.56 kcal mol(-1).

  10. Plastic Encapsulation of Stabilized Escherichia coli and Pseudomonas putida

    PubMed Central

    Manzanera, M.; Vilchez, S.; Tunnacliffe, A.

    2004-01-01

    Escherichia coli and Pseudomonas putida dried in hydroxyectoine or trehalose are shown to be highly resistant to the organic solvents chloroform and acetone, and consequently, they can be encapsulated in a viable form in solid plastic materials. Bacteria are recovered by rehydration after physical disruption of the plastic. P. putida incorporated into a plastic coating of maize seeds was shown to colonize roots efficiently after germination. PMID:15128579

  11. Determination of boldine in plasma by high-performance liquid chromatography.

    PubMed

    Speisky, H; Cassels, B K; Nieto, S; Valenzuela, A; Nuñez-Vergara, L J

    1993-02-26

    A sensitive method for the determination of boldine in blood plasma is described. The procedure involves a direct pH-buffered chloroform extraction of boldine from blood plasma, followed by its assay under isocratic conditions by HPLC with UV detection. The extraction recovery is excellent, and sensitivity and precision of the method are very high, when applied to plasma samples containing pharmacologically relevant concentrations of boldine.

  12. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.

    PubMed

    Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio

    2011-02-01

    The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.

  13. Phytochemical analysis of Gymnema sylvestre and evaluation of its antimicrobial activity.

    PubMed

    Chodisetti, Bhuvaneswari; Rao, Kiranmayee; Giri, Archana

    2013-01-01

    Gymnema sylvestre (CS 149), known to be a rich source of saponins and other valuable phytochemicals, has been analysed for antimicrobial activity. The chloroform extracts of aerial and root parts of G. sylvestre exhibited higher antimicrobial activity as compared to diethyl ether and acetone. The root extracts of chloroform have shown competitive minimum inhibitory concentration and minimum bactericidal concentration values in the range of 0.04-1.28 mg mL(-1) and 0.08-2.56 mg/mL, respectively, towards the pathogens. The GC-MS analysis of chloroform extracts has shown the presence of compounds like eicosane, oleic acid, stigmasterol and vitamin E.

  14. Calculated Third Order Rate Constants for Interpreting the Mechanisms of Hydrolyses of Chloroformates, Carboxylic Acid Halides, Sulfonyl Chlorides and Phosphorochloridates

    PubMed Central

    Bentley, T. William

    2015-01-01

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels—an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride). PMID:26006228

  15. Calculated third order rate constants for interpreting the mechanisms of hydrolyses of chloroformates, carboxylic Acid halides, sulfonyl chlorides and phosphorochloridates.

    PubMed

    Bentley, T William

    2015-05-08

    Hydrolyses of acid derivatives (e.g., carboxylic acid chlorides and fluorides, fluoro- and chloroformates, sulfonyl chlorides, phosphorochloridates, anhydrides) exhibit pseudo-first order kinetics. Reaction mechanisms vary from those involving a cationic intermediate (SN1) to concerted SN2 processes, and further to third order reactions, in which one solvent molecule acts as the attacking nucleophile and a second molecule acts as a general base catalyst. A unified framework is discussed, in which there are two reaction channels-an SN1-SN2 spectrum and an SN2-SN3 spectrum. Third order rate constants (k3) are calculated for solvolytic reactions in a wide range of compositions of acetone-water mixtures, and are shown to be either approximately constant or correlated with the Grunwald-Winstein Y parameter. These data and kinetic solvent isotope effects, provide the experimental evidence for the SN2-SN3 spectrum (e.g., for chloro- and fluoroformates, chloroacetyl chloride, p-nitrobenzoyl p-toluenesulfonate, sulfonyl chlorides). Deviations from linearity lead to U- or V-shaped plots, which assist in the identification of the point at which the reaction channel changes from SN2-SN3 to SN1-SN2 (e.g., for benzoyl chloride).

  16. A novel α-galactosidase from the thermophilic probiotic Bacillus coagulans with remarkable protease-resistance and high hydrolytic activity

    PubMed Central

    Zhao, Ruili; Zhao, Rui; Tu, Yishuai; Zhang, Xiaoming; Deng, Liping

    2018-01-01

    A novel α-galactosidase of glycoside hydrolase family 36 was cloned from Bacillus coagulans, overexpressed in Escherichia coli, and characterized. The purified enzyme Aga-BC7050 was 85 kDa according to SDS-PAGE and 168 kDa according to gel filtration, indicating that its native structure is a dimer. With p-nitrophenyl-α-d- galactopyranoside (pNPGal) as the substrate, optimal temperature and pH were 55 °C and 6.0, respectively. At 60 °C for 30 min, it retained > 50% of its activity. It was stable at pH 5.0–10.0, and showed remarkable resistance to proteinase K, subtilisin A, α-chymotrypsin, and trypsin. Its activity was not inhibited by glucose, sucrose, xylose, or fructose, but was slightly inhibited at galactose concentrations up to 100 mM. Aga-BC7050 was highly active toward pNPGal, melibiose, raffinose, and stachyose. It completely hydrolyzed melibiose, raffinose, and stachyose in < 30 min. These characteristics suggest that Aga-BC7050 could be used in feed and food industries and sugar processing. PMID:29738566

  17. Bioavailability of methyl parathion adsorbed on clay minerals and iron oxide.

    PubMed

    Cai, Peng; He, Xiaomin; Xue, Aifang; Chen, Hao; Huang, Qiaoyun; Yu, Jun; Rong, Xinming; Liang, Wei

    2011-01-30

    Adsorption, desorption and degradation by Pseudomonas putida of methyl parathion (O,O-dimethyl O-p-nitrophenyl phosphorothioate) on montmorillonite, kaolinite and goethite were studied. Metabolic activities of methyl parathion-degrading bacteria P. putida in the presence of minerals were also monitored by microcalorimetry to determine the degradation mechanism of methyl parathion. Montmorillonite presented higher adsorption capacity and affinity for methyl parathion than kaolinite and goethite. The percentage of degradation of methyl parathion adsorbed on minerals by P. putida was in the order of montmorillonite>kaolinite>goethite. The presence of minerals inhibited the exponential growth and the metabolic activity of P. putida. Among the examined minerals, goethite exhibited the greatest inhibitory effect on bacterial activity, while montmorillonite was the least depressing. The biodegradation of adsorbed methyl parathion by P. putida is apparently not controlled by the adsorption affinity of methyl parathion on minerals and may be mainly governed by the activity of the methyl parathion-degrading bacteria. The information obtained in this study is of fundamental significance for the understanding of the behavior of methyl parathion in soil environments. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Behavior of soluble and immobilized acid phosphatase in hydro-organic media.

    PubMed

    Wan, H; Horvath, C

    1975-11-20

    The hydrolysis of p-nitrophenyl phosphate by wheat germ acid phosphatase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) has been investigated in mixtures of aqueous buffers with acetone, dioxane and acetonitrile. The enzyme was either in free solution or immobilized on a pellicular support which consisted of a porous carbonaceous layer on solid glass beads. The highest enzyme activity was obtained in acetone and acetonitrile mixed with citrate buffer over a wide range of organic solvent concentration. In 50% (v/v) acetone both V and Km of the immobilized enzyme were about half of the values in the neat aqueous buffer, but the Ki for inorganic phosphate was unchanged. In 50% (v/v) mixtures of various solvents and citrate buffers of different pH, the enzymic activity was found to depend on the pH of the aqueous buffer component rather than the pH of the hydro-organic mixture as measured with the glass-calomel electrode. The relatively high rates of p-nitrophenol liberation in the presence of glucose even at high organic solvent concentrations suggest that transphosphorylation is facilitated at low water activity.

  19. Systematic Review Protocol for the IRIS Chloroform Assessment (Inhalation) (Preliminary Assessment Materials)

    EPA Science Inventory

    In January 2018, EPA released the Systematic Review Protocol for the IRIS Chloroform Assessment (Inhalation). As part of developing a draft IRIS assessment, EPA presents a methods document, referred to as the protocol, for conducting a chemical-specific systematic revie...

  20. PHYSIOLOGICALLY BASED PHARMACOKINEITC (PBPK) MODELING OF METABOLIC INHIBITION FOR INTERACTION BETWEEN TRICHLOROETHYLENE AND CHLOROFORM

    EPA Science Inventory

    Trichloroethylene (TCE) and chloroform (CHCl3) are two of the most common environmental contaminants found in water. PBPK models have been increasingly used to predict target dose in internal tissues from available environmental exposure concentrations. A closed inhalation (or g...

  1. Factors associated with sources, transport, and fate of chloroform and three other trihalomethanes in untreated groundwater used for drinking water

    USGS Publications Warehouse

    Carter, Janet M.; Moran, Michael J.; Zogorski, John S.; Price, Curtis V.

    2012-01-01

    Multiple lines of evidence for indicating factors associated with the sources, transport, and fate of chloroform and three other trihalomethanes (THMs) in untreated groundwater were revealed by evaluating low-level analytical results and logistic regression results for THMs. Samples of untreated groundwater from wells used for drinking water were collected from 1996-2007 from 2492 wells across the United States and analyzed for chloroform, bromodichloromethane, dibromochloromethane, and bromoform by a low-level analytical method implemented in April 1996. Using an assessment level of 0.02 μg/L, chloroform was detected in 36.5% of public-well samples and 17.6% of domestic-well samples, with most concentrations less than 1 μg/L. Brominated THMs occurred less frequently than chloroform but more frequently in public-well samples than domestic-well samples. For both public and domestic wells, THMs occurred most frequently in urban areas. Logistic regression analyses showed that the occurrence of THMs was related to nonpoint sources such as urban land use and to point sources like septic systems. The frequent occurrence and concentration distribution pattern of THMs, as well as their frequent co-occurrence with other organic compounds and nitrate, all known to have anthropogenic sources, and the positive associations between THM occurrence and dissolved oxygen and recharge indicate the recycling of water that contains THMs and other anthropogenic contaminants.

  2. Antidiabetic activity of Pongamia pinnata leaf extracts in alloxan-induced diabetic rats

    PubMed Central

    Sikarwar, Mukesh S.; Patil, M.B.

    2010-01-01

    The antidiabetic activity of Pongamia pinnata ( Family: Leguminosae) leaf extracts was investigated in alloxan-induced diabetic albino rats. A comparison was made between the action of different extracts of P. pinnata and a known antidiabetic drug glibenclamide (600 μg/kg b. wt.). An oral glucose tolerance test (OGTT) was also performed in experimental diabetic rats. The petroleum ether, chloroform, alcohol and aqueous extracts of P. pinnata were obtained by simple maceration method and were subjected to standardization using pharmacognostical and phytochemical screening methods. Dose selection was made on the basis of acute oral toxicity study (50-5000 mg/kg b. w.) as per OECD guidelines. P. pinnata ethanolic extract (PPEE) and aqueous extract (PPAE) showed significant (P < 0.001) antidiabetic activity. In alloxan-induced model, blood glucose levels of these extracts on 7th day of the study were 155.83 ± 11.211mg/dl (PPEE) and 132.00 ± 4.955mg/dl (PPAE) in comparison of diabetic control (413.50 ± 4.752mg/dl) and chloroform extract (210.83 ± 14.912mg/dl). In glucose loaded rats, PPEE exhibited glucose level of 164.50 ± 6.350mg/dl after 30 min and 156.50 ± 4.089mg/dl after 90 min, whereas the levels in PPAE treated animals were 176 ± 3.724mg/dl after 30 min and 110.33 ± 6.687mg/dl after 90 min. These extracts also prevented body weight loss in diabetic rats. The drug has the potential to act as an antidiabetic drug. PMID:21455444

  3. 1,2-Bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine: An anticancer agent targeting hypoxic cells

    PubMed Central

    Seow, Helen A.; Penketh, Philip G.; Shyam, Krishnamurthy; Rockwell, Sara; Sartorelli, Alan C.

    2005-01-01

    To target malignant cells residing in hypoxic regions of solid tumors, we have designed and synthesized prodrugs generating the cytotoxic alkylating species 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)hydrazine (90CE) after bioreductive activation. We postulate that one of these agents, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[[1-(4-nitrophenyl)ethoxy]carbonyl]hydrazine (KS119), requires enzymatic nitro reduction to produce 90CE, whereas another agent, 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-2-[(4-nitrobenzyloxy)carbonyl]hydrazine (PNBC), can also be activated by nucleophilic attack by thiols such as glutathione (GSH)/GST. We demonstrated that these agents selectively kill hypoxic EMT6 mouse mammary carcinoma and CHO cells. In hypoxia, 50 μM KS119 produced 5 logs of kill of EMT6 cells without discernable cytotoxicity in air; similar effects were observed with CHO cells. PNBC was less efficacious against hypoxic tumor cells and also had some toxicity to aerobic cells, presumably because of GST/thiol activation, making PNBC less interesting as a selective hypoxic-cell cytotoxin. BALB/c mice with established EMT6 solid tumors were used to demonstrate that KS119 could reach and kill hypoxic cells in solid tumors. To gain information on bioreductive enzymes involved in the activation of KS119, cytotoxicity was measured in CHO cell lines overexpressing NADH:cytochrome b5 reductase (NBR), NADPH:cytochrome P450 reductase (NPR), or NAD(P)H: quinone oxidoreductase 1 (NQO1). Increased cytotoxicity occurred in cells overexpressing NBR and NPR, whereas overexpressed NQO1 had no effect. These findings were supported by enzymatic studies using purified NPR and xanthine oxidase to activate KS119. KS119 has significant potential as a hypoxia-selective tumor-cell cytotoxin and is unlikely to cause major toxicity to well oxygenated normal tissues. PMID:15964988

  4. Biochemical and molecular characterization of a novel choline-specific glycerophosphodiester phosphodiesterase belonging to the nucleotide pyrophosphatase/phosphodiesterase family.

    PubMed

    Sakagami, Hideki; Aoki, Junken; Natori, Yumiko; Nishikawa, Kiyotaka; Kakehi, Yoshiyuki; Natori, Yasuhiro; Arai, Hiroyuki

    2005-06-17

    Nucleotide pyrophosphatases/phosphodiesterases (NPPs) are ubiquitous membrane-associated or secreted ectoenzymes that release nucleoside 5'-monophosphate from a variety of nucleotides and nucleotide derivatives. The mammalian NPP family comprises seven members, but only three of these (NPP1-3) have been studied in some detail. Previously we showed that lysophospholipase D, which hydrolyzes lysophosphatidylcholine (LPC) to produce lysophosphatidic acid, is identical to NPP2. More recently an uncharacterized novel NPP member (NPP7) was shown to have alkaline sphingomyelinase activity. These findings raised the possibility that other members of the NPP family act on phospholipids. Here we show that the sixth member of the NPP family, NPP6, is a choline-specific glycerophosphodiester phosphodiesterase. The sequence of NPP6 encodes a transmembrane protein containing an NPP domain with significant homology to NPP4, NPP5, and NPP7/alkaline sphingomyelinase. When expressed in HeLa cells, NPP6 was detected in both the cells and the cell culture medium as judged by Western blotting and by enzymatic activity. Recombinant NPP6 efficiently hydrolyzed the classical substrate for phospholipase C, p-nitrophenyl phosphorylcholine, but not the classical nucleotide phosphodiesterase substrate, p-nitrophenyl thymidine 5'-monophosphate. In addition, NPP6 hydrolyzed LPC to form monoacylglycerol and phosphorylcholine but not lysophosphatidic acid, showing it has a lysophospholipase C activity. NPP6 showed a preference for LPC with short (12:0 and 14:0) or polyunsaturated (18:2 and 20:4) fatty acids. It also hydrolyzed glycerophosphorylcholine and sphingosylphosphorylcholine efficiently. In mice, NPP6 mRNA was predominantly detected in kidney with a lesser expression in brain and heart, and in human it was detected in kidney and brain. The present results suggest that NPP6 has a specific role through the hydrolysis of polyunsaturated LPC, glycerophosphorylcholine, or sphingosylphosphorylcholine in these organs.

  5. Hydrolytic enzymes production by Aspergillus section Nigri in presence of butylated hydroxyanisole and propyl paraben on peanut meal extract agar.

    PubMed

    Barberis, Carla L; Landa, María F; Barberis, Mauricio G; Giaj-Merlera, Guillermo; Dalcero, Ana M; Magnoli, Carina E

    2014-01-01

    In the last years, food grade antioxidants are used safely as an alternative to traditional fungicides to control fungal growth in several food and agricultural products. In this work, the effect of butylated hydroxyanisole (BHA) and propyl paraben (PP) on two hydrolytic enzyme activity (β-d-glucosidase and α-d-galactosidase) by Aspergillus section Nigri species under different water activity conditions (aW; 0.98, 0.95 and 0.93) and incubation time intervals (24, 48, 72 and 96h) was evaluated on peanut-based medium. The activity of two glycosidases, β-d-glucosidase and α-d-galactosidase, was assayed using as substrates 4-nitrophenyl-β-d-glucopyranosido and 4-nitrophenyl-α-d-galactopyranosido, respectively. The enzyme activity was determined by the increase in optical density at 405nm caused by the liberation of p-nitrophenol by enzymatic hydrolysis of the substrate. Enzyme activity was expressed as micromoles of p-nitrophenol released per minute. The major inhibition in β-d-glucosidase activity of A. carbonarius and A. niger was found with 20mmoll(-1) of BHA or PP at 0.98 and 0.95 aW, respectively, whereas for α-d-galactosidase activity a significant decrease in enzyme activity with respect to control was observed in A. carbonarius among 5 to 20mmoll(-1) of BHA or PP in all conditions assayed. Regarding A. niger, the highest percentages of enzyme inhibition activity were found with 20mmoll(-1) of BHA or PP at 0.95 aW and 96h. The results of this work provide information about the capacity of BHA and PP to inhibit in vitro conditions two of the most important hydrolytic enzymes produced by A. carbonarius and A. niger species. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  6. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome.

    PubMed

    Uchiyama, Taku; Yaoi, Katusro; Miyazaki, Kentaro

    2015-01-01

    β-glucosidases (BGLs) hydrolyze cello-oligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (∼mM) concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (∼10,000 colonies) and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue) colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v) glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa) and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7) was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0-6.5 and retained full or 1.5-2-fold enhanced activity in the presence of 0.1-0.5 M glucose. It had a low KM (78 μM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose) and high V max (91 μmol min(-1) mg(-1) with p-nitrophenyl β-D-glucoside; 155 μmol min(-1) mg(-1) with cellobiose) among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose) inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose.

  7. Glucose-tolerant β-glucosidase retrieved from a Kusaya gravy metagenome

    PubMed Central

    Uchiyama, Taku; Yaoi, Katusro; Miyazaki, Kentaro

    2015-01-01

    β-glucosidases (BGLs) hydrolyze cello-oligosaccharides to glucose and play a crucial role in the enzymatic saccharification of cellulosic biomass. Despite their significance for the production of glucose, most identified BGLs are commonly inhibited by low (∼mM) concentrations of glucose. Therefore, BGLs that are insensitive to glucose inhibition have great biotechnological merit. We applied a metagenomic approach to screen for such rare glucose-tolerant BGLs. A metagenomic library was created in Escherichia coli (∼10,000 colonies) and grown on LB agar plates containing 5-bromo-4-chloro-3-indolyl-β-D-glucoside, yielding 828 positive (blue) colonies. These were then arrayed in 96-well plates, grown in LB, and secondarily screened for activity in the presence of 10% (w/v) glucose. Seven glucose-tolerant clones were identified, each of which contained a single bgl gene. The genes were classified into two groups, differing by two nucleotides. The deduced amino acid sequences of these genes were identical (452 aa) and found to belong to the glycosyl hydrolase family 1. The recombinant protein (Ks5A7) was overproduced in E. coli as a C-terminal 6 × His-tagged protein and purified to apparent homogeneity. The molecular mass of the purified Ks5A7 was determined to be 54 kDa by SDS-PAGE, and 160 kDa by gel filtration analysis. The enzyme was optimally active at 45°C and pH 5.0–6.5 and retained full or 1.5–2-fold enhanced activity in the presence of 0.1–0.5 M glucose. It had a low KM (78 μM with p-nitrophenyl β-D-glucoside; 0.36 mM with cellobiose) and high Vmax (91 μmol min-1 mg-1 with p-nitrophenyl β-D-glucoside; 155 μmol min-1 mg-1 with cellobiose) among known glucose-tolerant BGLs and was free from substrate (0.1 M cellobiose) inhibition. The efficient use of Ks5A7 in conjunction with Trichoderma reesei cellulases in enzymatic saccharification of alkaline-treated rice straw was demonstrated by increased production of glucose. PMID:26136726

  8. Biotransformation Capacity of Carboxylesterase in Skin and Keratinocytes for the Penta-Ethyl Ester Prodrug of DTPA.

    PubMed

    Fu, Jing; Sadgrove, Matthew; Marson, Lesley; Jay, Michael

    2016-08-01

    The penta-ethyl ester prodrug of the chelating agent diethylene triamine pentaacetic acid (DTPA), referred to as C2E5, effectively accelerated clearance of americium after transdermal delivery. Carboxylesterases (CESs) play important roles in facilitating C2E5 hydrolysis. However, whether CESs in human skin hydrolyze C2E5 remains unknown. We evaluated the gene and protein expression of CESs in distinctive human epidermal cell lines: HEKa, HEKn, HaCaT, and A431. The substrates p-nitrophenyl acetate (pNPA) and 4-nitrophenyl valerate (4-NPV) were used to access esterase and CES activity. C2E5 hydrolysis was measured by radiometric high-performance liquid chromatography after incubation of [(14)C]C2E5 with supernatant fractions after centrifugation at 9000g (S9) prepared from skin cell lines. CES-specific inhibitors were used to access metabolism in human skin S9 fractions with analysis by liquid chromatography-tandem mass spectrometry. We identified the human carboxylesterase 1 and 2 (CES1 and CES2) bands in a Western blot. The gene expression of these enzymes was supported by a real-time polymerase chain reaction (qPCR). pNPA and 4-NPV assays demonstrated esterase and CES activity in all the cell lines that were comparable to human skin S9 fractions. The prodrug C2E5 was hydrolyzed by skin S9 fractions, resulting in a primary metabolite, C2E4. In human skin S9 fractions, inhibition of C2E5 hydrolysis was greatest with a pan-CES inhibitor (benzil). CES1 inhibition (troglitazone) was greater than CES2 (loperamide), suggesting a primary metabolic role for CES1. These results indicate that human keratinocyte cell lines are useful for the evaluation of human cutaneous metabolism and absorption of ester-based prodrugs. However, keratinocytes from skin provide a small contribution to the overall metabolism of C2E5. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Suppression of Pulmonary Host Defenses and Enhanced Susceptibility to Respiratory bacterial Infection in mice Following Inhalation Exposure to Trichloroethylene and Chloroform

    EPA Science Inventory

    Numerous epidemiologic studies have associated episodes of increased air pollution with increased incidence of respiratory disease, including pneumonia, croup, and bronchitis. Trichloroethylene (TCE) and chloroform are among 33 hazardous air pollutants identified by the U.S. Env...

  10. Persulfate Oxidation of MTBE- and Chloroform-Spent Granular Activated Carbon

    EPA Science Inventory

    Activated persulfate (Na2S2O8) regeneration of methyl tert-butyl ether (MTBE) and chloroform-spent GAC was evaluated in this study. Thermal-activation of persulfate was effective and resulted in greater MTBE removal than either alkaline-activation or H2O2–persulfate binary mixtur...

  11. Comparative Study on the Performance of Anaerobic and Aerobic Biotrickling Filter for Removal of Chloroform

    EPA Science Inventory

    Use of biotrickling filter (BTF) for gas phase treatment of volatile trihalomethanes (THMs) stripped from water treatment plants could be an attractive treatment option. The aim of this study is to use laboratory-scale anaerobic BTF to treat gaseous chloroform (recalcitrant to bi...

  12. SYNTHESIS OF HIGHLY FLUORINATED CHLOROFORMATES AND THEIR USE AS DERIVATIZING AGENTS FOR HYDROPHILIC COMPOUNDS AND DRINKING WATER DISINFECTION BY-PRODUCTS

    EPA Science Inventory

    A rapid, safe and efficient procedure was developed to synthesize perfluorinated chloroformates in the small scale generally required to perform analytical derivatizations. This new family of derivatizing agents allows straightforward derivatization of highly polar compounds, co...

  13. Sugar sulfates are not hydrolyzed by the acid-inducible sulfatase AslA from Salmonella enterica Enteritidis NalR and Kentucky 3795 at pH 5.5.

    PubMed

    Ganguly, Arpeeta; Joerger, Rolf D

    2017-08-01

    The open reading frames SEN0085 and SeKA_A4361, from Salmonella enterica serovar Enteritidis Nal R and serovar Kentucky 3795, respectively, corresponding to the acid-inducible sulfatase gene aslA from Salmonella enterica serovar Typhimurium, were previously suggested by microarray analysis to be differentially expressed under acid conditions. However, growth and enzyme activity tests in the present study demonstrated that both wild-type strains exhibited sulfatase activity with 4-nitrophenyl sulfate and 5-bromo-4-chloro-3 indolyl sulfate at pH 5.5. The acid sulfatase does not appear to be involved in sugar sulfate, tyrosine sulfate, 4-hydroxy-3-methoxyphenylglycol sulfate, heparin sulfate, or chondroitin sulfate hydrolysis at pH 5.5. Adhesion and invasion assays did not reveal differences between the serotypes and their corresponding aslA deletion mutants. Thus, the role and substrate(s) of AslA, a protein unique to salmonella and encoded in all sequenced Salmonella strains, remain elusive.

  14. Process for the preparation of benozotriazoles and their polymers, and 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole produced thereby

    DOEpatents

    Vogl, Otto; Nir, Zohar

    1989-03-14

    The compound 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole (2H5P) is produced by azo coupling of o-nitrophenyl diazonium chloride with p-hydroxyacetophenone, subjecting the resulting isolated azo compound to reductive cyclization with zinc in the presence of sodium hydroxide at a temperature of about 50.degree.-70.degree. C., acidifying the resulting mixture so as to produce (2(2-hydroxy-5-acetylphenyl)2H-benzotriazole (2H5A), acetylating the isolated 2(2-hydroxy-5-acetylphenyl)2H-benzotriazole (2H5A), so as to produce 2(2-acetoxy-5-acetylphenyl)2H-benzotriazole (2A5A), methylating the isolated 2(2-acetoxy-5-acetylphenyl(2H-benzotriazole (2A5A) with a methyl Grignard reagent and dehydrating the isolated reaction product with potassium hydrogen sulfate so as to produce 2(2-hydroxy-5-isopropenylphenyl)2H-benzotriazole (2H5P). The compound is used as a polymerizable ultra violet light stabilizer.

  15. An alkaline and surfactant-tolerant lipase from Trichoderma lentiforme ACCC30425 with high application potential in the detergent industry.

    PubMed

    Wang, Yuzhou; Ma, Rui; Li, Shigui; Gong, Mingbo; Yao, Bin; Bai, Yingguo; Gu, Jingang

    2018-06-05

    Alkaline lipases with adaptability to low temperatures and strong surfactant tolerance are favorable for application in the detergent industry. In the present study, a lipase-encoding gene, TllipA, was cloned from Trichoderma lentiforme ACCC30425 and expressed in Pichia pastoris GS115. The purified recombinant TlLipA was found to have optimal activities at 50 °C and pH 9.5 and retain stable over the pH range of 6.0-10.0 and 40 °C and below. When using esters of different lengths as substrates, TlLipA showed preference for the medium length p-nitrophenyl octanoate. In comparison to commercial lipases, TlLipA demonstrated higher tolerance to various surfactants (SDS, Tween 20, and Triton X100) and retained more activities after incubation with Triton X100 for up to 24 h. These favorable characteristics make TlLipA prospective as an additive in the detergent industry.

  16. Substrate specificity and pH dependence of homogeneous wheat germ acid phosphatase.

    PubMed

    Van Etten, R L; Waymack, P P

    1991-08-01

    The broad substrate specificity of a homogeneous isoenzyme of wheat germ acid phosphatase (WGAP) was extensively investigated by chromatographic, electrophoretic, NMR, and kinetic procedures. WGAP exhibited no divalent metal ion requirement and was unaffected upon incubation with EDTA or o-phenanthroline. A comparison of two catalytically homogeneous isoenzymes revealed little difference in substrate specificity. The specificity of WGAP was established by determining the Michaelis constants for a wide variety of substrates. p-Nitrophenyl phosphate, pyrophosphate, tripolyphosphate, and ATP were preferred substrates while lesser activities were seen toward sugar phosphates, trimetaphosphate, phosphoproteins, and (much less) phosphodiesters. An extensive table of Km and Vmax values is given. The pathway for the hydrolysis of trimetaphosphate was examined by colorimetric and 31P NMR methods and it was found that linear tripolyphosphate is not a free intermediate in the enzymatic reaction. In contrast to literature reports, homogeneous wheat germ acid phosphatase exhibits no measurable carboxylesterase activity, nor does it hydrolyze phenyl phosphonothioate esters or phytic acid at significant rates.

  17. Pre-treatment of high oil and grease pet food industrial wastewaters using immobilized lipase hydrolyzation.

    PubMed

    Jeganathan, Jeganaesan; Bassi, Amarjeet; Nakhla, George

    2006-09-01

    Wastewaters generating from pet food industries contain high concentration of oil and grease (O&G), which is difficult to treat through conventional biological treatment systems. In this study, the hydrolysis of O&G originating from pet food industrial wastewater was evaluated. Candida rugosa lipase was immobilized in calcium alginate beads and applied in the hydrolysis experiment. Results showed that approximately 50% of the O&G was hydrolyzed due to the enzyme activity. A significant increment in COD and VFA production was also observed. The immobilized lipase activity was confirmed with p-nitrophenyl palmitate (pNPP) before and after O&G hydrolysis. During the 3-day experiment, approximately 65% of the beads were recovered and after the hydrolysis, approximately 70% of the enzyme activity remained in the beads. This study shows the potential of immobilized lipase as a pre-treatment step in biological treatment of pet food manufacturing wastewater.

  18. A novel type of thermostable alpha-D-glucosidase from Thermoanaerobacter thermohydrosulfuricus exhibiting maltodextrinohydrolase activity.

    PubMed Central

    Wimmer, B; Lottspeich, F; Ritter, J; Bronnenmeier, K

    1997-01-01

    An alpha-glucosidase with the ability to attack polymeric substrates was purified to homogeneity from culture supernatants of Thermoanaerobacter thermohydrosulfuricus DSM 567. The enzyme is apparently a glycoprotein with a molecular mass of 160 kDa. Maximal activity is observed between pH5 and 7 at 75 degrees C. The alpha-glucosidase is active towards p-nitrophenyl-alpha-D-glucoside, maltose, malto-oligosaccharides, starch and pullulan. Highest activity is displayed towards the disaccharide maltose. In addition to glucose, maltohexaose and maltoheptaose can be detected as the initial products of starch hydrolysis. After short incubations of pullulan, glucose is found as the only product. At high substrate concentrations, maltose and malto-oligosaccharide, but not glucose, are used as acceptors for glucosyl-transfer. These findings indicate that the T. thermohydrosulfuricus enzyme represents a novel type of alpha-glucosidase exhibiting maltase, glucohydrolase and 'maltodextrinohydrolase' activity. PMID:9371718

  19. Separation and transport of lithium of 10(-5) M in the presence of sodium chloride higher than 0.1 M by 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin.

    PubMed

    Sun, H; Tabata, M

    1999-07-01

    A water-soluble porphyrin (2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H(2)(obtpps)(4-), H(2)P(4-)) synthesized in our laboratory was applied to a solvent extraction method and a liquid membrane transport of lithium as low as 10(-5) M (M=mol dm(-3)) in the presence of sodium chloride higher than 0.1 M. The lithium porphyrin with five negative charges was extracted successfully into chloroform with tetrabutylammonium ion (But(4)N(+)) at pH 12.7. The extraction constant for the reaction of [LiP(5-)](a)+5[But(4)N](+)(a)right harpoon over left harpoon[(But(4)N)(5)LiP](o) was found to be (1.9+/-0.3)x10(18) M(-5), where the subscripts a and o denote chemical species in aqueous and organic phases, respectively. Lithium was transported to an aqueous phase at pH 7 through a chloroform liquid membrane containing [(But(4)N)(5)HP]. The extraction and transport mechanism was discussed on the basis of extraction constants, chemical species and transportation rate. Lithium in sea water or serum sample was separated and its concentration was determined spectrophotometrically by the present method without any interference from sodium chloride. The interference from transition and heavy metal ions was masked by Mg-EDTA. A calibration curve was linear over a range of 2x10(-6) to 2x10(-5) M at a precision of 1.51% (RSD).

  20. Spectroscopic, quantum chemical studies, Fukui functions, in vitro antiviral activity and molecular docking of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide

    NASA Astrophysics Data System (ADS)

    Sebastian, S. H. Rosline; Al-Alshaikh, Monirah A.; El-Emam, Ali A.; Panicker, C. Yohannan; Zitko, Jan; Dolezal, Martin; VanAlsenoy, C.

    2016-09-01

    The molecular structural parameters and vibrational frequencies of 5-chloro-N-(3-nitrophenyl)pyrazine-2-carboxamide have been obtained using density functional theory technique in the B3LYP approximation and CC-pVDZ (5D, 7F) basis set. Detailed vibrational assignments of observed FT-IR and FT-Raman bands have been proposed on the basis of potential energy distribution and most of the modes have wavenumbers in the expected range. In the present case, the NH stretching mode is a doublet in the IR spectrum with a difference of 138 cm-1 and is red shifted by 76 cm-1 from the computed value, which indicates the weakening of NH bond resulting in proton transfer to the neighboring oxygen atom. The molecular electrostatic potential has been mapped for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The hyperpolarizability values are calculated in order to find its role in nonlinear optics. From the molecular docking study, amino acids Asn161, His162 forms H-bond with pyrazine ring and Trp184, Gln19 shows H-bond with Cdbnd O group and the docked ligand, title compound forms a stable complex with cathepsin K and the results suggest that the compound might exhibit inhibitory activity against cathepsin K. Moderate in vitro antiviral activity with EC50 at tens of μM was detected against feline herpes virus, coxsackie virus B4, and influenza A/H1N1 and A/H3N2.

  1. Separator for alkaline batteries and method of making same

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The preparation of membranes suitable for use as separators in concentrated alkaline battery cells by selective solvolysis of copolymers of methacrylate esters with acrylate esters followed by addition of a base and to the resultant products is described. The method of making copolymers by first copolymerizing a methacrylate ester (or esters) with a more readily hydrolyzable ester, followed by a selective saponification whereby the methacrylate ester moieties remain essentially intact and the readily hydrolyzable ester moiety is suponified and to the partial or complete neutralization of the relatively brittle copolymer acid with a base to make membranes which are sufficiently flexible in the dry state so that they may be wrapped around electrodes without damage by handling is described.

  2. Push-pull fluorophores based on imidazole-4,5-dicarbonitrile: a comparison of spectral properties in solution and polymer matrices.

    PubMed

    Danko, Martin; Hrdlovič, Pavol; Kulhánek, Jiří; Bureš, Filip

    2011-07-01

    Spectral properties of novel type of fluorophores consist of a π-conjugated system end-capped with an electron-donating N,N-dimethylaminophenyl group and an electron-withdrawing imidazole-4,5-dicarbonitrile moiety were examined. An additional π-linker separating these two structural units comprises simple bond (B1P), phenyl (B2B), styryl (B3S) and ethynylphenyl (B4A) moieties. The absorption and fluorescence spectra were taken in cyclohexane, chloroform, acetonitrile, methanol and in polymer matrices such as polystyrene, poly(methyl methacrylate) and poly(vinylchloride). The longest-wavelength absorption band was observed in the range of 300 to 400 nm. Intense fluorescence with quantum yields of 0.2 to 1.0 was observed in cyclohexane, chloroform and in polymer matrices within the range of 380 to 500 nm. The fluorescence was strongly quenched in neat acetonitrile and methanol. The fluorescence lifetimes are in the range of 1-4 ns for all measured fluorophores. The large Stokes shift (4,000 to 8,000 cm(-1)) indicates a large difference in the spatial arrangement of the chromophore in the absorbing and the emitting states. The observed fluorescence of all fluorophores in chloroform was quenched by 1-oxo-2,2,6,6-tetramethyl-4-hydroxy piperidine by the diffusion-controlled bimolecular rate (cca 2 × 10(10) L mol(-1) s(-1)). Polar solvents such as acetonitrile and methanol quenched the fluorescence as well but probably via a different mechanism. © Springer Science+Business Media, LLC 2011

  3. Psychotria viridis: Chemical constituents from leaves and biological properties.

    PubMed

    Soares, Débora B S; Duarte, Lucienir P; Cavalcanti, André D; Silva, Fernando C; Braga, Ariadne D; Lopes, Miriam T P; Takahashi, Jacqueline A; Vieira-Filho, Sidney A

    2017-01-01

    The phytochemical study of hexane, chloroform and methanol extracts from leaves of Psychotria viridis resulted in the identification of: the pentacyclic triterpenes, ursolic and oleanolic acid; the steroids, 24-methylene-cycloartanol, stigmasterol and β-sitosterol; the glycosylated steroids 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol; a polyunsaturated triterpene, squalene; the esters of glycerol, 1-palmitoylglycerol and triacylglycerol; a mixture of long chain hydrocarbons; the aldehyde nonacosanal; the long chain fat acids hentriacontanoic, hexadecanoic and heptadenoic acid; the ester methyl heptadecanoate; the 4-methyl-epi-quinate and two indole alkaloids, N,N-dimethyltryptamine (DMT) and N-methyltryptamine. The chemical structures were determined by means of spectroscopic (IR, 1H and 13C NMR, HSQC, HMBC and NOESY) and spectrometric (CG-MS and LCMS-ESI-ITTOF) methods. The study of biologic properties of P. viridis consisted in the evaluation of the acetylcholinesterase inhibition and cytotoxic activities. The hexane, chloroform, ethyl acetate and methanol extracts, the substances 24-methylene-cycloartanol, DMT and a mixture of 3-O-β-D-glucosyl-β-sitosterol and 3-O-β-D-glucosyl-stigmasterol showed cholinesterase inhibiting activity. This activity induced by chloroform and ethyl acetate extracts was higher than 90%. The methanol and ethyl acetate extracts inhibit the growth and/or induce the death of the tumor cells strains B16F10 and 4T1, without damaging the integrity of the normal cells BHK and CHO. DMT also demonstrated a marked activity against tumor cell strains B16F10 and 4T1.

  4. Chemical constituents and antibacterial activity of Melastoma malabathricum L.

    PubMed

    Wong, Keng-Chong; Hag Ali, Dafaalla Mohamed; Boey, Peng-Lim

    2012-01-01

    The aqueous methanolic extracts of Melastoma malabathricum L. exhibited antibacterial activity when assayed against seven microorganisms by the agar diffusion method. Solvent fractionation afforded active chloroform and ethyl acetate fractions from the leaves and the flowers, respectively. A phytochemical study resulted in the identification of ursolic acid (1), 2α-hydroxyursolic acid (2), asiatic acid (3), β-sitosterol 3-O-β-D-glucopyranoside (4) and the glycolipid glycerol 1,2-dilinolenyl-3-O-β-D-galactopyanoside (5) from the chloroform fraction. Kaempferol (6), kaempferol 3-O-α-L-rhamnopyranoside (7), kaempferol 3-O-β-D-glucopyranoside (8), kaempferol 3-O-β-D-galactopyranoside (9), kaempferol 3-O-(2″,6″-di-O-E-p-coumaryl)-β-D-galactopyranoside (10), quercetin (11) and ellagic acid (12) were found in the ethyl acetate fraction. The structures of these compounds were determined by chemical and spectral analyses. Compounds 1-4, the flavonols (6 and 11) and ellagic acid (12) were found to be active against some of the tested microorganisms, while the kaempferol 3-O-glycosides (7-9) did not show any activity, indicating the role of the free 3-OH for antibacterial activity. Addition of p-coumaryl groups results in mild activity for 10 against Staphylococcus aureus and Bacillus cereus. Compounds 2-5, 7 and 9-12 are reported for the first time from M. malabathricum. Compound 10 is rare, being reported only once before from a plant, without assignment of the double bond geometry in the p-coumaryl moiety.

  5. An in vivo, label-free quick assay for xylose transport in Escherichia coli.

    PubMed

    Chen, Tingjian; Zhang, Jingqing; Liang, Ling; Yang, Rong; Lin, Zhanglin

    2009-07-01

    Efficient use of xylose is necessary for economic production of biochemicals and biofuels from lignocellulosic materials. Current studies on xylose uptake for various microorganisms have been hampered by the lack of a facile assay for xylose transport. In this work, a rapid in vivo, label-free method for measuring xylose transport in Escherichia coli was developed by taking advantage of the Bacillus pumilus xylosidase (XynB), which cleaved a commercially available xylose analog, p-nitrophenyl-beta-d-xylopyranoside (pNPX), to release a chromogenic group, p-nitrophenol (pNP). XynB was expressed alone or in conjunction with a Zymomonas mobilis glucose facilitator protein (Glf) capable of transporting xylose. This XynB-mediated transport assay was demonstrated in test tubes and 96-well plates with submicromolar concentrations of pNPX. Kinetic inhibition experiments validated that pNPX and xylose were competitive substrates for the transport process, and the addition of glucose (20 g/L) in the culture medium clearly diminished the transmembrane transport of pNPX and, thus, mimicked its inhibitory action on xylose uptake. This method should be useful for engineering of the xylose transport process in E. coli, and similar assay schemes can be extended to other microorganisms.

  6. Vertically aligned nanowires from boron-doped diamond.

    PubMed

    Yang, Nianjun; Uetsuka, Hiroshi; Osawa, Eiji; Nebel, Christoph E

    2008-11-01

    Vertically aligned diamond nanowires with controlled geometrical properties like length and distance between wires were fabricated by use of nanodiamond particles as a hard mask and by use of reactive ion etching. The surface structure, electronic properties, and electrochemical functionalization of diamond nanowires were characterized by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) as well as electrochemical techniques. AFM and STM experiments show that diamond nanowire etched for 10 s have wire-typed structures with 3-10 nm in length and with typically 11 nm spacing in between. The electrode active area of diamond nanowires is enhanced by a factor of 2. The functionalization of nanowire tips with nitrophenyl molecules is characterized by STM on clean and on nitrophenyl molecule-modified diamond nanowires. Tip-modified diamond nanowires are promising with respect to biosensor applications where controlled biomolecule bonding is required to improve chemical stability and sensing significantly.

  7. Substituted 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones as novel anti-MRSA agents: synthesis, SAR, and in-vitro assessment.

    PubMed

    Diwakar, Santosh D; Bhagwat, Sachin S; Shingare, Murlidhar S; Gill, Charansing H

    2008-08-15

    In search for a new antibacterial agent with improved antimicrobial spectrum and potency, we designed and synthesized a series of novel 3-((Z)-2-(4-nitrophenyl)-2-(1H-tetrazol-5-yl) vinyl)-4H-chromen-4-ones 7a-h by convergent synthesis approach. All the synthesized compounds were assayed for their in-vitro antibacterial activities against gram-negative and gram-positive bacteria. The preliminary structure-activity relationship, to elucidate the essential structure requirements for the antimicrobial activity that results into anti-MRSA (methicillin-resistant S. aureus) potential, has been described. Amongst the synthesized compounds 7d, 7e, 7f and 7h were found to possess activity against methicillin-resistant S. aureus in addition to the activity against other bacterial strains such as E. faecalis, S. pneumoniae, and E. coli.

  8. The Nuclear Magnetic Resonance Spectra of Bisphthalocyaninatolanthanide (III).

    DTIC Science & Technology

    1980-06-01

    solvents such...as methanol, N,N-dimethylformamide, and dimethylsulfoxide , while they show green in 4 dichloromethane and chloroform. A few ideas have been reported to... DMSO pN I 7.0 6.5 6.0 ppm Figure 1. NM spectrum of bisphthalocyannatonodmlum(III) in DMSOd6 at 60*C. 10 z C-5 La Ce Pr Nd Sm Eu FIGURE 2. Induced chemical shiftis of a and 0 protons. o, a ptoton; B proton. I

  9. THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM

    EPA Science Inventory

    THE INFLUENCE OF ADVANCED AGE ON THE HEPATIC AND RENAL TOXICITY OF CHLOROFORM (CHC13). A McDonald, Y M Sey and J E Simmons. NHEERL, ORD, U.S. EPA, RTP, NC.
    Disinfection, by chlorination or by ozonation followed by treatment with either chlorine or chloramine, of water containi...

  10. HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE WITH CHLOROFORM, CHLORODIBROMOMETHANE AND BROMOFORM

    EPA Science Inventory

    HEPATOTOXIC EVALUATION OF THE BINARY INTERACTIONS OF BROMODICHLOROMETHANE (BDCM) WITH CHLOROFORM (CHC13), CHLORODIBROMOMETHANE (CDBM) AND BROMOFORM (CHBr3). Y M Se'', C Gennings2, A McDonald', L K Teuschler3, A Hamm2and J E Simmons .'NHEERL, ORD, U.S. EPA, RTP, NC; 2MCV, VCU, Ric...

  11. Microwave-assisted synthesis of N-pyrazole ureas and the p38alpha inhibitor BIRB 796 for study into accelerated cell ageing.

    PubMed

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Widdowson, Caroline S; Kipling, David

    2006-11-21

    Microwave irradiation of substituted hydrazines and beta-ketoesters gives 5-aminopyrazoles in excellent yield, which can be transformed to the corresponding N-carbonyl derivatives by treatment with an isocyanate or chloroformate. Derivatization of 4-nitronaphth-1-ol using predominantly microwave heating methods and reaction with an N-pyrazole carbamate provides a rapid route to the N-pyrazole urea BIRB 796 in high purity, as a potent and selective inhibitor of p38alpha mitogen-activated protein kinase for the study of accelerated ageing in Werner syndrome cells.

  12. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE PAGES

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David; ...

    2015-09-21

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  13. An efficient and practical synthesis of [2- 11C]indole via superfast nucleophilic [ 11C]cyanation and RANEY® Nickel catalyzed reductive cyclization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So Jeong Lee; Fowler, Joanna S.; Alexoff, David

    We developed a rapid method for the synthesis of carbon-11 radiolabeled indole using a sub-nanomolar quantity of no-carrier-added [ 11C]cyanide as radio-precursor. Based upon a reported synthesis of 2-(2-nitrophenyl)acetonitrile (2), a highly reactive substrate 2-nitrobenzyl bromide (1) was evaluated for nucleophilic [ 11C]cyanation. Additionally, related reaction conditions were explored with the goal of obtaining of highly reactive 2-(2-nitrophenyl)-[1- 11C]acetonitrile ([ 11C]-2) while inhibiting its rapid conversion to 2,3-bis(2-nitrophenyl)-[1- 11C]propanenitrile ([ 11C]-3). Next, a Raney Nickel catalyzed reductive cyclization method was utilized for synthesizing the desired [2- 11C]indole with hydrazinium monoformate as the active reducing agent. Extensive and iterative screening ofmore » basicity, temperature and stoichiometry was required to overcome the large stoichiometry bias that favored 2-nitrobenzylbromide (1) over [ 11C]cyanide, which both caused further alkylation of the desired nitrile and poisoned the Raney Nickel catalyst. The result is an efficient two-step, streamlined method to reliably synthesize [2- 11C]indole with an entire radiochemical yield of 21 ± 2.2% (n = 5, ranging from 18 – 24%). The radiochemical purity of the final product was > 98% and specific activity was 176 ± 24.8 GBq/μmol (n = 5, ranging from 141 – 204 GBq/μmol). The total radiosynthesis time including product purification by semi-preparative HPLC was 50 – 55 min from end of cyclotron bombardment.« less

  14. Cytotoxicity of different extracts of arial parts of Ziziphus spina-christi on Hela and MDA-MB-468 tumor cells

    PubMed Central

    Jafarian, Abbas; Zolfaghari, Behzad; Shirani, Kobra

    2014-01-01

    Background: It has been shown that plants from the family Rhamnaceae possess anticancer activity. In this study, we sought to determine if Ziziphus spina-christi, a species from this family, has cytotoxic effect on cancer cell lines. Materials and Methods: Using maceration method, different extracts of leaves of Z. spina-christi were prepared. Hexane, chloroform, chloroform-methanol (9:1), methanol-water (7:1) methanol, butanol and water were used for extraction, after preliminary phytochemical analyses were done. The cytotoxic activity of the extracts against Hela and MDA-MB-468 tumor cells was evaluated by MTT assay. Briefly, cells were seeded in microplates and different concentrations of extracts were added. After incubation of cells for 72 h, their viability was evaluated by addition of tetrazolium salt solution. After 3 h medium was aspirated, dimethyl sulfoxide was added and absorbance was determined at 540 nm with an ELISA plate reader. Extracts were considered cytotoxic when more than 50% reduction on cell survival was observed. Results: Hexane, chloroform, chloroform-methanol, butanol, methanol-water and aqueous extracts of Z. spina-christi significantly and concentration-dependently reduced viability of Hela and MAD-MB-468 cells. In the both cell lines, chloroform-methanol extract of Z. spina-christi was more potent than the other extracts. Results: From the finding of this study it can be concluded that Z. spina-christi is a good candidate for further study for new cytotoxic agents. PMID:24627846

  15. The hydrolytic activity of esterases in the yeast Saccharomyces cerevisiae is strain dependent.

    PubMed

    Kwolek-Mirek, Magdalena; Bednarska, Sabina; Zadrąg-Tęcza, Renata; Bartosz, Grzegorz

    2011-11-01

    Ester precursors of fluorogenic or chromogenic probes are often employed in studies of yeast cell biology. This study was aimed at a comparison of the ability of several commonly used laboratory wild-type Saccharomyces cerevisiae strains to hydrolyse the following model esters: fluorescein diacetate, 2-naphthyl acetate, PNPA (p-nitrophenyl acetate) and AMQI (7-acetoxy-1-methylquinolinum iodide). In all the strains, the esterase activity was localized mainly to the cytosol. Considerable differences in esterase activity were observed between various wild-type laboratory yeast strains. The phase of growth also contributed to the variation in esterase activity of the yeast. This diversity implies the need for caution in using intracellularly hydrolysed probes for a comparison of yeast strains with various genetic backgrounds.

  16. Antidepressant-like Effects of LPM580153, A Novel Potent Triple Reuptake Inhibitor.

    PubMed

    Zhang, Fangxi; Shao, Jing; Tian, Jingwei; Zhong, Yan; Ye, Liang; Meng, Xiangjing; Liu, Qiaofeng; Wang, Hongbo

    2016-04-07

    The purpose of this study was to characterize a novel compound, 4-[2-(dimethylamino)-1-(1-hydroxycyclohexyl) ethyl] phenyl 3-nitrophenyl ether, designated LPM580153. We used several well-validated animal models of depression to assess the antidepressant-like activity of LPM580153, followed by a neurotransmitter uptake assay and a corticosterone-induced cell injury model to explore its mechanism of action. In mice, LPM580153 reduced immobility time in the tail suspension test, and in rats subjected to chronic unpredictable mild stress it reversed reductions in body weight gain and ameliorated anhedonia. The neurotransmitter uptake assay results demonstrated that LPM580153 inhibited the uptake of serotonin, norepinephrine and dopamine. Furthermore, LPM580153 protected the SH-SY5Y cells against the cytotoxic activity of corticosterone, an action that might be related to the role of LPM580153 in increasing the protein levels of BDNF, p-ERK1/2, p-AKT, p-CREB and p-mTOR. Together, these findings indicate that LPM580153 is a novel triple reuptake inhibitor with robust antidepressant-like effects.

  17. Biochemical characterization of a maize stover beta-exoglucanase and its use in lignocellulose conversion.

    PubMed

    Han, Yejun; Chen, Hongzhang

    2010-08-01

    Plant is one of the important resources for glycosyl hydrolase production. A beta-exoglucanase with molecular weight of 63.1 kDa was purified from fresh maize stover and subjected to enzymatic characterization. The optimal temperature and pH of the beta-exoglucanase was 40 degrees C and 6.0, respectively. The beta-exoglucanase was active against p-nitrophenyl-cellobiose (p-NPC), laminarin, cellotriose, cellotetraose, cellopentaose, Avicel, filter paper, and cotton cellulose. The analysis of hydrolytic mode suggested that the beta-exoglucanase removed cellobiose from the ends of beta-glucan. Kinetic parameters of the beta-exoglucanase for laminarin and p-NPC were determined. The effects of metal ions and chemical reagents on the beta-exoglucanase activity were also studied. The biochemical characterization of the beta-exoglucanase makes it an appealing cellulase additive in converting lignocelluloses to ethanol through simultaneous saccharification and fermentation. The synergism of the beta-exoglucanase or crude cell wall proteins of fresh maize stover with Trichoderma reesei cellulase was observed in ethanol production from lignocellulose. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Applicability of recombinant β-xylosidase from the extremely thermophilic bacterium Geobacillus thermodenitrificans in synthesizing alkylxylosides.

    PubMed

    Jain, Ira; Kumar, Vikash; Satyanarayana, T

    2014-10-01

    The β-xylosidase encoding gene (XsidB) of the extremely thermophilic bacterium Geobacillus thermodenitrificans has been cloned and expressed in Escherichia coli. The homotrimeric recombinant XsidB is of 204.0kDa, which is optimally active at 60°C and pH 7.0 with T1/2 of 58min at 70°C. The β-xylosidase remains unaffected in the presence of most metal ions and organic solvents. The Km [p-nitrophenyl β-xyloside (pNPX)], Vmax and kcat values of the enzyme are 2×10(-3)M, 1250μmolesmg(-1)min(-1) and 13.20×10(5)min(-1), respectively. The enzyme catalyzes transxylosylation reactions in the presence of alcohols as acceptors. The pharmaceutically important β-methyl-d-xylosides could be produced using pNPX as the donor and methanol as acceptor. The products of transxylosylation were identified by TLC and HPLC, and the structure was confirmed by (1)H NMR analysis. The enzyme is also useful in synthesizing transxylosylation products from the wheat bran hydrolysate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Enzymatic characteristics of an ApaH-like phosphatase, PrpA, and a diadenosine tetraphosphate hydrolase, ApaH, from Myxococcus xanthus.

    PubMed

    Sasaki, Masashi; Takegawa, Kaoru; Kimura, Yoshio

    2014-09-17

    We characterized the activities of the Myxococcus xanthus ApaH-like phosphatases PrpA and ApaH, which share homologies with both phosphoprotein phosphatases and diadenosine tetraphosphate (Ap4A) hydrolases. PrpA exhibited a phosphatase activity towards p-nitrophenyl phosphate (pNPP), tyrosine phosphopeptide and tyrosine-phosphorylated protein, and a weak hydrolase activity towards ApnA and ATP. In the presence of Mn(2+), PrpA hydrolyzed Ap4A into AMP and ATP, whereas in the presence of Co(2+) PrpA hydrolyzed Ap4A into two molecules of ADP. ApaH exhibited high phosphatase activity towards pNPP, and hydrolase activity towards ApnA and ATP. Mn(2+) was required for ApaH-mediated pNPP dephosphorylation and ATP hydrolysis, whereas Co(2+) was required for ApnA hydrolysis. Thus, PrpA and ApaH may function mainly as a tyrosine protein phosphatase and an ApnA hydrolase, respectively. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Multi-constituent synergism is responsible for anti-inflammatory effect of Azadirachta indica leaf extract.

    PubMed

    Umar, Muhammad Ihtisham; Asmawi, Mohd Zaini; Sadikun, Amirin; Abdul Majid, A M S; Atangwho, Item Justin; Khadeer Ahamed, Mohamed B; Altaf, Rabia; Ahmad, Ashfaq

    2014-11-01

    Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures. To fractionate A. indica leaf extracts using bioactivity guided manner for identification of the active anti-inflammatory principles. Polarity-gradient sequential extracts (petroleum ether, chloroform, methanol, and water) of A. indica leaves were screened for their anti-inflammatory potential using the carrageenan-induced rat paw edema model (1 g/kg). The chloroform extract was sequentially fractionated to obtain n-hexane (F-1), n-hexane-chloroform (F-2), and chloroform (F-3) fractions and their inhibitory effect on rat paw edema was evaluated (500 mg/kg). Inhibitory effect of F-2 on granuloma formation, plasma interleukin (IL-1), and tumor necrosis factor (TNF-α) was assessed at the doses of 100, 200, and 400 mg/kg using the cotton pellet assay in rats. Three sub-fractions (SF-1, SF-2, and SF-3) were obtained upon chromatography of F-2, and their inhibitory effect on cyclooxygenase was assessed at 200 µg/mL concentration. The sub-fractions were subjected to gas chromatography-mass spectrometry (GC-MS). All the extracts showed significant anti-inflammatory effect; however, chloroform extract was the most effective against paw edema (53.25% inhibition). The three fractions of chloroform extract showed significant effect, while F-2 being the most potent (51.02%). F-2 demonstrated dose-dependent inhibition of granuloma and cytokines. Interestingly, all the sub-fractions of F-2 inhibited COX-1 and COX-2 with almost equal potential. GC-MS revealed that chemically the sub-fractions were totally different from each other. Anti-inflammatory effect of A. indica is a result of cumulative and synergistic effects of diversified constituents with varying polarities that collectively exert the effect via suppression of cyclo-oxygenases and cytokines (IL-1 and TNF-α).

  1. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities

    PubMed Central

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-01-01

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression. PMID:27598154

  2. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities.

    PubMed

    Souza, Lucèia Fàtima; Caputo, Lucia; Inchausti De Barros, Ingrid Bergman; Fratianni, Florinda; Nazzaro, Filomena; De Feo, Vincenzo

    2016-09-03

    The aims of this work were to study the chemical composition of the essential oil from the leaves of Pereskia aculeata and to evaluate some biological activities of three leaf extracts. The phenolic content, antioxidant activity, and in vitro antimicrobial and antifungal activities were determined. The methanol extract showed antioxidant activity (EC50 7.09 mg/mL) and high polyphenols content (15.04 ± 0.31 mg gallic acid equivalents (GAE)/g). The petroleum ether extract exhibited potent antibacterial activity against Escherichia coli, whereas the chloroform extract showed inhibitory activity against Bacillus cereus and Staphylococcus aureus. The petroleum ether and methanol extracts were more effective in inhibiting the growth of Aspergillus versicolor. The possible cytotoxicity of extracts on neuroblastoma SH-SY5Y cancer cell line and the influence on adenylate cyclase (ADCY) expression was also studied. P. aculeata chloroform extract showed antiproliferative activity with an IC50 value of 262.83 µg/mL. Treatments of SH-SY5Y neuroblastoma cells with 100 µg/mL of methanol extract significantly reduced ADCY1 expression.

  3. An efficient phase-selective gelator for aromatic solvents recovery based on a cyanostilbene amide derivative.

    PubMed

    Zhang, Yuping; Ma, Yao; Deng, Mengyu; Shang, Hongxing; Liang, Chunshuang; Jiang, Shimei

    2015-07-07

    Two novel low molecular weight organogelators (LMOGs) 1 and 2 composed of a cholesteryl group, an amide group and various terminal cyanostilbene moieties were synthesized. They could form stable gels in p-xylene. In particular, 2 with more extended π-conjugation length showed remarkable gelation ability in many aromatic solvents, chloroform and chloroform-containing mixed solvents at a relatively low concentration. FT-IR and XRD spectra indicated that the difference between 1 and 2 in the gelation properties may result from the deviation of the intermolecular hydrogen bonding and π–π stacking as driving forces for the formation of the gels. Significantly, 2 can function as an efficient room-temperature phase-selective gelator (PSG) for potential application in the separation and recovery of various aromatic solvents from its mixture with water. Meanwhile, the gelator can be easily recovered and reused several times. Furthermore, the phase-selective gelation properties of 2 can provide a simple and feasible approach for the removal of the rhodamine B (RhB) dye from water.

  4. Density functional theory study of hydrogen atom abstraction from a series of para-substituted phenols: why is the Hammett σ(p)+ constant able to represent radical reaction rates?

    PubMed

    Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi

    2011-06-03

    The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.

  5. Antimicrobial study of bark from five tree species.

    PubMed

    Pérez G, S; Zavala S, M A; Arias G, L; Pérez G, C; Pérez G, R M

    2001-06-01

    The antimicrobial activities of chloroform, methanol and aqueous extracts of the bark of Gymnanthes lucida, Gliricidia sepium, Lysiloma divaricata, Lysiloma tergemina and Coccolaba cozumelensis were tested against S. lutea, E. coli, S. epidermidis, L. monocytogenes, S. choleraesuis, S. aureus, P. aeruginosa, B. pumillus, S. typhimurium, P. vulgaris, V. cholerae and C. albicans. It was found that methanol extracts of the two Lysiloma species and G. sepium had antimicrobial effects against S. epidermidis, S. aureus, P. aeruginosa, B. pumillus and V. cholerae at doses of 200 microg. The major inhibitory effect was observed with L. tergemina which showed a bacteriostatic effect on S. epidermidis at doses of 400 microg/mL. Copyright 2001 John Wiley & Sons, Ltd.

  6. Separation of thorium from lanthanides by solvent extraction with ionizable crown ethers.

    PubMed

    Du, H S; Wood, D J; Elshani, S; Wai, C M

    1993-02-01

    Thorium and the lanthanides are extracted by alpha-(sym-dibenzo-16-crown-5-oxy)acetic acid and its analogues in different pH ranges. At pH 4.5, Th is quantitatively extracted by the crown ether carboxylic acids into chloroform whereas the extraction of the lanthanides is negligible. Separation of Th from the lanthanides can be achieved by solvent extraction under this condition. The extraction does not require specific counteranions and is reversible with respect to pH. Trace amounts of Th in water can be quantitatively recovered using this extraction system for neutron activation analysis. The nature of the extracted Th complex and the mechanism of extraction are discussed.

  7. Disassembly Control of Saccharide-Based Amphiphiles Driven by Electrostatic Repulsion.

    PubMed

    Yamada, Taihei; Kokado, Kenta; Sada, Kazuki

    2017-03-14

    According to the design of disassembly using electrostatic repulsion, novel amphiphiles consisting of a lipophilic ion part and a hydrophilic saccharide part were synthesized via the facile copper-catalyzed click reaction, and their molecular assemblies in water and chloroform were studied. The amphiphiles exhibited a molecular orientation opposite to that of the conventional amphiphiles in each case. ζ Potential measurements indicated that the lipophilic ion part is exposed outside in chloroform. The size of a solvophobic part in the amphiphiles dominates the size of an assembling structure; that is, in water, these amphiphiles tethering different lengths of the saccharide part exhibited almost identical assembling size, whereas in chloroform, the size depends on the length of the saccharide part in the amphiphiles.

  8. Anti-inflammatory and anti-allergic effect of Agaricus blazei extract in bone marrow-derived mast cells.

    PubMed

    Song, Hyuk-Hwan; Chae, Hee-Sung; Oh, Sei-Ryang; Lee, Hyeong-Kyu; Chin, Young-Won

    2012-01-01

    In this study, the anti-inflammatory and anti-allergic effects of the chloroform-soluble extract of Agaricus blazei in mouse bone marrow-derived mast cells (BMMCs) were investigated. The chloroform-soluble extract inhibited IL-6 production in PMA plus A23187-stimulated BMMCs, and down-regulated the phosphorylation of Akt. In addition, this extract demonstrated inhibition of the degranulation of β-hexosaminidase and the production of IL-6, prostaglandin D(2) and leukotriene C(4) in PMA plus A23187-induced BMMCs. In conclusion, the chloroform-soluble extract of Agaricus blazei exerted anti-inflammatory and anti-allergic activities mediated by influencing IL-6, prostaglandin D(2), leukotriene C(4), and the phosphorylation of Akt.

  9. Products derived from olive leaves and fruits can alter in vitro ruminal fermentation and methane production.

    PubMed

    Shakeri, Pirouz; Durmic, Zoey; Vadhanabhuti, Joy; Vercoe, Philip E

    2017-03-01

    The industrial processing of olive generates a high quantity of by-products. The objective of this study was to examine the effects of products derived from olive trees, i.e. leaves, fruits or kernels as a sole substrate (part A), and crude extract from leaves combined with a substrate (part B) on rumen microbial fermentation in an in vitro batch fermentation system. In this study, total gas production, methane production, and concentrations of volatile fatty acids (VFA) and ammonia in ruminal fluid were measured. In part A, in vitro fermentation of leaves or fruits yielded a gas and total VFA production that were comparable with control substrate, while most of them produced significantly less methane (up to 55.6%) when compared to control substrate. In part B, amongst leaf extracts, only addition of chloroform extract reduced methane production, which was also associated with a decrease (P < 0.01) in gas production. This effect was associated with a significant reduction (P < 0.01) in acetate to propionate ratio and ammonia production, but not in reduction in VFA concentrations. Olive leaf and olive leaf chloroform extract reduced ammonia production and increased the molar proportion of propionate in the rumen and can assist in developing novel feed additives for methane mitigation from the rumen. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. In Vivo Antimalarial Activity of the Solvent Fractions of Fruit Rind and Root of Carica papaya Linn (Caricaceae) against Plasmodium berghei in Mice

    PubMed Central

    Kebebe, Dereje; Mulisa, Eshetu; Gashe, Fanta

    2017-01-01

    Background Currently, antimalarial drug resistance poses a serious challenge. This stresses the need for newer antimalarial compounds. Carica papaya is used traditionally and showed in vitro antimalarial activity. This study attempted to evaluate in vivo antimalarial activity of C. papaya in mice. Methods In vivo antimalarial activity of solvent fractions of the plant was carried out against early P. berghei infection in mice. Parasitemia, temperature, PCV, and body weight of mice were recorded. Windows SPSS version 16 (one-way ANOVA followed by Tukey's post hoc test) was used for data analysis. Results The pet ether and chloroform fractions of C. papaya fruit rind and root produced a significant (p < 0.001) chemosuppressive effect. A maximum parasite suppression of 61.78% was produced by pet ether fraction of C. papaya fruit rind in the highest dose (400 mg/kg/day). Only 400 mg/kg/day dose of chloroform fraction of C. papaya root exhibited a parasite suppression effect (48.11%). But, methanol fraction of the plant parts produced less chemosuppressive effect. Conclusion Pet ether fraction of C. papaya fruit rind had the highest antimalarial activity and could be a potential source of lead compound. Further study should be done to show the chemical and metabolomic profile of active ingredients. PMID:29391947

  11. Cancer Risk Disparities between Hispanic and Non-Hispanic White Populations: The Role of Exposure to Indoor Air Pollution

    PubMed Central

    Hun, Diana E.; Siegel, Jeffrey A.; Morandi, Maria T.; Stock, Thomas H.; Corsi, Richard L.

    2009-01-01

    Background Hispanics are the fastest growing minority group in the United States; however, minimal information is available on their cancer risks from exposures to hazardous air pollutants (HAPs) and how these risks compare to risks to non-Hispanic whites. Methods We estimated the personal exposure and cancer risk of Hispanic and white adults who participated in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. We evaluated 12 of the sampled volatile organic compounds and carbonyls and identified the HAPs of most concern and their possible sources. Furthermore, we examined sociodemographic factors and building characteristics. Results Cumulative cancer risks (CCRs) estimated for Hispanics (median = 519 × 10−6, 90th percentile = 3,968 × 10−6) and for whites (median = 443 × 10−6, 90th percentile = 751 × 10−6) were much greater than the U.S. Environmental Protection Agency (EPA) benchmark of 10−6. Cumulative risks were dominated by formaldehyde and p-dichlorobenzene (p-DCB) and, to a lesser extent, by acetaldehyde, chloroform, and benzene. Exposure to all of these compounds except benzene was primarily due to indoor residential sources. Hispanics had statistically higher CCRs than did whites (p ≤ 0.05) because of differences in exposure to p-DCB, chloroform, and benzene. Formaldehyde was the largest contributor to CCR for 69% of Hispanics and 88% of whites. Cancer risks for pollutants emitted indoors increased in houses with lower ventilation rates. Conclusions Hispanics appear to be disproportionately affected by certain HAPs from indoor and outdoor sources. Policies that aim to reduce risk from exposure to HAPs for the entire population and population subgroups should consider indoor air pollution. PMID:20049213

  12. Cancer risk disparities between hispanic and non-hispanic white populations: the role of exposure to indoor air pollution.

    PubMed

    Hun, Diana E; Siegel, Jeffrey A; Morandi, Maria T; Stock, Thomas H; Corsi, Richard L

    2009-12-01

    Hispanics are the fastest growing minority group in the United States; however, minimal information is available on their cancer risks from exposures to hazardous air pollutants (HAPs) and how these risks compare to risks to non-Hispanic whites. We estimated the personal exposure and cancer risk of Hispanic and white adults who participated in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. We evaluated 12 of the sampled volatile organic compounds and carbonyls and identified the HAPs of most concern and their possible sources. Furthermore, we examined sociodemographic factors and building characteristics. Cumulative cancer risks (CCRs) estimated for Hispanics (median = 519 x 10(-6), 90th percentile = 3,968 x 10(-6)) and for whites (median = 443 x 10(-6), 90th percentile = 751 x 10(-6)) were much greater than the U.S. Environmental Protection Agency (EPA) benchmark of 10(-6). Cumulative risks were dominated by formaldehyde and p-dichlorobenzene (p-DCB) and, to a lesser extent, by acetaldehyde, chloroform, and benzene. Exposure to all of these compounds except benzene was primarily due to indoor residential sources. Hispanics had statistically higher CCRs than did whites (p

  13. Stabilities and partitioning of arenonium ions in aqueous media.

    PubMed

    Lawlor, D A; More O'Ferrall, R A; Rao, S N

    2008-12-31

    The phenathrenonium ion is formed as a reactive intermediate in the solvolysis of 9-dichloroacetoxy-9,10-dihydrophenanthrene in aqueous acetonitrile and undergoes competing reactions with water acting as a base and nucleophile. Measurements of product ratios in the presence of azide ion as a trap and 'clock' yield rate constants kp = 3.7 x 10(10) and kH2O = 1.5 x 10(8) s(-1), respectively. Combining these with rate constants for the reverse reactions (protonation of phenanthrene and acid-catalyzed aromatization of its water adduct) gives equilibrium constants pKa = -20.9 and pK(R) = -11.6. For a series of arenonium and benzylic cations, correlation of log kp with pKa, taking account of the limit to kp set by the relaxation of water (10(11) s(-1)), leads to extrapolation of kp = 9.0 x 10(10) s(-1) and pKa = -24.5 for the benzenonium ion and kp = 6.5 x 10(10) s(-1) and pKa = -22.5 for the 1-naphthalenonium ion. Combining these pKa's with estimates of equilibrium constants pKH2O for the hydration of benzene and naphthalene, and the relationship pKR = pKa + pKH2O based on Hess's law, gives pKR = -2.3 and -8.0 respectively, and highlights the inherent stability of the benzenonium ion. A correlation exists between the partitioning ratio, kp/kH2O, for carbocations reacting in water and KH2O the equilibrium constant between the respective reaction products, i.e., log(kp/kH2O) = 0.46pKH2O - 3.7. It implies that kp exceeds kH2O only when KH2O > 10(8). This is consistent with the proton transfer (a) possessing a lower intrinsic reactivity than reaction of the carbocation with water as a nucleophile and (b) being rate-determining in the hydration of alkenes (and dehydration of alcohols) except when the double bond of the alkene is unusually stabilized, as in the case of aromatic molecules.

  14. Computational Toxicology of Chloroform: Reverse Dosimetry Using Bayesian Inference, Markov Chain Monte Carlo Simulation, and Human Biomonitoring Data

    PubMed Central

    Lyons, Michael A.; Yang, Raymond S.H.; Mayeno, Arthur N.; Reisfeld, Brad

    2008-01-01

    Background One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. Objectives We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of environmental chloroform source concentrations consistent with human biomonitoring data. The biomonitoring data consist of chloroform blood concentrations measured as part of the Third National Health and Nutrition Examination Survey (NHANES III), and for which no corresponding exposure data were collected. Methods We used a combined PBPK and shower exposure model to consider several routes and sources of exposure: ingestion of tap water, inhalation of ambient household air, and inhalation and dermal absorption while showering. We determined posterior distributions for chloroform concentration in tap water and ambient household air using U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) data as prior distributions for the Bayesian analysis. Results Posterior distributions for exposure indicate that 95% of the population represented by the NHANES III data had likely chloroform exposures ≤ 67 μg/L in tap water and ≤ 0.02 μg/L in ambient household air. Conclusions Our results demonstrate the application of computer simulation to aid in the interpretation of human biomonitoring data in the context of the exposure–health evaluation–risk assessment continuum. These results should be considered as a demonstration of the method and can be improved with the addition of more detailed data. PMID:18709138

  15. Hypericum grandifolium Choisy: a species native to Macaronesian Region with antidepressant effect.

    PubMed

    Sánchez-Mateo, C C; Bonkanka, C X; Rabanal, R M

    2009-01-21

    Various species of Hypericum genus have been used in the Canary Islands as sedative, diuretic, vermifuge, wound healing, antihysteric and antidepressant agent. Studies have shown that methanol extract of Hypericum grandifolium Choisy is active in tetrabenazine-induced ptosis and forced swimming tests. In the current study, the aqueous, butanol and chloroform fractions obtained from the methanol extract as well as three sub-fractions derived from the chloroform fraction were evaluated for their central nervous effects in mice, particularly their antidepressant activity. The central nervous effect of different fractions and sub-fractions of Hypericum grandifolium was evaluated in mice using various behavioural models including locomotor and muscle relaxant activity, forced swimming test, effect on normal body temperature, barbiturate-induced sleep, tetrabenazine-induced syndrome and 5-hydroxytryptohan-induced head twitches and syndrome. We found that the butanol and chloroform fractions and all sub-fractions showed an antidepressant effect in the forced swimming test, the chloroform fraction being the most active. They produced no effects or only a slight depression of locomotor activity. Chloroform fraction significantly increased the pentobarbital-induced sleeping time, produced a slight but significant hypothermia and antagonized tetrabenazine-induced ptosis, whereas the butanol fraction produced a slight potentiation of 5-HTP-induced head twitches and syndrome. The present results, together with previous pharmacological and phytochemical data, indicated that Hypericum grandifolium possess antidepressant-like effects in mice and that different constituents, such as the flavonoids and the benzophenone derivatives, could be responsible at least in part for the antidepressant effects observed for this species.

  16. Catalytic Upgrading of Thermochemical Intermediates to Hydrocarbons: Conversion of Lignocellulosic Feedstocks to Aromatic Fuels and High Value Chemicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cortright, Randy; Rozmiarek, Bob; Van Straten, Matt

    The principal objective of this project was to develop a fully integrated catalytic process that efficiently converts lignocellulosic feedstocks (e.g. bagasse, corn stover, and loblolly pine) into aromatic-rich fuels and chemicals. Virent led this effort with key feedstock support from Iowa State University. Within this project, Virent leveraged knowledge of catalytic processing of sugars and biomass to investigate two liquefaction technologies (Reductive Catalytic Liquefaction (USA Patent No. 9,212,320, 2015) and Solvolysis (USA Patent No. 9,157,030, 2015) (USA Patent No. 9,157,031, 2015)) that take advantage of proprietary catalysts at temperatures less than 300°C in the presence of unique solvent molecules generatedmore » in-situ within the liquefaction processes.« less

  17. Poly(ethylene terephthalate)-based carbons as electrode material in supercapacitors

    NASA Astrophysics Data System (ADS)

    Domingo-García, M.; Fernández, J. A.; Almazán-Almazán, M. C.; López-Garzón, F. J.; Stoeckli, F.; Centeno, T. A.

    A systematic study by complementary techniques shows that PET-waste from plastic vessels is a competitive precursor of carbon electrodes for supercapacitors. PET derived-activated carbons follow the general trends observed for highly porous carbons and display specific capacitances at low current density as high as 197 F g -1 in 2 M H 2SO 4 aqueous electrolyte and 98 F g -1 in the aprotic medium 1 M (C 2H 5) 4NBF 4/acetonitrile. Additionally, high performance has also been achieved at high current densities, which confirms the potential of this type of materials for electrical energy storage. A new method based on the basic solvolysis of PET-waste and the subsequent carbonization seems to be an interesting alternative to obtain porous carbons with enhanced properties for supercapacitors.

  18. Physiologically-based pharmacokinetic (PBPK) modeling of two binary mixtures: metabolic activation of carbon tetrachloride by trichloroethylene and metabolic inhibition of chloroform by trichloroethylene.

    EPA Science Inventory

    The interaction between trichloroethylene (TCE) and chloroform (CHCI3) has been described as less than additive, with co-exposure to TCE and CHC13 resulting in less hepatic and renal toxicity than observed with CHCl3 alone. In contrast, the nonadditive interaction between TCE and...

  19. Antimicrobial activity of Miconia species (Melastomataceae).

    PubMed

    Rodrigues, Juliana; Michelin, Danielle Carvalho; Rinaldo, Daniel; Zocolo, Guilherme Julião; dos Santos, Lourdes Campaner; Vilegas, Wagner; Salgado, Hérida Regina Nunes

    2008-03-01

    This work evaluated the antimicrobial activity of the methanol and chloroform extracts of the leaves of Miconia cabucu, Miconia rubiginosa, and Miconia stenostachya using the disc-diffusion method. The results obtained showed that the methanol extracts of the leaves of M. rubiginosa and M. stenostachya and the chloroform extract of the leaves of M. cabucu presented antimicrobial activity against the tested microorganisms.

  20. ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    EPA Science Inventory

    ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    Linskey, C.F.1, Harrison, R.A.2., Zhao, G.3., Barton, H.A., Lipscomb, J.C4., and Evans, M.V2., 1UNC, ESE, Chapel Hill, NC ; 2USEPA, ORD, NHEERL, RTP, NC; 3 UN...

  1. Ames and random amplified polymorphic DNA tests for the validation of the mutagenic and/or genotoxic potential of the drinking water disinfection by-products chloroform and bromoform.

    PubMed

    Khallef, Messaouda; Cenkci, Süleyman; Akyil, Dilek; Özkara, Arzu; Konuk, Muhsin; Benouareth, Djamel Eddine

    2018-01-28

    Chloroform and Bromoform are two abundant trihalomethanes found in Algerian drinking water. The investigation of the mutagenic hazard of these disinfection by-products was studied by Ames test as prokaryotic bioassay to show their mutagenic effects. For this, Salmonella typhimurium TA98 and TA100 strains were employed. Both chloroform and bromoform showed a direct mutagenic effect since the number of revertant colonies gradually increase in dose-dependent manner with all concentrations tested with the two bacterial strains and these were both in the absence and presence of S9 metabolic activation. The genotoxic hazard was also studied by random amplified polymorphic DNA test on the root cells of Allium cepa as eukaryotic bioassay. DNA extracted from the roots of the onion were incubated at different concentrations of chloroform and bromoform and then amplified by polymerase chain reaction. This was based on demonstrating a major effect of disappearance of bands compared to roots incubated in the negative control (distilled water). The results showed that these two compounds affected genomic DNA by breaks although by mutations.

  2. Effect of immersion chilling of broiler chicken carcasses in monochloramine on lipid oxidation and halogenated residual compound formation.

    PubMed

    Axtell, Stephen P; Russell, Scott M; Berman, Elliot

    2006-04-01

    This study was conducted to evaluate the effect of immersion chilling of broiler chicken carcasses in tap water (TAP) or TAP containing 50 ppm of monochloramine (MON) with respect to chloroform formation, total chlorine content, 2-thiobarbituric acid (TBA) values, and fatty acid profiles. Ten broiler chicken carcasses were chilled in TAP or MON for 6 h. After exposure, the carcasses were removed and cut in half along the median plane into right and left halves. After roasting the left halves, samples of the breast, thigh, and skin (with fat) were collected, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. The uncooked right halves of each carcass were stored at 4 degrees C for 10 days and then roasted. After roasting these right halves, samples of breast, thigh, and skin (with fat) were collected from each carcass half, subjected to fatty acid profiling, and assayed for chloroform, total chlorine, and TBA. There were no statistical differences between TAP- and MON-treated fresh or stored products with regard to chloroform levels, total chlorine content, TBA values, or fatty acid profiles.

  3. Antimicrobial and anti-inflammatory activities of Pleurostylia capensis Turcz (Loes) (celastraceae).

    PubMed

    Razwinani, Mapula; Tshikalange, Thilivhali Emmanuel; Motaung, Shirley C K M

    2014-01-01

    Pleurostylia capensis is a large tree that can reach the maximum height of 20 m long, and it have been traditionally used as cosmetic, for steam bath, ritual body wash, and as a purgative to treat symptoms of witchcraft. Using ethanol, chloroform, dichloromethane (DCM), ethyl acetate (EA), and water extracts, leaves, bark and roots of Pleurostylia capensis were investigated scientifically for their effectiveness in antimicrobial, antioxidant and anti-inflammatory activities using standard methods. The extracts were evaluated for antimicrobial activity against Gram positive (Staphylococcus aureus, Bacillus cereus, and Mycobacterium smegmatis), Gram negative (Escherichia coli, Klebsiella pneumonia, Klebsiella oxytoca, Streptococcus pyogenes, Pseudomonas aeruginosa and Salmonella typhimurium), and Candida albicans. The antioxidant activity was investigated using 2, 2-diphenlyl-1-picrylhadrazyl (DPPH), free radical scavenging assay. The anti-inflammatory activity of P. capensis extracts was evaluated against both cyclooxygenase enzymes (COX 1 and 2). The ethyl acetate extracts of P. capensis showed a strong antimicrobial activity against B. cereus, K. pneumonia, S. pyogenes, and M. smegmatis with MIC value of 0.39 and 0.78 mg/ml. While the ethanol bark extract was most active against M. smegmatis with MIC value of 0.78 mg/ml; the least potent activity was observed with dichloromethane, chloroform and water extracts, with an MIC value ranging from 1.56 mg/ml to 50.0 mg/ml. The plant extracts proved to be good antioxidant agent, whereas extracts of ethanol were the most active, with IC50 ranging from 1.00 to 1.74 µg/ml, which is lower, and in close range to Vitamin C (1.40 µg/ml). Its moderation to potent inhibitory activity was observed in all extracts. Ethanol and dichloromethane extracts were among the most potent when compared to water and petroleum ether extracts. The water extracts showed to be nontoxic on the Hek cell line with an IC50 value of 204.0, and 207.3 µg/ml (roots and bark) respectively. The dichloromethane, ethyl acetate, chloroform and ethanol extracts showed to be toxic on the Hek cell, with IC50 range from 5.94 to 42.91µg/ml. The results obtained indicate the effectiveness of these plants.

  4. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions.

    PubMed

    Belal, Tarek S; El-Kafrawy, Dina S; Mahrous, Mohamed S; Abdel-Khalek, Magdi M; Abo-Gharam, Amira H

    2016-02-15

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415nm. The fourth method involves the formation of a yellow complex peaking at 361nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Validated spectrophotometric methods for determination of sodium valproate based on charge transfer complexation reactions

    NASA Astrophysics Data System (ADS)

    Belal, Tarek S.; El-Kafrawy, Dina S.; Mahrous, Mohamed S.; Abdel-Khalek, Magdi M.; Abo-Gharam, Amira H.

    2016-02-01

    This work presents the development, validation and application of four simple and direct spectrophotometric methods for determination of sodium valproate (VP) through charge transfer complexation reactions. The first method is based on the reaction of the drug with p-chloranilic acid (p-CA) in acetone to give a purple colored product with maximum absorbance at 524 nm. The second method depends on the reaction of VP with dichlone (DC) in dimethylformamide forming a reddish orange product measured at 490 nm. The third method is based upon the interaction of VP and picric acid (PA) in chloroform resulting in the formation of a yellow complex measured at 415 nm. The fourth method involves the formation of a yellow complex peaking at 361 nm upon the reaction of the drug with iodine in chloroform. Experimental conditions affecting the color development were studied and optimized. Stoichiometry of the reactions was determined. The proposed spectrophotometric procedures were effectively validated with respect to linearity, ranges, precision, accuracy, specificity, robustness, detection and quantification limits. Calibration curves of the formed color products with p-CA, DC, PA and iodine showed good linear relationships over the concentration ranges 24-144, 40-200, 2-20 and 1-8 μg/mL respectively. The proposed methods were successfully applied to the assay of sodium valproate in tablets and oral solution dosage forms with good accuracy and precision. Assay results were statistically compared to a reference pharmacopoeial HPLC method where no significant differences were observed between the proposed methods and reference method.

  6. Rydberg states of chloroform studied by VUV photoabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Param Jeet; Shastri, Aparna; D'Souza, R.; Jagatap, B. N.

    2013-11-01

    The VUV photoabsorption spectra of CHCl3 and CDCl3 in the energy region 6.2-11.8 eV (50,000-95,000 cm-1) have been investigated using synchrotron radiation from the Indus-1 source. Rydberg series converging to the first four ionization limits at 11.48, 11.91, 12.01 and 12.85 eV corresponding to excitation from the 1a2, 4a1, 4e, 3e, orbitals of CHCl3 respectively are identified and analyzed. Quantum defect values are observed to be consistent with excitation from the chlorine lone pair orbitals. Vibrational progressions observed in the region of 72,500-76,500 cm-1 have been reassigned to ν3 and combination modes of ν3+ν6 belonging to the 1a2→4p transition in contrast to earlier studies where they were assigned to a ν3 progression superimposed on the 3e→4p Rydberg transition. The assignments are further confirmed based on isotopic substitution studies on CDCl3 whose VUV photoabsorption spectrum is reported here for the first time. The frequencies of the ν3 and ν6 modes in the 4p Rydberg state of CHCl3 (CDCl3) are proposed to be ~454 (409) cm-1 and~130 (129) cm-1 respectively based on the vibronic analysis. DFT calculations of neutral and ionic ground state vibrational frequencies support the vibronic analysis. Experimental spectrum is found to be in good agreement with that predicted by TDDFT calculations. This work presents a consolidated analysis of the VUV photoabsorption spectrum of chloroform.

  7. Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation.

    PubMed

    Gutarra, Melissa L E; Godoy, Mateus G; Maugeri, Francisco; Rodrigues, Maria Isabel; Freire, Denise M G; Castilho, Leda R

    2009-11-01

    The production of a lipase by a wild-type Brazilian strain of Penicillium simplicissimum in solid-state fermentation of babassu cake, an abundant residue of the oil industry, was studied. The enzyme production reached about 90 U/g in 72 h, with a specific activity of 4.5 U/mg of total proteins. The crude lipase showed high activities at 35-60 degrees C and pH 4.0-6.0, with a maximum activity at 50 degrees C and pH 4.0-5.0. Enzyme stability was enhanced at pH 5.0 and 6.0, with a maximum half-life of 5.02 h at 50 degrees C and pH 5.0. Thus, this lipase shows a thermophilic and thermostable behavior, what is not common among lipases from mesophilic filamentous fungi. The crude enzyme catalysed the hydrolysis of triglycerides and p-nitrophenyl esters (C4:0-C18:0), preferably acting on substrates with medium-chain fatty acids. This non-purified lipase in addition to interesting properties showed a reduced production cost making feasible its applicability in many fields.

  8. Effect of low frequency, low amplitude magnetic fields on the permeability of cationic liposomes entrapping carbonic anhydrase: I. Evidence for charged lipid involvement.

    PubMed

    Ramundo-Orlando, A; Morbiducci, U; Mossa, G; D'Inzeo, G

    2000-10-01

    The influence of low frequency (4-16 Hz), low amplitude (25-75 mu T) magnetic fields on the diffusion processes in enzyme-loaded unilamellar liposomes as bioreactors was studied. Cationic liposomes containing dipalmitoylphosphatidylcholine, cholesterol, and charged lipid stearylamine (SA) at different molar ratios (6:3:1 or 5:3:2) were used. Previous kinetic experiments showed a very low self-diffusion rate of the substrate p-nitrophenyl acetate (p-NPA) across intact liposome bilayer. After 60 min of exposure to 7 Hz sinusoidal (50 mu T peak) and parallel static (50 mu T) magnetic fields the enzyme activity, as a function of increased diffusion rate of p-NPA, rose from 17 +/- 3% to 80 +/- 9% (P < .0005, n = 15) in the 5:3:2 liposomes. This effect was dependent on the SA concentration in the liposomes. Only the presence of combined sinusoidal (AC) and static (DC) magnetic fields affected the p-NPA diffusion rates. No enzyme leakage was observed. Such studies suggest a plausible link between the action of extremely low frequency magnetic field on charged lipids and a change of membrane permeability. Copyright 2000 Wiley-Liss, Inc.

  9. ORGANOPHOSPHORUS HYDROLASE-BASED AMPEROMETRIC SENSOR: MODULATION OF SENSITIVITY AND SUBSTRATE SELECTIVITY

    EPA Science Inventory

    The detection of organophosphate (OP) insecticides with nitrophenyl substituents is reported using an enzyme electrode composed of Organophosphorus Hydrolase (OPH) and albumin co-immobilized to a nylon net and attached to a carbon paste electrode. The mechanism for this biosen...

  10. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    PubMed

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  11. Preparation, spectral, X-ray powder diffraction and computational studies and genotoxic properties of new azo-azomethine metal chelates

    NASA Astrophysics Data System (ADS)

    Bitmez, Şirin; Sayin, Koray; Avar, Bariş; Köse, Muhammet; Kayraldız, Ahmet; Kurtoğlu, Mükerrem

    2014-11-01

    A new tridentate azo-azomethine ligand, N‧-[{2-hydroxy-5-[(4-nitrophenyl)diazenyl]phenyl}methylidene]benzohydrazidemonohydrate, (sbH·H2O) (1), is prepared by condensation of benzohydrazide and 2-hydroxy-5-[(4-nitrophenyl)diazenyl]benzaldehyde (a) with treatment of a solution of diazonium salt of p-nitroaniline and 2-hydroxybenzaldehyde in EtOH. The five coordination compounds, [Co(sb)2]·4H2O (2), [Ni(sb)2]·H2O (3), [Cu(sb)2]·4H2O (4), [Zn(sb)2]·H2O (5) and [Cd(sb)2]·H2O (6) are prepared by reacting the Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) ions with the ligand. The structures of the compounds are elucidated from the elemental analyses data and spectroscopic studies. It is found the ligand acts as a tridentate bending through phenolic and carbonyl oxygens and nitrogen atom of the Cdbnd Nsbnd group similar to the most of salicylaldimines. Comparison of the infrared spectra of the ligand and its metal complexes confirm that azo-Schiff base behaves as a monobasic tridentate ligand towards the central metal ion with an ONO donor sequence. Upon complexation with the ligand, the Cd(II), and Zn(II) ions form monoclinic structures, while Co(II), Cu(II) and Ni(II) ions form orthorhombic structures. Quantum chemical calculations are performed on tautomers and its metal chelates by using DFT/B3LYP method. Most stable tautomer is determined as tautomer (1a). The geometrical parameters of its metal chelates are obtained as theoretically. The NLO properties of tautomer (1a) and its metal complexes are investigated. Finally, the ligand and its metal complexes are assessed for their genotoxicity.

  12. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    PubMed Central

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-01-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods. PMID:26640089

  13. Tuning the properties of polyhydroxybutyrate films using acetic acid via solvent casting

    NASA Astrophysics Data System (ADS)

    Anbukarasu, Preetam; Sauvageau, Dominic; Elias, Anastasia

    2015-12-01

    Biodegradable polyhydroxybutyrate (PHB) films were fabricated using acetic acid as an alternative to common solvents such as chloroform. The PHB films were prepared using a solvent casting process at temperatures ranging from 80 °C to 160 °C. The crystallinity, mechanical properties and surface morphology of the films cast at different temperatures were characterized and compared to PHB films cast using chloroform as a solvent. Results revealed that the properties of the PHB film varied considerably with solvent casting temperature. In general, samples processed with acetic acid at low temperatures had comparable mechanical properties to PHB cast using chloroform. This acetic acid based method is environmentally friendly, cost efficient and allows more flexible processing conditions and broader ranges of polymer properties than traditional methods.

  14. Anti-angiogenic activity of Entada africana root.

    PubMed

    Germanò, Maria Paola; Certo, Giovanna; D'Angelo, Valeria; Sanogo, Rokia; Malafronte, Nicola; De Tommasi, Nunziatina; Rapisarda, Antonio

    2015-01-01

    Entada africana roots are used in African traditional medicine for various diseases including inflammation. This application may be mediated through anti-angiogenic effects. Thus, in this study the anti-angiogenic activity of E. africana root extracts (n-hexane, chloroform, chloroform/methanol and methanol) was preliminarily evaluated by the quantitative determination of endogenous alkaline phosphatase in zebrafish embryos. A bioactivity-guided fractionation of chloroform/methanol extract yielded apigenin and robinetin as the main constituents from the most active fractions. In addition, a marked reduction on capillary formation was evidenced in chick chorioallantoic membrane after treatment with the active fractions or isolated compounds. Results obtained in this study suggest that the anti-angiogenic effects of E. africana root may account for its use in inflammatory diseases and other related pathological conditions.

  15. Binding of Nitrodiphenylamines to Reverse Micelles of AOT in n-Hexane and Carbon Tetrachloride: Solvent and Substituent Effects.

    PubMed

    Correa; Durantini; Silber

    1998-12-01

    The absorption spectra of N-[2-(trifluoromethyl)-4-nitrophenyl]-4-nitroaniline (1), N-[4-nitrophenyl]-4-nitroaniline (2), and N-[2-nitrophenyl]-4-nitroaniline (3) were analyzed in reversed micelles of AOT (sodium 1,4-bis (2-ethylhexyl sulfosuccinate) in n-hexane and carbon tetrachloride. For 1 and 2 the intensity of the band characteristic for the pure solvent decreases as the AOT concentration increases and a new band develops. This new band is attributed to the solute bound to the micelle. These changes allowed us to determine the binding constant (Kb) between these compounds and AOT. Kb at W0 = [H2O]/[AOT] = 0 in n-hexane varies from 81 for 1 to 5092 for 2. Although similar trends are observed for carbon tetrachloride, the values of Kb are smaller than those for n-hexane. The possible solute-solvent interactions of these compounds were analyzed by means of Taft and Kamlet's solvatochromic comparison method. The strength of binding is interpreted considering their hydrogen-bond donor ability as well as their solubility in the pure solvents. For 1 Kb decreases as W0 is increased, while for 2 no variation was observed. These effects are discussed in terms of nitrodiphenylamine-water competition for interfacial binding sites. Moreover, the effect of the solute size and the presence of the trifluoromethyl group in 1 are important factors to consider in explaining its binding behavior. The spectra of 3 change very little with AOT concentration and only a slight bathochromic shift is observed. Thus, 3 acts as nonhydrogen bond donor solute, merely sensing a slight change in the polarity of its microenvironment. Copyright 1998 Academic Press.

  16. Competition between roots and microorganisms for phosphorus: A novel 33P labeling approach

    NASA Astrophysics Data System (ADS)

    Zilla, Thomas; Kuzyakov, Yakov; Zavišiæ, Aljoša; Polle, Andrea

    2015-04-01

    While organic N mineralization exhibits clear seasonal uptake dynamics, knowledge about seasonal variation in microbial P uptake and mineralization is scarce. We hypothesize that the dynamics of P uptake and mineralization by microorganisms in temperate forest soils exhibit a seasonality anti-cyclic to plant P uptake. Therefore, the ratio of microbial P to labile P increases by the transition from acquiring ecosystems (in spring) to recycling ones (in fall). To investigate this, intact soil-plant mesocosms containing Ah horizon with 1 year old F. sylvatica were removed from the P-rich field site Bad Brueckenau and the P-depleted field site Luess in Germany. During incubation under controlled conditions, seasonal pulse labeling by 33P-orthophosphate was performed at 5 time points over the course of one year. 33P recovery in microbial compounds of organic and mineral soil horizons was determined 7 and 30 days after the labeling. This procedure will account for temporal changes in P allocation and also considers the rather slow P transport from the mycorrhiza into the plants and other microorganisms. For the first time we analyzed the 33P incorporation into total PLFA and consequently provide a new technique for the analysis of P uptake by microorganisms, which has clear advantages compared to P quantification after chloroform fumigation. Polar lipids are hereby extracted with a Frostegård-modified Bligh-and-Dyer buffer, i.e. a single phase mixture of chloroform, methanol and citrate buffer (0.8:1:2, v:v:v). Phospholipids (PLFA) are isolated and purified by solid phase extraction via a silica gel column chromatography. Subsequently, PLFA are hydrolyzed and the resulting fatty acids derivatized by methylation. The fatty acid methyl esters were extracted with n-hexane and measured by GC/MS to investigate the composition of the microbial community. The remaining extract, containing head groups, phosphate units and glycerol backbones, was used to determine 33P activity and recovery in the microbial membrane lipids with a multi-purpose scintillation counter. This approach offers the unique possibility to quantify P fluxes through the microbial network. For the first time, P cycling can be linked to changes in microbial community structure and activity in soils in situ.

  17. Creech Air Force Base Resort Property in Indian Springs, Nevada. Environmental Baseline Survey Report

    DTIC Science & Technology

    2011-04-01

    ADDRESS DARLISH ASSOCIATES L P %R BECKER P 0 BOX 537 INDIAN SPRINGS NV 89018-0537 LOC ~HQr-I_~_!)J)_RESSCITY /TOWNSHifl 230 E US HVvY 9S NORTH...0 2 2 ss 36 56 36 60 60 Gl. 6l 󈨔 so lreQ: lEO ~~g 1lt’-.; 235 41? 415 517 51?’ . ;tiOC 600 ·GlO- 610 6l.J. 611 620 LOG OJ...Chloroethane Chloroform 5 ug/Kg 11119/10 NZ 5 ug!Kg 11119110 NZ ---------------’-’N.:::D~L_ __ ~-=C::.:h.:.: loc .:ro::m:::e:.:thc::a:::n::.e

  18. SEPARATION OF PLUTONIUM FROM LANTHANUM BY CHELATION-EXTRACTION

    DOEpatents

    James, R.A.; Thompson, S.G.

    1958-12-01

    Plutonium can be separated from a mixture of plutonlum and lanthanum in which the lanthanum to plutonium molal ratio ls at least five by adding the ammonium salt of N-nitrosoarylhydroxylamine to an aqueous solution having a pH between about 3 and 0.2 and containing the plutonium in a valence state of at least +3, to form a plutonium chelate compound of N-nitrosoarylhydroxylamine. The plutonium chelate compound may be recovered from the solution by extracting with an immiscible organic solvent such as chloroform.

  19. Riot Control Agent Decontamination: Evaluation of Commercial Products

    DTIC Science & Technology

    1983-06-01

    yellow crystals, m.p. 72 to 73 0 C. CN (phenacyl chloride ) was obtained from commercial sources and used without further purification. To evaluate the...vial. After waiting a suitable length of time, 1.00 ml of chloroform and ca. 100 mg of sodiur-i chloride were added to the vial and the mixture shaken...been employed in the quantitation of the same. It was initially thought that dithionite was promoting the reduction of the cyano gros in CS to amines

  20. Selective biotinylation of Neisseria meningitidis group B capsular polysaccharide and application in an improved ELISA for the detection of specific antibodies.

    PubMed

    Diaz Romero, J; Outschoorn, I

    1993-03-15

    A method is described for the selective biotinylation of meningococcal capsular polysaccharide from Neisseria meningitidis group B and its application to an enzyme-linked immunoabsorbent assay (ELISA) to detect specific antibodies by immobilization on streptavidin-coated microtiter wells. Capsular polysaccharide from Neisseria meningitidis B has been biotinylated by specific periodate oxidation of terminal residues and condensation of the resulting aldehydes with biotin hydrazide, using a spin-column technique in the intermediate purification steps. The ELISA was optimized employing an extended reaction time between the label alkaline phosphatase and its most common substrate, p-nitrophenyl phosphate, together with evaluation of blocking agents to minimize non-specific binding. Specificity was demonstrated by a direct competitive enzyme immunoassay (EIA).

  1. Further kinetic and molecular characterization of an extremely heat-stable carboxylesterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Sobek, H; Görisch, H

    1989-01-01

    The carboxylesterase (serine esterase, EC 3.1.1.1) from Sulfolobus acidocaldarius was purified 940-fold to homogeneity by an improved purification procedure with a yield of 57%. In the presence of alcohols the enzyme catalyses the transfer of the substrate acyl group to alcohols in parallel to hydrolysis. The results show the existence of an alcohol-binding site and a competitive partitioning of the acyl-enzyme intermediate between water and alcohols. Aniline acts also as a nucleophilic acceptor for the acyl group. On the basis of titration with diethyl p-nitrophenyl phosphate, a number of four active centres is determined for the tetrameric carboxylesterase. The sequence of 20 amino acid residues at the esterase N-terminus and the amino acid composition are reported. PMID:2508625

  2. Evaluation of the effectiveness factor along immobilized enzyme fixed-bed reactors: design of a reactor with naringinase covalently immobilized into glycophase-coated porous glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manjon, A.; Iborra, J.L.; Gomez, J.L.

    A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentallymore » measured values. (Refs. 28).« less

  3. Toward hypoxia-selective rhenium and technetium tricarbonyl complexes.

    PubMed

    North, Andrea J; Hayne, David J; Schieber, Christine; Price, Katherine; White, Anthony R; Crouch, Peter J; Rigopoulos, Angela; O'Keefe, Graeme J; Tochon-Danguy, Henri; Scott, Andrew M; White, Jonathan M; Ackermann, Uwe; Donnelly, Paul S

    2015-10-05

    With the aim of preparing hypoxia-selective imaging and therapeutic agents, technetium(I) and rhenium(I) tricarbonyl complexes with pyridylhydrazone, dipyridylamine, and pyridylaminocarboxylate ligands containing nitrobenzyl or nitroimidazole functional groups have been prepared. The rhenium tricarbonyl complexes were synthesized with short reaction times using microwave irradiation. Rhenium tricarbonyl complexes with deprotonated p-nitrophenyl pyridylhydrazone ligands are luminescent, and this has been used to track their uptake in HeLa cells using confocal fluorescent microscopy. Selected rhenium tricarbonyl complexes displayed higher uptake in hypoxic cells when compared to normoxic cells. A (99m)Tc tricarbonyl complex with a dipyridylamine ligand bearing a nitroimidazole functional group is stable in human serum and was shown to localize in a human renal cell carcinoma (RCC; SK-RC-52) tumor in a mouse.

  4. Application of the Novel 5-chloro-2,2,3,3,4,4,5,5-octafluoro-1-pentyl Chloroformate Derivatizing Agent for the Direct Determination of Highly Polar Water Disinfection Byproducts

    EPA Science Inventory

    A novel derivatizing agent, 5-chloro-2,2,3,3,4,4,5,5-octafluoropentyl chloroformate (ClOFPCF), was synthesized and tested as a reagent for direct water derivatization of highly polar and hydrophilic analytes. Its analytical performance satisfactorily compared to a perfluorinated ...

  5. In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta

    PubMed Central

    2012-01-01

    Background Following claims that some plants have antimicrobial activities against infectious microbes, the in vitro antimicrobial activities of different solvent fractions of ethanolic extract of Cryptolepis sanguinolenta were evaluated against eight standard bacteria and clinical isolates. Methods The solvent partitioning protocol involving ethanol, petroleum ether, chloroform, ethyl acetate and water, was used to extract various fractions of dried pulverized Cryptolepis sanguinolenta roots. Qualitative phyto-constituents screening was performed on the ethanol extract, chloroform fraction and the water fraction. The Kirby Bauer disk diffusion method was employed to ascertain the antibiogram of the test organisms while the agar diffusion method was used to investigate the antimicrobial properties of the crude plant extracts. The microplate dilution method aided in finding the MICs while the MBCs were obtained by the method of Nester and friends. The SPSS 16.0 version was used to analyze the percentages of inhibitions and bactericidal activities. Results The phytochemical screening revealed the presence of alkaloids, reducing sugars, polyuronides, anthocyanosides and triterpenes. The ethanol extract inhibited 5 out of 8 (62.5%) of the standard organisms and 6 out of 8 (75%) clinical isolates. The petroleum ether fraction inhibited 4 out of 8 (50%) of the standard microbes and 1 out of 8 (12.5%) clinical isolates. It was also observed that the chloroform fraction inhibited the growth of all the organisms (100%). Average inhibition zones of 14.0 ± 1.0 mm to 24.67 ± 0.58 mm was seen in the ethyl acetate fraction which halted the growth of 3 (37.5%) of the standard organisms. Inhibition of 7 (87.5%) of standard strains and 6 (75%) of clinical isolates were observed in the water fraction. The chloroform fraction exhibited bactericidal activity against all the test organisms while the remaining fractions showed varying degrees of bacteriostatic activity. Conclusion The study confirmed that fractions of Cryptolepis sanguinolenta have antimicrobial activity. The chloroform fraction had the highest activity, followed by water, ethanol, petroleum ether and ethyl acetate respectively. Only the chloroform fraction exhibited bactericidal activity and further investigations are needed to ascertain its safety and prospects of drug development. PMID:22709723

  6. Biodegradation of disinfection byproducts as a potential removal process during aquifer storage recovery

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.; Thomas, J.M.

    2000-01-01

    The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of tri-halomethanes in drinking water.The biodegradation potential of two drinking water disinfection byproducts was investigated using aquifer materials obtained from approximately 100 and 200 meters below land surface in an aerobic aquifer system undergoing aquifer storage recovery of treated surface water. No significant biodegradation of a model trihalomethane compound, chloroform, was observed in aquifer microcosms under aerobic or anaerobic conditions. In contrast, between 16 and 27 percent mineralization of a radiolabeled model haloacetic acid compound, chloroacetic acid, was observed. These results indicate that although the potential for biodegradation of chloroacetic acid exists in deep aquifer systems, chloroform entrained within these aquifers or formed in situ will tend to persist. These results have important implications for water managers planning to meet anticipated lowered permissible levels of trihalomethanes in drinking water.Aquifer-storage-recovery injection water often contains disinfection byproducts. Results are presented from a study in which two model disinfection byproducts, chloroform and chloroacetic acid, were used to examine biodegradation by indigenous microorganisms. The recharge system studied was near Las Vegas, NV, where the aquifers are recharged artificially during the winter months. Microcosms were constructed using aquifer material recovered from two layers. Results showed that no significant biodegradation of chloroform occurred under aerobic or anaerobic conditions, but chloroacetic acid was biodegraded under both aerobic and anaerobic conditions.

  7. Biotransformation of 2-Benzoxazolinone and 2-Hydroxy-1,4-Benzoxazin-3-one by Endophytic Fungi Isolated from Aphelandra tetragona

    PubMed Central

    Zikmundová, M.; Drandarov, K.; Bigler, L.; Hesse, M.; Werner, C.

    2002-01-01

    The biotransformation of the phytoanticipins 2-benzoxazolinone (BOA) and 2-hydroxy-1,4-benzoxazin-3-one (HBOA) by four endophytic fungi isolated from Aphelandra tetragona was studied. Using high-performance liquid chromatography-mass spectrometry, several new products of acylation, oxidation, reduction, hydrolysis, and nitration were identified. Fusarium sambucinum detoxified BOA and HBOA to N-(2-hydroxyphenyl)malonamic acid. Plectosporium tabacinum, Gliocladium cibotii, and Chaetosphaeria sp. transformed HBOA to 2-hydroxy-N-(2-hydroxyphenyl)acetamide, N-(2-hydroxyphenyl)acetamide, N-(2-hydroxy-5-nitrophenyl)acetamide, N-(2-hydroxy-3-nitrophenyl)acetamide, 2-amino-3H-phenoxazin-3-one, 2-acetylamino-3H-phenoxazin-3-one, and 2-(N-hydroxy)acetylamino-3H-phenoxazin-3-one. BOA was not degraded by these three fungal isolates. Using 2-hydroxy-N-(2-hydroxyphenyl)[13C2]acetamide, it was shown that the metabolic pathway for HBOA and BOA degradation leads to o-aminophenol as a key intermediate. PMID:12324332

  8. Electrical conductivity and dielectric relaxation of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile

    NASA Astrophysics Data System (ADS)

    El-Menyawy, E. M.; Zedan, I. T.; Nawar, H. H.

    2014-03-01

    The electrical and dielectric properties of the synthesized 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile (AHNA) have been studied. The direct and alternating current (DC and AC) conductivities and complex dielectric constant were investigated in temperature range 303-403 K. The AC conductivity and dielectric properties of AHNA were investigated over frequency range 100 Hz-5 MHz. From DC and AC measurements, electrical conduction is found to be a thermally activated process. The frequency-dependent AC conductivity obeys Jonscher's universal power law in which the frequency exponent decreases with increasing temperature. The correlated barrier hopping (CBH) is the predominant model for describing the charge carrier transport in which the electrical parameters are evaluated. The activation energy is found to decrease with increasing frequency. The behaviors of dielectric and dielectric loss are discussed in terms of a polarization mechanism. The dielectric loss shows frequency power law from which the maximum barrier height is determined as 0.19 eV in terms of the Guintini model.

  9. Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte.

    PubMed Central

    Blitzer, B L; Boyer, J L

    1978-01-01

    The enzyme Na+,5+-ATPase was cytochemically localized in the rat hepatocyte by a modification of the Ernst potassium-dependent nitrophenyl phosphatase technique. Measurement of nitrophenol release from 50-micrometer liver slices confirmed the presence of ouabain-inhibitable nitrophenyl phosphatase activity that increased over the 30-min incubation period. Electron micrographs demonstrated that sinusoidal and lateral membrane reaction product deposition was K+-dependent, Mg++-dependent, inhibited by ouabain but not by alkaline phosphatase inhibitors, and was localized to the cytoplasmic side of the membrane. In contrast, canalicular reaction product was K+-independent, Mg++-dependent, inhibited by alkaline phosphatase inhibitors but not by ouabain, and was localized to the luminal side of the membrane. These findings indicate that Na+,K+-ATPase is localized to the sinusoidal and lateral portions of the rat hepatocyte plasma membrane and is not detectable on the bile canaliculus where alkaline phosphatase is confined. This basolateral localization of Na+,K+-ATPase is similar to that found in epithelia where secretion is also directed across the apical membrane. Images PMID:213446

  10. [Pressure-reducing effect of latanoprost 0.005%].

    PubMed

    Albach, C; Wachsmuth, E D; Velte, K; Dekker, P; Robert, Y

    1998-05-01

    Earlier studies in monkeys have shown that latanoprost 0.005% lowers the IOP by improving the uveoscleral Outflow. We wanted to know if this is also the case in the human eye. We used our new aqueous humor outflow test with 2-nitrophenyl-acetate in 9 healthy human volunteers, mean age 32 +/- 8.3 years. They were measured before and 12 h after receiving one drop of latanoprost 0.005% in one eye, randomly chosen. The ocular Photometer was used to quantify the disappearance of the dye out of the anterior chamber. The half-life time of the dye is shortened after latanoprost 0.005%. It is significantly correlated to the pressure lowering effect of latanoprost 0.005% (r2 = 0.5968). The dye-dilution technique proves that latanoprost 0.005% influences the outflow of the human eye. The better the outflow, the greater the pressure drop in the eye. The experiment nicely shows that photometric quantification of 2-nitrophenyl-acetate is a simple, reliable test for the knowledge of the aqueous humor outflow.

  11. Synthesis, characterization, and pharmacological studies of ferrocene-1H-1,2,3-triazole hybrids

    NASA Astrophysics Data System (ADS)

    Haque, Ashanul; Hsieh, Ming-Fa; Hassan, Syed Imran; Haque Faizi, Md. Serajul; Saha, Anannya; Dege, Necmi; Rather, Jahangir Ahmad; Khan, Muhammad S.

    2017-10-01

    A series of ferrocene-1H-1,2,3-triazole hybrids namely 1-(4-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (1), 1-(4,4‧-dinitro-2-biphenyl)-4-ferrocenyl-1H-1,2,3-triazole (2), 1-(3-chloro-4-fluorophenyl)-4-ferrocenyl-1H-1,2,3-triazole (3), 1-(4-bromophenyl)-4-ferrocenyl-1H-1,2,3-triazole (4) and 1-(2-nitrophenyl)-4-ferrocenyl-1H-1,2,3-triazole (5) were designed and synthesized by copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction. All the new hybrids were characterized by microanalyses, NMR (1H and 13C), UV-vis, IR, ESI-MS and electrochemical techniques. Crystal structure of the compound (3) was solved by single crystal X-ray diffraction method. The structural (single crystal) and spectroscopic (UV-Vis. and IR) properties of the compound 3 have been analyzed and compared by complementary quantum modeling. Hybrids 1-5 exhibited low toxicity and demonstrated neuroprotective effect.

  12. Fabrication of microtemplates for the control of bacterial immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyahara, Yasuhiro; Mitamura, Koji; Saito, Nagahiro

    2009-09-15

    The authors described a region-selective immobilization methods of bacteria by using superhydrophobic/superhydrophilic and superhydrophobic/poly(ethylene glycol) (PEG) micropatterns for culture scaffold templates. In the case of superhydrophobic/superhydrophilic micropatterns, the superhydrophobic surface was prepared first by microwave-plasma enhanced chemical vapor deposition (MPECVD) from trimethylmethoxysilane. Then the superhydrophilic regions were fabricated by irradiating the superhydrophobic surface with vuv light through a stencil mask. In the case of the superhydrophobic/PEG micropatterned surfaces, PEG surfaces were fabricated first by chemical reaction of ester groups of p-nitrophenyl PEG with NH{sub 2} group of NH{sub 2}-terminated self assembled monolayer from n-6-hexyl-3-aminopropyltrimethoxysilane. The superhydrophobic regions were fabricated bymore » MPECVD thorough a stencil mask. In this study four bacteria were selected from viewpoint of peptidoglycan cell wall (E. coli versus B. subtilis), extracellular polysaccharide (E.coli versus P. stutzeri, P. aeruginosa), and growth rate (P. stutzeri versus P. aeruginosa). The former micropattern brought discrete adhesions of E. coli and B. subtilis specifically on the hydrophobic regions, Furthermore, using the superhydrophobic/PEG micropattern, adhesion of bacteria expanded for E. coli, B. subtilis, P. stutzeri, and P. aeruginosa. They observed a high bacterial adhesion onto superhydrophobic surfaces and the inhibitive effect of bacterial adhesion on PEG surfaces.« less

  13. Halogenated volatile organic compounds in chlorine-bleach-containing household products and implications for their use

    NASA Astrophysics Data System (ADS)

    Odabasi, Mustafa; Elbir, Tolga; Dumanoglu, Yetkin; Sofuoglu, Sait C.

    2014-08-01

    It was recently shown that substantial amounts of halogenated volatile organic compounds (VOCs) are formed in chlorine-bleach-containing household products as a result of reactions of sodium hypochlorite with organic product components. Use of these household products results in elevated indoor air halogenated VOC concentrations. Halogenated VOCs in several chlorine-bleach-containing household products (plain, n = 9; fragranced, n = 4; and surfactant-added, n = 29) from Europe and North America were measured in the present study. Chloroform and carbon tetrachloride were the dominating compounds having average concentrations of 9.5 ± 29.0 (average ± SD) and 23.2 ± 44.3 (average ± SD) mg L-1, respectively. Halogenated VOC concentrations were the lowest in plain bleach, slightly higher in fragranced products and the highest in the surfactant-added products. Investigation of the relationship between the halogenated VOCs and several product ingredients indicated that chlorinated VOC formation is closely related to product composition. Indoor air concentrations from the household use of bleach products (i.e., bathroom, kitchen, and hallway cleaning) were estimated for the two dominating VOCs (chloroform and carbon tetrachloride). Estimated indoor concentrations ranged between 0.5 and 1030 (34 ± 123, average ± SD) μg m-3 and 0.3-1124 (82 ± 194, average ± SD) μg m-3 for chloroform and carbon tetrachloride, respectively, indicating substantial increases compared to background. Results indicated that indoor air concentrations from surfactant-added products were significantly higher (p < 0.01) than other categories. The highest concentrations were from the use of surfactant-added bleach products for bathroom cleaning (92 ± 228 and 224 ± 334 μg m-3, average ± SD for chloroform and carbon tetrachloride, respectively). Associated carcinogenic risks from the use of these products were also estimated. The risk levels may reach to considerably high levels for a significant portion of the population especially for those steadily using the surfactant-added bleach products. Based on the results of the present study, it could be recommended that if possible the use of chlorine bleach containing household products should be avoided. If they are to be used, plain products should be preferred since the chlorinated VOC content increase with the number and amount of additives.

  14. Purification and characterization of protein phosphatase 2A from petals of the tulip Tulipa gesnerina.

    PubMed

    Azad, Md Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi

    2006-11-30

    The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748- fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

  15. Hydrolytic catalysis and structural stabilization in a designed metalloprotein

    PubMed Central

    Zastrow, Melissa L.; Peacock, Anna F. A.; Stuckey, Jeanne A.; Pecoraro, Vincent L.

    2011-01-01

    Metal ions are an important part of many natural proteins, providing structural, catalytic and electron transfer functions. Reproducing these functions in a designed protein is the ultimate challenge to our understanding of them. Here, we present an artificial metallohydrolase, which has been shown by X-ray crystallography to contain two different metal ions – a Zn(II) ion which is important for catalytic activity and a Hg(II) ion which provides structural stability. This metallohydrolase displays catalytic activity that compares well with several characteristic reactions of natural enzymes. It catalyses p-nitrophenyl acetate hydrolysis (pNPA) to within ~100-fold of the efficiency of human carbonic anhydrase (CA)II and is at least 550-fold better than comparable synthetic complexes. Similarly, CO2 hydration occurs with an efficiency within ~500-fold of CAII. While histidine residues in the absence of Zn(II) exhibit pNPA hydrolysis, miniscule apopeptide activity is observed for CO2 hydration. The kinetic and structural analysis of this first de novo designed hydrolytic metalloenzyme uncovers necessary design features for future metalloenzymes containing one or more metals. PMID:22270627

  16. Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides

    PubMed Central

    Ikezoe, Yasuhiro; Pike, Douglas H.; Nanda, Vikas; Matsui, Hiroshi

    2016-01-01

    Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality. PMID:27116246

  17. Molecular self-assembly strategy for generating catalytic hybrid polypeptides

    DOE PAGES

    Maeda, Yoshiaki; Fang, Justin; Ikezoe, Yasuhiro; ...

    2016-04-26

    Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β- sheets and amyloidmore » fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. Furthermore, the enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.« less

  18. Lipase from liver of seabass (Lates calcarifer): Characteristics and the use for defatting of fish skin.

    PubMed

    Sae-Leaw, Thanasak; Benjakul, Soottawat

    2018-02-01

    Lipase from liver of seabass (Lates calcarifer), with a molecular weight of 60kDa, was purified to homogeneity using ammonium sulfate precipitation and a series of chromatographies, including diethylaminoethyl sepharose (DEAE) and Sephadex G-75 size exclusion columns. The optimal pH and temperature were 8.0 and 50°C, respectively. Purified lipase had Michaelis-Menten constant (K m ) and catalytic constant (k cat ) of 0.30mM and 2.16s -1 , respectively, when p-nitrophenyl palmitate (p-NPP) was used as the substrate. When seabass skin was treated with crude lipase from seabass liver at various levels (0.15 and 0.30units/g dry skin) for 1-3h at 30°C, the skin treated with lipase at 0.30 units/g dry skin for 3h had the highest lipid removal (84.57%) with lower lipid distribution in skin. Efficacy in defatting was higher than when isopropanol was used. Thus, lipase from liver of seabass could be used to remove fat in fish skin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Toxigenic aspergilli and penicillia isolated from aged, cured meats.

    PubMed

    Wu, M T; Ayres, J C; Koehler, P E

    1974-12-01

    Eighty-nine cultures of Aspergillus and 54 cultures of Penicillium isolated from aged, cured meats were tested for toxicity to chicken embryos. Two of 22 isolates of A. ruber, 5 of 28 A. repens, 2 of 12 A. sydowi, 1 of 12 A. restrictus, 2 of 7 A. amstelodami, 1 of 2 A. chevalieri, and an A. fumigatus isolate exhibited toxicity. Similarly, 2 of 15 isolates of P. expansum, 1 of 3 P. notatum, 1 of 2 P. brevi-compactum, and 1 of 8 Penicillium spp. were found to be the most toxic. Among these fungi, the chloroform extract from the growth of an A. sydowi isolate showed the greatest toxicity. There was no direct or indirect evidence that aged, cured meats contain toxic metabolites.

  20. Chemical constituents of Swertia longifolia Boiss. with α-amylase inhibitory activity.

    PubMed

    Saeidnia, Soodabeh; Ara, Leila; Hajimehdipoor, Homa; Read, Roger W; Arshadi, Sattar; Nikan, Marjan

    2016-01-01

    α-Amylase inhibitors play a critical role in the control of diabetes and many of medicinal plants have been found to act as α-amylase inhibitors. Swertia genus, belonging to the family Gentianaceae, comprises different species most of which have been used in traditional medicine of several cultures as antidiabetic, anti-pyretic, analgesic, liver and gastrointestinal tonic. Swertia longifolia Boiss. is the only species of Swertia growing in Iran. In the present investigation, phytochemical study of S. longifolia was performed and α-amylase inhibitory effects of the plant fractions and purified compounds were determined. Aerial parts of the plant were extracted with hexane, chloroform, methanol and water, respectively. The components of the hexane and chloroform fractions were isolated by different chromatographic methods and their structures were determined by (1)H NMR and (13)C NMR data. α-Amylase inhibitory activity was determined by a colorimetric assay using 3,5-dinitro salysilic acid. During phytochemical examination, α-amyrin, β-amyrin and β-sitosterol were purified from the hexane fraction, while ursolic acid, daucosterol and swertiamarin were isolated from chloroform fraction. The results of the biochemical assay revealed α-amylase inhibitory activity of hexane, chloroform, methanol and water fractions, of which the chloroform and methanol fractions were more potent (IC50 16.8 and 18.1 mg/ml, respectively). Among examined compounds, daucosterol was found to be the most potent α-amylase inhibitor (57.5% in concentration 10 mg/ml). With regard to α-amylase inhibitory effects of the plant extracts, purified constituents, and antidiabetic application of the species of Swertia genus in traditional medicine of different countries, S. longifolia seems more appropriate species for further mechanistic antidiabetic evaluations.

Top