Desai, Netaji K; Mahajan, Prasad G; Bhopate, Dhanaji P; Dalavi, Dattatray K; Kamble, Avinash A; Gore, Anil H; Dongale, Tukaram D; Kolekar, Govind B; Patil, Shivajirao R
2018-01-01
A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC, UV-Visible spectroscopy, thermo-electrical conductivity, fluorescence spectroscopy, fluorescence life time spectroscopy and temperature dependent fluorescence. X-ray diffraction profiles of the doped p-terphenyl reveal well-defined and sharp peaks indicate homogeneity and crystallinity. The SEM micrograph of pure p-terphenyl exhibit flakes like grains and then compact and finally gets separately with perylene amounts. The observed results indicate that closed packed crystal structures of doped p-terphenyl during crystal formation. The band gaps estimated from UV-visible spectroscopy decreased from 5.20 to 4.10 eV, while thermo-electrical conductivity increases with perylene content. The fluorescence spectra showed partial quenching of p-terphenyl fluorescence and simultaneously sensitization of perylene fluorescence at the excitation wavelength of p-terphenyl (290 nm) due to excitation energy transfer from p-terphenyl to perylene. The observed sensitization results are in harmony with intense blue color seen in fluorescence microscopy images and has high demand in scintillation process.
NASA Astrophysics Data System (ADS)
Charlton, Robert; Bogatko, Stuart; Zuehlsdorff, Tim; Hine, Nicholas; Horsfield, Andrew; Haynes, Peter
Maser technology has been held back for decades by the impracticality of the operating conditions of traditional masing devices, such as cryogenic freezing and strong magnetic fields. Recently it has been experimentally demonstrated that pentacene in p-terphenyl can act as a viable solid-state room-temperature maser by exploiting the alignment of the low-lying singlet and triplet excited states of pentacene. To understand the operation of this device from first principles, an ab initio study of the excitonic properties of pentacene in p-terphenyl has been carried out using time-dependent density functional theory (TDDFT), implemented in the linear-scaling ONETEP software (www.onetep.org). In particular, we focus on the impact that the wider crystal has on the localised pentacene excitations by performing an explicit DFT treatment of the p-terphenyl environment. We demonstrate the importance of explicit crystal host effects in calculating the excitation energies of pentacene in p-terphenyl, providing important information for the operation of the maser. We then use this same approach to test the viability of other linear polyacenes as maser candidates as a screening step before experimental testing.
Laser Physics and Laser Techniques.
1980-02-01
excited states is IGNFACTE produced in a pentacene -doped p-terphenyl molecular crystal by SIGNAL optical absorption from two crossed time-coincident...induces coherent microwave acoustic phonons. These in turn modulate, at the sound frequency, the optical absorption properties of the pentacene molecules... pentacene fects in molecular crystals, and particularly the observa- in p-terphenyl has thus been obtained [2]. tion of an acoustooptic amplitude
Comment on ’Single Pentacene Molecules Detected by Fluorescence Excitation in a P-Terphenyl Crystal’
1990-12-10
8217 NO 11 TITLE (include Security Classification) Comment on "Single Pentacene Molecules Detected by Fluorescence Excitation in a p-Terphenyl Crystal" 12...8217 {Continue on reverse it necessary and identify by block numboer) Using h--,Ihly efficient Fluorescence excitation spectroscov of individual pentacene ...molecular impurities in p-terphenvl crystals, we have observed that some pentacene defects exhibit spcntaneous spectral jumps in their resonance frequency at
Implicit and explicit host effects on excitons in pentacene derivatives.
Charlton, R J; Fogarty, R M; Bogatko, S; Zuehlsdorff, T J; Hine, N D M; Heeney, M; Horsfield, A P; Haynes, P D
2018-03-14
An ab initio study of the effects of implicit and explicit hosts on the excited state properties of pentacene and its nitrogen-based derivatives has been performed using ground state density functional theory (DFT), time-dependent DFT, and ΔSCF. We observe a significant solvatochromic redshift in the excitation energy of the lowest singlet state (S 1 ) of pentacene from inclusion in a p-terphenyl host compared to vacuum; for an explicit host consisting of six nearest neighbour p-terphenyls, we obtain a redshift of 65 meV while a conductor-like polarisable continuum model (CPCM) yields a 78 meV redshift. Comparison is made between the excitonic properties of pentacene and four of its nitrogen-based analogs, 1,8-, 2,9-, 5,12-, and 6,13-diazapentacene with the latter found to be the most distinct due to local distortions in the ground state electronic structure. We observe that a CPCM is insufficient to fully understand the impact of the host due to the presence of a mild charge-transfer (CT) coupling between the chromophore and neighbouring p-terphenyls, a phenomenon which can only be captured using an explicit model. The strength of this CT interaction increases as the nitrogens are brought closer to the central acene ring of pentacene.
Implicit and explicit host effects on excitons in pentacene derivatives
NASA Astrophysics Data System (ADS)
Charlton, R. J.; Fogarty, R. M.; Bogatko, S.; Zuehlsdorff, T. J.; Hine, N. D. M.; Heeney, M.; Horsfield, A. P.; Haynes, P. D.
2018-03-01
An ab initio study of the effects of implicit and explicit hosts on the excited state properties of pentacene and its nitrogen-based derivatives has been performed using ground state density functional theory (DFT), time-dependent DFT, and ΔSCF. We observe a significant solvatochromic redshift in the excitation energy of the lowest singlet state (S1) of pentacene from inclusion in a p-terphenyl host compared to vacuum; for an explicit host consisting of six nearest neighbour p-terphenyls, we obtain a redshift of 65 meV while a conductor-like polarisable continuum model (CPCM) yields a 78 meV redshift. Comparison is made between the excitonic properties of pentacene and four of its nitrogen-based analogs, 1,8-, 2,9-, 5,12-, and 6,13-diazapentacene with the latter found to be the most distinct due to local distortions in the ground state electronic structure. We observe that a CPCM is insufficient to fully understand the impact of the host due to the presence of a mild charge-transfer (CT) coupling between the chromophore and neighbouring p-terphenyls, a phenomenon which can only be captured using an explicit model. The strength of this CT interaction increases as the nitrogens are brought closer to the central acene ring of pentacene.
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Koshioka, Masanori; Masuhara, Hiroshi; Yoshihara, Keitaro
1988-09-01
Absorption spectra and picosecond dynamics of the singlet exciton states of benzil and p-terphenyl in a microcrystal have been measured for the first time by analyzing the diffuse reflected spectra of the picosecond continuum.
Photon Antibunching in the Fluorescence of a Single Dye Molecule Trapped in a Solid
1992-06-08
number) FIELD GROUP SUB-GROUP single-molecule spectroscopy in solids, photon antibunching, quantum-optics, nonclassical effects pentacene in p-terphenyl...emitted by an optically pumped single molecule of pentacene In a p-terphenyl host has been Investigated at short times. The correlation function...excitation tcclnique, certain individual pentacene impurity molecules in a p-terphenyl crystal 11 were observed to spectrally diffuse, i.e. their absorption
1991-07-22
suggesting that the effect may be ite td’ phonon-assisted transitions of local degrees of freedom around the pentacene defect whose source remains to...the effect may be due to phonon-assisted transitions of local degrees of freedom around the pentacene defect whose source remains to be identified...single molecule of pentacene in p-terphenyl is an exquisitely sensitive probe of the detailed local environment around the impurity molecule. It appears
Enhanced magnetic Purcell effect in room-temperature masers
Breeze, Jonathan; Tan, Ke-Jie; Richards, Benjamin; Sathian, Juna; Oxborrow, Mark; Alford, Neil McN
2015-01-01
Recently, the world’s first room-temperature maser was demonstrated. The maser consisted of a sapphire ring housing a crystal of pentacene-doped p-terphenyl, pumped by a pulsed rhodamine-dye laser. Stimulated emission of microwaves was aided by the high quality factor and small magnetic mode volume of the maser cavity yet the peak optical pumping power was 1.4 kW. Here we report dramatic miniaturization and 2 orders of magnitude reduction in optical pumping power for a room-temperature maser by coupling a strontium titanate resonator with the spin-polarized population inversion provided by triplet states in an optically excited pentacene-doped p-terphenyl crystal. We observe maser emission in a thimble-sized resonator using a xenon flash lamp as an optical pump source with peak optical power of 70 W. This is a significant step towards the goal of continuous maser operation. PMID:25698634
Continuous-wave room-temperature diamond maser
NASA Astrophysics Data System (ADS)
Breeze, Jonathan D.; Salvadori, Enrico; Sathian, Juna; Alford, Neil Mcn.; Kay, Christopher W. M.
2018-03-01
The maser—the microwave progenitor of the optical laser—has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen–vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.
Continuous-wave room-temperature diamond maser.
Breeze, Jonathan D; Salvadori, Enrico; Sathian, Juna; Alford, Neil McN; Kay, Christopher W M
2018-03-21
The maser-the microwave progenitor of the optical laser-has been confined to relative obscurity owing to its reliance on cryogenic refrigeration and high-vacuum systems. Despite this, it has found application in deep-space communications and radio astronomy owing to its unparalleled performance as a low-noise amplifier and oscillator. The recent demonstration of a room-temperature solid-state maser that utilizes polarized electron populations within the triplet states of photo-excited pentacene molecules in a p-terphenyl host paves the way for a new class of maser. However, p-terphenyl has poor thermal and mechanical properties, and the decay rates of the triplet sublevel of pentacene mean that only pulsed maser operation has been observed in this system. Alternative materials are therefore required to achieve continuous emission: inorganic materials that contain spin defects, such as diamond and silicon carbide, have been proposed. Here we report a continuous-wave room-temperature maser oscillator using optically pumped nitrogen-vacancy defect centres in diamond. This demonstration highlights the potential of room-temperature solid-state masers for use in a new generation of microwave devices that could find application in medicine, security, sensing and quantum technologies.
Yago, Tomoaki; Link, Gerhard; Kothe, Gerd; Lin, Tien-Sung
2007-09-21
Pulsed electron nuclear double resonance (ENDOR) using a modified Davies-type [Phys. Lett. 47A, 1 (1974)] sequence is employed to study the hyperfine (HF) structure of the photoexcited triplet state of pentacene dispersed in protonated and deuterated p-terphenyl single crystals. The strong electron spin polarization and long phase memory time of triplet pentacene enable us to perform the ENDOR measurements on the S=1 spin system at room temperature. Proton HF tensor elements and spin density values of triplet pentacene are extracted from a detailed angular-dependent study in which the orientation of the magnetic field is varied systematically in two different pentacene planes. Analysis reveals that the pentacene molecule is no longer planar in the p-terphenyl host lattice. The distortion is more pronounced in the deuterated crystal where the unit cell dimensions are slightly smaller than those of the protonated crystal.
1988-01-29
Electronic Origin of Pentacene in p-Terphenyl by T. P. Carter, M. Manavi, and W. E. Moerner Prepared for Publication inDTIC Journal of Chemical Physics...Classification) Statistical Fine Structure in the Inhomogeneously Broadened Electronic Origin of Pentacene in p-Terphenyl 12. PERSONAL AUTHOR(S) T. P...of pentacene in p-terphenyl using laser FM spectroscopy. Statistical fine structure is time-independent structure on the inhomogeneous line caused by
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuster, Patricia; Feng, Patrick; Brubaker, Erik
We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less
Schuster, Patricia; Feng, Patrick; Brubaker, Erik
2018-05-03
We report the scintillation anisotropy effect for proton recoil events has been investigated in five pure organic crystalline materials: anthracene, trans-stilbene, p-terphenyl, bibenzyl, and diphenylacetylene. These measurements include characterization of the scintillation response for one hemisphere of proton recoil directions in each crystal. In addition to standard measurements of the total light output and pulse shape at each angle, the prompt and delayed light anisotropies are analyzed, allowing for investigation of the singlet and triplet molecular excitation behaviors independently. This work provides new quantitative and qualitative observations that make progress toward understanding the physical mechanisms behind the scintillation anisotropy. Thesemore » measurements show that the relationship between the prompt and delayed light anisotropies is correlated with crystal structure, as it changes between the pi-stacked crystal structure materials (anthracene and p-terphenyl) and the herringbone crystal structure materials (stilbene, bibenzyl, and diphenylacetylene). The observations are consistent with a model in which there are preferred directions of kinetic processes for the molecular excitations. Finally, these processes and the impact of their directional dependencies on the scintillation anisotropy are discussed.« less
NASA Astrophysics Data System (ADS)
Białkowska, Magda; Deperasińska, Irena; Makarewicz, Artur; Kozankiewicz, Bolesław
2017-09-01
Highly terrylene doped single crystals of p-terphenyl, obtained by co-sublimation of both components, showed bright spots in the confocal fluorescence images. Polarization of the fluorescence excitation spectra, blinking and bleaching, and saturation behavior allowed us to attribute them to single molecules of terrylene anomalously embedded between two neighbor layers of the host crystal, in the (a,b) plane. Such an orientation of terrylene molecules results in much more efficient absorption and collection of the fluorescence photons than in the case of previously investigated molecules embedded in the substitution sites. The above conclusion was supported by quantum chemistry calculations. We postulate that the kind of doping considered in this work should be possible in other molecular crystals where the host molecules are organized in a herringbone pattern.
Melnikov, Anatoly R; Kalneus, Evgeny V; Korolev, Valeri V; Dranov, Igor G; Kruppa, Alexander I; Stass, Dmitri V
2014-08-01
X-irradiation of alkane solutions of N,N-dimethylaniline with various organic luminophores produces characteristic emission bands ascribed to the corresponding exciplexes. In contrast to optical generation, which requires diffusion-controlled quenching of excited states, an additional channel of exciplex formation via irreversible recombination of radical ion pairs is operative here, which produces exciplexes in solution with high efficiency even for p-terphenyl and diphenylacetylene having fluorescence decay times of 0.95 ns and 8 ps, respectively. The exciplex emission band is sensitive to an external magnetic field and exerts a very large observed magnetic field effect of up to 20%, the maximum possible value under the conditions of the described experiment.
1989-08-31
Pentacene in a p-Terphenyl Host Crystal bY !eT=s of bsorotion Spectroscopy 12 PERSONAl AU- OR(S) L. Kador, W.E. Moerner & D.E. Horne 1 3a 7 P; OF REPORT...G(OP SUB-GROUP Single Molecule Detection FM Spectroscopy Pentacene in p-terphenyl 19 AtiSTRACT {Continue on reverse it necessary and identity Oy block...OF PENTACENE IN A p-TERPIIENYL IIOST CRYSTAL BY MEANS OF ABSORPTION SPECTROSCOPY L. Kador , 1). E. I lorne, and W. lF. Moerner IM Research )ivision
Towards novel organic high-Tc superconductors: Data mining using density of states similarity search
NASA Astrophysics Data System (ADS)
Geilhufe, R. Matthias; Borysov, Stanislav S.; Kalpakchi, Dmytro; Balatsky, Alexander V.
2018-02-01
Identifying novel functional materials with desired key properties is an important part of bridging the gap between fundamental research and technological advancement. In this context, high-throughput calculations combined with data-mining techniques highly accelerated this process in different areas of research during the past years. The strength of a data-driven approach for materials prediction lies in narrowing down the search space of thousands of materials to a subset of prospective candidates. Recently, the open-access organic materials database OMDB was released providing electronic structure data for thousands of previously synthesized three-dimensional organic crystals. Based on the OMDB, we report about the implementation of a novel density of states similarity search tool which is capable of retrieving materials with similar density of states to a reference material. The tool is based on the approximate nearest neighbor algorithm as implemented in the ANNOY library and can be applied via the OMDB web interface. The approach presented here is wide ranging and can be applied to various problems where the density of states is responsible for certain key properties of a material. As the first application, we report about materials exhibiting electronic structure similarities to the aromatic hydrocarbon p-terphenyl which was recently discussed as a potential organic high-temperature superconductor exhibiting a transition temperature in the order of 120 K under strong potassium doping. Although the mechanism driving the remarkable transition temperature remains under debate, we argue that the density of states, reflecting the electronic structure of a material, might serve as a crucial ingredient for the observed high Tc. To provide candidates which might exhibit comparable properties, we present 15 purely organic materials with similar features to p-terphenyl within the electronic structure, which also tend to have structural similarities with p-terphenyl such as space group symmetries, chemical composition, and molecular structure. The experimental verification of these candidates might lead to a better understanding of the underlying mechanism in case similar superconducting properties are revealed.
Statistical Fine Structure of Inhomogeneously Broadened Absorption Lines.
1987-07-31
inhomogeneously broadened optical absorption of pentacene n p-terphenyl at liquid helium temperatures... SFS is the actual frequency- ependent, time...statistical fine structure (SFS) in the inhomogeneously broadened optical absorption of pentacene in p-terphenyl at liquid helium temperatures. SFS is the...quite difficult . -2- We have observed for the first time statistical fine structure in the inhomogeneously broadened optical absorption of pentacene
NASA Astrophysics Data System (ADS)
Salyer, Kaitlin; Rogachev, Grigory; Hooker, Joshua
2016-09-01
This project studied the capabilities of two different scintillators, Cesium Iodide (CsI) and p-Terphenyl. First, the resolution of a CsI detector was investigated by exposing only very small areas of its surface at a time to an alpha source. Second, the abilities of p-Terphenyl to detect alpha particles, gamma particles, and neutrons were analyzed through pulse shape discrimination. p-Terphenyl is of particular interest because it will be used in the Mitchell Institute Neutrino Experiment at Reactor (MINER) at Texas A&M University for measuring background data. The information learned from conducting these tests will be useful in understanding and expanding the limits of the experiments in which these detectors will ultimately be used.
Fluorescence Excitation of Single Molecules,
localized neighborhoods and to optical addressing of local spots in solids may now be envisioned. The purpose of this presentation is to show that single...molecules can be studied at helium temperatures by means of a fairly simple setup, at least in the very favorable case of pentacene in terphenyl
Fang, Sheng-Tao; Zhang, Ling; Li, Zheng-Hui; Li, Bo; Liu, Ji-Kai
2010-09-01
Two new cyathane-type diterpenoids, nigernin A and B (1, 2), one new nitrogenous terphenyl derivative, phellodonin (3), together with three known compounds, 2',3'-diacetoxy-3,4,5',6',4''-pentahydroxy-p-terphenyl, grifolin, and 4-O-methylgrifolic acid, were isolated from the fruiting bodies of basidiomycete Phellodon niger. The structures of these new compounds were elucidated by spectroscopic methods and comparison with the data of known compounds in the literature. All these compounds were isolated from this fungus for the first time.
Agnew, Douglas W.; Gembicky, Milan; Moore, Curtis E.; ...
2016-11-01
Here, the preparation of 3D and 2D Cu(I) coordination networks using ditopic m-terphenyl isocyanides is described. The incorporation of sterically encumbering substituents enables the controlled, solid-state preparation of Cu(I) tris-isocyanide nodes with a labile solvent ligand in a manner mirroring solution-phase chemistry of monomeric complexes. The protection afforded by the m-terphenyl groups is also shown to engender significant stability towards heat as well as acidic or basic conditions, resulting in robust single-metal-node networks that can transition from 3D to 2D extended structures.
Optical Detection and Spectroscopy of Single Molecules in a Solid.
1989-03-23
the optical absorption spectrum of single dopant molecules of pentacene in a p-terphenyl host crystal at liquid-helium temperatures. To achieve this...dopant molecules of pentacene in a p-terphenyl host crystal at liquid-helium temperatures. To achieve this, frequency-modulation spectroscopy was combined...solid would provide an important new tool for the study of local absorber-host interactions that would be uncomplicated by the normal averaging over
Statistical Fine Structure in Inhomogeneously Broadened Absorption Lines in Solids.
1987-12-22
the inhomogeneously broadened zero-phonon SijSo (0-0) absorption of pentacene molecules in crystals of p-terphenyl at liquid helium temperatures. SFS...structure (SFS) in the inhomogeneously broadened zero-phonon S, +- So (0-0) absorption of pentacene molecules in crystals of p-terphenyl at liquid helium...tile large multiplicity of local environments. Inhomogeneously broadened absorption lines are usually treated as smooth, Gaussian profiles. In recent
Single Molecule Spectral Diffusion in a Solid Detected Via Fluorescence Spectroscopy
1991-10-15
other local fields) at the position of the molecule, the spectral jumps may occur because the class II pentacene molecules are coupled to an...and identify by block number) FIELD jGROUP SUB-GROUP_ Single molecule spectroscopy Precision detection Spectral diffusion, Pentacene in p-terphenyl 19...significant increases in detection sensitivity for single pentacene molecules in crystals of p-terphenyl at low temperatures. With the increased signal to
Carbo-biphenyls and Carbo-terphenyls: Oligo(phenylene ethynylene) Ring Carbo-mers.
Zhu, Chongwei; Poater, Albert; Duhayon, Carine; Kauffmann, Brice; Saquet, Alix; Maraval, Valérie; Chauvin, Remi
2018-05-14
Ring carbo-mers of oligo(phenylene ethynylene)s (OPEn, n=0-2), made of C 2 -catenated C 18 carbo-benzene rings, have been synthesized and characterized by NMR and UV-vis spectroscopy, crystallography and voltammetry. Analyses of crystal and DFT-optimized structures show that the C 18 rings preserve their individual aromatic character according to structural and magnetic criteria (NICS indices). Carbo-terphenyls (n=2) are reversibly reduced at ca. -0.42 V/SCE, i.e. 0.41 V more readily than the corresponding carbo-benzene (-0.83 V/SCE), thus revealing efficient inter-ring π-conjugation. An accurate linear fit of E 1/2 red1 vs. the DFT LUMO energy suggests a notably higher value (-0.30 V/SCE) for a carbo-quaterphenyl congener (n=3). Increase with n of the effective π-conjugation is also evidenced by a red shift of two of the three main visible light absorption bands, all being assigned to TDDFT-calculated excited states, one of them restricting to a HOMO→LUMO main one-electron transition. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 704.45 - Chlorinated terphenyl.
Code of Federal Regulations, 2010 CFR
2010-07-01
... chlorinated terphenyl must notify EPA within 15 days after making the management decision described in § 704.3....45 Chlorinated terphenyl. (a) Definitions. (1) Chlorinated terphenyl means a chemical substance, CAS... terphenyl. The notice must include, to the extent that it is known to the person making the report or is...
Observation of Spectral Diffusion in Crystals Using Single Impurity Molecules
1990-10-31
from 12pentacene photophysical parameters including intersystem crossing . Apparently (and not surprisingly), the local pentacene environment this... pentacene molecules inp-terphenyl, both stable as well as spectrally diffusing single molecules can be observed. 20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 121...with ultrathin sublimed crystals have removed this obstacle. For the case of pentacene impurities in crystals of p-terphenyl, we observe two radically
40 CFR 704.45 - Chlorinated terphenyl.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Chlorinated terphenyl. 704.45 Section....45 Chlorinated terphenyl. (a) Definitions. (1) Chlorinated terphenyl means a chemical substance, CAS No. 61788-33-6, comprised of chlorinated ortho-, meta-, and paraterphenyl. (2) Extent of chlorination...
NASA Astrophysics Data System (ADS)
Handrup, Karsten; Richards, Victoria J.; Weston, Matthew; Champness, Neil R.; O'Shea, James N.
2013-10-01
Two single molecule magnets based on the dodecamanganese (III, IV) cluster with either benzoate or terphenyl-4-carboxylate ligands, have been studied on the Au(111) and rutile TiO2(110) surfaces. We have used in situ electrospray deposition to produce a series of surface coverages from a fraction of a monolayer to multilayer films in both cases. X-ray absorption spectroscopy measured at the Mn L-edge (Mn 2p) has been used to study the effect of adsorption on the oxidation states of the manganese atoms in the core. In the case of the benzoate-functionalised complex reduction of the manganese metal centres is observed due to the interaction of the manganese core with the underlying surface. In the case of terphenyl-4-carboxylate, the presence of this much larger ligand prevents the magnetic core from interacting with either the gold or the titanium dioxide surfaces and the characteristic Mn3+ and Mn4+ oxidation states necessary for magnetic behaviour are preserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnew, Douglas W.; Gembicky, Milan; Moore, Curtis E.
Here, the preparation of 3D and 2D Cu(I) coordination networks using ditopic m-terphenyl isocyanides is described. The incorporation of sterically encumbering substituents enables the controlled, solid-state preparation of Cu(I) tris-isocyanide nodes with a labile solvent ligand in a manner mirroring solution-phase chemistry of monomeric complexes. The protection afforded by the m-terphenyl groups is also shown to engender significant stability towards heat as well as acidic or basic conditions, resulting in robust single-metal-node networks that can transition from 3D to 2D extended structures.
Meng, Wenjing; Clegg, Jack K; Thoburn, John D; Nitschke, Jonathan R
2011-08-31
A series of terphenyl-edged Fe(4)L(6) cages were synthesized from substituted 4,4''-diamino-p-terphenyls, 2-formylpyridine, and iron(II). For the parent diaminoterphenyl, all three possible diastereomers, with T, S(4), and C(3) point symmetries, were formed in nearly equal amounts, as determined by (1)H and (13)C NMR. When 2,2″-dimethylterphenylenediamine was used, the T-symmetry diastereomer was observed to predominate. The use of 2',3',5',6'-tetramethylterphenylenediamine generated predominantly the S(4) cage diastereomer, whereas 2',5'-dimethylterphenylenediamine produced the C(3)-symmetric cage to a greater degree than the other two diastereomers. The factors contributing to the transfer of chiral information between metal vertices were analyzed, and the general principles underlying the delicately balanced thermodynamics were determined.
Jiang, Lina; Wu, Jing; Wang, Guilan; Ye, Zhiqiang; Zhang, Wenzhu; Jin, Dayong; Yuan, Jingli; Piper, James
2010-03-15
The time-resolved luminescence bioassay technique using luminescent lanthanide complexes as labels is a highly sensitive and widely used bioassay method for clinical diagnostics and biotechnology. A major drawback of the current technique is that the luminescent lanthanide labels require UV excitation (typically less than 360 nm), which can damage living biological systems and is holding back further development of time-resolved luminescence instruments. Herein we describe two approaches for preparing a visible-light-sensitized Eu(3+) complex in aqueous media for time-resolved fluorometric applications: a dissociation enhancement aqueous solution that can be excited by visible light for ethylenediaminetetraacetate (EDTA)-Eu(3+) detection and a visible-light-sensitized water-soluble Eu(3+) complex conjugated bovine serum albumin (BSA) for biolabeling and time-resolved luminescence bioimaging. In the first approach, a weakly acidic aqueous solution consisting of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-o-terphenyl (BHHT), 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (DPBT), and Triton X-100 was prepared. This solution shows a strong luminescence enhancement effect for EDTA-Eu(3+) with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm) and a long luminescence lifetime (520 micros), to provide a novel dissociation enhancement solution for time-resolved luminescence detection of EDTA-Eu(3+). In the second approach, a ternary Eu(3+) complex, 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-chlorosulfo-o-terphenyl (BHHCT)-Eu(3+)-DPBT, was covalently bound to BSA to form a water-soluble BSA-BHHCT-Eu(3+)-DPBT conjugate. This biocompatible conjugate is of the visible-light excitable feature in aqueous media with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm), a long luminescence lifetime (460 micros), and a higher quantum yield (27%). The conjugate was successfully used for streptavidin (SA) labeling and time-resolved luminescence imaging detection of three environmental pathogens, Giardia lamblia , Cryptosporidium muris , and Cryptosporidium parvum , in water samples. Our strategy gives a general idea for designing a visible-light-sensitized Eu(3+) complex for time-resolved luminescence bioassay applications.
Simoni, Daniele; Giannini, Giuseppe; Roberti, Marinella; Rondanin, Riccardo; Baruchello, Riccardo; Rossi, Marcello; Grisolia, Giuseppina; Invidiata, Francesco Paolo; Aiello, Stefania; Marino, Silvia; Cavallini, Sabrina; Siniscalchi, Anna; Gebbia, Nicola; Crosta, Lucia; Grimaudo, Stefania; Abbadessa, Vincenzo; Di Cristina, Antonietta; Tolomeo, Manlio
2005-06-30
New terphenyl derivatives have been synthesized and tested for their effect on cell survival in serum-free cultures. These compounds protected HL60 cells from death and supported their growth with an activity higher than that of the natural 14-hydroxy-retro-retinol. Terphenyls 26 and 28 also possess antiapoptotic activity on neuronal cells, proving them as possible candidates for the treatment of neurodegenerative and ischemic diseases.
Yemam, Henok A; Mahl, Adam; Tinkham, Jonathan S; Koubek, Joshua T; Greife, Uwe; Sellinger, Alan
2017-07-03
Plastic scintillators are commonly used as first-line detectors for special nuclear materials. Current state-of-the-art plastic scintillators based on poly(vinyltoluene) (PVT) matrices containing high loadings (>15.0 wt %) of 2,5-diphenyloxazole (PPO) offer neutron signal discrimination in gamma radiation background (termed pulse shape discrimination, PSD), however, they suffer from poor mechanical properties. In this work, a series of p-terphenyl and fluorene derivatives were synthesized and tested as dopants in PVT based plastic scintillators as possible alternatives to PPO to address the mechanical property issue and to study the PSD mechanism. The derivatives were synthesized from low cost starting materials in high yields using simple chemistry. The photophysical and thermal properties were investigated for their influence on radiation sensitivity/detection performance, and mechanical stability. A direct correlation was found between the melting point of the dopants and the subsequent mechanical properties of the PVT based plastic scintillators. For example, select fluorene derivatives used as dopants produced scintillator samples with mechanical properties exceeding those of the commercial PPO-based scintillators while producing acceptable PSD capabilities. The physical properties of the synthesized dopants were also investigated to examine their effect on the final scintillator samples. Planar derivatives of fluorene were found to be highly soluble in PVT matrices with little to no aggregation induced effects. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Targeting excited states in all-trans polyenes with electron-pair states.
Boguslawski, Katharina
2016-12-21
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
Compounds for neutron radiation detectors and systems thereof
Payne, Stephen A.; Stoeffl, Wolfgang; Zaitseva, Natalia P.; Cherepy, Nerine J.; Carman, M. Leslie
2013-06-11
One embodiment includes a material exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, said material exhibiting performance comparable to or superior to stilbene in terms of distinguishing neutrons from gamma rays, wherein the material is not stilbene. Another embodiment includes a substantially pure crystal exhibiting an optical response signature for neutrons that is different than an optical response signature for gamma rays, the substantially pure crystal comprising a material selected from a group consisting of: 1-1-4-4-tetraphenyl-1-3-butadiene; 2-fluorobiphenyl-4-carboxylic acid; 4-biphenylcarboxylic acid; 9-10-diphenylanthracene; 9-phenylanthracene; 1-3-5-triphenylbenzene; m-terphenyl; bis-MSB; p-terphenyl; diphenylacetylene; 2-5-diphenyoxazole; 4-benzylbiphenyl; biphenyl; 4-methoxybiphenyl; n-phenylanthranilic acid; and 1-4-diphenyl-1-3-butadiene.
Zhang, Chuanqi; Yan, Yan; Pan, Qinhe; Sun, Libo; He, Hongming; Liu, Yunling; Liang, Zhiqiang; Li, Jiyang
2015-08-07
A microporous lanthanum metal-organic framework [La(TPT)(DMSO)2]·H2O (La-MOF ()), has been synthesized using a rigid unsymmetrical tricarboxylate ligand of p-terphenyl-3,4'',5-tricarboxylic acid (H3TPT). The structure of is constructed by bi-nuclear lanthanum clusters and fully deprotonated TPT(3-) ligands, which can be simplified into a 3,6-connected flu-3,6-C2/c topology with a point symbol of (4(4)·6)2(4·6(2)·8(7)·10(2)). The π-electron rich ligand H3TPT enables to have blue luminescence when excited at 342 nm at ambient temperature. Meanwhile, exhibits the selective detection of picric acid (PA) and Fe(3+) ions in ethanol solution over other nitroaromatic compounds and metal ions. The high quenching efficiency and selectivity of makes it a potential bi-functional chemosensor for both PA and Fe(3+) ions.
NASA Astrophysics Data System (ADS)
Kalenchuk, A. N.; Bogdan, V. I.; Kustov, L. M.
2015-01-01
The efficiency of a variety of ceramic membranes for the purification of hydrogen obtained by dehydrogenation of perhydro- m-terphenyl in a catalytic flow reactor from vapors of initial hydrocarbons and dehydrogenation products is investigated.
Choi, Jin-Ho; Li, Zhancheng; Cui, Ping; Fan, Xiaodong; Zhang, Hui; Zeng, Changgan; Zhang, Zhenyu
2013-01-01
London dispersion force is ubiquitous in nature, and is increasingly recognized to be an important factor in a variety of surface processes. Here we demonstrate unambiguously the decisive role of London dispersion force in non-equilibrium growth of ordered nanostructures on metal substrates using aromatic source molecules. Our first-principles based multi-scale modeling shows that a drastic reduction in the growth temperature, from ~1000°C to ~300°C, can be achieved in graphene growth on Cu(111) when the typical carbon source of methane is replaced by benzene or p-Terphenyl. The London dispersion force enhances their adsorption energies by about (0.5–1.8) eV, thereby preventing their easy desorption, facilitating dehydrogenation, and promoting graphene growth at much lower temperatures. These quantitative predictions are validated in our experimental tests, showing convincing demonstration of monolayer graphene growth using the p-Terphenyl source. The general trends established are also more broadly applicable in molecular synthesis of surface-based nanostructures. PMID:23722566
Application of white beam synchrotron radiation topography to the analysis of twins
NASA Astrophysics Data System (ADS)
Yao, G.-D.; Dudley, M.; Hou, S.-Y.; DiSalvo, R.
1991-05-01
White beam synchrotron X-ray topography (WBSXRT) has been used to characterize room temperature twinning structures in lanthanum gallate and P-terphenyl single crystals. Both Laue and Bragg geometries are utilized to reveal the nature of twinning in LaGaO 3. The geometric relationships between the twin related domains and the directions of the corresponding diffracted beams are used to establish the presence of reflection twins on (11¯2) orth, (11¯2¯) orth and (11¯0) orth planes. Also described is the application of WBSXRT to reveal the twin law in the solution grown organic crystal p-terphenyl. The active twin plane was unambiguously determined to be (201) by determination of the orientation relationship between parent and twinned structures through Laue pattern analysis. Twin lamellae with the same twin plane were also observed. For both materials, no radiation damage was observed throughout the experiments. These results demonstrate the usefulness of WBSXRT for the study of twins.
Electronic states of aryl radical functionalized graphenes: Density functional theory study
NASA Astrophysics Data System (ADS)
Tachikawa, Hiroto; Kawabata, Hiroshi
2016-06-01
Functionalized graphenes are known as a high-performance molecular device. In the present study, the structures and electronic states of the aryl radical functionalized graphene have been investigated by the density functional theory (DFT) method to elucidate the effects of functionalization on the electronic states of graphene (GR). Also, the mechanism of aryl radical reaction with GR was investigated. The benzene, biphenyl, p-terphenyl, and p-quaterphenyl radicals [denoted by (Bz) n (n = 1-4), where n means numbers of benzene rings in aryl radical] were examined as aryl radicals. The DFT calculation of GR-(Bz) n (n = 1-4) showed that the aryl radical binds to the carbon atom of GR, and a C-C single bond was formed. The binding energies of aryl radicals to GR were calculated to be ca. 6.0 kcal mol-1 at the CAM-B3LYP/6-311G(d,p) level. It was found that the activation barrier exists in the aryl radical addition: the barrier heights were calculated to be 10.0 kcal mol-1. The electronic states of GR-(Bz) n were examined on the basis of theoretical results.
Multistep Synthesis of a Terphenyl Derivative Showcasing the Diels-Alder Reaction
ERIC Educational Resources Information Center
Davie, Elizabeth A. Colby
2015-01-01
An adaptable multistep synthesis project designed for the culmination of a second-year organic chemistry laboratory course is described. The target compound is a terphenyl derivative that is an intermediate in the synthesis of compounds used in organic light-emitting devices. Students react a conjugated diene with dimethylacetylene dicarboxylate…
Ureshino, Tomonari; Yoshida, Takuya; Kuninobu, Yoichiro; Takai, Kazuhiko
2010-10-20
The rhodium-catalyzed synthesis of silafluorenes from biphenylhydrosilanes is described. This highly efficient reaction proceeds via both Si-H and C-H bond activation, producing only H(2) as a side product. Using this method, a ladder-type bis-silicon-bridged p-terphenyl could also be synthesized.
Ultrasensitive Laser Spectroscopy in Solids: Single-Molecule Detection
1989-10-25
spite of detection intensity constraints necessary to avoid power broadening, the optical absorption spectrum of single molecules of pentacene In p...molecule detection, or SMD) would provide a useful tool for the study of local host-absorber interactions where tihe absorbing ,ontor is essentially at...modulation techniques 7. 8 for the model system composed of pentacene substitutional impurities in p-terphenyl crystals at 1.5K. The pontacene molecules can
JPRS Report, Science & Technology USSR: Physics & Mathematics.
1991-01-17
Irregularities on Readings of Local Work Function by Scanning Tunneling Microscope [A.O. Golubok, N.A. Tarasov, et al; PISMA V ZHURNAL TEKHNICHESKOY...constant. The substances tested (anthracene, phenanthrene, naphthacene, triphenylene, p- terphenyl, pentacene , benzo(def)phenanthrene, benzo(ghl...in nucleus-nucleus collisions are analyzed, considering that local thermodynamic equilibrium establishes itself after two or three collisions to be
Klien, Henrik; Seichter, Wilhelm; Weber, Edwin
2015-01-01
In the title solvate, C44H26Cl4O2·3C6H15N, the asymmetric part of the unit cell comprises two halves of the diol molecules, 2,2′′-bis(2,7-dichloro-9-hydroxy-9H-fluoren-9-yl)-1,1′:4′,1′′-terphenyl, and three molecules of triethylamine, i. e. the diol molecules are located on crystallographic symmetry centres. Two of the solvent molecules are disordered over two positions [occupancy ratios of 0.567 (3):0.433 (3) and 0.503 (3):0.497 (3)]. In the diol molecules, the outer rings of the 1,1′:4′,1′′-terphenyl elements are twisted with reference to their central arene ring and the mean planes of the fluorenyl moieties are inclined with respect to the terphenyl ring to which they are connected, the latter making dihedral angles of 82.05 (8) and 82.28 (8)°. The presence of two 9-fluoren-9-ol units attached at positions 2 and 2′′ of the terphenyl moiety induces a ‘folded’ geometry which is stabilized by intramolecular C—H⋯O hydrogen bonds and π–π stacking interactions, the latter formed between the fluorenyl units and the central ring of the terphenyl unit [centroid–centroid distances = 3.559 (1) and 3.562 (1) Å]. The crystal is composed of 1:2 complex units, in which the solvent molecules are associated with the diol molecules via O—H⋯N hydrogen bonds, while the remaining solvent molecule is linked to the host by a C—H⋯N hydrogen bond. The given pattern of intermolecular interactions results in formation of chain structures extending along [010]. PMID:26870400
Kim, Hyun Chul; Gu, Ja Min; Huh, Seong; Yo, Chul Hyun; Kim, Youngmee
2015-10-01
Two new one-dimensional Cu(II) coordination polymers (CPs) containing the C2h-symmetric terphenyl-based dicarboxylate linker 1,1':4',1''-terphenyl-3,3'-dicarboxylate (3,3'-TPDC), namely catena-poly[[bis(dimethylamine-κN)copper(II)]-μ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(4)O,O':O'':O'''] monohydrate], {[Cu(C20H12O4)(C2H7N)2]·H2O}n, (I), and catena-poly[[aquabis(dimethylamine-κN)copper(II)]-μ-1,1':4',1''-terphenyl-3,3'-dicarboxylato-κ(2)O(3):O(3')] monohydrate], {[Cu(C20H12O4)(C2H7N)2(H2O)]·H2O}n, (II), were both obtained from two different methods of preparation: one reaction was performed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as a potential pillar ligand and the other was carried out in the absence of the DABCO pillar. Both reactions afforded crystals of different colours, i.e. violet plates for (I) and blue needles for (II), both of which were analysed by X-ray crystallography. The 3,3'-TPDC bridging ligands coordinate the Cu(II) ions in asymmetric chelating modes in (I) and in monodenate binding modes in (II), forming one-dimensional chains in each case. Both coordination polymers contain two coordinated dimethylamine ligands in mutually trans positions, and there is an additional aqua ligand in (II). The solvent water molecules are involved in hydrogen bonds between the one-dimensional coordination polymer chains, forming a two-dimensional network in (I) and a three-dimensional network in (II).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, Benjamin; Haber, Louis H.; Leone, Stephen R.
2011-10-15
Pump-probe photoelectron velocity-map imaging, using 27-eV high-harmonic excitation and 786-nm ionization, is used to resolve overlapping autoionizing resonances in atomic krypton, obtaining two-photon photoelectron angular distributions (PADs) for singly and doubly excited states. Two features in the photoelectron spectrum are assigned to singly excited 4s{sup 1}4p{sup 6}np{sup 1} (n = 7,8) configurations and four features provide information about double excitation configurations. The anisotropy parameters for the singly excited 7p configuration are measured to be {beta}{sub 2} = 1.61 {+-} 0.06 and {beta}{sub 4} = 1.54 {+-} 0.16 while the 8p configuration gives {beta}{sub 2} = 1.23 {+-} 0.19 and {beta}{submore » 4} = 0.60 {+-} 0.15. These anisotropies most likely represent the sum of overlapping PADs from states of singlet and triplet spin multiplicities. Of the four bands corresponding to ionization of doubly excited states, two are assigned to 4s{sup 2}4p{sup 4}5s{sup 1}6p{sup 1} configurations that are probed to different J-split ion states. The two remaining doubly excited states are attributed to a previously observed, but unassigned, resonance in the vacuum-ultraviolet photoabsorption spectrum. The PADs from each of the double excitation states are also influenced by overlap from neighboring states that are not completely spectrally resolved. The anisotropies of the observed double excitation states are reported, anticipating future theoretical and experimental work to separate the overlapping PADs into the state resolved PADs. The results can be used to test theories of excited state ionization.« less
NASA Astrophysics Data System (ADS)
Fan, Liming; Zhang, Yujuan; Wang, Jiang; Zhao, Li; Wang, Xiaoqing; Hu, Tuoping; Zhang, Xiutang
2018-04-01
Two 3D modular designed coordination polymers, namely, {[H2N(CH3)2]2[Mn(TPT)]}n (1), and {[Cd(TPT)0.5(bib)]·0.5H2O}n (2) (H4TPT = p-terphenyl-2,2″,5″,5‴-tetracarboxylate acid, and bib = 1,3-bis((imidazol-1-yl) benzene) have been synthesized and structural characterized by EA, IR, TG, PXRD. Single-crystal X-ray diffraction analyses reveal that complex 1 is a 3D 4-connected {42.63.8}-sra net with the tiling modular being [42.62.82] = [4a.4b.62.8a.8b] (transitivity is 2451). While complex 2 is a 3D (4,4)-connected {64.82}{66}2-bbf net with tiling modular is [6.82]+[63.8] = [6 c.8a.8b]+[6a.6b.6 c.8a] (transitivity is 2352). The variable-temperature susceptibility of 1 has been investigated. Besides, complex 2 exhibits highly sensitive sensing of FeIII ions in DMF solution.
A comparison of the far-infrared and low-frequency Raman spectra of glass-forming liquids
NASA Astrophysics Data System (ADS)
Perova, T. S.; Vij, J. K.; Christensen, D. H.; Nielsen, O. F.
1999-04-01
Far-infrared and low-frequency Raman spectra in the wavenumber range from 15 to 500 cm -1 were recorded for glycerol, triacetin (glycerol triacetate) and o-terphenyl at temperatures from 253 to 355 K. The far-infrared spectra of glycerol appear complex compared with the spectra of triacetin owing to the presence of hydrogen bonding in glycerol. The experimental results obtained for o-terphenyl are in good agreement with normal mode analyses carried out for crystalline o-terphenyl (A. Criado, F.J. Bermejo, A. de Andres, Mol. Phys. 82 (1994) 787). The far-infrared results are compared with the low-frequency Raman spectra of these three glass-forming liquids. The difference in temperature dependences found from these spectra is explained on the basis of different temperature contributions of the relaxational and vibrational processes to the low-frequency vibrational spectra.
NASA Technical Reports Server (NTRS)
Elston, S. B.; Vane, C. R.; Schumann, S.
1979-01-01
Production of core-excited autoionizing states of neutral Li having configurations of the form 1snln(prime)l(prime) has been observed over the impact-energy range from 10-50 keV. Although the results for production of all such states is remarkably consistent with a quasi-molecular-excitation model proposed by Stolterfoht and Leithaeuser (1976), production of individual lines in the observed spectra exhibits collision-velocity dependencies indicative of considerably more complex processes, including processes which appear to be inherently two-electron in nature. Excitation functions are presented for (1s2s/2/)/2/S, 1s(2s2p/3/P)/2/P, 1s(2s2p/1/P)/2/P, and (1s2p/2/)/2/D core-excited state of Li and for total core excitation.
1991-11-07
new area of opticAl sp,,ctroscopy of solids where truly unique single environments and quantum effects can be studied in detail. In the pentacene in p...observed. Until very recentlx, the reports of SMI) have concentrated on the crystalline system of pentacene in p-terphenyl. Owing to the complex physical...excessive PSIIB, pentacene in benzoi, acid, is described briefly. The advantages of the perylene in PF_. system become evident immediately when
Nitrodifluoraminoterphenyl compounds and processes
Lerom, M.W.; Peters, H.M.
1975-07-08
This patent relates to the nitrodifluoraminoterphenyl compounds: 3,3''-bis (difluoramino)-2,2'' 4,4', 4'',6,6',6''-octanitro-m-terphenyl (DDONT) and 3,3''-bis(difluoramino)-2,2',2''4,4',4'',6,6',6''-nonanitro-m-terphenyl (DDNONA). Procedures are described wherein diamino precursors of the indicated compounds are prepared and the final compounds are obtained by a fluorination operation. The compounds are highly energetic and suitable for use as explosives and particularly in exploding bridge wire (EBW) detonators. (auth)
Investigation of the 6 p 2(3 P 0) n p Rydberg series of bismuth by multiphoton excitation
NASA Astrophysics Data System (ADS)
Bühler, B.; Cremer, C.; Gerber, G.
1985-03-01
Rydberg states of the odd-parity series 6 p 2(3 p 0) n p of BiI are excited by a three-photon process. A two-photon dissociation of Bi2 into excited atomic states followed by a one-photon absorption leads to highly excited atomic Rydberg states up to n = 32. States of the even-parity Rydberg series 6 p 2(3 p 0) nsJ=1/2, ndJ=3/2 and ndJ=5/2 are also observed. In order to avoid the background caused by ionization of the bismuth molecules we performed a two-color excitation with pulsed dye lasers. With this experiment the 6 p 2(3 p 0) npJ=3/2 Rydberg series could be resolved up to n=75. The increasing quantum defect of this series is due to a perturbing state close to the first ionization limit. By a MQDT analysis we obtain the energy of the perturbing state and a value of 58,761.68±0.1 cm-1 for the first ionization limit of atomic bismuth.
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.
1984-03-01
The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.
Lüning, U.; Baumgartner, H.; Manthey, C.; Meynhardt, B.
1996-11-01
New m-terphenyls with acidic substituents in the 2'-position have been used in general protonations leading to reagent-controlled selectivity enhancements: up to 96:4 for the gamma/alpha-protonation of unsymmetrically substituted allyl anions, up to 97:3 for the protonation of cyclohexyl anions generating preferentially the thermodynamically less stable cis-products. In order to allow a general, reagent-controlled protonation the acidity of the protonating agent should be as low as possible.
1990-03-28
observation, detection of the optical absorption of a single pentacene molecule in a p-terphenyl crystal, opens the door to new studies of single local ...produce appreciable quadratic Stark shifting. Such effects would greatly perturb the local field around the pentacene molecule, making detection of the...of the local surroundings of pentacene molecules with single injected charge carriers nearby may become an interesting field; however, for the
Enhanced UV light detection using a p-terphenyl wavelength shifter
NASA Astrophysics Data System (ADS)
Joosten, S.; Kaczanowicz, E.; Ungaro, M.; Rehfuss, M.; Johnston, K.; Meziani, Z.-E.
2017-10-01
UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths below 300 nm due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below 300 nm. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between 200 nm and 400 nm. The gain factor ranges up to 5 . 4 ± 0 . 5 at a wavelength of 215 nm, with a material load of 110 ± 10 μg /cm2 (894 nm). The wavelength shifter was found to be fully transparent for wavelengths greater than 300 nm. The resulting gain in detection efficiency, when used in a typical C̆erenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold C̆erenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.
Chen, J M; Lu, K T
2001-04-02
State-specific desorption for SiCl4 adsorbed on a Si(100) surface at approximately 90 K with variable coverage following the Cl 2p and Si 2p core-level excitations has been investigated using synchrotron radiation. The Cl+ yields show a significant enhancement following the Cl 2p-->8a*1 excitation. The Cl- yields are notably enhanced at the 8a*1 resonance at both Cl 2p and Si 2p edges. The enhancement of the Cl- yield occurs through the formation of highly excited states of the adsorbed molecules. These results provide some new dissociation processes from adsorbates on surfaces via core-level excitation.
NASA Astrophysics Data System (ADS)
Zhou, Xinhui; Song, Lin; Li, Liang; Yang, Tao
2016-09-01
Two coordination polymers (CPs) {[Mg2L(μ2-H2O) (μ2-DMA)]·DMA}n (1), and [Ag4L(DMF)2]n (2) (H4L = 1,1‧:4‧,1″-terphenyl-2‧,4,4″,5‧-tetracarboxylic acid, DMA = N,N-dimethylacetamine, DMF = N,N-dimethylformamide) have been synthesized and structurally characterized. In 1 and 2, there exist a series of parallel aligned Msbnd Osbnd C chains, which are linked along two directions by para-terphenyl moieties of L4- ligands to lead to the metal-carboxylate chain-based three-dimensional frameworks. The photoluminescence properties of the compounds 1 and 2 have also been investigated. 1 displays blue-violet light emission with the emission maximum at 380 nm. 2 exhibits a broad emission peak from 300 to 800 nm with an emission maximum at 484 nm and some of the shoulder peaks.
NASA Astrophysics Data System (ADS)
Cohen Stuart, T. A.; van Grondelle, R.
2009-06-01
The Bacterial Reaction Centre (BRC) has a complex electronic excited state, P ∗, that evolves into subsequent charge separated product states P +H - and P +B -. Pump-dump-probe spectroscopy on the wild-type BRC and on YM210W, a mutant with a stabilized, long-lived P ∗ excited state, has uncovered a new charge-separated state in both BRC's. When P ∗ is dumped, a fraction of its population is transferred to this state that has a strong Stark shift in the accessory bacteriochlorophyll (B M) region which serves as a signature for P + and a lifetime highly comparable to the slow phase of P ∗ decay. This lead us propose this intermediate to be P +/P -.
Laser-induced transitions between triply excited hollow states
NASA Astrophysics Data System (ADS)
Madsen, L. B.; Schlagheck, P.; Lambropoulos, P.
2000-12-01
Using complex scaling and a correlated basis constructed in terms of B splines, we calculate the Li+ photoion yield in the presence of a laser-induced coupling between the triply excited 2s22p(2Po) and 2s2p2(2De) resonances in lithium, the first of which is assumed to be excited by synchrotron radiation from the ground state. The laser coupling between the triply excited states is shown to lead to a significant and readily measurable modification of the line profile which provides a unique probe of the dipole strength between highly correlated triply excited states. We also present results for some higher-lying triply excited states of 2Po symmetry.
NASA Astrophysics Data System (ADS)
Wang, Yiren; Wang, Huan; Yang, Mei; Yuan, Jingli; Wu, Jing
2018-01-01
Development of visible-light-excited lanthanide (III) complex-based luminescent probes is highly appealing due to their superiority of less damage to the living biosystems over the conventional UV-light-excited ones. In this work, a visible-light-excited europium (III) complex-based luminescent probe, BPED-BHHCT-Eu3+-BPT, has been designed and synthesized by conjugating the Cu2+-binding N,N-bis(2-pyridylmethyl)ethanediamine (BPED) to a tetradentate β-diketone ligand 4,4‧-bis(1″,1″,1″,2″,2″,3″,3″-heptafluoro-4″,6″-hexanedione-6″-yl)chlorosulfo-o-terphenyl (BHHCT) and coordinating with a coligand 2-(N,N-diethylanilin-4-yl)-4,6-bis(pyrazol-1-yl)-1,3,5-triazine) (BPT) for the time-gated luminescence detection of Cu2+ ions and hydrogen sulfide (H2S) in living cells. BPED-BHHCT-Eu3+-BPT exhibited a sharp excitation peak at 407 nm and a wide excitation window extending to beyond 460 nm. Upon its reaction with Cu2+ ions, the luminescence of BPED-BHHCT-Eu3+-BPT was efficiently quenched, which could be reversibly restored by the addition of H2S due to the strong affinity between Cu2+ ions and H2S. The "on-off-on" type luminescence behavior of BPED-BHHCT-Eu3+-BPT towards Cu2+ ions and H2S enabled the sensing of the two species with high sensitivity and selectivity. The performances of BPED-BHHCT-Eu3+-BPT for visualizing intracellular Cu2+ ions and H2S were investigated, and the results have demonstrated the practical applicability of the probe for molecular imaging of cells.
Persistant Spectral Hole-Burning: Photon-Gating and Fundamental Statistical Limits
1989-11-03
pentacene inhomogeneous line that results from tile statistics of independent, additive random variables. For this data, Nil - 10’. The rms amplitude...features in inhomogencous lines. To illustrate this, Figure 5 shows a portion of the optical spectrum of pentacene in p-terphenyl before and after a...contained in each irradiated spot of recording medium. The stress-induced variations in the local environment of the storage centers are random in nature
High-resolution two-photon spectroscopy of a 5 p56 p ←5 p6 transition of xenon
NASA Astrophysics Data System (ADS)
Altiere, Emily; Miller, Eric R.; Hayamizu, Tomohiro; Jones, David J.; Madison, Kirk W.; Momose, Takamasa
2018-01-01
We report high-resolution Doppler-free two-photon excitation spectroscopy of Xe from the ground state to the 5 p5(
NASA Astrophysics Data System (ADS)
Szczepanik, Beata
2015-11-01
The excited state proton transfer (ESPT) has been extensively studied for hydroxyarenes, phenols, naphthols, hydroxystilbenes, etc., which undergo large enhancement of acidity upon electronic excitation, thus classified as photoacids. The changes of acidic character in the excited state of cyano-substituted derivatives of phenol, hydroxybiphenyl and naphthol are reviewed in this paper. The acidity constants pKa in the ground state (S0), pKa∗ in the first singlet excited state (S1) and the change of the acidity constant in the excited state ΔpKa for the discussed compounds are summarized and compared. The results of the acidity studies show, that the "electro-withdrawing" CN group in the molecules of naphthol, hydroxybiphenyl and phenol causes dramatic increase of their acidity in the excited state in comparison to the ground state. This effect is greatest for the cyanonaphthols (the doubly substituted CN derivatives are almost as strong as a mineral acid in the excited state), comparable for cyanobiphenyls, and smaller for phenol derivatives. The increase of acidity enables proton transfer to various organic solvents, and the investigation of ESPT can be extended to a variety of solvents besides water. The results of theoretical investigations were also presented and used for understanding the protolytic equilibria of cyano derivatives of naphthol, hydroxybiphenyl and phenol.
Ultrafast Dynamics of 1,3-Cyclohexadiene in Highly Excited States
Bühler, Christine C.; Minitti, Michael P.; Deb, Sanghamitra; ...
2011-01-01
The ultrafast dynamics of 1,3-cyclohexadiene has been investigated via structurally sensitive Rydberg electron binding energies and shown to differ upon excitation to the 1B state and the 3p Rydberg state. Excitation of the molecule with 4.63 eV photons into the ultrashort-lived 1B state yields the well-known ring opening to 1,3,5-hexatriene, while a 5.99 eV photon lifts the molecule directly into the 3p-Rydberg state. Excitation to 3p does not induce ring opening. In both experiments, time-dependent shifts of the Rydberg electron binding energy reflect the structural dynamics of the molecular core. Structural distortions associated with 3p-excitation cause a dynamical shift in the -more » and -binding energies by 10 and 26 meV/ps, respectively, whereas after excitation into 1B, more severe structural transformations along the ring-opening coordinate produce shifts at a rate of 40 to 60 meV/ps. The experiment validates photoionization-photoelectron spectroscopy via Rydberg states as a powerful technique to observe structural dynamics of polyatomic molecules.« less
Dynamics of harpooning studied by transition state spectroscopy. II. LiṡṡFH
NASA Astrophysics Data System (ADS)
Hudson, A. J.; Oh, H. B.; Polanyi, J. C.; Piecuch, P.
2000-12-01
The van der Waals complex LiṡṡFH was formed in crossed beams and the transition state of the excited-state reaction, Li*(2p 2P)+HF→LiF+H, was accessed by photoexcitation of this complex. The dynamics of the excited-state reaction were probed by varying the excitation wavelength over the range 570-970 nm while recording the photodepletion of the complex. The findings were interpreted using high-level ab initio calculations of the ground and lowest excited-state potential-energy surfaces.
NASA Astrophysics Data System (ADS)
Gartmann, Thomas E.; Yoder, Bruce L.; Chasovskikh, Egor; Signorell, Ruth
2017-09-01
The energetics and lifetimes of the first electronically excited states (;3p-states;) of NaH2O and NaD2O have been measured by pump-probe (740/780 and 400 nm) photoelectron imaging. The photoelectron spectra of NaH2O show two bands at an electron kinetic energy of 0.14 and 0.38 eV, respectively. We assign the former to excitation via the two energetically close lying ;pπ-states; with flat potential curves in the intermolecular degrees of freedom, and the latter to the excitation via the ;pσ-state; characterized by significantly steeper potential curves. The relaxation of all ;p-states; follows a double exponential decay with a lifetime around 110 ps for the dominant fast component.
NASA Astrophysics Data System (ADS)
Rodriguez, Juan; McDowell, Lynda; Holten, Dewey
1988-06-01
Deactivation of the lowest excited triplet state, 3(π, π*), of the Ru(II) porphyrins RuP(CO)(L) is more strongly dependent on temperature than decay of 3(π, π*) in Pt(II)P and H 2P (metal-free) complexes containing the same macrocycle P. This and other observations support the proposal that 3(π, π*) in the RuP(CO)(L) complexes decays in part via a metal-to-ring (d, π*) charge-transfer excited state at higher energy.
The energy structure and decay channels of the 4p6-shell excited states in Sr
NASA Astrophysics Data System (ADS)
Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.
2017-11-01
The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.
Synthesis and Properties of Rigid-Rod Benzobisazole Polymers Containing Benzothiazole Pendent Groups
1990-11-16
crystalline phase. Poly-p- benzamides containing bulky methyl, nitro or bromo groups affects intermolecular forces to such a large extent that lyotropic...phosphate/m- cresol . Initial attempts in our laboratory involved pendent phenylation via the synthesis of a series of phenylated terphenyl diacids and...range 2.5-9.3 dL/g and exhibited partial solubility (ə%) in m- cresol /strong acid mixtures. Concentrated solutions (>5-) could not be obtained in any
Enhanced UV light detection using a p-terphenyl wavelength shifter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joosten, Sylvester J.; Kaczanowicz, Ed; Ungaro, Maurizio
Here, UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths belowmore » $$300\\,\\text{nm}$$ due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below $$300\\,\\text{nm}$$. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between $$200\\,\\text{nm}$$ and $$400\\,\\text{nm}$$. The gain factor ranges up to 5.4 $$\\pm$$ 0.5 at a wavelength of $$215\\,\\text{nm}$$, with a material load of $$110\\pm10\\,\\mu\\text{g}/\\text{cm}^2$$ ($$894\\,\\text{nm}$$). The wavelength shifter was found to be fully transparent for wavelengths greater than $$300\\,\\text{nm}$$. The resulting gain in detection efficiency, when used in a typical Cherenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold Cherenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.« less
Enhanced UV light detection using a p-terphenyl wavelength shifter
Joosten, Sylvester J.; Kaczanowicz, Ed; Ungaro, Maurizio; ...
2017-07-25
Here, UV-glass photomultiplier tubes (PMTs) have poor photon detection efficiency for wavelengths belowmore » $$300\\,\\text{nm}$$ due to the opaqueness of the window material. Costly quartz PMTs could be used to enhance the efficiency below $$300\\,\\text{nm}$$. A less expensive solution that dramatically improves this efficiency is the application of a thin film of a p-terphenyl (PT) wavelength shifter on UV-glass PMTs. This improvement was quantified for Photonis XP4500B PMTs for wavelengths between $$200\\,\\text{nm}$$ and $$400\\,\\text{nm}$$. The gain factor ranges up to 5.4 $$\\pm$$ 0.5 at a wavelength of $$215\\,\\text{nm}$$, with a material load of $$110\\pm10\\,\\mu\\text{g}/\\text{cm}^2$$ ($$894\\,\\text{nm}$$). The wavelength shifter was found to be fully transparent for wavelengths greater than $$300\\,\\text{nm}$$. The resulting gain in detection efficiency, when used in a typical Cherenkov counter, was estimated to be of the order of 40%. Consistent coating quality was assured by a rapid gain testing procedure using narrow-band UV LEDs. Based on these results, 200 Photonis XP4500B PMTs were treated with PT for the upgraded low-threshold Cherenkov counter (LTCC) to be used in the CEBAF Large Acceptance Spectrometer upgraded detector (CLAS12) at the Thomas Jefferson National Accelerator Facility.« less
Agnew, Douglas W; DiMucci, Ida M; Arroyave, Alejandra; Gembicky, Milan; Moore, Curtis E; MacMillan, Samantha N; Rheingold, Arnold L; Lancaster, Kyle M; Figueroa, Joshua S
2017-12-06
A permanently porous, three-dimensional metal-organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2 ] 2 , and the d 10 Ni(0) precursor Ni(COD) 2 , produces a porous metal-organic material featuring tetrahedral [Ni(CNAr Mes2 ) 4 ] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2 -adsorption profile.
Agnew, Douglas W.; DiMucci, Ida M.; Arroyave, Alejandra; ...
2017-11-13
A permanently porous, three-dimensional metal–organic material formed from zero-valent metal nodes is presented. Combination of ditopic m-terphenyl diisocyanide, [CNAr Mes2] 2, and the d 10 Ni(0) precursor Ni(COD) 2, produces a porous metal–organic material featuring tetrahedral [Ni(CNAr Mes2) 4] n structural sites. X-ray absorption spectroscopy provides firm evidence for the presence of Ni(0) centers, whereas gas-sorption and thermogravimetric analysis reveal the characteristics of a robust network with a microdomain N 2-adsorption profile.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Kun; Zhao Hongmei; Wang Caixia
Bromoiodomethane photodissociation in the low-lying excited states has been characterized using unrestricted Hartree-Fock, configuration-interaction-singles, and complete active space self-consistent field calculations with the SDB-aug-cc-pVTZ, aug-cc-pVTZ, and 3-21g** basis sets. According to the results of the vertical excited energies and oscillator strengths of these low-lying excited states, bond selectivity is predicted. Subsequently, the minimum energy paths of the first excited singlet state and the third excited state for the dissociation reactions were calculated using the complete active space self-consistent field method with 3-21g** basis set. Good agreement is found between the calculations and experimental data. The relationships of excitations, the electronicmore » structures at Franck-Condon points, and bond selectivity are discussed.« less
Rate-coefficients and polarization results for the electron-impact excitation of Ar+ ion
NASA Astrophysics Data System (ADS)
Srivastava, Rajesh; Dipti, Dipti
2016-05-01
A fully relativistic distorted wave theory has been employed to study the electron impact excitation in Ar+ ion. Results have been obtained for the excitation cross-sections and rate-coefficients for the transitions from the ground state 3p5 (J = 3/2) to fine-structure levels of excited states 3p4 4 s, 3p4 4 p , 3p4 5 s, 3p4 5 p, 3p4 3 d and 3p4 4 d. Polarization of the radiation following the excitation has been calculated using the obtained magnetic sub-level cross-sections. Comparison of the present rate-coefficients is also done with the previously reported theoretical results for some unresolved fine structure transitions. Work is supported by DAE-BRNS Mumbai and CSIR, New Delhi.
Marschall, Matthias; Reichert, Joachim; Seufert, Knud; Auwärter, Willi; Klappenberger, Florian; Weber-Bargioni, Alexander; Klyatskaya, Svetlana; Zoppellaro, Giorgio; Nefedov, Alexei; Strunskus, Thomas; Wöll, Christof; Ruben, Mario; Barth, Johannes V
2010-05-17
The supramolecular organization and layer formation of the non-linear, prochiral molecule [1, 1';4',1'']-terphenyl-3,3"-dicarbonitrile adsorbed on the Ag(111) surface is investigated by scanning tunneling microscopy (STM) and near-edge X-ray absorption fine-structure spectroscopy (NEXAFS). Upon two-dimensional confinement the molecules are deconvoluted in three stereoisomers, that is, two mirror-symmetric trans- and one cis-species. STM measurements reveal large and regular islands following room temperature deposition, whereby NEXAFS confirms a flat adsorption geometry with the electronic pi-system parallel to the surface plane. The ordering within the expressed supramolecular arrays reflects a substrate templating effect, steric constraints and the operation of weak lateral interactions mainly originating from the carbonitrile endgroups. High-resolution data at room temperature reveal enantiormorphic characteristics of the molecular packing schemes in different domains of the arrays, indicative of chiral resolution during the 2D molecular self-assembly process. At submonolayer coverage supramolecular islands coexist with a disordered fluid phase of highly mobile molecules. Following thermal quenching (down to 6 K) we find extended supramolecular ribbons stabilised again by attractive and directional noncovalent interactions, the formation of which reflects a chiral resolution of trans-species.
NASA Astrophysics Data System (ADS)
Cherepanov, Dmitry A.; Shelaev, Ivan V.; Gostev, Fedor E.; Mamedov, Mahir D.; Petrova, Anastasia A.; Aybush, Arseniy V.; Shuvalov, Vladimir A.; Semenov, Alexey Yu; Nadtochenko, Victor A.
2017-09-01
Excitation of photosystem I (PS I) by a femtosecond 760 nm pump leads to one- and two-photon absorption. The one-photon excitation produces intermediates with transient absorption spectra similar to the spectra of the primary [{{{P}}700}+{{{A}}0}-{{A}}1] and secondary [{{{P}}700}+{{A}}0{{{A}}1}-] ion-radical pairs in the PS I reaction center. The two-photon absorption generates the upper level excited states of chlorophyll (Chl) and carotenoid molecules in the antenna. These excited states are converted into the long-lived intermediates and can be tentatively attributed to the excited and charge-transfer ion-radical states of Chl molecules and to the excited states of carotenoids in the antenna. The transient spectra of intermediates generated by two-photon excitation differ from the transient one-photon spectra of the primary and secondary ion-radical pairs.
Excitation Mechanisms in Moderate-Energy Li+-He Collisions
NASA Astrophysics Data System (ADS)
Kita, Shigetomo; Itaya, Jun; Sawatari, Yugo; Tabata, Tadanobu; Hayashi, Takeo; Shimakura, Noriyuki; Koseki, Shiro
2018-02-01
Excitation mechanisms in Li+-He collisions were studied at laboratory collision energies of 350 ≤ Elab ≤ 2000 eV by measuring double differential cross sections (DCSs) σ(Θ)k over a wide range of center-of-mass scattering angles, 2.5 ≤ Θ ≤ 175°. At Elab ≥ 500 eV, two-electron (2e) excitations were observed as well as one-electron (1e) excitations. At the higher collision energies, excitation probabilities P(Θ)k for the 1e and 2e excitations have characteristic angular dependences, i.e., at Elab = 1500 and 2000 eV, P(Θ)1e for the 1e excitations has double maxima around Θ = 20 and 120° and P(Θ)2e for the 2e excitations has a broad maximum around Θ = 60°. As a first analysis of the experimental data, P(Θ)k, σ(Θ)k, and the integral cross sections Sk(Elab) were calculated by assuming excitations from the 11Σ state into the 11Π and 11Δ states through rotational couplings using the model potentials and couplings. As the next step, ab initio potential energies for the ground and excited states were calculated by a multiconfiguration self-consistent field (MCSCF) method, and then the electronic transitions among the seven states through the radial and rotational couplings were calculated using the theoretical potentials and couplings. Autoionizations from the 2e-excited He**(2s2 and 2p2) atoms were also simulated at Elab = 750-1500 eV and small laboratory angles of θ ≤ 25° by using the MCSCF potentials. The excitation mechanisms were reasonably well understood through these analyses.
Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.
Tettamanzi, Giuseppe Carlo; Hile, Samuel James; House, Matthew Gregory; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y
2017-03-28
The ability to apply gigahertz frequencies to control the quantum state of a single P atom is an essential requirement for the fast gate pulsing needed for qubit control in donor-based silicon quantum computation. Here, we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to ≈13 GHz to heavily phosphorus-doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one-dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy ≈9 meV, consistent with the first excited state of a single P donor in silicon. The relaxation rate of this first excited state to the ground state is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under radio frequency excitations.
A theoretical study of bond selective photochemistry in CH2BrI
NASA Astrophysics Data System (ADS)
Liu, Kun; Zhao, Hongmei; Wang, Caixia; Zhang, Aihua; Ma, Siyu; Li, Zonghe
2005-01-01
Bromoiodomethane photodissociation in the low-lying excited states has been characterized using unrestricted Hartree-Fock, configuration-interaction-singles, and complete active space self-consistent field calculations with the SDB-aug-cc-pVTZ, aug-cc-pVTZ, and 3-21g** basis sets. According to the results of the vertical excited energies and oscillator strengths of these low-lying excited states, bond selectivity is predicted. Subsequently, the minimum energy paths of the first excited singlet state and the third excited state for the dissociation reactions were calculated using the complete active space self-consistent field method with 3-21g** basis set. Good agreement is found between the calculations and experimental data. The relationships of excitations, the electronic structures at Franck-Condon points, and bond selectivity are discussed.
Finding a Single Molecule in a Haystack: Laser Spectroscopy of Solids from Sqrt. N to N = 1
1991-01-02
low-temperature inhomogeneously broadened 0-0 S, +- S electronic transition of pentacene dopant molecules in p-terphenyl crystals have yielded both (1...absorber, single-miolecule detection, or SMDI) wvould provide a-- useful tool for the study of local host-absorber interactions wiherte the absorbing...molecular impurity is-a truly local probe of the minute details of a single local environment in a solid. l’he use of powerful spectroscopic methods as
Holographic Methods for the Investigation of Photophysical Properties.
1983-04-22
terphenyl doped with 10- 3 mol/mol of pentacene . Obtaining k from decay curves as in * A -Fig. 14a and plotting k as a function of 02 (see Fig. 14b...translation diffusion of molecules in liquid solvents can be used to probe solute conformations, solvent-solute interactions and local solvent structure...eiion of 1.7omoAr WauW by TrArWAOn GFarinP So far, local heating by the absorption of the two interfering light pulses has not been taken into
Ultrafast excited-state dynamics of RNA and DNA C tracts
NASA Astrophysics Data System (ADS)
Cohen, Boiko; Larson, Matthew H.; Kohler, Bern
2008-06-01
The excited-state dynamics of the RNA homopolymer of cytosine and of the 18-mer (dC) 18 were studied by steady-state and time-resolved absorption and emission spectroscopy. At pH 6.8, excitation of poly(rC) by a femtosecond UV pump pulse produces excited states that decay up to one order of magnitude more slowly than the excited states formed in the mononucleotide cytidine 5'-monophosphate under the same conditions. Even slower relaxation is observed for the hemiprotonated, self-associated form of poly(rC), which is stable at acidic pH. Transient absorption and time-resolved fluorescence signals for (dC) 18 at pH 6.8 are similar to ones observed for poly(rC) near pH 4, indicating that hemiprotonated structures are found in DNA C tracts at neutral pH. In both systems, there is evidence for two kinds of emitting states with lifetimes of ˜100 ps and slightly more than 1 ns. The former states are responsible for the bulk of emission from the hemiprotonated structures. Evidence suggests that slow electronic relaxation in these self-complexes is the result of vertical base stacking. The similar signals from RNA and DNA C tracts suggest a common base-stacked structure, which may be identical with that of i-motif DNA.
NASA Astrophysics Data System (ADS)
De Silvestri, S.; Laporta, P.
1984-01-01
Time-resolved and steady-state fluorescence studies of proflavine in aqueous solution are presented. The observation of a monoexponential fluorescence decay with a time constant decreasing with increasing pH and the presence of an anomalous red-shift in the fluorescence spectrum as a function of pH indicate the existence of a complex proton-transfer mechanism in the excited state. A reaction scheme is proposed and the corresponding proton-transfer rates are evaluated. An excited-state pK value of 12.85 is obtained for the equilibrium between the cationic form of proflavine and the same form dissociated at an amino group.
Inter- and intraconfigurational luminescence of Er3+ ions in BaY2F8 under VUV excitation
NASA Astrophysics Data System (ADS)
Kirm, M.; Lichtenberg, H.; Makhov, V. N.; Negodin, E.; Ouvarova, T. V.; Suljoti, E.; True, M.; Zimmerer, G.
Using energy- and time-resolved spectroscopy the luminescence properties of Er3+ doped BaY2F8 crystals were investigated at 10 K under VUV synchrotron radiation excitation. Radiative intraconfigurational f - f and interconfigurational d - f transitions in Er3+ ions were observed under f - d excitation. Whereas the onset of S-4(3/2) population via f - d excitation starts at 59 900 cm(-1) , efficient excitation of emissions arising from the P-2(3/2) state begins only above 67 000 cm(-1) in VUV region. Such behaviour can be explained by a cross-relaxation process of the type (F-2(2)(5/2) , I-4(15/2))-->(P-2(3/2) , P-2(3/2)) taking place within f -states of Er3+ ions finally populating the emitting P-2(3/2) state.
Proposal for a room-temperature diamond maser
Jin, Liang; Pfender, Matthias; Aslam, Nabeel; Neumann, Philipp; Yang, Sen; Wrachtrup, Jörg; Liu, Ren-Bao
2015-01-01
The application of masers is limited by its demanding working conditions (high vacuum or low temperature). A room-temperature solid-state maser is highly desirable, but the lifetimes of emitters (electron spins) in solids at room temperature are usually too short (∼ns) for population inversion. Masing from pentacene spins in p-terphenyl crystals, which have a long spin lifetime (∼0.1 ms), has been demonstrated. This maser, however, operates only in the pulsed mode. Here we propose a room-temperature maser based on nitrogen-vacancy centres in diamond, which features the longest known solid-state spin lifetime (∼5 ms) at room temperature, high optical pumping efficiency (∼106 s−1) and material stability. Our numerical simulation demonstrates that a maser with a coherence time of approximately minutes is feasible under readily accessible conditions (cavity Q-factor ∼5 × 104, diamond size ∼3 × 3 × 0.5 mm3 and pump power <10 W). A room-temperature diamond maser may facilitate a broad range of microwave technologies. PMID:26394758
Experimental and Theoretical Investigations of Doubly-excited Sextet States in
NASA Astrophysics Data System (ADS)
Lin, Bin; Berry, H. Gordon; Livingston, A. Eugene; Garnir, Henri-Pierre; Bastin, Thierry; Désesquelles, J.
2002-05-01
The energies and wave functions of the highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are calculated with the Multi-Configuration Hartree-Fock (MCHF) plus the hydrogen-like QED effects and higher-order corrections method. The highly doubly-excited sextet states of boron-like O IV, F V and Ne VI are well above several ionization levels and metastable, and possible candidates for XUV- and soft x-ray laser and energy storage. Three doubly-excited sextet configurations (1s2s2p3 6So, 1s2s2p23s 6P and 1s2p33s 6So) are studied. The wavelengths of electric dipole transitions from the inner-shell excited terms 1s2s2p23s 6P-1s2p33s 6So are investigated by the beam-foil spectroscopy in the XUV spectral region. The predicted transition wavelengths agree with the experiment to 0.08Å. The higher-order corrections and fine structures are found to be critically important in these comparisons.
NASA Astrophysics Data System (ADS)
Izosimov, I. N.
2015-10-01
It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in 6,7,8Li, 8,9,10Be, 8,10,11B, 10,11,12,13,14C, 13,14,15,16,17N, 15,16,17,19O, and 17F are analyzed. Special attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.
Marggi Poullain, Sonia; Chicharro, David V; Navarro, Eduardo; Rubio-Lago, Luis; González-Vázquez, Jesús; Bañares, Luis
2018-01-31
The photodissociation dynamics of bromoiodomethane (CH 2 BrI) have been investigated at the maximum of the first A and second A' absorption bands, at 266 and 210 nm excitation wavelengths, respectively, using velocity map and slice imaging techniques in combination with a probe detection of both iodine and bromine fragments, I( 2 P 3/2 ), I*( 2 P 1/2 ), Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) via (2 + 1) resonance enhanced multiphoton ionization. Experimental results, i.e. translational energy and angular distributions, are reported and discussed in conjunction with high level ab initio calculations of potential energy curves and absorption spectra. The results indicate that in the A-band, direct dissociation through the 5A' excited state leads to the I( 2 P 3/2 ) channel while I*( 2 P 1/2 ) atoms are produced via the 5A' → 4A'/4A'' nonadiabatic crossing. The presence of Br and Br* fragments upon excitation to the A-band is attributed to indirect dissociation via a curve crossing between the 5A' with upper excited states such as the 9A'. The A'-band is characterized by a strong photoselectivity leading exclusively to the Br( 2 P 3/2 ) and Br*( 2 P 1/2 ) channels, which are likely produced by dissociation through the 9A' excited state. Avoided crossings between several excited states from both the A and A' bands entangle however the possible reaction pathways.
Ekectron-Impact Excitation of C+
NASA Astrophysics Data System (ADS)
Pearce, A. J.; Ballance, C. P.; Loch, S. D.; Pindzola, M. S.
2015-05-01
Electron-impact excitation cross sections are calculated for ground and excited states of C+ using the R-matrix with pseudo-states method. We used the configurations 1s2 2s2 nl (3 s <= nl <= 12 g) , 1s2 2 s 2 pnl (2 p <= nl <= 12 g) , 1s2 2p2 nl (2 p <= nl <= 12 g) , 1s2 2 s 3s2 , and 1s2 2 s 3d2 , resulting in 890 LS terms and 2048 LSJ levels. Excitation cross sections for the 1s2 2s2 2 p2 P -->4 P,2 D,2 S transitions are in good agreement with experiment. Combined with previous calculations for C and Cq+ (q = 2- 5), sufficient excitation, ionization, and recombination atomic data is now available to generate high quality collisional-radiative coefficients for the entire C isonuclear sequence. Work supported in part by grants from NASA, NSF, and DOE.
Crystallization dynamics in glass-forming systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cullinan, Timothy Edward
Crystallization under far-from-equilibrium conditions is investigated for two different scenarios: crystallization of the metallic glass alloy Cu 50Zr 50 and solidification of a transparent organic compound, o-terphenyl. For Cu 50Zr 50, crystallization kinetics are quanti ed through a new procedure that directly fits thermal analysis data to the commonly utilized JMAK model. The phase evolution during crystallization is quantified through in-situ measurements (HEXRD, DSC) and ex-situ microstructural analysis (TEM, HRTEM). The influence of chemical partitioning, diffusion, and crystallographic orientation on this sequence are examined. For o-terphenyl, the relationship between crystal growth velocity and interface undercooling is systematically studied via directionalmore » solidification.« less
Excited state electron affinity calculations for aluminum
NASA Astrophysics Data System (ADS)
Hussein, Adnan Yousif
2017-08-01
Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.
Identifying the T=5 states in 48Ca
NASA Astrophysics Data System (ADS)
Upadhyayula, Sriteja; Ahn, Sunghoon; Anastasiou, Maria; Bedoor, Shadi; Browne, Justin; Blackmon, Jeffrey; Deibel, Catherine; Hood, Ashley; Hooker, Joshua; Hunt, Curtis; Koshchiy, Yevgen; Lighthall, Jon; Ong, Wei Jia; Rijal, Nabin; Rogachev, Grigory; Santiago-Gonzalez, Daniel; Nscl, Michigan State University, Ingo
2017-09-01
Particle-hole excitations near closed shells carry information on single-particle energies and on two-body interactions. The particle-hole excitations near the doubly magic nuclei are of special interest. Information on the charge-changing particle-hole excitations (T=5 negative parity states) in 48Ca is not available. We performed an experiment to establish the level scheme of the low-lying negative parity T=5 states in 48Ca. Excitation functions for the 1H(47K,p)47K(g.s.) and 1H(47K,p)47K(3/2+) reactions in the c.m. energy range from 1 MeV to 4.5 MeV were measured. The T=5 states are expected to show up in the p+47K excitation function as narrow resonances. This experiment was performed at NSCL using the ReA3 beam of 47K at energy of 4.6 MeV/u. ANASEN, set in active target mode, was used for this experiment. Experimental results from this experiment will be presented.
Spin excitations in optimally P-doped BaFe 2 ( As 0.7 P 0.3 ) 2 superconductor
Hu, Ding; Yin, Zhiping; Zhang, Wenliang; ...
2016-09-02
We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe 2(As 0:7P 0:3) 2 superconductor (T c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe 2As 2 stem from antiferromagnetic (AF) ordering wave vector QAF = ( 1; 0) and peaks near zone boundary at ( 1; 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe 2(As 0:7P 0:3) 2 form a resonance in the superconducting state and high-energy spin excitations nowmore » peaks around 220 meV near ( 1; 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe 2(As 0:7P 0:3) 2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.« less
2014-01-01
The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y7P, a5S, and y5P excited states. The necessary Cr–He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory. In its electronic ground state the Cr atom is found to be fully submerged in the droplet. A solvation shell structure is derived from fluctuations in the radial helium density. Electronic excitations of an embedded Cr atom are simulated by confronting the relaxed helium density (ρHe), obtained for Cr in the ground state, with interaction pair potentials of excited states. The resulting energy shifts for the transitions z7P ← a7S, y7P ← a7S, z5P ← a5S, and y5P ← a5S are compared to recent fluorescence and photoionization experiments. PMID:24906160
Ratschek, Martin; Pototschnig, Johann V; Hauser, Andreas W; Ernst, Wolfgang E
2014-08-21
The interaction of an electronically excited, single chromium (Cr) atom with superfluid helium nanodroplets of various size (10 to 2000 helium (He) atoms) is studied with helium density functional theory. Solvation energies and pseudo-diatomic potential energy surfaces are determined for Cr in its ground state as well as in the y(7)P, a(5)S, and y(5)P excited states. The necessary Cr-He pair potentials are calculated by standard methods of molecular orbital-based electronic structure theory. In its electronic ground state the Cr atom is found to be fully submerged in the droplet. A solvation shell structure is derived from fluctuations in the radial helium density. Electronic excitations of an embedded Cr atom are simulated by confronting the relaxed helium density (ρHe), obtained for Cr in the ground state, with interaction pair potentials of excited states. The resulting energy shifts for the transitions z(7)P ← a(7)S, y(7)P ← a(7)S, z(5)P ← a(5)S, and y(5)P ← a(5)S are compared to recent fluorescence and photoionization experiments.
pH-Dependent Optical Properties of Synthetic Fluorescent Imidazoles
Berezin, Mikhail Y.; Kao, Jeff; Achilefu, Samuel
2010-01-01
An imidazole moiety is often found as an integral part of fluorophores in a variety of fluorescent proteins and many such proteins possess pH dependent light emission. In contrast, synthetic fluorescent compounds with incorporated imidazoles are rare and have not been studied as pH probes. In this report, the richness of imidazole optical properties, including pH sensitivity, was demonstrated via a novel imidazole-based fluorophore 1H-imidazol-5-yl-vinyl-benz[e]indolium. Three species corresponding to protonated, neutral and deprotonated imidazoles were identified in the broad range of pH 1-12. The absorption and emission bands of each species were assigned by comparative spectral analysis with synthesized mono- and di-N-methylated fluorescent imidazole analogues. pKa analysis in the ground and the excited states showed photoacidic properties of the fluorescent imidazoles due to the excited state proton transfer (ESPT). This effect was negligible for substituted imidazoles. The assessment of a pH sensitive center in the imidazole ring revealed the switching of the pH sensitive centers from 1-N in the ground state to 3-N in the excited state. The effect was attributed to the unique kind of the excited state charge transfer (ESCT) resulting in a positive charge swapping between two nitrogens. PMID:19212987
Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin
2017-09-18
We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S 1/2 ground state to nP 3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser, and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S 1/2 , F = 4 - 6P 3/2 , F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state. Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers' Rabi frequency have been investigated. Fitting to energies of Cs nP 3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.
NASA Astrophysics Data System (ADS)
Mebel, Alexander M.; Lin, Sheng-Hsien
1997-03-01
The geometries, vibrational frequencies and vertical and adiabatic excitation energies of the excited valence and Rydberg 3s, 3p, 3d, and 4s electronic states of CH 3 have been studied using ab initio molecular orbital multiconfigurational SCF (CASSCF), internally contracted multireference configuration interaction (MRCI) and equation-of-motion coupled cluster (EOM-CCSD) methods. The vibronic spectra are determined through the calculation of Franck-Condon factors. Close agreement between theory and experiment has been found for the excitation energies, vibrational frequencies and vibronic spectra. The adiabatic excitation energies of the Rydberg 3s B˜ 2A' 1 and 3p 2 2A″ 2 states are calculated to be 46435 and 60065 cm -1 compared to the experimental values of 46300 and 59972 cm -1, respectively. The valence 2A″ excited state of CH 3 has been found to have a pyramidal geometry within C s symmetry and to be adiabatically by 97 kcal/mol higher in energy than the ground state. The 2A″ state is predicted to be stable by 9 and 13 kcal/mol with respect to H 2 and H elimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izosimov, I. N., E-mail: izosimov@jinr.ru
2015-10-15
It has been shown that IAS, DIAS, CS, and DCS can simultaneously have n-n, n-p, and p-p halo components in their wave functions. Differences in halo structure of the excited and ground states can result in the formation of isomers (halo-isomers). Both the Borromean and tango halo types can be observed for n-p configurations of atomic nuclei. The structure of the ground and excited states with different isospin quantum number in halo like nuclei is discussed. B(Mλ) and B(Eλ) for γ-transitions in {sup 6,7,8}Li, {sup 8,9,10}Be, {sup 8,10,11}B, {sup 10,11,12,13,14}C, {sup 13,14,15,16,17}N, {sup 15,16,17,19}O, and {sup 17}F are analyzed. Specialmore » attention is given to nuclei whose ground state does not exhibit halo structure but the excited state may have one.« less
Investigations of Vacuum Ultraviolet and Soft X-Ray Lasers.
1984-03-01
be achieved. A similar situation has been with the excitation energy of an excited level b referred to as excited state beta-decay in astro - -. of...we assumed that the laser field propagates in the x3 -direction. The corresponding momenta are B( fx )) = Z6(x - xn)llf’(X)l, Pu t( pO+p3)lv/, P- = (pO_
NASA Astrophysics Data System (ADS)
Cheng, Xue-mei; Huang, Yao; Ma, Jian-yi; Li, Xiang-yuan
2007-06-01
The absorption spectral properties of para-aminobenzophenone (p-ABP) were investigated in gas phase and in solution by time-dependent density functional theory. Calculations suggest that the singlet states vary greatly with the solvent polarities. In various polar solvents, including acetonitrile, methanol, ethanol, dimethyl sulfoxide, and dimethyl formamide, the excited S1 states with charge transfer character result from π → π* transitions. However, in nonpolar solvents, cyclohexane, and benzene, the S1 states are the result of n → π* transitions related to local excitation in the carbonyl group. The excited T1 states were calculated to have ππ* character in various solvents. From the variation of the calculated excited states, the band due to π → π* transition undergoes a redshift with an increase in solvent polarity, while the band due to n → π* transition undergoes a blueshift with an increase in solvent polarity. In addition, the triplet yields and the photoreactivities of p-ABP in various solvents are discussed.
Guidez, Emilie B; Aikens, Christine M
2015-04-09
The origin of the emission of the gold phosphine thiolate complex (TPA)AuSCH(CH3)2 (TPA = 1,3,5-triaza-7-phosphaadamantanetriylphosphine) is investigated using time-dependent density functional theory (TDDFT). This system absorbs light at 3.6 eV, which corresponds mostly to a ligand-to-metal transition with some interligand character. The P-Au-S angle decreases upon relaxation in the S1 and T1 states. Our calculations show that these two states are strongly spin-orbit coupled at the ground state geometry. Ligand effects on the optical properties of this complex are also discussed by looking at the simple AuP(CH3)3SCH3 complex. The excitation energies differ by several tenths of an electronvolt. Excited state optimizations show that the excited singlet and triplet of the (TPA)AuSCH(CH3)2 complex are bent. On the other hand, the Au-S bond breaks in the excited state for the simple complex, and TDDFT is no longer an adequate method. The excited state energy landscape of gold phosphine thiolate systems is very complex, with several state crossings. This study also shows that the formation of the [(TPA)AuSCH(CH3)2]2 dimer is favorable in the ground state. The inclusion of dispersion interactions in the calculations affects the optimized geometries of both ground and excited states. Upon excitation, the formation of a Au-Au bond occurs, which results in an increase in energy of the low energy excited states in comparison to the monomer. The experimentally observed emission of the (TPA)AuSCH(CH3)2 complex at 1.86 eV cannot be unambiguously assigned and may originate from several excited states.
Sub-Tg process of tert-nitrobutane in o-terphenyl glassy matrix
NASA Astrophysics Data System (ADS)
Chandra, Girish
2017-05-01
Dielectric spectroscopy (20 Hz - 2 MHz) and Differential Scanning Calorimetry measurement have been done of the o-terphenyl (OTP) - tert-nitrobutane (TNB), Xw=0.15 binary system, down to liquid nitrogen temperature. During measurement a clear dispersion of one primary α- process and two secondary β- (or sub-Tg) processes (β1 & β2) are observed. The β1- process is due to solvent OTP molecules whereas the β2- process is due to solute TNB molecules. Spectral behavior of α- process follows the Havariliak-Negami equation. The Sub-Tg processes are symmetric in nature and follow the Cole-Cole equation. The activation energy of the β2-process is found to be 11.3 kJ/mole.
Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; ...
2017-02-08
Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Vandana; Lubna, R. S.; Abromeit, B.
Low-lying excited states in P 38,40 have been identified in the β decay of T z=+5,+6, Si 38,40. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1 + and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N=20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1hmore » states in the even-A phosphorus isotopes. States in P 40 with N=25 were found to have very complex configurations involving all the fp orbitals leading to deformed states as seen in neutron-rich nuclei with N≈28. The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.« less
SCINTILLATOR COMPOSITION FOR COUNTERS AND METHOD OF MAKING
Buck, W.L.; Swank, R.K.
1958-02-25
This patent deals with a new composition for plastic scintillators and the method of making them. This is accomplished by mixing a solvent, selected from the group consisting of styrene, methylstyrene where the methyl group is attached to the ring, and p-vinylbiphenyl with p-terphenyl as a primary fluor. Marked improvement in the fluorescent properties of this scintillator composition is obtained by incorporating as a second fluor, a small amount of a highly conjugated hydrocarbon having four phenyl groups such as quaterphenyl or 1,1,4,4- tetraphenyl-1,3-butadiene. It is advisable to use very pure monomers in this composition, and to carry out its preparation in the absence of air.
The blue light indicator in rubidium 5S-5P-5D cascade excitation
NASA Astrophysics Data System (ADS)
Raja, Waseem; Ali, Md. Sabir; Chakrabarti, Alok; Ray, Ayan
2017-07-01
The cascade system has played an important role in contemporary research areas related to fields like Rydberg excitation, four wave mixing and non-classical light generation, etc. Depending on the specific objective, co or counter propagating pump-probe laser experimental geometry is followed. However, the stepwise excitation of atoms to states higher than the first excited state deals with increasingly much fewer number of atoms even compared to the population at first excited level. Hence, one needs a practical indicator to study the complex photon-atom interaction of the cascade system. Here, we experimentally analyze the case of rubidium 5S → 5P → 5D as a specimen of two-step excitation and highlight the efficacy of monitoring one branch, which emits 420 nm, of associated cascade decay route 5D → 6P → 5S, as an effective monitor of the coherence in the system.
Oliver, Thomas A A; Zhang, Yuyuan; Ashfold, Michael N R; Bradforth, Stephen E
2011-01-01
Gas-phase H (Rydberg) atom photofragment translational spectroscopy and solution-phase femtosecond-pump dispersed-probe transient absorption techniques are applied to explore the excited state dynamics of p-methylthiophenol connecting the short time reactive dynamics in the two phases. The molecule is excited at a range of UV wavelengths from 286 to 193 nm. The experiments clearly demonstrate that photoexcitation results in S-H bond fission--both in the gas phase and in ethanol solution-and that the resulting p-methythiophenoxyl radical fragments are formed with significant vibrational excitation. In the gas phase, the recoil anisotropy of the H atom and the vibrational energy disposal in the p-MePhS radical products formed at the longer excitation wavelengths reveal the operation of two excited state dissociation mechanisms. The prompt excited state dissociation motif appears to map into the condensed phase also. In both phases, radicals are produced in both their ground and first excited electronic states; characteristic signatures for both sets of radical products are already apparent in the condensed phase studies after 50 fs. No evidence is seen for either solute ionisation or proton coupled electron transfer--two alternate mechanisms that have been proposed for similar heteroaromatics in solution. Therefore, at least for prompt S-H bond fissions, the direct observation of the dissociation process in solution confirms that the gas phase photofragmentation studies indeed provide important insights into the early time dynamics that transfer to the condensed phase.
Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.
2015-08-06
This study describes variational energy expressions and analytical excited state energy gradients for time-dependent self-consistent field methods with polarizable solvent effects. Linear response, vertical excitation, and state-specific solventmodels are examined. Enforcing a variational ground stateenergy expression in the state-specific model is found to reduce it to the vertical excitation model. Variational excited state energy expressions are then provided for the linear response and vertical excitation models and analytical gradients are formulated. Using semiempiricalmodel chemistry, the variational expressions are verified by numerical and analytical differentiation with respect to a static external electric field. Lastly, analytical gradients are further tested by performingmore » microcanonical excited state molecular dynamics with p-nitroaniline.« less
γ spectroscopy of states in Cl 32 relevant for the S 31 ( p , γ ) Cl 32 reaction rate
Afanasieva, L.; Blackmon, J. C.; Deibel, C. M.; ...
2017-09-01
Background: The 31S(p,gamma) 32Cl reaction becomes important for sulfur production in novae if the P-31(p, alpha)Si-28 reaction rate is somewhat greater than currently accepted. The rate of the S-31(p,gamma) Cl-32 reaction is uncertain, primarily due to the properties of resonances at E-c.m. = 156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl-32 through high-resolution. spectroscopy including the two states most important for the S-31(p,gamma) Cl-32 reaction at nova temperatures. Method: Excited states in Cl-32 were populated using the B-10(Mg-24, 2n) Cl-32 reaction with a Mg-24 beam from the ATLAS facility at Argonne National Laboratory.more » The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and we determined precise level energies by detecting. rays with Gammasphere. Results: We also observed. rays from the decay of six excited states in Cl-32. The excitation energies for two unbound levels at E-x = 1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S-32(He-3, t) Cl-32 reaction [1]. Conclusions: An updated 31S(p,gamma) Cl-32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reaction rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl-32.« less
Study of 162Er via the (p , t) and (p ,p') reactions
NASA Astrophysics Data System (ADS)
Kisliuk, D.; Garrett, P. E.; Finlay, A.; Bianco, L.; Bildstein, V.; Burbadge, C.; Chagnon-Lessard, S.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Jamieson, D.; Jigmeddorj, B.; Maclean, A. D.; Michetti-Wilson, J.; Leach, K. G.; Radich, A. J.; Rand, E.; Svensson, C. E.; Wong, J.; Ball, G. C.; Triambak, S.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.
2015-10-01
The nature of excited states in well-deformed nuclei pose a challenge in nuclear structure. In light of this, the study of 162Er via the 164Er (p , t) and 162Er (p ,p') reactions has been initiated to shed light on the structure of these excited states. The experiments were performed at the Maier-Leibnitz Laboratory using a 22 MeV proton beam on highly-enriched targets of 162,164Er and the reaction was analyzed with the Q3D spectrograph. Strong population in the (p , t) reaction of the 02+ state, far greater than other 0+ states, has been observed. Transition matrix elements for population of low-lying states in the (p ,p') reaction have also been extracted. Initial results from these experiments will be presented.
Deciphering excited state evolution in halorhodopsin with stimulated emission pumping.
Bismuth, Oshrat; Komm, Pavel; Friedman, Noga; Eliash, Tamar; Sheves, Mordechai; Ruhman, Sanford
2010-03-04
The primary photochemical dynamics of Hb. pharaonis Halorhodopsin (pHR) are investigated by femtosecond visible pump-near IR dump-hyperspectral probe spectroscopy. The efficiency of excited state depletion is deduced from transient changes in absorption, recorded with and without stimulated emission pumping (SEP), as a function of the dump delay. The concomitant reduction of photocycle population is assessed by probing the "K" intermediate difference spectrum. Results show that the cross section for stimulating emission is nearly constant throughout the fluorescent state lifetime. Probing "K" demonstrates that dumping produces a proportionate reduction in photocycle yields. We conclude that, despite its nonexponential internal conversion (IC) kinetics, the fluorescent state in pHR constitutes a single intermediate in the photocycle. This contrasts with conclusions drawn from the study of primary events in the related chloride pump from Hb. salinarum (sHR), believed to produce the "K" intermediate from a distinct short-lived subpopulation in the excited state. Our discoveries concerning internal conversion dynamics in pHR are discussed in light of recent expectations for similar excited state dynamics in both proteins.
Reduced graphene oxide and porphyrin. An interactive affair in 2-D.
Wojcik, Aleksandra; Kamat, Prashant V
2010-11-23
Photoexcited cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP) undergoes charge-transfer interaction with chemically reduced graphene oxide (RGO). Formation of the ground-state TMPyP-RGO complex in solution is marked by the red-shift of the porphyrin absorption band. This complexation was analyzed by Benesi-Hildebrand plot. Porphyrin fluorescence lifetime reduced from 5 to 1 ns upon complexation with RGO, indicating excited-state interaction between singlet excited porphyrin and RGO. Femtosecond transient absorption measurements carried out with TMPyP adsorbed on RGO film revealed fast decay of the singlet excited state, followed by the formation of a longer-living product with an absorption maximum around 515 nm indicating the formation of a porphyrin radical cation. The ability of TMPyP-RGO to undergo photoinduced charge separation was further confirmed from the photoelectrochemical measurements. TMPyP-RGO coated conducting glass electrodes are capable of generating photocurrent under visible excitation. These results are indicative of the electron transfer between photoexcited porphyrin and RGO. The role of graphene in accepting and shuttling electrons in light-harvesting assemblies is discussed.
a Computational Tddft Study on Intramolecular Charge Transfer in Di-Tert and 2,4,6-TRICYANOANILINES.
NASA Astrophysics Data System (ADS)
Fujiwara, Takashige; Zgierski, Marek Z.
2014-06-01
We have carried out TDDFT computational studies on the low-lying excited states of di-tert-butylaminobenzonitrile and 2,4,6-tricyanoaniline compounds that exhibit unusual photophysical behaviors associated with the intramolecular charge transfer (ICT). For both 3- and 4-di-tert-butylamino)benzonitriles (m-DTBABN and p-DTBABN, respectively) show the ICT formation, and p-DTBABN appears to be the only meta-substituted aminobenzonitrile that exhibits the ICT formation. The TDDFT calculations indicate evidence that the ultrafast ICT formation in p-DTBABN and m-DTBABN is due to the sequential state switches: ππ*(La)→ πσ*→ ICT in the presence of conical intersections among the three closely-lying excited-states. On the other hand, 2,4,6-tricyanoaniline does not show clear evidence for the LE (locally excited) state → ICT state formation from steady-state fluorescence studies, despite the greater electron acceptor strength of tricycanobenzene as compared to monocyanobenzene, which is part of a 4-(dimethylamino)benzonitrile (p-DMABN) compound. However, it is predicted that 2,4,6-tricyano-N,N-dimethylaniline (TCDMA), but not 2,4,6-tricyanoaniline (TCA), possesses two ICT states, which show the ICT-characterized quinoidal structures and lie below the initially photo-excited S1(ππ*) state. The CC2 calculations further predict two conformers as labeled with quinoidal (ICT--Q) and anti-quinoidal (ICT--AQ) structures are rapidly interconnecting with each other. The lower energy ICT--Q structure tends to be populated from the unstable ICT--AQ structure, which is responsible for the observed time-resolved fluorescence as well as the excited-state absorption from the mixed S1(ππ*)/ICT state of TCDMA. In both cases for TCDMA and TCA, the πσ* state locates significantly higher in energy than the S1(ππ*) state (and the ICT state for TCA), thus precluding the πσ*→ ICT formation, which is believed to occur in a p-DMABN in polar environments.
Investigation of excited 0+ states in 160Er populated via the (p, t) two-neutron transfer reaction
NASA Astrophysics Data System (ADS)
Burbadge, C.; Garrett, P. E.; Ball, G. C.; Bildstein, V.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Faesternann, T.; Hertenberger, R.; Jamieson, D. S.; Kisliuk, D.; Leach, K. G.; Loranger, J.; MacLean, A. D.; Radich, A. J.; Rand, E. T.; Svensson, C. E.; Triambak, S.; Wirth, H.-F.
2018-05-01
Many efforts have been made in nuclear structure physics to interpret the nature of low-lying excited 0+ states in well-deformed rare-earth nuclei. However, one of the difficulties in resolving the nature of these states is that there is a paucity of data. In this work, excited 0+ states in the N = 92 nucleus 160Er were studied via the 162Er(p, t)160Er two-neutron transfer reaction, which is ideal for probing 0+ → 0+ transitions, at the Maier-Leibnitz-Laboratorium in Garching, Germany. Reaction products were momentum-analyzed with a Quadrupole-3-Dipole magnetic spectrograph. The 0+2 state was observed to be strongly populated with 18% of the ground state strength.
Search for excited states in 25O
NASA Astrophysics Data System (ADS)
Jones, M. D.; Fossez, K.; Baumann, T.; DeYoung, P. A.; Finck, J. E.; Frank, N.; Kuchera, A. N.; Michel, N.; Nazarewicz, W.; Rotureau, J.; Smith, J. K.; Stephenson, S. L.; Stiefel, K.; Thoennessen, M.; Zegers, R. G. T.
2017-11-01
Background: Theoretical calculations suggest the presence of low-lying excited states in 25O. Previous experimental searches by means of proton knockout on 26F produced no evidence for such excitations. Purpose: We search for excited states in 25O using the 24O(d ,p ) 25O reaction. The theoretical analysis of excited states in unbound O,2725 is based on the configuration interaction approach that accounts for couplings to the scattering continuum. Method: We use invariant-mass spectroscopy to measure neutron-unbound states in 25O. For the theoretical approach, we use the complex-energy Gamow Shell Model and Density Matrix Renormalization Group method with a finite-range two-body interaction optimized to the bound states and resonances of O-2623, assuming a core of 22O. We predict energies, decay widths, and asymptotic normalization coefficients. Results: Our calculations in a large s p d f space predict several low-lying excited states in 25O of positive and negative parity, and we obtain an experimental limit on the relative cross section of a possible Jπ=1/2 + state with respect to the ground state of 25O at σ1 /2 +/σg .s .=0 .25-0.25+1.0 . We also discuss how the observation of negative parity states in 25O could guide the search for the low-lying negative parity states in 27O. Conclusion: Previous experiments based on the proton knockout of 26F suffered from the low cross sections for the population of excited states in 25O because of low spectroscopic factors. In this respect, neutron transfer reactions carry more promise.
NASA Astrophysics Data System (ADS)
Jana, Sankar; Dalapati, Sasanka; Ghosh, Shalini; Kar, Samiran; Guchhait, Nikhil
2011-07-01
The excited state intramolecular charge transfer process in donor-chromophore-acceptor system 5-(4-dimethylamino-phenyl)-penta-2,4-dienenitrile (DMAPPDN) has been investigated by steady state absorption and emission spectroscopy in combination with Density Functional Theory (DFT) calculations. This flexible donor acceptor molecule DMAPPDN shows dual fluorescence corresponding to emission from locally excited and charge transfer state in polar solvent. Large solvatochromic emission shift, effect of variation of pH and HOMO-LUMO molecular orbital pictures support excited state intramolecular charge transfer process. The experimental findings have been correlated with the calculated structure and potential energy surfaces based on the Twisted Intramolecular Charge Transfer (TICT) model obtained at DFT level using B3LYP functional and 6-31+G( d, p) basis set. The theoretical potential energy surfaces for the excited states have been generated in vacuo and acetonitrile solvent using Time Dependent Density Functional Theory (TDDFT) and Time Dependent Density Functional Theory Polarized Continuum Model (TDDFT-PCM) method, respectively. All the theoretical results show well agreement with the experimental observations.
Ultrafast excited-state dynamics of 2,5-dimethylpyrrole.
Yang, Dongyuan; Min, Yanjun; Chen, Zhichao; He, Zhigang; Yuan, Kaijun; Dai, Dongxu; Yang, Xueming; Wu, Guorong
2018-04-17
The ultrafast excited-state dynamics of 2,5-dimethylpyrrole following excitation at wavelengths in the range of 265.7-216.7 nm is studied using the time-resolved photoelectron imaging method. It is found that excitation at longer wavelengths (265.7-250.2 nm) results in the population of the S1(1πσ*) state, which decays out of the photoionization window in about 90 fs. At shorter pump wavelengths (242.1-216.7 nm), the assignments are less clear-cut. We tentatively assign the initially photoexcited state(s) to the 1π3p Rydberg state(s) which has lifetimes of 159 ± 20, 125 ± 15, 102 ± 10 and 88 ± 10 fs for the pump wavelengths of 242.1, 238.1, 232.6 and 216.7 nm, respectively. Internal conversion to the S1(1πσ*) state represents at most a minor decay channel. The methyl substitution effects on the decay dynamics of the excited states of pyrrole are also discussed. Methyl substitution on the pyrrole ring seems to enhance the direct internal conversion from the 1π3p Rydberg state to the ground state, while methyl substitution on the N atom has less influence and the internal conversion to the S1(πσ*) state represents a main channel.
Sandhu, Sana; Kumar, Rahul; Singh, Prabhpreet; Mahajan, Aman; Kaur, Manmeet; Kumar, Subodh
2015-05-20
1-(p-Terphenyl)-benzimidazolium (TRIPOD-TP) molecules undergo self-assembly to form rodlike structures in aqueous medium, as shown by field-emission scanning electron microscopy, transmission electron microscopy, and dynamic light scattering studies. Upon gradual addition of picric acid (PA), these aggregates undergo an aggregation/disaggregation process to complex morphological structures (10(-12)-10(-10) M PA) and spherical aggregates (10(-9)-10(-8) M PA). These spherical aggregates undergo further dissolution to well-dispersed spheres between 10(-7)-10(-6) M PA. During fluorescence studies, these aggregates demonstrate superamplified fluorescence quenching (>97%) in the presence of 10(-5) to 0.2 equiv of the probe concentration, an unprecedented process with PA. The lowest detection limits by solution of TRIPOD-TP are 5 × 10(-13) PA, 50 × 10(-12) M 2,4-dinitrophenol, 200 × 10(-12) M 2,4,6-trinitrotoluene, and 1 nM 1-chloro-2,4-dinitrobenzene. Paper strips dipped in the solution of TRIPOD-TP demonstrate quantitative fluorescence quenching between 10(-17) and 10(-6) M PA using front-surface steady state studies and can measure as low as 2.29 × 10(-20) g/cm(2) PA.
{ital L}=1 Excitation in the Halo Nucleus {sup 11}Li
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsheninnikov, A.; Fukuda, S.; Ito, S.
Collisions of {sup 11}Li+p at 68AMeV have been studied by correlational measurements. An excited state of {sup 11}Li at E{sup {asterisk}}{approx_equal}1.3MeV was observed. The measured angular distributions show the dipole nature of the excitation of the 1.3-MeV peak. The structure of the excited states and the ground state of {sup 11}Li is discussed. {copyright} {ital 1997} {ital The American Physical Society}
Two photon excitation of atomic oxygen
NASA Technical Reports Server (NTRS)
Pindzola, M. S.
1977-01-01
A standard perturbation expansion in the atom-radiation field interaction is used to calculate the two photon excitation cross section for 1s(2) 2s(2) 2p(4) p3 to 1s(2) 2s(2) 2p(3) (s4) 3p p3 transition in atomic oxygen. The summation over bound and continuum intermediate states is handled by solving the equivalent inhomogeneous differential equation. Exact summation results differ by a factor of 2 from a rough estimate obtained by limiting the intermediate state summation to one bound state. Higher order electron correlation effects are also examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasieva, L.; Blackmon, J. C.; Deibel, C. M.
Background: The 31S(p,gamma) 32Cl reaction becomes important for sulfur production in novae if the P-31(p, alpha)Si-28 reaction rate is somewhat greater than currently accepted. The rate of the S-31(p,gamma) Cl-32 reaction is uncertain, primarily due to the properties of resonances at E-c.m. = 156 and 549 keV. Purpose: We precisely determined the excitation energies of states in Cl-32 through high-resolution. spectroscopy including the two states most important for the S-31(p,gamma) Cl-32 reaction at nova temperatures. Method: Excited states in Cl-32 were populated using the B-10(Mg-24, 2n) Cl-32 reaction with a Mg-24 beam from the ATLAS facility at Argonne National Laboratory.more » The reaction channel of interest was selected using recoils in the Fragment Mass Analyzer, and we determined precise level energies by detecting. rays with Gammasphere. Results: We also observed. rays from the decay of six excited states in Cl-32. The excitation energies for two unbound levels at E-x = 1738.1 (6) keV and 2130.5 (10) keV were determined and found to be in agreement with a previous high-precision measurement of the S-32(He-3, t) Cl-32 reaction [1]. Conclusions: An updated 31S(p,gamma) Cl-32 reaction rate is presented. With the excitation energies of important levels firmly established, the dominant uncertainty in the reaction rate at nova temperatures is due to the strength of the resonance corresponding to the 2131-keV state in Cl-32.« less
Ultralong-range Rydberg Molecules: Investigation of a Novel Binding Mechanism
NASA Astrophysics Data System (ADS)
Butscher, Björn; Bendkowsky, Vera; Nipper, Johannes; Balewski, Jonathan; Shaffer, James P.; Löw, Robert; Pfau, Tilman
2010-03-01
For highly excited Rydberg atoms, the scattering of the Rydberg electron from a nearby polarizable ground state atom can generate an attractive mean-field potential which is able to bind the ground state atom to the Rydberg atom within the Rydberg electron wave function at binding energies ranging from a few MHz to hundreds of MHz[1]. We present spectroscopic data on the observation of various bound states including the vibrational ground and excited states of rubidium dimers Rb(5S)-Rb(nS) as well as those of trimer states. Furthermore, we show calculations that reproduce the observed binding energies remarkably well and reveal that some of the excited states are purely bound by quantum reflection at a shape resonance for p-wave scattering [2]. To further characterize the coherent excitation of the molecular states, we performed echo experiments. [0pt] [1] V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Löw, T. Pfau, Nature 458, 1005 (2009); [2] V. Bendkowsky, B. Butscher, J. Nipper, J. Balewski, J. P. Shaffer, R. Löw, T. Pfau, W. Li, J. Stanojevic, T. Pohl,and J. M. Rost, arXiv:0912.4058 (2009)
Photoelectron imaging of autoionizing states of xenon: Effect of external electric fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shubert, V. Alvin; Pratt, Stephen T.
Velocity map photoelectron imaging was used to study the photoelectron angular distributions of autoionizing Stark states of atomic xenon excited just below the Xe{sup +} {sup 2} P{sub 1/2}{sup o} threshold at fields ranging from 50 to 700 V/cm. Two-color, two-photon resonant, three-photon excitation via the 6p{sup '}[1/2]{sub 0} level was used to probe the region of interest. The wavelength scans show a similar evolution of structure to that observed in single-photon excitation [Ernst et al., Phys. Rev. A 37, 4172 (1988)]. The photoelectron angular distributions following autoionization of the Stark states provide information on the decay of excited statesmore » in electron fields. In the present experiments, the large autoionization width of the ({sup 2} P{sub 1/2}{sup o})nd[3/2]{sub 1}{sup o} series dominates the decay processes, and thus controls the angular distributions. However, the angular distributions of the Stark states also indicate the presence of other decay channels contributing to the decay of these states.« less
Even-parity resonances with synchrotron radiation from Laser Excited Lithium at 1s^22p State
NASA Astrophysics Data System (ADS)
Huang, Ming-Tie; Wehlitz, Ralf
2010-03-01
Correlated many-body dynamics is still one of the unsolved fundamental problems in physics. Such correlation effects can be most clearly studied in processes involving single atoms for their simplicity.Lithium, being the simplest open shell atom, has been under a lot of study. Most of the studies focused on ground state lithium. However, only odd parity resonances can be populated through single photon (synchrotron radiation) absorption from ground state lithium (1s^22s). Lithium atoms, after being laser excited to the 1s^22p state, allow the study of even parity resonances. We have measured some of the even parity resonances of lithium for resonant energies below 64 eV. A single-mode diode laser is used to excite lithium from 1s^22s ground state to 1s^22p (^2P3/2) state. Photoions resulting from the interaction between the excited lithium and synchrotron radiation were analyzed and collected by an ion time-of-flight (TOF) spectrometer with a Z- stack channel plate detector. The Li^+ ion yield was recorded while scanning the undulator along with the monochromator. The energy scans have been analyzed regarding resonance energies and parameters of the Fano profiles. Our results for the observed resonances will be presented.
Electronic and rovibrational quantum chemical analysis of C3P-: the next interstellar anion?
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Lukemire, Joseph A.
2015-11-01
C3P- is analogous to the known interstellar anion C3N- with phosphorus replacing nitrogen in a simple step down the periodic table. In this work, it is shown that C3P- is likely to possess a dipole-bound excited state. It has been hypothesized and observationally supported that dipole-bound excited states are an avenue through which anions could be formed in the interstellar medium. Additionally, C3P- has a valence excited state that may lead to further stabilization of this molecule, and C3P- has a larger dipole moment than neutral C3P (˜6 D versus ˜4 D). As such, C3P- is probably a more detectable astromolecule than even its corresponding neutral radical. Highly accurate quantum chemical quartic force fields are also applied to C3P- and its singly 13C substituted isotopologues in order to provide structures, vibrational frequencies, and spectroscopic constants that may aid in its detection.
Long-range interactions of hydrogen atoms in excited states. III. n S -1 S interactions for n ≥3
NASA Astrophysics Data System (ADS)
Adhikari, C. M.; Debierre, V.; Jentschura, U. D.
2017-09-01
The long-range interaction of excited neutral atoms has a number of interesting and surprising properties such as the prevalence of long-range oscillatory tails and the emergence of numerically large van der Waals C6 coefficients. Furthermore, the energetically quasidegenerate n P states require special attention and lead to mathematical subtleties. Here we analyze the interaction of excited hydrogen atoms in n S states (3 ≤n ≤12 ) with ground-state hydrogen atoms and find that the C6 coefficients roughly grow with the fourth power of the principal quantum number and can reach values in excess of 240 000 (in atomic units) for states with n =12 . The nonretarded van der Waals result is relevant to the distance range R ≪a0/α , where a0 is the Bohr radius and α is the fine-structure constant. The Casimir-Polder range encompasses the interatomic distance range a0/α ≪R ≪ℏ c /L , where L is the Lamb shift energy. In this range, the contribution of quasidegenerate excited n P states remains nonretarded and competes with the 1 /R2 and 1 /R4 tails of the pole terms, which are generated by lower-lying m P states with 2 ≤m ≤n -1 , due to virtual resonant emission. The dominant pole terms are also analyzed in the Lamb shift range R ≫ℏ c /L . The familiar 1 /R7 asymptotics from the usual Casimir-Polder theory is found to be completely irrelevant for the analysis of excited-state interactions. The calculations are carried out to high precision using computer algebra in order to handle a large number of terms in intermediate steps of the calculation for highly excited states.
Intruder configurations of excited states in the neutron-rich isotopes 33P and 34P
NASA Astrophysics Data System (ADS)
Lubna, R. S.; Tripathi, Vandana; Tabor, S. L.; Tai, P.-L.; Kravvaris, K.; Bender, P. C.; Volya, A.; Bouhelal, M.; Chiara, C. J.; Carpenter, M. P.; Janssens, R. V. F.; Lauritsen, T.; McCutchan, E. A.; Zhu, S.; Clark, R. M.; Fallon, P.; Macchiavelli, A. O.; Paschalis, S.; Petri, M.; Reviol, W.; Sarantites, D. G.
2018-04-01
Excited states in the neutron-rich isotopes 33P and 34P were populated by the 18O+18O fusion-evaporation reaction at Elab=24 MeV. The Gammasphere array was used along with the Microball particle detector array to detect γ transitions in coincidence with the charged particles emitted from the compound nucleus 36S. The use of Microball enabled the selection of the proton emission channel. It also helped in determining the exact position and energy of the emitted proton; this was later employed in kinematic Doppler corrections. 16 new transitions and 13 new states were observed in 33P and 21 γ rays and 20 energy levels were observed in 34P for the first time. The nearly 4 π geometry of Gammasphere allowed the measurement of γ -ray angular distributions leading to spin assignments for many states. The experimental observations for both isotopes were interpreted with the help of shell-model calculations using the (0+1)ℏ ω PSDPF interaction. The calculations accounted for both the 0p-0h and 1p-1h states reasonably well and indicated that 2p-2h excitations might dominate the higher-spin configurations in both 33P and 34P.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lü, Lei; Mu, Bao; Li, Chang-Xia
A series of metal-organic frameworks (MOFs) have been prepared by tetracarboxylate ligands and Cd(II) ions under the hydrothermal or solvothermal conditions with the formulas of {[Cd_2(L_1)(H_2O)_4]·H_2O}{sub n} (1), {[(CH_3)_2NH_2]_2[Cd(L_1)]}{sub n} (2), [Cd(L{sub 2}){sub 0.5}(H{sub 2}O)]{sub n} (3), {[(CH_3)_2NH_2]_2 [Cd(L_2)]·2DMF}{sub n} (4), [Cd(L{sub 3}){sub 0.5}(H{sub 2}O)]{sub n} (5), {[Cd(L_3)_0_._5(H_2O)]·CH_3OH}{sub n} (6), {[(CH_3)_2NH_2]_2[Cd_3(L_4)_2]}{sub n} (7) (H{sub 4}L{sub 1}=[1,1′:4′,1″-terphenyl]-2,2″,5,5″-tetracarboxylic acid; H{sub 4}L{sub 2}=[1,1′:4′,1″-terphenyl]-2′,4,4″,5′-tetracarboxylic acid; H{sub 4}L{sub 3}=[1,1′:3′,1″-terphenyl]-2′,3,3″,5′-tetracarboxylic acid; H{sub 4}L{sub 4}=[1,1′:4′,1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid), which are characterized by single-crystal X-ray diffraction, elemental analyses, IR, TGA and PXRD. Complex 1 exhibits a three-dimensional (3D) supramolecular framework based on two-dimensional (2D) coordination networks. Complexes 2 and 4more » possess 3D framework based on the 1D right-handed helix channels. Complexes 3 and 7 are a 3D architecture containing two different channels. Isostructural complexes 5 and 6 display 3D framework. The different synthetic methods and coordination modes of the tetracarboxylates ligands have effect on formation of various MOFs. Moreover, the luminescent properties and N{sub 2} adsorption behaviors have been reported. - Graphical abstract: A series of cadmium(II) high-dimensional coordination polymers constructed from four different kinds of tetracarboxylate ligands have been successfully prepared under hydrothermal or solvothermal conditions. The effect of solvents, the coordination modes of the tetracarboxylates and positions of carboxylate groups on the architectures of complexes 1–7 have been investigated in detail. The luminescent properties of the part of complexes, N{sub 2} adsorption behaviors of complexes 2, 4–7 have also been studied. - Highlights: • Tetracarboxylate ligands based on terphenyl moiety have been used. • Several factors that influenced the architecture have been discussed. • Luminescent properties have been investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumark, D. E. Szpunar, K. E. Kautzman, A. E. Faulhaber, and D. M.; Kautzman, K.E.; Faulhaber, A.E.
2005-11-09
The photodissociation dynamics of small I{sup -}(H{sub 2}O){sub n} (n = 2-5) clusters excited to their charge-transfer-to-solvent (CTTS) states have been studied using photofragment coincidence imaging. Upon excitation to the CTTS state, two photodissociation channels were observed. The major channel ({approx}90%) is a 2-body process forming neutral I + (H{sub 2}O){sub n} photofragments, and the minor channel is a 3-body process forming I + (H{sub 2}O){sub n-1} + H{sub 2}O fragments. Both process display translational energy (P(E{sub T})) distributions peaking at E{sub T} = 0 with little available energy partitioned into translation. Clusters excited to the detachment continuum rather thanmore » to the CTTS state display the same two channels with similar P(E{sub T}) distributions. The observation of similar P(E{sub T}) distributions from the two sets of experiments suggests that in the CTTS experiments, I atom loss occurs after autodetachment of the excited (I(H{sub 2}O){sub n}{sup -})* cluster, or, less probably, that the presence of the excess electron has little effect on the departing I atom.« less
1986-06-30
excited state and the correlation primitives. These additions had little effect on the tTi ground-state energy. Also included in this table is an...an additional s and p primitive was placed on the C atom and both optimised-with little effect. These were then removed. Finally, the calculation was...the excited vibrational and rotational states of nitromethane have been studied, little work has been done on its low-lying excited electronic states
Ground and excited states of CaSH through electron propagator calculations
NASA Astrophysics Data System (ADS)
Ortiz, J. V.
1990-05-01
Electron propagator calculations of electron affinities of CaSH + produce ground and excited state energies at the optimized, C s minimum of the neutral ground state and at a C ∞v geometry. Feynman-Dyson amplitudes (FDAs) describe the distribution of the least bound electron in various states. The neutral ground state differs from the cation by the occupation of a one-electron state dominated by Ca s functions. Described by FDAs with Ca-S π pseudosymmetry, corresponding excited states have unpaired electrons in orbitals displaying interference between Ca p and d functions. Above these lies a σ pseudosymmetry FDA with principal contributions from Ca d functions. Two FDAs with σ pseudosymmetry follow. Higher excited states exhibit considerable delocalization onto S.
The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
NASA Astrophysics Data System (ADS)
Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.
2015-06-01
Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets ( S ( λ 1 , T ˜ 2 , λ 3 ) ) along the population time ( T ˜ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps ( S ( λ 1 , ν ˜ 2 , λ 3 ) ). We found that the vibrational coherence from pure excited electronic states appears at positive frequency ( + ν ˜ 2 ) in the rephasing beating map and at negative frequency ( - ν ˜ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
NASA Astrophysics Data System (ADS)
Krumrine, Jennifer R.; Alexander, Millard H.; Yang, Xin; Dagdigian, Paul J.
2000-03-01
The 2s2p22D←2s22p 2P valence transition in the BAr2 cluster is investigated in a collaborative experimental and theoretical study. Laser fluorescence excitation spectra of a supersonic expansion of B atoms entrained in Ar at high source backing pressures display several features not assignable to the BAr complex. Resonance fluorescence is not observed, but instead emission from the lower 3s state. Size-selected fluorescence depletion spectra show that these features in the excitation spectrum are primarily due to the BAr2 complex. This electronic transition within BAr2 is modeled theoretically, similarly to our earlier study of the 3s←2p transition [M. H. Alexander et al., J. Chem. Phys. 106, 6320 (1997)]. The excited potential energy surfaces of the fivefold degenerate B(2s2p22D) state within the ternary complex are computed in a pairwise-additive model employing diatomic BAr potential energy curves which reproduce our previous experimental observations on the electronic states emanating from the B(2D)+Ar asymptote. The simulated absorption spectrum reproduces reasonably well the observed fluorescence depletion spectrum. The theoretical model lends insight into the energetics of the approach of B to multiple Ar atoms, and how the orientation of B p-orbitals governs the stability of the complex.
Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium
NASA Astrophysics Data System (ADS)
Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.
2006-09-01
An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.
NASA Astrophysics Data System (ADS)
Ren, Wanting
2007-12-01
Soft materials have attracted much scientific and technical interest in recent years. In this thesis, attention has been placed on the underpinning relations between molecular structure and properties of one type of soft matter---main chain liquid crystalline elastomers (MCLCEs), which may have application as shape memory or as auxetic materials. In this work, a number of siloxane-based MCLCEs and their linear polymer analogues (MCLCEs) with chemical variations were synthesized and examined. Among these chemical variations, rigid p-phenylene transverse rod and flat-shaped anthraquinone (AQ) mesogenic monomers were specifically incorporated. Thermal and X-ray analysis found a smectic C phase in most of our MCLCEs, which was induced by the strong self-segregation of siloxane spacers, hydrocarbon spacers and mesogenic rods. The smectic C mesophase of the parent LCE was not grossly affected by terphenyl transverse rods. Mechanical studies of MCLCEs indicated the typical three-region stress-strain curve and a polydomain-to-monodomain transition. Strain recovery experiments of MCLCEs showed a significant dependence of strain retentions on the initial strains but not on the chemical variations, such as the crosslinker content and the lateral substituents on mesogenic rods. The MCLCE with p-phenylene transverse rod showed a highly ordered smectic A mesophase at room temperature with high stiffness. Mechanical properties of MCLCEs with AQ monomers exhibit a strong dependence on the specific combination of hydrocarbon spacer and siloxane spacer, which also strongly affect the formation of pi-pi stacking between AQ units. Poisson's ratio measurement over a wide strain range found distinct trends of Poisson's ratio as a function of the crosslinker content as well as terphenyl transverse rod loadings in its parent MCLCEs.
Method for producing rapid pH changes
Clark, John H.; Campillo, Anthony J.; Shapiro, Stanley L.; Winn, Kenneth R.
1981-01-01
A method of initiating a rapid pH change in a solution by irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.
Method for producing rapid pH changes
Clark, J.H.; Campillo, A.J.; Shapiro, S.L.; Winn, K.R.
A method of initiating a rapid pH change in a solution comprises irradiating the solution with an intense flux of electromagnetic radiation of a frequency which produces a substantial pK change to a compound in solution. To optimize the resulting pH change, the compound being irradiated in solution should have an excited state lifetime substantially longer than the time required to establish an excited state acid-base equilibrium in the solution. Desired pH changes can be accomplished in nanoseconds or less by means of picosecond pulses of laser radiation.
NASA Astrophysics Data System (ADS)
Anam, Kishorekumar T.; Curtis, Michael P.; Irfan, Muhammad J.; Johnson, Michael P.; Royer, Andrew P.; Shahmohammadi, Kianor; Vinod, Thottumkara K.
2002-05-01
This four-week project-based laboratory exercise, developed for advanced organic chemistry students, involves a one-pot synthesis of m-terphenyls. Chemistry of aryl diazonium salts and Grignard reagents and reactivity of aryne intermediates toward nucleophilic reagents form the reaction chemistry basis for the project. The project exposes students to a number of important laboratory techniques (thin-layer chromatography, gas chromatography-mass spectrometry, and column chromatography) for monitoring reaction progress and product isolation. A variety of spectroscopic techniques, including IR, 1H NMR, 13C NMR, and attached proton test are used for product characterization. Students are also introduced to a useful empirical relationship to help predict (with considerable accuracy) the 13C chemical shift values of carbon atoms of substituted benzenes.
Isvoran, Adriana; Craciun, Dana; Martiny, Virginie; Sperandio, Olivier; Miteva, Maria A
2013-06-14
Protein-Protein Interactions (PPIs) are key for many cellular processes. The characterization of PPI interfaces and the prediction of putative ligand binding sites and hot spot residues are essential to design efficient small-molecule modulators of PPI. Terphenyl and its derivatives are small organic molecules known to mimic one face of protein-binding alpha-helical peptides. In this work we focus on several PPIs mediated by alpha-helical peptides. We performed computational sequence- and structure-based analyses in order to evaluate several key physicochemical and surface properties of proteins known to interact with alpha-helical peptides and/or terphenyl and its derivatives. Sequence-based analysis revealed low sequence identity between some of the analyzed proteins binding alpha-helical peptides. Structure-based analysis was performed to calculate the volume, the fractal dimension roughness and the hydrophobicity of the binding regions. Besides the overall hydrophobic character of the binding pockets, some specificities were detected. We showed that the hydrophobicity is not uniformly distributed in different alpha-helix binding pockets that can help to identify key hydrophobic hot spots. The presence of hydrophobic cavities at the protein surface with a more complex shape than the entire protein surface seems to be an important property related to the ability of proteins to bind alpha-helical peptides and low molecular weight mimetics. Characterization of similarities and specificities of PPI binding sites can be helpful for further development of small molecules targeting alpha-helix binding proteins.
NASA Astrophysics Data System (ADS)
Saroj, Manju K.; Sharma, Neera; Rastogi, Ramesh C.
2012-03-01
3-Benzoylmethyleneindol-2-ones, isatin based chalcones containing donor and acceptor moieties that exhibit excited-state intramolecular charge transfer, have been studied in different solvents by absorption and emission spectroscopy. The excited state behavior of these compounds is strongly dependent on the nature of substituents and the environment. These compounds show multiple emissions arising from a locally excited state and the two states due to intramolecular processes viz. intramolecular charge transfer (ICT) and excited state intramolecular proton transfer (ESIPT). Excited-state dipole moments have been calculated using Stoke-shifts of LE and ICT states using solvatochromic methods. The higher values of dipole moments obtained lead to support the formation of ICT state as one of the prominent species in the excited states of all 3-benzoylmethyleneindol-2-ones. The correlation of the solvatochromic Stokes-shifts with the microscopic solvent polarity parameter (ETN) was found to be superior to that obtained using bulk solvent polarity functions. The absorption and florescence spectral characteristics have been also investigated as a function of acidity and basicity (Ho/pH) in aqueous phase.
Quick, Martin; Dobryakov, Alexander L; Ioffe, Ilya N; Granovsky, Alex A; Kovalenko, Sergey A; Ernsting, Nikolaus P
2016-10-20
In the photoisomerization path of stilbene, a perpendicular state P on the S 1 potential energy surface is expected just before internal conversion through a conical intersection S 1 /S 0 . For decades the observation of P was thwarted by a short lifetime τ P in combination with slow population flow over a barrier. But these limitations can be overcome by ethylenic substitution. Following optical excitation of trans-1,1'-dicyanostilbene, P is populated significantly (τ P = 27 ps in n-hexane) and monitored by an exited-state absorption band at 370 nm. Here we report stimulated Raman lines of P. The strongest, at 1558 cm -1 , is attributed to stretching vibrations of the phenyl rings. Transient electronic states, resonance conditions, and corresponding Raman signals are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindahl, A. O.; Hanstorp, D.; Forstner, Dr. Oliver
2010-01-01
The depopulation of excited states in beams of negatively charged carbon and silicon ions was demonstrated using collisional detachment and laser photodetachment in a radio-frequency quadrupole ion guide filled with helium. The high-lying, loosely bound {sup 2}D excited state in C{sup -} was completely depleted through collisional detachment alone, which was quantitatively determined within 6%. For Si{sup -} the combined signal from the population in the {sup 2}P and {sup 2}D excited states was only partly depleted through collisions in the cooler. The loosely bound {sup 2}P state was likely to be completely depopulated, and the more tightly bound {supmore » 2}D state was partly depopulated through collisions. 98(2)% of the remaining {sup 2}D population was removed by photodetachment in the cooler using less than 2 W laser power. The total reduction of the excited population in Si{sup -}, including collisional detachment and photodetachment, was estimated to be 99(1)%. Employing this novel technique to produce a pure ground state negative ion beam offers possibilities of enhancing selectivity, as well as accuracy, in high-precision experiments on atomic as well as molecular negative ions.« less
Theory and computation of triply excited resonances: Application to states of He-
NASA Astrophysics Data System (ADS)
Nicolaides, Cleanthes A.; Piangos, Nicos A.; Komninos, Yannis
1993-11-01
Autoionizing multiply excited states offer unusual challenges to the theory of electronic structure and spectra because of the presence of strong electron correlations, of their occasional weak binding, of their proximity to more than one threshold, and of their degeneracy with many continua. Here we discuss a theory that addresses these difficulties in conjunction with the computation of their wave functions and intrinsic properties. Emphasis is given on the justification of the possible presence of self-consistently obtained open-channel-like (OCL) correlating configurations in the square-integrable representation of such states and on their effect on the energy E and the width Γ. Application of the theory has allowed the prediction of two hitherto unknown He- triply excited resonances, the 2s2p2 2P (E=59.71 eV, above the He ground state, Γ=79 meV) and the 2p3 2Do (E=59.46 eV, Γ=282 meV) (1 a.u.=27.2116 eV). These resonances are above the singly excited states of He and are embedded in its doubly excited spectrum. The relatively broad 2p3 2Do state interacts strongly with the He 2s2p 3Po ɛd continuum. The effect of this interaction has been studied in terms of the coupling with fixed core scattering states as well as with a self-consistently computed OCL bound configuration. The position of the He- 2p3 2Do resonance is below that of the He 2p2 1D autoionizing state at 59.91 eV and of the He 2p2 3P bound state at 59.68 eV. The partial decay widths to the three important open channels are γ(2s2p 3Po)=252 meV, γ(1s2p 3Po)=21 meV, γ(1s2p 1Po)=9 meV. The final core states are also represented by correlated (multiconfigurational Hartree-Fock) functions. The 2s2p2 2P state couples to four neighboring He thresholds, the 2s2p 3Po, 2p2 3P, 1D, and 2s2p 1Po. It is above the He 2s2p 3Po threshold at 58.31 eV, with respect to which it is a valence shape resonance, and below the He 2p2 1D and 2s2p 1Po autoionizing states. In the limit of an exact energy calculation, we suggest that its position would also come below that of the 2p2 3P state, which it overlaps. Its partial widths are γ(2s2p 3Po)=60 meV, γ(1s2p 3Po)=9 meV, γ(1s2p 1Po)=10 meV. The present results, considered together with published ones on other n=2 intrashell states, show that the recently measured [R. N. Gosselin and P. Marmet, Phys. Rev. A 41, 1335 (1990)] closely lying structures at 58.415 and 58.48 eV cannot correspond to the He- 2p3 4So and 2Do states, as these authors proposed.
Spectroscopy of berylliumlike xenon ions using dielectronic recombination
NASA Astrophysics Data System (ADS)
Bernhardt, D.; Brandau, C.; Harman, Z.; Kozhuharov, C.; Böhm, S.; Bosch, F.; Fritzsche, S.; Jacobi, J.; Kieslich, S.; Knopp, H.; Nolden, F.; Shi, W.; Stachura, Z.; Steck, M.; Stöhlker, Th; Schippers, S.; Müller, A.
2015-07-01
Be-like 136X{{e}50+} ions have been investigated employing the resonant electron-ion collision process of dielectronic recombination (DR) as a spectroscopic tool. The experiments were performed at the experimental storage ring in Darmstadt, Germany, using its electron cooler as a target for free electrons. DR Rydberg resonance series 2{{s}2}+{{e}-}\\to 2s2{{p}{{j\\prime }}}n{{l}j} for the associated intra-L-shell transitions 2{{s}2}{{ }1}{{S}0}-2s2{{p}1/2}{{ }3}{{P}1},2{{s}2}{{ }1}{{S}0}-2s2{{p}3/2}{{ }3}{{P}2} and 2{{s}2}{{ }1}{{S}0}-2s2{{p}3/2}{{ }1}{{P}1} were observed with high resolution. In addition to these excitations from the ground state we determined resonances associated with excitations 2s2{{p}1/2}{{ }3}{{P}0}\\to 2{{p}1/2}2{{p}3/2}{{ }3}{{P}1} of ions initially in the metastable 2s2{{p}1/2}{{ }3}{{P}0} state. The corresponding excitation energies were determined to be E{{(}1}{{S}0}\\to {{ }3}{{P}1})=127.269(46) eV, E{{(}1}{{S}0}\\to {{ }3}{{P}2})=469.474(81) eV and E{{(}1}{{S}0}\\to {{ }1}{{P}1})=532.801(16) eV, and E{{(}3}{{P}0}\\to 2{{p}1/2}2{{p}3/2}{{ }3}{{P}1})=533.733(22) eV. These excitation energies are compared with previous measurements and with recent state-of-the-art atomic structure calculations.
Zelent, Bogumil; Vanderkooi, Jane M.; Coleman, Ryan G.; Gryczynski, Ignacy; Gryczynski, Zygmunt
2006-01-01
Pyrene-1-carboxylic acid has a pK of 4.0 in the ground state and 8.1 in the singlet electronic excited state. In the pH range of physiological interest (pH ∼5–8), the ground state compound is largely ionized as pyrene-1-carboxylate, but protonation of the excited state molecule occurs when a proton donor reacts with the carboxylate during the excited state lifetime of the fluorophore. Both forms of the pyrene derivatives are fluorescent, and in this work the protonation reaction was measured by monitoring steady-state and time-resolved fluorescence. The rate of protonation of pyrene-COO− by acetic, chloroacetic, lactic, and cacodylic acids is a function of ΔpK, as predicted by Marcus theory. The rate of proton transfer from these acids saturates at high concentration, as expected for the existence of an encounter complex. Trihydrogen-phosphate is a much better proton donor than dihydrogen- and monohydrogen-phosphate, as can be seen by the pH dependence. The proton-donating ability of phosphate does not saturate at high concentrations, but increases with increasing phosphate concentration. We suggest that enhanced rate of proton transfer at high phosphate concentrations may be due to the dual proton donating and accepting nature of phosphate, in analogy to the Grotthuss mechanism for proton transfer in water. It is suggested that in molecular structures containing multiple phosphates, such as membrane surfaces and DNA, proton transfer rates will be enhanced by this mechanism. PMID:16920831
Alkaline polymer electrolyte fuel cells stably working at 80 °C
NASA Astrophysics Data System (ADS)
Peng, Hanqing; Li, Qihao; Hu, Meixue; Xiao, Li; Lu, Juntao; Zhuang, Lin
2018-06-01
Alkaline polymer electrolyte fuel cells are a new class of polymer electrolyte fuel cells that fundamentally enables the use of nonprecious metal catalysts. The cell performance mostly relies on the quality of alkaline polymer electrolytes, including the ionic conductivity and the chemical/mechanical stability. For a long time, alkaline polymer electrolytes are thought to be too weak in stability to allow the fuel cell to be operated at elevated temperatures, e.g., above 60 °C. In the present work, we report a progress in the state-of-the-art alkaline polymer electrolyte fuel cell technology. By using a newly developed alkaline polymer electrolyte, quaternary ammonia poly (N-methyl-piperidine-co-p-terphenyl), which simultaneously possesses high ionic conductivity and excellent chemical/mechanical stability, the fuel cell can now be stably operated at 80 °C with high power density. The peak power density reaches ca. 1.5 W/cm2 at 80 °C with Pt/C catalysts used in both the anode and the cathode. The cell works stably in a period of study over 100 h.
NASA Astrophysics Data System (ADS)
Chen, Zhan-Bin
2017-12-01
Longitudinally polarized electron impact excitation from the ground state 1s2 to the excited state 1s2l (l =s,p) levels of highly charged He-like Fe24+ ions in weakly coupled hot-dense plasmas is investigated using a fully relativistic distorted-wave method. The Debye-Hückel potential is used to describe the plasma screening. Benchmark results such as the total cross sections, the magnetic sublevels cross sections, and the circular polarizations of corresponding X-ray radiations are presented. For the excitation process, results show that the plasma screening has an effect in reducing both the total and magnetic sublevels cross sections. For the de-excitation process, it is found that while the plasma screening as a slightly effect on the circular polarizations of radiations for the 1 s 2 s 3S1 → 1 s21S0,1 s 2 p 3P2 → 1 s21S0 , and 1 s 2 p 1P1 → 1 s21S0 transition lines, it gives a substantial contribution for the same properties of the 1 s 2 p 3P1 → 1 s21S0 line.
Stone, Philip M; Kim, Yong-Ki; Desclaux, J P
2002-01-01
Electron-impact excitation cross sections are presented for the dipole- and spin allowed transitions from the ground states to the np (2)P states for hydrogen and lithium, and to the 1snp (1)P states for helium, n = 2 through 10. Two scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. The scaled Born cross sections are in excellent agreement with available theoretical and experimental data.
Strong decays of the 1 P and 2 D doubly charmed states
NASA Astrophysics Data System (ADS)
Xiao, Li-Ye; Lü, Qi-Fang; Zhu, Shi-Lin
2018-04-01
We perform a systematical investigation of the strong decay properties of the low-lying 1 P - and 2 D -wave doubly charmed baryons with the 3P0 quark pair creation model. The main predictions include: (i) in the Ξc c and Ωc c family, the 1 P ρ mode excitations with JP=1 /2- and 3 /2- should be the fairly narrow states, while, for the 1 P λ mode excitations, they are most likely to be moderate states with a width of Γ ˜100 MeV . (ii) The 2 Dρ ρ states mainly decay via emitting a heavy-light meson and the decay widths can reach several tens MeV if their masses are above the threshold of ΛcD or ΞcD , respectively. The 2 Dλ λ states may be broad states with a width of Γ >100 MeV .
A distorted-wave methodology for electron-ion impact excitation - Calculation for two-electron ions
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.
1977-01-01
A distorted-wave program is being developed for calculating the excitation of few-electron ions by electron impact. It uses the exchange approximation to represent the exact initial-state wavefunction in the T-matrix expression for the excitation amplitude. The program has been implemented for excitation of the 2/1,3/(S,P) states of two-electron ions. Some of the astrophysical applications of these cross sections as well as the motivation and requirements of the calculational methodology are discussed.
NASA Technical Reports Server (NTRS)
Sutton, J. F.
1972-01-01
The relative cross sections for simultaneous ionization and excitation of helium by 200-eV electrons into the 4 2s and 4 2p states were measured via a fast delayed coincidence technique. Results show good agreement with the relative cross sections for single electron excitation of helium and hydrogen. An application of the results of the measurement to the development of ultraviolet intensity standard is suggested. This technique involves the use of known branching ratios, a visible light flux reference, and the measured relative cross sections.
Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre
2002-04-24
A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron transfer to AuP+ and was followed by a quantitative energy transfer to give the 3ZnP state (k = 1.5x10(9) x s(-1)).
NASA Astrophysics Data System (ADS)
Liao, P. F.; Bjorkholm, J. E.; Berman, P. R.
1980-06-01
We report the results of an experimental study of the effects of velocity-changing collisions on two-photon and stepwise-absorption line shapes. Excitation spectra for the 3S12-->3P12-->4D12 transitions of sodium atoms undergoing collisions with foreign gas perturbers are obtained. These spectra are obtained with two cw dye lasers. One laser, the pump laser, is tuned 1.6 GHz below the 3S12-->3P12 transition frequency and excites a nonthermal longitudinal velocity distribution of excited 3P12 atoms in the vapor. Absorption of the second (probe) laser is used to monitor the steady-state excited-state distribution which is a result of collisions with rare gas atoms. The spectra are obtained for various pressures of He, Ne, and Kr gases and are fit to a theoretical model which utilizes either the phenomenological Keilson-Störer or the classical hardsphere collision kernel. The theoretical model includes the effects of collisionally aided excitation of the 3P12 state as well as effects due to fine-structure state-changing collisions. Although both kernels are found to predict line shapes which are in reasonable agreement with the experimental results, the hard-sphere kernel is found superior as it gives a better description of the effects of large-angle scattering for heavy perturbers. Neither kernel provides a fully adequate description over the entire line profile. The experimental data is used to extract effective hard-sphere collision cross sections for collisions between sodium 3P12 atoms and helium, neon, and krypton perturbers.
Exciton Dynamics in Alternative Solar Cell Materials: Polymers, Nanocrystals, and Small Molecules
NASA Astrophysics Data System (ADS)
Pundsack, Thomas J.
To keep fossil fuel usage in 2040 even with 2010 usage, 50% of global energy will need to come from alternative sources such as solar cells. While the photovoltaic market is currently dominated by crystalline silicon, there are many low-cost solar cell materials such as conjugated polymers, semiconductor nanocrystals, and organic small molecules which could compete with fossil fuels. To create cost-competitive devices, understanding the excited state dynamics of these materials is necessary. The first section of this thesis looks at aggregation in poly(3-hexylthiophene) (P3HT) which is commonly used in organic photovoltaics. The amount of aggregation in P3HT thin films was controlled by using a mixture of regioregular and regiorandom P3HT. Even with few aggregates present, excited states were found to transfer from amorphous to aggregate domains in <50 fs which could indicate efficient long-range energy transfer. To further study P3HT aggregation, a triblock consisting of two P3HT chains with a coil polymer between them was investigated. By changing solvents, aggregation was induced in a stable and reversible manner allowing for spectroscopic studies of P3HT aggregates in solution. The polarity of the solvent was adjusted, and no change in excited state dynamics was observed implying the excited state has little charge-transfer character. Next, the conduction band density of states for copper zinc tin sulfide nanocrystals (CZTS NCs) was measured using pump-probe spectroscopy and found to be in agreement with theoretical results. The density of states shifted and dilated for smaller NCs indicative of quantum confinement. The excited state lifetime was found to be short (<20 ps) and independent of NC size which could limit the efficiency of CZTS photovoltaic devices. Finally, triplet-triplet annihilation (TTA) was studied in platinum octaethylporphyrin (PtOEP) thin films. By analyzing pump-probe spectra, the product of TTA in PtOEP thin films was assigned to a long-lived metal-centered state. To elucidate the mechanism of TTA, the annihilation dynamics were modeled using second order kinetics as well as Forster and Dexter energy transfer. Dexter energy transfer provided the best fits and the most reasonable fitting parameters.
NASA Astrophysics Data System (ADS)
Sıdır, İsa; Sıdır, Yadigar Gülseven
2017-11-01
The UV-vis absorption and steady state fluorescence spectra of phenyl salicylate (abbreviated as PS) have been recorded in a series of non-polar, polar protic and polar aprotic solvents at room temperature and the obtained spectral data are used to determine the solvatochromic behavior and the ground and excited state dipole moments. Basis set sensitive molecular structure along with X-ray crystal data are evaluated. The ground state and excited state dipole moments are determined by using Lippert-Mataga, Bakhshiev, Bilot-Kawski and Reichardt solvatochromic shift methods as a function of dielectric constant (ε) and refractive index (n) of the solvents. The larger excited state dipole moment value indicates the more polar PS in the excited state. The rate of μe/μg is found as 2.4239. Solvatochromic behavior of PS is enlightened by using Kamlet-Taft and Catalan models. Kamlet-Taft solvatochromic model indicates that non-specific solute solvent interactions are controlled by solvent dispersion-induction forces and specific interactions are directed by hydrogen-bond donor capacity of solvent. Catalan solvatochromic model designates that solute-solvent interactions are governed by solvent polarizability. Ground and excited state dipole moments are found theoretically by using DFT/B3LYP/6-311++G(d, p) and TDDFT/B3LYP/6-31++G(d, p) methods. External electric field effect on LUMO-HOMO band gap and dipole moment have been investigated by using B3LYP/6-311++G(d, p) method.
Dusanowski, Ł; Holewa, P; Maryński, A; Musiał, A; Heuser, T; Srocka, N; Quandt, D; Strittmatter, A; Rodt, S; Misiewicz, J; Reitzenstein, S; Sęk, G
2017-12-11
We report on the experimental demonstration of triggered single-photon emission at the telecom O-band from In(Ga)As/GaAs quantum dots (QDs) grown by metal-organic vapor-phase epitaxy. Micro-photoluminescence excitation experiments allowed us to identify the p-shell excitonic states in agreement with high excitation photoluminescence on the ensemble of QDs. Hereby we drive an O-band-emitting GaAs-based QD into the p-shell states to get a triggered single photon source of high purity. Applying pulsed p-shell resonant excitation results in strong suppression of multiphoton events evidenced by the as measured value of the second-order correlation function at zero delay of 0.03 (and ~0.005 after background correction).
Radiation Hard Active Media R&D for CMS Hadron Endcap Calorimetry
NASA Astrophysics Data System (ADS)
Tiras, Emrah; CMS-HCAL Collaboration
2015-04-01
The High Luminosity LHC era imposes unprecedented radiation conditions on the CMS detectors targeting a factor of 5-10 higher than the LHC design luminosity. The CMS detectors will need to be upgraded in order to withstand these conditions yet maintain/improve the physics measurement capabilities. One of the upgrade options is reconstructing the CMS Endcap Calorimeters with a shashlik design electromagnetic section and replacing active media of the hadronic section with radiation-hard scintillation materials. In this context, we have studied various radiation-hard materials such as Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET), HEM and quartz plates coated with various organic materials such as p-Terphenyl (pTp), Gallium doped Zinc Oxide (ZnO:Ga) and Anthracene. Here we discuss the related test beam activities, laboratory measurements and recent developments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heusler, A.; Graw, G.; Hertenberger, R.
2010-07-15
With the Q3D magnetic spectrograph of the Maier-Leibnitz-Laboratorium at Muenchen at a resolution of about 3 keV, angular distributions and excitation functions of the reaction {sup 208}Pb(p,p{sup '}) were measured at some scattering angles 20 deg. - 138 deg. for several proton energies 14.8-18.1 MeV. All seven known isobaric analog resonances in {sup 209}Bi are covered. By the excitation near the j{sub 15/2} intruder resonance in {sup 209}Bi, several new positive parity states in {sup 208}Pb with excitation energies 4.6-6.2 MeV are identified by comparison of the mean cross section to the known single particle widths. The dominant configuration formore » 27 positive parity states is determined and compared to the schematic shell model.« less
Dynamics of a molecular glass former: Energy landscapes for diffusion in ortho-terphenyl
NASA Astrophysics Data System (ADS)
Niblett, S. P.; de Souza, V. K.; Stevenson, J. D.; Wales, D. J.
2016-07-01
Relaxation times and transport processes of many glass-forming supercooled liquids exhibit a super-Arrhenius temperature dependence. We examine this phenomenon by computer simulation of the Lewis-Wahnström model for ortho-terphenyl. We propose a microscopic definition for a single-molecule cage-breaking transition and show that, when correlation behaviour is taken into account, these rearrangements are sufficient to reproduce the correct translational diffusion constants over an intermediate temperature range in the supercooled regime. We show that super-Arrhenius behaviour can be attributed to increasing negative correlation in particle movement at lower temperatures and relate this to the cage-breaking description. Finally, we sample the potential energy landscape of the model and show that it displays hierarchical ordering. Substructures in the landscape, which may correspond to metabasins, have boundaries defined by cage-breaking transitions. The cage-breaking formulation provides a direct link between the potential energy landscape and macroscopic diffusion behaviour.
Yao, Ru-Xin; Cui, Xin; Jia, Xiao-Xia; Zhang, Fu-Qiang; Zhang, Xian-Ming
2016-09-19
A porous luminescent zinc(II) metal-organic framework (MOF) with a NbO net [Zn2(tptc)(apy)2-x(H2O)x]·H2O (1) (where x ≈ 1, apy = aminopyridine, H4tptc = terphenyl-3,3″,5,5″-tetracarboxylic acid), constructed using paddlewheel [Zn2(COO)4] clusters and π-electron-rich terphenyl-tetracarboxylic acid, has been solvothermally synthesized and characterized. Interestingly, the material displays efficient, reversible adsorption of radioactive I2 in vapor and in solution (up to 216 wt %). The strong affinity for I2 is mainly due to it having large porosity, a conjugated π-electron aromatic system, halogen bonds, and electron-donating aminos. Furthermore, luminescent study indicated that 1 exhibits high sensitivity to electron-deficient nitrobenzene explosives via fluorescence quenching.
NASA Astrophysics Data System (ADS)
Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.
2014-03-01
A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).
El-Elimat, Tamam; Figueroa, Mario; Raja, Huzefa A; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Day, Cynthia S; Wani, Mansukh C; Pearce, Cedric J; Oberlies, Nicholas H
2013-03-22
Three bioactive compounds were isolated from an organic extract of an ascomycete fungus of the order Chaetothyriales (MSX 47445) using bioactivity-directed fractionation as part of a search for anticancer leads from filamentous fungi. Of these, two were benzoquinones [betulinan A (1) and betulinan C (3)], and the third was a terphenyl compound, BTH-II0204-207:A (2). The structures were elucidated using a set of spectroscopic and spectrometric techniques; the structure of the new compound (3) was confirmed via single-crystal X-ray diffraction. Compounds 1-3 were evaluated for cytotoxicity against a human cancer cell panel, for antimicrobial activity against Staphylococcus aureus and Candida albicans, and for phosphodiesterase (PDE4B2) inhibitory activities. The putative binding mode of 1-3 with PDE4B2 was examined using a validated docking protocol, and the binding and enzyme inhibitory activities were correlated.
Martínez-Martínez, Antonio J.; Justice, Stephen; Fleming, Ben J.; Kennedy, Alan R.; Oswald, Iain D. H.; O’Hara, Charles T.
2017-01-01
The development of new methodologies to affect non–ortho-functionalization of arenes has emerged as a globally important arena for research, which is key to both fundamental studies and applied technologies. A range of simple arene feedstocks (namely, biphenyl, meta-terphenyl, para-terphenyl, 1,3,5-triphenylbenzene, and biphenylene) is transformed to hitherto unobtainable multi-iodoarenes via an s-block metal sodium magnesiate templated deprotonative approach. These iodoarenes have the potential to be used in a whole host of high-impact transformations, as precursors to key materials in the pharmaceutical, molecular electronic, and nanomaterials industries. To prove the concept, we transformed biphenyl to 3,5-bis(N-carbazolyl)-1,1′-biphenyl, a novel isomer of 4,4′-bis(N-carbazolyl)-1,1′-biphenyl (CPB), a compound which is currently widely used as a host material for organic light-emitting diodes. PMID:28695201
Containerless Studies of Nucleation and Undercooling
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1985-01-01
The long term research goals are to perform experiments to determine the achievable limits of undercooling, the characteristics of heterogeneous nucleation, and the physical properties of significantly undercooled melts. The techniques used are based on the newly developed containerless manipulation methods afforded by acoustic levitation. Ground based investigations involved 0.1 to 2 mm specimens of pure metals and alloys (In, Ga, Sn, Ga-In, ...) as well as glass-forming organic compounds (O-Terphenyl). A currently operating ultrasonic high temperature apparatus has allowed the ground-based levitation of 1 to 2 mm samples of solid aluminum at 550 deg C in an argon atmosphere. Present work is concentrating on the undercooling of pure metal samples (In, Sn), and on the measurements of surface tension and viscosity of the undercooled melts via shape oscillation techniques monitored through optical detection methods. The sound velocity of undercooled O-Terphenyl is being measured in an immiscible liquid levitation cells.
Role of ion-pair states in the predissociation dynamics of Rydberg states of molecular iodine.
von Vangerow, J; Bogomolov, A S; Dozmorov, N V; Schomas, D; Stienkemeier, F; Baklanov, A V; Mudrich, M
2016-07-28
Using femtosecond pump-probe ion imaging spectroscopy, we establish the key role of I(+) + I(-) ion-pair (IP) states in the predissociation dynamics of molecular iodine I2 excited to Rydberg states. Two-photon excitation of Rydberg states lying above the lowest IP state dissociation threshold (1st tier) is found to be followed by direct parallel transitions into IP states of the 1st tier asymptotically correlating to a pair of I ions in their lowest states I(+)((3)P2) + I(-)((1)S0), of the 2nd tier correlating to I(+)((3)P0) + I(-)((1)S0), and of the 3rd tier correlating to I(+)((1)D2) + I(-)((1)S0). Predissociation via the 1st tier proceeds presumably with a delay of 1.6-1.7 ps which is close to the vibrational period in the 3rd tier state (3rd tier-mediated process). The 2nd tier IP state is concluded to be the main precursor for predissociation via lower lying Rydberg states proceeding with a characteristic time of 7-8 ps and giving rise to Rydberg atoms I(5s(2)5p(4)6s(1)). The channel generating I((2)P3/2) + I((2)P1/2) atoms with total kinetic energy corresponding to one-photon excitation is found to proceed via a pump - dump mechanism with dramatic change of angular anisotropy of this channel as compared with earlier nanosecond experiments.
The 4d8-(4d74f + 4d76p + 4p54d9) transitions in the spectrum of five times ionized indium (In VI)
NASA Astrophysics Data System (ADS)
Ryabtsev, A. N.; Tauheed, A.; Swapnil; Kildiyarova, R. R.; Kononov, E. Ya
2018-06-01
The spectrum of five times ionized indium excited in a vacuum spark has been studied in the wavelength region 180-250 Å using a 3 m grazing incidence spectrograph. Transitions from highly excited interacting configurations 4d74f + 4d76p + 4p54d9 to the ground state 4d8 configuration were studied. 165 spectral lines were identified and 81 levels of the excited configurations were found.
NASA Astrophysics Data System (ADS)
Vardanyan, L. A.; Vartanian, A. L.; Asatryan, A. L.; Kirakosyan, A. A.
2016-11-01
By using Landau-Pekar variational method, the ground and the first excited state energies and the transition frequencies between the ground and the first excited states of a hydrogen-like impurity-bound polaron in a spherical quantum dot (QD) have been studied by taking into account the image charge effect (ICE). We employ the dielectric continuum model to describe the phonon confinement effects. The oscillator strengths (OSs) of transitions from the 1 s-like state to excited states of 2 s, 2 p x , and 2 p z symmetries are calculated as functions of the applied electric field and strength of the confinement potential. We have shown that with and without image charge effect, the increase of the strength of the parabolic confinement potential leads to the increase of the oscillator strengths of 1 s - 2 p x and 1 s - 2 p z transitions. This indicates that the energy differences between 1 s- and 2 p x - as well as 1 s- and 2 p z -like states have a dominant role determining the oscillator strength. Although there is almost no difference in the oscillator strengths for transitions 1 s - 2 p x and 1 s -2 p z when the image charge effect is not taken into account, it becomes significant with the image charge effect.
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; Mojica-Casique, C.; Hoyos, L. M.; Flores-Mijangos, J.; Ramírez-Martínez, F.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2018-04-01
Doppler-free optical double-resonance spectroscopy is used to study the 5S1/2 → 5P3/2 → 6Pj (j = 3/2,1/2) excitation sequence in room-temperature rubidium atoms. This involves a 5S1/2 → 5P3/2 electric dipole preparation step followed by the 5P3/2 → 6Pj electric quadrupole excitation. The electric dipole forbidden transitions occur at 911.0 nm (j = 3/2) and 917.5 nm (j = 1/2). Production of atoms in the 6Pj states is detected by observing their direct decay to the ground state through emission of blue photons (λ ≈ 420 nm). A detailed experimental and theoretical study of the dependence on the relative linear polarizations of excitation beams is made. It is shown that specific electric quadrupole selection rules over magnetic quantum numbers are directly related to the relative orientation of the linear polarization of the excitation beams.
Plasmonic enhancement of ultraviolet fluorescence
NASA Astrophysics Data System (ADS)
Jiao, Xiaojin
Plasmonics relates to the interaction between electromagnetic radiation and conduction electrons at metallic interfaces or in metallic nanostructures. Surface plasmons are collective electron oscillations at a metal surface, which can be manipulated by shape, texture and material composition. Plasmonic applications cover a broad spectrum from visible to near infrared, including biosensing, nanolithography, spectroscopy, optoelectronics, photovoltaics and so on. However, there remains a gap in this activity in the ultraviolet (UV, < 400 nm), where significant opportunity exists for both fundamental and application research. Motivating factors in the study of UV Plasmonics are the direct access to biomolecular resonances and native fluorescence, resonant Raman scattering interactions, and the potential for exerting control over photochemical reactions. This dissertation aims to fill in the gap of Plasmonics in the UV with efforts of design, fabrication and characterization of aluminium (Al) and magnesium (Mg) nanostructures for the application of label-free bimolecular detection via native UV fluorescence. The first contribution of this dissertation addresses the design of Al nanostructures in the context of UV fluorescence enhancement. A design method that combines analytical analysis with numerical simulation has been developed. Performance of three canonical plasmonic structures---the dipole antenna, bullseye nanoaperture and nanoaperture array---has been compared. The optimal geometrical parameters have been determined. A novel design of a compound bullseye structure has been proposed and numerically analyzed for the purpose of compensating for the large Stokes shift typical of UV fluorescence. Second, UV lifetime modification of diffusing molecules by Al nanoapertures has been experimentally demonstrated for the first time. Lifetime reductions of ~3.5x have been observed for the high quantum yield (QY) laser dye p-terphenyl in a 60 nm diameter aperture with 50 nm undercut. Furthermore, quantum-yield-dependence of lifetime reduction has been experimentally demonstrated for the first time. Lifetime reduction as a function of aperture size and native quantum yield has been accurately predicted by simulation. Simulation further predicts greater net fluorescence enhancement for tryptophan compared to p-terphenyl. In order to increase fluorescence enhancement, the "poor" molecules and structures with proper undercuts are required. Third, UV lifetime modification by Mg nanoapertures has been experimentally demonstrated for the fisrt time. Lifetime reductions of ~13x have been observed for the laser dye p-terphenyl with high QY in a 50 nm diameter aperture with 125 nm undercut. In addition, extraordinary optical transmission of Mg nanohole arrays in the UV has been measured for the first time. By using Al as a reference, the feasibility of applying Mg in the UV plasmonic applications has been evaluated both numerically and experimentally. Finally, this work has established a methodology for the study of plasmonic enhancement of UV fluorescence, including design method, thin-film characterization, nanofabrication with focus ion beam milling, and fluorescence measurement. It has paved the way for more extensive research on UV fluorescence enhancement.
Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.
2016-11-02
Energy levels, radiative transition probabilities, and autoionization rates for [Ni]more » $$4{s}^{2}4{p}^{6}{nl}$$, [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$, ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–7), and [Ni]$$4s4{p}^{6}6l^{\\prime} {nl}$$ (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]$$4{s}^{2}4{p}^{6}$$ threshold are considered. It is found that configuration mixing among [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ and [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$ plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]$$4{s}^{2}4{p}^{6}{nl}$$ (n = 4–7) singly excited states, as well as the [Ni]$$4{s}^{2}4{p}^{5}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{5}4{fnl}$$, [Ni]$$4s4{p}^{6}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{6}4{fnl}$$, (n = 4–6), and [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} 5l$$ doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]$$4s24{p}^{6}4{fnl}$$ (n = 6–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–6), and [Ni]$$4{s}^{2}4{p}^{5}6l^{\\prime} {nl}$$ (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.« less
NASA Astrophysics Data System (ADS)
Shahab, Siyamak; Almodarresiyeh, Hora Alhosseini; Filippovich, Liudmila; Hajikolaee, Fatemeh Haji; Kumar, Rakesh; Darroudi, Mahdieh; Mashayekhi, Mahsa
2016-09-01
In the present work, quantum-chemical calculations used for the structural analysis of the new symmetric (E)-Stilbene derivative: (Potassium 2,2‧-((ethane-1,2-diylbis(4,1-phenylene))bis(azanediyl))diacetate) (P) (Trans isomer) using DFT/B3LYP/LanL2MB level of theory. The FT-IR and 1H NMR spectra of the compound P are presented. The electronic absorption spectrum of the P in aqueous medium was calculated using TDB3LYP/LanL2MB method. The excitation energies, electronic transitions and oscillator strengths for studied structure have also been calculated. The experimental, calculated UV/Vis and emission spectra of the P are presented and discussed. The geometry optimization of the molecule P in excited state and its electronic spectrum was carried out by the same method. In excited state the molecule P loses its symmetry and becomes unstable form. First time on the basis of polyvinyl alcohol (PVA) and the new designed structure P thermostable polarizing film absorbing at λmax = 410 nm was created. Polarizing Efficiency (PE) of obtained film is 96% at Stretching Degree (Rs) 3.0. In oriented PVA-films is the phenomenon of anisotropy of thermal conductivity (λ||/λ⊥) which is very important for development of thermostable polarizing films.
Electron Impact Ionization Cross Sections in Rb and Cs.
NASA Astrophysics Data System (ADS)
Reddish, T. J.; Lukomski, M.; Sutton, S.; Kedzierski, W.; McConkey, J. W.; Bartschat, K.; Bartlett, P. L.; Stelbovics, A. T.; Bray, I.
2006-05-01
We present a new atom trapping technique for determining absolute, total ionisation cross sections (TICS) out of an excited atom. The novel feature of this method is in utilizing Doppler cooling of neutral atoms to determine ionisation cross sections. This fluorescence-monitoring experiment, which is a variant of the `trap loss' technique, has enabled us to obtain the experimental electron impact ionisation cross sections out of the Cs 6^2P3/2 excited state between 7 - 400 eV. New CCC, R-Matrix with Pseudo-States (RMPS), and Born approximation single ionisation cross sections (SICS) are also presented for both the ground and excited states of Cs and Rb, and compared with the available experimental data. The comparison of the results reveals the importance of the autoionisation and multiple ionisation contributions to the TICS. The autoionisation contribution appears to be substantial for ionisation out of the Cs 6^2P and Rb 5^2P excited states; ˜ 3-4 larger than the direct ionisation contribution predicted by CCC at ˜ 30-50 eV. This surprising result shows the importance of multi-electron processes in determining the ionisation cross sections of heavy alkali atoms.
Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.
Derricotte, Wallace D; Evangelista, Francesco A
2015-06-14
Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.
NASA Astrophysics Data System (ADS)
Ivashin, N. V.; Shchupak, E. E.
2016-08-01
Quantum-chemical calculations of the structure in the ground and lower singlet excited states and the vibrations (in the ground state) of special pair P of photosynthetic reaction center of purple bacteria (RCPb) Rhodobacter Sphaeroides, consisting of two bacteriochlorophyll molecules PA and PB, have been carried out. It is shown that excitation of the special pair is followed by fast relaxation dynamics, accompanied by the transformation of the initial P* state into the P A δ+ P B δ- state (δ ~ 0.5) with charge separation. This behavior is due to the presence of several nonplanar vibrations with participation of the acetyl group of macrocycle PB in the nuclear wave packet on the potential surface of the P* state; these vibrations facilitate destabilization of the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) of the macrocycle PA and formation of the P A δ+ P B δ- state. The structural transformations in the P* state are due to its linking character in the contact region of the acetyl group-containing pyrrole rings of PA and PB. The transition from the P* state to specifically the P A δ+ P B δ- state is related to the fact that the acetyl group PA is involved in the intermolecular hydrogen bond with amino acid residue HisL168; for this reason, this group and the pyrrole ring linked with it can hardly participate in structural transformations. The electronic matrix element H12 of the electron transfer from the special pair in the P A δ+ P B δ- state to a molecule of accessory bacteriochlorophyll BA greatly exceeds that for the transfer to BB. This circumstance and the fact that the P A δ+ P B δ- state is energetically more favorable than the P* state facilitate the preferred directionality of the electron transfer in RCPb Rhodobacter Sphaeroides with participation of the cofactors located in its subunit L.
Electron-Impact Excitation of Ions Effects of Presence of Another Ion
NASA Astrophysics Data System (ADS)
Ohsaki, Akihiko; Nagasaki, Satoshi; Uramoto, Sei-iti; Takayanagi, Kazuo
2000-02-01
Present work gives for the first time the formulation of the two-center Coulomb-Born approximation (TCCBA) and presents some calculations for the electron-impact excitations in electron-ion-ion systems.The effect of the third body was relatively small in the cases studied so far. However, if the third body is a bare ion with a charge larger than the target ion, there will be a marked influence of the three-body collisions.Utilizing TCCBA we present the total and partial cross sections of hydrogen-like ions He+(Z=2), and C5+(Z=6) in the hydrogen plasma from the ground states 1s to the excited states 2s and 2p0, 2p± for the collision energies from 0.4Z2 to 2Z2 a.u.; for the excited states of the target ions, Stark effect is also studied.It is found that the presence of another ion have little effect on the 1s-2s transition and the 2s-2p Stark mixing has a prominent effect.
Lerch, Michael T.; Horwitz, Joseph; McCoy, John; Hubbell, Wayne L.
2013-01-01
Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875–85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate. PMID:24248390
Manipulation of resonant Auger processes with strong optical fields
NASA Astrophysics Data System (ADS)
Picón, Antonio; Buth, Christian; Doumy, Gilles; Krässig, Bertold; Young, Linda; Southworth, Stephen
2013-05-01
We recently reported on the optical control of core-excited states of a resonant Auger process in neon. We have focused on the resonant excitation 1 s --> 1s-1 3 p , while a strong optical field may resonantly couple two core-excited states (1s-1 3 p and 1s-1 3 s) in the Rydberg manifold as well as dressing the continuum. There is a clear signature in the Auger electron spectrum of the inner-shell dynamics induced by the strong optical field: i) the Auger electron spectrum is modified by the rapid optical-induced population transfer from the 1s-1 3 p state to the 1s-1 3 s state during their decay. ii) The angular anisotropy parameter, defining the angular distribution of the Auger electron, is manifested in the envelope of the (angle-integrated) sidebands. This work is funded by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, under Contract No. DE-AC02-06CH11357.
NASA Astrophysics Data System (ADS)
Fujita, Y.; Fujita, H.; Adachi, T.; Susoy, G.; Algora, A.; Bai, C. L.; Colò, G.; Csatlós, M.; Deaven, J. M.; Estevez-Aguado, E.; Guess, C. J.; Gulyás, J.; Hatanaka, K.; Hirota, K.; Honma, M.; Ishikawa, D.; Krasznahorkay, A.; Matsubara, H.; Meharchand, R.; Molina, F.; Nakada, H.; Okamura, H.; Ong, H. J.; Otsuka, T.; Perdikakis, G.; Rubio, B.; Sagawa, H.; Sarriguren, P.; Scholl, C.; Shimbara, Y.; Stephenson, E. J.; Suzuki, T.; Tamii, A.; Thies, J. H.; Yoshida, K.; Zegers, R. G. T.; Zenihiro, J.
2015-06-01
To study the Gamow-Teller (GT) transitions from the Tz=+1 nucleus 42Ca to the Tz=0 nucleus 42Sc, where Tz is the z component of isospin T , we performed a (p ,n )-type (3He,t ) charge-exchange reaction at 140 MeV/nucleon and scattering angles around 0∘. With an energy resolution of 29 keV, states excited by GT transitions (GT states) could be studied accurately. The reduced GT transition strengths B (GT) were derived up to the excitation energy of 13 MeV, assuming the proportionality between the cross sections at 0∘ and B (GT) values. The main part of the observed GT transition strength is concentrated in the lowest 0.611-MeV, Jπ=1+ GT state. All the other states at higher energies are weakly excited. Shell-model calculations could reproduce the gross feature of the experimental B (GT) distribution, and random-phase-approximation calculations including an attractive isoscalar interaction showed that the 0.611-MeV state has a collective nature. It was found that this state has all of the properties of a "low-energy super-Gamow-Teller state." It is expected that low-lying Jπ=1+ GT states have T =0 in the Tz=0 nucleus 42Sc. However, T =1 states are situated in a higher energy region. Assuming an isospin-analogous structure in A =42 isobars, analogous T =1 , 1+ states are also expected in 42Ca. Comparing the (3He 42,tCa) 42Sc and 42Ca(p ,p') spectra measured at 0∘, candidates for T =1 GT states could be found in the 10 -12 -MeV region of 42Sc. They were all weakly excited. The mass dependence of the GT strength distributions in Sc isotopes is also discussed.
Multiplet exchange Auger transitions following resonant Auger decays in Ne 1s photoexcitation
NASA Astrophysics Data System (ADS)
Tamenori, Yusuke; Suzuki, Isao H.
2014-07-01
Secondary electron emission with very low kinetic energy (KE) has been measured in the Ne 1s photoexcitation region. A new decay channel for Auger transitions following Ne 1s to 3p excitation has been identified using a two-dimensional mapping technique, in which slow Auger electron signals are displayed as functions of electron kinetic energy and photon energy. Electrons with about 0.68 eV KEs have been ascribed to multiplet exchange Auger electrons from the 2p-2(1S)3d state. This state is formed through the resonant Auger transition from the 1s-13p state, in which the excited 3p electron changes its azimuthal quantum number. Another cascade Auger decay of multiplet exchanging was found as electron emission of about 2.0 eV KEs; 2p-2(1S)4p → 2p-2(3P) + e-. Several cascade decays were found to occur via the photoexcitation into 1s-14p and 1s-15p states.
The Protolysis of Singlet Excited B-Naphtol.
ERIC Educational Resources Information Center
van Stam, Jan; Lofroth, Jan-Erik
1986-01-01
Presents a two-day experiment to estimate the pK for the protolysis of beta-naphtol in its ground state and the first singlet excited state. Results are compared to results obtained from the integrated rate equations in which values of the rate constants were taken from a time-resolved study. (JN)
Study of radially excited Ds(21 S 0) and Ds(3P)
NASA Astrophysics Data System (ADS)
Tian, Yu; Zhao, Ze; Zhang, Ai-Lin
2017-08-01
The unobserved JP = 0- radial excitation Ds(21 S 0) is anticipated to have mass 2650 MeV (denoted as Ds(2650)). Study of hadronic production is an important way to identify highly excited states. We study hadronic production of Ds(2650) from higher excited resonances in a 3 P 0 model. Relevant hadronic partial decay widths are found to be very small, which implies it is difficult to observe Ds(2650) in hadronic decays of higher excited resonances. Hadronic decay widths of radially excited Ds(3P) have also been estimated. The total decay widths of four Ds(3P) are large, but the branching ratios in the Ds(2650)η channel are very small, which implies that it seems impossible to observe Ds(2650) in hadronic decays of Ds(3P). The dominant decay channels of the four Ds(3P) have been pointed out, and D1(2420), D1(2430), , D(2550), D(2600), (11D2)D(2750) and are possible to observe in hadronic production from Ds(3P). Supported by National Natural Science Foundation of China (11475111)
Electron impact excitation of tin
NASA Astrophysics Data System (ADS)
Sharma, Lalita; Bharti, Swati; Srivastava, Rajesh
2017-05-01
We study the electron impact excitation of the fine-structure levels of the ground state configuration 5p2 to the excited states of the configuration 5p6s in tin atom. These calculations have been carried out in the jj coupling scheme using the relativistic distorted-wave method. Results for differential cross section are reported at incident electron energies 20, 50, 80 and 100 eV while integrated cross sections are presented in the incident electron energy range of 5 to 100 eV. Contribution to the Topical Issue: "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.
Orientation observed by Zeeman spectra of dissociated atoms and the interference in photoexcitations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimura, Yasuyuki; Kasahara, Shunji; Kato, Hajime
2003-06-01
In a magnetic field, the wave number of a pump laser light polarized along the field was fixed to the isolated Cs{sub 2}D {sup 1}{sigma}{sub u}{sup +}(v=46, J=54)(leftarrow)X {sup 1}{sigma}{sub g}{sup +}(v=0, J=55) line, and the excitation spectrum of the dissociated Cs(6p {sup 2}P{sub 3/2}) atoms was measured by scanning the wave number of a probe laser light polarized perpendicular to the field. The population of each sublevel 6p {sup 2}P{sub 3/2,m{sub j}} of the dissociated atoms was determined from the line intensities in the m{sub j}-resolved excitation spectrum. The unequal population between the 6p {sup 2}P{sub 3/2,+verticalbarm{sub j}}{sub verticalbar}more » and 6p {sup 2}P{sub 3/2,-verticalbarm{sub j}}{sub verticalbar} levels (atomic orientation) was observed and it was enhanced as the magnetic-field strength was increased. The atomic orientation is shown to be induced by the interference between the indirect predissociation, which occurs by a combination of the spin-orbit coupling of the D {sup 1}{sigma}{sub u}{sup +} state with the (2){sup 3}{pi}{sub 0u} state and the L-uncoupling and Zeeman interactions between the (2){sup 3}{pi}{sub 0u} and dissociative (2){sup 3}{sigma}{sub u}{sup +} states, and the dissociation following a direct excitation to the (2){sup 3}{sigma}{sub u}{sup +} state, which is allowed by spin-orbit coupling of the (2){sup 3}{sigma}{sub u}{sup +} state with the B {sup 1}{pi}{sub u} state. It is demonstrated that the atomic orientation is produced by the photodissociation in the presence of an external magnetic field even when all degenerated molecular M=J,...,0,...,-J sublevels are excited by a light polarized linearly along the field.« less
Kim, Peter W; Rockwell, Nathan C; Freer, Lucy H; Chang, Che-Wei; Martin, Shelley S; Lagarias, J Clark; Larsen, Delmar S
2013-07-20
The ultrafast mechanisms underlying the initial photoisomerization (P r → Lumi-R) in the forward reaction of the cyanobacterial photoreceptor Cph1 were explored with multipulse pump-dump-probe transient spectroscopy. A recently postulated multi-population model was used to fit the transient pump-dump-probe and dump-induced depletion signals. We observed dump-induced depletion of the Lumi-R photoproduct, demonstrating that photoisomerization occurs via evolution on both the excited- and ground-state electronic surfaces. Excited-state equilibrium was not observed, as shown via the absence of a dump-induced excited-state "Le Châtelier redistribution" of excited-state populations. The importance of incorporating the inhomogeneous dynamics of Cph1 in interpreting measured transient data is discussed.
Excitability scores of goats administered ascorbic acid and transported during hot-dry conditions
Ayo, J. O.; Mamman, M.
2006-01-01
In this study, we investigated the effect of ascorbic acid (AA) administration on goat excitability due to transportation. Ten goats administered AA (p.o.) at 100 mg/kg of body weight before transportation served as the experimental group, and seven goats administered only 10ml/kg of sterile water (p.o.) served as controls. Excitability scores were recorded for each goat; when weighed, before, immediately after, and 3 h after 8 h of transportation. A score of one to four was allocated to each goat; higher scores represent greater excitability. Immediately after transportation, excitability scores decreased significantly, especially those of control goats (p < 0.001). At 3 h post-transportation, the excitability scores of animals in the experimental group were not significantly (p>0.05) different from their pre-transportation normal values, whereas those of control goats were significantly lower (p < 0.01). The correlation i.e. the relationship between excitability score values and percent excitability (percentage of goat with particular excitability score) for different excitability score group 3 h post-transportation was positive and highly significant (p < 0.001), in both experimental and control goats. Our results indicate that road transportation induces considerable stress (depression) in goats as evidenced by a lower excitability score post-transportation. Moreover, the administration of AA pre-transportation facilitated the transition from a state of depression to excitation. In conclusion, AA administration to animals prior to transportation may ameliorate the depression often encountered after road transportation. PMID:16645336
Studying 10Be and 11Be Halo States through the (p,d) Single-Neutron Transfer Reaction
NASA Astrophysics Data System (ADS)
Kuhn, Keri; Sarazin, Fred; Tigress Collaboration; (Pcb) 2 Collaboration
2017-09-01
One-neutron transfer reactions are being used to study single-particle neutron states in nuclei. For one-neutron halo nuclei, such as 11Be, the (p,d) reaction enables the removal of the halo neutron or of one of the core neutrons. This way, it is possible to simultaneously study the halo wavefunction of the 11Be ground-state but also a possible excited halo state in 10Be. The 11Be(p, d)10Be transfer reaction at 10 MeV/nucleon is being investigated at the TRIUMF-ISAC II facility with the Printed Circuit Board Based Charged Particle ((PCB)2) array inside the TRIUMF ISAC Gamma-Ray Escape-Suppressed Spectrometer (TIGRESS). The ground state and first excited state of 10Be can be directly identified using deuteron identification and kinematics from the charged particle array, while the four excited states in 10Be around 6 MeV, including the suspected halo state (2- state), are identified using coincident gamma rays from TIGRESS with the identified deuterons. Angular distributions for the 10Be populated states will be shown along with their FRESCO fits. This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03- 93ER40789 (Colorado School of Mines).
DOE R&D Accomplishments Database
Chu, S.
1976-10-01
A measurement of the 6{sup 2}P{sub ?} --> 7{sup 2}P{sub ?} forbidden magnetic dipole matrix element in atomic thallium is described. A pulsed, linearly polarized dye laser tuned to the transition frequency is used to excite the thallium vapor from the 6{sup 2}P{sub ?} ground state to the 7{sup 2}P{sub ?} excited state. Interference between the magnetic dipole M1 amplitude and a static electric field induced E1 amplitude results in an atomic polarization of the 7{sup 2}P{sub ?} state, and the subsequent circular polarization of 535 nm fluorescence. The circular polarization is seen to be proportional to / as expected, and measured for several transitions between hyperfine levels of the 6{sup 2}P{sub ?} and 7{sup 2}P{sub ?} states. The result is = -(2.11 +- 0.30) x 10{sup -5} parallel bar e parallel bar dirac constant/2mc, in agreement with theory.
Double Photoionization of excited Lithium and Beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.
2010-05-20
We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.
Dynamics of solvation and desolvation of rubidium attached to He nanodroplets
NASA Astrophysics Data System (ADS)
von Vangerow, J.; John, O.; Stienkemeier, F.; Mudrich, M.
2015-07-01
The real-time dynamics of photoexcited and photoionized rubidium (Rb) atoms attached to helium (He) nanodroplets is studied by femtosecond pump-probe mass spectrometry. While excited Rb atoms in the perturbed 6p-state (Rb*) desorb off the He droplets, Rb+ photoions tend to sink into the droplet interior when created near the droplet surface. The transition from Rb+ solvation to full Rb* desorption is found to occur at a delay time τ ˜ 600 fs for Rb* in the 6pΣ-state and τ ˜ 1200 fs for the 6pΠ-state. Rb+He ions are found to be created by directly exciting bound Rb*He exciplex states as well as by populating bound Rb+He-states in a photoassociative ionization process.
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; An Nguyen, Thien; Alfano, Robert R.
2014-06-01
Two-photon (2P) excitation of the second singlet (S) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S2 state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
Shi, Lingyan; Rodríguez-Contreras, Adrián; Budansky, Yury; Pu, Yang; Nguyen, Thien An; Alfano, Robert R
2014-06-01
Two-photon (2P) excitation of the second singlet (S₂) state was studied to achieve deep optical microscopic imaging in brain tissue when both the excitation (800 nm) and emission (685 nm) wavelengths lie in the "tissue optical window" (650 to 950 nm). S₂ state technique was used to investigate chlorophyll α (Chl α) fluorescence inside a spinach leaf under a thick layer of freshly sliced rat brain tissue in combination with 2P microscopic imaging. Strong emission at the peak wavelength of 685 nm under the 2P S₂ state of Chl α enabled the imaging depth up to 450 μm through rat brain tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasimov, A.K.; Tursunov, A.T.; Tukhlibaev, O.
Frequencies of the 4s{sup 2}S{sub 1/2}-np{sup 2}P{sub 1/2, 3/2} transitions are measured and the energies of high-lying P states, as well as the ionization energy of aluminum atoms, are determined by the method of two-step laser excitation and ionization of excited atoms of AlI by an electric field. 4 refs., 3 figs., 1 tab.
Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene
NASA Astrophysics Data System (ADS)
Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing
2017-08-01
Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.
Strong and radiative decays of the doubly charmed baryons
NASA Astrophysics Data System (ADS)
Xiao, Li-Ye; Wang, Kai-Lei; Lü, Qi-Fang; Zhong, Xian-Hui; Zhu, Shi-Lin
2017-11-01
We have systematically studied the strong and radiative decays of the low-lying 1 P -wave doubly charmed baryons. Some interesting observations are: (i) The states Ξcc * and Ωcc * with JP=3 /2+ have a fairly large decay rate into the Ξc cγ and Ωc cγ channels with a width ˜15 and ˜7 keV , respectively. (ii) The lowest lying excited doubly charmed baryons are dominated by the 1 P ρ mode excitations, which should be quite narrow states. They decay into the ground state with JP=1 /2+ through the radiative transitions with a significant ratio. (iii) The total decay widths of the first orbital excitations of λ mode (1 Pλ states with JP=1 /2-, 3 /2-, 5 /2-) are about Γ ˜100 MeV , and the ratio between the radiative and hadronic decay widths is about O (10-3).
Excited-state decay processes of binuclear rhodium(I) isocyanide complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miskowski, V.M.; Rice, S.F.; Gray, H.B.
1993-04-29
Emission lifetimes, quantum yields, and polarized excitation spectra of Rh[sub 2]b[sub 4][sup 2+] and Rh[sub 2](TMB)[sub 4][sup 2+] (b = 1,3-diisocyanopropane; TMB = 2,5-diisocyano-2,5-dimethylhexane) have been determined. The singlet and triplet d[sigma]* [yields] p[sigma]([sup 1,3]A[sub 2u]) excited states are luminescent with radiative rates of ca. 10[sup 8] and 10[sup 4] s[sup [minus
State-resolved Photodissociation and Radiative Association Data for the Molecular Hydrogen Ion
NASA Astrophysics Data System (ADS)
Zammit, Mark C.; Savage, Jeremy S.; Colgan, James; Fursa, Dmitry V.; Kilcrease, David P.; Bray, Igor; Fontes, Christopher J.; Hakel, Peter; Timmermans, Eddy
2017-12-01
We present state-resolved (electronic, vibrational, and rotational) cross sections and rate coefficients for the photodissociation (PD) of {{{H}}}2+ and radiative association (RA) of H–H+. We developed a fully quantum mechanical approach within the nonrelativistic Born–Oppenheimer approximation to describe {{{H}}}2+ and calculate the data for transitions between the ground electronic state 1s{σ }g and the 2p{σ }u, 2p{π }u, 3p{σ }u, 3p{π }u, 4p{σ }u, 4f{σ }u, 4f{π }u, and 4p{π }u electronic states (i.e., up to {{{H}}}2+ n = 4). Tables of the dipole-matrix elements and energies needed to calculate state-resolved cross sections and rate coefficients will be made publicly available. These data could be important in astrophysical models when dealing with photon wavelengths (or radiation temperature distributions that are weighted toward such wavelengths) around 100 nm. For example, at these wavelengths and a material temperature of 8400 K, the LTE-averaged PD cross section via the (second electronically excited) 2p{π }u state is over three times larger than the PD cross section via the (first electronically excited) 2p{σ }u state.
NMR comparison of the native energy landscapes of DLC8 dimer and monomer.
Krishna Mohan, P M; Barve, Maneesha; Chatterjee, Amarnath; Ghosh-Roy, Anindya; Hosur, Ramakrishna V
2008-04-01
Characterization of the low energy excited states on the energy landscape of a protein is one of the exciting and challenging problems in structural biology today. In this context, we present here residue level NMR description of the low energy excited states representing locally different alternative conformations in the dynein light chain protein, in its dimeric as well as monomeric forms. Important differences have been observed between the two cases and these are not necessarily restricted to the dimer interface. Simulations indicate that the low energy excited states are within a free energy of 2-3 kcal/mol above the native state. In both the monomer and the dimer the energy landscape is very sensitive to small pH perturbations. Nearly 25% of the residues (total of residues at pH 3.0 and 3.5 for the monomer, and at pH 7.0 and 6.0 for the dimer) access alternative conformations. The observations have been rationalized on the basis of protonation-deprotonation equilibria in the side chains; histidines in the case of the dimer and aspartates/glutamates in the case of the monomer. The possible relationship of the observed ruggedness of the native energy landscape with the protein structure, and its implications to protein adaptability and unfolding have been discussed.
NASA Astrophysics Data System (ADS)
Jędrzejewska, Beata; Grabarz, Anna; Bartkowiak, Wojciech; Ośmiałowski, Borys
2018-06-01
The solvatochromism of the dyes was analyzed based on the four-parameter scale including: polarizability (SP), dipolarity (SdP), acidity (SA) and basicity (SB) parameters by method proposed by Catalán. The change of solvent to more polar caused the red shift of absorption and fluorescence band position. The frequency shifts manifest the change in the dipole moment upon excitation. The ground-state dipole moment of the difluoroboranyls was estimated based on changes in molecular polarization with temperature. Moreover, the Stokes shifts were used to calculate the excited state dipole moments of the dyes. For the calculation, the ground-state dipole moments and Onsager cavity radius were also determined theoretically using density functional theory (DFT). The experimentally determined excited-state dipole moments for the compounds are higher than the corresponding ground-state values. The increase in the dipole moment is described in terms of the nature of the excited state.
Excited State Atom-Ion Charge-Exchange
NASA Astrophysics Data System (ADS)
Li, Ming; Makrides, Constantinos; Petrov, Alexander; Kotochigova, Svetlana
2017-04-01
We theoretically investigate the exothermic charge-exchange reaction between an excited atom and a ground-state positive ion. In particular, we focus on MOT-excited Ca*(4s4p 1P) atoms colliding with ground-state Yb+ ions, which are under active study by the experimental group of E. Hudson at UCLA. Collisions between an excited atom and an ion are guided by two major contributions to the long-range interaction potentials, the induction C4 /R4 and charge-quadrupole C3 /R3 potentials, and their coupling by the electron-exchange interaction. Our model of these forces leads to close-coupling equations for multiple reaction channels. We find several avoided crossings between the potentials that couple to the nearby asymptotic limits of Yb*+Ca+, some of which can possibly provide large charge exchange rate coefficients above 10-10 cm3 / s. We acknowledge support from the US Army Research Office, MURI Grants W911NF-14-1-0378 and the US National Science Foundation, Grant PHY-1619788.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabriel, O.; Harskamp, W. E. N. van; Schram, D. C.
The cascaded arc is a plasma source providing high fluxes of excited and reactive species such as ions, radicals and rovibrationally excited molecules. The plasma is produced under pressures of some kPa in a direct current arc with electrical powers up to 10 kW. The plasma leaves the arc channel through a nozzle and expands with supersonic velocity into a vacuum-chamber kept by pumps at low pressures. We investigated the case of a pure hydrogen plasma jet with and without an applied axial magnetic field that confines ions and electrons in the jet. Highly excited molecules and atoms were detectedmore » by means of laser-induced fluorescence and optical emission spectroscopy. In case of an applied magnetic field the atomic state distribution of hydrogen atoms shows an overpopulation between the electronic states p = 5, 4 and 3. The influence of the highly excited hydrogen molecules on H{sup -} ion formation and a possible mechanism involving this negative ion and producing atomic hydrogen in state p = 3 will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Tran, T.; Bordelon, D.
1992-01-01
Relative intensity ratios for the differential electron-impact excitation of the metastable states of the rare gases neon, argon, and xenon at the incident energy of 30 eV and scattering angles 10{degree}--120{degree} are presented and are compared with available theory.
NASA Astrophysics Data System (ADS)
Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.
2011-02-01
We report results of many-electron calculations that predict the presence of a regular series of autoionizing doubly excited states (DESs) of 1Posymmetry embedded inside one- as well as two-electron continua of neon, in the range of excitation 105.9-121.9 eV above the ground state. The limit of 121.9 eV represents the two-electron ionization threshold (TEIT) labeled by Ne2+ 1s22p6 1S. The wave functions of these unstable states and their properties are computed according to the theoretical framework, which is explained and justified in the text. Their formal structure is (ψcore)1S⊗Φ(r1→,r2→)1Po, where both ψcore and Φ(r⃗1,r⃗2) are correlated wave functions, the latter being represented reasonably accurately by a self-consistently obtained superposition of nsnp and np(n+1)d configurations n=3-7. By fitting the calculated lowest energies at each value of n, (five states), an effective hydrogenic formula is obtained, which gives the whole energy spectrum up to the TEIT. The autoionization widths are small and decrease with excitation energy. Oscillator strengths for the excitation of these narrow resonance states by absorption of one photon are also small. Because of their electronic structure, these states are compared to 1Po DESs in He, which were found in the 1980s to constitute a regular ladder with wave-function characteristics that tend to those of the so-called Wannier state at threshold. In the present case, the presence of the core and the concomitant interactions do not permit the emergence of such geometrical features.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2014-05-01
In the framework of the self-interaction-free time-dependent density-functional theory, we have performed three-dimensional (3D) ab initio calculations of He atoms in near-infrared (NIR) laser fields subject to excitation by a single extreme ultraviolet (XUV) attosecond pulse (SAP). We have explored the dynamical behavior of the subcycle high harmonic generation (HHG) for transitions from the excited states to the ground state and found oscillation structures with respect to the time delay between the SAP and NIR fields. The oscillatory pattern in the photon emission spectra has a period of ˜1.3 fs which is half of the NIR laser optical cycle, similar to that recently measured in the experiments on transient absorption of He [M. Chini et al., Sci. Rep. 3, 1105 (2013), 10.1038/srep01105]. We present the photon emission spectra from 1s2p, 1s3p, 1s4p, 1s5p, and 1s6p excited states as functions of the time delay. We explore the subcycle Stark shift phenomenon in NIR fields and its influence on the photon emission process. Our analysis reveals several interesting features of the subcycle HHG dynamics and we identify the mechanisms responsible for the observed peak splitting in the photon emission spectra.
Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.; ...
2017-03-17
Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.
Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less
Change of translational-rotational coupling in liquids revealed by field-cycling {sup 1}H NMR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, R.; Schneider, E.; Rössler, E. A.
2015-01-21
Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the {sup 1}H spin-lattice relaxation rate, R{sub 1}(ω)=T{sub 1}{sup −1}(ω), is measured for propylene glycol (PG) which is increasingly diluted with deuterated chloroform. A frequency range of 10 kHz–20 MHz and a broad temperature interval from 220 to about 100 K are covered. The results are compared to those of experiments, where glycerol and o-terphenyl are diluted with their deuterated counter-part. Reflecting intra- as well as intermolecular relaxation, the dispersion curves R{sub 1}(ω,x) (x denotes mole fraction PG) allow to extract the rotational time constant τ{sub rot}(T, x) andmore » the self-diffusion coefficient D(T, x) in a single experiment. The Stokes-Einstein-Debye (SED) relation is tested in terms of the quantity D(T, x) τ{sub rot}(T, x) which provides a measure of an effective hydrodynamic radius or equivalently of the spectral separation of the translational and the rotational relaxation contribution. In contrast to o-terphenyl, glycerol and PG show a spectral separation much larger than suggested by the SED relation. In the case of PG/chloroform mixtures, not only an acceleration of the PG dynamics is observed with increasing dilution but also the spectral separation of rotational and translational relaxation contributions continuously decreases. Finally, following a behavior similar to that of o-terphenyl already at about x = 0.6; i.e., while D(T, x) τ{sub rot}(T, x) in the mixture is essentially temperature independent, it strongly increases with x signaling thus a change of translational-rotational coupling. This directly reflects the dissolution of the hydrogen-bond network and thus a change of solution structure.« less
Laser excitation of the n =3 level of positronium for antihydrogen production
NASA Astrophysics Data System (ADS)
Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Koettig, T.; Krasnicky, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zmeskal, J.; Zurlo, N.; AEgIS Collaboration
2016-07-01
We demonstrate the laser excitation of the n =3 state of positronium (Ps) in vacuum. A combination of a specially designed pulsed slow positron beam and a high-efficiency converter target was used to produce Ps. Its annihilation was recorded by single-shot positronium annihilation lifetime spectroscopy. Pulsed laser excitation of the n =3 level at a wavelength λ ≈205 nm was monitored via Ps photoionization induced by a second intense laser pulse at λ =1064 nm. About 15% of the overall positronium emitted into vacuum was excited to n =3 and photoionized. Saturation of both the n =3 excitation and the following photoionization was observed and explained by a simple rate equation model. The positronium's transverse temperature was extracted by measuring the width of the Doppler-broadened absorption line. Moreover, excitation to Rydberg states n =15 and 16 using n =3 as the intermediate level was observed, giving an independent confirmation of excitation to the 3 3P state.
Structure of states in 12Be via the 11Be( d,p) reaction
NASA Astrophysics Data System (ADS)
Kanungo, R.; Gallant, A. T.; Uchida, M.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Ball, G. C.; Becker, J. A.; Boston, A. J.; Boston, H. C.; Brown, B. A.; Buchmann, L.; Colosimo, S. J.; Clark, R. M.; Cline, D.; Cross, D. S.; Dare, H.; Davids, B.; Drake, T. E.; Djongolov, M.; Finlay, P.; Galinski, N.; Garrett, P. E.; Garnsworthy, A. B.; Green, K. L.; Grist, S.; Hackman, G.; Harkness, L. J.; Hayes, A. B.; Howell, D.; Hurst, A. M.; Jeppesen, H. B.; Leach, K. G.; Macchiavelli, A. O.; Oxley, D.; Pearson, C. J.; Pietras, B.; Phillips, A. A.; Rigby, S. V.; Ruiz, C.; Ruprecht, G.; Sarazin, F.; Schumaker, M. A.; Shotter, A. C.; Sumitharachchi, C. S.; Svensson, C. E.; Tanihata, I.; Triambak, S.; Unsworth, C.; Williams, S. J.; Walden, P.; Wong, J.; Wu, C. Y.
2010-01-01
The s-wave neutron fraction of the 0 levels in 12Be has been investigated for the first time through the 11Be(d,p) transfer reaction using a 5 A MeV11Be beam at TRIUMF, Canada. The reaction populated all the known bound states of 12Be. The ground state s-wave spectroscopic factor was determined to be 0.28-0.07+0.03 while that for the long-lived 02+ excited state was 0.73-0.40+0.27. This observation, together with the smaller effective separation energy indicates enhanced probability for an extended density tail beyond the 10Be core for the 02+ excited state compared to the ground state.
Cross-shell excitations from the f p shell: Lifetime measurements in 61Zn
NASA Astrophysics Data System (ADS)
Queiser, M.; Vogt, A.; Seidlitz, M.; Reiter, P.; Togashi, T.; Shimizu, N.; Utsuno, Y.; Otsuka, T.; Honma, M.; Petkov, P.; Arnswald, K.; Altenkirch, R.; Birkenbach, B.; Blazhev, A.; Braunroth, T.; Dewald, A.; Eberth, J.; Fransen, C.; Fu, B.; Hess, H.; Hetzenegger, R.; Hirsch, R.; Jolie, J.; Karayonchev, V.; Kaya, L.; Lewandowski, L.; Müller-Gatermann, C.; Régis, J.-M.; Rosiak, D.; Schneiders, D.; Siebeck, B.; Steinbach, T.; Wolf, K.; Zell, K.-O.
2017-10-01
Lifetimes of excited states in the neutron-deficient nucleus 61Zn were measured employing the recoil-distance Doppler-shift (RDDS) and the electronic fast-timing methods at the University of Cologne. The nucleus of interest was populated as an evaporation residue in 40Ca(24Mg,n 2 p )61Zn and 58Ni(α ,n )61Zn reactions at 67 and 19 MeV, respectively. Five lifetimes were measured for the first time, including the lifetime of the 5 /21- isomer at 124 keV. Short lifetimes from the RDDS analysis are corrected for Doppler-shift attenuation (DSA) in the target and stopper foils. Ambiguous observations in previous measurements were resolved. The obtained lifetimes are compared to predictions from different sets of shell-model calculations in the f p , f5 /2p g9 /2 , and multishell f p -g9 /2d5 /2 model spaces. The band built on the 9 /21+ state exhibits a prolate deformation with β ≈0.24 . Especially, the inclusion of cross-shell excitation into the 1 d5 /2 orbital is found to be decisive for the description of collectivity in the first excited positive-parity band.
NASA Astrophysics Data System (ADS)
Safronova, Ulyana; Safronova, Alla; Beiersdorfer, Peter
2013-05-01
Excitation energies, oscillator strengths, transition probabilities, and lifetimes are calculated for (5s2 + 5p2 + 5d2 + 5 s 5 d + 5 s 5 g + 5 p 5 f) - (5 s 5 p + 5 s 5 f + 5 p 5 d + 5 p 5 g) electric dipole transitions in Sm-like ions with nuclear charge Z ranging from 74 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded E1 matrix elements in length and velocity forms. The calculations start from a 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 4f14 Dirac-Fock potential. First-order perturbation theory is used to obtain intermediate coupling coefficients, and the second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1 matrix elements to achieve agreement between length-form and velocity-form amplitudes. The resulting transition energies and transition probabilities, and lifetimes for Sm-like W12+ are compared with results obtained by the relativistic Hartree-Fock approximation (COWAN code) to estimate contribution of the 4 f -core-excited states. Trends of excitation energies and oscillator strengths as function of nuclear charge Z are shown graphically for selected states and transitions. This work provides a number of yet unmeasured properti. This research was sponsored by the grant DE-FG02-08ER54951.
Structure of 14C and 14B from the C,1514(d ,3He)B,1413 reactions
NASA Astrophysics Data System (ADS)
Bedoor, S.; Wuosmaa, A. H.; Albers, M.; Alcorta, M.; Almaraz-Calderon, Sergio; Back, B. B.; Bertone, P. F.; Deibel, C. M.; Hoffman, C. R.; Lighthall, J. C.; Marley, S. T.; Mcneel, D. G.; Pardo, R. C.; Rehm, K. E.; Schiffer, J. P.; Shetty, D. V.
2016-04-01
We have studied the C,1514(d ,3He)B,1413 proton-removing reactions in inverse kinematics. The (d ,3He ) reaction probes the proton occupation of the target ground state, and also provides spectroscopic information about the final states in B,1413. The experiments were performed using C,1514 beams from the ATLAS accelerator at Argonne National Laboratory. The reaction products were analyzed with the HELIOS device. Angular distributions were obtained for transitions from both reactions. The 14C-beam data reveal transitions to excited states in 13B that suggest configurations with protons outside the π (0 p3 /2) orbital, and some possibility of proton cross-shell 0 p -1 s 0 d excitations, in the 14C ground state. The 15C-beam data confirm the existence of a broad 2- excited state in 14B. The experimental data are compared to the results of shell-model calculations.
Electron-Impact Cross Sections for Ground State to np Excitations of Sodium and Potassium.
Stone, Philip M; Kim, Yong-Ki
2004-01-01
Cross sections for electron impact excitation of atoms are important for modeling of low temperature plasmas and gases. While there are many experimental and theoretical results for excitation to the first excited states, little information is available for excitation to higher states. We present here calculations of excitations from the ground state to the np levels of sodium (n = 3 through 11) and potassium (n = 4 through 12). We also present a calculation for a transition from the excited sodium level 3p to 3d to show the generality of the method. Scaling formulas developed earlier by Kim [Phys. Rev. A 64, 032713 (2001)] for plane-wave Born cross sections are used. These formulas have been shown to be remarkably accurate yet simple to use. We have used a core polarization potential in a Dirac-Fock wave function code to calculate target atom wave functions and a matching form of the dipole transition operator to calculate oscillator strengths and Born cross sections. The scaled Born results here for excitation to the first excited levels are in very good agreement with experimental and other theoretical data, and the results for excitation to the next few levels are in satisfactory agreement with the limited data available. The present results for excitation to the higher levels are believed to be the only data available.
Interpretation of the new Ω _c0 states via their mass and width
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2017-06-01
The masses and pole residues of the ground and first radially excited Ω _c0 states with spin-parities JP=1/2+, 3/2+, as well as P-wave Ω _c0 with JP=1/2-, 3/2- are calculated by means of the two-point QCD sum rules. The strong decays of Ω _c0 baryons are also studied and the widths of these decay channels are computed. The relevant computations are performed in the context of the full QCD sum rules on the light cone. The results obtained for the masses and widths are confronted with recent experimental data of the LHCb Collaboration, which allow us to interpret Ω _c(3000)0, Ω _c(3050)0, and Ω _c(3119)0 as the excited css baryons with the quantum numbers (1P, 1/2-), (1P, 3/2-), and (2S, 3/2+), respectively. The (2S, 1/2+) state can be assigned either to the Ω _c(3066)0 state or the Ω _c(3090)0 excited baryon.
Theoretical Interpretation of the Fluorescence Spectra of Toluene and P- Cresol
1994-07-01
NUMBER OF PAGES Toluene Geometrica 25 p-Cresol Fluorescence Is. PRICE CODE Spectra 17. SECURITY CLASSIFICATION 13. SECURITY CLASSIFICATION 19...State Frequencies of Toluene ................ 19 6 Computed and exp" Ground State Frequencies of p-Cresol ............... 20 7 Correction Factors for...Computed Ground State Vibrational Frequencies ....... 21 8 Computed and Corrected Excited State Frequencies of Toluene ............. 22 9 Computed and
NASA Technical Reports Server (NTRS)
Simsic, P. L.
1974-01-01
Excitation of neutral atoms by inelastic scattering of incident electrons in gaseous nebulae were investigated using Slater Wave functions to describe the initial and final states of the atom. Total cross sections using the Born Approximation are calculated for: Li(2s yields 2p), Na(3s yields 4p), k(4s yields 4p). The intensity of emitted radiation from gaseous nebulae is also calculated, and Maxwell distribution is employed to average the kinetic energy of electrons.
NASA Astrophysics Data System (ADS)
Closser, Kristina Danielle
This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as superpositions of atomic states with surface states appearing close to the atomic excitation energies and interior states being blue shifted by up to ≈2 eV. The dynamics resulting from excitation of He_7 were subsequently explored using ab initio molecular dynamics (AIMD). These simulations were performed with classical adiabatic dynamics coupled to a new state-following algorithm on CIS potential energy surfaces. Most clusters were found to completely dissociate and resulted in a single excited atomic state (90%), however, some trajectories formed bound, He*2 (3%), and a few yielded excited trimers (<0.5%). Comparisons were made with available experimental information on much larger clusters. Various applications of this state following algorithm are also presented. In addition to AIMD, these include excited-state geometry optimization and minimal energy path finding via the growing string method. When using state following we demonstrate that more physical results can be obtained with AIMD calculations. Also, the optimized geometries of three excited states of cytosine, two of which were not found without state following, and the minimal energy path between the lowest two singlet excited states of protonated formaldimine are offered as example applications. Finally, to address large clusters, a local variation of CIS was developed. This method exploits the properties of absolutely localized molecular orbitals (ALMOs) to limit the total number of excitations to scaling only linearly with cluster size, which results in formal scaling with the third power of the system size. The derivation of the equations and design of the algorithm are discussed in detail, and computational timings as well as a pilot application to the size dependence of the helium cluster spectrum are presented.
TOXICOLOGIC STUDIES ON POLYPHENYL COMPOUNDS USED AS ATOMIC REACTOR MODERATOR-COOLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, T.J.; Detrick, L.E.; Komesu, N.
1959-09-01
A study has been made of certain aspects of the toxicology of organic polyphenyl compounds proposed for use as moderator-coolants in atomic reactors. Only monoisopropylbiphenyl, irradiated monoisopropylbiphenyl, and terphenyl mixtures (OMRE) were irritating to the conjunctiva in rabbits and oniy the unirradiated moderator-coolants caused skin irritation in rabbits. Both the moderators and their components were highly damaging to guinea pig skin following intracutaneous injection. All the polyphenyl compounds except irradiated monoisopropylbiphenyl produced sensitization and chemical necrosis. The latter produced only necrosis. Monoisopropylbiphenyl and o- and m-terphenyl were the only polyphenyls that caused death after inhalation, although all of the compoundsmore » produced some of the following symptoms: nasal congestion with rhinitis, lachrymation, labored respiration, and erythema of the ears and paws. The following histopathologic changes were also observed: acute tracheal necrosis, acute tracheobronchitis, pulmonary edema, bronchopneumonia, atelectasis, and petechial hemorrhages. All such toxic effects can be prevented by protective clothing and respirators. (auth)« less
2016-01-01
The chemical locking of the central single bond in core chromophores of green fluorescent proteins (GFPs) influences their excited-state behavior in a distinct manner. Experimentally, it significantly enhances the fluorescence quantum yield of GFP chromophores with an ortho-hydroxyl group, while it has almost no effect on the photophysics of GFP chromophores with a para-hydroxyl group. To unravel the underlying physical reasons for this different behavior, we report static electronic structure calculations and nonadiabatic dynamics simulations on excited-state intramolecular proton transfer, cis–trans isomerization, and excited-state deactivation in a locked ortho-substituted GFP model chromophore (o-LHBI). On the basis of our previous and present results, we find that the S1 keto species is responsible for the fluorescence emission of the unlocked o-HBI and the locked o-LHBI species. Chemical locking does not change the parts of the S1 and S0 potential energy surfaces relevant to enol–keto tautomerization; hence, in both chromophores, there is an ultrafast excited-state intramolecular proton transfer that takes only 35 fs on average. However, the locking effectively hinders the S1 keto species from approaching the keto S1/S0 conical intersections so that most of trajectories are trapped in the S1 keto region for the entire 2 ps simulation time. Therefore, the fluorescence quantum yield of o-LHBI is enhanced compared with that of unlocked o-HBI, in which the S1 excited-state decay is efficient and ultrafast. In the case of the para-substituted GFP model chromophores p-HBI and p-LHBI, chemical locking hardly affects their efficient excited-state deactivation via cis–trans isomerization; thus, the fluorescence quantum yields in these chromophores remain very low. The insights gained from the present work may help to guide the design of new GFP chromophores with improved fluorescence emission and brightness. PMID:26744782
Effective collision strengths for the electron impact excitation of Mg
NASA Astrophysics Data System (ADS)
Hudson, C. E.; Ramsbottom, C. A.; Norrington, P. H.; Scott, M. P.
2008-05-01
Electron impact excitation collision strengths for fine structure transitions of Mg,have been determined by a Breit-Pauli R-matrix calculation. The target states are represented by configuration interaction wavefunctions and consist of the 19 lowest LS states, having configurations 2s^22p^4, 2s2p^5, 2p^6, 2s^22p^33s and 2s^22p^33p. These target states give rise to 37 fine structure levels and 666 possible transitions. The effective collision strengths are calculated by averaging the electron collision strengths over a Maxwellian distribution of electron velocities. Effective collision strengths for transitions between the fine structure levels are given for electron temperatures in the range 10Te(K) = 3.0 - 7.0. Results are compared with the previous R-matrix calculation of Butler & Zeippen (AASS, 1994) and the recent Distorted Wave evaluations of Bhatia, Landi & Eissner (ADNDT, 2006).
NASA Astrophysics Data System (ADS)
Bell, T.; Hasnaoui, A.; Ait-Ameur, K.; Ngcobo, S.
2017-10-01
In this paper we experimentally demonstrate selective excitation of high-radial-order Laguerre-Gaussian (LG p or LG{}p,0) modes with radial order p = 1-4 and azimuthal order l = 0 using a diode-pump solid-state laser (DPSSL) that is digitally controlled by a spatial light modulator (SLM). We encoded an amplitude mask containing p-absorbing rings, of various incompleteness (segmented) on grey-scale computer-generated digital holograms, and displayed them on an SLM which acted as an end mirror of the diode-pumped solid-state digital laser. The various incomplete (α) p-absorbing rings were digitally encoded to match the zero-intensity nulls of the desired LG p mode. We show that the creation of LG p , for p = 1 to p = 4, only requires an incomplete circular p-absorbing ring that has a completeness of ≈37.5%, giving the DPSSL resonator a lower pump threshold power while maintaining the same laser characteristics (such as beam propagation properties).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, M.A.; Schenter, G.K.
We present a hybrid quantum mechanical/molecular mechanical (QM/MM) model for microscopic solvation effects that includes polarizability in the MM region (QM/MMpol). QM/MMpol treatment of both ground and excited states is presented in the formalism. We present QM/MMpol analysis of the ground and electronic excited states of the bacteriochlorophyll b dimer (P) of the photosynthetic reaction center (RC) of Rhodopseudomonas viridis using the INDO/S method. The static-charge potential from the MM model of the RC alone causes Q{sub y1} to have significantly better agreement with the Stark effect results than isolated P. However, consideration of the protein polarization potential is furthermore » required to obtain more complete agreement with Stark effect experiments. Thus, we calculate a Q{sub y1} transition energy at 10826 cm{sup -1} with a ground to excited state change in dipole moment of 4.8 D; an absorption Stark effect angle of 43{degree}; a net shift of 0.15 electrons from the L subunit to the M subunit of P; and a linear dichroism angle (between the transition moment of Q{sub y1} and the pseudo-C{sub 2} axis of the RC) of 81{degree}. These results are in good agreement with experiment. Interestingly, we find that net CT increase is greater for Q{sub y1} than for the second excited state of P (Q{sub y2}), a result that we anticipated in an early model dimer study. 77 refs., 3 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Stoner-Ma, Deborah; Jaye, Andrew A.; Ronayne, Kate L.; Nappa, Jérôme; Tonge, Peter J.; Meech, Stephen R.
2008-06-01
Two blue absorbing and emitting mutants (S65G/T203V/E222Q and S65T at pH 5.5) of the green fluorescent protein (GFP) have been investigated through ultrafast time resolved infra-red (TRIR) and fluorescence spectroscopy. In these mutants, in which the excited state proton transfer reaction observed in wild-type GFP has been blocked, the photophysics are dominated by the neutral A state. It was found that the A∗ excited state lifetime is short, indicating that it is relatively less stabilised in the protein matrix than the anionic form. However, the lifetime of the A state can be increased through modifications to the protein structure. The TRIR spectra show that a large shifts in protein vibrational modes on excitation of the A state occurs in both these GFP mutants. This is ascribed to a change in H-bonding interactions between the protein matrix and the excited state.
NASA Astrophysics Data System (ADS)
Li, Yong-Qing; Zhang, Yong-Jia; Zhao, Jin-Feng; Zhao, Mei-Yu; Ding, Yong
2015-11-01
Vector correlations of the reaction are studied based on a recent DMBE-SEC PES for the first excited state of NH2 [J. Phys. Chem. A 114 9644 (2010)] by using a quasi-classical trajectory method. The effects of collision energy and the reagent initial vibrational excitation on cross section and product polarization are investigated for v = 0-5 and j = 0 states in a wide collision energy range (10-50 kcal/mol). The integral cross section could be increased by H2 vibration excitation remarkably based on the DMBE-SEC PES. The different phenomena of differential cross sections with different collision energies and reagent vibration excitations are explained. Particularly, the NH molecules are scattered mainly in the backward hemisphere at low vibration quantum number and evolve from backward to forward direction with increasing vibration quantum number, which could be explained by the fact that the vibrational excitation enlarges the H-H distance in the entrance channel, thus enhancing the probability of collision between N atom and H atom. A further study on product polarization demonstrates that the collision energy and vibrational excitation of the reagent remarkably influence the distributions of P(θr), P(ϕr), and P(θr, ϕr). Project supported by the National Natural Science Foundation of China (Grant Nos. 11474141 and 11404080), the Special Fund Based Research New Technology of Methanol conversion and Coal Instead of Oil, the China Postdoctoral Science Foundation (Grant No. 2014M550158) , the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China (Grant No. 2014-1685), and the Program for Liaoning Excellent Talents in University, China (Grant Nos. LJQ2015040 and LJQ2014001).
Electronic excitations in finite and infinite polyenes
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1987-09-01
We study electronic excitations in long polyenes, i.e., in one-dimensional strongly correlated electron systems which are neither infinite nor small. The excitations are described within Hubbard and Pariser-Parr-Pople (PPP) models by means of a multiple-reference double-excitation expansion [P. Tavan and K. Schulten, J. Chem. Phys. 85, 6602 (1986)]. We find that quantized ``transition'' momenta can be assigned to electronic excitations in finite chains. These momenta link excitation energies of finite chains to dispersion relations of infinite chains, i.e., they bridge the gap between finite and infinite systems. A key result is the following: Excitation energies E in polyenes with N carbon atoms are described very accurately by the formula Eβ=ΔEβ0+αβk(N)q, q=1,2,..., where β denotes the excitation class, ΔEβ0 the energy gap in the infinite system [αβk(N)>0], and k(N) the elementary transition momentum. The parameters ΔEβ0 and αβ are determined for covalent and ionic excitations in alternating and nonalternating polyenes. The covalent excitations are combinations of triplet excitations T, i.e., T, TT, TTT, . . . . The lowest singlet excitations in the infinite polyene, e.g., in polyacetylene or polydiacetylene, are TT states. Available evidence proves that these states can dissociate into separate triplets. The bond structure of TT states is that of a neutral soliton-antisoliton pair. The level density of TT states in long polyenes is high enough to allow dissociation into separate solitons.
Polarization-Dependent Ti 2p-Resonant X-ray Raman Scattering from Ti2O3
NASA Astrophysics Data System (ADS)
Tezuka, Yasuhisa; Nakajima, Nobuo; Adachi, Jun-ichi; Morimoto, Osamu; Sato, Hitoshi; Uozumi, Takayuki
2017-12-01
Detailed resonant X-ray emission spectra (XES) and these polarization dependences of Ti2O3 were obtained by excitation at the Ti 2p absorption edge. About 100 XES spectra were observed in different polarization configurations. X-ray Raman scattering spectra showed two types of crystal field (dd) excitations as well as charge-transfer (CT) excitations. Bulk states of the powder sample were obtained by the XES measurement, which is the photon-in/photon-out method. Partial photon yields (PPYs) of some elementary excitations were extracted from the XES spectra. The CT excitations were hidden in total electron yield spectra, but these were revealed by PPY measurements. Symmetry information of these excitations was acquired on the basis of polarization dependences.
The excited spin-triplet state of a charged exciton in quantum dots.
Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M
2016-09-14
We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T = 4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes + electron excitonic complex.
NASA Astrophysics Data System (ADS)
Ponciano-Ojeda, F.; Hernández-Gómez, S.; López-Hernández, O.; Mojica-Casique, C.; Colín-Rodríguez, R.; Ramírez-Martínez, F.; Flores-Mijangos, J.; Sahagún, D.; Jáuregui, R.; Jiménez-Mier, J.
2015-10-01
Direct evidence of excitation of the 5 p3 /2→6 p3 /2 electric-dipole-forbidden transition in atomic rubidium is presented. The experiments were performed in a room-temperature rubidium cell with continuous-wave external cavity diode lasers. Optical-optical double-resonance spectroscopy with counterpropagating beams allows the detection of the nondipole transition free of Doppler broadening. The 5 p3 /2 state is prepared by excitation with a laser locked to the maximum F cyclic transition of the D2 line, and the forbidden transition is produced by excitation with a 911 nm laser. Production of the forbidden transition is monitored by detection of the 420 nm fluorescence that results from decay of the 6 p3 /2 state. Spectra with three narrow lines (≈13 MHz FWHM) with the characteristic F -1 , F , and F +1 splitting of the 6 p3 /2 hyperfine structure in both rubidium isotopes were obtained. The results are in very good agreement with a direct calculation that takes into account the 5 s →5 p3 /2 preparation dynamics, the 5 p3 /2→6 p3 /2 nondipole excitation geometry, and the 6 p3 /2→5 s1 /2 decay. The comparison also shows that the electric-dipole-forbidden transition is a very sensitive probe of the preparation dynamics.
Chen, Yi-Hui; Sung, Robert; Sung, Kuangsen
2018-04-06
The para-sulfonamide analogue ( p-TsABDI) of a green fluorescent protein (GFP) chromophore was synthesized to mimic the GFP chromophore. Its S 1 excited-state p K a * value in dimethylsulfoxide (DMSO) is -1.5, which is strong enough to partially protonate dipolar aprotic solvents and causes excited-state proton transfer (ESPT), so it can partially mimic the GFP chromophore to further study the ESPT-related photophysics and the blinking phenomenon of GFP. In comparison with 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) (p K a = 7.4, p K a * = 1.3 in water), p-TsABDI (p K a = 6.7, p K a * = -1.5 in DMSO) is a better photoacid for pH-jump studies.
EPR investigation of electronic excitations in rare gas solids (Review Article)
NASA Astrophysics Data System (ADS)
Zhitnikov, R. A.; Dmitriev, Yu. A.
1998-10-01
The methods are described for producing unstable paramagnetic excited states in rare gas cryocrystals Ne, Ar, Kr, and Xe through the trapping, in the cryocrystals growing from the gas phase, the products of the gas discharge taking place in the same or other rare gas. The paper presents a technique and results of an observation and investigation of excited states in rare gas cryocrystals with electron paramagnetic resonance (EPR). The discovered unstable paramagnetic centers are interpreted as being local metastable excited np5(n+1)s atomic-type states in rare gas cryocrystals which are subject to the action of the anisotropic electric field resulted from the crystal surroundings distorted by the center. An account is given of the mechanisms for formation of observed paramagnetic excited states in cryocrystals which arise owing to the excitation energy of the metastable 3P2 atoms of Ne, Ar, Kr, Xe and He 23S1 and 21S0 atoms that form in the discharge in an appropriate gas and trap in the growing cryocrystal.
Two-photon-excited fluorescence spectroscopy of atomic fluorine at 170 nm
NASA Technical Reports Server (NTRS)
Herring, G. C.; Dyer, Mark J.; Jusinski, Leonard E.; Bischel, William K.
1988-01-01
Two-photon-excited fluorescence spectroscopy of atomic fluorine is reported. A doubled dye laser at 286-nm is Raman shifted in H2 to 170 nm (sixth anti-Stokes order) to excite ground-state 2P(0)J fluorine atoms to the 2D(0)J level. The fluorine atoms are detected by one of two methods: observing the fluorescence decay to the 2PJ level or observing F(+) production through the absorption of an additional photon by the excited atoms. Relative two-photon absorption cross sections to and the radiative lifetimes of the 2D(0)J states are measured.
Photoisomerization and photodissociation dynamics of reactive free radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bise, Ryan T.
2000-08-01
The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociativemore » $$\\tilde{A}$$ 2A 1 and $$\\tilde{B}$$ 2A 2 states of CH 3S have been investigated. At all photon energies, CH 3 + S( 3P j), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH 3 umbrella mode and the S( 3P j) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N 2 photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C 2V transition state. Resolved vibrational structure of the N 2 photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic transition state. In contrast to the radicals mentioned above, resolved vibrational structure was not observed for the ICNN radical due to extensive fragment rotational excitation, suggesting that intermediate bent states are strongly coupled along the dissociation pathway. The measurements performed in this Thesis have additionally refined the heats of formation and bond dissociation energies of these radicals and have unambiguously confirmed and added to the known electronic spectroscopy.« less
Two-Photon Excitation of Launched Cold Atoms in Flight
NASA Astrophysics Data System (ADS)
Goodsell, Anne; Gonzalez, Rene; Alejandro, Eduardo; Erwin, Emma
2017-04-01
We demonstrate two-photon bi-chromatic excitation of cold rubidium atoms in flight, using the pathway 5S1 / 2 -> 5P3 / 2 -> 5D5 / 2 with two resonant photons. In our experiment, atoms are laser-cooled in a magneto-optical trap and launched upward in discrete clouds with a controllable vertical speed of 7.1 +/-0.6 m/s and a velocity spread that is less than 10% of the launch speed. Outside the cooling beams, as high as 14 mm above the original center of the trap, the launched cold atoms are illuminated simultaneously by spatially-localized horizontal excitation beams at 780 nm (5S1 / 2 -> 5P3 / 2) and 776 nm (5P3 / 2 -> 5D5 / 2). We monitor transmission of the 780-nm beam over a range of intensities of 780-nm and 776-nm light. As the center of the moving cloud passes the excitation beams, we observe as much as 97.9 +/-1.2% transmission when the rate of two-photon absorption is high and the 5S1 / 2 and 5P3 / 2 states are depopulated, compared to 87.6 +/-0.9% transmission if only the 780-nm beam is present. This demonstrates two-photon excitation of a launched cold-atom source with controllable launch velocity and narrow velocity spread, as a foundation for three-photon excitation to Rydberg states. Research supported by Middlebury College Bicentennial Fund, Palen Fund, and Gladstone Award.
Usui, Kosuke; Ando, Mikinori; Yokogawa, Daisuke; Irle, Stephan
2015-12-24
The precise control of on-off switching is essential to the design of ideal molecular sensors. To understand the switching mechanism theoretically, we selected as representative example a 9-anthryltriphenylstibonium cation, which was reported as a fluoride ion sensor. In this molecule, the first excited singlet state exhibits two minimum geometries, where one of them is emissive and the other one dark. The excited state at the geometry with bright emission is of π-π* character, whereas it is of π-σ* character at the "dark" geometry. Geometry changes in the excited state were identified by geometry optimization and partial potential energy surface (PES) mapping. We also studied Group V homologues of this molecule. A barrierless relaxation pathway after vertical excitation to the "dark" geometry was found for the Sb-containing compound on the excited-states PES, whereas barriers appear in the case of P and As. Molecular orbital analysis suggests that the σ* orbital of the antimony compound is stabilized along such relaxation and that the excited state changes its nature correspondingly. Our results indicate that the size of the central atom is crucial for the design of fluoride sensors with this ligand framework.
N2 state population in Titan's atmosphere
NASA Astrophysics Data System (ADS)
Lavvas, P.; Yelle, R. V.; Heays, A. N.; Campbell, L.; Brunger, M. J.; Galand, M.; Vuitton, V.
2015-11-01
We present a detailed model for the vibrational population of all non pre-dissociating excited electronic states of N2, as well as for the ground and ionic states, in Titan's atmosphere. Our model includes the detailed energy deposition calculations presented in the past (Lavvas, P. et al. [2011]. Icarus 213(1), 233-251) as well as the more recent developments in the high resolution N2 photo-absorption cross sections that allow us to calculate photo-excitation rates for different vibrational levels of singlet nitrogen states, and provide information for their pre-dissociation yields. In addition, we consider the effect of collisions and chemical reactions in the population of the different states. Our results demonstrate that above 600 km altitude, collisional processes are efficient only for a small sub-set of the excited states limited to the A and W(ν = 0) triplet states, and to a smaller degree to the a‧ singlet state. In addition, we find that a significant population of vibrationally excited ground state N2 survives in Titan's upper atmosphere. Our calculations demonstrate that this hot N2 population can improve the agreement between models and observations for the emission of the c4‧ state that is significantly affected by resonant scattering. Moreover we discuss the potential implications of the vibrationally excited population on the ionospheric densities.
Duong, My Phu Thi; Kim, Yongho
2010-03-18
Variational transition state theory calculations including multidimensional tunneling (VTST/MT) for excited-state tautomerization in the 1:1 7-azaindole:H(2)O complex were performed. Electronic structures and energies for reactant, product, transition state, and potential energy curves along the reaction coordinate were computed at the CASSCF(10,9)/6-31G(d,p) level of theory. The potential energies were corrected by second-order multireference perturbation theory to take the dynamic electron correlation into consideration. The final potential energy curves along the reaction coordinate were generated at the MRPT2//CASSCF(10,9)/6-31G(d,p) level. Two protons in the excited-state tautomerization are transferred concertedly, albeit asynchronously. The position of the variational transition state is very different from the conventional transition state, and is highly dependent on isotopic substitution. Rate constants were calculated using VTST/MT, and were on the order of 10(-6) s(-1) at room temperature. The HH/DD kinetic isotope effects are consistent with experimental observations; consideration of both tunneling and variational effects was essential to predict the experimental values correctly.
NASA Astrophysics Data System (ADS)
Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh
2018-01-01
A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.
Orbitally excited spectra and decay of cc¯ meson
NASA Astrophysics Data System (ADS)
Chaturvedi, Raghav; Rai, A. K.
2018-05-01
We use the hydrogen like trial wave function for computation of the mass spectra and decay properties of charmonia within the framework of phenomenological quark anti-quark Coulomb plus power potential with varying potential index from 0.5 to 2.0. The spin-spin hyperfine interaction is considered to incorporate splitting of the ground and radially excited states energy levels, further spin-orbit and tensor interactions are employed to calculate the masses of orbitally excited states. We construct the Regge trajectories from the mass spectra in (J, M2) and (nr, M2) planes. We also compute γγ decay width of P wave states of cc¯.
Decay widths of ground-state and excited {Xi}{sub b} baryons in a nonrelativistic quark model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Limphirat, Ayut; Thailand Center of Excellence in Physics; Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima 30000
Decay processes of ground and excited bottom baryons are studied in the {sup 3}P{sub 0} nonrelativistic quark model with all model parameters fixed in the sector of light quarks. Using as an input the recent mass of {Xi}{sub b} and the theoretical masses of {Xi}{sub b}{sup *} and {Xi}{sub b}{sup '}, narrow decay widths are predicted for the ground-state bottom baryons {Xi}{sub b}{sup *} and {Xi}{sub b}{sup '}. The work predicts large decay widths, about 100 MeV for the {rho}-type orbital excitation states of {Xi}{sub b}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil; Yang, Ji-Ping
2016-02-07
Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). Wemore » find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.« less
Short-lived isomers in 192Po and 194Po
NASA Astrophysics Data System (ADS)
Andel, B.; Andreyev, A. N.; Antalic, S.; Heßberger, F. P.; Ackermann, D.; Hofmann, S.; Huyse, M.; Kalaninová, Z.; Kindler, B.; Kojouharov, I.; Kuusiniemi, P.; Lommel, B.; Nishio, K.; Page, R. D.; Sulignano, B.; Van Duppen, P.
2016-06-01
Isomeric states in 194Po and 192Po were studied at the velocity filter SHIP. The isotopes were produced in the fusion-evaporation reactions 141Pr(56Fe, p 2 n )194Po and 144Sm(51V, p 2 n )192Po . Several new γ -ray transitions were attributed to the isomers and γ -γ coincidences for both isomers were studied for the first time. The 459-keV transition earlier, tentatively proposed as de-exciting the isomeric level in 194Po, was replaced by a new 248-keV transition, and the spin of this isomer was reassigned from (11-) to (10-). The de-excitation of the (11-) isomeric level in 192Po by the 154-keV transition was confirmed and a parallel de-excitation by a 733-keV (E 3 ) transition to (8+) level of the ground-state band was suggested. Moreover, side feeding to the (4+) level of the ground-state band was proposed. The paper also discusses strengths of transitions de-exciting 11- isomers in neighboring Po and Pb isotopes.
NASA Technical Reports Server (NTRS)
Zipf, E. C.
1986-01-01
The ratio of the cross sections for the direct and dissociative excitation of the OI(3s 3S0-2p 3P; 1304 A wavelength) transition, sigma A/sigma D, are accurately determined, and the sigma A/sigma D ratio is directly normalized to the ratio of the O(+) and O2(+) ionization cross sections using a high-density diffuse gas source, an electrostatically focused electron gun, a vacuum-ultraviolet monochromater, and a quadrupole mass spectrometer for simultaneous optical and composition measurements. Using revised sigma A(1304 A) values calculated with new calibration standards, the shape of the cross section for the excitation of the O(3s 3S0) state agrees well with previous results, though the absolute magnitude of sigma A(1304 A) is smaller than the results of Stone and Zipf (1974) by a factor of 2.8. The revised cross sections agree well with recent quantum calculations when cascade excitation of the 3s 3S0 state is taken into account.
Weinstein, Julia A; Blake, Alexander J; Davies, E Stephen; Davis, Adrienne L; George, Michael W; Grills, David C; Lileev, Igor V; Maksimov, Alexander M; Matousek, Pavel; Mel'nikov, Mikhail Ya; Parker, Anthony W; Platonov, Vyacheslav E; Towrie, Michael; Wilson, Claire; Zheligovskaya, Natalia N
2003-11-03
The synthesis of new Pt(II) diimine complexes bearing perfluorinated thiolate ligands, Pt(II)(NN)(4-X-C(6)F(4)-S)(2), where NN = 2,2'-bipyridine or 1,10-phenanthroline and X = F or CN, is reported, together with an investigation of the nature and dynamics of their lowest excited states. A combined UV-vis, (spectro)electrochemical, resonance Raman, and time-resolved infrared (TRIR) study has suggested that the HOMO is mainly composed of thiolate(pi)/S(p)/Pt(d) orbitals and that the LUMO is largely localized on the pi*(diimine) orbital, thus revealing the [charge-transfer-to-diimine] nature of the lowest excited state. An enhancement of the thiolate ring vibrations, C-F vibrations, and the vibration of the CN-substituent on the thiolate moiety was observed in the resonance Raman spectra, whereas no such enhancement was seen for the nonfluorinated analogues. Thus, the introduction of fluorine substituents on the thiolate moiety probably leads to a more pronounced contribution of the intrathiolate modes to the HOMO compared to the analogous complexes with nonfluorinated thiolates. Furthermore, the introduction of the p-CN group into the thiolate moiety has allowed the dynamics of the lowest excited state of Pt(bpy)(4-CN-C(6)F(4)-S)(2) to be monitored by picosecond TRIR spectroscopy. The dynamics of the lowest [charge-transfer-to-diimine] excited state are governed by ca. 2-ps vibrational cooling and 35-ps back electron transfer.
NASA Astrophysics Data System (ADS)
Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin
2015-04-01
The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.
Ware, M E; Stinaff, E A; Gammon, D; Doty, M F; Bracker, A S; Gershoni, D; Korenev, V L; Bădescu, S C; Lyanda-Geller, Y; Reinecke, T L
2005-10-21
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mieno, H.; Kabe, R.; Allendorf, M. D.
Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.
Czakó, Gábor; Liu, Rui; Yang, Minghui; Bowman, Joel M; Guo, Hua
2013-08-01
We report quasiclassical trajectory calculations of the integral and differential cross sections and the mode-specific product state distributions for the "central-barrier" O((3)P) + CH4/CD4(vk = 0, 1) [k = 1, 2, 3, 4] reactions using a full-dimensional ab initio potential energy surface. The mode-specific vibrational distributions for the polyatomic methyl products are obtained by doing a normal-mode analysis in the Eckart frame, followed by standard histogram binning (HB) and energy-based Gaussian binning (1GB). The reactant bending excitations slightly enhance the reactivity, whereas stretching excitations activate the reaction more efficiently. None of the reactant vibrational excitations is as efficient as an equivalent amount of translational energy to promote the reactions. The excitation functions without product zero-point energy (ZPE) constraint are in good agreement with previous 8-dimensional quantum mechanical (QM) results for the ground-state and stretching-excited O + CH4 reactions, whereas for the bending-excited reactions the soft ZPE constraint, which is applied to the sum of the product vibrational energies, provides better agreement with the QM cross sections. All angular distributions show the dominance of backward scattering indicating a direct rebound mechanism, in agreement with experiment. The title reactions produce mainly OH/OD(v = 0) products for all the initial states. HB significantly overestimates the populations of OH/OD(v = 1), especially in the energetic threshold regions, whereas 1GB provides physically correct results. The CH3/CD3 vibrational distributions show dominant populations for ground (v = 0), umbrella-excited (v2 = 1, 2), in-plane-bending-excited (v4 = 1), and v2 + v4 methyl product states. Neither translational energy nor reactant vibrational excitation transfers significantly into product vibrations.
Dudek, Jozef J.; Edwards, Robert G.
2012-03-21
In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less
Nuclear Data Sheets for A = 41
Nesaraja, C. D.; McCutchan, E. A.
2016-03-01
Available information pertaining to the nuclear structure of all nuclei with mass numbers A=41 ranging from Al (Z=13) to Ti (Z=22) are presented. The experimental reaction and decay data are evaluated and any inconsistencies or discrepancies are noted. The adopted values for various level properties (such as the spin, parity and and halflife) and gamma properties (energy, intensity and multipole character) are given. Since the prior evaluation several new measurements have expanded our knowledge of A=41 nuclides. The half–life of the ground state of 41Si has been determined and a single excited state identified. Excited levels in 41P have beenmore » observed for the first time. In 41Cl, seven new excited states have been identified in deep inelastic and heavy ion transfer reactions. Half–lifes for four states in 41Ar have been updated and additional levels with gammas have been included from a new measurement using the multiple ion transfer reaction. In 41Ca via charge–exchange reaction measurements, several new excited states were observed. A number of new resonances in 41K have been identified via the (p, γ ) reaction. There remains a significant discrepancy in the half–life of the first excited state (980 keV) in 41K, with measurements differing by more than an order of magnitude. Transfer reactions suggest that this M1 transition should be l–forbidden, however, several measurements yield a lifetime which suggests a sizable M1 strength. Further measurements to resolve the current conflicts would be beneficial.« less
NASA Astrophysics Data System (ADS)
Gejo, T.; Oura, M.; Tokushima, T.; Horikawa, Y.; Arai, H.; Shin, S.; Kimberg, V.; Kosugi, N.
2017-07-01
High-resolution resonant inelastic x-ray scattering (RIXS) and low-energy photoemission spectra of oxygen molecules have been measured for investigating the electronic structure of Rydberg states in the O 1s → σ* energy region. The electronic characteristics of each Rydberg state have been successfully observed, and new assignments are made for several states. The RIXS spectra clearly show that vibrational excitation is very sensitive to the electronic characteristics because of Rydberg-valence mixing and vibronic coupling in O2. This observation constitutes direct experimental evidence that the Rydberg-valence mixing characteristic depends on the vibrational excitation near the avoided crossing of potential surfaces. We also measured the photoemission spectra of metastable oxygen atoms (O*) from O2 excited to 1s → Rydberg states. The broadening of the 4p Rydberg states of O* has been found with isotropic behavior, implying that excited oxygen molecules undergo dissociation with a lifetime of the order of 10 fs in 1s → Rydberg states.
Decay, excitation, and ionization of lithium Rydberg states by blackbody radiation
NASA Astrophysics Data System (ADS)
Ovsiannikov, V. D.; Glukhov, I. L.
2010-09-01
Details of interaction between the blackbody radiation and neutral lithium atoms were studied in the temperature ranges T = 100-2000 K. The rates of thermally induced decays, excitations and ionization were calculated for S-, P- and D-series of Rydberg states in the Fues' model potential approach. The quantitative regularities for the states of the maximal rates of blackbody-radiation-induced processes were determined. Approximation formulas were proposed for analytical representation of the depopulation rates.
NASA Astrophysics Data System (ADS)
Trindade, C. M.; Rego-Filho, F. G.; Astrath, N. G. C.; Jacinto, C.; Gouveia-Neto, A. S.
2018-04-01
Intense ultraviolet upconversion emission was produced in single Tm3+-doped OH--free low silica calcium aluminosilicate glasses. A new excitation route based upon multi-Stokes Raman emissions generated in an optical fiber pumped at 1.064 μm, and exploiting the absorption band around 1.2 μm by means of the 3H5 thulium excited state, was used. Furthermore, the other bands of the stimulated Raman scattering spectrum resonantly enhances all the upconversion processes, resulting in efficient ultraviolet (295 nm, 360 nm), blue (456 nm, 480 nm), red (650 nm, 667 nm), and near-infrared (800 nm) emissions. The population of the 1P0, 1D2, 1G4, 3F2 and 3H4 excited-state emitting levels was accomplished through stepwise multi-photon absorption. Results indicate competing cross-relaxation processes involving Tm3+ ion-pairs producing UV emission population quenching Simplified energy-level diagram of Tm3+- doped sample excited using multi-stokes emissions. The λp indication describes all excitation wavelengths, represented by a single arrow for the sake of simplicity.
The {sup 14}N(p,{gamma}){sup 15}O reaction studied with a composite germanium detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marta, M.; Bemmerer, D.; Formicola, A.
2011-04-15
The rate of the carbon-nitrogen-oxygen (CNO) cycle of hydrogen burning is controlled by the {sup 14}N(p,{gamma}){sup 15}O reaction. The reaction proceeds by capture to the ground states and several excited states in {sup 15}O. In order to obtain a reliable extrapolation of the excitation curve to astrophysical energy, fits in the R-matrix framework are needed. In an energy range that sensitively tests such fits, new cross-section data are reported here for the four major transitions in the {sup 14}N(p,{gamma}){sup 15}O reaction. The experiment has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400-kV accelerator placed deep underground inmore » the Gran Sasso facility in Italy. Using a composite germanium detector, summing corrections have been considerably reduced with respect to previous studies. The cross sections for capture to the ground state and to the 5181, 6172, and 6792 keV excited states in {sup 15}O have been determined at 359, 380, and 399 keV beam energy. In addition, the branching ratios for the decay of the 278-keV resonance have been remeasured.« less
Structure of C 14 and B 14 from the C 14 , 15 ( d , He 3 ) B 13 , 14 reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedoor, S.; Wuosmaa, A. H.; Albers, M.
We have studied the C-14,C-15(d,He-3)B-13,B-14 proton-removing reactions in inverse kinematics. The (d,He-3) reaction probes the proton occupation of the target ground state, and also provides spectroscopic information about the final states in B-13,B-14. The experiments were performed using C-14,C-15 beams from the ATLAS accelerator at Argonne National Laboratory. The reaction products were analyzed with the HELIOS device. Angular distributions were obtained for transitions from both reactions. The C-14-beam data reveal transitions to excited states in B-13 that suggest configurations with protons outside the pi(0p(3/2)) orbital, and some possibility of proton cross-shell 0p-1s0d excitations, in the C-14 ground state. The C-15-beammore » data confirm the existence of a broad 2(-) excited state in B-14. The experimental data are compared to the results of shell-model calculations.« less
Comparison of collimated blue-light generation in 85Rb atoms via the D1 and D2 lines
NASA Astrophysics Data System (ADS)
Prajapati, Nikunj; Akulshin, Alexander M.; Novikova, Irina
2018-05-01
We experimentally studied the characteristics of the collimated blue light (CBL) produced in ${}^{85}$Rb vapor by two resonant laser fields exciting atoms into the $5D_{3/2}$ state, using either the $5P_{1/2}$ or the $5P_{3/2}$ intermediate state. We compared the CBL output at different values of frequency detunings, powers, and polarizations of the pump lasers in these two cases, and confirmed the observed trends using a simple theoretical model. We also demonstrated that the addition of the repump laser, preventing the accumulation of atomic population in the uncoupled hyperfine ground state, resulted in nearly an order of magnitude increase in CBL power output. Overall, we found that the $5S_{1/2} - 5P_{1/2} - 5D_{3/2}$ excitation pathway results in stronger CBL generation, as we detected up to $4.25~\\mu$W using two pumps of the same linear polarization. The optimum CBL output for the $5S_{1/2} - 5P_{3/2} - 5D_{3/2}$ excitation pathway required the two pump lasers to have the same circular polarization, but resulted only in a maximum CBL power of $450$~nW.
Spectroscopy at the two-proton drip line: Excited states in 158W
NASA Astrophysics Data System (ADS)
Joss, D. T.; Page, R. D.; Herzán, A.; Donosa, L.; Uusitalo, J.; Carroll, R. J.; Darby, I. G.; Andgren, K.; Cederwall, B.; Eeckhaudt, S.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppanen, A.-P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.; Sorri, J.
2017-09-01
Excited states have been identified in the heaviest known even-Z N = 84 isotone 158W, which lies in a region of one-proton emitters and the two-proton drip line. The observation of γ-ray transitions feeding the ground state establishes the excitation energy of the yrast 6+ state confirming the spin-gap nature of the α-decaying 8+ isomer. The 8+ isomer is also expected to be unbound to two-proton emission but no evidence for this decay mode was observed. An upper limit for the two-proton decay branch has been deduced as b2p ≤ 0.17% at the 90% confidence level. The possibility of observing two-proton emission from multiparticle isomers in nearby nuclides is considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.C.; Miskowski, V.M.; Gray, H.B.
1990-05-09
Electronic absorption and magnetic circular dichroism (MCD) spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are reported along with polarized single-crystal absorption spectra of (Ir{sub 2}(TMB){sub 4})(B(C{sub 6}H{sub 5}){sub 4}){sub 2} {times} CH{sub 3}C{sub 6}H{sub 5} (TMB = 2,5-diisocyano-2,5-dimethylhexane). Interpretation of the spectra is based on a valence-bond model that accommodates highly perturbed dimer transitions as well as monomer-like dimer excitations. In this model, half of the dimer electronic excited states possess ionic character; these states involve metal-to-metal charge transfer (MMCT). The most prominent of the weak features ({approximately} 430 nm) is assigned to the transition tomore » {sup 1}A{sub 1g} (a single-center d{sub z{sup 2}} {yields} p{sub z} excitation). High-energy features ({lambda} < 300 nm) in the spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are assigned to MMCT arising from d{sub xzyz} {yields} p{sub z} excitations.« less
NASA Astrophysics Data System (ADS)
Mandaglio, Giuseppe; Povoroznyk, Orest; Gorpinich, Olga K.; Jachmenjov, Olexiy O.; Anastasi, Antonio; Curciarello, Francesca; de Leo, Veronica; Mokhnach, Hanna V.; Ponkratenko, Oleg; Roznyuk, Yuri; Fazio, Giovanni; Giardina, Giorgio
2014-06-01
Two new low-lying 6He levels at excitation energies of about 2.4 MeV and 2.9 MeV were observed in the experimental investigation of the p-α coincidence spectra obtained by the 3H(4He, pα)2n four-body reaction at E4He beam energy of 27.2 MeV. The relevant E* peak energy and Γ energy width spectroscopic parameters for such 6He* excited states decaying into the α+n+n channel were obtained by analyzing the bidimensional (Ep, Eα) energy spectra. The present new result of two low-lying 6He* excited states above the 4He+2n threshold energy of 0.974 MeV is important for the investigation of the nuclear structure of neutron-rich light nuclei and also as a basic test for theoretical models in the study of the three-cluster resonance feature of 6He.
Quenching of highly vibrationally excited pyrimidine by collisions with CO2
NASA Astrophysics Data System (ADS)
Johnson, Jeremy A.; Duffin, Andrew M.; Hom, Brian J.; Jackson, Karl E.; Sevy, Eric T.
2008-02-01
Relaxation of highly vibrationally excited pyrimidine (C4N2H4) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyrimidine (E'=40635cm-1) was prepared by 248-nm excimer laser excitation, followed by rapid radiationless relaxation to the ground electronic state. The nascent rotational population distribution (J=58-80) of the 0000 ground state of CO2 resulting from collisions with hot pyrimidine was probed at short times following the excimer laser pulse. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J =58-80 of the 0000 state. Rate constants and probabilities for collisions populating these CO2 rotational states were determined. The measured energy transfer probabilities, indexed by final bath state, were resorted as a function of ΔE to create the energy transfer distribution function, P(E,E'), from E'-E˜1300-7000cm-1. P(E,E') is fitted to a single exponential and a biexponential function to determine the average energy transferred in a single collision between pyrimidine and CO2 and parameters that can be compared to previously studied systems using this technique, pyrazine/CO2, C6F6/CO2, and methylpyrazine/CO2. P(E,E') parameters for these four systems are also compared to various molecular properties of the donor molecules. Finally, P(E,E') is analyzed in the context of two models, one which suggests that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes and one which suggests that the shape of P(E,E') can be determined by how the donor molecule final density of states changes with ΔE.
Wasowicz, Tomasz J; Pranszke, Bogusław
2015-01-29
We have studied fragmentation processes of the gas-phase tetrahydrofuran (THF) molecules in collisions with the H(+), C(+), and O(+) cations. The collision energies have been varied between 25 and 1000 eV and thus covered a velocity range from 10 to 440 km/s. The following excited neutral fragments of THF have been observed: the atomic hydrogen H(n), n = 4-9, carbon atoms in the 2p3s (1)P1, 2p4p (1)D2, and 2p4p (3)P states and vibrationally and rotationally excited diatomic CH fragments in the A(2)Δ and B(2)Σ(-) states. Fragmentation yields of these excited fragments have been measured as functions of the projectile energy (velocity). Our results show that the fragmentation mechanism depends on the projectile cations and is dominated by electron transfer from tetrahydrofuran molecules to cations. It has been additionally hypothesized that in the C(+)+THF collisions a [C-C4H8O](+) complex is formed prior to dissociation. The possible reaction channels involved in fragmentation of THF under the H(+), C(+), and O(+) cations impact are also discussed.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Dateo, Christopher E.
2001-01-01
Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.
Barakat, Khaldoon A; Cundari, Thomas R; Omary, Mohammad A
2003-11-26
DFT calculations were used to optimize the phosphorescent excited state of three-coordinate [Au(PR3)3]+ complexes. The results indicate that the complexes rearrange from their singlet ground-state trigonal planar geometry to a T-shape in the lowest triplet luminescent excited state. The optimized structure of the exciton contradicts the structure predicted based on the AuP bonding properties of the ground-state HOMO and LUMO. The rearrangement to T-shape is a Jahn-Teller distortion because an electron is taken from the degenerate e' (5dxy, 5dx2-y2) orbital upon photoexcitation of the ground-state D3h complex. The calculated UV absorption and visible emission energies are consistent with the experimental data and explain the large Stokes' shifts while such correlations are not possible in optimized models that constrained the exciton to the ground-state trigonal geometry.
NASA Astrophysics Data System (ADS)
Carzoli, J.; Dunn, M.; Watson, D. K.
1998-05-01
Large order dimensional perturbation theory (DPT) has been used to study the ground and a number of excited states of two-electron atoms for the case L=0. Here we present the first application of recent work generalizing DPT to higher angular momentum.(M. Dunn, D.K. Watson, Ann. Phys. 251 (1996) 266)^,(M. Dunn, D.K. Watson, The Large Dimension Limit of Higher Angular Momentum States. Phys. Rev. A. (accepted for publication)) In this work we begin the investigation of P^o states, presenting results for the energies of some of the lowest lying states and discuss the analytic structure of these energies as functions of 1/D. We also obtain energies of corresponding D^o states with almost no additional effort by making use of interdimensional degeneracies with the P^o states.
Radiative transitions from Rydberg states of lithium atoms in a blackbody radiation environment
NASA Astrophysics Data System (ADS)
Glukhov, I. L.; Ovsiannikov, V. D.
2012-05-01
The radiative widths induced by blackbody radiation (BBR) were investigated for Rydberg states with principal quantum number up to n = 1000 in S-, P- and D-series of the neutral lithium atom at temperatures T = 100-3000 K. The rates of BBR-induced decays and excitations were compared with the rates of spontaneous decays. Simple analytical approximations are proposed for accurate estimations of the ratio of thermally induced decay (excitation) rates to spontaneous decay rates in wide ranges of states and temperatures.
Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water
NASA Astrophysics Data System (ADS)
Orozco-González, Yoelvis; Coutinho, Kaline; Canuto, Sylvio
2010-10-01
Electronic polarization of the acetone molecule in the excited n → π∗ state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm -1.
Experimental study of the 66Ni(d ,p ) 67Ni one-neutron transfer reaction
NASA Astrophysics Data System (ADS)
Diriken, J.; Patronis, N.; Andreyev, A.; Antalic, S.; Bildstein, V.; Blazhev, A.; Darby, I. G.; De Witte, H.; Eberth, J.; Elseviers, J.; Fedosseev, V. N.; Flavigny, F.; Fransen, Ch.; Georgiev, G.; Gernhauser, R.; Hess, H.; Huyse, M.; Jolie, J.; Kröll, Th.; Krücken, R.; Lutter, R.; Marsh, B. A.; Mertzimekis, T.; Muecher, D.; Orlandi, R.; Pakou, A.; Raabe, R.; Randisi, G.; Reiter, P.; Roger, T.; Seidlitz, M.; Seliverstov, M.; Sotty, C.; Tornqvist, H.; Van De Walle, J.; Van Duppen, P.; Voulot, D.; Warr, N.; Wenander, F.; Wimmer, K.
2015-05-01
The quasi-SU(3) sequence of the positive parity ν g9 /2,d5 /2,s1 /2 orbitals above the N =40 shell gap are assumed to induce strong quadrupole collectivity in the neutron-rich Fe (Z =26 ) and Cr (Z =24 ) isotopes below the nickel region. In this paper the position and strength of these single-particle orbitals are characterized in the neighborhood of 68Ni (Z =28 ,N =40 ) through the 66Ni(d ,p )67Ni one-neutron transfer reaction at 2.95 MeV/nucleon in inverse kinematics, performed at the REX-ISOLDE facility in CERN. A combination of the Miniball γ -array and T-REX particle-detection setup was used and a delayed coincidence technique was employed to investigate the 13.3-μ s isomer at 1007 keV in 67Ni. Excited states up to an excitation energy of 5.8 MeV have been populated. Feeding of the ν g9 /2 (1007 keV) and ν d5 /2 (2207 keV and 3277 keV) positive-parity neutron states and negative parity (ν p f ) states have been observed at low excitation energy. The extracted relative spectroscopic factors, based on a distorted-wave Born approximation analysis, show that the ν d5 /2 single-particle strength is mostly split over these two excited states. The results are also compared to the distribution of the proton single-particle strength in the 90Zr region (Z =40 ,N =50 ) .
Intense excitation source of blue-green laser
NASA Astrophysics Data System (ADS)
Han, Kwang S.
1986-10-01
An intense and efficient source for blue green laser useful for the space-based satellite laser applications, underwater strategic communication, and measurement of ocean bottom profile is being developed. The source in use, the hypocycloidal pinch plasma (HCP), and the dense plasma focus (DPF) can produce intense uv photons (200 to 400nm) which match the absorption spectra of both near UV and blue green dye lasers (300 to 400nm). As a result of optimization of the DPF light at 355nm, the blue green dye (LD490) laser output exceeding 4mJ was obtained at the best cavity tunning of the laser system. With the HCP pumped system a significant enhancement of the blue green laser outputs with dye LD490 and coumarin 503 has been achieved through the spectrum conversion of the pumping light by mixing a converter dye BBQ. The maximum increase of laser output with the dye mixture of LD490+BBQ and coumarin 503+BBQ was greater than 80%. In addition, the untunned near UV lasers were also obtained. The near UV laser output energy of P-terphenyl dye was 0.5mJ at lambda sub C=337nm with the bandwidth of 3n m for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2us. Another near UV laser output energy obtained with BBQ dye was 25 mJ at lambda sub C=383nm with the bandwidth of 3nm for the pulse duration of 0.2microsec.
Dale, R E; Hopkins, S C; an der Heide, U A; Marszałek, T; Irving, M; Goldman, Y E
1999-01-01
The orientation of proteins in ordered biological samples can be investigated using steady-state polarized fluorescence from probes conjugated to the protein. A general limitation of this approach is that the probes typically exhibit rapid orientational motion ("wobble") with respect to the protein backbone. Here we present a method for characterizing the extent of this wobble and for removing its effects from the available information about the static orientational distribution of the probes. The analysis depends on four assumptions: 1) the probe wobble is fast compared with the nanosecond time scale of its excited-state decay; 2) the orientational distributions of the absorption and emission transition dipole moments are cylindrically symmetrical about a common axis c fixed in the protein; 3) protein motions are negligible during the excited-state decay; 4) the distribution of c is cylindrically symmetrical about the director of the experimental sample. In a muscle fiber, the director is the fiber axis, F. All of the information on the orientational order of the probe that is available from measurements of linearly polarized fluorescence is contained in five independent polarized fluorescence intensities measured with excitation and emission polarizers parallel or perpendicular to F and with the propagation axis of the detected fluorescence parallel or perpendicular to that of the excitation. The analysis then yields the average second-rank and fourth-rank order parameters (
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikolić, M.; Newton, J.; Sukenik, C. I.
2015-01-14
We present a new approach to measure population densities of Ar I metastable and resonant excited states in low temperature Ar plasmas at pressures higher than 1 Torr. This approach combines the time resolved laser induced fluorescence technique with the kinetic model of Ar. The kinetic model of Ar is based on calculating the population rates of metastable and resonant levels by including contributions from the processes that affect population densities of Ar I excited states. In particular, we included collisional quenching processes between atoms in the ground state and excited states, since we are investigating plasma at higher pressures. Wemore » also determined time resolved population densities of Ar I 2 p excited states by employing optical emission spectroscopy technique. Time resolved Ar I excited state populations are presented for the case of the post-discharge of the supersonic flowing microwave discharge at pressures of 1.7 and 2.3 Torr. The experimental set-up consists of a pulsed tunable dye laser operating in the near infrared region and a cylindrical resonance cavity operating in TE{sub 111} mode at 2.45 GHz. Results show that time resolved population densities of Ar I metastable and resonant states oscillate with twice the frequency of the discharge.« less
Half-collision analysis of far-wing diffuse structure in Cs-Xe
NASA Technical Reports Server (NTRS)
Exton, R. J.; Hillard, M. E.; Lempert, W. R.
1987-01-01
Laser excitation in the far red wing of the second principal series doublet of Cs mixed with Xe revealed a diffuse structure associated with the 2P(3/2) component. The structure is thought to originate from a reflection type of spectrum between the weakly bound E 2Sigma(1/2) excited state and the X 2Sigma(1/2) repulsive ground state of CsXe.
SYNTHESIS AND MUTAGENIC PROPERTIES OF 4,4'-DIAMINO-PARA-TERPHENYL AND 4,4'-DIAMINO-PARA-QUATERPHENYL
DBPs in drinking water can be controlled by the type of treatment and by knowing andd controlling major sources of DBP toxicant precursors and toxicants that "evade" treatment processes. Efforts are being directed at one category at a time. The initial precursor categories to be ...
3,3′′-Bis(9-hydroxyfluoren-9-yl)-1,1′:3′,1′′-terphenyl
Skobridis, Konstantinos; Theodorou, Vassiliki; Paraskevopoulos, Georgios; Seichter, Wilhelm; Weber, Edwin
2013-01-01
The asymmetric unit of the title compound, C44H30O2, contains two independent molecules in which the terminal rings of the terphenyl element are inclined at angles of 36.3 (1) and 22.5 (1)° with respect to the central ring and the dihedral angles between the fluorenyl units are 72.3 (1) and 62.8 (1)°. In the crystal, pairs of O—H⋯O hydrogen bonds link the molecules into inversion dimers. The hydroxy H atoms not involved in these hydrogen bonds form O—H⋯π interactions in which the central terphenyl rings act as acceptors. Weak C—H⋯O contacts and π–π [centroid–centroid distance = 4.088 (2) Å] stacking interactions also occur. Taking into account directed non-covalent bonding between the molecules, the crystal is constructed of supramolecular strands extending along the a-axis direction. PMID:24098206
NASA Astrophysics Data System (ADS)
Yalcin, Eyyup; Kara, Duygu Akin; Karakaya, Caner; Yigit, Mesude Zeliha; Havare, Ali Kemal; Can, Mustafa; Tozlu, Cem; Demic, Serafettin; Kus, Mahmut; Aboulouard, Abdelkhalk
2017-07-01
Organic semiconductor (OSC) materials as a charge carrier interface play an important role to improve the device performance of organic electroluminescent cells. In this study, 4,4″-bis(diphenyl amino)-1,1':3‧,1″-terphenyl-5'-carboxylic acid (TPA) and 4,4″-di-9H-carbazol-9-yl-1,1':3‧,1″-terphenyl-5'-carboxylic acid (CAR) has been designed and synthesized to modify indium tin oxide (ITO) layer as interface. Bare ITO and PEDOT:PSS coated on ITO was used as reference anode electrodes for comparison. Furthermore, PEDOT:PSS coated over CAR/ITO and TPA/ITO to observe stability of OSC molecules and to completely cover the ITO surface. Electrical, optical and surface characterizations were performed for each device. Almost all modified devices showed around 36% decrease at the turn on voltage with respect to bare ITO. The current density of bare ITO, ITO/CAR and ITO/TPA were measured as 288, 1525 and 1869 A/m2, respectively. By increasing current density, luminance of modified devices showed much better performance with respect to unmodified devices.
Zhao, Min; Helms, Brett; Slonkina, Elena; Friedle, Simone; Lee, Dongwhan; Dubois, Jennifer; Hedman, Britt; Hodgson, Keith O; Fréchet, Jean M J; Lippard, Stephen J
2008-04-02
The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO- is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO-) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates.
Iron Complexes of Dendrimer-Appended Carboxylates for Activating Dioxygen and Oxidizing Hydrocarbons
Zhao, Min; Helms, Brett; Slonkina, Elena; Friedle, Simone; Lee, Dongwhan; DuBois, Jennifer; Hedman, Britt; Hodgson, Keith O.; Fréchet, Jean M. J.; Lippard, Stephen J.
2008-01-01
The active sites of metalloenzymes are often deeply buried inside a hydrophobic protein sheath, which protects them from undesirable hydrolysis and polymerization reactions, allowing them to achieve their normal functions. In order to mimic the hydrophobic environment of the active sites in bacterial monooxygenases, diiron(II) compounds of the general formula [Fe2([G-3]COO)4(4-RPy)2] were prepared, where [G-3]COO− is a third-generation dendrimer-appended terphenyl carboxylate ligand and 4-RPy is a pyridine derivative. The dendrimer environment provides excellent protection for the diiron center, reducing its reactivity toward dioxygen by about 300-fold compared with analogous complexes of terphenyl carboxylate ([G-1]COO−) ligands. An FeIIFeIII intermediate was characterized by electronic, electron paramagnetic resonance, Mössbauer, and X-ray absorption spectroscopic analyses following the oxygenation of [Fe2−([G-3]COO)4(4-PPy)2], where 4-PPy is 4-pyrrolidinopyridine. The results are consistent with the formation of a superoxo species. This diiron compound, in the presence of dioxygen, can oxidize external substrates. PMID:18331028
Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas
NASA Astrophysics Data System (ADS)
Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco
2018-04-01
The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).
NASA Astrophysics Data System (ADS)
Ware, M. E.; Stinaff, E. A.; Gammon, D.; Doty, M. F.; Bracker, A. S.; Gershoni, D.; Korenev, V. L.; Bădescu, Ş. C.; Lyanda-Geller, Y.; Reinecke, T. L.
2005-10-01
We report polarized photoluminescence excitation spectroscopy of the negative trion in single charge-tunable InAs/GaAs quantum dots. The spectrum exhibits a p-shell resonance with polarized fine structure arising from the direct excitation of the electron spin triplet states. The energy splitting arises from the axially symmetric electron-hole exchange interaction. The magnitude and sign of the polarization are understood from the spin character of the triplet states and a small amount of quantum dot asymmetry, which mixes the wave functions through asymmetric e-e and e-h exchange interactions.
Paul, Mishu; Balanarayan, P
2018-06-05
Plasmonic modes in single-molecule systems have been previously identified by scaling two-electron interactions in calculating excitation energies. Analysis of transition dipole moments for states of polyacenes based on configuration interaction is another method for characterising molecular plasmons. The principal features in the electronic absorption spectra of polyacenes are a low-intensity, lower-in-energy peak and a high-intensity, higher-in-energy peak. From calculations using time-dependent density functional theory with the B3LYP/cc-pVTZ basis set, both these peaks are found to result from the same set of electronic transitions, that is, HOMO-n to LUMO and HOMO to LUMO+n, where n varies as the number of fused rings increases. In this work, the excited states of polyacenes, naphthalene through pentacene, are analysed using electron densities and molecular electrostatic potential (MESP) topography. Compared to other excited states the bright and dark plasmonic states involve the least electron rearrangement. Quantitatively, the MESP topography indicates that the variance in MESP values and the displacement in MESP minima positions, calculated with respect to the ground state, are lowest for plasmonic states. The excited-state electronic density profiles and electrostatic potential topographies suggest the least electron rearrangement for the plasmonic states. Conversely, high electron rearrangement characterises a single-particle excitation. The molecular plasmon can be called an excited state most similar to the ground state in terms of one-electron properties. This is found to be true for silver (Ag 6 ) and sodium (Na 8 ) linear chains as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogami, Keisuke; Sakai, Yasuhiro; Mineta, Shota
2015-11-15
Visible emission spectra were acquired from neutral atoms sputtered by 35–60 keV Kr{sup +} ions from a polycrystalline tungsten surface. Mean velocities of excited tungsten atoms in seven different 6p states were also obtained via the dependence of photon intensities on the distance from the surface. The average velocities parallel to the surface normal varied by factors of 2–4 for atoms in the different 6p energy levels. However, they were almost independent of the incident ion kinetic energy. The 6p-level energy dependence indicated that the velocities of the excited atoms were determined by inelastic processes that involve resonant charge exchange.
Spectrum and Structure of Excited Baryons with CLAS
NASA Astrophysics Data System (ADS)
Burkert, Volker D.
2017-01-01
In this contribution I discuss recent results in light quark baryon spectroscopy involving CLAS data and higher level analysis results from the partial wave analysis by the Bonn-Gatchina group. New baryon states were discovered largely based on the open strangeness production channels γp → K+Λ and γp → K+Σ0. The data illustrate the great potential of the kaon-hyperon channel in the discovery of higher mass baryon resonances in s-channel production. Other channels with discovery potential, such as γp → pω and γp → ϕp are also discussed. In the second part I will demonstrate on data the sensitivity of meson electroproduction to expose the active degrees of freedom underlying resonance transitions as a function of the probed distance scale. For several of the prominent excited states in the lower mass range the short distance behavior is described by a core of three dressed-quarks with running quark mass, and meson-baryon contributions make up significant parts of the excitation strength at large distances. Finally, I give an outlook of baryon resonance physics at the 12 GeV CEBAF electron accelerator. Talk presented at the CRC-16 Symposium, Bonn University, June 6-9, 2016.
Electron-impact coherence parameters for 41 P 1 excitation of zinc
NASA Astrophysics Data System (ADS)
Piwiński, Mariusz; Kłosowski, Łukasz; Chwirot, Stanisław; Fursa, Dmitry V.; Bray, Igor; Das, Tapasi; Srivastava, Rajesh
2018-04-01
We present electron-impact coherence parameters (EICP) for electron-impact excitation of 41 P 1 state of zinc atoms for collision energies 40 eV and 60 eV. The experimental results are presented together with convergent close-coupling and relativistic distorted-wave approximation theoretical predictions. The results are compared and discussed with EICP data for collision energies 80 eV and 100 eV.
Early events associated with the excited state proton transfer in 2-(2{sup '}-pyridyl)benzimidazole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burai, Tarak Nath; Mukherjee, Tushar Kanti; Lahiri, Priyanka
2009-07-21
2-(2{sup '}-pyridyl)benzimidazole (2PBI) undergoes excited state proton transfer (ESPT) in acidic solutions, leading to a tautomer emission at 460 nm. This photoprocess has been studied using ultrafast fluorescence spectroscopic techniques in acidic neat aqueous solutions, in viscous mixtures of glycerol with water, as well as in sucrose solutions. The tautomer is found to be stabilized in the more viscous medium, leading to a greater relative quantum yield as well as lifetime. The long rise time in tautomer emission is not affected by viscosity though. Rather, it appears to have the same value as the long component of the decay ofmore » the cationic excited state (C*). In addition to the subnanosecond lifetime reported earlier, C* is found to exhibit a decay time of 2 ps. This is assigned to its protonation to form the nonfluorescent dication in its excited state (D*) considering the ground and excited state pK{sub a} values reported earlier. An additional rising component of 100 ps is observed in the region of C* emission. This is likely to arise from a structural change or charge redistribution in C* immediately after its creation and before the phototautomerization.« less
NASA Astrophysics Data System (ADS)
Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.
2017-10-01
This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lotay, G.; Woods, P. J.; Seweryniak, D.
2011-09-15
The reactions {sup 26}Al{sup g}(p, {gamma}){sup 27}Si and {sup 26}Al{sup m}(p, {gamma}){sup 27}Si are important for influencing the galactic abundance of the cosmic {gamma}-ray emitter {sup 26}Al{sup g} and for the excess abundance of {sup 26}Mg found in presolar grains, respectively. Precise excitation energies and spin assignments of states from the ground state to the region of astrophysical interest in {sup 27}Si, including the identification and pairing of key astrophysical resonances with analog states in the mirror nucleus {sup 27}Al, are reported using {gamma} rays observed in the {sup 12}C + {sup 16}O fusion reaction. The detailed evolution of Coulombmore » energy differences between the states in {sup 27}Si and {sup 27}Al is explored, including the region above the astrophysical reaction thresholds.« less
Change of translational-rotational coupling in liquids revealed by field-cycling 1H NMR
NASA Astrophysics Data System (ADS)
Meier, R.; Schneider, E.; Rössler, E. A.
2015-01-01
Applying the field-cycling nuclear magnetic resonance technique, the frequency dependence of the 1H spin-lattice relaxation rate, R 1
Excitation energy shift and size difference of low-energy levels in p -shell Λ hypernuclei
NASA Astrophysics Data System (ADS)
Kanada-En'yo, Yoshiko
2018-02-01
Structures of low-lying 0 s -orbit Λ states in p -shell Λ hypernuclei (ZAΛ) are investigated by applying microscopic cluster models for nuclear structure and a single-channel folding potential model for a Λ particle. For A >10 systems, the size reduction of core nuclei is small, and the core polarization effect is regarded as a higher-order perturbation in the Λ binding. The present calculation qualitatively describes the systematic trend of experimental data for excitation energy change from Z-1A to ZAΛ, in A >10 systems. The energy change shows a clear correlation with the nuclear size difference between the ground and excited states. In Li7Λ and Be9Λ, the significant shrinkage of cluster structures occurs consistently with the prediction of other calculations.
Li, Kai; Feng, Qi; Niu, Guangle; Zhang, Weijie; Li, Yuanyuan; Kang, Miaomiao; Xu, Kui; He, Juan; Hou, Hongwei; Tang, Ben Zhong
2018-04-23
In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.
Photochemistry of the Stilbenes in Methanol. Trapping the Common Phantom Singlet State.
Saltiel, Jack; Gupta, Shipra
2018-06-21
A comparative study of the photochemistry of cis- and trans-stilbene in methanol shows that both isomers undergo methanol photoaddition giving similar yields of α-methoxybibenzyl in competition with cis-trans photoisomerization. Methanol addition occurs primarily following torsional relaxation of the lowest excited singlet states of each isomer, 1 c* and 1 t*, to a common twisted singlet excited state intermediate, 1 p*, initially called the phantom singlet state. The addition is consistent with the zwitterionic character of 1 p*. Ether forms by direct 1,2-addition of CH 3 OH to the central carbon atoms and by 1,1-addition following rearrangement to 1-benzyl-1-phenylcarbene. Use of CD 3 OD and GC/MS (gas chromatographic/mass spectroscopic) analysis of the ether products revealed that the ratio of carbene/direct addition pathways is higher starting from cis-stilbene. We conclude that 1 p* formed from 1 c* is hotter than 1 p* formed from 1 t*. Surprisingly, except for favoring the carbene pathway, the use of higher energy photons (254 vs 313 nm) does not affect the overall ether quantum yield starting from cis-stilbene, but significantly enhances both pathways starting from trans-stilbene. It appears that carbene formation and direct methanol addition to higher trans-stilbene excited state(s) compete with relaxation to S 1 . Substitution of D for the vinyl Hs of stilbene enhances the direct addition pathway more than two-fold and strongly suppresses the carbene insertion pathway, revealing a large, k pc d0 / k pc d2 = 6.3, primary deuterium isotope effect in the carbene rearrangement. The two-fold increase in the ether quantum yield is due primarily to a 2.75-fold increase in the lifetime of 1 p* on deuterium substitution of the vinyl hydrogens.
NASA Astrophysics Data System (ADS)
Geng, Ting; Schalk, Oliver; Neville, Simon P.; Hansson, Tony; Thomas, Richard D.
2017-04-01
The involvement of intermediate Rydberg states in the relaxation dynamics of small organic molecules which, after excitation to the valence manifold, also return to the valence manifold is rarely observed. We report here that such a transiently populated Rydberg state may offer the possibility to modify the outcome of a photochemical reaction. In a time resolved photoelectron study on pyrrole and its methylated derivatives, N-methyl pyrrole and 2,5-dimethyl pyrrole, 6.2 eV photons (200 nm) are used to excite these molecules into a bright ππ* state. In each case, a π3p-Rydberg state, either the B1(π3py) or the A2(π3pz) state, is populated within 20-50 fs after excitation. The wavepacket then proceeds to the lower lying A2(πσ*) state within a further 20 fs, at which point two competing reaction channels can be accessed: prompt N-H (N-CH3) bond cleavage or return to the ground state via a conical intersection accessed after ring puckering, the latter of which is predicted to require an additional 100-160 fs depending on the molecule.
Westermann, Till; Eisfeld, Wolfgang; Manthe, Uwe
2013-07-07
An approach to construct vibronically and spin-orbit coupled diabatic potential energy surfaces (PESs) which describe all three relevant electronic states in the entrance channels of the X(P) + CH4 →HX + CH3 reactions (with X=F((2)P), Cl((2)P), or O((3)P)) is introduced. The diabatization relies on the permutational symmetry present in the methane molecule and results in diabatic states which transform as the three p orbitals of the X atom. Spin-orbit coupling is easily and accurately included using the atomic spin-orbit coupling matrix of the isolated X atom. The method is applied to the F + CH4 system obtaining an accurate PES for the entrance channel based on ab initio multi-reference configuration interaction (MRCI) calculations. Comparing the resulting PESs with spin-orbit MRCI calculations, excellent agreement is found for the excited electronic states at all relevant geometries. The photodetachment spectrum of CH4·F(-) is investigated via full-dimensional (12D) quantum dynamics calculations on the coupled PESs using the multi-layer multi-configurational time-dependent Hartree approach. Extending previous work [J. Palma and U. Manthe, J. Chem. Phys. 137, 044306 (2012)], which was restricted to the dynamics on a single adiabatic PES, the contributions of the electronically excited states to the photodetachment spectrum are calculated and compared to experiment. Considering different experimental setups, good agreement between experiment and theory is found. Addressing questions raised in the previous work, the present dynamical calculations show that the main contribution to the second peak in the photodetachment spectrum results from electron detachment into the electronically excited states of the CH4F complex.
Pulse-shape discrimination scintillators for homeland security applications
NASA Astrophysics Data System (ADS)
Ellis, Mark E.; Duroe, Kirk; Kendall, Paul A.
2016-09-01
An extensive programme of research has been conducted for scintillation liquids and plastics capable of neutron-gamma discrimination for deployment in future passive and active Homeland Security systems to provide protection against radiological and nuclear threats. The more established detection materials such as EJ-301 and EJ-309 are compared with novel materials such as EJ-299-33 and p-terphenyl. This research also explores the benefits that can be gained from improvements in the analogue-to-digital sampling rate and sample bit resolution. Results are presented on the Pulse Shape Discrimination performance of various detector and data acquisition combinations and how optimum configurations from these studies have been developed into field-ready detector arrays. Early results from application-specific experimental configurations of multi-element detector arrays are presented.
Boixel, Julien; Fortage, Jérôme; Blart, Errol; Pellegrin, Yann; Hammarström, Leif; Becker, Hans-Christian; Odobel, Fabrice
2010-02-14
Supramolecular triads were prepared by self-assembly of 4'-pyridyl-2-tetrathiafulvalene axially bound on ZnP-spacer-AuP(+) dyads; the lifetime of the charge separated state ((+)TTF-ZnP-Spacer-AuP ) formed upon light excitation of the triad is greatly increased with respect to that found in the parent dyad.
Losi, Aba; Yruela, Inmaculada; Reus, Michael; Holzwarth, Alfred R; Braslavsky, Silvia E
2003-07-01
Different preparations of D1-D2-Cyt b559 complexes from spinach with different beta-carotene (Car) content [on average from <0.5 to 2 per reaction center (RC)] were studied by means of laser-induced optoacoustic spectroscopy. phiP680(+)Pheo(-) does not depend on the preparation (or on the Car content) inasmuch as the magnitude of the prompt heat (produced within 20 ns) does not vary for the different samples upon excitation at 675 and 620 nm. The energy level of the primary charge-separated state, P680(+)Pheo(-), was determined as EP680(+)Pheo(-) = 1.55 eV. Thus, an enthalpy change accompanying charge separation from excited P680 of deltaH*P680Pheo-->P680(+)Pheo(-) = -0.27 eV is obtained. Calculations using the heat evolved during the time-resolved decay of P680(+)Pheo(-) (< or = 100 ns) affords a triplet (3[P680Pheo]) quantum yield phi3[P680Pheo] = 0.5 +/- 0.14. The structural volume change, deltaV1, corresponding to the formation of P680(+)Pheo(-), strongly depends on the Car content; it is ca. -2.5 A3 molecule(-1) for samples with <0.5 Car on average, decreases (in absolute value) to -0.5 +/- 0.2 A3 for samples with an average of 1 Car, and remains the same for samples with two Cars per RC. This suggests that the Car molecules induce changes in the ground-state RC conformation, an idea which was confirmed by preferential excitation of Car with blue light, which produced different carotene triplet lifetimes in samples with 2 Car compared to those containing less carotene. We conclude that the two beta-carotenes are not structurally equivalent. Upon blue-light excitation (480 nm, preferential carotene absorption) the fraction of energy stored is ca. 60% for the 9Chl-2Car sample, whereas it is 40% for the preparations with one or less Cars on average, indicating different paths of energy distribution after Car excitation in these RCs with remaining chlorophyll antennae.
Synthesis, characterization, and spectroscopic investigation of benzoxazole conjugated Schiff bases.
Santos, Fabiano S; Costa, Tania M H; Stefani, Valter; Gonçalves, Paulo F B; Descalzo, Rodrigo R; Benvenutti, Edilson V; Rodembusch, Fabiano S
2011-11-24
Two Schiff bases were synthesized by reaction of 2-(4'-aminophenyl)benzoxazole derivatives with 4-N,N-diethylaminobenzaldehyde. UV-visible (UV-vis) and steady-state fluorescence in solution were applied in order to characterize its photophysical behavior. The Schiff bases present absorption in the UV region with fluorescence emission in the blue-green region, with a large Stokes' shift. The UV-vis data indicates that each dye behaves as two different chromophores in solution in the ground state. The fluorescence emission spectra of the dye 5a show that an intramolecular proton transfer (ESIPT) mechanism takes place in the excited state, whereas a twisted internal charge transfer (TICT) state is observed for the dye 5b. Theoretical calculations were performed in order to study the conformation and polarity of the molecules at their ground and excited electronic states. Using density functional theory (DFT) methods at theoretical levels BLYP/Aug-SV(P) for geometry optimizations and B3LYP/6-311++G(2d,p) for single-point energy evaluations, the calculations indicate that the lowest energy conformations are in all cases nonplanar and that the dipole moments of the excited state relaxed structures are much larger than those of the ground state structures, which corroborates the experimental UV-vis absorption results.
NASA Astrophysics Data System (ADS)
Gatti, Matteo; Panaccione, Giancarlo; Reining, Lucia
2015-03-01
The effects of electron interaction on spectral properties can be understood in terms of coupling between excitations. In transition-metal oxides, the spectral function close to the Fermi level and low-energy excitations between d states have attracted particular attention. In this work we focus on photoemission spectra of vanadium dioxide over a wide (10 eV) range of binding energies. We show that there are clear signatures of the metal-insulator transition over the whole range due to a cross coupling of the delocalized s and p states with low-energy excitations between the localized d states. This coupling can be understood by advanced calculations based on many-body perturbation theory in the G W approximation. We also advocate the fact that tuning the photon energy up to the hard-x-ray range can help to distinguish fingerprints of correlation from pure band-structure effects.
Chain length effects of p-oligophenyls with comparison of benzene by Raman scattering
NASA Astrophysics Data System (ADS)
Zhang, Kai; Chen, Xiao-Jia
2018-02-01
Raman scattering measurements are performed on benzene and a number of p-oligophenyls including biphenyl, p-terphenyl, p-quaterphenyl, p-quinquephenyl, and p-sexiphenyl at ambient conditions. The vibrational modes of the intra- and intermolecular terms in these materials are analyzed and compared. Chain length effects on the vibrational properties are examined for the C-H in-plane bending mode and the inter-ring C-C stretching mode at around 1200 cm-1 and 1280 cm-1, respectively, and the C-C stretching modes at around 1600 cm-1. The complex and fluctuating properties of these modes result in an imprecise estimation of the chain length of these molecules. Meanwhile, the obtained ratio of the intensities of the 1200 cm-1 mode and 1280 cm-1 mode is sensitive to the applied lasers. A librational motion mode with the lowest energy is found to have a monotonous change with the increase in the chain length. This mode is simply relevant to the c axis of the unit cell. Such an obvious trend makes it a better indicator for determining the chain length effects on the physical and chemical properties in these molecules.
Katsuki, Hiroyuki; Ohmori, Kenji
2016-09-28
We have experimentally performed the coherent control of delocalized ro-vibrational wave packets (RVWs) of solid para-hydrogen (p-H 2 ) by the wave packet interferometry (WPI) combined with coherent anti-Stokes Raman scattering (CARS). RVWs of solid p-H 2 are delocalized in the crystal, and the wave function with wave vector k ∼ 0 is selectively excited via the stimulated Raman process. We have excited the RVW twice by a pair of femtosecond laser pulses with delay controlled by a stabilized Michelson interferometer. Using a broad-band laser pulse, multiple ro-vibrational states can be excited simultaneously. We have observed the time-dependent Ramsey fringe spectra as a function of the inter-pulse delay by a spectrally resolved CARS technique using a narrow-band probe pulse, resolving the different intermediate states. Due to the different fringe oscillation periods among those intermediate states, we can manipulate their amplitude ratio by tuning the inter-pulse delay on the sub-femtosecond time scale. The state-selective manipulation and detection of the CARS signal combined with the WPI is a general and efficient protocol for the control of the interference of multiple quantum states in various quantum systems.
Forming Rb(+) snowballs in the center of He nanodroplets.
Theisen, Moritz; Lackner, Florian; Ernst, Wolfgang E
2010-12-07
Helium nanodroplets doped with rubidium atoms are ionized by applying a resonant two-step ionization scheme. Subsequent immersion of rubidium ions is observed in time-of-flight mass spectra. While alkali-metal atoms usually desorb from the surface of a helium nanodroplet upon electronic excitation, rubidium in its excited 5(2)P(1/2) state provides an exception from this rule (Auböck et al., Phys. Rev. Lett., 2008, 101, 35301). In our new experiment, Rb atoms are selectively excited either to the 5(2)P(1/2) or to the 5(2)P(3/2) state. From there they are ionized by a laser pulse. Time-of-flight mass spectra of the ionization products reveal that the intermediate population of the 5(2)P(1/2) state does not only make the ionization process Rb-monomer selective, but also gives rise to a very high yield of Rb(+)-He(N) complexes. Ions with masses of up to several thousand amu have been monitored, which can be explained by an immersion of the single Rb ion into the He nanodroplet, where most likely a snowball is formed in the center of the He nanodroplet. As the most stable position for an ion is in the center of a He nanodroplet, our results agree well with theory.
Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V
2015-02-01
Laser-assisted Penning ionization (LAPI) is detected in a Ne/Eu hollow cathode (HC) discharge lamp using the pulsed optogalvanic (OG) method. In the Ne/Eu discharge, doubly ionized europium excited energy levels Eu[4f(7)(P(7/2,5/2)6)] lie within the thermal limit (∼kT) from the laser-excited neon's energy level [2p(5)(P3/202)3p or 2p(8) (in Paschen notation)] lying at 149,848 cm(-1). Therefore, Penning ionization (PI) of europium atoms likely to occur into its highly excited ionic states is investigated. To probe the PI of europium, the temporal profiles of its counterpart neon OG signal are studied as a function of discharge current for the transitions (1s(4)→2p(8)) and (1s(2)→2p(2)), corresponding to 650.65 and 659.89 nm wavelengths, respectively. It is observed that PI of europium alters the overall discharge characteristics significantly and, hence, modifies the temporal profile of the OG signals accordingly. The quasi-resonant ionizing energy transfer collisions between laser-excited Ne 2p(8) atoms and electronically excited europium P(9/2)10 atoms are used to explain the LAPI mechanism. Such LAPI studies carried out in HC discharge could be useful for the discharge of a metal-vapor laser with appropriate Penning mixtures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jia-Shiang; Zang, Huidong; Li, Mingxing
The kinetics of PL blinking for isolated PbS/CdS nanocrystals changes with the photon excitation energy, with PL blinking increasing in frequency and changing from a two-state to a multistate on/off switching when the excitation energy changes from 1S h–1S e(≈1.4 eV) to 1P h–1P e(≈2.4 eV).
Chen, Jia-Shiang; Zang, Huidong; Li, Mingxing; ...
2017-12-08
The kinetics of PL blinking for isolated PbS/CdS nanocrystals changes with the photon excitation energy, with PL blinking increasing in frequency and changing from a two-state to a multistate on/off switching when the excitation energy changes from 1S h–1S e(≈1.4 eV) to 1P h–1P e(≈2.4 eV).
Microscopic interpretation of inelastic electron scattering from even Ni isotopes
NASA Astrophysics Data System (ADS)
Yokoyama, Atsushi; Ogawa, Kengo
1990-10-01
Transition charge densities of inelastic electron scattering for the excitation of 2+ and 4+ states in even-mass Ni isotopes are investigated in terms of the standard shell model of the (p3/2,p1/2,f5/2)n configurations. Effective transition operators pertinent to the model space are derived by considering particle-hole excitations up to 12ħω for C2 and 14ħω for C4 transitions within the framework of a first-order perturbation theory. It is shown that surface-peaked transition charge densities can be obtained for the first excited 2+ and 4+ states, being in agreement with experiment. Particle-hole excitations up to λħω, e.g., λ=2 for C2 transition, are most responsible for that feature. Higher ħω excitations appear relatively significant in the interior region of the nucleus: They enhance the peak around the surface, improving further agreement with experiment, but for C2 transition they tend to generate another peak inside the nucleus and thus seem to deteriorate agreement with experiment. Transition densities for the 0+g.s.-->2+2,3 and 0+g.s.-->4+2 transitions are also discussed.
Evidence for excited state intramolecular charge transfer in benzazole-based pseudo-stilbenes.
Santos, Fabiano da Silveira; Descalzo, Rodrigo Roceti; Gonçalves, Paulo Fernando Bruno; Benvenutti, Edilson Valmir; Rodembusch, Fabiano Severo
2012-08-21
Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.
Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen
NASA Astrophysics Data System (ADS)
Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.
2012-12-01
Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13.82eV. This effort is to provide improved cross sections for these RV states, in particular for the b‧ 1Σu+ and c‧4 1Σu+ states, with inclusion of more upper vibrational levels. Future optical emission work should include re-measurements of excitation shape functions of the singlet ungerade states utilizing better spectral resolution than past determinations (e.g., [2,4]) to avoid uncertainties associated with unresolved and/or blended spectral features as well as J-dependent predissociation. Further development of theoretical treatments of N2 excitation is also in need. We will also present analysis of our new low-energy, near-threshold excitation cross sections for the valence states of N2, including a 1Πg (v‧) levels. Acknowledgement: This work was performed at CSUF and JPL, Caltech, under contract with NASA. We gratefully acknowledge financial support through NASA's OPR and PATM programs and NSF-PHY-RUI-0096808 & -0965793 and NSF-AGS-0938223. References: [1] Ajello, J. M., M. H. Stevens, I. Stewart, et al. (2007), GRL, 34, L24204 [2] Ajello, J. M., G. K. James, and B. O. Franklin (1989), PRA, 40, 3524-56 [3] Heays, A. N., B. R. Lewis, S. T. Gibson, et al. (2012), PRA, 85, 012705 [4] James, G. K., J. M. Ajello, B. Franklin, and D. E. Shemansky (1990), JPB, 23, 2055-81 [5] Khakoo, M. A., C. P. Malone, P. V. Johnson, et al. (2008), PRA, 77, 012704 [6] Malone, C. P., P. V. Johnson, X. Liu, et al. (2012), PRA, 85, 062704
DBPs in drinking water can be controlled by the type of treatment and by knowing and controlling major sources of DBP toxicant precursors and toxicants that "evade" treatment processes. Efforts are being directed at one category at a time. The initial precursor categories to be c...
1999-09-01
1999) or down-regulate (Pollenz, 1996; Giannone , Li et al., 1998) AhR protein. Genetic differences can also result in differences in AhR expression...heteroclitus) by the polychlorinated terphenyl formulation Aroclor 5432." Environ. Toxicol. Chem. 14(3): 405-409. Giannone , J.V., W. Li, M. Probst
Multiparticle configurations of excited states in 155Lu
NASA Astrophysics Data System (ADS)
Carroll, R. J.; Hadinia, B.; Qi, C.; Joss, D. T.; Page, R. D.; Uusitalo, J.; Andgren, K.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Grahn, T.; Gray-Jones, C.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Leino, M.; Leppänen, A.-P.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Seweryniak, D.; Simpson, J.
2016-12-01
Excited states in the neutron-deficient N =84 nuclide 155Lu have been populated by using the 102Pd(58Ni,α p ) reaction. The 155Lu nuclei were separated by using the gas-filled recoil ion transport unit (RITU) separator and implanted into the Si detectors of the gamma recoil electron alpha tagging (GREAT) spectrometer. Prompt γ -ray emissions measured at the target position using the JUROGAM Ge detector array were assigned to 155Lu through correlations with α decays measured in GREAT. Structures feeding the (11 /2-) and (25 /2-)α -decaying states have been revised and extended. Shell-model calculations have been performed and are found to reproduce the excitation energies of several of the low-lying states observed to within an average of 71 keV. In particular, the seniority inversion of the 25 /2- and 27 /2- states is reproduced.
Study of fluorescence quenching of Barley α-amylase
NASA Astrophysics Data System (ADS)
Bakkialakshmi, S.; Shanthi, B.; Bhuvanapriya, T.
2012-05-01
The fluorescence quenching of Barley α-amylase by acrylamide and succinimide has been studied in water using steady-state and time-resolved fluorescence techniques. The steady-state fluorescence quenching technique has been performed in three different pHs (i.e., 6, 7 and 8) of water. Ground state and excited state binding constants (Kg &Ke) have been calculated. From the calculated binding constants (Kg &Ke) the free energy changes for the ground (ΔGg) and excited (ΔGe) states have been calculated and are presented in tables. UV and FTIR spectra have also been recorded to prove the binding of Barley α-amylase with acrylamide and succinimide.
Whittemore, Tyler; Millet, Agustin; Sayre, Hannah; ...
2018-04-04
In this study, a series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh 2(μ-DTolF) 2(μ-L) 2][BF 4] 2, where DTolF = N,N'-di(p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. Whenmore » irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh 2(II,II) complexes. Finally, these results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittemore, Tyler; Millet, Agustin; Sayre, Hannah
In this study, a series of dirhodium(II,II) paddlewheeel complexes of the type cis-[Rh 2(μ-DTolF) 2(μ-L) 2][BF 4] 2, where DTolF = N,N'-di(p-tolyl)formamidinate and L = 1,8-naphthyridine (np), 2-(pyridin-2-yl)-1,8-naphthyridine (pynp), 2-(quinolin-2-yl)-1,8-naphthyridine (qnnp), and 2-(1,8-naphthyridin-2-yl)quinoxaline (qxnp), were synthesized and characterized. These molecules feature new tridentate ligands that concomitantly bridge the dirhodium core and cap the axial positions. The complexes absorb light strongly throughout the ultraviolet/visible range and into the near-infrared region and exhibit relatively long-lived triplet excited-state lifetimes. Both the singlet and triplet excited states exhibit metal/ligand-to-ligand charge transfer (ML-LCT) in nature as determined by transient absorption spectroscopy and spectroelectrochemistry measurements. Whenmore » irradiated with low-energy light, these black dyes are capable of undergoing reversible bimolecular electron transfer both to the electron acceptor methyl viologen and from the electron donor p-phenylenediamine. Photoinduced charge transfer in the latter was inaccessible with previous Rh 2(II,II) complexes. Finally, these results underscore the fact that the excited state of this class of molecules can be readily tuned for electron-transfer reactions upon simple synthetic modification and highlight their potential as excellent candidates for p- and n-type semiconductor applications and for improved harvesting of low-energy light to drive useful photochemical reactions.« less
Spectroscopic study on the iodine molecule by a sequential three-photon excitation
NASA Astrophysics Data System (ADS)
Ishiwata, Takashi; Ohtoshi, Hirokazu; Sakaki, Mamoru; Tanaka, Ikuzo
1984-02-01
A three-photon absorption technique which utilizes a visible B 3Π0+u-X 1Σ+g transition followed by a simultaneous two-photon absorption was applied to study an ion-pair state of molecular iodine. The derived molecular parameters were Te=51 707 cm-1, ωe=131 cm-1, and Be=0.021 90 cm-1 for the F'(0+u) ion-pair state, which dissociates to I-(1S)+I+(1D). The excitation of I2 to a single rovibronic level of the F' state was achieved and its fluorescence spectrum showed two discrete band systems corresponding to the transitions to: (1) the ground state at higher vibrational levels; and (2) the weakly bound state (Te=19 286 cm-1, ωe=64 cm-1, and re=3.65 Å) converging to the I(2P3/2)+I(2P1/2) products.
Tajti, Attila; Szalay, Péter G
2016-11-08
Describing electronically excited states of molecules accurately poses a challenging problem for theoretical methods. Popular second order techniques like Linear Response CC2 (CC2-LR), Partitioned Equation-of-Motion MBPT(2) (P-EOM-MBPT(2)), or Equation-of-Motion CCSD(2) (EOM-CCSD(2)) often produce results that are controversial and are ill-balanced with their accuracy on valence and Rydberg type states. In this study, we connect the theory of these methods and, to investigate the origin of their different behavior, establish a series of intermediate variants. The accuracy of these on excitation energies of singlet valence and Rydberg electronic states is benchmarked on a large sample against high-accuracy Linear Response CC3 references. The results reveal the role of individual terms of the second order similarity transformed Hamiltonian, and the reason for the bad performance of CC2-LR in the description of Rydberg states. We also clarify the importance of the T̂ 1 transformation employed in the CC2 procedure, which is found to be very small for vertical excitation energies.
In-Beam Gamma-ray Spectroscopy in the sdpf 37Ar Nucleus
NASA Astrophysics Data System (ADS)
Silveira, M. A. G.; Medina, N. H.; Seale, W. A.; Ribas, R. V.; de Oliveira, J. R. B.; Zilio, S.; Lenzi, S. M.; Napoli, D. R.; Marginean, N.; Vedova, F. Della; Farnea, E.; Ionescu-Bujor, M.; Iordachescu, A.
2007-10-01
The nucleus 37Ar has been studied with γ-ray spectroscopy in the 24Mg(16O,2pn) reaction at a beam energy of 70 MeV. Twenty two new excited states up to an excitation energy of 13 MeV have been observed. We compare the first negative and positive parity yrast states with large-scale-shell-model calculations using the Antoine code and the SDPF interaction, considering the excitation of the 1d5/2,2s1/2 and 1d3/2 nucleons to 1f7/2 and 2p3/2 in the sdpf valence space.
Exciplex emission from a boron dipyrromethene (Bodipy) dye equipped with a dicyanovinyl appendage.
Nano, Adela; Ziessel, Raymond; Stachelek, Patrycja; Alamiry, Mohammed A H; Harriman, Anthony
2014-01-13
The photophysical properties of a prototypic donor-acceptor dyad, featuring a conventional boron dipyrromethene (Bodipy) dye linked to a dicyanovinyl unit through a meso-phenylene ring, have been recorded in weakly polar solvents. The absorption spectrum remains unperturbed relative to that of the parent Bodipy dye but the fluorescence is extensively quenched. At room temperature, the emission spectrum comprises roughly equal contributions from the regular π, π* excited-singlet state and from an exciplex formed by partial charge transfer from Bodipy to the dicyanovinyl residue. This mixture moves progressively in favor of the locally excited π, π* state on cooling and the exciplex is no longer seen in frozen media; the overall emission quantum yield changes dramatically near the freezing point of the solvent. The exciplex, which has a lifetime of approximately 1 ns at room temperature, can also be seen by transient absorption spectroscopy, in which it decays to form the locally excited triplet state. Under applied pressure (P<170 MPa), formation of the exciplex is somewhat hindered by restricted rotation around the semirigid linkage and again the emission profile shifts in favor of the π, π* excited state. At higher pressure (170
Coulomb and nuclear excitations of narrow resonances in 17Ne
Marganiec, J.; Wamers, F.; Aksouh, F.; ...
2016-05-25
New experimental data for dissociation of relativistic 17Ne projectiles incident on targets of lead, carbon, and polyethylene targets at GSI are presented. Special attention is paid to the excitation and decay of narrow resonant states in 17Ne. Distributions of internal energy in the 15O+p +p three-body system have been determined together with angular and partial-energy correlations between the decay products in different energy regions. The analysis was done using existing experimental data on 17Ne and its mirror nucleus 17N. The isobaric multiplet mass equation is used for assignment of observed resonances and their spins and parities. A combination of datamore » from the heavy and light targets yielded cross sections and transition probabilities for the Coulomb excitations of the narrow resonant states. Finally, the resulting transition probabilities provide information relevant for a better understanding of the 17Ne structure.« less
Monge-Palacios, M; Corchado, J C; Espinosa-Garcia, J
2012-05-28
A detailed state-to-state dynamics study was performed to analyze the effects of vibrational excitation and translational energy on the dynamics of the Cl((2)P) + NH(3)(v) gas-phase reaction, effects which are connected to such issues as mode selectivity and Polanyi's rules. This reaction evolves along two deep wells in the entry and exit channels. At low and high collision energies quasi-classical trajectory calculations were performed on an analytical potential energy surface previously developed by our group, together with a simplified model surface in which the reactant well is removed to analyze the influence of this well. While at high energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity by a factor ≈1.1-2.9 with respect to the vibrational ground-state, at low energy the opposite behaviour is found (factor ≈ 0.4-0.9). However, when the simplified model surface is used at low energy the independent vibrational excitation of all NH(3)(v) modes increases the reactivity, showing that the behaviour at low energies is a direct consequence of the existence of the reactant well. Moreover, we find that this reaction exhibits negligible mode selectivity, first because the independent excitation of the N-H symmetric and asymmetric stretch modes, which lie within 200 cm(-1) of each other, leads to reactions with similar reaction probabilities, and second because the vibrational excitation of the reactive N-H stretch mode is only partially retained in the products. For this "late transition-state" reaction, we also find that vibrational energy is more effective in driving the reaction than an equivalent amount of energy in translation, consistent with an extension of Polanyi's rules. Finally, we find that the non-reactive events, Cl((2)P)+NH(3)(v) → Cl((2)P) + NH(3)(v'), lead to a great number of populated vibrational states in the NH(3)(v') product, even starting from the NH(3)(v = 0) vibrational ground state at low energies, which is unphysical in a quantum world. This result is interpreted on the basis of non-conservation of the ZPE per mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, U.I.; Safronova, A.S.; Beiersdorfer, P.
Energy levels, radiative transition probabilities, and autoionization rates for 1s{sup 2}2s{sup 2}2p{sup 5}3l{sup '}nl,1s{sup 2}2s2p{sup 6}3l{sup '}nl(n=3-7,l{<=}n-1) and 1s{sup 2}2s{sup 2}2p{sup 5}4l{sup '}nl,1s{sup 2}2s2p{sup 6}4l{sup '}nl(n=4-6,l{<=}n-1) states in Na-like tungsten (W{sup 63+}) are calculated. Cowan's relativistic Hartree-Fock method, the relativistic multiconfiguration method implemented in the Hebrew University Lawrence Livermore Atomic Code, and the relativistic many-body perturbation theory method, are used. Autoionizing levels above the threshold 1s{sup 2}2s{sup 2}2p{sup 6} are considered. It is found that configuration mixing [3sns+3pnp+3dnd],[3snp+3pns+3pnd+3dnp] plays an important role for all atomic characteristics. Also strong mixing between states with 2s and 2p holes (1s{sup 2}2s{sup 2}2p{sup 5}3l{submore » 1}nl{sub 2}+1s{sup 2}2s2p{sup 6}3l{sub 3}nl{sub 4}) occurs. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the excited 1s{sup 2}2s{sup 2}2p{sup 6}nl(n=3-7,l{<=}n-1) states. It is shown that the contribution of the highly excited states is very important for calculation of total DR rates. Contributions from the autoionizing states 1s{sup 2}2s{sup 2}2p{sup 5}3l{sup '}nl,1s{sup 2}2s2p{sup 6}3l{sup '}nl(n{>=}8) and 1s{sup 2}2s{sup 2}2p{sup 5}4l{sup '}nl,1s{sup 2}2s2p{sup 6}4l{sup '}nl(n{>=}7) to the DR rate coefficients are estimated by extrapolation of all atomic parameters. The orbital angular momentum (l) distribution of the rate coefficients shows a peak at l=2. The total DR rate coefficient is derived as a function of electron temperature. The dielectronic satellite spectra of W{sup 63+} are important for L-shell diagnostics of very high-temperature laboratory plasmas such as future ITER fusion plasmas.« less
Belyaev, Andrey; Eskelinen, Toni; Dau, Thuy Minh; Ershova, Yana Yu; Tunik, Sergey P; Melnikov, Alexei S; Hirva, Pipsa; Koshevoy, Igor O
2018-01-26
The series of cyanide-bridged coordination polymers [(P 2 )CuCN] n (1), [(P 2 )Cu{M(CN) 2 }] n (M=Cu 3, Ag 4, Au 5) and molecular tetrametallic clusters [{(P 4 )MM'(CN)} 2 ] 2+ (MM'=Cu 2 6, Ag 2 7, AgCu 8, AuCu 9, AuAg 10) were obtained using the bidentate P 2 and tetradentate P 4 phosphane ligands (P 2 =1,2-bis(diphenylphosphino)benzene; P 4 =tris(2-diphenylphosphinophenyl)phosphane). All title complexes were crystallographically characterized to reveal a zig-zag chain arrangement for 1 and 3-5, whereas 6-10 possess metallocyclic frameworks with different degree of metal-metal bonding. The d 10 -d 10 interactions were evaluated by the quantum theory of atoms in molecules (QTAIM) computational approach. The photophysical properties of 1-10 were investigated in the solid state and supported by theoretical analysis. The emission of compounds 1 and 3-5, dominated by metal-to-ligand charge transfer (MLCT) transitions located within {CuP 2 } motifs, is compatible with thermally activated delayed fluorescence (TADF) behaviour and a small energy gap between the T 1 and S 1 excited states. The luminescence characteristics of 6-10 are strongly dependent on the composition of the metal core; the emission band maxima vary in the range 484-650 nm with quantum efficiency reaching 0.56 (6). The origin of the emission for 6-8 and 10 at room temperature is assigned to delayed fluorescence. AuCu cluster 9, however, exhibits only phosphorescence that corresponds to theoretically predicted large value ΔE(S 1 -T 1 ). DFT simulation highlights a crucial impact of metallophilic bonding on the nature and energy of the observed emission, the effect being greatly enhanced in the excited state. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Excitation and charge transfer in low-energy hydrogen atom collisions with neutral iron
NASA Astrophysics Data System (ADS)
Barklem, P. S.
2018-05-01
Data for inelastic processes due to hydrogen atom collisions with iron are needed for accurate modelling of the iron spectrum in late-type stars. Excitation and charge transfer in low-energy Fe+H collisions is studied theoretically using a previously presented method based on an asymptotic two-electron linear combination of atomic orbitals model of ionic-covalent interactions in the neutral atom-hydrogen-atom system, together with the multi-channel Landau-Zener model. An extensive calculation including 166 covalent states and 25 ionic states is presented and rate coefficients are calculated for temperatures in the range 1000-20 000 K. The largest rates are found for charge transfer processes to and from two clusters of states around 6.3 and 6.6 eV excitation, corresponding in both cases to active 4d and 5p electrons undergoing transfer. Excitation and de-excitation processes among these two sets of states are also significant. Full Tables and rate coefficient data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A90
Suppression of Excited ϒ States Relative to the Ground State in Pb-Pb Collisions at √{s} NN=5.02 TeV
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Waltenberger, W.; Wulz, C.-E.; Dvornikov, O.; Makarenko, V.; Mossolov, V.; Suarez Gonzalez, J.; Zykunov, V.; Shumeiko, N.; Alderweireldt, S.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Ruan, M.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Assran, Y.; Elkafrawy, T.; Mahrous, A.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Miné, P.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Khvedelidze, A.; Lomidze, D.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Baus, C.; Berger, J.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Goldenzweig, P.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Katkov, I.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Kousouris, K.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Triantis, F. A.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Kole, G.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Dewanjee, R. K.; Ganguly, S.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Gulmini, M.; Lacaprara, S.; Maron, G.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Ventura, S.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Lee, H.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chistov, R.; Danilov, M.; Polikarpov, S.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Ershov, A.; Gribushin, A.; Kaminskiy, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chen, Y.; Cimmino, A.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Yang, Y.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Boran, F.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Jesus, O.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Weber, M.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Klein, D.; Krutelyov, V.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Bunn, J.; Lawhorn, J. M.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Wu, Y.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Bein, S.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Forthomme, L.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Apyan, A.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Malta Rodrigues, A.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Medvedeva, T.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Delannoy, A. G.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Belknap, D. A.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2018-04-01
The relative yields of ϒ mesons produced in p p and Pb-Pb collisions at √{sNN }=5.02 TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, ϒ (2 S ) and ϒ (3 S ), to the ground state, ϒ (1 S ), in both Pb-Pb and p p collisions at the same center-of-mass energy. The double ratios, [ϒ (nS ) /ϒ (1 S ) ]Pb-Pb/[ϒ (nS ) /ϒ (1 S ) ]pp, are measured to be 0.308 ±0.055 (stat ) ±0.019 (syst ) for the ϒ (2 S ) and less than 0.26 at 95% confidence level for the ϒ (3 S ). No significant ϒ (3 S ) signal is found in the Pb-Pb data. The double ratios are studied as a function of collision centrality, as well as ϒ transverse momentum and rapidity. No significant dependencies are observed.
Liu, Weimin; Liu, Yuan; Yan, Yongli; Liu, Kangjun; Guo, Lijun; Xu, Chunhe; Qian, Shixiong
2006-04-01
Photodynamics of two kinds of peripheral antenna complexes (LH2 of Rhodobacter sphaeroides, native LH2 (RS601) and B800-released LH2 where B800-BChls were partially or completely removed with different pH treatments), were studied using femtosecond pump-probe technique at different laser wavelengths. The obtained results for these samples with different B800/B850 ratios demonstrated that under the excitation around B800 nm, the photoabsorption and photobleaching dynamics were caused by the direct excitation of upper excitonic levels of B850 and excited state of B800 pigments, respectively. Furthermore, the removal of B800 pigments had little effect on the energy transfer processes of B850 interband/intraband transfer.
Multichannel modeling and two-photon coherent transfer paths in NaK
NASA Astrophysics Data System (ADS)
Schulze, T. A.; Temelkov, I. I.; Gempel, M. W.; Hartmann, T.; Knöckel, H.; Ospelkaus, S.; Tiemann, E.
2013-08-01
We explore possible pathways for the creation of ultracold polar NaK molecules in their absolute electronic and rovibrational ground state starting from ultracold Feshbach molecules. In particular, we present a multichannel analysis of the electronic ground and K(4p)+Na(3s) excited-state manifold of NaK, analyze the spin character of both the Feshbach molecular state and the electronically excited intermediate states and discuss possible coherent two-photon transfer paths from Feshbach molecules to rovibronic ground-state molecules. The theoretical study is complemented by the demonstration of stimulated Raman adiabatic passage from the X1Σ+(v=0) state to the a3Σ+ manifold on a molecular beam experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Entin, V. M.; Yakshina, E. A.; Tretyakov, D. B.
2013-05-15
The spectra of the three-photon laser excitation 5S{sub 1/2} {yields} 5P{sub 3/2} {yields} 6S{sub 1/2}nP of cold Rb Rydberg atoms in an operating magneto-optical trap based on continuous single-frequency lasers at each stage are studied. These spectra contain two partly overlapping peaks of different amplitudes, which correspond to coherent three-photon excitation and incoherent three-step excitation due to the presence of two different ways of excitation through the dressed states of intermediate levels. A four-level theoretical model based on optical Bloch equations is developed to analyze these spectra. Good agreement between the experimental and calculated data is achieved by introducing additionalmore » decay of optical coherence induced by a finite laser line width and other broadening sources (stray electromagnetic fields, residual Doppler broadening, interatomic interactions) into the model.« less
Fortage, Jérôme; Boixel, Julien; Blart, Errol; Hammarström, Leif; Becker, Hans Christian; Odobel, Fabrice
2008-01-01
The synthesis, electrochemical properties, and photoinduced electron transfer processes of a series of three novel zinc(II)-gold(III) bisporphyrin dyads (ZnP--S--AuP(+)) are described. The systems studied consist of two trisaryl porphyrins connected directly in the meso position via an alkyne unit to tert-(phenylenethynylene) or penta(phenylenethynylene) spacers. In these dyads, the estimated center to center interporphyrin separation distance varies from 32 to 45 A. The absorption, emission, and electrochemical data indicate that there are strong electronic interactions between the linked elements, thanks to the direct attachment of the spacer on the porphyrin ring through the alkyne unit. At room temperature in toluene, light excitation of the zinc porphyrin results in almost quantitative formation of the charge shifted state (.+)ZnP--S--AuP(.), whose lifetime is in the order of hundreds of picoseconds. In this solvent, the charge-separated state decays to the ground state through the intermediate population of the zinc porphyrin triplet excited state. Excitation of the gold porphyrin leads instead to rapid energy transfer to the triplet ZnP. In dichloromethane the charge shift reactions are even faster, with time constants down to 2 ps, and may be induced also by excitation of the gold porphyrin. In this latter solvent, the longest charge-shifted lifetime (tau=2.3 ns) was obtained with the penta-(phenylenethynylene) spacer. The charge shift reactions are discussed in terms of bridge-mediated super-exchange mechanisms as electron or hole transfer. These new bis-porphyrin arrays, with strong electronic coupling, represent interesting molecular systems in which extremely fast and efficient long-range photoinduced charge shift occurs over a long distance. The rate constants are two to three orders of magnitude larger than for corresponding ZnP--AuP(+) dyads linked via meso-phenyl groups to oligo-phenyleneethynylene spacers. This study demonstrates the critical impact of the attachment position of the spacer on the porphyrin on the electron transfer rate, and this strategy can represent a useful approach to develop molecular photonic devices for long-range charge separations.
NASA Astrophysics Data System (ADS)
Latha, V.; Balakrishnan, C.; Neelakantan, M. A.
2015-07-01
A fluorescent probe 2Z,2‧Z-3,3‧-(4,4‧-methylenebis(4,1-phenylene) bis(azanediyl))bis (1,3-diphenylprop-2-en-1-one) (L) was synthesized and characterized by IR, 1H NMR, ESI-mass, UV-visible and fluorescence spectral techniques. The single crystal analysis illustrates the existence of L in ketamine form. The crystal structure is stabilized by intramolecular and intermolecular hydrogen bonding. The thermal stability of L was studied by TG analysis. The fluorescence spectrum of L shows dual emission, and is due to excited state intramolecular proton transfer (ESIPT) process. This is supported by the high Stokes shift value. Electronic structure calculations of L in the ground and excited state have been carried out using DFT and TD-DFT at B3LYP/6-31G (d,p) level, respectively. The vibrational spectrum was computed at this level and compared with experimental values. Major orbital contributions for the electronic transitions were assigned with the help of TD-DFT. The changes in the Mulliken charge, bond lengths and bond angles between the ground and excited states of the tautomers demonstrate that twisted intramolecular charge transfer (TICT) process occurs along with ESIPT in the excited state.
Abulencia, A; Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Haim, E Ben; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chapman, J; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, P H; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cruz, A; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cyr, D; DaRonco, S; D'Auria, S; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demers, S; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Di Ruzza, B; Dionisi, C; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Ebina, K; Efron, J; Ehlers, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H J; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garcia Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giokaris, N; Giolo, K; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Hahn, K; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hatakeyama, K; Hauser, J; Hays, C; Heijboer, A; Heinemann, B; Heinrich, J; Herndon, M; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kobayashi, H; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Martin, A; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; von der Mey, M; Miao, T; Miladinovic, N; Miles, J; Miller, R; Miller, J S; Mills, C; Milnik, M; Miquel, R; Mitra, A; Mitselmakher, G; Miyamoto, A; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Naganoma, J; Nahn, S; Nakano, I; Napier, A; Naumov, D; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Ogawa, T; Oh, S H; Oh, Y D; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Rakitin, A; Rappoccio, S; Ratnikov, F; Reisert, B; Rekovic, V; van Remortel, N; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Rott, C; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sanchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spezziga, M; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vaiciulis, A; Vallecorsa, S; Varganov, A; Vataga, E; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Wan, Z; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhang, X; Zhou, J; Zucchelli, S
2006-11-10
We search for excited and exotic muon states mu* using an integrated luminosity of 371 pb(-1) of p[over]p collision data at sqrt[s]=1.96 TeV. We search for associated production of mumu* followed by the decay mu*-->mugamma. We compare the data to model predictions as a function of the mass of the excited muon M(mu*), the compositeness energy scale Lambda, and the gauge coupling factor f. No signal above the standard model expectation is observed. We exclude 107
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoeb, Mohammad; Sonika
2009-08-15
The energies of the ground and excited 2{sup +} states of {sub {lambda}}{sub {lambda}}{sup 10}Be have been calculated variationally in the Monte Carlo framework. The hypernucleus is treated as a partial ten-body problem in the {lambda}{lambda}+{alpha}{alpha} model where nucleonic degrees of freedom of {alpha}'s are taken into consideration ignoring the antisymmetrization between two {alpha}'s. The central two-body {lambda}N and {lambda}{lambda} and the three-body dispersive and two-pion exchange {lambda}NN forces, constrained by the {lambda}p scattering data and the observed ground state energies of {sub {lambda}}{sup 5}He and {sub {lambda}}{sub {lambda}}{sup 6}He, are employed. The product-type trial wave function predicts binding energymore » for the ground state considerably less than for the event reported by Danysz et al.; however, it is consistent with the value deduced assuming a {gamma} ray of 3.04 MeV must have escaped undetected in the decay of the product {sub {lambda}}{sup 9}Be* {yields} {sub {lambda}}{sup 9}Be+{gamma} of the emulsion event {sub {lambda}}{sub {lambda}}{sup 10}Be{yields} {pi}{sup -}+p+{sub {lambda}}{sup 9}Be* and for the excited 2{sup +} state closer to the value measured in the Demachi-Yanagi event. The hypernucleus {sub {lambda}}{sub {lambda}}{sup 10}Be has an oblate shape in the excited state. These results are consistent with the earlier four-body {alpha} cluster model approach where {alpha}'s are assumed to be structureless entities.« less
Effective Collision Strengths for Fine-structure Transitions in Si VII
NASA Astrophysics Data System (ADS)
Sossah, A. M.; Tayal, S. S.
2014-05-01
The effective collision strengths for electron-impact excitation of fine-structure transitions in Si VII are calculated as a function of electron temperature in the range 5000-2,000,000 K. The B-spline Breit-Pauli R-matrix method has been used to calculate collision strengths by electron impact. The target wave functions have been obtained using the multi-configuration Hartree-Fock method with term-dependent non-orthogonal orbitals. The 92 fine-structure levels belonging to the 46 LS states of 2s 22p 4, 2s2p 5, 2p 6, 2s 22p 33s, 2s 22p 33p, 2s 22p 33d, and 2s2p 43s configurations are included in our calculations of oscillator strengths and collision strengths. There are 4186 possible fine-structure allowed and forbidden transitions among the 92 levels. The present excitation energies, oscillator strengths, and collision strengths have been compared with previous theoretical results and available experimental data. Generally, a good agreement is found with the 6 LS-state close-coupling approximation results of Butler & Zeippen and the 44 LS-state distorted wave calculation of Bhatia & Landi.
Stuhldreier, Mayra C; Temps, Friedrich
2013-01-01
The ultrafast photo-initiated quantum dynamics of the adenine-guanine dinucleotide d(ApG) in aqueous solution (pH 7) has been studied by femtosecond time-resolved spectroscopy after excitation at lambda = 260 nm. The results reveal a hierarchy of processes on time scales from tau < 100 fs to tau > 100 ps. Characteristic spectro-temporal signatures are observed indicating the transformation of the molecules in the electronic relaxation from the photo-excited state to a long-lived exciplex. In particular, broadband UV/VIS excited-state absorption (ESA) measurements detected a distinctive absorption by the excited dinucleotide around lambda = 335 nm, approximately 0.5 eV to the blue compared to the maximum of the broad and unstructured ESA spectrum after excitation of an equimolar mixture of the mononucleotides dAMP and dGMP. A similar feature has been identified as signature of the excimer in the dynamics of the adenine dinucleotide d(ApA). The lifetime of the d(ApG) exciplex was found to be tau = 124 +/- 4 ps both from the ESA decay time and from the ground-state recovery time, far longer than the sub-picosecond lifetimes of excited dAMP or dGMP. Fluorescence-time profiles measured by the up-conversion technique indicate that the exciplex state is reached around approximately 6 ps after excitation. Very weak residual fluorescence at longer times red-shifted to the emission from the photo-excited state shows that the exciplex is almost optically dark, but still has enough oscillator strength to give rise to the dual fluorescence of the dinucleotide in the static fluorescence spectrum.
Theory of raman scattering from molecules adsorbed at semiconductor surfaces
NASA Astrophysics Data System (ADS)
Ueba, H.
1983-09-01
A theory is presented to calculate the Raman polarizability of an adsorbed molecule at a semiconductor surface, where the electronic excitation in the molecular site interacts with excitons (elementary excitations in the semiconductor) through non-radiative energy transfer between them, in an intermediate state in the Raman scattering process. The Raman polarizability thus calculated is found to exhibit a peak at the energy corresponding to a resonant excitation of excitons, thereby suggesting the possibility of surface enhanced Raman scattering on semiconductor surfaces. The mechanism studied here can also give an explanation of a recent observation of the Raman excitation profiles of p-NDMA and p-DMAAB adsorbed on ZnO or TiO 2, where those profiles were best described by assuming a resonant intermediate state of the exciton transition in the semiconductors. It is also demonstrated that in addition to vibrational Raman scattering, excitonic Raman scattering of adsorbed molecules will occur in the coupled molecule-semiconductor system, where the molecular returns to its ground electronic state by leaving an exciton in the semiconductor. A spectrum of the excitonic Raman scattering is expected to appear in the background of the vibrational Raman band and to be characterized by the electronic structure of excitons. A desirable experiment is suggested for an examination of the theory.
Very narrow excited Ωc baryons
NASA Astrophysics Data System (ADS)
Karliner, Marek; Rosner, Jonathan L.
2017-06-01
Recently, LHCb reported the discovery of five extremely narrow excited Ωc baryons decaying into Ξc+K-. We interpret these baryons as bound states of a c quark and a P -wave s s diquark. For such a system, there are exactly five possible combinations of spin and orbital angular momentum. The narrowness of the states could be a signal that it is hard to pull apart the two s quarks in a diquark. We predict two of spin 1 /2 , two of spin 3 /2 , and one of spin 5 /2 , all with negative parity. Of the five states, two can decay in S -wave, and three can decay in D -wave. Some of the D -wave states might be narrower than the S -wave states. We discuss the relations among the five masses expected in the quark model and the likely spin assignments, and we compare them with the data. A similar pattern is expected for negative-parity excited Ωb states. An alternative interpretation is noted in which the heaviest two states are 2 S excitations with JP=1 /2+ and 3 /2+, while the lightest three are those with JP=3 /2- , 3 /2- , 5 /2- , expected to decay via D -waves. In this case, we expect JP=1 /2- Ωc states around 2904 and 2978 MeV.
Magnetizabilities of relativistic hydrogenlike atoms in some arbitrary discrete energy eigenstates
NASA Astrophysics Data System (ADS)
Stefańska, Patrycja
2016-03-01
We present the results of numerical calculations of magnetizability (χ) of the relativistic one-electron atoms with a pointlike, spinless and motionless nuclei of charge Ze. Exploiting the analytical formula for χ recently derived by us Stefańska (2015), valid for an arbitrary discrete energy eigenstate, we have found the values of the magnetizability for the ground state and for the first and the second set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, and 3d5/2) of the Dirac one-electron atom. The results for ions with the atomic number 1 ⩽ Z ⩽ 137 are given in 14 tables. The comparison of the numerical values of magnetizabilities for the ground state and for each state belonging to the first set of excited states of selected hydrogenlike ions, obtained with the use of two different values of the fine-structure constant, i.e.: α-1 = 137.035 999 139 (CODATA 2014) and α-1 = 137.035 999 074 (CODATA 2010), is also presented.
Ruetzel, Stefan; Diekmann, Meike; Nuernberger, Patrick; Walter, Christof; Engels, Bernd; Brixner, Tobias
2014-06-14
Upon ultraviolet excitation, photochromic spiropyran compounds can be converted by a ring-opening reaction into merocyanine molecules, which in turn can form several isomers differing by cis and trans configurations in the methine bridge. Whereas the spiropyran-merocyanine conversion reaction of the nitro-substituted indolinobenzopyran 6-nitro-1',3',3'-trimethylspiro[2H-1-benzopyran-2,2'-indoline] (6-nitro BIPS) has been studied extensively in theory and experiments, little is known about photoisomerization among the merocyanine isomers. In this article, we employ femtosecond transient absorption spectroscopy with variable excitation wavelengths to investigate the excited-state dynamics of the merocyanine in acetonitrile at room temperature, where exclusively the trans-trans-cis (TTC) and trans-trans-trans (TTT) isomers contribute. No photochemical ring-closure pathways exist for the two isomers. Instead, we found that (18±4)% of excited TTC isomers undergo an ultrafast excited-state cis→trans photoisomerization to TTT within 200 fs, while the excited-state lifetime of TTC molecules that do not isomerize is 35 ps. No photoisomerization was detected for the TTT isomer, which relaxes to the ground state with a lifetime of roughly 160 ps. Moreover, signal oscillations at 170 cm(-1) and 360 cm(-1) were observed, which can be ascribed to excited-state wave-packet dynamics occurring in the course of the TTC→TTT isomerization. The results of high-level time-dependent density functional theory in conjunction with polarizable continuum models are presented in the subsequent article [C. Walter, S. Ruetzel, M. Diekmann, P. Nuernberger, T. Brixner, and B. Engels, J. Chem. Phys. 140, 224311 (2014)].
Photodissociation of CS from Excited Rovibrational Levels
NASA Astrophysics Data System (ADS)
Pattillo, R. J.; Cieszewski, R.; Stancil, P. C.; Forrey, R. C.; Babb, J. F.; McCann, J. F.; McLaughlin, B. M.
2018-05-01
Accurate photodissociation cross sections have been computed for transitions from the X 1Σ+ ground electronic state of CS to six low-lying excited electronic states. New ab initio potential curves and transition dipole moment functions have been obtained for these computations using the multi-reference configuration interaction approach with the Davidson correction (MRCI+Q) and aug-cc-pV6Z basis sets. State-resolved cross sections have been computed for transitions from nearly the full range of rovibrational levels of the X 1Σ+ state and for photon wavelengths ranging from 500 Å to threshold. Destruction of CS via predissociation in highly excited electronic states originating from the rovibrational ground state is found to be unimportant. Photodissociation cross sections are presented for temperatures in the range between 1000 and 10,000 K, where a Boltzmann distribution of initial rovibrational levels is assumed. Applications of the current computations to various astrophysical environments are briefly discussed focusing on photodissociation rates due to the standard interstellar and blackbody radiation fields.
Multinucleon transfer in O,1816,19F+208Pb reactions at energies near the fusion barrier
NASA Astrophysics Data System (ADS)
Rafferty, D. C.; Dasgupta, M.; Hinde, D. J.; Simenel, C.; Simpson, E. C.; Williams, E.; Carter, I. P.; Cook, K. J.; Luong, D. H.; McNeil, S. D.; Ramachandran, K.; Vo-Phuoc, K.; Wakhle, A.
2016-08-01
Background: Nuclear reactions are complex, involving collisions between composite systems where many-body dynamics determines outcomes. Successful models have been developed to explain particular reaction outcomes in distinct energy and mass regimes, but a unifying picture remains elusive. The irreversible transfer of kinetic energy from the relative motion of the collision partners to their internal states, as is known to occur in deep inelastic collisions, has yet to be successfully incorporated explicitly into fully quantal reaction models. The influence of these processes on fusion is not yet quantitatively understood. Purpose: To investigate the population of high excitation energies in transfer reactions at sub-barrier energies, which are precursors to deep inelastic processes, and their dependence on the internuclear separation. Methods: Transfer probabilities and excitation energy spectra have been measured in collisions of O,1816,19F+208Pb , at various energies below and around the fusion barrier, by detecting the backscattered projectile-like fragments in a Δ E -E telescope. Results: The relative yields of different transfer outcomes are strongly driven by Q values, but change with the internuclear separation. In 16O+208Pb , single nucleon transfer dominates, with a strong contribution from -2 p transfer close to the Coulomb barrier, though this channel becomes less significant in relation to the -2 p 2 n transfer channel at larger separations. For 18O+208Pb , the -2 p 2 n channel is the dominant charge transfer mode at all separations. In the reactions with 19F,-3 p 2 n transfer is significant close to the barrier, but falls off rapidly with energy. Multinucleon transfer processes are shown to lead to high excitation energies (up to ˜15 MeV), which is distinct from single nucleon transfer modes which predominantly populate states at low excitation energy. Conclusions: Kinetic energy is transferred into internal excitations following transfer, with this energy being distributed over a larger number of states and to higher excitations with increasing numbers of transferred nucleons. Multinucleon transfer is thus a mechanism by which energy can be dissipated from the relative motion before reaching the fusion barrier radius.
Thermally activated delayed fluorescence of a Zr-based metal–organic framework
Mieno, H.; Kabe, R.; Allendorf, M. D.; ...
2017-12-22
Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.
Nguyen, D.C.; Faulkner, G.E.
1990-08-14
A blue-green laser (450--550 nm) uses a host crystal doped with Tm[sup 3+]. The Tm[sup 3+] is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP. 3 figs.
Nguyen, Dinh C.; Faulkner, George E.
1990-01-01
A blue-green laser (450-550 nm) uses a host crystal doped with Tm.sup.3+. The Tm.sup.+ is excited through upconversion by a red pumping laser and an IR pumping laser to a state which transitions to a relatively lower energy level through emissions in the blue-green band, e.g., 450.20 nm at 75 K. The exciting laser may be tunable dye lasers or may be solid-state semiconductor laser, e.g., GaAlAs and InGaAlP.
Simultaneous ionization-excitation of helium to the 3s, 3p, and 3d states of He+
NASA Astrophysics Data System (ADS)
Zatsarinny, Oleg; Bartschat, Klaus
2015-05-01
We extended our work on ionization of helium with simultaneous excitation to the n = 2 states to include the n = 3 manifold of the residual ion. This requires the inclusion of pseudo-states constructed on the 3s, 3p, and 3d ionic core. We used a parallelized version of the B-spline R-matrix (BSR) package to perform a calculation with 1,254 target states, resulting in up to 3,027 coupled channels and matrices of rank up to 200,000 to be diagonalized. The triple-differential cross section (TDCS) was extracted by the projection method. We obtain excellent agreement with experiment regarding the angular dependence of the TDCS for all kinematical situations available for comparison. Some discrepancies remain for the absolute magnitude. Results for the n = 2 states are stable and closely agree with previous predictions. Work supported by the United States National Science Foundation under grants No. PHY-1212450, PHY-1430245 and the XSEDE allocation PHY-090031.
NASA Astrophysics Data System (ADS)
Singh, T. Sanjoy; Moyon, N. S.; Mitra, Sivaprasad
2009-08-01
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino) cinamate (EDAC) and 4-(dimethylamino) cinnamic acid (DMACA) were studied by steady state absorption and emission, picosecond time-resolved fluorescence experiments in various pure and mixed solvent systems. The large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition ( ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property; however, fluorescence emission maximum, stokes shift and fluorescence quantum yield show significant deviation from linearity in polar protic solvents, indicating a large contribution of solvent hydrogen bonding on the excited state relaxation mechanism. A quantitative estimation of contribution from different solvatochromic parameters was made using linear free energy relationship based on Kamlet-Taft equation.
Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions
NASA Astrophysics Data System (ADS)
Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.
2014-07-01
The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.
NASA Astrophysics Data System (ADS)
Yu, Li; Wang, Chao; Hu, Chang-Jiang; Dong, Wen-Wen; Wu, Ya-Pan; Li, Dong-Sheng; Zhao, Jun
2018-06-01
Reaction of Tb3+ ions with p-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4ptptc) in a mixed solvent system has afforded a new metal-organic framework formulated as [Tb2(ptptc)1.5(H2O)2]n (1). Compound 1 displays a 3D (5,6,8)-connected framework with fascinating one-dimensional triangle open channels. The luminescence explorations demonstrated that 1 exhibits highly selective and sensitive response to Fe3+ in DMF solution and biological system through luminescence quenching effects. In addition, 1 also shows high detection for the Cr2O72-, making it a promising dual functional materials for detecting Fe3+ cation and Cr2O72- anion with high sensitivity and selectivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, Anna V.; Sushko, Peter V.; Shluger, Alexander L.
The authors have calculated the electronic structure of individual 1,1-diamino-2,2-dinitroethylene molecules (FOX-7) in the gas phase by means of density functional theory with the hybrid B3LYP functional and 6-31+G(d,p) basis set and considered their dissociation pathways. Positively and negatively charged states as well as the lowest excited states of the molecule were simulated. They found that charging and excitation can not only reduce the activation barriers for decomposition reactions but also change the dominating chemistry from endo- to exothermic type. In particular, they found that there are two competing primary initiation mechanisms of FOX-7 decomposition: C-NO{sub 2} bond fission andmore » C-NO{sub 2} to CONO isomerization. Electronic excitation or charging of FOX-7 disfavors CONO formation and, thus, terminates this channel of decomposition. However, if CONO is formed from the neutral FOX-7 molecule, charge trapping and/or excitation results in spontaneous splitting of an NO group accompanied by the energy release. Intramolecular hydrogen transfer is found to be a rare event in FOX-7 unless free electrons are available in the vicinity of the molecule, in which case HONO formation is a feasible exothermic reaction with a relatively low energy barrier. The effect of charged and excited states on other possible reactions is also studied. Implications of the obtained results to FOX-7 decomposition in condensed state are discussed.« less
Laser-induced fluorescence studies of excited Sr reactions: II. Sr(3P1)+CH3F, C2H5F, C2H4F2
NASA Astrophysics Data System (ADS)
Teule, J. M.; Janssen, M. H. M.; Bulthuis, J.; Stolte, S.
1999-06-01
The vibrational and rotational energy distributions of ground state SrF(X 2Σ) formed in the reactions of electronically excited Sr(3P1) with methylfluoride, ethylfluoride, and 1,1-difluoroethane have been studied by laser-induced fluorescence. Although the reactions of ground state Sr with these reactants are exothermic, no SrF products are observed for those reactions in this study. The fraction of available energy disposed into the sum of rotational and vibrational energy of the SrF(X 2Σ) product is approximately the same for all three reactions, i.e., 40%. The reaction of Sr(3P1) with CH3F results in very low vibrational excitation in the SrF reaction product. The product vibration increases in going to C2H5F and C2H4F2. It is concluded that the alkyl group influences the energy disposal mechanism in these reactions, and some suggestions are given for a partial explanation of the observations.
Excitation of higher lying energy states in a rubidium DPAL
NASA Astrophysics Data System (ADS)
Wallerstein, A. J.; Perram, Glen; Rice, Christopher A.
2018-02-01
The spontaneous emission in a cw rubidium diode dumped alkali laser (DPAL) system was analyzed. The fluorescence from higher lying states decreases with additional buffer gas. The intermediate states (7S, 6P, 5D) decay more slowly with buffer gas and scale super-linearly with alkali density. A detailed kinetic model has been constructed, where the dominant mechanisms are energy pooling and single photon ionization. It also includes pumping into the non-Lorentzian wings of absorption profiles, fine structure mixing, collisional de-excitation, and Penning ionization. Effects of ionization in a high powered CW rubidium DPAL were assessed.
García-Prieto, F Fernández; Aguilar, M A; Galván, I Fdez; Muñoz-Losa, A; Olivares del Valle, F J; Sánchez, M L; Martín, M E
2015-05-28
Solvent effects on the UV-vis absorption spectra and molecular properties of four models of the photoactive yellow protein (PYP) chromophore have been studied with ASEP/MD, a sequential quantum mechanics/molecular mechanics method. The anionic trans-p-coumaric acid (pCA(-)), thioacid (pCTA(-)), methyl ester (pCMe(-)), and methyl thioester (pCTMe(-)) derivatives have been studied in gas phase and in water solution. We analyze the modifications introduced by the substitution of sulfur by oxygen atoms and hydrogen by methyl in the coumaryl tail. We have found some differences in the absorption spectra of oxy and thio derivatives that could shed light on the different photoisomerization paths followed by these compounds. In solution, the spectrum substantially changes with respect to that obtained in the gas phase. The n → π1* state is destabilized by a polar solvent like water, and it becomes the third excited state in solution displaying an important blue shift. Now, the π → π1* and π → π2* states mix, and we find contributions from both transitions in S1 and S2. The presence of the sulfur atom modulates the solvent effect and the first two excited states become practically degenerate for pCA(-) and pCMe(-) but moderately well-separated for pCTA(-) and pCTMe(-).
Esipova, Tatiana V; Rivera-Jacquez, Héctor J; Weber, Bruno; Masunov, Artëm E; Vinogradov, Sergei A
2016-12-07
The ability to form triplet excited states upon two-photon excitation is important for several applications of metalloporphyrins, including two-photon phosphorescence lifetime microscopy (2PLM) and two-photon photodynamic therapy (PDT). Here we analyzed one-photon (1P) and degenerate two-photon (2P) absorption properties of several phosphorescent Pt (II) porphyrins, focusing on the effects of aromatic π-extension and peripheral substitution on triplet emissivity and two-photon absorption (2PA). Our 2PA measurements for the first time made use of direct time-resolved detection of phosphorescence, having the ability to efficiently reject laser background through microsecond time gating. π-Extension of the porphyrin macrocycle by way of syn-fusion with two external aromatic fragments, such as in syn-dibenzo- (DBP) and syn-dinaphthoporphyrins (DNP), lowers the symmetry of the porphyrin skeleton. As a result, DBPs and DNPs exhibit stronger 2PA into the one-photon-allowed B (Soret) and Q states than fully symmetric (D 4h ) nonextended porphyrins. However, much more 2P-active states lie above the B state and cannot be accessed due to the interfering linear absorption. Alkoxycarbonyl groups (CO 2 R) in the benzo-rings dramatically enhance 2PA near the B state level. Time-dependent density functional theory (TDDFT) calculations in combinations with the sum-over-states (SOS) formalism revealed that the enhancement is due to the stabilization of higher-lying 2P-active states, which are dominated by the excitations involving orbitals extending onto the carbonyl groups. Furthermore, calculations predicted even stronger stabilization of the 2P-allowed gerade-states in symmetric Pt octaalkoxycarbonyl-tetrabenzoporphyrins. Experiments confirmed that the 2PA cross-section of PtTBP(CO 2 Bu) 8 near 810 nm reaches above 500 GM in spite of its completely centrosymmetric structure. Combined with exceptionally bright phosphorescence (ϕ phos = 0.45), strong 2PA makes Pt(II) complexes of π-extended porphyrins a valuable class of chromophores for 2P applications. Another important advantage of these porphyrinoids is their compact size and easily scalable synthesis.
Stalin, T; Devi, R Anitha; Rajendiran, N
2005-09-01
Spectral characteristics of ortho, meta and para dihydroxy benzenes (DHB's) have been studied in different solvents, pH and beta-cyclodextrin. Solvent study shows that: (i) the interaction of OH group with the aromatic ring is less than that of amino group both in the ground and excited states, (ii) in absorption, the charge transfer interaction of OH group in para position is larger than ortho and meta positions. pH studies reveals that DHB's are more acidic than phenol. The higher pK(a) value of oDHB (monoanion-dianion) indicates that the formed monoanion is more stabilized by intramolecular hydrogen bonding. DHB's forms a 1:1 inclusion complex with beta-CD. In beta-CD medium, absorption spectra of DHB's mono and dianions shows unusual blue shifts, whereas in the excited state, the spectral characteristics of DHB's follow the same trend in both aqueous and beta-CD medium.
Polarization spectroscopy of positive and negative trions in an InAs quantum dot
NASA Astrophysics Data System (ADS)
Ware, Morgan E.; Bracker, Allan S.; Stinaff, Eric; Gammon, Daniel; Gershoni, David; Korenev, Vladimir L.
2005-02-01
Using polarization-sensitive photoluminescence and photoluminescence excitation spectroscopy, we study single InAs/GaAs self-assembled quantum dots. The dots were embedded in an n-type, Schottky diode structure allowing for control of the charge state. We present here the exciton, singly charged exciton (positive and negative trions), and the twice negatively charged exciton. For non-resonant excitation below the wetting layer, we observed a large degree of polarization memory from the radiative recombination of both the positive and negative trions. In excitation spectra, through the p-shell, we have found several sharp resonances in the emission from the s-shell recombination of the dot in all charged states. Some of these excitation resonances exhibit strong coulomb shifts upon addition of charges into the quantum dot. One particular resonance of the negatively charged trion was found to exhibit a fine structure doublet under circular polarization. This observation is explained in terms of resonant absorption into the triplet states of the negative trion.
Planar pyrochlore: A strong-coupling analysis
NASA Astrophysics Data System (ADS)
Brenig, Wolfram; Honecker, Andreas
2002-04-01
Recent investigations of the two-dimensional spin-1/2 checkerboard lattice favor a valence bond crystal with long-range quadrumer order [J.-B. Fouet, M. Mambrini, P. Sindzingre, and C. Lhuillier, cond-mat/0108070 (unpublished)]. Starting from the limit of isolated quadrumers, we perform a complementary analysis of the evolution of the spectrum as a function of the interquadrumer coupling j using both exact diagonalization (ED) and series expansion (SE) by continuous unitary transformation. We compute (i) the ground-state energy, (ii) the elementary triplet excitations, and (iii) singlet excitations on finite systems and find very good agreement between SE and ED. In the thermodynamic limit we find a ground-state energy substantially lower than that documented in the literature. The elementary triplet excitation is shown to be gapped and almost dispersionless, whereas the singlet sector contains strongly dispersive modes. Evidence is presented for the low energy singlet excitations in the spin gap in the vicinity of j=1 to result from a large downward renormalization of local high-energy states.
^2H(^18F,p)^19F Study at 6 MeV/u
NASA Astrophysics Data System (ADS)
Kozub, R. L.; Nesaraja, C. D.; Moazen, B. H.; Scott, J. P.; Bardayan, D. W.; Blackmon, J. C.; Gross, C. J.; Shapira, D.; Smith, M. S.; Batchelder, J. C.; Brune, C. R.; Champagne, A. E.; Sahin, L.; Cizewski, J. A.; Thomas, J. S.; Davinson, T.; Woods, P. J.; Greife, U.; Jewett, C.; Livesay, R. J.; Ma, Z.; Parker, P. D.
2003-04-01
The degree to which the (p,α) and (p,γ) reactions destroy ^18F at temperatures ˜1-4 x 10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using ^18F as a monitor of nova mechanisms in gamma ray astronomy. The reactions are dominated by low-lying proton resonances near the ^18F+p threshold (E_x=6.411 MeV excitation energy in ^19Ne). To gain further information about these resonances, we have used the inverse ^18F(d,p)^19F neutron transfer reaction at the Holifield Radioactive Ion Beam Facility to selectively populate corresponding mirror states in ^19F. Proton angular distributions were measured for states in ^19F in the excitation energy range 0-9 MeV. Results and implications for the ^18F+p reactions and nuclear structure will be presented. ^1Supported by DOE. ^2ORNL is managed by UT-Battelle, LLC, for the USDOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guorong; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026
The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths hasmore » previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.« less
Anion photoelectron spectroscopy of deprotonated ortho-, meta-, and para-methylphenol
NASA Astrophysics Data System (ADS)
Nelson, Daniel J.; Gichuhi, Wilson K.; Miller, Elisa M.; Lehman, Julia H.; Lineberger, W. Carl
2017-02-01
The anion photoelectron spectra of ortho-, meta-, and para-methylphenoxide, as well as methyl deprotonated meta-methylphenol, were measured. Using the Slow Electron Velocity Map Imaging technique, the Electron Affinities (EAs) of the o-, m-, and p-methylphenoxyl radicals were measured as follows: 2.1991±0.0014, 2.2177±0.0014, and 2.1199±0.0014 eV, respectively. The EA of m-methylenephenol was also obtained, 1.024±0.008 eV. In all four cases, the dominant vibrational progressions observed are due to several ring distortion vibrational normal modes that were activated upon photodetachment, leading to vibrational progressions spaced by ˜500 cm-1. Using the methylphenol O-H bond dissociation energies reported by King et al. and revised by Karsili et al., a thermodynamic cycle was constructed and the acidities of the methylphenol isomers were determined as follows: Δa c i dH298K 0=348.39 ±0.25 , 348.82±0.25, 350.08±0.25, and 349.60±0.25 kcal/mol for cis-ortho-, trans-ortho-, m-, and p-methylphenol, respectively. The excitation energies for the ground doublet state to the lowest excited doublet state electronic transition in o-, m-, and p-methylphenoxyl were also measured as follows: 1.029±0.009, 0.962±0.002, and 1.029±0.009 eV, respectively. In the photoelectron spectra of the neutral excited states, C-O stretching modes were excited in addition to ring distortion modes. Electron autodetachment was observed in the cases of both m- and p-methylphenoxide, with the para isomer showing a lower photon energy onset for this phenomenon.
NASA Astrophysics Data System (ADS)
Ward, R.; Cubric, D.; Bowring, N.; King, G. C.; Read, F. H.; Fursa, D. V.; Bray, I.
2013-02-01
Excitation function measurements for the decay of the 2s22p 2P and 2s2p2 2D triply excited negative ion resonances in helium to singly excited n = 2 states have been measured. These excitation functions have been determined across the complete angular range (0-180°) using a magnetic angle changer with a soft-iron core. The convergent close-coupling method has been used to calculate the cross sections, with the underlying complexity of the problem not yet being able to be fully resolved. Agreement between the present experimental data and previous experimental data is good, with these excitation functions confirming the presence of an unusual (2s22p)2P resonance behaviour in the 21S channel at 90°, where this would not usually be expected. Resonance energy and width values have been obtained, with a mean energy for the (2s22p)2P resonance of 57.20 ± 0.08 eV and a mean width of 73 ± 20 meV, and a mean energy of the (2s2p2)2D resonance of 58.30 ± 0.08 eV and a mean width of 59 ± 27 meV. Resonant cross section and ρ2 values have been calculated across the angular range for the first time, providing angular distribution data on decay propensities for both resonances.
NASA Astrophysics Data System (ADS)
Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.; Khadikova, E. I.; Shevchenko, E. V.
2010-10-01
The first results of measurements and analysis of excitation spectra of the I2( D0{/u +} → X0{/g +}) and I2( D0{/u +} → X0{/g +} and/or β1 g → A1 u ) luminescence, observed after three-step, λ1 + λ f + λ1, λ1 = 5508-5530 Å, λ f = 10644.0 Å, laser excitation of pure iodine vapour and I2 + Xe mixtures at room temperature via bound parts of the I2(0{/g +}, 1 u ( bb)) valence states correlating with the third, I(2 P 1/2) + I(2 P 1/2), dissociation limit and their MI2 vdW complexes, M = I2, Xe, are presented. Luminescence spectra in the λlum = 2200-5000 Å spectral range are also analyzed. Strong luminescence from the I2( D, γ, D', and/or β) states is observed, though the two latter may be populated in optical transitions in a free iodine molecule if hyperfine coupling of the I2(0{/g +} and 1 u ( bb)) state rovibronic levels occurs. We discuss possible mechanisms of optical population of the IP state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Safronova, U. I.; Safronova, A. S.; Beiersdorfer, P.
Energy levels, radiative transition probabilities, and autoionization rates for [Ni]more » $$4{s}^{2}4{p}^{6}{nl}$$, [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$, ($$l^{\\prime} =d,f,n$$ = 4–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–7), and [Ni]$$4s4{p}^{6}6l^{\\prime} {nl}$$ (n = 6–7) states in Rb-like tungsten (W37+) are calculated using the relativistic many-body perturbation theory method (RMBPT code) and the Hartree–Fock-relativistic method (COWAN code). Autoionizing levels above the [Ni]$$4{s}^{2}4{p}^{6}$$ threshold are considered. It is found that configuration mixing among [Ni]$$4{s}^{2}4{p}^{5}4l^{\\prime} {nl}$$ and [Ni]$$4s4{p}^{6}4l^{\\prime} {nl}$$ plays an important role for all atomic characteristics. Branching ratios relative to the first threshold and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the [Ni]$$4{s}^{2}4{p}^{6}{nl}$$ (n = 4–7) singly excited states, as well as the [Ni]$$4{s}^{2}4{p}^{5}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{5}4{fnl}$$, [Ni]$$4s4{p}^{6}4{dnl}$$, [Ni]$$4{s}^{2}4{p}^{6}4{fnl}$$, (n = 4–6), and [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} 5l$$ doubly excited nonautoionizing states in Rb-like W37+ ion. Contributions from the [Ni]$$4s24{p}^{6}4{fnl}$$ (n = 6–7), [Ni]$$4{s}^{2}4{p}^{5}5l^{\\prime} {nl}$$ (n = 5–6), and [Ni]$$4{s}^{2}4{p}^{5}6l^{\\prime} {nl}$$ (n = 6–7) doubly excited autoionizing states are evaluated numerically. The high-n state (with n up to 500) contributions are very important for high temperatures. These contributions are determined by using a scaling procedure. Synthetic dielectronic satellite spectra from Rb-like W are simulated in a broad spectral range from 8 to 70 Å. Here, these calculations provide highly accurate values for a number of W 37+ properties useful for a variety of applications including for fusion applications.« less
Active tuning of surface phonon polariton resonances via carrier photoinjection
NASA Astrophysics Data System (ADS)
Dunkelberger, Adam D.; Ellis, Chase T.; Ratchford, Daniel C.; Giles, Alexander J.; Kim, Mijin; Kim, Chul Soo; Spann, Bryan T.; Vurgaftman, Igor; Tischler, Joseph G.; Long, James P.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Caldwell, Joshua D.
2018-01-01
Surface phonon polaritons (SPhPs) are attractive alternatives to infrared plasmonics for subdiffractional confinement of infrared light. Localized SPhP resonances in semiconductor nanoresonators are narrow, but that linewidth and the limited extent of the Reststrahlen band limit spectral coverage. To address this limitation, we report active tuning of SPhP resonances in InP and 4H-SiC by photoinjecting free carriers into nanoresonators, taking advantage of the coupling between the carrier plasma and optic phonons to blueshift SPhP resonances. We demonstrate state-of-the-art tuning figures of merit upon continuous-wave excitation (in InP) or pulsed excitation (in 4H-SiC). Lifetime effects cause the tuning to saturate in InP, and carrier redistribution leads to rapid (<50 ps) recovery of the resonance in 4H-SiC. This work demonstrates the potential for this method and opens a path towards actively tuned nanophotonic devices, such as modulators and beacons, in the infrared, and identifies important implications of coupling between electronic and phononic excitations.
NASA Astrophysics Data System (ADS)
Nazir, R. T.; Bari, M. A.; Bilal, M.; Sardar, S.; Nasim, M. H.; Salahuddin, M.
2017-02-01
We performed R-matrix calculations for photoionization cross sections of the two ground state configuration 3s23p5 (^2P^o3/2,1/2) levels and 12 excited states of Ni XII using relativistic Dirac Atomic R-matrix Codes (DARC) across the photon energy range between the ionizations thresholds of the corresponding states and well above the thresholds of the last level of the Ni XIII target ion. Generally, a good agreement is obtained between our results and the earlier theoretical photoionization cross sections. Moreover, we have used two independent fully relativistic GRASP and FAC codes to calculate fine-structure energy levels, wavelengths, oscillator strengths, transitions rates among the lowest 48 levels belonging to the configuration (3s23p4, 3s3p5, 3p6, 3s23p33d) in Ni XIII. Additionally, radiative lifetimes of all the excited states of Ni XIII are presented. Our results of the atomic structure of Ni XIII show good agreement with other theoretical and experimental results available in the literature. A good agreement is found between our calculated lifetimes and the experimental ones. Our present results are useful for plasma diagnostic of fusion and astrophysical plasmas.
NASA Astrophysics Data System (ADS)
Kesavulu, C. R.; Moncorgé, R.; Fromager, M.; Ait-Ameur, K.; Catunda, T.
2018-04-01
The electronic refractive index variation is associated with the difference in the polarizabilities (Δαp) of the Cr3+ ion in its ground and excited states. In order to further address the physical origin of Δαp in a Cr3+-doped YAG crystal, time-resolved Z-scan measurements were performed and analyzed at λ = 457 nm by using a chopped Ar+ ion laser. It is found a nonlinear refractive index with the real and imaginary parts n2‧ = 2.2 × 10-8 cm2/W and n2‧‧ = 2.8 × 10-10 cm2/W, respectively. The real part is associated with a polarizability difference Δαp = 2.2 × 10-25 cm3. The imaginary part indicates that excited state absorption (ESA) occurs and that Cr:YAG behaves as a saturable absorber. The transient response of the Z-scan signal decreases with the laser intensity as τ-1 = τo-1(1+I/Is), where τo is the excited state lifetime and Is the saturation intensity. By measuring this transient response at different laser intensities, it was possible to confirm the τo value which can be derived from fluorescence measurements and to determine a Is value of 8.3 kW/cm2.
Excited-state relaxation in PbSe quantum dots
NASA Astrophysics Data System (ADS)
An, Joonhee M.; Califano, Marco; Franceschetti, Alberto; Zunger, Alex
2008-04-01
In solids the phonon-assisted, nonradiative decay from high-energy electronic excited states to low-energy electronic excited states is picosecond fast. It was hoped that electron and hole relaxation could be slowed down in quantum dots, due to the unavailability of phonons energy matched to the large energy-level spacings ("phonon-bottleneck"). However, excited-state relaxation was observed to be rather fast (⩽1ps) in InP, CdSe, and ZnO dots, and explained by an efficient Auger mechanism, whereby the excess energy of electrons is nonradiatively transferred to holes, which can then rapidly decay by phonon emission, by virtue of the densely spaced valence-band levels. The recent emergence of PbSe as a novel quantum-dot material has rekindled the hope for a slow down of excited-state relaxation because hole relaxation was deemed to be ineffective on account of the widely spaced hole levels. The assumption of sparse hole energy levels in PbSe was based on an effective-mass argument based on the light effective mass of the hole. Surprisingly, fast intraband relaxation times of 1-7ps were observed in PbSe quantum dots and have been considered contradictory with the Auger cooling mechanism because of the assumed sparsity of the hole energy levels. Our pseudopotential calculations, however, do not support the scenario of sparse hole levels in PbSe: Because of the existence of three valence-band maxima in the bulk PbSe band structure, hole energy levels are densely spaced, in contradiction with simple effective-mass models. The remaining question is whether the Auger decay channel is sufficiently fast to account for the fast intraband relaxation. Using the atomistic pseudopotential wave functions of Pb2046Se2117 and Pb260Se249 quantum dots, we explicitly calculated the electron-hole Coulomb integrals and the P →S electron Auger relaxation rate. We find that the Auger mechanism can explain the experimentally observed P →S intraband decay time scale without the need to invoke any exotic relaxation mechanisms.
Two-cluster structure of some alpha-scattering resonances in the sd shell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.; Strzalkowski, A.
1975-01-01
The excitation functions of the elastic scattering of alpha particles at backward angles on $sup 24$Mg and $sup 28$Si nuclei in the energy range from 23 to 28 MeV measured by Bobrowska et al. exhibit distinct maxima. It was shown that these maxima are not correlated with the structures seen in the excitation functions of the ($alpha$,$alpha$') and ($alpha$,p) reactions leading to low- lying excited states of the final nucleus possibly indicating the presence of Ericson fluctuations. (auth)
NASA Astrophysics Data System (ADS)
Zarycz, M. Natalia C.; Provasi, Patricio F.; Sauer, Stephan P. A.
2015-12-01
It is investigated, whether the number of excited (pseudo)states can be truncated in the sum-over-states expression for indirect spin-spin coupling constants (SSCCs), which is used in the Contributions from Localized Orbitals within the Polarization Propagator Approach and Inner Projections of the Polarization Propagator (IPPP-CLOPPA) approach to analyzing SSCCs in terms of localized orbitals. As a test set we have studied the nine simple compounds, CH4, NH3, H2O, SiH4, PH3, SH2, C2H2, C2H4, and C2H6. The excited (pseudo)states were obtained from time-dependent density functional theory (TD-DFT) calculations with the B3LYP exchange-correlation functional and the specialized core-property basis set, aug-cc-pVTZ-J. We investigated both how the calculated coupling constants depend on the number of (pseudo)states included in the summation and whether the summation can be truncated in a systematic way at a smaller number of states and extrapolated to the total number of (pseudo)states for the given one-electron basis set. We find that this is possible and that for some of the couplings it is sufficient to include only about 30% of the excited (pseudo)states.
Moonshiram, Dooshaye; Garrido-Barros, Pablo; Gimbert-Suriñach, Carolina; Picón, Antonio; Liu, Cunming; Zhang, Xiaoyi; Karnahl, Michael; Llobet, Antoni
2018-04-25
We report the light-induced electronic and geometric changes taking place within a heteroleptic Cu I photosensitizer, namely [(xant)Cu(Me 2 phenPh 2 )]PF 6 (xant=xantphos, Me 2 phenPh 2 =bathocuproine), by time-resolved X-ray absorption spectroscopy in the ps-μs time regime. Time-resolved X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analysis enabled the elucidation of the electronic and structural configuration of the copper center in the excited state as well as its decay dynamics in different solvent conditions with and without triethylamine acting as a sacrificial electron donor. A three-fold decrease in the decay lifetime of the excited state is observed in the presence of triethylamine, showing the feasibility of the reductive quenching pathway in the latter case. A prominent pre-edge feature is observed in the XANES spectrum of the excited state upon metal to charge ligand transfer transition, showing an increased hybridization of the 3d states with the ligand p orbitals in the tetrahedron around the Cu center. EXAFS and density functional theory illustrate a significant shortening of the Cu-N and an elongation of the Cu-P bonds together with a decrease in the torsional angle between the xantphos and bathocuproine ligand. This study provides mechanistic time-resolved understanding for the development of improved heteroleptic Cu I photosensitizers, which can be used for the light-driven production of hydrogen from water. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited States 2
NASA Astrophysics Data System (ADS)
Fujita, Chiho; Higurashi, Haruka; Ozeki, Hiroyuki; Kobayashi, Kaori
2016-06-01
Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine in the interstellar space and was detected toward SgrB2(N). We have extended measurements up to 1.3 THz so that the strongest transitions that may be found in the terahertz region should be covered. Aminoacetonitrile has a few low-lying vibrational excited states and indeed the pure rotational transitions in these vibrational excited states were found. The pure rotational transitions in six vibrational excited states in the 80-180 GHz range have been assigned and centrifugal distortion constants up to the sextic terms were determined. Based on spectral intensities and the vibrational information from Bak et al., They were assigned to the 3 low-lying fundamentals, 1 overtone and 2 combination bands. In the submillimeter wavelength region, perturbations were recognized and some of the lines were off by more than a few MHz. At this moment, these perturbed transitions are not included in our analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975) C. Fujita, H. Ozeki, and K. Kobayashi, 70th International Symposium on Molecular Spectroscopy (2015), MH14.
Influence of the quantum dot geometry on p -shell transitions in differently charged quantum dots
NASA Astrophysics Data System (ADS)
Holtkemper, M.; Reiter, D. E.; Kuhn, T.
2018-02-01
Absorption spectra of neutral, negatively, and positively charged semiconductor quantum dots are studied theoretically. We provide an overview of the main energetic structure around the p -shell transitions, including the influence of nearby nominally dark states. Based on the envelope function approximation, we treat the four-band Luttinger theory as well as the direct and short-range exchange Coulomb interactions within a configuration interaction approach. The quantum dot confinement is approximated by an anisotropic harmonic potential. We present a detailed investigation of state mixing and correlations mediated by the individual interactions. Differences and similarities between the differently charged quantum dots are highlighted. Especially large differences between negatively and positively charged quantum dots become evident. We present a visualization of energetic shifts and state mixtures due to changes in size, in-plane asymmetry, and aspect ratio. Thereby we provide a better understanding of the experimentally hard to access question of quantum dot geometry effects. Our findings show a method to determine the in-plane asymmetry from photoluminescence excitation spectra. Furthermore, we supply basic knowledge for tailoring the strength of certain state mixtures or the energetic order of particular excited states via changes of the shape of the quantum dot. Such knowledge builds the basis to find the optimal QD geometry for possible applications and experiments using excited states.
Excitation mechanism in a hollow cathode He-Kr ion laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazama, J.; Arai, T.; Goto, M.
1995-12-31
Pulsed laser operation in the afterglow of a positive column He-Kr discharge on the 469.4 nm (6s{sup 4}P{sub 5/2} {yields} 5p{sup 4}P{sub 5/2}) transition of Kr(II) was observed for the first time by Dana and Laure`s. It appears that the upper level of Kr(II) laser line is populated by the second kind collisions between He 2{sup 3}S metastable atoms and ground state Kr ions. CW oscillations on Kr(II) transitions have been obtained in a hollow cathode discharge. In this work, we have estimated the excitation mechanism for the upper state of 469.4 nm laser line from the measurements of themore » decay of endlight intensity in the hollow cathode He-Kr discharge.« less
Theoretical description of the decays Λb→Λ(*)(1/2±,3/2±)+J /ψ
NASA Astrophysics Data System (ADS)
Gutsche, Thomas; Ivanov, Mikhail A.; Körner, Jürgen G.; Lyubovitskij, Valery E.; Lyubushkin, Vladimir V.; Santorelli, Pietro
2017-07-01
We calculate the invariant and helicity amplitudes for the transitions Λb→Λ(*)(JP)+J /ψ , where the Λ(*)(JP) are Λ (s u d )-type ground and excited states with JP quantum numbers JP=1/2± , 3/2± . The calculations are performed in the framework of a covariant confined quark model previously developed by us. We find that the values of the helicity amplitudes for the Λ*(1520 ,3/2-) and the Λ*(1890 ,3/2+) are suppressed compared with those for the ground state Λ (1116 ,1/2+) and the excited state Λ*(1405 ,1/2-). This analysis is important for the identification of the hidden charm pentaquark states Pc+(4380 ) and Pc+(4450 ) which were discovered in the decay chain Λb0→Pc+(→p J /ψ )+K- because the cascade decay chain Λb→Λ*(3/2±)(→p K-)+J /ψ involves the same final state.
Nuclear Data Sheets for A = 26
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basunia, M.S.; Hurst, A.M.
2016-05-15
Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for {sup 26}O, {sup 26}F, {sup 26}Ne, {sup 26}Na, {sup 26}Mg, {sup 26}Al, {sup 26}Si, {sup 26}P, and {sup 26}S. This evaluation for A = 26 supersedes the earlier one by P. M. Endt (1998En04) and updates for some nuclides in ENSDF. Highlights of this evaluation are the following: This evaluation includes search results for {sup 26}S nuclide and its proton–decay mode (2011Fo08). An isomeric state (2.2 ms) in {sup 26}F has been discovered by 2013Le03. The state is proposed at 643.4 keV 1 frommore » γ–ray measurements. Internal-transition and beta-decay branches for the state are also determined. New excited levels in {sup 26}Ne have been identified from {sup 26}F β{sup −} decay (2.2 ms). For some {sup 26}Si resonance states conflicting spin-parity assignments exist in the literature. These are identified by footnotes. 2015Do07 ({sup 3}He,nγ) propose the first 0+ state above proton separation energy at an excitation energy of 5890 keV and suggested for additional independent measurements to confirm or refute the existence of 5946 keV 4. 2016Ch09 consider 5946 keV level as a distinct excited state in their reanalysis of the literature data with possible spin-parity assignment of 0+ or 4+ This evaluation also includes discovery of an isomeric state, at 164.1 keV 1, in {sup 26}P by 2014NiZZ.« less
NASA Astrophysics Data System (ADS)
Spieker, M.; Petkov, P.; Litvinova, E.; Müller-Gatermann, C.; Pickstone, S. G.; Prill, S.; Scholz, P.; Zilges, A.
2018-05-01
Background: The semimagic Sn (Z =50 ) isotopes have been subject to many nuclear-structure studies. Signatures of shape coexistence have been observed and attributed to two-proton-two-hole (2p-2h) excitations across the Z =50 shell closure. In addition, many low-lying nuclear-structure features have been observed which have effectively constrained theoretical models in the past. One example are so-called quadrupole-octupole coupled states (QOC) caused by the coupling of the collective quadrupole and octupole phonons. Purpose: Proton-scattering experiments followed by the coincident spectroscopy of γ rays have been performed at the Institute for Nuclear Physics of the University of Cologne to excite low-spin states in 112Sn and 114Sn to determine their lifetimes and extract reduced transition strengths B (Π L ) . Methods: The combined spectroscopy setup SONIC@HORUS has been used to detect the scattered protons and the emitted γ rays of excited states in coincidence. The novel (p ,p'γ ) Doppler-shift attenuation (DSA) coincidence technique was employed to measure sub-ps nuclear level lifetimes. Results: Seventy-four (74) level lifetimes τ of states with J =0 -6 were determined. In addition, branching ratios were deduced which allowed the investigation of the intruder configuration in both nuclei. Here, s d IBM-2 mixing calculations were added which support the coexistence of the two configurations. Furthermore, members of the expected QOC quintuplet are proposed in 114Sn for the first time. The 1- candidate in 114Sn fits perfectly into the systematics observed for the other stable Sn isotopes. Conclusions: The E 2 transition strengths observed for the low-spin members of the so-called intruder band support the existence of shape coexistence in Sn,114112. The collectivity in this configuration is comparable to the one observed in the Pd nuclei, i.e., the 0p-4h nuclei. Strong mixing between the 0+ states of the normal and intruder configuration might be observed in 114Sn. The general existence of QOC states in Sn,114112 is supported by the observation of QOC candidates with J ≠1 .
T(T,4He)2n and 3He(3He,4He)2p Reactions and the Energy Dependence of Their Mechanisms
NASA Astrophysics Data System (ADS)
Bacher, Andrew; McNabb, Dennis; Brune, Carl; Sayre, Dan; Hale, Gerry; Frenje, Johan; Gatu Johnson, Maria
2015-10-01
We have studied the T(T,alpha)2n reaction because it is the charge symmetric analog to the 3He(3He,alpha)2p reaction which completes the most direct mode of the p-p chain in stellar interiors. These reactions lead to three-body final states whose energy spectrum shapes are dominated by the strong nucleon-alpha interaction and the weaker nucleon-nucleon interaction. These experiments were done at OMEGA at the University of Rochester and at the NIF at Lawrence Livermore Lab. We will focus on two features: (1) the excitation energy dependence of the reaction mechanism and (2) the center-of-mass energy dependence of the reaction mechanism. At stellar energies (OMEGA and the NIF) we find that the shape of the neutron spectrum peaks in the middle. The n-alpha 1/2-excited state is about two times stronger than the n-alpha 3/2-ground state. For the 3He+3He reaction (at CalTech), the proton spectrum peaks at the high end. The p-alpha 3/2-state is about two times stronger than the 1/2-state. This difference in the spectrum shape is explained by theoretical models which include the interference between the two identical fermions in the final state. At CalTech we have angular distributions of the 3He+3He reaction from 2 MeV to 18 MeV. We see the p-wave strength increasing.
Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of p-vinylaniline
NASA Astrophysics Data System (ADS)
Tzeng, Sheng Yuan; Dong, Changwu; Tzeng, Wen Bih
2012-10-01
We report the vibronic and cation spectra of p-vinylaniline, which are recorded by using the resonant two-photon ionization and the mass-analyzed threshold ionization spectroscopic techniques. The band origin of the S1 ← S0 electronic transition appears at 31,490 ± 2 cm-1 and the adiabatic ionization energy is determined to be 59,203 ± 5 cm-1. Due to the nature of the substituent, the amino and vinyl groups lead to lower electronic excitation and ionization energies by a few thousand wave numbers. Most of the observed active modes result from the in-plane ring deformation and substituent-sensitive vibrations of this molecule in the electronically excited S1 and cationic ground D0 states. By comparing the frequencies of the observed active vibrations, one may conclude that the molecular geometry and the vibrational coordinates of these modes of the p-vinylaniline cation in the D0 state resemble those of the neutral species in the S1 state.
Excited states from quantum Monte Carlo in the basis of Slater determinants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humeniuk, Alexander; Mitrić, Roland, E-mail: roland.mitric@uni-wuerzburg.de
2014-11-21
Building on the full configuration interaction quantum Monte Carlo (FCIQMC) algorithm introduced recently by Booth et al. [J. Chem. Phys. 131, 054106 (2009)] to compute the ground state of correlated many-electron systems, an extension to the computation of excited states (exFCIQMC) is presented. The Hilbert space is divided into a large part consisting of pure Slater determinants and a much smaller orthogonal part (the size of which is controlled by a cut-off threshold), from which the lowest eigenstates can be removed efficiently. In this way, the quantum Monte Carlo algorithm is restricted to the orthogonal complement of the lower excitedmore » states and projects out the next highest excited state. Starting from the ground state, higher excited states can be found one after the other. The Schrödinger equation in imaginary time is solved by the same population dynamics as in the ground state algorithm with modified probabilities and matrix elements, for which working formulae are provided. As a proof of principle, the method is applied to lithium hydride in the 3-21G basis set and to the helium dimer in the aug-cc-pVDZ basis set. It is shown to give the correct electronic structure for all bond lengths. Much more testing will be required before the applicability of this method to electron correlation problems of interesting size can be assessed.« less
Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won
2017-10-05
Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.
Cardoso, Daniel R; Olsen, Karsten; Møller, Jens K S; Skibsted, Leif H
2006-07-26
Phenolic compounds present in beer were shown by fluorescence spectroscopy and laser flash photolysis to deactivate both singlet- and triplet-excited states of riboflavin with bimolecular rate constants close to the diffusion control ranging from 2.8x10(9) to 1.1x10(10) M-1 s-1 and from 1.1x10(9) to 2.6x10(9) M-1 s-1, respectively. Enthalpies of activation were low (up to 33.2 kJ mol-1), and entropies of activation were positive, ranging from 17 to 92 J mol-1 K-1, as derived from temperature dependence, indicating a compensation effect. From a Stern-Volmer analysis of the singlet-excited riboflavin quenching by phenols it was found that high amounts of phenolic compounds (>0.3 M) would be needed to hinder triplet-excited riboflavin generation. On the other hand, a phenolic content of 0.36 mM is likely to quench 90% of the triplet-excited state. Phenol photodegradation was found to be complex, and using ESI-MS analysis it was not possible to identify specific photooxidation products of the phenolic compounds; only the photoproducts of riboflavin could be detected and structurally assigned. The rate of reaction of triplet-excited riboflavin with phenolic compounds in acetonitrile/citrate buffer (pH 4.6, 10 mM) is 550 times faster than the reaction with iso-alpha-acids from hops, indicating that triplet-excited quenchers such as phenols may be involved in the early steps in light-struck flavor formation in beer through radical formation. Terpenes present in herb-flavored beers were found to be nonreactive toward singlet- and triplet-excited-state riboflavin, and any protection depends on other mechanisms.
Collective excitations in the transitional nuclei 163Re and 165Re
NASA Astrophysics Data System (ADS)
Davis-Merry, T. R.; Joss, D. T.; Page, R. D.; Simpson, J.; Paul, E. S.; Ali, F. A.; Bianco, L.; Carroll, R. J.; Cederwall, B.; Darby, I. G.; Drummond, M. C.; Eeckhaudt, S.; Ertürk, S.; Gómez-Hornillos, M. B.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jakobsson, U.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Nieminen, P.; Nyman, M.; O'Donnell, D.; Pakarinen, J.; Peura, P.; Rahkila, P.; Revill, J. P.; Ruotsalainen, P.; Sandzelius, M.; Sapple, P. J.; Sarén, J.; Sayǧi, B.; Scholey, C.; Sorri, J.; Thomson, J.; Uusitalo, J.
2015-03-01
Excited states in the neutron-deficient nuclei 75163Re88 and 75165Re90 were populated in the 106Cd( 60Ni ,p 2 n γ ) and 92Mo( 78Kr , 3 p 2 n γ ) fusion-evaporation reactions at bombarding energies of 270 and 380 MeV, respectively. γ rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated in-flight by the RITU gas-filled recoil separator and implanted in the GREAT spectrometer. The energy level schemes for 163Re and 165Re were identified using recoil-decay correlation techniques. At low spin, the yrast bands of these isotopes consist of signature partner bands based on a single π h11 /2 quasiproton configuration. The bands display large energy splitting consistent with the soft triaxial shape typical of transitional nuclei above N =82 . The configurations of the excited states are proposed within the framework of the cranked shell model.
NASA Astrophysics Data System (ADS)
Sperling, J.; Milota, F.; Tortschanoff, A.; Warmuth, Ch.; Mollay, B.; Bässler, H.; Kauffmann, H. F.
2002-12-01
We present a comprehensive experimental and computational study on fs-relaxational dynamics of optical excitations in the conjugated polymer poly(p-phenylenevinylene) (PPV) under selective excitation tuning conditions into the long-wavelength, low-vibrational S1ν=0-density-of-states (DOS). The dependence of single-wavelength luminescence kinetics and time-windowed spectral transients on distinct, initial excitation boundaries at 1.4 K and at room temperature was measured applying the luminescence up-conversion technique. The typical energy-dispersive intra-DOS energy transfer was simulated by a combination of static Monte Carlo method with a dynamical algorithm for solving the energy-space transport Master-Equation in population-space. For various, selective excitations that give rise to specific S1-population distributions in distinct spatial and energetic subspaces inside the DOS, simulations confirm the experimental results and show that the subsequent, energy-dissipative, multilevel relaxation is hierarchically constrained, and reveals a pronounced site-energy memory effect with a migration-threshold, characteristic of the (dressed) excitation dynamics in the disordered PPV many-body system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacherjee, Aditi, E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Attar, Andrew R., E-mail: abhattacherjee@berkeley.edu, E-mail: andrewattar@berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
2016-03-28
Femtosecond extreme ultraviolet (XUV) transient absorption spectroscopy based on a high-harmonic generation source is used to study the 266 nm induced A-band photodissociation dynamics of allyl iodide (CH{sub 2} =CHCH{sub 2}I). The photolysis of the C—I bond at this wavelength produces iodine atoms both in the ground ({sup 2}P{sub 3/2}, I) and spin-orbit excited ({sup 2}P{sub 1/2}, I*) states, with the latter as the predominant channel. Using XUV absorption at the iodine N{sub 4/5} edge (45–60 eV), the experiments constitute a direct probe of not only the long-lived atomic iodine reaction products but also the fleeting transition state region ofmore » the repulsive n{sub I}σ{sup ∗}{sub C—I} excited states. Specifically, three distinct features are identified in the XUV transient absorption spectrum at 45.3 eV, 47.4 eV, and 48.4 eV (denoted transients A, B, and C, respectively), which arise from the repulsive valence-excited nσ{sup ∗} states and project onto the high-lying core-excited states of the dissociating molecule via excitation of 4d(I) core electrons. Transients A and B originate from 4d(I) → n(I) core-to-valence transitions, whereas transient C is best assigned to a 4d(I) →σ{sup ∗}(C—I) transition. The measured differential absorbance of these new features along with the I/I* branching ratios known from the literature is used to suggest a more definitive assignment, albeit provisional, of the transients to specific dissociative states within the A-band manifold. The transients are found to peak around 55 fs–65 fs and decay completely by 145 fs–185 fs, demonstrating the ability of XUV spectroscopy to map the evolution of reactants into products in real time. The similarity in the energies of transients A and B with analogous features observed in methyl iodide [Attar et al. J. Phys. Chem. Lett. 6, 5072, (2015)] together with the new observation of transient C in the present work provides a more complete picture of the valence electronic structure in the transition state region. The results provide a benchmark for theoretical calculations on the nature of core-excited states in halogenated hydrocarbons, especially in the transition state region along the C—I reaction coordinate.« less
Photodissociation dynamics of OClO
NASA Astrophysics Data System (ADS)
Davis, H. Floyd; Lee, Yuan T.
1996-11-01
Photofragment translational energy spectroscopy was used to study the dissociation dynamics of a range of electronically excited OClO(A 2A2) vibrational states. For all levels studied, corresponding to OClO(A 2A2←X 2B1) excitation wavelengths between 350 and 475 nm, the dominant product (≳96%) was ClO(2Π)+O(3P). We also observed production of Cl+O2 with a quantum yield of up to 3.9±0.8% near 404 nm, decreasing at longer and shorter wavelengths. The branching ratios between the two channels were dependent on the OClO(A 2A2) excited state vibrational mode. The Cl+O2 yield was enhanced slightly by exciting A 2A2 levels having symmetric stretching+bending, but diminished by as much as a factor of 10 for neighboring peaks associated with symmetric stretching+asymmetric stretching. Mode specificity was also observed in the vibrationally state resolved translational energy distributions for the dominant ClO(2Π)+O(3P) channel. The photochemical dynamics of OClO possesses two energy regimes with distinctly different dynamics observed for excitation energies above and below ˜3.1 eV (λ˜400 nm). At excitation energies below 3.1 eV (λ≳400 nm), nearly all energetically accessible ClO vibrational energy levels were populated, and the minor Cl+O2 channel was observed. Although at least 20% of the O2 product is formed in the ground (X 3Σ-g) state, most O2 is electronically excited (a 1Δg). At E<3.1 eV, both dissociation channels occur by an indirect mechanism involving two nearby excited states, 2A1 and 2B2. Long dissociation time scales and significant parent bending before dissociation led to nearly isotropic polarization angular distributions (β˜0). At excitation energies above 3.1 eV (λ<400 nm), the Cl+O2 yield began to decrease sharply, with this channel becoming negligible at λ<370 nm. At these higher excitation energies, the ClO product was formed with relatively little vibrational energy and a large fraction of the excess energy was channeled into ClO+O translational energy. The photofragment anisotropy parameter (β) also increased, implying shorter dissociation time scales. The sharp change in the disposal of excess energy into the ClO products, the decrease of Cl+O2 production, and more anisotropic product angular distributions at E≳3.1 eV signify the opening of a new ClO+O channel. From our experimental results and recent ab initio calculations, dissociation at wavelengths shorter than 380 nm to ClO+O proceeds via a direct mechanism on the optically prepared A 2A2 surface over a large potential energy barrier. From the ClO(2Π)+O(3P) translational energy distributions, D0(O-ClO) was found to be less than or equal to 59.0±0.2 kcal/mol.
Measurement of Excitation Spectra in the ^{12}C(p,d) Reaction near the η^{'} Emission Threshold.
Tanaka, Y K; Itahashi, K; Fujioka, H; Ayyad, Y; Benlliure, J; Brinkmann, K-T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knöbel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J
2016-11-11
Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.
An ultracold potassium Rydberg source for experiments in quantum optics and many-body physics
NASA Astrophysics Data System (ADS)
Conover, Charles; Dupre, Pamela; Tong, Ai Phuong; Sanon, Carlvin; Clarke, Kevin; Doolittle, Brian; Louria, Stephen; Adamson, Philip
2017-04-01
We report on the development of an apparatus for the study of quantum dynamics of Rydberg atoms of potassium. Samples of Rydberg atoms at 1 mK and varying density are excited in a magneto-optical trap of 107 K-39 atoms. The atoms are excited to Rydberg states in a steps from 4s to 5p and from 5p to ns and nd states using stabilized external-cavity diode lasers at 405 nm and 980 nm. Selective field ionization and detection with microchannel plates provides a platform for spectroscopic measurements in potassium, exploration of multiphoton processes, and experiments on cold atom collisions. This research was supported by the National Science Foundation under Grant PHY-1126599.
Sarsa, Antonio; Le Sech, Claude
2011-09-13
Variational Monte Carlo method is a powerful tool to determine approximate wave functions of atoms, molecules, and solids up to relatively large systems. In the present work, we extend the variational Monte Carlo approach to study confined systems. Important properties of the atoms, such as the spatial distribution of the electronic charge, the energy levels, or the filling of electronic shells, are modified under confinement. An expression of the energy very similar to the estimator used for free systems is derived. This opens the possibility to study confined systems with little changes in the solution of the corresponding free systems. This is illustrated by the study of helium atom in its ground state (1)S and the first (3)S excited state confined by spherical, cylindrical, and plane impenetrable surfaces. The average interelectronic distances are also calculated. They decrease in general when the confinement is stronger; however, it is seen that they present a minimum for excited states under confinement by open surfaces (cylindrical, planes) around the radii values corresponding to ionization. The ground (2)S and the first (2)P and (2)D excited states of the lithium atom are calculated under spherical constraints for different confinement radii. A crossing between the (2)S and (2)P states is observed around rc = 3 atomic units, illustrating the modification of the atomic energy level under confinement. Finally the carbon atom is studied in the spherical symmetry by using both variational and diffusion Monte Carlo methods. It is shown that the hybridized state sp(3) becomes lower in energy than the ground state (3)P due to a modification and a mixing of the atomic orbitals s, p under strong confinement. This result suggests a model, at least of pedagogical interest, to interpret the basic properties of carbon atom in chemistry.
NASA Astrophysics Data System (ADS)
Lukashov, S. S.; Poretsky, S. A.; Pravilov, A. M.; Khadikova, E. I.; Shevchenko, E. V.
2010-10-01
The first results of measurements and analysis of excitation spectra of the λlum = 3250 Å luminescence corresponding to I2( D0{/u +} → X0{/g +}) transition as well as luminescence at λlum = 3400 Å, where I2( D'2 g → A'2 u and/or β1 g → A1 u ) transitions occur, observed after three-step, λ1 + λ f + λ1, λ1 = 5321-5508.2 Å, λ f = 10644.0 Å, laser excitation of pure iodine vapour and I2 + Xe mixtures at room temperature via MI2 vdW complexes, M = I2, Xe, of the I2(0{/g +}, 1 u ( bb)) valence states correlating with the third, I(2 P 1/2) + I(2 P 1/2) (I2( bb)), dissociation limit are presented. Luminescence spectra in the λlum = 2200-3500 Å spectral range are also analyzed. Strong luminescence from the I2(D) and, probably, I2(D' and β) states is observed. We discuss three alternative mechanisms of optical population of the IP state. In our opinion, the mechanism including the MI2 complexes is the most probable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron J.; Nica N.; Cameron,J.
2012-02-01
Nuclear spectroscopic information for experimentally investigated nuclides of mass 37 (Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca) has been evaluated. The principal sources of the 'adopted levels' presented for nuclides close to the stability line are Endt's evaluations (1990En08, 1978En02). The data sets for reactions and decays, including all available gamma-ray data, are based mostly on the original literature. There are no data available for the excited states in {sup 37}Na, {sup 37}Mg, {sup 37}Al; and for {sup 37}Si, only one excited state is known.
Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy
Vallurupalli, Pramodh; Hansen, D. Flemming; Kay, Lewis E.
2008-01-01
Molecular function is often predicated on excursions between ground states and higher energy conformers that can play important roles in ligand binding, molecular recognition, enzyme catalysis, and protein folding. The tools of structural biology enable a detailed characterization of ground state structure and dynamics; however, studies of excited state conformations are more difficult because they are of low population and may exist only transiently. Here we describe an approach based on relaxation dispersion NMR spectroscopy in which structures of invisible, excited states are obtained from chemical shifts and residual anisotropic magnetic interactions. To establish the utility of the approach, we studied an exchanging protein (Abp1p SH3 domain)–ligand (Ark1p peptide) system, in which the peptide is added in only small amounts so that the ligand-bound form is invisible. From a collection of 15N, 1HN, 13Cα, and 13CO chemical shifts, along with 1HN-15N, 1Hα-13Cα, and 1HN-13CO residual dipolar couplings and 13CO residual chemical shift anisotropies, all pertaining to the invisible, bound conformer, the structure of the bound state is determined. The structure so obtained is cross-validated by comparison with 1HN-15N residual dipolar couplings recorded in a second alignment medium. The methodology described opens up the possibility for detailed structural studies of invisible protein conformers at a level of detail that has heretofore been restricted to applications involving visible ground states of proteins. PMID:18701719
Optical Spectroscopy and Photophysics of Single Wall Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Brus, Louis
2006-03-01
We explore the fundamental nature and dynamics of excited electronic states in SWNT. Psec luminescence and photobleaching dynamics of SWNTs in micellar solution show that non-radiative Auger recombination is extremely fast. At low pH, nanotube surface endoperoxides protonate and introduce holes that quench the luminescence. At higher concentration these holes also bleach the band gap optical absorption. Near infrared two photon luminescence excitation spectra quantitatively reveal the importance of excitons. In order to characterize excited states in both metallic and semiconducting SWNTs at the single-tube level, we detect white-light Rayleigh scattering from individual tubes suspended over an open slit in a substrate. Diagnostic spectra with high signal to noise are obtained in just a few minutes.
NASA Astrophysics Data System (ADS)
Zhang, Lulu; Gao, Shoubao; Song, Yuzhi; Meng, Qingtian
2018-03-01
The dependence of the cross section for the C + SH \\to H + CS, S + CH reactions on the vibrational excitation of SH(v = 0-20, j = 0) is analyzed in detail at the collision energies of 0.3 and 0.8 eV by using the quasi-classical trajectory method and the new potential energy surface (Song et al 2016 Sci. Rep. 6 37734) of the {{HCS}}({{X}}{}2{{A}}\\prime ). The efficiency of vibrational excitation to promote the reaction is investigated through the analysis of the cross section and its v dependence in terms of the reaction probability, maximum impact parameter, and the features of the potential energy surface. The differential cross sections obtained show that at higher vibrational levels, the products (CS, CH) are mainly forward scattered, and the sideward and backward scatterings are quite weak. In addition to the scalar properties, the stereodynamical attributes, such as angle distribution functions P(θ r ), P(ϕ r ) and P(θ r , ϕ r ) at different vibrational levels are explored in detail. Furthermore, through the investigation of the state-to-state dynamics for the titled reaction, it is clear that the vibrational excitation of the product for C + SH \\to H + CS reaction is quite strong, with the most probable population appearing at high vibration numbers.
One- and Two-Color Resonant Photoionization Spectroscopy of Chromium-Doped Helium Nanodroplets
2014-01-01
We investigate the photoinduced relaxation dynamics of Cr atoms embedded into superfluid helium nanodroplets. One- and two-color resonant two-photon ionization (1CR2PI and 2CR2PI, respectively) are applied to study the two strong ground state transitions z7P2,3,4° ← a7S3 and y7P2,3,4° ← a7S3. Upon photoexcitation, Cr* atoms are ejected from the droplet in various excited states, as well as paired with helium atoms as Cr*–Hen exciplexes. For the y7P2,3,4° intermediate state, comparison of the two methods reveals that energetically lower states than previously identified are also populated. With 1CR2PI we find that the population of ejected z5P3° states is reduced for increasing droplet size, indicating that population is transferred preferentially to lower states during longer interaction with the droplet. In the 2CR2PI spectra we find evidence for generation of bare Cr atoms in their septet ground state (a7S3) and metastable quintet state (a5S2), which we attribute to a photoinduced fast excitation–relaxation cycle mediated by the droplet. A fraction of Cr atoms in these ground and metastable states is attached to helium atoms, as indicated by blue wings next to bare atom spectral lines. These relaxation channels provide new insight into the interaction of excited transition metal atoms with helium nanodroplets. PMID:24708058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whittemore, Tyler J.; Sayre, Hannah J.; Xue, Congcong
In this work, the new heteroleptic paddlewheel complexes cis-[Rh 2(μ-form) 2(μ-np) 2][BF 4] 2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh 2(μ-form) 2(μ-npCOO) 2 (npCOO – = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λ max = 300 nm, ε = 20 300 M –1 cm –1) and visible regions (λ max = 640 nm ε = 3500 M –1 cm –1), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were usedmore » to characterize the identity and dynamics of the excited states, where singlet and triplet Rh 2/form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO – complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E( 3ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Finally, based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ~800 nm.« less
Whittemore, Tyler J.; Sayre, Hannah J.; Xue, Congcong; ...
2017-10-04
In this work, the new heteroleptic paddlewheel complexes cis-[Rh 2(μ-form) 2(μ-np) 2][BF 4] 2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh 2(μ-form) 2(μ-npCOO) 2 (npCOO – = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λ max = 300 nm, ε = 20 300 M –1 cm –1) and visible regions (λ max = 640 nm ε = 3500 M –1 cm –1), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were usedmore » to characterize the identity and dynamics of the excited states, where singlet and triplet Rh 2/form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO – complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E( 3ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (-1.1 and -0.5 V vs Ag/AgCl, respectively) were determined. Finally, based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ~800 nm.« less
Photodissociation studies of the electronic and vibrational spectroscopy of Ni(+)(H2O).
Daluz, Jennifer S; Kocak, Abdulkadir; Metz, Ricardo B
2012-02-09
The electronic spectrum of Ni⁺(H₂O) has been measured from 16200 to 18000 cm⁻¹ using photofragment spectroscopy. Transitions to two excited electronic states are observed; they are sufficiently long-lived that the spectrum is vibrationally and partially rotationally resolved. An extended progression in the metal-ligand stretch is observed, and the absolute vibrational quantum numbering is assigned by comparing isotopic shifts between ⁵⁸Ni⁺(H₂O) and ⁶⁰Ni⁺(H₂O). Time-dependent density functional calculations aid in assigning the spectrum. Two electronic transitions are observed, from the ²A₁ ground state (which correlates to the ²D, 3d⁹ ground state of Ni⁺) to the 3²A₁ and 2²A₂ excited states. These states are nearly degenerate and correlate to the ²F, 3d⁸4s excited state of Ni⁺. Both transitions are quite weak, but surprisingly, the transition to the ²A₂ state is stronger, although it is symmetry-forbidden. The 3d⁸4s states of Ni⁺ interact less strongly with water than does the ground state; therefore, the excited states observed are less tightly bound and have a longer metal-ligand bond than the ground state. Calculations at the CCSD(T)/aug-cc-pVTZ level predict that binding to Ni⁺ increases the H-O-H angle in water from 104.2 to 107.5° as the metal removes electron density from the oxygen lone pairs. The photodissociation spectrum shows well-resolved rotational structure due to rotation about the Ni-O axis. This permits determination of the spin rotation constants ε(αα)'' = -12 cm⁻¹ and ε(αα)' = -3 cm⁻¹ and the excited state rotational constant A' = 14.5 cm⁻¹. This implies a H-O-H angle of 104 ± 1° in the 2²A₂ excited state. The O-H stretching frequencies of the ground state of Ni⁺(H₂O) were measured by combining IR excitation with visible photodissociation in a double resonance experiment. The O-H symmetric stretch is ν₁'' = 3616.5 cm⁻¹; the antisymmetric stretch is ν₅'' = 3688 cm⁻¹. These values are 40 and 68 cm⁻¹ lower, respectively, than those in bare H₂O.
Rupenyan, Alisa; van Stokkum, Ivo H M; Arents, Jos C; van Grondelle, Rienk; Hellingwerf, Klaas J; Groot, Marie Louise
2009-12-17
Proteorhodopsin (pR) is a membrane-embedded proton pump from the microbial rhodopsin family. Light absorption by its retinal chromophore initiates a photocycle, driven by trans/cis isomerization on the femtosecond to picosecond time scales. Here, we report a study on the photoisomerization dynamics of the retinal chromophore of pR, using dispersed ultrafast pump-dump-probe spectroscopy. The application of a pump pulse initiates the photocycle, and with an appropriately tuned dump pulse applied at a time delay after the dump, the molecules in the initial stages of the photochemical process can be de-excited and driven back to the ground state. In this way, we were able to resolve an intermediate on the electronic ground state that represents chromophores that are unsuccessful in isomerization. In particular, the fractions of molecules that undergo slow isomerization (20 ps) have a high probability to enter this state rather than the isomerized K-state. On the ground state reaction surface, return to the stable ground state conformation via a structural or vibrational relaxation occurs in 2-3 ps. Inclusion of this intermediate in the kinetic scheme led to more consistent spectra of the retinal-excited state, and to a more accurate estimation of the quantum yield of isomerization (Phi = 0.4 at pH 6).
Studies of X-ray burst reactions with radioactive ion beams from RESOLUT
NASA Astrophysics Data System (ADS)
Blackmon, J. C.; Wiedenhöver, I.; Belarge, J.; Kuvin, S. A.; Anastasiou, M.; Baby, L. T.; Baker, J.; Colbert, K.; Deibel, C. M.; de Lucio, O.; Gardiner, H. E.; Gay, D. L.; Good, E.; Höflich, P.; Hood, A. A. D.; Keely, N.; Lai, J.; Laminack, A.; Linhardt, L. E.; Lighthall, J.; Macon, K. T.; Need, E.; Quails, N.; Rasco, B. C.; Rijal, N.; Volya, A.
2018-01-01
Reactions on certain proton-rich, radioactive nuclei have been shown to have a significant influence on X-ray bursts. We provide an overview of two recent measurements of important X-ray burst reactions using in-flight radioactive ion beams from the RESOLUT facility at the J. D. Fox Superconducting Accelerator Laboratory at Florida State University. The 17F(d,n)18Ne reaction was measured, and Asymptotic Normalization Coefficients were extracted for bound states in 18Ne that determine the direct-capture cross section dominating the 17F(p,γ)18Ne reaction rate for T≲ 0.45 GK. Unbound resonant states were also studied, and the single-particle strength for the 4.523-MeV (3+) state was found to be consistent with previous results. The 19Ne(d,n)20Na proton transfer reaction was used to study resonances in the 19Ne(p,γ)20Na reaction. The most important 2.65-MeV state in 20Na was observed to decay by proton emission to both the ground and first-excited states in 19Ne, providing strong evidence for a 3+ spin assignment and indicating that proton capture on the thermally-populated first-excited state in 19Ne is an important contributor to the 19Ne(p,γ)20Na reaction rate.
Quadratic Zeeman effect for hydrogen: A method for rigorous bound-state error estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fonte, G.; Falsaperla, P.; Schiffrer, G.
1990-06-01
We present a variational method, based on direct minimization of energy, for the calculation of eigenvalues and eigenfunctions of a hydrogen atom in a strong uniform magnetic field in the framework of the nonrelativistic theory (quadratic Zeeman effect). Using semiparabolic coordinates and a harmonic-oscillator basis, we show that it is possible to give rigorous error estimates for both eigenvalues and eigenfunctions by applying some results of Kato (Proc. Phys. Soc. Jpn. 4, 334 (1949)). The method can be applied in this simple form only to the lowest level of given angular momentum and parity, but it is also possible tomore » apply it to any excited state by using the standard Rayleigh-Ritz diagonalization method. However, due to the particular basis, the method is expected to be more effective, the weaker the field and the smaller the excitation energy, while the results of Kato we have employed lead to good estimates only when the level spacing is not too small. We present a numerical application to the {ital m}{sup {ital p}}=0{sup +} ground state and the lowest {ital m}{sup {ital p}}=1{sup {minus}} excited state, giving results that are among the most accurate in the literature for magnetic fields up to about 10{sup 10} G.« less
NASA Astrophysics Data System (ADS)
Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.
2017-08-01
We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments reveal stimulated emission from the excited state with an amplitude and lifetime that decreases with increasing temperature, a result in contrast to the lack of stimulated emission predicted by the cavity model but in good agreement with the non-cavity model. Overall, until ab initio calculations describing the non-adiabatic excited-state dynamics of an excess electron with hundreds of water molecules at a variety of temperatures become computationally feasible, the simulations presented here provide a definitive route for connecting the predictions of cavity and non-cavity models of the hydrated electron with future experiments.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Kashiwakura, Shunsuke; Wagatsuma, Kazuaki
2012-01-01
A Boltzmann plot for many iron ionic lines having excitation energies of 4.7-9.1 eV was investigated in an argon glow discharge plasma when the discharge parameters, such as the voltage/current and the gas pressure, were varied. A Grimm-style radiation source was employed in a DC voltage range of 400-800 V at argon pressures of 400-930 Pa. The plot did not follow a linear relationship over a wide range of the excitation energy, but it yielded a normal Boltzmann distribution in the range of 4.7-5.8 eV and a large overpopulation in higher-lying excitation levels of iron ion. A probable reason for this phenomenon is that excitations for higher excited energy levels of iron ion would be predominantly caused by non-thermal collisions with argon species, the internal energy of which is received by iron atoms for the ionization. Particular intense ionic lines, which gave a maximum peak of the Boltzmann plot, were observed at an excitation energy of ca. 7.7 eV. They were the Fe II 257.297-nm and the Fe II 258.111-nm lines, derived from the 3d54s4p 6P excited levels. The 3d54s4p 6P excited levels can be highly populated through a resonance charge transfer from the ground state of argon ion, because of good matching in the excitation energy as well as the conservation of the total spin before and after the collision. An enhancement factor of the emission intensity for various Fe II lines could be obtained from a deviation from the normal Boltzmann plot, which comprised the emission lines of 4.7-5.8 eV. It would roughly correspond to a contribution of the charge transfer excitation to the excited levels of iron ion, suggesting that the charge-transfer collision could elevate the number density of the corresponding excited levels by a factor of ca.104. The Boltzmann plots give important information on the reason why a variety of iron ionic lines can be emitted from glow discharge plasmas.
Coherent blue emission generated by Rb two-photon excitation using diode and femtosecond lasers
NASA Astrophysics Data System (ADS)
Lopez, Jesus P.; Moreno, Marco P.; de Miranda, Marcio H. G.; Vianna, Sandra S.
2017-04-01
The coherent blue light generated in rubidium vapor due to the combined action of an ultrashort pulse train and a continuous wave diode laser is investigated. Each step of the two-photon transition 5S-5P{}3/2-5D is excited by one of the lasers, and the induced coherence between the 5S and 6P{}3/2 states is responsible for generating the blue beam. Measurements of the excitation spectrum reveal the frequency comb structure and allow us to identify the resonant modes responsible for inducing the nonlinear process. Further, each resonant mode excites a different group of atoms, making the process selective in atomic velocity. The signal dependency on the atomic density is characterized by a sharp growth and a rapid saturation. We also show that for high intensity of the diode laser, the Stark shift at resonance causes the signal suppression observed at low atomic density.
Understanding the quantum nature of low-energy C(3P j ) + He inelastic collisions.
Bergeat, Astrid; Chefdeville, Simon; Costes, Michel; Morales, Sébastien B; Naulin, Christian; Even, Uzi; Kłos, Jacek; Lique, François
2018-05-01
Inelastic collisions that occur between open-shell atoms and other atoms or molecules, and that promote a spin-orbit transition, involve multiple interaction potentials. They are non-adiabatic by nature and cannot be described within the Born-Oppenheimer approximation; in particular, their theoretical modelling becomes very challenging when the collision energies have values comparable to the spin-orbit splitting. Here we study inelastic collisions between carbon in its ground state C( 3 P j=0 ) and helium atoms-at collision energies in the vicinity of spin-orbit excitation thresholds (~0.2 and 0.5 kJ mol -1 )-that result in spin-orbit excitation to C( 3 P j=1 ) and C( 3 P j=2 ). State-to-state integral cross-sections are obtained from crossed-beam experiments with a beam source that provides an almost pure beam of C( 3 P j=0 ) . We observe very good agreement between experimental and theoretical results (acquired using newly calculated potential energy curves), which validates our characterization of the quantum dynamical resonances that are observed. Rate coefficients at very low temperatures suitable for chemical modelling of the interstellar medium are also calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubell, M.S.
1980-06-01
Motivated by the need for measurements of metastable depopulation mechanisms of Ar and Kr in the KrF rare-gas monohalide excimer laser, an ultra-high vacuum triple crossed-beams apparatus has been designed, fabricated, and assembled for the purpose of studying electron scattering from excited states of Ar and Kr atoms. A beam of metastable rare gas atoms, produced by near-resonant charge transfer of rare gas ions with alkali neutral atoms, is crossed by an electron beam and a far-red laser beam along mutually orthogonal axes. A hemispherical electron monochromator-spectrometer pair is used to measure the cross section for electron scattering from themore » 2p/sub 9/ excited state of the rare gas atom. Testing of parts of the assembled apparatus has been completed.« less
NASA Astrophysics Data System (ADS)
Sakho, I.
2011-12-01
The Screening Constant by Unit Nuclear Charge (SCUNC) method is used to study (2p ns) 1,3P° and (2p nd) 1,3P° autoionizing states of the beryllium atom. Energy positions are reported up to n=20. In addition, resonance widths of the (2p ns) 1P° states also presented. The current results compared very well to available theoretical and experimental literature values up to n=15. The accurate data presented in this work may be of interest for future experimental and theoretical studies in the photoabsorption spectrum of Be.
Ab initio study of the Jπ=0± continuum structures in 4He
NASA Astrophysics Data System (ADS)
Aoyama, S.; Baye, D.
2018-05-01
The Jπ=0± continuum structures in 4He are investigated by using an ab initio reaction theory with the microscopic R -matrix method. In the Ex≥˜20 MeV excitation energy region of 4He, the continuum states are mainly described by the t +p , h +n , and d +d channels. The Jπ=0± elastic phase shifts of the t +p and h +n channels show an apparently resonant behavior which might indicate the existence of excited 03+ and 02- resonance states of 4He above the known 02+ and 01- ones. However, the corresponding 03+ and 02- resonances have not been observed yet, although an experimental candidate with a large decay width is reported for 02-. In this paper, by analyzing the Jπ=0± S matrices, we discuss why the observation of these states is unlikely.
A theoretical study of the decomposition of gold (I) complexes
NASA Astrophysics Data System (ADS)
Tossell, J. A.
1998-04-01
Structures, energetics and excitation energies are calculated for the gold (I) complexes CH 3Au, (CH 3) 2Au -, CH 3AuOH 2, CH 3AuPH 3 and PH 3AuCl at the Hartree-Fock and MP2 levels of theory, and for CH 3AuP(CH 3) 3, CH 3AuP(OH) 3 and Au 3Cl 3 at the HF level. The lowest-energy neutral triplet state of each 2-coordinate compound dissociates into either two or three radical species (always including the CH 3 radical), with the exception of (CH 3) 2Au - which shows only slight Au-C bond elongation. In contrast, the doublet anion states dissociate neutral ligands, like PH 3, but do not dissociate CH 3. These results indicate that gold (I) chemical vapor deposition processes must involve excited states of the neutrals rather than their anions.
Photophysical studies of europium coordination polymers based on a tetracarboxylate ligand.
Gai, Yan-Li; Jiang, Fei-Long; Chen, Lian; Bu, Yang; Su, Kong-Zhao; Al-Thabaiti, Shaeel A; Hong, Mao-Chun
2013-07-01
Reaction of europium sulfate octahydrate with p-terphenyl-3,3″,5,5″-tetracarboxylic acid (H4ptptc) in a mixed solvent system has afforded three new coordination polymers formulated as {[Eu(ptptc)0.75(H2O)2]·0.5DMF·1.5H2O}n (1), {[Me2H2N]2 [Eu2(ptptc)2(H2O)(DMF)]·1.5DMF·7H2O}n (2), and {[Eu(Hptptc)(H2O)4]·0.5DMF·H2O}n (3). Complex 1 exhibits a three-dimensional (3D) metal-organic framework based on {Eu2(μ2-COO)2(COO)4}n chains, complex 2 shows a 3D metal-organic framework constructed by [Eu2(μ2-COO)2(COO)6](2-) dimetallic subunits, and complex 3 features a 2D layer architecture assembling to 3D framework through π···π interactions. All complexes exhibit the characteristic red luminescence of Eu(III) ion. The triplet state of ligand H4ptptc matches well with the emission level of Eu(III) ion, which allows the preparation of new optical materials with enhanced luminescence properties. The luminescence properties of these complexes are further studied in terms of their emission quantum yields, emission lifetimes, and the radiative/nonradiative rates.
Multi-quasiparticle excitations in 145Tb
NASA Astrophysics Data System (ADS)
Zheng, Y.; Zhou, X. H.; Zhang, Y. H.; Hayakawa, T.; Oshima, M.; Toh, Y.; Shizuma, T.; Katakura, J.; Hatsukawa, Y.; Matsuda, M.; Kusakari, H.; Sugawara, M.; Furuno, K.; Komatsubara, T.
2004-04-01
High-spin states in 145Tb have been investigated by means of in-beam ggr-ray spectroscopy techniques with the 118Sn(32S, 1p4n) reaction. Excitation functions, X-ggr-t and ggr-ggr-t coincidences and ggr-ray anisotropies were measured. A level scheme of 145Tb was established up to Exap 7 MeV. The level structure shows characteristics of a spherical nucleus. Based on the systematics of level structure in the odd-A N = 80 isotones, the level structure below 2 MeV excitation is interpreted by coupling an h11/2 proton to the excitations in the even-even 144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.
Imoto, Mitsutaka; Ikeda, Hiroshi; Fujii, Takayuki; Taniguchi, Hisaji; Tamaki, Akihiro; Takeda, Motonori; Mizuno, Kazuhiko
2010-05-07
An intramolecular exciplex is formed upon excitation of the cyclohexane solution of the 1,4-dicyano-2-methylnaphthalene-N,N-dimethyl-p-toluidine dyad, but little if any intramolecular CT complex exists in the ground state of this substance in solution. In contrast, in the crystalline state, the dyad forms an intermolecular mixed-stack CT complex in the ground state and an intermolecular exciplex when it is photoexcited.
Structure of 10 N in 9 C+p resonance scattering
Hooker, J.; Rogachev, G. V.; Goldberg, V. Z.; ...
2017-03-17
We studied the structure of exotic nucleus 10N using 9C+p resonance scattering. Two ℓ=0 resonances were found to be the lowest states in 10N. Furthermore, the ground state of 10N is unbound with respect to proton decay by 2.2(2) or 1.9(2) MeV depending on the 2 -or 1 -spin-parity assignment, and the first excited state is unbound by 2.8(2) MeV.
XUV frequency-comb metrology on the ground state of helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kandula, Dominik Z.; Gohle, Christoph; Pinkert, Tjeerd J.
2011-12-15
The operation of a frequency comb at extreme ultraviolet (xuv) wavelengths based on pairwise amplification and nonlinear upconversion to the 15th harmonic of pulses from a frequency-comb laser in the near-infrared range is reported. It is experimentally demonstrated that the resulting spectrum at 51 nm is fully phase coherent and can be applied to precision metrology. The pulses are used in a scheme of direct-frequency-comb excitation of helium atoms from the ground state to the 1s4p and 1s5p {sup 1} P{sub 1} states. Laser ionization by auxiliary 1064 nm pulses is used to detect the excited-state population, resulting in amore » cosine-like signal as a function of the repetition rate of the frequency comb with a modulation contrast of up to 55%. Analysis of the visibility of this comb structure, thereby using the helium atom as a precision phase ruler, yields an estimated timing jitter between the two upconverted-comb laser pulses of 50 attoseconds, which is equivalent to a phase jitter of 0.38 (6) cycles in the xuv at 51 nm. This sets a quantitative figure of merit for the operation of the xuv comb and indicates that extension to even shorter wavelengths should be feasible. The helium metrology investigation results in transition frequencies of 5 740 806 993 (10) and 5 814 248 672 (6) MHz for excitation of the 1s4p and 1s5p {sup 1} P{sub 1} states, respectively. This constitutes an important frequency measurement in the xuv, attaining high accuracy in this windowless part of the electromagnetic spectrum. From the measured transition frequencies an eight-fold-improved {sup 4}He ionization energy of 5 945 204 212 (6) MHz is derived. Also, a new value for the {sup 4}He ground-state Lamb shift is found of 41 247 (6) MHz. This experimental value is in agreement with recent theoretical calculations up to order m{alpha}{sup 6} and m{sup 2}/M{alpha}{sup 5}, but with a six-times-higher precision, therewith providing a stringent test of quantum electrodynamics in bound two-electron systems.« less
RESONEUT: A detector system for spectroscopy with (d,n) reactions in inverse kinematics
NASA Astrophysics Data System (ADS)
Baby, L. T.; Kuvin, S. A.; Wiedenhöver, I.; Anastasiou, M.; Caussyn, D.; Colbert, K.; Quails, N.; Gay, D.
2018-01-01
The RESONEUT detector setup is described, which was developed for resonance spectroscopy using (d,n) reactions with radioactive beams in inverse kinematics and at energies around the Coulomb barrier. The goal of experiments with this setup is to determine the spectrum and proton-transfer strengths of the low-lying resonances, which have an impact on astrophysical reaction rates. The setup is optimized for l = 0 proton transfers in inverse kinematics, for which most neutrons are emitted at backward angles with energies in the 80-300 keV range. The detector system is comprised of 9 p-terphenyl scintillators as neutron detectors, two annular silicon-strip detectors for light charged particles, one position-resolving gas ionization chamber for heavy ion detection, and a barrel of NaI-detectors for the detection of γ-rays. The detector commissioning and performance characteristics are described with an emphasis on the neutron-detector components.
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höohne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2016-05-01
The CBM RICH detector will use CO2 as radiator gas, focussing glass mirrors with Al+MgF2 reflective and protective coating and Hamamatsu H12700 MAPMTs as photon detectors. The detector will serve for electron to pion separation up to momenta of 8 GeV/c and thus enable in CBM the measurement of electromagnetic radiation from the early and dense fireball in A+A collisions at SIS 100. In this article, the current status of the CBM RICH development will be presented including new measurements of the radiation hardness of the H12700 MAPMT and WLS coatings with p-terphenyl, the new concept for the readout electronics, and optimizations ongoing with respect to the mirror mount structure and overall geometry. Prior to the usage in CBM, part of the already ordered MAPMTs will be used to upgrade the HADES RICH detector for a new measurement campaign at SIS 18 from 2018-2020.
Dynamics of ionization of H2 by Ne*(3P) investigated by electron spectroscopy
NASA Astrophysics Data System (ADS)
Noroski, Joseph H.; Siska, P. E.
2006-10-01
The Penning ionization reaction Ne*(2p53sP3)+H2→[NeH2]++e- has been studied in crossed supersonic molecular beams with electron-energy analysis at four collision energies E =1.83, 2.50, 3.16, and 3.89kcal/mol. The electron kinetic-energy spectra, which directly reflect the ionizing transition region, show resolved peaks assignable to v'=0-4 of H2+. The vibrational populations deviate systematically from Franck-Condon behavior, suggesting that the discrete-continuum coupling increases with H2 bond stretching. Each peak displays both increasing breadth and increasing blueshift with increasing E, and the blueshift also increases with increasing v'. The first two properties are consistent with a predominantly repulsive excited-state potential-energy surface, while the last is speculated to be a reflection of the rHH dependence of the ionic surface. Quantum scattering calculations based on ab initio potential surfaces for the excited and ionic states in spherical and infinite-order-sudden rigid rotor approximations are in semiquantitative agreement with the measurements. Discrepancies suggest changes in the imaginary, absorptive part of the excited surface, which probably can be best effected by multiproperty fitting calculations.
Exciton Absorption Spectra by Linear Response Methods:Application to Conjugated Polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosquera, Martin A.; Jackson, Nicholas E.; Fauvell, Thomas J.
The theoretical description of the timeevolution of excitons requires, as an initial step, the calculation of their spectra, which has been inaccessible to most users due to the high computational scaling of conventional algorithms and accuracy issues caused by common density functionals. Previously (J. Chem. Phys. 2016, 144, 204105), we developed a simple method that resolves these issues. Our scheme is based on a two-step calculation in which a linear-response TDDFT calculation is used to generate orbitals perturbed by the excitonic state, and then a second linear-response TDDFT calculation is used to determine the spectrum of excitations relative to themore » excitonic state. Herein, we apply this theory to study near-infrared absorption spectra of excitons in oligomers of the ubiquitous conjugated polymers poly(3-hexylthiophene) (P3HT), poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV), and poly(benzodithiophene-thieno[3,4-b]thiophene) (PTB7). For P3HT and MEH-PPV oligomers, the calculated intense absorption bands converge at the longest wavelengths for 10 monomer units, and show strong consistency with experimental measurements. The calculations confirm that the exciton spectral features in MEH-PPV overlap with those of the bipolaron formation. In addition, our calculations identify the exciton absorption bands in transient absorption spectra measured by our group for oligomers (1, 2, and 3 units) of PTB7. For all of the cases studied, we report the dominant orbital excitations contributing to the optically active excited state-excited state transitions, and suggest a simple rule to identify absorption peaks at the longest wavelengths. We suggest our methodology could be considered for further evelopments in theoretical transient spectroscopy to include nonadiabatic effects, coherences, and to describe the formation of species such as charge-transfer states and polaron pairs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steph, N.C.; Golden, D.E.
1983-03-01
Electron-photon angular correlations between electrons which have excited the 2/sup 1/P state of He and photons from the 2/sup 1/P..-->..1/sup 1/S transition have been studied for 27-, 30-, 35-, and 40-eV incident electrons. Values of lambda and Vertical BarchiVertical Bar obtained from these measurements are compared to values obtained in distorted-wave and R-matrix calculations. The values of lambda and Vertical BarchiVertical Bar have been combined to examine the behavior of Vertical BarO/sub 1//sub -//sup colvertical-bar/ (lambda(1-lambda)sinVertical BarchiVertical Bar), the nonvanishing component of orientation. At 27 eV, a substantial decrease was observed in the values of lambda and Vertical BarO/sub 1//submore » -//sup colvertical-bar/, compared with their values for E> or =30 eV.« less
Electron impact cross sections for the 2,2P state excitation of lithium
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.; Register, D. F.
1982-01-01
Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.
Doppler broadening in the β-proton- γ decay sequence
NASA Astrophysics Data System (ADS)
Schwartz, Sarah; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Perez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; McNeice, E.; Montes, F.; Naqvi, F.; Ortez, R.; Pain, S. D.; Pereira, J.; Prokop, C.; Quaglia, J.; Quinn, S. J.; Sakstrup, J.; Santia, M.; Shanab, S.; Simon, A.; Spyrou, A.; Thiagalingam, E.
2015-10-01
We report the first observation of Doppler-broadening in β delayed proton- γ decay. The broadening occurs because the daughter nucleus γ decays while recoiling from proton emission. A method to analyze β delayed nucleon emission was applied to two Doppler-broadened 25Al peaks from the 26P(βpγ)25Al decay. The method was first tested on the broad 1613 keV γ-ray peak using known center-of-mass proton energies as constraints. The method was then applied to the 1776 keV γ-ray peak from the 2720 keV excited state of 25Al. The broadening was used to determine a 26Si excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.7 (syst.) MeV. This energy is consistent with proton emission from the known T = 2 isobaric analog state of 26P in 26Si.
Baryon spin-flavor structure from an analysis of lattice QCD results of the baryon spectrum
Fernando, I. P.; Goity, J. L.
2015-02-01
The excited baryon masses are analyzed in the framework of the 1/Nc expansion using the available physical masses and also the masses obtained in lattice QCD for different quark masses. The baryon states are organized into irreducible representations of SU(6) x O(3), where the [56,l P=0⁺] ground state and excited baryons, and the [56,2 +] and [70}},1 -] excited states are analyzed. The analyses are carried out to order O(1/N c) and first order in the quark masses. The issue of state identifications is discussed. Numerous parameter independent mass relations result at those orders, among them the well known Gell-Mann-Okubomore » and Equal Spacing relations, as well as additional relations involving baryons with different spins. It is observed that such relations are satisfied at the expected level of precision. The main conclusion of the analysis is that qualitatively the dominant physical effects are similar for the physical and the lattice QCD baryons.« less
NASA Astrophysics Data System (ADS)
Al Omari, S.; Ermilov, E. A.; Helmreich, M.; Jux, N.; Hirsch, A.; Röder, B.
2004-09-01
The population dynamics of the excited and ground states of the monofullerene-bis (pyropheophorbide a) complex (FP1) were studied in polar (DMF) and nonpolar (toluene) solvents using picosecond transient absorption techniques. A strong quenching of the fluorescence signal of FP1 was observed in both solvents, in comparison to the fluorescence of bis (pyropheophorbide a) (P2). This quenching is due to an intramolecular photoinduced electron transfer from the pyropheophorbide a (pyroPheo) moiety to the fullerene C60 monoadduct. In DMF the charge-separated (CS) state of FP1 has a lifetime of 0.32 ns and undergoes a direct transition to the ground state, resulting in a very low value of photosensitised singlet oxygen generation. In toluene, energy transfer from the first excited triplet state of pyroPheo, which has been populated via relaxation of the CS state, generates a considerable amount of singlet oxygen. The lifetime of the CS state in the nonpolar solvent was estimated to be 0.29 ns. It was also shown that in both DMF and toluene the first excited singlet state as well as the triplet state of the fullerene moiety in FP1 are not occupied.
Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel
Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN
2010-11-23
Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.
Cognitive training transfer using a personal computer-based game: A close quarters battle case study
NASA Astrophysics Data System (ADS)
Woodman, Michael D.
In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual-frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ˜0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ˜0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2, 3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive Deltaepsilon or non-polar LC compounds or mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. In this dissertation, we investigate the dielectric heating effect of dual-frequency LCs. Because the absorption peak of imaginary dielectric constant occurs at high frequency region (˜ MHz), there is a heat generated when the LC cell is operated at a high frequency voltage. We have formulated a new dual-frequency LC mixture which greatly reduces the dielectric heating effect while maintaining good physical properties. Another achievement in this thesis is that we have developed a polarization independent phase modulator by using a negative dielectric anisotropic LC gel. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.
1980-03-01
Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.
NASA Technical Reports Server (NTRS)
Chubb, T. A.; Nemecek, J. J.; Simmons, D. E.
1980-01-01
Activities performed in an effort to demonstrate heat of fusion energy storage in containerized salts are reported. The properties and cycle life characteristics of a eutectic salt having a boiling point of about 385 C (NaCl, KCl, Mg Cl2) were determined. M-terphenyl was chosen as the heat transfer fluid. Compatibility studies were conducted and mild steel containers were selected. The design and fabrication of a 2MWh storage boiler tank are discussed.
Bruno, Federica; Castelli, Germano; Vitale, Fabrizio; Giacomini, Elisa; Roberti, Marinella; Colomba, Claudia; Cascio, Antonio; Tolomeo, Manlio
2018-01-01
Most of the antileishmanial modern therapies are not satisfactory due to high toxicity or emergence of resistance and high cost of treatment. Previously, we observed that two compounds of a small library of trans-stilbene and terphenyl derivatives, ST18 and TR4, presented the best activity and safety profiles against Leishmania infantum promastigotes and amastigotes. In the present study we evaluated the effects of ST18 and the TR4 in 6 different species of Leishmania and the modifications induced by these two compounds in the production of 8 different cytokines from infected macrophages. We observed that TR4 was potently active in all Leishmania species tested in the study showing a leishmanicidal activity higher than that of ST18 and meglumine antimoniate in the most of the species. Moreover, TR4 was able to decrease the levels of IL-10, a cytokine able to render the host macrophage inactive allowing the persistence of parasites inside its phagolysosome, and increase the levels of IL-1β, a cytokine important for host resistance to Leishmania infection by inducible iNOS-mediated production of NO, and IL-18, a cytokine implicated in the development of Th1-type immune response. Copyright © 2017 Elsevier Inc. All rights reserved.
Metastable States Arising from the Ablation of Solid Copper
NASA Astrophysics Data System (ADS)
Andrejeva, Anna; Harris, Joe; Wright, Tim
2014-06-01
Laser ablation is a popular method for generating metal atoms so that metal clusters, complexes, and molecules may be investigated in gas phase spectroscopic studies. However, the initial production of a highly energetic metal plasma from the surface of a solid metal target can produce atoms which are not in their ground electronic state, and consequently atomic spectra can become quite complicated due to transitions arising from metastable atomic excited states which remain populated on the experimental timescale. Presented herein are details of the laser vaporisation source in use by our group. Spectra of atomic copper are presented, recorded via (1+1') and (2+1) resonance enhanced multiphoton ionisation (REMPI) spectroscopy. The energetic regions examined are expected to correspond to the (4s24p) 2P ← 2S and the (4s2nd) 2D ← 2S Rydberg series respectively, but the observed spectra also exhibit many additional contributions which are found to arise from electronically excited states, and these will be discussed.
Physics of the spin gap in the S=1/2 Heisenberg antiferromagnet on kagome
NASA Astrophysics Data System (ADS)
Tchernyshyov, Oleg
2009-03-01
A combination of low spin and strong frustration makes the S=1/2 Heisenberg antiferromagnet on kagome a likely candidate for an unusual ground state and elementary excitations. Exact-diagonalization studies [1] on finite clusters point to a lack of magnetic order in the ground state and to an energy gap of order J/20 for S=1 excitations. The exact nature of the ground state and elementary excitations remains a subject of vigorous debate. Among the proposed ground states are chiral [2] and non-chiral [3] spin liquids and a valence-bond crystal (VBC) [4-5]; spin excitations range from deconfined spinons with a Bose [6] or Fermi statistics [2-3] to magnons [7]. We show that the system behaves as a collection of spinons, quasiparticles with S=1/2 and Fermi statistics, whose motion disturbs valence-bond order. Attraction between spinons, mediated by exchange, binds them into small, massive pairs of S=0 with a binding energy of 0.06 J [8]. The pair formation strongly suppresses the motion of individual spinons and makes the survival of the Singh-Huse VBC plausible. A spin excitation amounts to breaking up a pair into two (nearly) free spinons with S=1. The survival of the VBC is expected to lead to spinon confinement; however, small energy differences between various valence-bond configurations would make the confinement length large. [4pt] [1] Ch. Waldtmann et al., Eur. Phys. J. B 2, 510 (1998).[0pt] [2] J. B. Marston and C. Zeng, J. Appl. Phys. 69, 5962 (1991).[0pt] [3] M. B. Hastings, Phys. Rev. B 63, 014413 (2000).[0pt] [4] P. Nikolic and T. Senthil, Phys. Rev. B 68, 214415 (2003).[0pt] [5] R. R. P. Singh and D. A. Huse, Phys. Rev. B 76, 180407 (2007).[0pt] [6] S. Sachdev, Phys. Rev. B 45, 12377 (1992).[0pt] [7] R. R. P. Singh and D. A. Huse, arXiv:0801.2735. [0pt] [8] Z. Hao and O. Tchernyshyov, the subsequent talk.
Kinetic Energy Distribution of H(2p) Atoms from Dissociative Excitation of H2
NASA Technical Reports Server (NTRS)
Ajello, Joseph M.; Ahmed, Syed M.; Kanik, Isik; Multari, Rosalie
1995-01-01
The kinetic energy distribution of H(2p) atoms resulting from electron impact dissociation of H2 has been measured for the first time with uv spectroscopy. A high resolution uv spectrometer was used for the measurement of the H Lyman-alpha emission line profiles at 20 and 100 eV electron impact energies. Analysis of the deconvolved 100 eV line profile reveals the existence of a narrow line peak and a broad pedestal base. Slow H(2p) atoms with peak energy near 80 meV produce the peak profile, which is nearly independent of impact energy. The wings of H Lyman-alpha arise from dissociative excitation of a series of doubly excited Q(sub 1) and Q(sub 2) states, which define the core orbitals. The fast atom energy distribution peaks at 4 eV.
Ab initio excited states from the in-medium similarity renormalization group
NASA Astrophysics Data System (ADS)
Parzuchowski, N. M.; Morris, T. D.; Bogner, S. K.
2017-04-01
We present two new methods for performing ab initio calculations of excited states for closed-shell systems within the in-medium similarity renormalization group (IMSRG) framework. Both are based on combining the IMSRG with simple many-body methods commonly used to target excited states, such as the Tamm-Dancoff approximation (TDA) and equations-of-motion (EOM) techniques. In the first approach, a two-step sequential IMSRG transformation is used to drive the Hamiltonian to a form where a simple TDA calculation (i.e., diagonalization in the space of 1 p 1 h excitations) becomes exact for a subset of eigenvalues. In the second approach, EOM techniques are applied to the IMSRG ground-state-decoupled Hamiltonian to access excited states. We perform proof-of-principle calculations for parabolic quantum dots in two dimensions and the closed-shell nuclei 16O and 22O. We find that the TDA-IMSRG approach gives better accuracy than the EOM-IMSRG when calculations converge, but it is otherwise lacking the versatility and numerical stability of the latter. Our calculated spectra are in reasonable agreement with analogous EOM-coupled-cluster calculations. This work paves the way for more interesting applications of the EOM-IMSRG approach to calculations of consistently evolved observables such as electromagnetic strength functions and nuclear matrix elements, and extensions to nuclei within one or two nucleons of a closed shell by generalizing the EOM ladder operator to include particle-number nonconserving terms.
NASA Astrophysics Data System (ADS)
Lee, L.; Park, H.; Ko, K.-H.; Jeong, D.-Y.
2010-08-01
We demonstrated a Diode Oscillator Fiber Amplification (DOFA) system in order to study the 63 P 1 ↔53 D 1 (1539 nm) transition line of a neutral ytterbium atom that is accessed by the stepwise excitation of the ground state. The frequency of the DOFA system was doubled by a MgO:PPLN crystal for the resonant excitation of the 61 S 0 ↔63 P 1 transition. The frequency of the second harmonic beam was stabilized to the 61 S 0 ↔63 P 1 transition of each isotope with the stability of about 2 MHz. We performed absorption spectroscopy on the 63 P 1 ↔53 D 1 (1539 nm) transition after the velocity selective excitation by the frequency-doubled beam. The isotope shifts in the 63 P 1 ↔53 D 1 (1539 nm) transition were directly measured for the first time. The relative isotope shifts from 174Yb were measured as -105.8 MHz and 109.7 MHz for 176Yb and 172Yb, respectively.
Photophysical and Photochemical Properties of Some Fluorescent Derivatives of Vitamin B1
NASA Astrophysics Data System (ADS)
Marciniak, B.
1987-05-01
Absorption and emission spectra, depopulation kinetics of the lowest excited singlet and triplet states and acid-base equilibria of two fluorescent vitamin B, derivatives, the products I and II of the reaction of N-methylated vitamine B, with cytidine and adenosine, respectively, were investigated. Analysis of the lifetime and quantum yield data indicate that at 77 K emissions are the main processes of deactivation of the S1 and T1 states for the free ion and protonated forms. The pKa values indicate a much higher acidity in the excited singlet and triplet states than in the ground state. I and II undergo very slow photochemical reactions in solution in the presence of oxygen (Φ ~ 10-4).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, J.; Dobryakov, A. L.; Hecht, S., E-mail: sh@chemie.hu-berlin.de, E-mail: skovale@chemie.hu-berlin.de
2015-07-14
1-photon (382 nm) and 2-photon (752 nm) excitations to the S{sub 1} state are applied to record and compare transient absorption spectra of a push-pull triphenylamine (TrP) dye in solution. After 1-photon excitation, ultrafast vibrational and structural molecular relaxations are detected on a 0.1 ps time scale in nonpolar hexane, while in polar acetonitrile, the spectral evolution is dominated by dipolar solvation. Upon 2-photon excitation, transient spectra in hexane reveal an unexpected growth of stimulated emission (SE) and excited-state absorption (ESA) bands. The behavior is explained by strong population transfer S{sub 1} → S{sub n} due to resonant absorption ofmore » a third pump photon. Subsequent S{sub n} → S{sub 1} internal conversion (with τ{sub 1} = 1 ps) prepares a very hot S{sub 1} state which cools down with τ{sub 2} = 13 ps. The pump pulse energy dependence proves the 2-photon origin of the bleach signal. At the same time, SE and ESA are strongly affected by higher-order pump absorptions that should be taken into account in nonlinear fluorescence applications. The 2-photon excitation cross sections σ{sup (2)} = 32 ⋅ 10{sup −50} cm{sup 4} s at 752 nm are evaluated from the bleach signal.« less
Hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C.-H.; Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080; Wang, J.-X.
2004-12-01
Adopting the complete {alpha}{sub s}{sup 4} approach of the perturbative QCD and the updated parton distribution functions, we have estimated the hadronic production of the P-wave excited B{sub c} states (B{sub cJ,L=1}*). In the estimate, special care has been paid to the dependence of the production amplitude on the derivative of the wave function at origin which is obtained by the potential model. For experimental references, main theoretical uncertainties are discussed, and the total cross section as well as the distributions of the production with reasonable cuts at the energies of Tevatron and CERN LHC are computed and presented properly.more » The results show that the P-wave production may contribute to the B{sub c}-meson production indirectly by a factor of about 0.5 of the direct production, and according to the estimated cross section, it is further worthwhile to study the possibility of observing the P-wave production itself experimentally.« less
The Pfi-Zeke Spectroscopy Study of HfS+ and the Ionization Energy of HfS
NASA Astrophysics Data System (ADS)
Antonov, I. O.; Barker, B. J.; Heaven, M. C.
2011-06-01
Spectroscopic data for the ground and low-lying states HfS+ have been obtained using the technique of pulse field ionization - zero electron kinetic energy (PFI-ZEKE) spectroscopy. PFI-ZEKE spectra were recorded for the levels X2Σ+ (v=0-18), 2Δ5/2 (v=0-8) and 2Δ3/2 (v=0-3). Assignments of the electronically excited states of HfS+ are based on CCSD(T) and DFT calculations with SDB-aug-cc-pVTZ basis set. Rotationally resolved spectra were recorded for the X2Σ+ (v=0) state using single rotational line excitation of the intermediate state. The ionization energy for HfS, term energies and molecular constants for the ground and low-lying states of HfS+ will be reported.
The first detection of the 3A g- state in carotenoids using resonance-Raman excitation profiles
NASA Astrophysics Data System (ADS)
Furuichi, Kentaro; Sashima, Tokutake; Koyama, Yasushi
2002-04-01
The singlet 3Ag- state that had been theoretically predicted in shorter polyenes [P. Tavan and K. Schulten J. Chem. Phys. 85 (1986) 6602; Phys. Rev. B 36 (1987) 4337] was first identified in bacterial carotenoids by measurements of resonance-Raman excitation profiles. It is almost overlapped with the 1Bu+ state in spheroidene (the number of conjugated double bonds, n=10), and located in-between the 1Bu+ and 1Bu- states in lycopene, anhydrorhodovibrin and spirilloxanthin (n=11-13). The slopes when the 2Ag--, 1Bu-- and 3Ag--state energies were expressed as linear functions of 1/(2n+1) exhibited the ratio of 2:3.1:3.8 in excellent agreement with that theoretically predicted, 2:3.1:3.7.
Primary photophysical properties of moxifloxacin--a fluoroquinolone antibiotic.
Lorenzo, Fernando; Navaratnam, Suppiah; Edge, Ruth; Allen, Norman S
2008-01-01
The photophysical properties of the fluoroquinolone antibiotic moxifloxacin (MOX) were investigated in aqueous media. MOX in water, at pH 7.4, shows two intense absorption bands at 287 and 338 nm (epsilon = 44,000 and 17,000 dm(3) mol(-1) cm(-1), respectively). The absorption and emission properties of MOX are pH-dependent, pK(a) values for the protonation equilibria of both the ground (6.1 and 9.6) and excited singlet states (6.8 and 9.1) of MOX were determined spectroscopically. MOX fluoresces weakly, the quantum yield for fluorescence emission being maximum (0.07) at pH 8. Phosphorescence from the excited triplet state in frozen ethanol solution has a quantum yield of 0.046. Laser flash photolysis and pulse radiolysis studies have been carried out to characterize the transient species of MOX in aqueous solution. On laser excitation, MOX undergoes monophotonic photoionization with a quantum yield of 0.14. This leads to the formation of a long-lived cation radical whose absorption is maximum at 470 nm (epsilon(470) = 3400 dm(3) mol(-1) cm(-1)). The photoionization process releases hydrated electron which rapidly reacts (k = 2.8 x 10(10) dm(3) mol(-1) s(-1)) with ground state MOX, yielding a long-lived anion radical with maximum absorption at 390 nm (epsilon(390) = 2400 dm(3) mol(-1) cm(-1)). The cation radical of MOX is able to oxidize protein components tryptophan and tyrosine. The bimolecular rate constants for these reactions are 2.3 x 10(8) dm(3) mol(-1) s(-1) and 1.3 x 10(8) dm(3) mol(-1) s(-1), respectively. Singlet oxygen sensitized by the MOX triplet state was also detected only in oxygen-saturated D(2)O solutions, with a quantum yield of 0.075.
Houk, Amanda L; Givens, Richard S; Elles, Christopher G
2016-03-31
Two-photon activation of the p-hydroxyphenacyl (pHP) photoactivated protecting group is demonstrated for the first time using visible light at 550 nm from a pulsed laser. Broadband two-photon absorption measurements reveal a strong two-photon transition (>10 GM) near 4.5 eV that closely resembles the lowest-energy band at the same total excitation energy in the one-photon absorption spectrum of the pHP chromophore. The polarization dependence of the two-photon absorption band is consistent with excitation to the same S3 ((1)ππ*) excited state for both one- and two-photon activation. Monitoring the progress of the uncaging reaction under nonresonant excitation at 550 nm confirms a quadratic intensity dependence and that two-photon activation of the uncaging reaction is possible using visible light in the range 500-620 nm. Deprotonation of the pHP chromophore under mildly basic conditions shifts the absorption band to lower energy (3.8 eV) in both the one- and two-photon absorption spectra, suggesting that two-photon activation of the pHP chromophore may be possible using light in the range 550-720 nm. The results of these measurements open the possibility of spatially and temporally selective release of biologically active compounds from the pHP protecting group using visible light from a pulsed laser.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesaraja, C.D.; McCutchan, E.A.
Available information pertaining to the nuclear structure of all nuclei with mass numbers A=41 ranging from Al (Z=13) to Ti (Z=22) are presented. The experimental reaction and decay data are evaluated and any inconsistencies or discrepancies are noted. The adopted values for various level properties (such as the spin, parity and and halflife) and gamma properties (energy, intensity and multipole character) are given. Since the prior evaluation several new measurements have expanded our knowledge of A=41 nuclides. The half-life of the ground state of {sup 41}Si has been determined and a single excited state identified. Excited levels in {sup 41}Pmore » have been observed for the first time. In {sup 41}Cl, seven new excited states have been identified in deep inelastic and heavy ion transfer reactions. Half-lifes for four states in {sup 41}Ar have been updated and additional levels with gammas have been included from a new measurement using the multiple ion transfer reaction. In {sup 41}Ca via charge-exchange reaction measurements, several new excited states were observed. A number of new resonances in {sup 41}K have been identified via the (p,γ) reaction. There remains a significant discrepancy in the half-life of the first excited state (980 keV) in {sup 41}K, with measurements differing by more than an order of magnitude. Transfer reactions suggest that this M1 transition should be l-forbidden, however, several measurements yield a lifetime which suggests a sizable M1 strength. Further measurements to resolve the current conflicts would be beneficial.« less
Kinetics of plasma formation in sodium vapor excited by nanosecond resonant laser pulses
NASA Astrophysics Data System (ADS)
Mahmoud, M. A.; Gamal, Y. E. E.
2012-07-01
We have studied theoretically formation of molecular ion Na2 + and the atomic ion Na+ which are created in laser excited sodium vapor at the first resonance transition, 3S1/2-3P1/2. A set of rate equations, which describe the temporal variation of the electron energy distribution function (EEDF), the electron density, the population density of the excited states as well as the atomic Na+ and molecular ion Na2 +, are solved numerically. The calculations are carried out at different laser energy and different sodium atomic vapor densities. The numerical calculations of the EEDF show that a deviation from the Maxwellian distribution due to the superelastic collisions effect. In addition to the competition between associative ionization (3P-3P), associative ionization (3P-3D) and Molnar-Hornbeck ionization processes for producing Na2 +, the calculations have also shown that the atomic ions Na+ are formed through the Penning ionization and photoionization processes. These results are found to be consistent with the experimental observations.
Near Hartree-Fock quality GTO basis sets for the second-row atoms
NASA Technical Reports Server (NTRS)
Partridge, Harry
1987-01-01
Energy optimized, near Hartree-Fock quality Gaussian basis sets ranging in size from (17s12p) to (20s15p) are presented for the ground states of the second-row atoms for Na(2P), Na(+), Na(-), Mg(3P), P(-), S(-), and Cl(-). In addition, optimized supplementary functions are given for the ground state basis sets to describe the negative ions, and the excited Na(2P) and Mg(3P) atomic states. The ratios of successive orbital exponents describing the inner part of the 1s and 2p orbitals are found to be nearly independent of both nuclear charge and basis set size. This provides a method of obtaining good starting estimates for other basis set optimizations.
Sobolewski, Andrzej L.; Domcke, Wolfgang; Hättig, C.
2005-01-01
The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20–23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson–Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson–Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic 1π π * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson–Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing 1π π * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs. PMID:16330778
Laser induced fluorescence of HCCO (DCCO) radical formed in O+C2H2 (C2D2) reaction
NASA Astrophysics Data System (ADS)
Inoue, Gen; Suzuki, Makoto
1986-04-01
Laser induced fluorescence of HCCO (DCCO) radical have been obtained in the reaction of O(3P)+C2H2(C2D2) for the first time (X 2A'-2A`). The laser excitation spectra have been obtained over the wavelength region from 310 to 370 nm. The collision-free lifetimes for HCCO and DCCO are 0.14 and 3.8 μs, respectively. From the excitation and dispersed fluorescence spectra, some vibrational energies have been obtained in cm-1 unit: 1762 (1727), 150-140 (n.a.), and 2334 (1901) for the ground state HCCO (DCCO), and 1183 (1167), 866 (607), and 2862 (2075) for the excited state HCCO (DCCO). The band origin ν00 is 28 296.7 cm-1.
Long-Lived Triplet Excited States of Bent-Shaped Pentacene Dimers by Intramolecular Singlet Fission.
Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Mori, Tadashi; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku
2016-03-24
Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF (360 ns), whereas those of PcD-4Ph were quite similar in both solvent.
What is beta-carotene doing in the photosystem II reaction centre?
Telfer, Alison
2002-01-01
During photosynthesis carotenoids normally serve as antenna pigments, transferring singlet excitation energy to chlorophyll, and preventing singlet oxygen production from chlorophyll triplet states, by rapid spin exchange and decay of the carotenoid triplet to the ground state. The presence of two beta-carotene molecules in the photosystem II reaction centre (RC) now seems well established, but they do not quench the triplet state of the primary electron-donor chlorophylls, which are known as P(680). The beta-carotenes cannot be close enough to P(680) for triplet quenching because that would also allow extremely fast electron transfer from beta-carotene to P(+)(680), preventing the oxidation of water. Their transfer of excitation energy to chlorophyll, though not very efficient, indicates close proximity to the chlorophylls ligated by histidine 118 towards the periphery of the two main RC polypeptides. The primary function of the beta-carotenes is probably the quenching of singlet oxygen produced after charge recombination to the triplet state of P(680). Only when electron donation from water is disturbed does beta-carotene become oxidized. One beta-carotene can mediate cyclic electron transfer via cytochrome b559. The other is probably destroyed upon oxidation, which might trigger a breakdown of the polypeptide that binds the cofactors that carry out charge separation. PMID:12437882
Mean-field description of topological charge 4e superconductors
NASA Astrophysics Data System (ADS)
Gabriele, Victoria; Luo, Jing; Teo, Jeffrey C. Y.
BCS superconductors can be understood by a mean-field approximation of two-body interacting Hamiltonians, whose ground states break charge conservation spontaneously by allowing non-vanishing expectation values of charge 2e Cooper pairs. Topological superconductors, such as one-dimensional p-wave wires, have non-trivial ground states that support robust gapless boundary excitations. We construct a four-body Hamiltonian in one dimension and perform a mean-field analysis. The mean-field Hamiltonian is now quartic in fermions but is still exactly solvable. The ground state exhibits 4-fermion expectation values instead of Cooper pair ones. There also exists a topological phase, where the charge 4e superconductor carries exotic zero energy boundary excitations.
Crystallochromy of perylene pigments: Influence of an enlarged polyaromatic core region
NASA Astrophysics Data System (ADS)
Gisslén, L.; Scholz, R.
2011-04-01
As demonstrated in a recent model study of several perylene pigments crystallizing in the monoclinic space group P21/c, the optical properties in the crystalline phase are determined by the interference between neutral molecular excitations and charge transfer states via electron and hole transfer. In the present work, we apply this exciton model to three further perylene compounds crystallizing in the space groups P21/n, P1̲, and P21/c, involving two chromophores with an enlarged polyaromatic core. In all cases, the charge transfer between stack neighbors increases the second moment of the optical response, whereas a larger conjugated core results in a red shift of the neutral excitation energy of each chromophore.
From Catheter to Kidney Stone: The Uropathogenic Lifestyle of Proteus mirabilis
Norsworthy, Allison N.; Pearson, Melanie M.
2017-01-01
Proteus mirabilis is a model organism for urease-producing uropathogens. These diverse bacteria cause infection stones in the urinary tract and form crystalline biofilms on indwelling urinary catheters, frequently leading to poly-microbial infection. Recent work has elucidated how P. mirabilis causes all of these disease states. Particularly exciting is the discovery that this bacterium forms large clusters in the bladder lumen that are sites for stone formation. These clusters, and other steps of infection, require two virulence factors in particular: urease and MR/P fimbriae. Highlighting the importance of MR/P fimbriae is the cotranscribed regulator, MrpJ, which globally controls virulence. Overall, P. mirabilis exhibits an extraordinary lifestyle, and further probing will answer exciting basic microbiological and clinically relevant questions. PMID:28017513
The γ p →p η η reaction in an effective Lagrangian model
NASA Astrophysics Data System (ADS)
Liu, Bo-Chao; Chen, Shao-Fei
2017-11-01
In this paper, we investigate the γ p →p η η reaction within an effective Lagrangian approach and isobar model. We consider the contributions from the intermediate N*(1535 ) , N*(1650 ) , N*(1710 ) , and N*(1720 ) isobars which finally decay to the N η state. It is found that the excitation of the N*(1535 ) dominates this reaction close to threshold and ρ meson exchange plays the most important role for the excitation of nucleon resonances. Therefore, this reaction offers a potentially good place to study the properties of nucleon resonances and their couplings to the N ρ channel. Predictions for angular distributions and invariant mass spectra of final particles are also presented for future comparison with data.
Study of the low energy spectrum of titanium by using QMC methods
NASA Astrophysics Data System (ADS)
Buendía, E.; Caballero, M. A.; Gálvez, F. J.
2018-02-01
We study the ground state and the low energy excited states of Ti. Each variational wave function is a product of a Jastrow correlation factor by a model function obtained within the parameterized optimized effective potential (POEP) framework by using a configuration mixing. Near degeneracy effects between the orbitals 4s and 4p, as well as excitations to the 3d orbital due to the strong competition between 4s and 3d orbitals in transition metal atoms are taken into account. All electron calculations have been carried out by using quantum Monte Carlo techniques, variational and diffusion.
Core excitation effects on oscillator strengths for transitions in four electron atomic systems
NASA Astrophysics Data System (ADS)
Chang, T. N.; Luo, Yuxiang
2007-06-01
By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).
Synthesis and luminescence characterization of Pr3+ doped Sr1.5Ca0.5SiO4 phosphor
NASA Astrophysics Data System (ADS)
Vidyadharan, Viji; Mani, Kamal P.; Sajna, M. S.; Joseph, Cyriac; Unnikrishnan, N. V.; Biju, P. R.
2014-12-01
Luminescence properties of Pr3+ activated Sr1.5Ca0.5SiO4 phosphors synthesized by solid state reaction method are reported in this work. Blue, orange red and red emissions were observed in the Pr3+ doped sample under 444 nm excitation and these emissions are assigned as 3P0 → 3H4, 3P0 → 3H6 and 3P0 → 3F4 transitions. The emission intensity shows a maximum corresponding to the 0.5 wt% Pr3+ ion. The decay analysis was done for 0.05 and 0.5 wt% Pr3+ doped samples for the transition 3P0 → 3H6. The life times of 0.05 and 0.5 wt% Pr3+ doped samples were calculated by fitting to exponential and non-exponential curve respectively, and are found to be 156 and 105 μs respectively. The non-exponential behaviour arises due to the statistical distribution of the distances between the ground state Pr3+ ions and excited state Pr3+ ions, which cause the inhomogeneous energy transfer rate. The XRD spectrum confirmed the triclinic phase of the prepared phosphors. The compositions of the samples were determined by the energy dispersive X-ray spectra. From the SEM images it is observed that the particles are agglomerated and are irregularly shaped. IR absorption bands were assigned to different vibrational modes. The well resolved peaks shown in the absorption spectra are identical to the excitation spectra of the phosphor samples. Pr3+ activated Sr1.5Ca0.5SiO4 phosphors can be efficiently excited with 444 nm irradiation and emit multicolour visible emissions. From the CIE diagram it can be seen that the prepared phosphor samples give yellowish-green emission.
Luminescence properties and electronic structure of Ce{sup 3+}-doped gadolinium aluminum garnet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dotsenko, V.P., E-mail: ssclab@ukr.net; Berezovskaya, I.V.; Voloshinovskii, A.S.
2015-04-15
Highlights: • The luminescence properties of Ce{sup 3+} ions in (Y, Gd){sub 3}Al{sub 5}O{sub 12} are analyzed. • The Gd{sup 3+} → Y{sup 3+} substitution leads to increasing of Ce{sup 3+} noncubic crystal field splitting parameter. • The excitation spectra for the Ce{sup 3+} emission in GdAG contain bands at 6.67, 7.75, and 9.76 eV. • These features are due to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions. • Contributions from Al atoms to the conduction-band density of states are quite essential. - Abstract: Yttrium-gadolinium aluminum garnets (YGdAG) doped with Ce{sup 3+} ions havemore » been prepared by co-precipitation method. The luminescent properties of Ce{sup 3+} ions in Gd{sub 3(1−x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.01) have been studied upon excitation in the 2–20 eV region. The substitution of Gd{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f → 5d excitation bands of Ce{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain bands at 6.67, 7.75, and 9.76 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p → Al 3s, 3p transitions, respectively. Although gadolinium states dominate near the bottom of the conduction band of Gd{sub 3}Al{sub 5}O{sub 12}, contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.« less
The resonant structure of ^18Ne and its relevance in the breakout of the Hot CNO cycle
NASA Astrophysics Data System (ADS)
Almaraz-Calderon, S.; Tan, W.; Aprahamian, A.; Bucher, B.; Gorres, J.; Roberts, A.; Villano, A.; Wiescher, M.; Brune, C.; Heinen, Z.; Massey, T.; Mach, H.; Guray, N.; Guray, R. T.
2009-10-01
In explosive hydrogen burning environments such as Novae and X-ray bursts, temperatures and densities achieved are sufficiently high to bypass the beta decay of the waiting points of the hot CNO cycle by alpha captures, leading to a thermonuclear runaway via the rp-process. One of the two paths to a breakout from the hot CNO cycle is the route starting from ^14O(α,p)^17F followed by ^17F(p,γ)^18Ne and ^18Ne(α,p). The ^14O(α,p) reaction proceeds through resonant states in ^18Ne, making the reaction rate dependent on the excitation energies and spins as well as partial and total widths of these resonances. We used the ^16O(^3He,n) reaction and charged particle-neutron coincidences to measure the structure details of levels in ^18Ne. In particular, the α and proton decay branching ratios via ground state and excited states in ^17F were measured. The analysis of the data will allow us to provide crucial information to be included in the reaction network calculations that could have great impact on the nuclear energy generation and nucleosynthesis that occur in these explosive environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haar, Th. von der; Hebecker, A.; Il'Ichev, Yu.
1996-04-01
The fast excited state intramolecular charge transfer (ICT) and dual fluorescence observed with several 4-aminobenzonitriles is discussed. It is shown that the magnitude of the energy gap between the two lowest excited states determines the occurrence or absence of ICT. The photophysical behavior of a series of four 4-aminobenzonitriles in which the amino nitrogen atom is part of a four- to seven-membered heterocyclic ring, P4C to P7C, is studied by using time-resolved fluorescence measurements. The ICT rate constant strongly decreases with decreasing ring size. With P4C in diethyl ether ICT does not occur. This is attributed to the increase ofmore » the amino nitrogen inversion barrier with decreasing ring size. The change of the amino nitrogen from pyramidal to planar is considered to be an important reaction coordinate. The photophysics of the 4-aminobenzonitriles is different from that of other ICT systems such as donor/acceptor-substituted stilbenes and 9,9'-bianthryl, which are governed by the charge distribution and macroscopic Coulombic interaction in their CT states.« less
NASA Astrophysics Data System (ADS)
von der Haar, Th.; Hebecker, A.; Il'Ichev, Yu.; Kühnle, W.; Zachariasse, K. A.
1996-04-01
The fast excited state intramolecular charge transfer (ICT) and dual fluorescence observed with several 4-aminobenzonitriles is discussed. It is shown that the magnitude of the energy gap between the two lowest excited states determines the occurrence or absence of ICT. The photophysical behavior of a series of four 4-aminobenzonitriles in which the amino nitrogen atom is part of a four- to seven-membered heterocyclic ring, P4C to P7C, is studied by using time-resolved fluorescence measurements. The ICT rate constant strongly decreases with decreasing ring size. With P4C in diethyl ether ICT does not occur. This is attributed to the increase of the amino nitrogen inversion barrier with decreasing ring size. The change of the amino nitrogen from pyramidal to planar is considered to be an important reaction coordinate. The photophysics of the 4-aminobenzonitriles is different from that of other ICT systems such as donor/acceptor-substituted stilbenes and 9,9'-bianthryl, which are governed by the charge distribution and macroscopic Coulombic interaction in their CT states.
NASA Astrophysics Data System (ADS)
Ding, Xiaobin; Sun, Rui; Koike, Fumihiro; Kato, Daiji; Murakami, Izumi; Sakaue, Hiroyuki A.; Dong, Chenzhong
2017-03-01
The electron correlation effects and Breit interaction as well as Quantum Electro-Dynamics (QED) effects were expected to have important contribution to the energy level and transition properties of heavy highly charged ions. The ground states [Ne]3s23p63d2 and first excited states [Ne]3s23p53d3 of W54+ ion have been studied by using Multi-Configuration Dirac-Fock method with the implementation of Grasp2K package. A restricted active space method was employed to investigate the correlation contribution from different models. The Breit interaction and QED effects were taken into account in the relativistic configuration interaction calculation with the converged wavefunction. It is found that the correlation contribution from 3s and 3p orbital have important contribution to the energy level, transition wavelength and probability of the ground and the first excited state of W54+ ion. Contribution to the Topical Issue "Atomic and Molecular Data and their Applications", edited by Gordon W.F. Drake, Jung-Sik Yoon, Daiji Kato, Grzegorz Karwasz.
NASA Astrophysics Data System (ADS)
Glazov, M. M.; Golub, L. E.; Wang, G.; Marie, X.; Amand, T.; Urbaszek, B.
2017-01-01
Optical properties of transition metal dichalcogenides monolayers are controlled by Wannier-Mott excitons forming a series of 1 s ,2 s ,2 p ,... hydrogen-like states. We develop the theory of the excited excitonic states energy spectrum fine structure. We predict that p - and s -shell excitons are mixed due to the specific D3 h point symmetry of the transition metal dichalcogenide monolayers. Hence, both s - and p -shell excitons are active in both single- and two-photon processes, providing an efficient mechanism of second harmonic generation. The corresponding contribution to the nonlinear susceptibility is calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milisavljevic, S.; Rabasovic, M. S.; Sevic, D.
2007-08-15
Experimental measurements of electron impact excitation of the 6p7s {sup 3}P{sub 0,1} states of Pb atoms have been made at incident electron energies E{sub 0}=10, 20, 40, 60, 80, and 100 eV and scattering angles from 10 deg. to 150 deg. In addition, relativistic distorted-wave calculations have been carried out at these energies. The data obtained include the differential (DCS), integral (Q{sub I}), momentum transfer (Q{sub M}), and viscosity (Q{sub V}) cross sections. Absolute values for the differential cross sections have been obtained by normalizing the relative DCSs at 10 deg. to the experimental DCS values of [S. Milisavljevic, M.more » S. Rabasovic, D. Sevic, V. Pejcev, D. M. Filipovic, L. Sharma, R. Srivastava, A. D. Stauffer, and B. P. Marinkovic, Phys. Rev. A 75, 052713 (2007)]. The integrated cross sections were determined by numerical integration of the absolute DCSs. The experimental results have been compared with the corresponding calculations and good agreement is obtained.« less
Results From the N* Program at Jefferson Lab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inna Aznauryan, Volker Burkert, Tsung-Shung Lee, Viktor Mokeev
2011-06-01
We discuss the results on the fundamental degrees of freedom underlying the nucleon excitation spectrum and how they evolve as the resonance transitions are investigated with increasingly better space-time resolution of the electromagnetic probe. Improved photocouplings for a number of resonant states, those for the N(1720)P13 being significantly changed, have been determined and entered into the 2008 edition of the RPP. Strong sensitivity to the N(1900)P13 state, listed now as a 2-star state in the same edition of RPP, has been observed in KΛ and KΣ photoproduction. None of the earlier observations of a Θ+5(1540) was confirmed in a seriesmore » of three Jefferson Lab high statistics dedicated measurements, and stringent upper limits on production cross sections were placed in several channels. For the four lowest excited states, the Δ(1232)P33, N(1440)P11, N(1520)D13, and N(1535)S11, the transition amplitudes have been measured in a wide range in photon virtuality Q2. The amplitudes for the Δ(1232) show the importance of the pion-cloud contribution and do not show any sign of approaching the pQCD regime for Q2 < 7 GeV2. For the Roper resonance, N(1440)P11, the data provide strong evidence for this state as a predominantly radial excitation of the nucleon as a 3-quark ground state. For the N(1535)S11, comparison of the results extracted from π and η photo- and electroproduction data allowed one to specify the branching ratios of this state to the πN and ηN channels; they entered into the 2010 edition of the RPP. Measured for the first time, the longitudinal transition amplitude for the N(1535)S11 became a challenge for quark models and can be indicative of large meson-cloud contributions or alternative representations of this state. The N(1520)D13 clearly shows the rapid changeover from helicity-3/2 dominance at the real photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2 confirming a long-standing prediction of the constituent quark model. The search for undiscovered but predicted states continues to be pursued with a vigorous experimental program. While recent data from Jefferson Lab and elsewhere provide intriguing hints of new states, final conclusions will have to wait for the results of the broad experimental effort currently underway with CLAS, and subsequent analyses involving the EBAC at Jefferson Lab.« less
Note: Observation of a new electronically excited state of cobalt monoxide
NASA Astrophysics Data System (ADS)
Zang, Jianzheng; Zhang, Qun; Qin, Chengbing; Gu, Zhong; Bai, Xilin; Chen, Yang
2012-11-01
The laser-induced fluorescence excitation spectra of jet-cooled CoO molecules have been recorded in the energy region of 21 800—25 000 cm-1. Apart from the seven vibronic bands assigned to the known G4Φ9/2(υ') - X4Δ7/2(υ″ = 0) progression [M. Barnes, D. J. Clouthier, P. G. Hajigeorgiou, G. Huang, C. T. Kingston, A. J. Merer, G. F. Metha, J. R. D. Peers, and S. J. Rixon, J. Mol. Spectrosc. 186, 374 (1997), 10.1006/jmsp.1997.7456], we observed a new band system assignable to the [22.95]4Δ7/2(υ' = 0 - 4) - X4Δ7/2(υ″ = 0) progression. Extensive perturbations among these vibronic bands have been revealed by means of reduced energy plots. The new electronically excited 4Δ state has been determined to be most likely of an electronic configuration (2pπ)3(4sσ)2(3dδ)3(3dπ)3 based on the charge-transferred promotion model.
Structure and energetics of InN and GaN dimers
NASA Astrophysics Data System (ADS)
Šimová, Lucia; Tzeli, Demeter; Urban, Miroslav; Černušák, Ivan; Theodorakopoulos, Giannoula; Petsalakis, Ioannis D.
2008-06-01
Large-scale mapping of various dimers of indium nitride and gallium nitride in singlet and triplet electronic states is reported. Second-order perturbation theory with Møller-Plesset partitioning of the Hamiltonian (MP2) and coupled-cluster with single and double excitations corrected for the triple excitations (CCSD(T)) are used for the geometry determinations and evaluation of excitation and dissociation energies. For gallium and nitrogen we have used the singly augmented correlation-consistent triple-zeta basis set (aug-cc-pVTZ), for indium we have used the aug-cc-pVTZ-pseudopotential basis set. The dissociation energies are corrected for basis set superposition error (BBSE) including geometrical relaxation of the monomers. We compare and discuss the similarities and dissimilarities in the structural patterns and energetics of both groups of isomers, including the effect of the BSSE. Our computations show that there are not only different ground states for In 2N 2 and Ga 2N 2 but also different numbers of stable stationary points on their potential energy surface. We compare our results with the molecular data published so far for these systems.
NASA Astrophysics Data System (ADS)
Czakó, Gábor
2014-06-01
Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O(3P) + CH4(vk = 0, 1) → OH + CH3 [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH3(v = 0) coincident product states can be directly compared to experiment for O + CH4(v3 = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered, whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v3) excitation of the reactant. Theory predicts similar behavior for the O + CH4(v1 = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH4(vk = 1) reactions produce smaller cross sections for OH(v = 1) + CH3(v = 0) than those of O + CH4(v = 0) → OH(v = 0) + CH3(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH4(v = 0) are in good agreement with experiment.
Topological spinon bands and vison excitations in spin-orbit coupled quantum spin liquids
NASA Astrophysics Data System (ADS)
Sonnenschein, Jonas; Reuther, Johannes
2017-12-01
Spin liquids are exotic quantum states characterized by the existence of fractional and deconfined quasiparticle excitations, referred to as spinons and visons. Their fractional nature establishes topological properties such as a protected ground-state degeneracy. This work investigates spin-orbit coupled spin liquids where, additionally, topology enters via nontrivial band structures of the spinons. We revisit the Z2 spin-liquid phases that have recently been identified in a projective symmetry-group analysis on the square lattice when spin-rotation symmetry is maximally lifted [J. Reuther et al., Phys. Rev. B 90, 174417 (2014), 10.1103/PhysRevB.90.174417]. We find that in the case of nearest-neighbor couplings only, Z2 spin liquids on the square lattice always exhibit trivial spinon bands. Adding second-neighbor terms, the simplest projective symmetry-group solution closely resembles the Bernevig-Hughes-Zhang model for topological insulators. Assuming that the emergent gauge fields are static, we investigate vison excitations, which we confirm to be deconfined in all investigated spin phases. Particularly, if the spinon bands are topological, the spinons and visons form bound states consisting of several spinon-Majorana zero modes coupling to one vison. The existence of such zero modes follows from an exact mapping between these spin phases and topological p +i p superconductors with vortices. We propose experimental probes to detect such states in real materials.
Czakó, Gábor
2014-06-21
Motivated by a recent experiment [H. Pan and K. Liu, J. Chem. Phys. 140, 191101 (2014)], we report a quasiclassical trajectory study of the O((3)P) + CH4(vk = 0, 1) → OH + CH3 [k = 1 and 3] reactions on an ab initio potential energy surface. The computed angular distributions and cross sections correlated to the OH(v = 0, 1) + CH3(v = 0) coincident product states can be directly compared to experiment for O + CH4(v3 = 0, 1). Both theory and experiment show that the ground-state reaction is backward scattered, whereas the angular distributions shift toward sideways and forward directions upon antisymmetric stretching (v3) excitation of the reactant. Theory predicts similar behavior for the O + CH4(v1 = 1) reaction. The simulations show that stretching excitation enhances the reaction up to about 15 kcal/mol collision energy, whereas the O + CH4(vk = 1) reactions produce smaller cross sections for OH(v = 1) + CH3(v = 0) than those of O + CH4(v = 0) → OH(v = 0) + CH3(v = 0). The former finding agrees with experiment and the latter awaits for confirmation. The computed cold OH rotational distributions of O + CH4(v = 0) are in good agreement with experiment.
Concentrations of a triplet excited state are enhanced in illuminated ice.
Chen, Zeyuan; Anastasio, Cort
2017-01-25
Photochemical reactions influence the fates and lifetimes of organic compounds in snow and ice, both through direct photoreactions and via photoproduced transient species such as hydroxyl radical (˙OH) and, perhaps, triplet excited states of organic compounds (i.e., triplets). While triplets can be important oxidants in atmospheric drops and surface waters, little is known of this class of oxidants in frozen samples. To investigate this, we examined the photoreaction of phenol with the triplet state of 3,4-dimethoxybenzaldehyde ( 3 DMB*), a product from biomass combustion, in illuminated laboratory ices. Our results show that the rate of phenol loss due to 3 DMB* is, on average, increased by a factor of 95 ± 50 in ice compared to the equivalent liquid sample. We find that this experimentally measured freeze concentration factor, F EXP , is independent of total solute concentration and temperature, in contrast to what is expected from a liquid-like region whose composition follows freezing point depression. We also find that F EXP for triplets is independent of pH, although the rates of phenol loss increase with decreasing pH in both solution and ice. The enhancement in the rate of phenol loss in/on ice indicates that concentrations of triplet excited states are enhanced in ice relative to solution and suggests that this class of oxidants might be a significant sink for organics in snow and ice.
NASA Astrophysics Data System (ADS)
Liu, Bo-Qing; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Tseng, Huan-Wei; Chou, Pi-Tai
2016-03-01
Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2‧-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH2Cl2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15 ± 3 nm under a critical micelle concentration (CMC) of ~80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at > CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging.
Vengris, Mikas; Larsen, Delmar S; van der Horst, Michael A; Larsen, Olaf F A; Hellingwerf, Klaas J; van Grondelle, Rienk
2005-03-10
Pump-probe and pump-dump probe experiments have been performed on several isolated model chromophores of the photoactive yellow protein (PYP). The observed transient absorption spectra are discussed in terms of the spectral signatures ascribed to solvation, excited-state twisting, and vibrational relaxation. It is observed that the protonation state has a profound effect on the excited-state lifetime of p-coumaric acid. Pigments with ester groups on the coumaryl tail end and charged phenolic moieties show dynamics that are significantly different from those of other pigments. Here, an unrelaxed ground-state intermediate could be observed in pump-probe signals. A similar intermediate could be identified in the sinapinic acid and in isomerization-locked chromophores by means of pump-dump probe spectroscopy; however, in these compounds it is less pronounced and could be due to ground-state solvation and/or vibrational relaxation. Because of strong protonation-state dependencies and the effect of electron donor groups, it is argued that charge redistribution upon excitation determines the twisting reaction pathway, possibly through interaction with the environment. It is suggested that the same pathway may be responsible for the initiation of the photocycle in native PYP.
Photoisomerization and photoionization of the photoactive yellow protein chromophore in solution.
Larsen, Delmar S; Vengris, Mikas; van Stokkum, Ivo H M; van der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk
2004-04-01
Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-dump-probe technique to investigate the ground-state dynamics and competing excited-state processes in the excitation-induced ultrafast dynamics of thiomethyl p-coumaric acid, a model chromophore for the photoreceptor photoactive yellow protein. Our results demonstrate the parallel formation of two relaxation pathways (with multiple transient states) that jointly lead to two different types of photochemistry: cis-trans isomerization and detachment of a hydrated electron. The relative transition rates and quantum yields of both pathways have been determined. We find that the relaxation of the photoexcited chromophores involves multiple, transient ground-state intermediates and the chromophore in solution does not generate persistent photoisomerized products, but instead undergoes photoionization resulting in the generation of detached electrons and radicals. These results are of great value in interpreting the more complex dynamical changes in the optical properties of the photoactive yellow protein.
Photoisomerization and Photoionization of the Photoactive Yellow Protein Chromophore in Solution
Larsen, Delmar S.; Vengris, Mikas; van Stokkum, Ivo H. M.; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk
2004-01-01
Dispersed pump-dump-probe spectroscopy has the ability to characterize and identify the underlying ultrafast dynamical processes in complicated chemical and biological systems. This technique builds on traditional pump-probe techniques by exploring both ground- and excited-state dynamics and characterizing the connectivity between constituent transient states. We have used the dispersed pump-dump-probe technique to investigate the ground-state dynamics and competing excited-state processes in the excitation-induced ultrafast dynamics of thiomethyl p-coumaric acid, a model chromophore for the photoreceptor photoactive yellow protein. Our results demonstrate the parallel formation of two relaxation pathways (with multiple transient states) that jointly lead to two different types of photochemistry: cis-trans isomerization and detachment of a hydrated electron. The relative transition rates and quantum yields of both pathways have been determined. We find that the relaxation of the photoexcited chromophores involves multiple, transient ground-state intermediates and the chromophore in solution does not generate persistent photoisomerized products, but instead undergoes photoionization resulting in the generation of detached electrons and radicals. These results are of great value in interpreting the more complex dynamical changes in the optical properties of the photoactive yellow protein. PMID:15041690
Electronic excitations in long polyenes revisited
NASA Astrophysics Data System (ADS)
Schmidt, Maximilian; Tavan, Paul
2012-03-01
We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000), 10.1007/s002149900083] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ⩽ N ⩽ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ⩽ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B_u^- states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B_u^- state is the third excited singlet state for N < 12 and becomes the second for N ⩾ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.
Atomic Data on Inelastic Processes in Calcium–Hydrogen Collisions
NASA Astrophysics Data System (ADS)
Belyaev, A. K.; Voronov, Y. V.; Yakovleva, S. A.; Mitrushchenkov, A.; Guitou, M.; Feautrier, N.
2017-12-01
Inelastic cross sections and rate coefficients in Ca + H and Ca+ + H‑ collisions for all transitions between the 17 lowest covalent states plus one ionic molecular state are calculated based on the most recent ab initio adiabatic potentials for the 11 lowest molecular states, as well as on the model asymptotic potentials for higher-lying states, including the ground ionic molecular state. Nuclear dynamics is treated by the probability-current method and the multichannel formulas for the collision energy range 0.01–100 eV. The rates are computed for mutual neutralization, ion-pair formation, and (de-)excitation processes for the temperature range T = 1000–10,000 K. The calculations single out the partial processes with large and moderate rate coefficients. The largest rates correspond to the mutual neutralization into the {Ca}(4s5s{}3S), {Ca}(4s5p{}3P^\\circ ), {Ca}(4s5s{}1S), and {Ca}(4s5p{}{1}P^\\circ ) final states; at T = 6000 K the largest value is 5.50 × 10‑8 cm3 s‑1 for {Ca}(4s5s{}3S). Among the (de-)excitation processes, the largest rate coefficient corresponds to the {Ca}(4s5s{}1S)\\to {Ca}(4s5s{}3S) transition; at T = 6000 K, the largest rate has the value of 8.46 × 10‑9 cm3 s‑1.
Ultrafast photochemistry of polyatomic molecules containing labile halogen atoms in solution
NASA Astrophysics Data System (ADS)
Mereshchenko, Andrey S.
Because breaking and making of chemical bonds lies at the heart of chemistry, this thesis focuses on dynamic studies of labile molecules in solutions using ultrafast transient absorption spectroscopy. Specifically, my interest is two-fold: (i) novel reaction intermediates of polyhalogenated carbon, boron and phosphorus compounds; (ii) photophysics and photochemistry of labile copper(II) halide complexes. Excitation of CH2Br2, CHBr3, BBr 3, and PBr3 into n(Br)sigma*(X-Br) states, where X=C, B, or P, leads to direct photoisomerization with formation of isomers having Br-Br bonds as well as rupture of one of X-Br bonds with the formation of a Br atom and a polyatomic radical fragment, which subsequently recombine to form similar isomer products. Nonpolar solvation stabilizes the isomers, consistent with intrinsic reaction coordinate calculations of the isomer ground state potential energy surfaces at the density functional level of theory, and consequently, the involvement of these highly energetic species on chemically-relevant time scales needs to be taken into account. Monochlorocomplexes in methanol solutions promoted to the ligand-to-metal charge transfer (LMCT) excited state predominantly undergo internal conversion via back electron transfer, giving rise to vibrationally hot ground-state parent complexes. Copper-chloride homolitical bond dissociation yielding the solvated copper(I) and Cl- atom/solvent CT complexes constitutes a minor pathway. Insights into ligand substitution mechanisms were acquired by monitoring the recovery of monochloro complexes at the expense of two unexcited dichloro- and unsubstituted forms of Cu(II) complexes also present in the solution. Detailed description of ultrafast excited-state dynamics of CuCl 42- complexes in acetonitrile upon excitation into all possible Ligand Field (LF) excited states and two most intense LMCT transitions is reported. The LF states were found to be nonreactive with lifetimes remarkably longer than those for copper(II) complexes studied so far, in particular, copper blue proteins. The highest 2A1 and lowest 2E LF states relax directly to the ground electronic state whereas the intermediate 2B1 LF state relaxes stepwise through the 2E state. The LMCT excited states are short-lived undergoing either ionic dissociation (CuCl3- + Cl-) or cascading relaxation through the manifold of vibrationally hot LF states to the ground state.
Near ultraviolet photodissociation spectroscopy of Mn+(H2O) and Mn+(D2O)
NASA Astrophysics Data System (ADS)
Pearson, Wright L.; Copeland, Christopher; Kocak, Abdulkadir; Sallese, Zachary; Metz, Ricardo B.
2014-11-01
The electronic spectra of Mn+(H2O) and Mn+(D2O) have been measured from 30 000 to 35 000 cm-1 using photodissociation spectroscopy. Transitions are observed from the 7A1 ground state in which the Mn+ is in a 3d54s1 electronic configuration, to the 7B2 (3d54py) and 7B1 (3d54px) excited states with T0 = 30 210 and 32 274 cm-1, respectively. Each electronic transition has partially resolved rotational and extensive vibrational structure with an extended progression in the metal-ligand stretch at a frequency of ˜450 cm-1. There are also progressions in the in-plane bend in the 7B2 state, due to vibronic coupling, and the out-of-plane bend in the 7B1 state, where the calculation illustrates that this state is slightly non-planar. Electronic structure computations at the CCSD(T)/aug-cc-pVTZ and TD-DFT B3LYP/6-311++G(3df,3pd) level are also used to characterize the ground and excited states, respectively. These calculations predict a ground state Mn-O bond length of 2.18 Å. Analysis of the experimentally observed vibrational intensities reveals that this bond length decreases by 0.15 ± 0.015 Å and 0.14 ± 0.01 Å in the excited states. The behavior is accounted for by the less repulsive px and py orbitals causing the Mn+ to interact more strongly with water in the excited states than the ground state. The result is a decrease in the Mn-O bond length, along with an increase in the H-O-H angle. The spectra have well resolved K rotational structure. Fitting this structure gives spin-rotation constants ɛaa″ = -3 ± 1 cm-1 for the ground state and ɛaa' = 0.5 ± 0.5 cm-1 and ɛaa' = -4.2 ± 0.7 cm-1 for the first and second excited states, respectively, and A' = 12.8 ± 0.7 cm-1 for the first excited state. Vibrationally mediated photodissociation studies determine the O-H antisymmetric stretching frequency in the ground electronic state to be 3658 cm-1.
NASA Astrophysics Data System (ADS)
Wang, Yaochuan; Liu, Siyuan; Liu, Dajun; Wang, Guiqiu; Xiao, Haibo
2016-02-01
A dipolar dipicolinate derivative, trans-dimethyl-4-[4'-(N,N-diphenylamino)-styry1]-pyridin-2,6-dicarboxylate (P-1), and a P-1based V-shaped compound, {4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl) vinyl]}-N-phenyl-N-{4-[(E)-2-(2,6-dimethoxycarbonylpyridin-4-yl)vinylphenyl]}aniline (P-2), with intense two-photon fluorescence emission properties were systematically investigated by using steady-state absorption and fluorescence spectroscopy, open-aperture Z-scans, and two-photon excited fluorescence (TPF). The two-photon absorption cross-section of the V-shaped compound P-2 in tetrahydrofuran (THF) was determined to be 208 GM, which represents a 6.5-fold enhancement compared with its dipolar counterpart P-1 (32 GM). Extension of the intramolecular charge transfer (ICT) in the V-shaped dipicolinate derivative has been suggested as the mechanism of enhancement. The excited state dynamics from transient absorption spectroscopy were analyzed and discussed. The formation and relaxation lifetimes of the ICT state for these dipicolinate derivatives in THF solutions were found to be several picoseconds and several hundred picoseconds, respectively. The results show an increased ICT character of the V-shaped compound and a potential application for this compound in two-photon fluorescence imaging fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Min; Shen, Zhitao; Pratt, S. T.
Vibrational autoionization of Rydberg states provides key information about nonadiabatic processes above an ionization threshold. In this work, we employed time-of-flight mass detection of CH 3SH + to record vibrational-state selective photo-ionization efficiency (PIE) spectra of jet-cooled methanethiol (CH 3SH) on exciting CH 3SH to a specific vibrationally excited state with an infrared (IR) laser, followed by excitation with a tunable laser in the vacuum-ultraviolet (VUV) region for ionization. Autoionizing Rydberg states assigned to the ns, np, nd and nf series are identified. When IR light at 2601 (ν 3, SH stretching mode) and 2948 cm -1 (ν 2, CHmore » 3 symmetric stretching mode) was employed, the Rydberg series converged to the respective vibrationally excited (ν 3 and ν 2) states of CH 3SH +. When IR light at 3014 cm -1 (overlapped ν 1/ν 9, CH 3 antisymmetric stretching and CH 2 antisymmetric stretching modes) was employed, Rydberg series converging to two vibrationally excited states (ν 1 and ν 9) of CH 3SH + were observed. When IR light at 2867 cm -1 (2ν 10, overtone of CH 3 deformation mode) and 2892 cm -1 (2ν 4, overtone of CH 2 scissoring mode) was employed, both Δν = -1 and Δν = -2 ionization transitions were observed; there is evidence for direct ionization from the initial state into the CH 3SH + (ν 4 + = 1) continuum. In all observed IR-VUV-PIE spectra, the ns and nd series show intensity greater than the other Rydberg series, which is consistent with the fact that the highest-occupied molecular orbital of CH 3SH is a p-like lone pair orbital on the S atom. Finally, the quantum yields for autoionization of various vibrational excited states are discussed. Values of ν 1 = 3035, ν 2 = 2884, ν 3 = 2514, and ν 9 = 2936 cm -1 for CH 3SH + derived from the converged limits agree satisfactorily with values observed for Ar-tagged CH 3SH + at 3026, 2879, 2502, and 2933 cm -1.« less
Xie, Min; Shen, Zhitao; Pratt, S. T.; ...
2017-10-24
Vibrational autoionization of Rydberg states provides key information about nonadiabatic processes above an ionization threshold. In this work, we employed time-of-flight mass detection of CH 3SH + to record vibrational-state selective photo-ionization efficiency (PIE) spectra of jet-cooled methanethiol (CH 3SH) on exciting CH 3SH to a specific vibrationally excited state with an infrared (IR) laser, followed by excitation with a tunable laser in the vacuum-ultraviolet (VUV) region for ionization. Autoionizing Rydberg states assigned to the ns, np, nd and nf series are identified. When IR light at 2601 (ν 3, SH stretching mode) and 2948 cm -1 (ν 2, CHmore » 3 symmetric stretching mode) was employed, the Rydberg series converged to the respective vibrationally excited (ν 3 and ν 2) states of CH 3SH +. When IR light at 3014 cm -1 (overlapped ν 1/ν 9, CH 3 antisymmetric stretching and CH 2 antisymmetric stretching modes) was employed, Rydberg series converging to two vibrationally excited states (ν 1 and ν 9) of CH 3SH + were observed. When IR light at 2867 cm -1 (2ν 10, overtone of CH 3 deformation mode) and 2892 cm -1 (2ν 4, overtone of CH 2 scissoring mode) was employed, both Δν = -1 and Δν = -2 ionization transitions were observed; there is evidence for direct ionization from the initial state into the CH 3SH + (ν 4 + = 1) continuum. In all observed IR-VUV-PIE spectra, the ns and nd series show intensity greater than the other Rydberg series, which is consistent with the fact that the highest-occupied molecular orbital of CH 3SH is a p-like lone pair orbital on the S atom. Finally, the quantum yields for autoionization of various vibrational excited states are discussed. Values of ν 1 = 3035, ν 2 = 2884, ν 3 = 2514, and ν 9 = 2936 cm -1 for CH 3SH + derived from the converged limits agree satisfactorily with values observed for Ar-tagged CH 3SH + at 3026, 2879, 2502, and 2933 cm -1.« less
Janovská, Marika; Kubala, Martin; Simánek, Vilím; Ulrichová, Jitka
2009-09-01
The quaternary isoquinoline alkaloid, sanguinarine (SG) plays an important role in both traditional and modern medicine, exhibiting a wide range of biological activities. Under physiological conditions, there is an equilibrium between the quaternary cation (SG+) and a pseudobase (SGOH) forms of SG. In the gastrointestinal tract, SG is converted to dihydrosanguinarine (DHSG). All forms exhibit bright fluorescence. However, their spectra overlap, which limited the use of powerful techniques based on fluorescence spectroscopy/microscopy. Our experiments using a combination of steady-state and time-resolved techniques enabled the separation of individual components. The results revealed that (a) the equilibrium constant between SG+ and SGOH is pKa = 8.06, while fluorescence of DHSG exhibited no changes in the pH range 5-12, (b) the SGOH has excitation/emission spectra with maxima at 327/418 nm and excited-state lifetime 3.2 ns, the spectra of the SG+ have maxima at 475/590 nm and excited-state lifetime 2.4 ns. The DHSG spectra have maxima at 327/446 nm and 2-exponential decay with components 4.2 and 2.0 ns, (c) NADH is able to convert SG to DHSG, while there is no apparent interaction between NADH and DHSG. These techniques are applicable for monitoring the SG to DHSG conversion in hepatocytes.
Hu, Yi; Thomas, Michael B; Jinadasa, R G Waruna; Wang, Hong; D'Souza, Francis
2017-09-18
Simultaneous occurrence of energy and electron transfer events involving different acceptor sites in a newly assembled supramolecular triad comprised of covalently linked free-base porphyrin-zinc porphyrin dyad, H 2 P-ZnP axially coordinated to electron acceptor fullerene, has been successfully demonstrated. The dyad was connected through the β-pyrrole positions of the porphyrin macrocycle instead of the traditionally used meso-positions for better electronic communication. Interestingly, the β-pyrrole functionalization modulated the optical properties to such an extent that it was possible to almost exclusively excite the zinc porphyrin entity in the supramolecular triad. The measured binding constant for the complex with 1:1 molecular stoichiometry was in the order of 10 4 m -1 revealing moderately stable complex formation. An energy level diagram constructed using optical, electrochemical and computational results suggested that both the anticipated energy and electron events are thermodynamically feasible in the triad. Consequently, it was possible to demonstrate occurrence of excited state energy transfer to the covalently linked H 2 P, and electron transfer to the coordinated ImC 60 from studies involving steady-state and time-resolved emission, and femto- and nanosecond transient absorption studies. The estimated energy transfer was around 67 % in the dyad with a rate constant of 1.1×10 9 s -1 . In the supramolecular triad, the charge separated state was rather long-lived although it was difficult to arrive the exact lifetime of charge separated state from nanosecond transient spectral studies due to overlap of strong triplet excited signals of porphyrin in the monitoring wavelength window. Nevertheless, simultaneous occurrence of energy and electron transfer in the appropriately positioned energy and electron acceptor entities in a supramolecular triad was possible to demonstrate in the present study, a step forward to unraveling the complex photochemical events occurring in natural photosynthesis and its implications in building light energy harvesting devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Szalay, Péter G; Watson, Thomas; Perera, Ajith; Lotrich, Victor; Fogarasi, Géza; Bartlett, Rodney J
2012-09-06
In the first paper of this series (Szalay; et al. J. Phys. Chem. A, 2012, 116, 6702) we have investigated the excited states of nucleobases. It was shown that it is only the equation of motion excitation energy coupled-cluster (EOMEE-CC) methods, which can give a balanced description for all type of the transitions of these molecules; if the goal is to obtain accurate results with uncertainty of about 0.1 eV only, triples corrections in the form of, e.g., the EOMEE-CCSD(T) method need to be included. In this second paper we extend this study to nucleobases in their biological environment, considering hydration, glycoside bond, and base pairing. EOMEE-CCSD and EOMEE-CCSD(T) methods are used with aug-cc-pVDZ basis. The effect of surrounding water was systematically investigated by considering one to five water molecules at different positions. It was found that hydration can modify the order of the excited states: in particular, nπ* states get shifted above the neighboring ππ* ones. The glycoside bond's effect is smaller, as shown by our calculations on cytidine and guanosine. Here the loss of planarity causes some intensity shift from ππ* to nπ* states. Finally, the guanine-cytosine (GC) Watson-Crick pair was studied; most of the states could be identified as local excitations on one of the bases, but there is also a low-lying charge-transfer state. Significant discrepancy with earlier CASPT2 and TDDFT studies was found for the GC pair and triples effects seem to be essential for all of these systems.
Polarization Dependence of Resonant Inelastic Scattering in Insulating Copper Oxides
NASA Astrophysics Data System (ADS)
Hill, John
2000-03-01
Recent work on a number of copper oxides, including Nd_2CuO_4, YBa_2Cu_3O7 and CuGeO3 is reported. In each case, an excitation of ~ 6 eV is observed when the incident energy is tuned through the Cu K-edge. Numerical calculations based on the Anderson Impurity model for Nd_2CuO4 suggest that this feature is a charge-transfer excitation to the antibonding state. Studies of the incident energy and polarization dependence of this excitation in Nd_2CuO4 reveal that the incident polarization selects the intermediate states participating in the resonance process. In particular, when the incident polarization is largely perpendicular to the copper oxide planes, a single resonance is observed at 8990 eV, corresponding to the \\underline 1s3d^94p_π intermediate state. Conversely with the incident polarization is aligned with the planes, an enhancement is observed at 8999.5 eV, associated with the \\underline 1s3d^94p_σ intermediate state. No enhancement is observed for the \\underline 1s3d^10\\underline L 4p intermediate state in either case. It is suggested that the systematic absence of this resonance is associated with non-local effects active in this intermediate state. This suggestion is supported by multi-copper-site calculations, and by our studies of CuGeO_3. In this latter compound, the CuO4 plaquettes are arranged in one dimensional edge-sharing chains, rather than the two dimensional corner sharing network of Nd_2CuO_4. Non-local effects are expected to be suppressed in such a case, and indeed two resonances are observed in CuGeO_3. This work further suggests that this technique may provide both a sensitive measure of the role of non-local effects in the excitation spectrum, and a stringent test for state-of-the-art electronic structure calculations. It is a great pleasure to acknowledge my collaborators in this work, L.E. Berman, W.A.L. Caliebe, R.L. Greene, K. Hämäläinen, K. Hirota, S. Huotari, T. Idé. C.-C. Kao, A. Kotani, T. Masuda, M. Matsubara, J.L. Peng, I. Tsukada, K. Uchinokura, and M. v. Zimmermann.
Optimal laser pulse design for transferring the coherent nuclear wave packet of H+2
NASA Astrophysics Data System (ADS)
Zhang, Jun; He, Guang-Qiang; He, Feng
2014-07-01
Within the Franck-Condon approximation, the single ionisation of H2 leaves H+2 in a coherent superposition of 19 nuclear vibrational states. We numerically design an optimal laser pulse train to transfer such a coherent nuclear wave packet to the ground vibrational state of H+2. Frequency analysis of the designed optimal pulse reveals that the transfer principle is mainly an anti-Stokes transition, i.e. the H+2 in 1sσg with excited nuclear vibrational states is first pumped to 2pσg state by the pulse at an appropriate time, and then dumped back to 1sσg with lower excited or ground vibrational states. The simulation results show that the population of the ground state after the transfer is more than 91%. To the best of our knowledge, this is the highest transition probability when the driving laser field is dozens of femtoseconds.
Kakiuchi, Toshifumi; Ito, Fuyuki; Nagamura, Toshihiko
2008-04-03
The excitation energy transfer from meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to 3,3'-diethyl-2,2'-thiatricarbocyanine iodide (DTTCI) along the deoxyribonucleic acid (DNA) double strand was investigated by the steady-state absorption and fluorescence measurements and time-resolved fluorescence measurements. The steady-state fluorescence spectra showed that the near-infrared fluorescence of DTTCI was strongly enhanced up to 86 times due to the energy transfer from the excited TMPyP molecule in DNA buffer solution. Furthermore, we elucidated the mechanism of fluorescence quenching and enhancement by the direct observation of energy transfer using the time-resolved measurements. The fluorescence quenching of TMPyP chiefly consists of a static component due to the formation of complex and dynamic components due to the excitation energy transfer. In a heterogeneous one-dimensional system such as a DNA chain, it was proved that the energy transfer process only carries out within the critical distance based on the Förster theory and within a threshold value estimated from the modified Stern-Volmer equation. The present results showed that DNA chain is one of the most powerful tools for nanoassemblies and will give a novel concepts of material design.
Takano, Yu; Nakata, Kazuto; Yonezawa, Yasushige; Nakamura, Haruki
2016-05-05
A massively parallel program for quantum mechanical-molecular mechanical (QM/MM) molecular dynamics simulation, called Platypus (PLATform for dYnamic Protein Unified Simulation), was developed to elucidate protein functions. The speedup and the parallelization ratio of Platypus in the QM and QM/MM calculations were assessed for a bacteriochlorophyll dimer in the photosynthetic reaction center (DIMER) on the K computer, a massively parallel computer achieving 10 PetaFLOPs with 705,024 cores. Platypus exhibited the increase in speedup up to 20,000 core processors at the HF/cc-pVDZ and B3LYP/cc-pVDZ, and up to 10,000 core processors by the CASCI(16,16)/6-31G** calculations. We also performed excited QM/MM-MD simulations on the chromophore of Sirius (SIRIUS) in water. Sirius is a pH-insensitive and photo-stable ultramarine fluorescent protein. Platypus accelerated on-the-fly excited-state QM/MM-MD simulations for SIRIUS in water, using over 4000 core processors. In addition, it also succeeded in 50-ps (200,000-step) on-the-fly excited-state QM/MM-MD simulations for the SIRIUS in water. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.
Excited state properties of the astaxanthin radical cation: A quantum chemical study
NASA Astrophysics Data System (ADS)
Dreuw, Andreas; Starcke, Jan Hendrik; Wachtveitl, Josef
2010-07-01
Using time-dependent density functional theory, the excited electronic states of the astaxanthin radical cation (AXT rad + ) are investigated. While the optically allowed excited D 1 and D 3 states are typical ππ∗ excited states, the D 2 and D 4 states are nπ∗ states. Special emphasis is put onto the influence of the carbonyl groups onto the excited states. For this objective, the excited states of four hypothetical carotenoids and zeaxanthin have been computed. Addition of a carbonyl group to a conjugated carbon double bond system does essentially not change the vertical excitation energies of the optically allowed ππ∗ states due to two counter-acting effects: the excitation energy should increase due to the -M-effect of the carbonyl group and at the same time decrease owing to the elongation of the conjugated double bond system by the carbonyl group itself.
A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence
NASA Astrophysics Data System (ADS)
Chábera, Pavel; Liu, Yizhu; Prakash, Om; Thyrhaug, Erling; Nahhas, Amal El; Honarfar, Alireza; Essén, Sofia; Fredin, Lisa A.; Harlang, Tobias C. B.; Kjær, Kasper S.; Handrup, Karsten; Ericson, Fredric; Tatsuno, Hideyuki; Morgan, Kelsey; Schnadt, Joachim; Häggström, Lennart; Ericsson, Tore; Sobkowiak, Adam; Lidin, Sven; Huang, Ping; Styring, Stenbjörn; Uhlig, Jens; Bendix, Jesper; Lomoth, Reiner; Sundström, Villy; Persson, Petter; Wärnmark, Kenneth
2017-03-01
Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3‧-dimethyl-1,1‧-bis(p-tolyl)-4,4‧-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
Absorption and Emission of the Apigenin and Luteolin Flavonoids: A TDDFT Investigation
NASA Astrophysics Data System (ADS)
Amat, Anna; Clementi, Catia; de Angelis, Filippo; Sgamellotti, Antonio; Fantacci, Simona
2009-09-01
The absorption and emission properties of the two components of the yellow color extracted from weld (Reseda luteola L.), apigenin and luteolin, have been extensively investigated by means of DFT and TDDFT calculations. Our calculations reproduce the absorption spectra of both flavonoids in good agreement with the experimental data and allow us to assign the transitions giving rise to the main spectral features. For apigenin, we have also computed the electronic spectrum of the monodeprotonated species, providing a rationale for the red-shift of the experimental spectrum with increasing pH. The fluorescence emission of both apigenin and luteolin has then been investigated. Excited-state TDDFT geometry optimizations have highlighted an excited-state intramolecular proton transfer (ESIPT) from the 5-hydroxyl to the 4-carbonyl oxygen of the substituted benzopyrone moiety. By computing the potential energy curves at the ground and excited states as a function of an approximate proton transfer coordinate for apigenin, we have been able to trace an ESIPT pathway and thus explain the double emission observed experimentally.
Systematic R -matrix analysis of the 13C(p ,γ )14N capture reaction
NASA Astrophysics Data System (ADS)
Chakraborty, Suprita; deBoer, Richard; Mukherjee, Avijit; Roy, Subinit
2015-04-01
Background: The proton capture reaction 13C(p ,γ )14N is an important reaction in the CNO cycle during hydrogen burning in stars with mass greater than the mass of the Sun. It also occurs in astrophysical sites such as red giant stars: the asymptotic giant branch (AGB) stars. The low energy astrophysical S factor of this reaction is dominated by a resonance state at an excitation energy of around 8.06 MeV (Jπ=1-,T =1 ) in 14N. The other significant contributions come from the low energy tail of the broad resonance with Jπ=0-,T =1 at an excitation of 8.78 MeV and the direct capture process. Purpose: Measurements of the low energy astrophysical S factor of the radiative capture reaction 13C(p ,γ )14N reported extrapolated values of S (0 ) that differ by about 30 % . Subsequent R -matrix analysis and potential model calculations also yielded significantly different values for S (0 ) . The present work intends to look into the discrepancy through a detailed R -matrix analysis with emphasis on the associated uncertainties. Method: A systematic reanalysis of the available decay data following the capture to the Jπ=1-,T =1 resonance state of 14N around 8.06 MeV excitation had been performed within the framework of the R -matrix method. A simultaneous analysis of the 13C(p ,p0 ) data, measured over a similar energy range, was carried out with the capture data. The data for the ground state decay of the broad resonance state (Jπ=0-,T =1 ) around 8.78 MeV excitations was included as well. The external capture model along with the background poles to simulate the internal capture contribution were used to estimate the direct capture contribution. The asymptotic normalization constants (ANCs) for all states were extracted from the capture data. The multichannel, multilevel R -matrix code azure2 was used for the calculation. Results: The values of the astrophysical S factor at zero relative energy, resulting from the present analysis, are found to be consistent within the error bars for the two sets of capture data used. However, it is found from the fits to the elastic scattering data that the position of the Jπ=1-,T =1 resonance state is uncertain by about 0.6 keV, preferring an excitation energy value of 8.062 MeV. Also the extracted ANC values for the states of 14N corroborate the values from the transfer reaction studies. The reaction rates from the present calculation are about 10 -15 % lower than the values of the NACRE II compilation but compare well with those from NACRE I. Conclusion: The precise energy of the Jπ=1-,T =1 resonance level around 8.06 MeV in 14N must be determined. Further measurements around and below 100 keV with precision are necessary to reduce the uncertainty in the S -factor value at zero relative energy.
Wu, Wenting; Guo, Huimin; Wu, Wanhua; Ji, Shaomin; Zhao, Jianzhang
2011-11-21
[C(^)NPt(acac)] (C(^)N = cyclometalating ligand; acac = acetylacetonato) complexes in which the naphthalimide (NI) moiety is directly cyclometalated (NI as the C donor of the C-Pt bond) were synthesized. With 4-pyrazolylnaphthalimide, isomers with five-membered (Pt-2) and six-membered (Pt-3) chelate rings were obtained. With 4-pyridinylnaphthalimide, only the complex with a five-membered chelate ring (Pt-4) was isolated. A model complex with 1-phenylpyrazole as the C(^)N ligand was prepared (Pt-1). Strong absorption of visible light (ε = 21,900 M(-1) cm(-1) at 443 nm for Pt-3) and room temperature (RT) phosphorescence at 630 nm (Pt-2 and Pt-3) or 674 nm (Pt-4) were observed. Long-lived phosphorescences were observed for Pt-2 (τ(P) = 12.8 μs) and Pt-3 (τ(P) = 61.9 μs). Pt-1 is nonphosphorescent at RT in solution because of the acac-localized T(1) excited state [based on density functional theory (DFT) calculations and spin density analysis], but a structured emission band centered at 415 nm was observed at 77 K. Time-resolved transient absorption spectra and spin density analysis indicated a NI-localized intraligand triplet excited state ((3)IL) for complexes Pt-2, Pt-3, and Pt-4. DFT calculations on the transient absorption spectra (T(1) → T(n) transitions, n > 1) also support the (3)IL assignment of the T(1) excited states of Pt-2, Pt-3, and Pt-4. The complexes were used as triplet sensitizers for triplet-triplet-annihilation (TTA) based upconversion, and the results show that Pt-3 is an efficient sensitizer with an upconversion quantum yield of up to 14.1%, despite its low phosphorescence quantum yield of 5.2%. Thus, we propose that the sensitizer molecules at the triplet excited state that are otherwise nonphosphorescent were involved in the TTA upconversion process, indicating that weakly phosphorescent or nonphosphorescent transition-metal complexes can be used as triplet sensitizers for TTA upconversion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maaloul, L.; Gangwar, R. K.; Stafford, L., E-mail: luc.stafford@umontreal.ca
2015-07-15
A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over themore » whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.« less
Vibronic relaxation dynamics of o-dichlorobenzene in its lowest excited singlet state
NASA Astrophysics Data System (ADS)
Liu, Benkang; Zhao, Haiyan; Lin, Xiang; Li, Xinxin; Gao, Mengmeng; Wang, Li; Wang, Wei
2018-01-01
Vibronic dynamics of o-dichlorobenzene in its lowest excited singlet state, S1, is investigated in real time by using femtosecond pump-probe method, combined with time-of-flight mass spectroscopy and photoelectron velocity mapping technique. Relaxation processes for the excitation in the range of 276-252 nm can be fitted by single exponential decay model, while in the case of wavelength shorter than 252 nm two-exponential decay model must be adopted for simulating transient profiles. Lifetime constants of the vibrationally excited S1 states change from 651 ± 10 ps for 276 nm excitation to 61 ± 1 ps for 242 nm excitation. Both the internal conversion from the S1 to the highly vibrationally excited ground state S0 and the intersystem crossing from the S1 to the triplet state are supposed to play important roles in de-excitation processes. Exponential fitting of the de-excitation rates on the excitation energy implies such de-excitation process starts from the highly vibrationally excited S0 state, which is validated, by probing the relaxation following photoexcitation at 281 nm, below the S1 origin. Time-dependent photoelectron kinetic energy distributions have been obtained experimentally. As the excitation wavelength changes from 276 nm to 242 nm, different cationic vibronic vibrations can be populated, determined by the Franck-Condon factors between the large geometry distorted excited singlet states and final cationic states.
From Catheter to Kidney Stone: The Uropathogenic Lifestyle of Proteus mirabilis.
Norsworthy, Allison N; Pearson, Melanie M
2017-04-01
Proteus mirabilis is a model organism for urease-producing uropathogens. These diverse bacteria cause infection stones in the urinary tract and form crystalline biofilms on indwelling urinary catheters, frequently leading to polymicrobial infection. Recent work has elucidated how P. mirabilis causes all of these disease states. Particularly exciting is the discovery that this bacterium forms large clusters in the bladder lumen that are sites for stone formation. These clusters, and other steps of infection, require two virulence factors in particular: urease and MR/P fimbriae. Highlighting the importance of MR/P fimbriae is the cotranscribed regulator, MrpJ, which globally controls virulence. Overall, P. mirabilis exhibits an extraordinary lifestyle, and further probing will answer exciting basic microbiological and clinically relevant questions. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, K.; Jönsson, P.; Gaigalas, G.; Radžiūtė, L.; Rynkun, P.; Del Zanna, G.; Chen, C. Y.
2018-04-01
The fully relativistic multiconfiguration Dirac–Hartree–Fock method is used to compute excitation energies and lifetimes for the 143 lowest states of the 3{s}23{p}3, 3s3p 4, 3{s}23{p}23d, 3s3p 33d, 3p 5, 3{s}23p3{d}2 configurations in P-like ions from Cr X to Zn XVI. Multipole (E1, M1, E2, M2) transition rates, line strengths, oscillator strengths, and branching fractions among these states are also given. Valence–valence and core–valence electron correlation effects are systematically accounted for using large basis function expansions. Computed excitation energies are compared with the NIST ASD and CHIANTI compiled values and previous calculations. The mean average absolute difference, removing obvious outliers, between computed and observed energies for the 41 lowest identified levels in Fe XII, is only 0.057%, implying that the computed energies are accurate enough to aid identification of new emission lines from the Sun and other astrophysical sources. The amount of energy and transition data of high accuracy are significantly increased for several P-like ions of astrophysics interest, where experimental data are still very scarce.
Thermal Hall conductivity in the spin-triplet superconductor with broken time-reversal symmetry
NASA Astrophysics Data System (ADS)
Imai, Yoshiki; Wakabayashi, Katsunori; Sigrist, Manfred
2017-01-01
Motivated by the spin-triplet superconductor Sr2RuO4 , the thermal Hall conductivity is investigated for several pairing symmetries with broken time-reversal symmetry. In the chiral p -wave phase with a fully opened quasiparticle excitation gap, the temperature dependence of the thermal Hall conductivity has a temperature linear term associated with the topological property directly and an exponential term, which shows a drastic change around the Lifshitz transition. Examining f -wave states as alternative candidates with d =Δ0z ̂(kx2-ky2) (kx±i ky) and Δ0z ̂kxky(kx±i ky) with gapless quasiparticle excitations, we study the temperature dependence of the thermal Hall conductivity, where for the former state the thermal Hall conductivity has a quadratic dependence on temperature, originating from the linear dispersions, in addition to linear and exponential behavior. The obtained result may enable us to distinguish between the chiral p -wave and f -wave states in Sr2RuO4 .
Urbańczyk, T; Krośnicki, M; Kędziorski, A; Koperski, J
2018-05-05
Revisited study of the E 3 Σ 1 + (6 3 S 1 )←A 3 Π 0+ (5 3 P 1 ) transition in CdAr using both theoretical and experimental approach is presented. Systematic detection of the E 3 Σ 1 + in ,υ'←A 3 Π 0+ ,υ″=6 transition frequencies with higher accuracy and spectrally narrower laser extended and improved analysis and simulation of the LIF excitation spectrum. More consistent characterization of the E 3 Σ 1 + in -Rydberg state inner well using inversed perturbation approach methodology was achieved. Free←bound transitions in the E 3 Σ 1 + in ←A 3 Π 0+ ,υ″=6 excitation were taken into account in the analysis and simulation of the recorded spectrum. The updated spectroscopic characterization of the A 3 Π 0+ state was also revisited. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Urbańczyk, T.; Krośnicki, M.; Kędziorski, A.; Koperski, J.
2018-05-01
Revisited study of the E3Σ1+ (63S1) ← A3Π0+(53P1) transition in CdAr using both theoretical and experimental approach is presented. Systematic detection of the E3Σ1+in,υ' ← A3Π0+,υ″ = 6 transition frequencies with higher accuracy and spectrally narrower laser extended and improved analysis and simulation of the LIF excitation spectrum. More consistent characterization of the E3Σ1+in-Rydberg state inner well using inversed perturbation approach methodology was achieved. Free ← bound transitions in the E3Σ1+in ← A3Π0+,υ″ = 6 excitation were taken into account in the analysis and simulation of the recorded spectrum. The updated spectroscopic characterization of the A3Π0+ state was also revisited.
Maier, John Paul; Marthaler, O.; Mohraz, Manijeh; Shiley, R.H.
1980-01-01
The radiative decay of seventeen electronically excited chlorofluorobenzene cations in the gaseous phase has been detected. The reported emission spectra, which have been obtained using low energy electron beam excitation, are assigned to the B(??-1 ??? X(??-1 electronic transitions of these cations on the basis of their Ne(I) photoelectron spectra. In another sixteen chloroflourobenzene cations, the B ??? X radiative decay could not be detected, from which is inferred that the B states are now associated with Cl 3p(??-1 ionisation processes. The lifetimes of the studied cations in the lowest vibrational levels of the B(??-1 state have been measured. ?? 1980.
NASA Technical Reports Server (NTRS)
Patsilinakou, E.; Wiedmann, R. T.; Fotakis, C.; Grant, E. R.
1989-01-01
Ionization-detected UV multiphoton absorption spectroscopy of the excited states of N2O is presented, showing Rydberg structure within 20,000/cm of the first ionization threshold. Despite evidence for strong Rydberg-continuum coupling in the form of broadened bands and Fano line-shapes, the Rydberg structure persists, with atomic-like quantum defects and vibration structure well-matched with that of the ion. In the most clearly resolved spectrum, corresponding to the 3p(delta)1Pi state, Renner-Teller and Herzberg-Teller coupling of electronic and vibrational angular momentum are revealed. It is suggested that these mixings are properties of the N2O(+)Pi ion core.