Sample records for p-type field effect

  1. Experimental study of uniaxial stress effects on Coulomb-limited mobility in p-type metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shigeki; Saitoh, Masumi; Nakabayashi, Yukio; Uchida, Ken

    2007-11-01

    Uniaxial stress effects on Coulomb-limited mobility (μCoulomb) in Si metal-oxide-semiconductor field-effect transistors (MOSFETs) are investigated experimentally. By using the four-point bending method, uniaxial stress corresponding to 0.1% strain is applied to MOSFETs along the channel direction. It is found that μCoulomb in p-type MOSFETs is enhanced greatly by uniaxial stress; μCoulomb is as sensitive as phonon-limited mobility. The high sensitivity of μCoulomb in p-type MOSFETs to stress arises from the stress-induced change of hole effective mass.

  2. P-type field effect transistor based on Na-doped BaSnO3

    NASA Astrophysics Data System (ADS)

    Jang, Yeaju; Hong, Sungyun; Park, Jisung; Char, Kookrin

    We fabricated field effect transistors (FET) based on the p-type Na-doped BaSnO3 (BNSO) channel layer. The properties of epitaxial BNSO channel layer were controlled by the doping rate. In order to modulate the p-type FET, we used amorphous HfOx and epitaxial BaHfO3 (BHO) gate oxides, both of which have high dielectric constants. HfOx was deposited by atomic-layer-deposition and BHO was epitaxially grown by pulsed laser deposition. The pulsed laser deposited SrRuO3 (SRO) was used as the source and the drain contacts. Indium-tin oxide and La-doped BaSnO3 were used as the gate electrodes on top of the HfOx and the BHO gate oxides, respectively. We will analyze and present the performances of the BNSO field effect transistor such as the IDS-VDS, the IDS-VGS, the Ion/Ioff ratio, and the field effect mobility. Samsung Science and Technology Foundation.

  3. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  4. High-performance multilayer WSe 2 field-effect transistors with carrier type control

    DOE PAGES

    Pudasaini, Pushpa Raj; Oyedele, Akinola; Zhang, Cheng; ...

    2017-07-06

    In this paper, high-performance multilayer WSe 2 field-effect transistor (FET) devices with carrier type control are demonstrated via thickness modulation and a remote oxygen plasma surface treatment. Carrier type control in multilayer WSe 2 FET devices with Cr/Au contacts is initially demonstrated by modulating the WSe 2 thickness. The carrier type evolves with increasing WSe 2 channel thickness, being p-type, ambipolar, and n-type at thicknesses <3, ~4, and >5 nm, respectively. The thickness-dependent carrier type is attributed to changes in the bandgap of WSe 2 as a function of the thickness and the carrier band offsets relative to the metalmore » contacts. Furthermore, we present a strong hole carrier doping effect via remote oxygen plasma treatment. It non-degenerately converts n-type characteristics into p-type and enhances field-effect hole mobility by three orders of magnitude. Finally, this work demonstrates progress towards the realization of high-performance multilayer WSe 2 FETs with carrier type control, potentially extendable to other transition metal dichalcogenides, for future electronic and optoelectronic applications.« less

  5. Reduction of Charge Traps and Stability Enhancement in Solution-Processed Organic Field-Effect Transistors Based on a Blended n-Type Semiconductor.

    PubMed

    Campos, Antonio; Riera-Galindo, Sergi; Puigdollers, Joaquim; Mas-Torrent, Marta

    2018-05-09

    Solution-processed n-type organic field-effect transistors (OFETs) are essential elements for developing large-area, low-cost, and all organic logic/complementary circuits. Nonetheless, the development of air-stable n-type organic semiconductors (OSCs) lags behind their p-type counterparts. The trapping of electrons at the semiconductor-dielectric interface leads to a lower performance and operational stability. Herein, we report printed small-molecule n-type OFETs based on a blend with a binder polymer, which enhances the device stability due to the improvement of the semiconductor-dielectric interface quality and a self-encapsulation. Both combined effects prevent the fast deterioration of the OSC. Additionally, a complementary metal-oxide semiconductor-like inverter is fabricated depositing p-type and n-type OSCs simultaneously.

  6. Interaction of solid organic acids with carbon nanotube field effect transistors

    NASA Astrophysics Data System (ADS)

    Klinke, Christian; Afzali, Ali; Avouris, Phaedon

    2006-10-01

    A series of solid organic acids were used to p-dope carbon nanotubes. The extent of doping is shown to be dependent on the pKa value of the acids. Highly fluorinated carboxylic acids and sulfonic acids are very effective in shifting the threshold voltage and making carbon nanotube field effect transistors to be more p-type devices. Weaker acids like phosphonic or hydroxamic acids had less effect. The doping of the devices was accompanied by a reduction of the hysteresis in the transfer characteristics. In-solution doping survives standard fabrication processes and renders p-doped carbon nanotube field effect transistors with good transport characteristics.

  7. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    PubMed

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.

  8. Direct observation of inversion capacitance in p-type diamond MOS capacitors with an electron injection layer

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tsubasa; Kato, Hiromitsu; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Yamasaki, Satoshi; Imura, Masataka; Ueda, Akihiro; Inokuma, Takao; Tokuda, Norio

    2018-04-01

    The electrical properties of Al2O3/p-type diamond (111) MOS capacitors were studied with the goal of furthering diamond-based semiconductor research. To confirm the formation of an inversion layer in the p-type diamond body, an n-type layer for use as a minority carrier injection layer was selectively deposited onto p-type diamond. To form the diamond MOS capacitors, Al2O3 was deposited onto OH-terminated diamond using atomic layer deposition. The MOS capacitor showed clear inversion capacitance at 10 Hz. The minority carrier injection from the n-type layer reached the inversion n-channel diamond MOS field-effect transistor (MOSFET). Using the high-low frequency capacitance method, the interface state density, D it, within an energy range of 0.1-0.5 eV from the valence band edge energy, E v, was estimated at (4-9) × 1012 cm-2 eV-1. However, the high D it near E v remains an obstacle to improving the field effect mobility for the inversion p-channel diamond MOSFET.

  9. Influence of aeration implements, phosphorus fertilizers, and soil taxa on phosphorus losses from grasslands.

    PubMed

    Franklin, D H; Butler, D M; Cabrera, M L; Calvert, V H; West, L T; Rema, J A

    2011-01-01

    Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.

  10. Ambipolar pentacene field-effect transistor with double-layer organic insulator

    NASA Astrophysics Data System (ADS)

    Kwak, Jeong-Hun; Baek, Heume-Il; Lee, Changhee

    2006-08-01

    Ambipolar conduction in organic field-effect transistor is very important feature to achieve organic CMOS circuitry. We fabricated an ambipolar pentacene field-effect transistors consisted of gold source-drain electrodes and double-layered PMMA (Polymethylmethacrylate) / PVA (Polyvinyl Alcohol) organic insulator on the ITO(Indium-tin-oxide)-patterned glass substrate. These top-contact geometry field-effect transistors were fabricated in the vacuum of 10 -6 Torr and minimally exposed to atmosphere before its measurement and characterized in the vacuum condition. Our device showed reasonable p-type characteristics of field-effect hole mobility of 0.2-0.9 cm2/Vs and the current ON/OFF ratio of about 10 6 compared to prior reports with similar configurations. For the n-type characteristics, field-effect electron mobility of 0.004-0.008 cm2/Vs and the current ON/OFF ratio of about 10 3 were measured, which is relatively high performance for the n-type conduction of pentacene field-effect transistors. We attributed these ambipolar properties mainly to the hydroxyl-free PMMA insulator interface with the pentacene active layer. In addition, an increased insulator capacitance due to double-layer insulator structure with high-k PVA layer also helped us to observe relatively good n-type characteristics.

  11. Negative and positive magnetoresistance in GaInNAs/GaAs modulation-doped quantum well structures

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Donmez, Omer; Sarcan, Fahrettin; Erol, Ayşe; Puustinen, Janne; Arıkan, Mehmet Çetin; Guina, Mircea

    2015-03-01

    In this work, magnetoresistance of as-grown and annealed n- and p-type modulation-doped Ga0.68In0.32NyAs1-y/GaAs single quantum well structures with various nitrogen concentrations has been studied. At low temperatures and low magnetic fields, in n-type samples negative and in p-type samples positive, magnetoresistance has been observed. The observed negative magnetoresistance in n-type samples is an indication of enhanced backscattering of electrons due to the weak localization of the electrons as an effect of the N-induced defects. Nitrogen concentration and thermal annealing dependence of the magnetoresistance have been studied for both n- and p-type samples. The observed decrease in the negative magnetoresistance in n-type and enhanced positive magnetoresistance in p-type samples following thermal annealing have been explained by considering thermal annealing-induced improvement of mobility and the crystal quality in N-containing samples. After thermal annealing, the magnitude of negative magnetoresistance decreases and the breaking of the weak localization is achieved at lower magnetic fields in n-type samples. It is observed that as the mobility of the sample increases, critical magnetic field of negative to positive magnetoresistance transition becomes lower.

  12. pH-sensitive ion-selective field-effect transistor with zirconium dioxide film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlasov, Yu.G.; Bratov, A.V.; Tarantov, Yu.A.

    1988-09-20

    Miniature semiconductor pH sensors for liquid media, i.e., ion-selective field-effect transistors (ISFETs), are silicon field-effect transistors with a two-layer dielectric consisting of a passivating SiO/sub 2/ layer adjoining the silicon and a layer of pH-sensitive material in contact with the electrolyte solution to be tested. This study was devoted to the characteristics of pH-sensitive ISFETs with ZrO/sub 2/ films. The base was p-type silicon (KDB-10) with a (100) surface orientation. A ZrO/sub 2/ layer 10-50 nm thick was applied over the SiO/sub 2/ layer by electron-beam deposition. The measurements were made in aqueous KNO/sub 3/ or KCl solutions.

  13. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires.

    PubMed

    Wu, Jyh Ming

    2010-06-11

    A p-type ethanol sensor with a response time of approximately 8.3 s at room temperature was produced by SnO(2):Sb nanowires. The electrical properties of p-type SnO(2) nanowires are stable with a hole concentration of 1.544 x 10(17) cm(-3) and a field-effect mobility of 22 cm(2) V(-2) S(-1). X-ray photoelectron spectroscopy (XPS) and Hall measurement revealed that as-synthesized nanowires exhibit p-type behavior. A comprehensive investigation of the p-type sensing mechanism is reported.

  14. Ionizing radiation in the field of hydrogels used for agriculture and medicine

    NASA Astrophysics Data System (ADS)

    Radoiu, M.; Martin, D.; Oproiu, C.; Toma, M.; Popescu, A. S.; Bestea, V.; Dragusin, M.; Moraru, R.; Calinescu, I.; Manea, A.

    1999-01-01

    Some hydrogel types, obtained by gamma ray and electron beam irradiation, such as homopolymers of acrylamide (pAA type), co-polymers of acrylamide and sodium acrylate (pAANA type), homo-polymers of sodium acrylate (pNA type) and homo-polymers of 2-hydroxyethylmethacrylate (pHEMA type), are presented. The effects of the solution's chemical composition, swelling medium nature, radiation absorbed dose and radiation absorbed dose rate upon the swelling degree and mechanical strength of pAA, pAANA, pNA types are discussed. For the pHEMA type, which are reinforced in the polyester network, the studies concerning the influence of the irradiation parameters and chemical composition upon the shape stability after swelling and surface's roughness are also discussed.

  15. Method for manufacturing compound semiconductor field-effect transistors with improved DC and high frequency performance

    DOEpatents

    Zolper, John C.; Sherwin, Marc E.; Baca, Albert G.

    2000-01-01

    A method for making compound semiconductor devices including the use of a p-type dopant is disclosed wherein the dopant is co-implanted with an n-type donor species at the time the n-channel is formed and a single anneal at moderate temperature is then performed. Also disclosed are devices manufactured using the method. In the preferred embodiment n-MESFETs and other similar field effect transistor devices are manufactured using C ions co-implanted with Si atoms in GaAs to form an n-channel. C exhibits a unique characteristic in the context of the invention in that it exhibits a low activation efficiency (typically, 50% or less) as a p-type dopant, and consequently, it acts to sharpen the Si n-channel by compensating Si donors in the region of the Si-channel tail, but does not contribute substantially to the acceptor concentration in the buried p region. As a result, the invention provides for improved field effect semiconductor and related devices with enhancement of both DC and high-frequency performance.

  16. Experimental identification of p-type conduction in fluoridized boron nitride nanotube

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Li, Wuxia; Tang, Chengchun; Li, Lin; Lin, Jing; Gu, Changzhi

    2013-04-01

    The transport properties of F-doped boron nitride nanotube (BNNT) top-gate field effect devices were investigated to demonstrate the realization of p-type BNNTs by F-doping. The drain current was found to increase substantially with the applied negative gate voltage, suggesting these devices persist significant field effect with holes predominated; it also suggests that F-doping remarkably modified the band gap with F atoms preferred to be absorbed on B sites. Parameters, including the resistivity, charge concentration, and mobility, were further retrieved from the I-V curves. Our results indicate that device characterization is an effective method to reveal the specific properties of BNNTs.

  17. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  18. Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film

    NASA Astrophysics Data System (ADS)

    Momose, Tomohiro; Nakamura, Atsushi; Daniel, Moraru; Shimomura, Masaru

    2018-02-01

    We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P) as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP) configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ˜2.6×1015 cm-3 and ˜1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ˜ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs) declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.

  19. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    PubMed

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  20. Ultralow power complementary inverter circuits using axially doped p- and n-channel Si nanowire field effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2016-06-09

    We have successfully synthesized axially doped p- and n-type regions on a single Si nanowire (NW). Diodes and complementary metal-oxide-semiconductor (CMOS) inverter devices using single axial p- and n-channel Si NW field-effect transistors (FETs) were fabricated. We show that the threshold voltages of both p- and n-channel Si NW FETs can be lowered to nearly zero by effectively controlling the doping concentration. Because of the high performance of the p- and n-type Si NW channel FETs, especially with regard to the low threshold voltage, the fabricated NW CMOS inverters have a low operating voltage (<3 V) while maintaining a high voltage gain (∼6) and ultralow static power dissipation (≤0.3 pW) at an input voltage of ±3 V. This result offers a viable way for the fabrication of a high-performance high-density logic circuit using a low-temperature fabrication process, which makes it suitable for flexible electronics.

  1. Lithium ameliorates open-field and elevated plus maze behaviors, and brain phospho-glycogen synthase kinase 3-beta expression in fragile X syndrome model mice.

    PubMed

    Chen, Xi; Sun, Weiwen; Pan, Ying; Yang, Quan; Cao, Kaiyi; Zhang, Jin; Zhang, Yizhi; Chen, Mincong; Chen, Feidi; Huang, Yueling; Dai, Lijun; Chen, Shengqiang

    2013-10-01

    To investigate whether lithium modifies open-field and elevated plus maze behavior, and brain phospho-glycogen synthase kinase 3 (P-GSK3beta) expression in Fmr1 knockout mice. One hundred and eighty FVB mice, including knockout and wild type, with an age of 30 days were used. An open-field and elevated plus maze was utilized to test behavior, while western blot was used to measure the P-GSK3beta expression. Six groups were formed: control (saline), lithium chloride 30, 60, 90, 120, and 200 mg/kg. The experiments were carried out in the Institute of Neuroscience, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China between January and June 2012. Lithium significantly decreased total distance, crossing, central area time, and center entry in the open-field test (p<0.05), and significantly reduced open-arm tracking, open-arm entry, and open-arm time in the elevated plus maze (p<0.05) in knockout mice. In wild type mice, significant changes were observed in both behavior tests in some treatment groups. Lithium ameliorated P-GSK3beta expression in the hippocampus of all the treatment groups in knockout mice (p<0.05). However, lithium did not modify either GSK3beta expression in tissues of knockout mice, or P-GSK3beta or GSK3beta expression in tissues of wild type mice. Lithium ameliorated open-field and elevated plus maze behaviors of Fmr1 knockout mice. This effect may be related to its enhancement of P-GSK3beta expression. Our findings suggest that lithium might have a therapeutic effect in fragile X syndrome.

  2. Gallium nitride junction field-effect transistor

    DOEpatents

    Zolper, J.C.; Shul, R.J.

    1999-02-02

    An ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same are disclosed. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorus co-implantation, in selected III-V semiconductor materials. 19 figs.

  3. On matching the anode ring with the magnetic field in an ATON-type Hall effect thruster

    NASA Astrophysics Data System (ADS)

    Liu, Jinwen; Li, Hong; Zhang, Xu; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-06-01

    In an ATON-type Hall effect thruster, a ring-shaped anode and a cusped magnetic field intersect the match between the anode shape and the field topology thus must be clarified to optimize the electron transport to the anode and consequently the design of a high-efficiency thruster. By changing the match pattern with both the change in the length of the anode ring and the axial displacement of the cusp magnetic field, this study experimentally investigated the influence of the match pattern on the discharge characteristics of an ATON-type thruster—P100—under the condition of a moderate discharge voltage. The experimental results show that there is a match pattern that always optimizes the performance of the P100 thruster. At the rated operation parameters (300 V of discharge voltage and 5 mg/s of propellant mass flow rate) and the rated magnetic field strength, the observed improvements on thrust (˜79 mN to ˜85 mN) and anode efficiency (˜46% to ˜55%) are significant. Through further theoretical analysis, this study revealed that the change in the characteristics of electron momentum and energy transfer in the near-anode region, induced by the change of the match pattern, is the basic reason. The findings of this work are instructive for both understanding the electron motion in a cusp magnetic field and guiding the design of the anode ring intersecting with a cusp magnetic field in an ATON-type Hall effect thruster.

  4. The Effect of Thermal Annealing on Charge Transport in Organolead Halide Perovskite Microplate Field-Effect Transistors.

    PubMed

    Li, Dehui; Cheng, Hung-Chieh; Wang, Yiliu; Zhao, Zipeng; Wang, Gongming; Wu, Hao; He, Qiyuan; Huang, Yu; Duan, Xiangfeng

    2017-01-01

    Transformation of unipolar n-type semiconductor behavior to ambipolar and finally to unipolar p-type behavior in CH 3 NH 3 PbI 3 microplate field-effect transistors by thermal annealing is reported. The photoluminescence spectra essentially maintain the same features before and after the thermal annealing process, demonstrating that the charge transport measurement provides a sensitive way to probe low-concentration defects in perovskite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    NASA Astrophysics Data System (ADS)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  6. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures

    NASA Astrophysics Data System (ADS)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Bondarev, I. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-04-01

    Present review touches upon a subject of magnetotransport phenomena in hybrid structures which consist of ferromagnetic or nonmagnetic metal layer, layer of silicon oxide and silicon substrate with n- or p-type conductivity. Main attention will be paid to a number gigantic magnetotransport effects discovered in the devices fabricated on the base of the M/SiO2/n(p)-Si (M is ferromagnetic or paramagnetic metal) hybrid structures. These effects include bias induced dc magnetoresistance, gigantic magnetoimpedance, dc magnetoresistance induced by an optical irradiation and lateral magneto-photo-voltaic effect. The magnetoresistance ratio in ac and dc modes for some of our devices can exceed 106% in a magnetic field below 1 T. For lateral magneto-photo-voltaic effect, the relative change of photo-voltage in magnetic field can reach 103% at low temperature. Two types of mechanisms are responsible for sensitivity of the transport properties of the silicon based hybrid structures to magnetic field. One is related to transformation of the energy structure of the (donor) acceptor states including states near SiO2/n(p)-Si interface in magnetic field. Other mechanism is caused by the Lorentz force action. The features in behaviour of magnetotransport effects in concrete device depend on composition of the used structure, device topology and experimental conditions (bias voltage, optical radiation and others). Obtained results can be base for design of some electronic devices driven by a magnetic field. They can also provide an enhancement of the functionality for existing sensors.

  7. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    PubMed

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi See

    2017-09-27

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale. As for applications, the heterojunction device shows a simultaneously high on/off ratio of n- and p-type FETs, gatable p-n junction diodes, tristate buffer devices, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role played by the p-n heterojunction in the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists in increasing photocurrents and enhancing photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvesting.

  8. Improved photoswitching response times of MoS2 field-effect transistors by stacking p-type copper phthalocyanine layer

    NASA Astrophysics Data System (ADS)

    Pak, Jinsu; Min, Misook; Cho, Kyungjune; Lien, Der-Hsien; Ahn, Geun Ho; Jang, Jingon; Yoo, Daekyoung; Chung, Seungjun; Javey, Ali; Lee, Takhee

    2016-10-01

    Photoswitching response times (rise and decay times) of a vertical organic and inorganic heterostructure with p-type copper phthalocyanine (CuPc) and n-type molybdenum disulfide (MoS2) semiconductors are investigated. By stacking a CuPc layer on MoS2 field effect transistors, better photodetection capability and fast photoswitching rise and decay phenomena are observed. Specifically, with a 2 nm-thick CuPc layer on the MoS2 channel, the photoswitching decay time decreases from 3.57 s to 0.18 s. The p-type CuPc layer, as a passivation layer, prevents the absorption of oxygen on the surface of the MoS2 channel layer, which results in a shortened photoswitching decay time because adsorbed oxygen destroys the balanced ratio of electrons and holes, leading to the interruption of recombination processes. The suggested heterostructure may deliver enhanced photodetection abilities and photoswitching characteristics for realizing ultra-thin and sensitive photodetectors.

  9. Comparison of junctionless and inversion-mode p-type metal-oxide-semiconductor field-effect transistors in presence of hole-phonon interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, E., E-mail: elias.dib@for.unipi.it; Carrillo-Nuñez, H.; Cavassilas, N.

    Junctionless transistors are being considered as one of the alternatives to conventional metal-oxide field-effect transistors. In this work, it is then presented a simulation study of silicon double-gated p-type junctionless transistors compared with its inversion-mode counterpart. The quantum transport problem is solved within the non-equilibrium Green's function formalism, whereas hole-phonon interactions are tackled by means of the self-consistent Born approximation. Our findings show that junctionless transistors should perform as good as a conventional transistor only for ultra-thin channels, with the disadvantage of requiring higher supply voltages in thicker channel configurations.

  10. Analysis of epitaxial drift field N on P silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Brandhorst, H. W., Jr.

    1976-01-01

    The performance of epitaxial drift field silicon solar cell structures having a variety of impurity profiles was calculated. These structures consist of a uniformly doped P-type substrate layer, and a P-type epitaxial drift field layer with a variety of field strengths. Several N-layer structures were modeled. A four layer solar cell model was used to calculate efficiency, open circuit voltage and short circuit current. The effect on performance of layer thickness, doping level, and diffusion length was determined. The results show that peak initial efficiency of 18.1% occurs for a drift field thickness of about 30 micron with the doping rising from 10 to the 17th power atoms/cu cm at the edge of the depletion region to 10 to the 18th power atoms/cu cm in the substrate. Stronger drift fields (narrow field regions) allowed very high performance (17% efficiency) even after irradiation to 3x10 to the 14th power 1 MeV electrons/sq cm.

  11. A pH sensor based on electric properties of nanotubes on a glass substrate

    PubMed Central

    Nakamura, Motonori; Ishii, Atsushi; Subagyo, Agus; Hosoi, Hirotaka; Sueoka, Kazuhisa; Mukasa, Koichi

    2007-01-01

    We fabricated a pH-sensitive device on a glass substrate based on properties of carbon nanotubes. Nanotubes were immobilized specifically on chemically modified areas on a substrate followed by deposition of metallic source and drain electrodes on the area. Some nanotubes connected the source and drain electrodes. A top gate electrode was fabricated on an insulating layer of silane coupling agent on the nanotube. The device showed properties of ann-type field effect transistor when a potential was applied to the nanotube from the top gate electrode. Before fabrication of the insulating layer, the device showed that thep-type field effect transistor and the current through the source and drain electrodes depend on the buffer pH. The current increases with decreasing pH of the CNT solution. This device, which can detect pH, is applicable for use as a biosensor through modification of the CNT surface. PMID:21806848

  12. Characteristics of Superjunction Lateral-Double-Diffusion Metal Oxide Semiconductor Field Effect Transistor and Degradation after Electrical Stress

    NASA Astrophysics Data System (ADS)

    Lin, Jyh‑Ling; Lin, Ming‑Jang; Lin, Li‑Jheng

    2006-04-01

    The superjunction lateral double diffusion metal oxide semiconductor field effect has recently received considerable attention. Introducing heavily doped p-type strips to the n-type drift region increases the horizontal depletion capability. Consequently, the doping concentration of the drift region is higher and the conduction resistance is lower than those of conventional lateral-double-diffusion metal oxide semiconductor field effect transistors (LDMOSFETs). These characteristics may increase breakdown voltage (\\mathit{BV}) and reduce specific on-resistance (Ron,sp). In this study, we focus on the electrical characteristics of conventional LDMOSFETs on silicon bulk, silicon-on-insulator (SOI) LDMOSFETs and superjunction LDMOSFETs after bias stress. Additionally, the \\mathit{BV} and Ron,sp of superjunction LDMOSFETs with different N/P drift region widths and different dosages are discussed. Simulation tools, including two-dimensional (2-D) TSPREM-4/MEDICI and three-dimensional (3-D) DAVINCI, were employed to determine the device characteristics.

  13. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, Albert G.; Drummond, Timothy J.; Robertson, Perry J.; Zipperian, Thomas E.

    1995-01-01

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits.

  14. Complementary junction heterostructure field-effect transistor

    DOEpatents

    Baca, A.G.; Drummond, T.J.; Robertson, P.J.; Zipperian, T.E.

    1995-12-26

    A complimentary pair of compound semiconductor junction heterostructure field-effect transistors and a method for their manufacture are disclosed. The p-channel junction heterostructure field-effect transistor uses a strained layer to split the degeneracy of the valence band for a greatly improved hole mobility and speed. The n-channel device is formed by a compatible process after removing the strained layer. In this manner, both types of transistors may be independently optimized. Ion implantation is used to form the transistor active and isolation regions for both types of complimentary devices. The invention has uses for the development of low power, high-speed digital integrated circuits. 10 figs.

  15. Quantum oscillations and interference effects in strained n- and p-type modulation doped GaInNAs/GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Sarcan, F.; Nutku, F.; Donmez, O.; Kuruoglu, F.; Mutlu, S.; Erol, A.; Yildirim, S.; Arikan, M. C.

    2015-08-01

    We have performed magnetoresistance measurements on n- and p-type modulation doped GaInNAs/GaAs quantum well (QW) structures in both the weak (B  < 0.08 T) and the high magnetic field (up to 18 T) at 75 mK and 6 K. We observe that the quantum oscillations in {ρxx} and quantum Hall effect (QHE) plateaus in {ρxy} are affected from the presence of the nitrogen in the III-V lattice. The enhancement of N-related scatterings and electron effective mass with increasing nitrogen causes lower electron mobility and higher two-dimensional (2D) electron density, leading to suppressed QHE plateaus in {ρxy} up to 7 T at 6 K. The Shubnikov de Haas (SdH) oscillations develop at lower magnetic fields for higher mobility samples at 6 K and the amplitude of SdH oscillations decreases with increasing nitrogen composition. The well-pronounced QHE plateaus are observed at 75 mK and at higher magnetic fields up to 18 T, for the p-type sample. For n-type samples, the observed anomalies in the characteristic of QHE is attributed the nitrogen-related disorders and overlapping of fluctuating Landau levels. The low magnetic field measurements at 75 mK reveal that the n-type samples exhibit weak antilocalization, whereas weak localization is observed for the p-type sample. The observation of weak antilocalization is an indication of strong electron spin-orbit interactions. The low field magnetoresistance traces are used to extract the spin coherence, phase coherence and elastic scattering times as well Rashba parameters and spin-splitting energy. The calculated Rashba parameters for nitrogen containing samples reveal that the nitrogen composition is a significant parameter to determine the degree of the spin-orbit interactions. Consequently, GaInNAs-based QW structures with various nitrogen compositions can be beneficial to adjust the spin-orbit coupling strength and may be used as a candidate for spintronics applications.

  16. Balancing anisotropic curvature with gauge fields in a class of shear-free cosmological models

    NASA Astrophysics Data System (ADS)

    Thorsrud, Mikjel

    2018-05-01

    We present a complete list of general relativistic shear-free solutions in a class of anisotropic, spatially homogeneous and orthogonal cosmological models containing a collection of n independent p-form gauge fields, where p\\in\\{0, 1, 2, 3\\} , in addition to standard ΛCDM matter fields modelled as perfect fluids. Here a (collection of) gauge field(s) balances anisotropic spatial curvature on the right-hand side of the shear propagation equation. The result is a class of solutions dynamically equivalent to standard FLRW cosmologies, with an effective curvature constant Keff that depends both on spatial curvature and the energy density of the gauge field(s). In the case of a single gauge field (n  =  1) we show that the only spacetimes that admit such solutions are the LRS Bianchi type III, Bianchi type VI0 and Kantowski–Sachs metric, which are dynamically equivalent to open (Keff<0 ), flat (Keff=0 ) and closed (Keff>0 ) FLRW models, respectively. With a collection of gauge fields (n  >  1) also Bianchi type II admits a shear-free solution (Keff>0 ). We identify the LRS Bianchi type III solution to be the unique shear-free solution with a gauge field Hamiltonian bounded from below in the entire class of models.

  17. Interface trap of p-type gate integrated AlGaN/GaN heterostructure field effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Sang

    2017-09-01

    In this work, the impact of trap states at the p-(Al)GaN/AlGaN interface has been investigated for the normally-off mode p-(Al)GaN/AlGaN/GaN heterostructure field-effect transistors (HFETs) by means of frequency dependent conductance. From the current-voltage (I-V) measurement, it was found that the p-AlGaN gate integrated device has higher drain current and lower gate leakage current compared to the p-GaN gate integrated device. We obtained the interface trap density and the characteristic time constant for the p-type gate integrated HFETs under the forward gate voltage of up to 6 V. As a result, the interface trap density (characteristic time constant) of the p-GaN gate device was lower (longer) than that of the p-AlGaN. Furthermore, it was analyzed that the trap state energy level of the p-GaN gate device was located at the shallow level relative to the p-AlGaN gate device, which accounts for different gate leakage current of each devices.

  18. Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia).

    PubMed

    Angelovičová, Lenka; Lodenius, Martin; Tulisalo, Esa; Fazekašová, Danica

    2014-12-01

    Heavy metals concentrations were measured in the former mining area located in Hornad river valley (Slovakia). Soil samples were taken in 2012 from 20 sites at two field types (grasslands, heaps of waste material) and two different areas. Total content of heavy metals (Cu, Pb, Zn, Hg), urease (URE), acid phosphatase (ACP), alkaline phosphatase (ALP), soil reaction (pH) were changing depending on the field/area type. The tailing pond and processing plants have been found as the biggest sources of pollution. URE, ACP and ALP activities significantly decreased while the heavy metal contents increased. Significant differences were found among area types in the heavy metal contents and activity of URE. No statistical differences in the content of heavy metals but significant statistical differences for soil pH were found for field types (grassland and heaps). Significant negative correlation was found for URE-Pb, URE-Zn and also between soil reaction and ACP and ALP.

  19. Inversion channel diamond metal-oxide-semiconductor field-effect transistor with normally off characteristics.

    PubMed

    Matsumoto, Tsubasa; Kato, Hiromitsu; Oyama, Kazuhiro; Makino, Toshiharu; Ogura, Masahiko; Takeuchi, Daisuke; Inokuma, Takao; Tokuda, Norio; Yamasaki, Satoshi

    2016-08-22

    We fabricated inversion channel diamond metal-oxide-semiconductor field-effect transistors (MOSFETs) with normally off characteristics. At present, Si MOSFETs and insulated gate bipolar transistors (IGBTs) with inversion channels are widely used because of their high controllability of electric power and high tolerance. Although a diamond semiconductor is considered to be a material with a strong potential for application in next-generation power devices, diamond MOSFETs with an inversion channel have not yet been reported. We precisely controlled the MOS interface for diamond by wet annealing and fabricated p-channel and planar-type MOSFETs with phosphorus-doped n-type body on diamond (111) substrate. The gate oxide of Al2O3 was deposited onto the n-type diamond body by atomic layer deposition at 300 °C. The drain current was controlled by the negative gate voltage, indicating that an inversion channel with a p-type character was formed at a high-quality n-type diamond body/Al2O3 interface. The maximum drain current density and the field-effect mobility of a diamond MOSFET with a gate electrode length of 5 μm were 1.6 mA/mm and 8.0 cm(2)/Vs, respectively, at room temperature.

  20. Ultralow-power non-volatile memory cells based on P(VDF-TrFE) ferroelectric-gate CMOS silicon nanowire channel field-effect transistors.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Whang, Dongmok; Kang, Dae Joon

    2015-07-21

    Nanowire-based ferroelectric-complementary metal-oxide-semiconductor (NW FeCMOS) nonvolatile memory devices were successfully fabricated by utilizing single n- and p-type Si nanowire ferroelectric-gate field effect transistors (NW FeFETs) as individual memory cells. In addition to having the advantages of single channel n- and p-type Si NW FeFET memory, Si NW FeCMOS memory devices exhibit a direct readout voltage and ultralow power consumption. The reading state power consumption of this device is less than 0.1 pW, which is more than 10(5) times lower than the ON-state power consumption of single-channel ferroelectric memory. This result implies that Si NW FeCMOS memory devices are well suited for use in non-volatile memory chips in modern portable electronic devices, especially where low power consumption is critical for energy conservation and long-term use.

  1. Ferroelectric-induced carrier modulation for ambipolar transition metal dichalcogenide transistors

    NASA Astrophysics Data System (ADS)

    Yin, Lei; Wang, Zhenxing; Wang, Feng; Xu, Kai; Cheng, Ruiqing; Wen, Yao; Li, Jie; He, Jun

    2017-03-01

    For multifarious electronic and optoelectronic applications, it is indispensable exploration of stable and simple method to modulate electrical behavior of transition metal dichalcogenides (TMDs). In this study, an effective method to adjust the electrical properties of ambipolar TMDs is developed by introducing the dipole electric field from poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric polymer. The transition from ambipolar to p-type conductive characteristics is realized, and the transistor performances are also significantly enhanced. Hole density of MoTe2- and WSe2-based back-gate field effect transistors increases by 4.4 and 2.5 times. Moreover, the corresponding hole mobilities are strikingly improved from 0.27 to 10.7 cm2 V-1 s-1 and from 1.6 to 59.8 cm2 V-1 s-1, respectively. After optimizing, p-channel MoTe2 phototransistors present ultrahigh responsivity of 3521 A/W, which is superior to most layered phototransistors. The remarkable control of conductive type, carrier concentration, and field-effect mobility of ambipolar TMDs via P(VDF-TrFE) treatment paves a way for realization of high-performance and versatile electronic and optoelectronic devices.

  2. Impact of negative capacitance effect on Germanium Double Gate pFET for enhanced immunity to interface trap charges

    NASA Astrophysics Data System (ADS)

    Bansal, Monika; Kaur, Harsupreet

    2018-05-01

    In this work, a comprehensive drain current model has been developed for long channel Negative Capacitance Germanium Double Gate p-type Field Effect Transistor (NCGe-DG-pFET) by using 1-D Poisson's equation and Landau-Khalatnikov equation. The model takes into account interface trap charges and by using the derived model various parameters such as surface potential, gain, gate capacitance, subthreshold swing, drain current, transconductance, output conductance and Ion/Ioff ratio have been obtained and it is demonstrated that by incorporating ferroelectric material as gate insulator with Ge-channel, subthreshold swing values less than 60 mV/dec can be achieved along with improved gate controllability and current drivability. Further, to critically analyze the advantages offered by NCGe-DG-pFET, a detailed comparison has been done with Germanium Double Gate p-type Field Effect Transistor (Ge-DG-pFET) and it is shown that NCGe-DG-pFET exhibits high gain, enhanced transport efficiency in channel, very less or negligible degradation in device characteristics due to interface trap charges as compared to Ge-DG-pFET. The analytical results so obtained show good agreement with simulated results obtained from Silvaco ATLAS TCAD tool.

  3. Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Cui, Jin; Han, Junbo; Zhang, Junpei; Zhang, Yibo; Luan, Lin; Alemu, Getachew; Wang, Zhong; Shen, Yan; Xiong, Dehua; Chen, Wei; Wei, Zhanhua; Yang, Shihe; Hu, Bin; Cheng, Yibing; Wang, Mingkui

    2014-01-01

    Over the past few decades, the field of p-type dye-sensitized solar cell (p-DSSC) devices has undergone tremendous advances, in which Cu-based delafossite nanocrystal is of prime interest. This paper presents an augment of about 87% improvement in photocurrent observed in a particular configuration of organic dye P1 sensitized CuCrO2 delafossite nanocrystal electrode coupled with organic redox shuttle, 1-methy-1H- tetrazole-5-thiolate and its disulfide dimer when Au nanoparticles (NPs, with diameter of about 20 nm) is added into the photocathode, achieving a power convert efficiency of 0.31% (measured under standard AM 1.5 G test conditions). Detailed investigation shows that the local electrical-magnetic field effect, induced by Au NPs among the mesoporous CuCrO2 film, can improve the charge injection efficiency at dye/semiconductor interface, which is responsible for the bulk of the gain in photocurrent. PMID:24492539

  4. InGaP/InGaAs field-effect transistor typed hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Liou, Syuan-Hao; Lin, Pao-Sheng; Chen, Yu-Chi

    2018-02-01

    In this article, the Pd-based mixture comprising silicon dioxide (SiO2) is applied as sensing material for the InGaP/InGaAs field-effect transistor typed hydrogen sensor. After wet selectively etching the SiO2, the mixture is turned into Pd nanoparticles on an interlayer. Experimental results depict that hydrogen atoms trapped inside the mixture could effectively decrease the gate barrier height and increase the drain current due to the improved sensing properties when Pd nanoparticles were formed by wet etching method. The sensitivity of the gate forward current from air (the reference) to 9800 ppm hydrogen/air environment approaches the high value of 1674. Thus, the studied device shows a good potential for hydrogen sensor and integrated circuit applications.

  5. Graphene oxide-zinc oxide nanocomposite as channel layer for field effect transistors: effect of ZnO loading on field effect transport.

    PubMed

    Jilani, S Mahaboob; Banerji, Pallab

    2014-10-08

    The effects of ZnO on graphene oxide (GO)-ZnO nanocomposites are investigated to tune the conductivity in GO under field effect regime. Zinc oxides with different concentrations from 5 wt % to 25 wt % are used in a GO matrix to increase the conductivity in the composite. Six sets of field effect transistors with pristine GO and GO-ZnO as the channel layer at varying ZnO concentrations were fabricated. From the transfer characteristics, it is observed that GO exhibited an insulating behavior and the transistors with low ZnO (5 wt %) concentration initially showed p-type conductivity that changes to n-type with increases in ZnO loading. This n-type dominance in conductivity is a consequence of the transfer of electrons from ZnO to the GO matrix. From X-ray photoelectron spectroscopic measurements, it is observed that the progressive reduction in the C-OH oxygen group took place with increases in ZnO loading. Thus, from insulating GO to p- and then n-type, conductivity in GO could be achieved with reduction in the C-OH oxygen group by photocatalytic reduction of GO with varying degrees of ZnO. The restoration of sp(2) electron network in the GO matrix with the anchoring of ZnO nanostructures was observed from Raman spectra. From UV-visible spectra, the band gap in pristine GO was found to be 3.98 eV and reduced to 2.8 eV with increase in ZnO attachment.

  6. Charge-Transfer-Induced p-Type Channel in MoS2 Flake Field Effect Transistors.

    PubMed

    Min, Sung-Wook; Yoon, Minho; Yang, Sung Jin; Ko, Kyeong Rok; Im, Seongil

    2018-01-31

    The two-dimensional transition-metal dichalcogenide semiconductor MoS 2 has received extensive attention for decades because of its outstanding electrical and mechanical properties for next-generation devices. One weakness of MoS 2 , however, is that it shows only n-type conduction, revealing its limitations for homogeneous PN diodes and complementary inverters. Here, we introduce a charge-transfer method to modify the conduction property of MoS 2 from n- to p-type. We initially deposited an n-type InGaZnO (IGZO) film on top of the MoS 2 flake so that electron charges might be transferred from MoS 2 to IGZO during air ambient annealing. As a result, electron charges were depleted in MoS 2 . Such charge depletion lowered the MoS 2 Fermi level, which makes hole conduction favorable in MoS 2 when optimum source/drain electrodes with a high work function are selected. Our IGZO-supported MoS 2 flake field effect transistors (FETs) clearly display channel-type conversion from n- to p-channel in this way. Under short- and long-annealing conditions, n- and p-channel MoS 2 FETs are achieved, respectively, and a low-voltage complementary inverter is demonstrated using both channels in a single MoS 2 flake.

  7. Tunnel field-effect transistor charge-trapping memory with steep subthreshold slope and large memory window

    NASA Astrophysics Data System (ADS)

    Kino, Hisashi; Fukushima, Takafumi; Tanaka, Tetsu

    2018-04-01

    Charge-trapping memory requires the increase of bit density per cell and a larger memory window for lower-power operation. A tunnel field-effect transistor (TFET) can achieve to increase the bit density per cell owing to its steep subthreshold slope. In addition, a TFET structure has an asymmetric structure, which is promising for achieving a larger memory window. A TFET with the N-type gate shows a higher electric field between the P-type source and the N-type gate edge than the conventional FET structure. This high electric field enables large amounts of charges to be injected into the charge storage layer. In this study, we fabricated silicon-oxide-nitride-oxide-semiconductor (SONOS) memory devices with the TFET structure and observed a steep subthreshold slope and a larger memory window.

  8. Enhancement of p-type conductivity by modifying the internal electric field in Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices

    NASA Astrophysics Data System (ADS)

    Li, Jinchai; Yang, Weihuang; Li, Shuping; Chen, Hangyang; Liu, Dayi; Kang, Junyong

    2009-10-01

    The internal electric field is modified by using Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN superlattices (SLs). The first-principles simulation results show that the internal electric field in SL has been significantly intensified due to the charge transferring from Si-doped interface to Mg-doped interface. Accordingly, the Mg- and Si-δ-codoped p-type Al0.2Ga0.8N/GaN SLs are grown by metalorganic vapor phase epitaxy and higher hole concentration as much as twice of that in modulation-doped SL has been achieved, as determined by Hall effect measurements. Furthermore, by applying Mg- and Si-δ-codoped AlxGa1-xN/AlyGa1-yN SLs with high Al content as the p-type layers, we have fabricated deep ultraviolet light emitting diodes with superior current-voltage characteristics by lowering Mg-acceptor activation energy.

  9. Bilayer Ising system designed with half-integer spins: Magnetic hysteresis, compensation behaviors and phase diagrams

    NASA Astrophysics Data System (ADS)

    Kantar, Ersin

    2016-08-01

    In this paper, within the framework of the effective-field theory with correlation, mixed spin-1/2 and spin-3/2 bilayer system on a square lattice is studied. The characteristic behaviors for the magnetic hysteresis, compensation types and phase diagrams depending on effect of the surface and interface exchange parameters as well as crystal field are investigated. From the behavior of total magnetization as a function of the magnetic field and temperature, we obtain the single, double and triple hysteresis loops and the L-, Q-, P-, S-, and N-type compensation behaviors in the system. Moreover, we detect the more effective the J1 and crystal field parameters on the bilayer Ising model according to the behaviors of the phase diagrams.

  10. Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode.

    PubMed

    Chen, Chih-Yen; Hsieh, Chieh; Liao, Che-Hao; Chung, Wei-Lun; Chen, Hao-Tsung; Cao, Wenyu; Chang, Wen-Ming; Chen, Horng-Shyang; Yao, Yu-Feng; Ting, Shao-Ying; Kiang, Yean-Woei; Yang, Chih-Chung C C; Hu, Xiaodong

    2012-05-07

    The counteraction between the increased carrier localization effect due to the change of composition nanostructure in the quantum wells (QWs), which is caused by the thermal annealing process, and the enhanced quantum-confined Stark effect in the QWs due to the increased piezoelectric field, which is caused by the increased p-type layer thickness, when the p-type layer is grown at a high temperature on the InGaN/GaN QWs of a high-indium light-emitting diode (LED) is demonstrated. Temperature- and excitation power-dependent photoluminescence (PL) measurements are performed on three groups of sample, including 1) the samples with both effects of thermal annealing and increased p-type thickness, 2) those only with the similar thermal annealing process, and 3) those with increased overgrowth thickness and minimized thermal annealing effect. From the comparisons of emission wavelength, internal quantum efficiency (IQE), spectral shift with increasing PL excitation level, and calibrated activation energy of carrier localization between various samples in the three groups, one can clearly see the individual effects of thermal annealing and increased p-type layer thickness. The counteraction leads to increased IQE and blue-shifted emission spectrum with increasing p-type thickness when the thickness is below a certain value (20-nm p-AlGaN plus 60-nm p-GaN under our growth conditions). Beyond this thickness, the IQE value decreases and the emission spectrum red shifts with increasing p-type thickness.

  11. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  12. Temperature effect on the coupling between coherent longitudinal phonons and plasmons in n -type and p -type GaAs

    NASA Astrophysics Data System (ADS)

    Hu, Jianbo; Zhang, Hang; Sun, Yi; Misochko, Oleg V.; Nakamura, Kazutaka G.

    2018-04-01

    The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n - and p -type GaAs by using ultrafast coherent phonon spectroscopy. A suppression of coherent oscillations has been observed in p -type GaAs at lower temperature, strikingly different from n -type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of the surface field due to a slow diffusion of photoexcited carriers in p -type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.

  13. Effect of protective filters on fire fighter respiratory health: field validation during prescribed burns.

    PubMed

    De Vos, Annemarie J B M; Cook, Angus; Devine, Brian; Thompson, Philip J; Weinstein, Philip

    2009-01-01

    Bushfire smoke contains a range of air toxics. To prevent inhalation of these toxics, fire fighters use respiratory equipment. Yet, little is known about the effectiveness of the equipment on the fire ground. Experimental trials in a smoke chamber demonstrated that, the particulate/organic vapor/formaldehyde (POVF) filter performed best under simulated conditions. This article reports on the field validation trials during prescribed burns in Western Australia. Sixty-seven career fire fighters from the Fire and Emergency Services Authority of Western Australia were allocated one of the three types of filters. Spirometry, oximetry, self-reported symptom, and personal air sampling data were collected before, during and after exposure to bushfire smoke from prescribed burns. Declines in FEV(1) and SaO(2) were demonstrated after 60 and 120 min exposure. A significant higher number of participants in the P filter group reported increases in respiratory symptoms after the exposure. Air sampling inside the respirators demonstrated formaldehyde levels significantly higher in the P filter group compared to the POV and the POVF filter group. The field validation trials during prescribed burns supported the findings from the controlled exposure trials in the smoke chamber. Testing the effectiveness of three types of different filters under bushfire smoke conditions in the field for up to 2 hr demonstrated that the P filter is ineffective in filtering out respiratory irritants. The performance of the POV and the POVF filter appears to be equally effective after 2 hr bushfire smoke exposure in the field.

  14. Fluorination of Metal Phthalocyanines: Single-Crystal Growth, Efficient N-Channel Organic Field-Effect Transistors, and Structure-Property Relationships

    PubMed Central

    Jiang, Hui; Ye, Jun; Hu, Peng; Wei, Fengxia; Du, Kezhao; Wang, Ning; Ba, Te; Feng, Shuanglong; Kloc, Christian

    2014-01-01

    The fluorination of p-type metal phthalocyanines produces n-type semiconductors, allowing the design of organic electronic circuits that contain inexpensive heterojunctions made from chemically and thermally stable p- and n-type organic semiconductors. For the evaluation of close to intrinsic transport properties, high-quality centimeter-sized single crystals of F16CuPc, F16CoPc and F16ZnPc have been grown. New crystal structures of F16CuPc, F16CoPc and F16ZnPc have been determined. Organic single-crystal field-effect transistors have been fabricated to study the effects of the central metal atom on their charge transport properties. The F16ZnPc has the highest electron mobility (~1.1 cm2 V−1 s−1). Theoretical calculations indicate that the crystal structure and electronic structure of the central metal atom determine the transport properties of fluorinated metal phthalocyanines. PMID:25524460

  15. Complementary spin transistor using a quantum well channel.

    PubMed

    Park, Youn Ho; Choi, Jun Woo; Kim, Hyung-Jun; Chang, Joonyeon; Han, Suk Hee; Choi, Heon-Jin; Koo, Hyun Cheol

    2017-04-20

    In order to utilize the spin field effect transistor in logic applications, the development of two types of complementary transistors, which play roles of the n- and p-type conventional charge transistors, is an essential prerequisite. In this research, we demonstrate complementary spin transistors consisting of two types of devices, namely parallel and antiparallel spin transistors using InAs based quantum well channels and exchange-biased ferromagnetic electrodes. In these spin transistors, the magnetization directions of the source and drain electrodes are parallel or antiparallel, respectively, depending on the exchange bias field direction. Using this scheme, we also realize a complementary logic operation purely with spin transistors controlled by the gate voltage, without any additional n- or p-channel transistor.

  16. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure

    NASA Astrophysics Data System (ADS)

    Md. Sadaf, Sharif; Mostafa Bourim, El; Liu, Xinjun; Hasan Choudhury, Sakeb; Kim, Dong-Wook; Hwang, Hyunsang

    2012-03-01

    We investigated the effect of a ferroelectric Pb(Zr0.52Ti0.48)O3 (PZT) thin film on the generation of resistive switching in a stacked Pr0.7Ca0.3MnO3 (PCMO)/Nb-doped SrTiO3 (Nb:STO) heterostructure forming a p-n junction. To promote the ferroelectric effect, the thin PZT active layer was deposited on an epitaxially grown p-type PCMO film on a lattice-matched n-type Nb:STO single crystal. It was concluded that the observed resistive switching behavior in the all-perovskite Pt/PZT/PCMO/Nb:STO heterostructure was related to the modulation of PCMO/Nb:STO p-n junction's depletion width, which was caused either by the PZT ferroelectric polarization field effect, the electrochemical drift of oxygen ions under an electric field, or both simultaneously.

  17. Synthesis, characterization and air stable semiconductor properties of thiophene-condensed pyrene derivatives

    NASA Astrophysics Data System (ADS)

    Moriguchi, Tetsuji; Higashi, Makoto; Yakeya, Daisuke; Jalli, Venkataprasad; Tsuge, Akihiko; Okauchi, Tatsuo; Nagamatsu, Shuichi; Takashima, Wataru

    2017-01-01

    New and simple polyaromatic compounds containing two thiophene rings were prepared via photo-cyclization and their structural and photophysical properties were evaluated via 1H NMR spectroscopy and X-ray crystallographic analysis. On the basis of X-ray analysis, it was determined that the molecular structure of the compound was highly strained and that they contain two hetero [4] helicene moieties. The compounds were investigated as active layer in p-type organic field-effect transistors (p-OFET) in top contact type devices. Notably, the compound containing two thiophene components exhibited very stable p-type semiconducting behavior in moist air.

  18. Spatial modulation of the Fermi level by coherent illumination of undoped GaAs

    NASA Astrophysics Data System (ADS)

    Nolte, D. D.; Olson, D. H.; Glass, A. M.

    1989-11-01

    The Fermi level in undoped GaAs has been modulated spatially by optically quenching EL2 defects. The spatial gradient of the Fermi level produces internal electric fields that are much larger than fields generated by thermal diffusion alone. The resulting band structure is equivalent to a periodic modulation-doped p-i-p structure of alternating insulating and p-type layers. The internal fields are detected via the electro-optic effect by the diffraction of a probe laser in a four-wave mixing geometry. The direct control of the Fermi level distinguishes this phenomenon from normal photorefractive behavior and introduces a novel nonlinear optical process.

  19. In-Operando Spatial Imaging of Edge Termination Electric Fields in GaN Vertical p-n Junction Diodes

    DOE PAGES

    Leonard, Francois; Dickerson, J. R.; King, M. P.; ...

    2016-05-03

    Control of electric fields with edge terminations is critical to maximize the performance of high-power electronic devices. We proposed a variety of edge termination designs which makes the optimization of such designs challenging due to many parameters that impact their effectiveness. And while modeling has recently allowed new insight into the detailed workings of edge terminations, the experimental verification of the design effectiveness is usually done through indirect means, such as the impact on breakdown voltages. In this letter, we use scanning photocurrent microscopy to spatially map the electric fields in vertical GaN p-n junction diodes in operando. We alsomore » reveal the complex behavior of seemingly simple edge termination designs, and show how the device breakdown voltage correlates with the electric field behavior. Modeling suggests that an incomplete compensation of the p-type layer in the edge termination creates a bilayer structure that leads to these effects, with variations that significantly impact the breakdown voltage.« less

  20. High performance Si nanowire field-effect-transistors based on a CMOS inverter with tunable threshold voltage.

    PubMed

    Van, Ngoc Huynh; Lee, Jae-Hyun; Sohn, Jung Inn; Cha, Seung Nam; Whang, Dongmok; Kim, Jong Min; Kang, Dae Joon

    2014-05-21

    We successfully fabricated nanowire-based complementary metal-oxide semiconductor (NWCMOS) inverter devices by utilizing n- and p-type Si nanowire field-effect-transistors (NWFETs) via a low-temperature fabrication processing technique. We demonstrate that NWCMOS inverter devices can be operated at less than 1 V, a significantly lower voltage than that of typical thin-film based complementary metal-oxide semiconductor (CMOS) inverter devices. This low-voltage operation was accomplished by controlling the threshold voltage of the n-type Si NWFETs through effective management of the nanowire (NW) doping concentration, while realizing high voltage gain (>10) and ultra-low static power dissipation (≤3 pW) for high-performance digital inverter devices. This result offers a viable means of fabricating high-performance, low-operation voltage, and high-density digital logic circuits using a low-temperature fabrication processing technique suitable for next-generation flexible electronics.

  1. Multilocus Sequence Typing Compared to Pulsed-Field Gel Electrophoresis for Molecular Typing of Pseudomonas aeruginosa▿

    PubMed Central

    Johnson, Jennifer K.; Arduino, Sonia M.; Stine, O. Colin; Johnson, Judith A.; Harris, Anthony D.

    2007-01-01

    For hospital epidemiologists, determining a system of typing that is discriminatory is essential for measuring the effectiveness of infection control measures. In situations in which the incidence of resistant Pseudomonas aeruginosa is increasing, the ability to discern whether it is due to patient-to-patient transmission versus an increase in patient endogenous strains is often made on the basis of molecular typing. The present study compared the discriminatory abilities of pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) for 90 P. aeruginosa isolates obtained from cultures of perirectal surveillance swabs from patients in an intensive care unit. PFGE identified 85 distinct types and 76 distinct groups when similarity cutoffs of 100% and 87%, respectively, were used. By comparison, MLST identified 60 sequence types that could be clustered into 11 clonal complexes and 32 singletons. By using the Simpson index of diversity (D), PFGE had a greater discriminatory ability than MLST for P. aeruginosa isolates (D values, 0.999 versus 0.975, respectively). Thus, while MLST was better for detecting genetic relatedness, we determined that PFGE was more discriminatory than MLST for determining genetic differences in P. aeruginosa. PMID:17881548

  2. Low temperature mobility in hafnium-oxide gated germanium p-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Beer, Chris; Whall, Terry; Parker, Evan; Leadley, David; De Jaeger, Brice; Nicholas, Gareth; Zimmerman, Paul; Meuris, Marc; Szostak, Slawomir; Gluszko, Grzegorz; Lukasiak, Lidia

    2007-12-01

    Effective mobility measurements have been made at 4.2K on high performance high-k gated germanium p-type metal-oxide-semiconductor field effect transistors with a range of Ge/gate dielectric interface state densities. The mobility is successfully modelled by assuming surface roughness and interface charge scattering at the SiO2 interlayer/Ge interface. The deduced interface charge density is approximately equal to the values obtained from the threshold voltage and subthreshold slope measurements on each device. A hydrogen anneal reduces both the interface state density and the surface root mean square roughness by 20%.

  3. Quantifying the motion of magnetic particles in excised tissue: Effect of particle properties and applied magnetic field

    NASA Astrophysics Data System (ADS)

    Kulkarni, Sandip; Ramaswamy, Bharath; Horton, Emily; Gangapuram, Sruthi; Nacev, Alek; Depireux, Didier; Shimoji, Mika; Shapiro, Benjamin

    2015-11-01

    This article presents a method to investigate how magnetic particle characteristics affect their motion inside tissues under the influence of an applied magnetic field. Particles are placed on top of freshly excised tissue samples, a calibrated magnetic field is applied by a magnet underneath each tissue sample, and we image and quantify particle penetration depth by quantitative metrics to assess how particle sizes, their surface coatings, and tissue resistance affect particle motion. Using this method, we tested available fluorescent particles from Chemicell of four sizes (100 nm, 300 nm, 500 nm, and 1 μm diameter) with four different coatings (starch, chitosan, lipid, and PEG/P) and quantified their motion through freshly excised rat liver, kidney, and brain tissues. In broad terms, we found that the applied magnetic field moved chitosan particles most effectively through all three tissue types (as compared to starch, lipid, and PEG/P coated particles). However, the relationship between particle properties and their resulting motion was found to be complex. Hence, it will likely require substantial further study to elucidate the nuances of transport mechanisms and to select and engineer optimal particle properties to enable the most effective transport through various tissue types under applied magnetic fields.

  4. Electromagnetically induced transparency in the case of elliptic polarization of interacting fields

    NASA Astrophysics Data System (ADS)

    Parshkov, Oleg M.

    2018-04-01

    The theoretical investigation results of disintegration effect of elliptic polarized shot probe pulses of electromagnetically induced transparency in the counterintuitive superposed elliptic polarized control field and in weak probe field approximation are presented. It is shown that this disintegration occurs because the probe field in the medium is the sum of two normal modes, which correspond to elliptic polarized pulses with different speeds of propagation. The polarization ellipses of normal modes have equal eccentricities and mutually perpendicular major axes. Major axis of polarization ellipse of one normal mode is parallel to polarization ellipse major axis of control field, and electric vector of this mode rotates in the opposite direction, than electric vector of the control field. The electric vector other normal mode rotates in the same direction that the control field electric vector. The normal mode speed of the first type aforementioned is less than that of the second type. The polarization characteristics of the normal mode depend uniquely on the polarization characteristics of elliptic polarized control field and remain changeless in the propagation process. The theoretical investigation is performed for Λ-scheme of degenerated quantum transitions between 3P0, 3P10 and 3P2 energy levels of 208Pb isotope.

  5. Effects on enantiomeric drug disposition and open-field behavior after chronic treatment with venlafaxine in the P-glycoprotein knockout mice model.

    PubMed

    Karlsson, Louise; Hiemke, Christoph; Carlsson, Björn; Josefsson, Martin; Ahlner, Johan; Bengtsson, Finn; Schmitt, Ulrich; Kugelberg, Fredrik C

    2011-05-01

    P-glycoprotein (P-gp) plays an important role in the efflux of drugs from the brain back into the bloodstream and can influence the pharmacokinetics and pharmacodynamics of drug molecules. To our knowledge, no studies have reported pharmacodynamic effects of any antidepressant drug in the P-gp knockout mice model. The aim of this study was to investigate the enantiomeric venlafaxine and metabolite concentrations in serum and brain of abcb1ab⁻/⁻ mice compared to wild-type mice upon chronic dosing, and to assess the effect of venlafaxine treatment on open-field behavior. P-gp knockout and wild-type mice received two daily intraperitoneal injections of venlafaxine (10 mg/kg) over ten consecutive days. Locomotor and rearing activities were assessed on days 7 and 9. After 10 days, drug and metabolite concentrations in brain and serum were determined using an enantioselective LC/MS/MS method. The brain concentrations of venlafaxine and its three demethylated metabolites were two to four times higher in abcb1ab⁻/⁻ mice compared to abcb1ab+/+ mice. The behavioral results indicated an impact on exploration-related behaviors in the open-field as center activity was increased, and rears were decreased by venlafaxine treatment. Our results show that P-gp at the blood-brain barrier plays an important role in limiting brain entry of the enantiomers of venlafaxine and its metabolites after chronic dosing. Taken together, the present pharmacokinetic and pharmacodynamic findings offer the possibility that the expression of P-gp in patients may be a contributing factor for limited treatment response.

  6. About non standard Lagrangians in cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, Dragoljub D.; Milosevic, Milan

    A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.

  7. Laser-induced local activation of Mg-doped GaN with a high lateral resolution for high power vertical devices

    NASA Astrophysics Data System (ADS)

    Kurose, Noriko; Matsumoto, Kota; Yamada, Fumihiko; Roffi, Teuku Muhammad; Kamiya, Itaru; Iwata, Naotaka; Aoyagi, Yoshinobu

    2018-01-01

    A method for laser-induced local p-type activation of an as-grown Mg-doped GaN sample with a high lateral resolution is developed for realizing high power vertical devices for the first time. As-grown Mg-doped GaN is converted to p-type GaN in a confined local area. The transition from an insulating to a p-type area is realized to take place within about 1-2 μm fine resolution. The results show that the technique can be applied in fabricating the devices such as vertical field effect transistors, vertical bipolar transistors and vertical Schottkey diode so on with a current confinement region using a p-type carrier-blocking layer formed by this technique.

  8. Characterization of n-Type and p-Type Long-Wave InAs/InAsSb Superlattices

    NASA Astrophysics Data System (ADS)

    Brown, A. E.; Baril, N.; Zuo, D.; Almeida, L. A.; Arias, J.; Bandara, S.

    2017-09-01

    The influence of dopant concentration on both in-plane mobility and minority carrier lifetime in long-wave infrared InAs/InAsSb superlattices (SLs) was investigated. Unintentially doped ( n-type) and various concentrations of Be-doped ( p-type) SLs were characterized using variable-field Hall and photoconductive decay techniques. Minority carrier lifetimes in p-type InAs/InAsSb SLs are observed to decrease with increasing carrier concentration, with the longest lifetime at 77 K determined to be 437 ns, corresponding to a measured carrier concentration of p 0 = 4.1 × 1015 cm-3. Variable-field Hall technique enabled the extraction of in-plane hole, electron, and surface electron transport properties as a function of temperature. In-plane hole mobility is not observed to change with doping level and increases with reducing temperature, reaching a maximum at the lowest temperature measured of 30 K. An activation energy of the Be-dopant is determined to be 3.5 meV from Arrhenius analysis of hole concentration. Minority carrier electrons populations are suppressed at the highest Be-doping levels, but mobility and concentration values are resolved in lower-doped samples. An average surface electron conductivity of 3.54 × 10-4 S at 30 K is determined from the analysis of p-type samples. Effects of passivation treatments on surface conductivity will be presented.

  9. Low-Voltage Complementary Electronics from Ion-Gel-Gated Vertical Van der Waals Heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yongsuk; Kang, Junmo; Jariwala, Deep

    2016-03-22

    Low-voltage complementary circuits comprising n-type and p-type van der Waals heterojunction vertical field-effect transistors (VFETs) are demonstrated. The resulting VFETs possess high on-state current densities (>3000 A cm-2) and on/off current ratios (>104) in a narrow voltage window (<3 V).

  10. Shellac Films as a Natural Dielectric Layer for Enhanced Electron Transport in Polymer Field-Effect Transistors.

    PubMed

    Baek, Seung Woon; Ha, Jong-Woon; Yoon, Minho; Hwang, Do-Hoon; Lee, Jiyoul

    2018-06-06

    Shellac, a natural polymer resin obtained from the secretions of lac bugs, was evaluated as a dielectric layer in organic field-effect transistors (OFETs) on the basis of donor (D)-acceptor (A)-type conjugated semiconducting copolymers. The measured dielectric constant and breakdown field of the shellac layer were ∼3.4 and 3.0 MV/cm, respectively, comparable with those of a poly(4-vinylphenol) (PVP) film, a commonly used dielectric material. Bottom-gate/top-contact OFETs were fabricated with shellac or PVP as the dielectric layer and one of three different D-A-type semiconducting copolymers as the active layer: poly(cyclopentadithiophene- alt-benzothiadiazole) with p-type characteristics, poly(naphthalene-bis(dicarboximide)- alt-bithiophene) [P(NDI2OD-T2)] with n-type characteristics, and poly(dithienyl-diketopyrrolopyrrole- alt-thienothiophene) [P(DPP2T-TT)] with ambipolar characteristics. The electrical characteristics of the fabricated OFETs were then measured. For all active layers, OFETs with a shellac film as the dielectric layer exhibited a better mobility than those with PVP. For example, the mobility of the OFET with a shellac dielectric and n-type P(NDI2OD-T2) active layer was approximately 2 orders of magnitude greater than that of the corresponding OFET with a PVP insulating layer. When P(DPP2T-TT) served as the active layer, the OFET with shellac as the dielectric exhibited ambipolar characteristics, whereas the corresponding OFET with the PVP dielectric operated only in hole-accumulation mode. The total density of states was analyzed using technology computer-aided design simulations. The results revealed that compared with the OFETs with PVP as the dielectric, the OFETs with shellac as the dielectric had a lower trap-site density at the polymer semiconductor/dielectric interface and much fewer acceptor-like trap sites acting as electron traps. These results demonstrate that shellac is a suitable dielectric material for D-A-type semiconducting copolymer-based OFETs, and the use of shellac as a dielectric layer facilitates electron transport at the interface with D-A-type copolymer channels.

  11. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  12. Multimode Silicon Nanowire Transistors

    PubMed Central

    2014-01-01

    The combined capabilities of both a nonplanar design and nonconventional carrier injection mechanisms are subject to recent scientific investigations to overcome the limitations of silicon metal oxide semiconductor field effect transistors. In this Letter, we present a multimode field effect transistors device using silicon nanowires that feature an axial n-type/intrinsic doping junction. A heterostructural device design is achieved by employing a self-aligned nickel-silicide source contact. The polymorph operation of the dual-gate device enabling the configuration of one p- and two n-type transistor modes is demonstrated. Not only the type but also the carrier injection mode can be altered by appropriate biasing of the two gate terminals or by inverting the drain bias. With a combined band-to-band and Schottky tunneling mechanism, in p-type mode a subthreshold swing as low as 143 mV/dec and an ON/OFF ratio of up to 104 is found. As the device operates in forward bias, a nonconventional tunneling transistor is realized, enabling an effective suppression of ambipolarity. Depending on the drain bias, two different n-type modes are distinguishable. The carrier injection is dominated by thermionic emission in forward bias with a maximum ON/OFF ratio of up to 107 whereas in reverse bias a Schottky tunneling mechanism dominates the carrier transport. PMID:25303290

  13. Multi-Layer SnSe Nanoflake Field-Effect Transistors with Low-Resistance Au Ohmic Contacts

    NASA Astrophysics Data System (ADS)

    Cho, Sang-Hyeok; Cho, Kwanghee; Park, No-Won; Park, Soonyong; Koh, Jung-Hyuk; Lee, Sang-Kwon

    2017-05-01

    We report p-type tin monoselenide (SnSe) single crystals, grown in double-sealed quartz ampoules using a modified Bridgman technique at 920 °C. X-ray powder diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) measurements clearly confirm that the grown SnSe consists of single-crystal SnSe. Electrical transport of multi-layer SnSe nanoflakes, which were prepared by exfoliation from bulk single crystals, was conducted using back-gated field-effect transistor (FET) structures with Au and Ti contacts on SiO2/Si substrates, revealing that multi-layer SnSe nanoflakes exhibit p-type semiconductor characteristics owing to the Sn vacancies on the surfaces of SnSe nanoflakes. In addition, a strong carrier screening effect was observed in 70-90-nm-thick SnSe nanoflake FETs. Furthermore, the effect of the metal contacts to multi-layer SnSe nanoflake-based FETs is also discussed with two different metals, such as Ti/Au and Au contacts.

  14. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  15. Effect of reabsorbed recombination radiation on the saturation current of direct gap p-n junctions

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Mavromatis, H.

    1984-01-01

    The application of the radiative transfer theory for semiconductors to p-n homojunctions subject to low level injection conditions is discussed. By virtue of the interaction of the radiation field with free carriers across the depletion layer, the saturation current density in Shockley's expression for the diode current is reduced at high doping levels. The reduction, due to self-induced photon generation, is noticeable for n-type material owing to the small electron effective mass in direct band-gap III-V compounds. The effect is insignificant in p-type material. At an equilibrium electron concentration of 2 x 10 to the 18th/cu cm in GaAs, a reduction of the saturation current density by 15 percent is predicted. It is concluded that realistic GaAs p-n junctions possess a finite thickness.

  16. Effects of omega-conotoxin GVIA on the activation of capsaicin-sensitive afferent sensory nerves in guinea pig airway tissues.

    PubMed

    Morimoto, H; Matsuda, A; Ohori, M; Fujii, T

    1996-06-01

    We examined the effects of Ca2+ channel antagonists on various respiratory reactions induced by the activation of capsaicin-sensitive afferent sensory nerves. Intravenous (i.v.) injection of the N-type Ca2+ channel antagonist omega-conotoxin GVIA (CgTX) (1-20 micrograms/kg) dose-dependently inhibited capsaicin-induced guinea pig bronchoconstriction, whereas i.v. administration of the L-type antagonist nicardipine (100 micrograms/kg), the P-type antagonist omega-agatoxin IVA (AgaTX) (20 micrograms/kg) or the OPQ family-type antagonist omega-conotoxin MVIIC (CmTX) (20 micrograms/kg) had no effect. However, CgTX (20 micrograms/kg) failed to inhibit substance P-induced guinea pig bronchoconstriction. CgTX (20 micrograms/kg) significantly inhibited cigarette smoke-induced guinea pig tracheal plasma extravasation, but not the substance P-induced reaction. CgTX also reduced electrical field stimulation-induced guinea pig bronchial smooth muscle contraction (0.01-10 microM) and capsaicin-induced substance P-like immunoreactivity release from guinea pig lung (0.14 microM). This evidence suggests that N-type Ca2+ channels modulate tachykinin release from capsaicin-sensitive afferent sensory nerve endings in guinea pig airway tissue.

  17. p -wave superconductivity in weakly repulsive 2D Hubbard model with Zeeman splitting and weak Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Hugdal, Henning G.; Sudbø, Asle

    2018-01-01

    We study the superconducting order in a two-dimensional square lattice Hubbard model with weak repulsive interactions, subject to a Zeeman field and weak Rashba spin-orbit interactions. Diagonalizing the noninteracting Hamiltonian leads to two separate bands, and by deriving an effective low-energy interaction we find the mean field gap equations for the superconducting order parameter on the bands. Solving the gap equations just below the critical temperature, we find that superconductivity is caused by Kohn-Luttinger-type interaction, while the pairing symmetry of the bands is indirectly affected by the spin-orbit coupling. The dominating attractive momentum channel of the Kohn-Luttinger term depends on the filling fraction n of the system, and it is therefore possible to change the momentum dependence of the order parameter by tuning n . Moreover, n also determines which band has the highest critical temperature. Rotating the magnetic field changes the momentum dependence from states that for small momenta reduce to a chiral px±i py type state for out-of-plane fields, to a nodal p -wave-type state for purely in-plane fields.

  18. Bianchi cosmologies with p-form gauge fields

    NASA Astrophysics Data System (ADS)

    Normann, Ben David; Hervik, Sigbjørn; Ricciardone, Angelo; Thorsrud, Mikjel

    2018-05-01

    In this paper the dynamics of free gauge fields in Bianchi type I–VII h space-times is investigated. The general equations for a matter sector consisting of a p-form field strength (p \\in \\{1, 3\\} ), a cosmological constant (4-form) and perfect fluid in Bianchi type I–VII h space-times are computed using the orthonormal frame method. The number of independent components of a p-form in all Bianchi types I–IX are derived and, by means of the dynamical systems approach, the behaviour of such fields in Bianchi type I and V are studied. Both a local and a global analysis are performed and strong global results regarding the general behaviour are obtained. New self-similar cosmological solutions appear both in Bianchi type I and Bianchi type V, in particular, a one-parameter family of self-similar solutions, ‘Wonderland (λ)’ appears generally in type V and in type I for λ=0 . Depending on the value of the equation of state parameter other new stable solutions are also found (‘The Rope’ and ‘The Edge’) containing a purely spatial field strength that rotates relative to the co-moving inertial tetrad. Using monotone functions, global results are given and the conditions under which exact solutions are (global) attractors are found.

  19. Magnetotransport properties of MoP 2

    DOE PAGES

    Wang, Aifeng; Graf, D.; Stein, Aaron; ...

    2017-11-02

    We report magnetotransport and de Haas–van Alphen (dHvA) effect studies on MoP 2 single crystals, predicted to be a type- II Weyl semimetal with four pairs of robust Weyl points located below the Fermi level and long Fermi arcs. The temperature dependence of resistivity shows a peak before saturation, which does not move with magnetic field. Large nonsaturating magnetoresistance (MR) was observed, and the field dependence of MR exhibits a crossover from semiclassical weak-field B 2 dependence to the high-field linear-field dependence, indicating the presence of Dirac linear energy dispersion. In addition, a systematic violation of Kohler's rule was observed,more » consistent with multiband electronic transport. Strong spin-orbit coupling splitting has an effect on dHvA measurements whereas the angular-dependent dHvA orbit frequencies agree well with the calculated Fermi surface. The cyclotron effective mass ~1.6m e indicates the bands might be trivial, possibly since the Weyl points are located below the Fermi level.« less

  20. A Comparative Analysis of the In Vitro Effects of Pulsed Electromagnetic Field Treatment on Osteogenic Differentiation of Two Different Mesenchymal Cell Lineages

    PubMed Central

    Ceccarelli, Gabriele; Bloise, Nora; Mantelli, Melissa; Gastaldi, Giulia; Fassina, Lorenzo; De Angelis, Maria Gabriella Cusella; Ferrari, Davide; Imbriani, Marcello

    2013-01-01

    Abstract Human mesenchymal stem cells (MSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications. Exposure of MSCs to physical stimuli favors early and rapid activation of the tissue repair process. In this study we investigated the in vitro effects of pulsed electromagnetic field (PEMF) treatment on the proliferation and osteogenic differentiation of bone marrow MSCs (BM-MSCs) and adipose-tissue MSCs (ASCs), to assess if both types of MSCs could be indifferently used in combination with PEMF exposure for bone tissue healing. We compared the cell viability, cell matrix distribution, and calcified matrix production in unstimulated and PEMF-stimulated (magnetic field: 2 mT, amplitude: 5 mV) mesenchymal cell lineages. After PEMF exposure, in comparison with ASCs, BM-MSCs showed an increase in cell proliferation (p<0.05) and an enhanced deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p<0.05). Calcium deposition was 1.5-fold greater in BM-MSC–derived osteoblasts (p<0.05). The immunofluorescence related to the deposition of bone matrix proteins and calcium showed their colocalization to the cell-rich areas for both types of MSC-derived osteoblast. Alkaline phosphatase activity increased nearly 2-fold (p<0.001) and its protein content was 1.2-fold higher in osteoblasts derived from BM-MSCs. The quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis revealed up-regulated transcription specific for bone sialoprotein, osteopontin, osteonectin, and Runx2, but at a higher level for cells differentiated from BM-MSCs. All together these results suggest that PEMF promotion of bone extracellular matrix deposition is more efficient in osteoblasts differentiated from BM-MSCs. PMID:23914335

  1. Field-effect modulation of the thermoelectric characteristics of silicon nanowires on plastic substrates.

    PubMed

    Choi, Jinyong; Jeon, Youngin; Cho, Kyoungah; Kim, Sangsig

    2016-12-02

    In this study, we demonstrate the substantial enhancement of the thermoelectric power factors of silicon nanowires (SiNWs) on plastic substrates achievable by field-effect modulation. The Seebeck coefficient and electrical conductivity are adjusted by varying the charge carrier concentration via electrical modulation with a gate voltage in the 0 to ±5 range, thus enhancing the power factors from 2.08 to 935 μW K -2 m -1 ) for n-type SiNWs, and from 453 to 944 μW K -2 m -1 ) for p-type SiNWs. The electrically modulated thermoelectric characteristics of SiNWs are analyzed and discussed.

  2. A 700 V narrow channel nJFET with low pinch-off voltage and suppressed drain-induced barrier lowering effect

    NASA Astrophysics Data System (ADS)

    Mao, Kun; Qiao, Ming; Zhang, WenTong; Zhang, Bo; Li, Zhaoji

    2014-11-01

    This paper proposes a 700 V narrow channel region triple-RESURF (reduced surface field) n-type junction field-effect transistor (NCT-nJFET). Compared to traditional structures, low pinch-off voltage (VP) with unobvious drain-induced barrier lowering (DIBL) effect and large saturated current (IDsat) are achieved. This is because p-type buried layer (Pbury) and PWELL are introduced to shape narrow n-type channel in JFET channel region. DIBL sensitivity (SDIBL) is firstly introduced in this paper to analyze the DIBL effect of high-voltage long-channel JFET. Ultra-high breakdown voltage is obtained by triple RESURF technology. Experimental results show that proposed NCT-nJFET achieves 24-V VP, 3.5% SDIBL, 2.3-mA IDsat, 800-V OFF-state breakdown voltage (OFF-BV) and 650-V ON-state breakdown voltage when VGS equals 0 V (ON-BV).

  3. New localization mechanism and Hodge duality for q -form field

    NASA Astrophysics Data System (ADS)

    Fu, Chun-E.; Liu, Yu-Xiao; Guo, Heng; Zhang, Sheng-Li

    2016-03-01

    In this paper, we investigate the problem of localization and the Hodge duality for a q -form field on a p -brane with codimension one. By a general Kaluza-Klein (KK) decomposition without gauge fixing, we obtain two Schrödinger-like equations for two types of KK modes of the bulk q -form field, which determine the localization and mass spectra of these KK modes. It is found that there are two types of zero modes (the 0-level modes): a q -form zero mode and a (q -1 )-form one, which cannot be localized on the brane at the same time. For the n -level KK modes, there are two interacting KK modes, a massive q -form KK mode and a massless (q -1 )-form one. By analyzing gauge invariance of the effective action and choosing a gauge condition, the n -level massive q -form KK mode decouples from the n -level massless (q -1 )-form one. It is also found that the Hodge duality in the bulk naturally becomes two dualities on the brane. The first one is the Hodge duality between a q -form zero mode and a (p -q -1 )-form one, or between a (q -1 )-form zero mode and a (p -q )-form one. The second duality is between two group KK modes: one is an n -level massive q -form KK mode with mass mn and an n -level massless (q -1 )-form mode; another is an n -level (p -q )-form one with the same mass mn and an n -level massless (p -q -1 )-form mode. Because of the dualities, the effective field theories on the brane for the KK modes of the two dual bulk form fields are physically equivalent.

  4. Photoluminescence and photocatalytic properties of rhombohedral CuGaO2 nanoplates

    PubMed Central

    Shi, Linlin; Wang, Fei; Wang, Yunpeng; Wang, Dengkui; Zhao, Bin; Zhang, Ligong; Zhao, Dongxu; Shen, Dezhen

    2016-01-01

    Rhombohedral phase CuGaO2 nanoplates with a diameter of about 10 μm were synthesized via low temperature hydrothermal method. Room temperature and low temperature photoluminescence of the obtained CuGaO2 nanoplates were characterized. CuGaO2 nanoplates exhibited blue emission at room temperature and free exciton emission were appeared at low temperature. The blue emission is originated from defects such as Cu vacancies, which is the possible origin of p-type conductivity. The appearance of free exciton emission can demonstrate the direct bandgap transition behavior of CuGaO2 nanoplates. The as-prepared p-type CuGaO2 nanoplates were further decorated by n-type ZnO nanoparticles via calcination method to fabricate p-n junction nanocomposites. The nanocomposites exhibited enhanced photocatalytic activity which can be ascribed to the effective separation of photogenerated carriers by the internal electrostatic field in the p-n junction region, and the enhanced light absorption properties resulted from sub-bandgap absorption effect of p-n junction. This work has offered a new insight into the design of p-n junction devices using p-type CuGaO2 nanoplates. PMID:26887923

  5. Tunability of p- and n-channel TiOx thin film transistors.

    PubMed

    Peng, Wu-Chang; Chen, Yao-Ching; He, Ju-Liang; Ou, Sin-Liang; Horng, Ray-Hua; Wuu, Dong-Sing

    2018-06-18

    To acquire device-quality TiO x films usually needs high-temperature growth or additional post-thermal treatment. However, both processes make it very difficult to form the p-type TiO x even under oxygen-poor growth condition. With the aid of high energy generated by high power impulse magnetron sputtering (HIPIMS), a highly stable p-type TiO x film with good quality can be achieved. In this research, by varying the oxygen flow rate, p-type γ-TiO and n-type TiO 2 films were both prepared by HIPIMS. Furthermore, p- and n-type thin film transistors employing γ-TiO and TiO 2 as channel layers possess the field-effect carrier mobilities of 0.2 and 0.7 cm 2 /Vs, while their on/off current ratios are 1.7 × 10 4 and 2.5 × 10 5 , respectively. The first presented p-type γ-TiO TFT is a major breakthrough for fabricating the TiO x -based p-n combinational devices. Additionally, our work also confirms HIPIMS offers the possibility of growing both p- and n-type conductive oxides, significantly expanding the practical usage of this technique.

  6. Atmospheric effects on radiometry from zenith of a plane with dark vertical protrusions

    NASA Technical Reports Server (NTRS)

    Otterman, J.

    1983-01-01

    Effects of an optically thin plane-parallel scattering atmosphere on radiometric imaging from the zenith of a specific surface-type are analyzed. The surface model was previously developed to describe arid steppe, where the sparse vegetation forms dark vertical protrusions from the bright soil-plane. The analysis is in terms of the surface reflectivity to the zenith r sub p for the direct beam, which is formulated as r sub p = r sub i exp (-s tan theta sub 0), where v sub i is the Lambert law reflectivity of the soil, the protrusions parameters s is the projection on a vertical plane of protrusions per unit area and theta sub 0 is the zenith angle. The surface reflectivity r sub p is approximately equal to that for the global irradiance (which is directly measured in the field) only for a narrow range of the solar zenith angles. The effects of the atmosphere when imaging large uniform areas of this type are comparable to those in imaging a Lambert surface with a reflectivity r sub p. Thus, the effects can be approximated by those in the case of a dark Lambert surface (analyzed previously), inasmuch as r sub p is smaller than the soil reflectivity r sub i for any off-zenith illumination. The surface becomes effectively darker with increasing solar zenith angle. Adjacency effects of a reflection from one area and scattering in the instantaneous field of view (object pixel) are analyzed as cross radiance and cross irradiance.

  7. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    NASA Astrophysics Data System (ADS)

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-02-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters.

  8. Cosmic ray modulation with a Fisk-type heliospheric magnetic field and a latitude-dependent solar wind speed

    NASA Astrophysics Data System (ADS)

    Hitge, M.; Burger, R. A.

    2010-01-01

    The effect of a latitude-dependent solar wind speed on a Fisk heliospheric magnetic field [Fisk, L. A. Motion of the footpoints of heliospheric magnetic field lines at the Sun: implications for recurrent energetic particle events at high heliographic latitudes. J. Geophys. Res. 101, 15547-15553, 1996] was first discussed by Schwadron and Schwadron and McComas [Schwadron, N.A. An explanation for strongly underwound magnetic field in co-rotating rarefaction regions and its relationship to footpoint motion on the the sun. Geophys. Res. Lett. 29, 1-8, 2002. and Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003]. Burger and Sello [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005] found a significant effect for a simplified 2D version of a latitude-dependent Fisk-type field while Miyake and Yanagita [Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, 445-448, 2007] found a smaller effect. The current report improves on a previous attempt Hitge and Burger [Hitge, M., Burger, R.A. The effect of a latitude-dependent solar wind speed on cosmic-ray modulation in a Fisk-type heliospheric magnetic field. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 449-450, 2007] where the global change in the solar wind speed and not the local speed gradient was emphasized. The sheared Fisk field of Schwadron and McComas [Schwadron, N.A., McComas, D.J. Heliospheric “FALTS”: Favored acceleration locations at the termination shock. Geophys. Res. Lett. 30, 41-1, 2003.) is similar to the current Schwadron-Parker hybrid field. Little difference is found between the effects of a Parker field and a Schwadron-Parker hybrid field on cosmic-ray modulation, in contrast to the results of Burger and Sello and Miyake and Yanagita [Burger, R.A., Sello, P.C. The effect on cosmic ray modulation of a Parker field modified by a latitudinal-dependent solar wind speed. Adv. Space Res. 35, 643-646, 2005 and Miyake, S., Yanagita, S. The effect of a modified Parker field on the modulation of the galactic cosmic rays. In: Proceedings of 30th International Cosmic Ray Conference. Merida, Mexico, vol. 1, pp. 445-448, 2007]. The two-dimensional approximation used by these authors is therefore inadequate to model the complexities of the actual three-dimensional field. We also show that a Fisk-type field with a latitude-dependent solar wind speed (Schwadron-Parker hybrid field) decreases both the relative amplitude of recurrent cosmic ray intensity variations and latitude gradients and yields similar constants of proportionality for these quantities as for the constant solar wind speed case.

  9. Effects of lenses with different power profiles on eye shape in chickens.

    PubMed

    Tepelus, Tudor Cosmin; Vazquez, Daniel; Seidemann, Anne; Uttenweiler, Dietmar; Schaeffel, Frank

    2012-02-01

    Defocus imposed to the periphery of the visual field can affect the development of foveal/central refractive errors. To make use of this observation, lenses can be designed to reduce myopia progression, but it is important to know which power profiles of the lenses are most effective. We have studied this question in chickens. Sixty male white leghorn chickens were used. From day 7 after hatching, they were treated for 5 days either with full field -7D or +7D lenses, with -7D lenses with a 4mm central hole, with hemi-field lenses of the same power, or with two different types of radial refractive gradient (RRG) lenses with increasing positive power from the center to the periphery, which were designed by Rodenstock GmbH, Munich, Germany. A macro file was written for "ImageJ" to trace and average the outlines of several excised eyes after treatment. Shapes of fellow control eyes and lens-treated eyes were compared in the horizontal and vertical meridians. Refractions were determined at -45°, 0°, and 45° over the horizontal visual field, at the beginning and at the end of experiments, using automated infrared photoretinoscopy. (1) Eye length, as determined by the new automated eye shape tracing technique, was well correlated with A-scan ultrasound data. (2) The effects of previously tested lens designs were reproduced with the new tracing technique. Full field lenses were by far the most effective (-7D: external axial length +0.24mm with an increase in eye volume of about 6%, +7D: -0.08 mm, with a decrease in eye volume of about 2%). Hemi-field lenses and negative lenses with a 4mm central hole induced conspicuous local changes in eye shape. (3) The first type of RRG lenses with a plano zone of about 4mm (equivalent to about ± 12.52° in the visual field for a vertex distance of 5mm) had no apparent effect on central refractions but induced small hyperopic shifts in the periphery, more significant in the temporal retina (+1.70 ± 1.70 D, p<0.001, paired t-test to untreated fellow eyes). The second type of RRG lenses with a small plano zone of 2mm (equivalent to ± 6.34°) induced peripheral hyperopia but also changed the central refraction (temporal retina +1.50 ± 1.17D, p<0.001, central retina +0.77 ± 1.15 D, p<0.01, nasal retina +1.47±1.35D, p<0.001, paired t-test to untreated control eyes). In the afoveate chick, RRG lenses have an effect on central refraction and eye growth only if the central plano zone is small (<4mm). For the second type of RRG lens with a central plano zone of about 2mm, inhibitory effects on eye growth were detected in both the center and periphery even though the optical power of the lenses in the periphery was low. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Complete wavelength mismatching effect in a Doppler broadened Y-type six-level EIT atomic medium

    NASA Astrophysics Data System (ADS)

    Bharti, Vineet; Wasan, Ajay

    We present a theoretical study of the Doppler broadened Y-type six-level atomic system, using a density matrix approach, to investigate the effect of varying control field wavelengths and closely spaced hyperfine levels in the 5P state of 87Rb. The closely spaced hyperfine levels in our six-level system affect the optical properties of Y-type system and cause asymmetry in absorption profiles. Depending upon the choices of π-probe, σ+-control and σ--control fields transitions, we consider three regimes: (i) perfect wavelength matching regime (λp=λ=λ), (ii) partial wavelength mismatching regime (λp≠λ=λ), and (iii) complete wavelength mismatching regime (λp≠λ≠λ). The complete wavelength mismatching regime is further distinguished into two situations, i.e., λ<λ and λ>λ. We have shown that in the room temperature atomic vapor, the asymmetric transparency window gets broadened in the partial wavelength mismatching regime as compared to the perfect wavelength matching regime. This broad transparency window also splits at the line center in the complete wavelength mismatching regime.

  11. Theoretical calculation of performance enhancement in lattice-matched SiGeSn/GeSn p-channel tunneling field-effect transistor with type-II staggered tunneling junction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjuan; Han, Genquan; Wang, Yibo; Peng, Yue; Liu, Yan; Zhang, Chunfu; Zhang, Jincheng; Hu, Shengdong; Hao, Yue

    2016-04-01

    In this work, a lattice-matched SiGeSn/GeSn heterostructure p-channel tunneling field-effect transistor (hetero-PTFET) with a type-II staggered tunneling junction (TJ) is investigated theoretically. Lattice matching and type-II band alignment at the Γ-point is obtained at the SiGeSn/GeSn interface by tuning Sn and Si compositions. A steeper subthreshold swing (SS) and a higher on state current (I ON) are demonstrated in SiGeSn/GeSn hetero-PTFET than in GeSn homo-PTFET. Si0.31Ge0.49Sn0.20/Ge0.88Sn0.12 hetero-PTFET achieves a 2.3-fold higher I ON than Ge0.88Sn0.12 homo-PTFET at V DD of 0.3 V. Hetero-PTFET achieves a more abrupt hole profile and a higher carrier density near TJ than the homo-PTFET, which contributes to the significantly enhanced band-to-band tunneling (BTBT) rate and tunneling current in hetero-PTFET.

  12. The ternary alloy with a structure of Prussian blue analogs in a transverse field

    NASA Astrophysics Data System (ADS)

    Dely, J.; Bobák, A.

    2007-11-01

    The effects of applied transverse field on transition and compensation temperatures of the ABpC1-p ternary alloy consisting of spins SA={3}/{2}, SB=2, and SC={5}/{2} are investigated by the use of a mean-field theory. The structure and the spin values of the model correspond to the Prussian blue analog of the type (FepIIMn1-pII)1.5[CrIII(CN)6]·nH2O. We find that two or even three compensation points may be induced by a transverse field for the system with appropriate values of the parameters in the model Hamiltonian. In particular, the influence of a transverse field on the compensation point in the ground state is examined.

  13. Chemical Vapor Deposition Growth of Degenerate p-Type Mo-Doped ReS2 Films and Their Homojunction.

    PubMed

    Qin, Jing-Kai; Shao, Wen-Zhu; Xu, Cheng-Yan; Li, Yang; Ren, Dan-Dan; Song, Xiao-Guo; Zhen, Liang

    2017-05-10

    Substitutional doping of transition metal dichalcogenide two-dimensional materials has proven to be effective in tuning their intrinsic properties, such as band gap, transport characteristics, and magnetism. In this study, we realized substitutional doping of monolayer rhenium disulfide (ReS 2 ) with Mo via chemical vapor deposition. Scanning transmission electron microscopy demonstrated that Mo atoms are successfully doped into ReS 2 by substitutionally replacing Re atoms in the lattice. Electrical measurements revealed the degenerate p-type semiconductor behavior of Mo-doped ReS 2 field effect transistors, in agreement with density functional theory calculations. The p-n diode device based on a doped ReS 2 and ReS 2 homojunction exhibited gate-tunable current rectification behaviors, and the maximum rectification ratio could reach up to 150 at V d = -2/+2 V. The successful synthesis of p-type ReS 2 in this study could largely promote its application in novel electronic and optoelectronic devices.

  14. Effect of strain rate and notch geometry on tensile properties and fracture mechanism of creep strength enhanced ferritic P91 steel

    NASA Astrophysics Data System (ADS)

    Pandey, Chandan; Mahapatra, M. M.; Kumar, Pradeep; Saini, N.

    2018-01-01

    Creep strength enhanced ferritic (CSEF) P91 steel were subjected to room temperature tensile test for quasi-static (less than 10-1/s) strain rate by using the Instron Vertical Tensile Testing Machine. Effect of different type of notch geometry, notch depth and angle on mechanical properties were also considered for different strain rate. In quasi-static rates, the P91 steel showed a positive strain rate sensitivity. On the basis of tensile data, fracture toughness of P91 steel was also calculated numerically. For 1 mm notch depth (constant strain rate), notch strength and fracture toughness were found to be increased with increase in notch angle from 45° to 60° while the maximum value attained in U-type notch. Notch angle and notch depth has found a minute effect on P91 steel strength and fracture toughness. The fracture surface morphology was studied by field emission scanning electron microscopy (FESEM).

  15. Development of p-type oxide semiconductors based on tin oxide and its alloys: application to thin film transistors

    NASA Astrophysics Data System (ADS)

    Barros, Ana Raquel Xarouco de

    In spite of the recent p-type oxide TFTs developments based on SnOx and CuxO, the results achieved so far refer to devices processed at high temperatures and are limited by a low hole mobility and a low On-Off ratio and still there is no report on p-type oxide TFTs with performance similar to n-type, especially when comparing their field-effect mobility values, which are at least one order of magnitude higher on n-type oxide TFTs. Achieving high performance p-type oxide TFTs will definitely promote a new era for electronics in rigid and flexible substrates, away from silicon. None of the few reported p-channel oxide TFTs is suitable for practical applications, which demand significant improvements in the device engineering to meet the real-world electronic requirements, where low processing temperatures together with high mobility and high On-Off ratio are required for TFT and CMOS applications. The present thesis focuses on the study and optimization of p-type thin film transistors based on oxide semiconductors deposited by r.f. magnetron sputtering without intentional substrate heating. In this work several p-type oxide semiconductors were studied and optimized based on undoped tin oxide, Cu-doped SnOx and In-doped SnO2.

  16. A steep-slope transistor based on abrupt electronic phase transition

    NASA Astrophysics Data System (ADS)

    Shukla, Nikhil; Thathachary, Arun V.; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G.; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-01

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep (`sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  17. A steep-slope transistor based on abrupt electronic phase transition.

    PubMed

    Shukla, Nikhil; Thathachary, Arun V; Agrawal, Ashish; Paik, Hanjong; Aziz, Ahmedullah; Schlom, Darrell G; Gupta, Sumeet Kumar; Engel-Herbert, Roman; Datta, Suman

    2015-08-07

    Collective interactions in functional materials can enable novel macroscopic properties like insulator-to-metal transitions. While implementing such materials into field-effect-transistor technology can potentially augment current state-of-the-art devices by providing unique routes to overcome their conventional limits, attempts to harness the insulator-to-metal transition for high-performance transistors have experienced little success. Here, we demonstrate a pathway for harnessing the abrupt resistivity transformation across the insulator-to-metal transition in vanadium dioxide (VO2), to design a hybrid-phase-transition field-effect transistor that exhibits gate controlled steep ('sub-kT/q') and reversible switching at room temperature. The transistor design, wherein VO2 is implemented in series with the field-effect transistor's source rather than into the channel, exploits negative differential resistance induced across the VO2 to create an internal amplifier that facilitates enhanced performance over a conventional field-effect transistor. Our approach enables low-voltage complementary n-type and p-type transistor operation as demonstrated here, and is applicable to other insulator-to-metal transition materials, offering tantalizing possibilities for energy-efficient logic and memory applications.

  18. A reliable and controllable graphene doping method compatible with current CMOS technology and the demonstration of its device applications

    NASA Astrophysics Data System (ADS)

    Kim, Seonyeong; Shin, Somyeong; Kim, Taekwang; Du, Hyewon; Song, Minho; Kim, Ki Soo; Cho, Seungmin; Lee, Sang Wook; Seo, Sunae

    2017-04-01

    The modulation of charge carrier concentration allows us to tune the Fermi level (E F) of graphene thanks to the low electronic density of states near the E F. The introduced metal oxide thin films as well as the modified transfer process can elaborately maneuver the amounts of charge carrier concentration in graphene. The self-encapsulation provides a solution to overcome the stability issues of metal oxide hole dopants. We have manipulated systematic graphene p-n junction structures for electronic or photonic application-compatible doping methods with current semiconducting process technology. We have demonstrated the anticipated transport properties on the designed heterojunction devices with non-destructive doping methods. This mitigates the device architecture limitation imposed in previously known doping methods. Furthermore, we employed E F-modulated graphene source/drain (S/D) electrodes in a low dimensional transition metal dichalcogenide field effect transistor (TMDFET). We have succeeded in fulfilling n-type, ambipolar, or p-type field effect transistors (FETs) by moving around only the graphene work function. Besides, the graphene/transition metal dichalcogenide (TMD) junction in either both p- and n-type transistor reveals linear voltage dependence with the enhanced contact resistance. We accomplished the complete conversion of p-/n-channel transistors with S/D tunable electrodes. The E F modulation using metal oxide facilitates graphene to access state-of-the-art complimentary-metal-oxide-semiconductor (CMOS) technology.

  19. Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection

    PubMed Central

    Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Chen, Yunfa

    2018-01-01

    Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance (RL), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage (VOUT) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous VOUT amplification process. PMID:29509659

  20. Coupling p+n Field-Effect Transistor Circuits for Low Concentration Methane Gas Detection.

    PubMed

    Zhou, Xinyuan; Yang, Liping; Bian, Yuzhi; Ma, Xiang; Han, Ning; Chen, Yunfa

    2018-03-06

    Nowadays, the detection of low concentration combustible methane gas has attracted great concern. In this paper, a coupling p+n field effect transistor (FET) amplification circuit is designed to detect methane gas. By optimizing the load resistance ( R L ), the response to methane of the commercial MP-4 sensor can be magnified ~15 times using this coupling circuit. At the same time, it decreases the limit of detection (LOD) from several hundred ppm to ~10 ppm methane, with the apparent response of 7.0 ± 0.2 and voltage signal of 1.1 ± 0.1 V. This is promising for the detection of trace concentrations of methane gas to avoid an accidental explosion because its lower explosion limit (LEL) is ~5%. The mechanism of this coupling circuit is that the n-type FET firstly generates an output voltage ( V OUT ) amplification process caused by the gate voltage-induced resistance change of the FET. Then, the p-type FET continues to amplify the signal based on the previous V OUT amplification process.

  1. Land-use changes influence soil bacterial communities in a meadow grassland in Northeast China

    NASA Astrophysics Data System (ADS)

    Cao, Chengyou; Zhang, Ying; Qian, Wei; Liang, Caiping; Wang, Congmin; Tao, Shuang

    2017-10-01

    The conversion of natural grassland into agricultural fields is an intensive anthropogenic perturbation commonly occurring in semiarid regions, and this perturbation strongly affects soil microbiota. In this study, the influences of land-use conversion on the soil properties and bacterial communities in the Horqin Grasslands in Northeast China were assessed. This study aimed to investigate (1) how the abundances of soil bacteria changed across land-use types, (2) how the structure of the soil bacterial community was altered in each land-use type, and (3) how these variations were correlated with soil physical and chemical properties. Variations in the diversities and compositions of bacterial communities and the relative abundances of dominant taxa were detected in four distinct land-use systems, namely, natural meadow grassland, paddy field, upland field, and poplar plantation, through the high-throughput Illumina MiSeq sequencing technique. The results indicated that land-use changes primarily affected the soil physical and chemical properties and bacterial community structure. Soil properties, namely, organic matter, pH, total N, total P, available N and P, and microbial biomass C, N, and P, influenced the bacterial community structure. The dominant phyla and genera were almost the same among the land-use types, but their relative abundances were significantly different. The effects of land-use changes on the structure of soil bacterial communities were more quantitative than qualitative.

  2. Chemical-free n-type and p-type multilayer-graphene transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, D. M. N. M., E-mail: nandithad@voxtel-inc.com; Eisaman, M. D.; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, New York 11794

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping.more » When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.« less

  3. Comparative studies of Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors with HfSiON dielectric and TaN metal gate

    NASA Astrophysics Data System (ADS)

    Hu, Ai-Bin; Xu, Qiu-Xia

    2010-05-01

    Ge and Si p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with hafnium silicon oxynitride (HfSiON) gate dielectric and tantalum nitride (TaN) metal gate are fabricated. Self-isolated ring-type transistor structures with two masks are employed. W/TaN metal stacks are used as gate electrode and shadow masks of source/drain implantation separately. Capacitance-voltage curve hysteresis of Ge metal-oxide-semiconductor (MOS) capacitors may be caused by charge trapping centres in GeO2 (1 < x < 2). Effective hole mobilities of Ge and Si transistors are extracted by using a channel conductance method. The peak hole mobilities of Si and Ge transistors are 33.4 cm2/(V · s) and 81.0 cm2/(V · s), respectively. Ge transistor has a hole mobility 2.4 times higher than that of Si control sample.

  4. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    NASA Astrophysics Data System (ADS)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems. Electronic supplementary information (ESI) available: Electrical characterization of fabricated n- and p-type nanowires, and influence of Debye screening on PSA sensing. See DOI: 10.1039/c4nr03210a

  5. Suppression of the Hall number due to charge density wave order in high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Sharma, Girish; Nandy, S.; Taraphder, A.; Tewari, Sumanta

    2018-05-01

    Understanding the pseudogap phase in hole-doped high-temperature cuprate superconductors remains a central challenge in condensed-matter physics. From a host of recent experiments there is now compelling evidence of translational-symmetry-breaking charge density wave (CDW) order in a wide range of doping inside this phase. Two distinct types of incommensurate charge order, bidirectional at zero or low magnetic fields and unidirectional at high magnetic fields close to the upper critical field Hc 2, have been reported so far in approximately the same doping range between p ≃0.08 and p ≃0.16 . In concurrent developments, recent high-field Hall experiments have also revealed two indirect but striking signatures of Fermi surface reconstruction in the pseudogap phase, namely, a sign change of the Hall coefficient to negative values at low temperatures in the intermediate range of hole doping and a rapid suppression of the positive Hall number without a change in sign near optimal doping p ˜0.19 . We show that the assumption of a unidirectional incommensurate CDW (with or without a coexisting weak bidirectional order) at high magnetic fields near optimal doping and the coexistence of both types of orders of approximately equal magnitude at high magnetic fields in the intermediate range of doping may help explain the striking behavior of the low-temperature Hall effect in the entire pseudogap phase.

  6. Super-Nernstian pH sensors based on WO3 nanosheets

    NASA Astrophysics Data System (ADS)

    Kuo, Chao-Yin; Wang, Shui-Jinn; Ko, Rong-Ming; Tseng, Hung-Hao

    2018-04-01

    The effects of the surface morphology of hydrothermally grown WO3 nanosheets (NSs) and sputtering WO3 film on the performance of pH sensing electrodes are presented and compared in the pH range of 2–12. Using a separated electrode of an extended-gate field-effect transistor (EGFET) configuration, the WO3 nanosheet (NS) pH sensor shows a sensitivity of 63.37 mV/pH, a good linearity of 0.9973, a low voltage hysteresis of 4.79 mV, and a low drift rate of 3.18 mV/h. In contrast, the film-type one shows a typical sensitivity of only 50.08 mV/pH and a linearity of 0.9932. The super-Nernstian response could be attributed to the significant increase in the number of surface ion adsorption sites of the NS structure and the occurrence of local electric field enhancement over the sharp edges and corners of WO3 NSs.

  7. Sustained hole inversion layer in a wide-bandgap metal-oxide semiconductor with enhanced tunnel current

    PubMed Central

    Shoute, Gem; Afshar, Amir; Muneshwar, Triratna; Cadien, Kenneth; Barlage, Douglas

    2016-01-01

    Wide-bandgap, metal-oxide thin-film transistors have been limited to low-power, n-type electronic applications because of the unipolar nature of these devices. Variations from the n-type field-effect transistor architecture have not been widely investigated as a result of the lack of available p-type wide-bandgap inorganic semiconductors. Here, we present a wide-bandgap metal-oxide n-type semiconductor that is able to sustain a strong p-type inversion layer using a high-dielectric-constant barrier dielectric when sourced with a heterogeneous p-type material. A demonstration of the utility of the inversion layer was also investigated and utilized as the controlling element in a unique tunnelling junction transistor. The resulting electrical performance of this prototype device exhibited among the highest reported current, power and transconductance densities. Further utilization of the p-type inversion layer is critical to unlocking the previously unexplored capability of metal-oxide thin-film transistors, such applications with next-generation display switches, sensors, radio frequency circuits and power converters. PMID:26842997

  8. SU-F-T-490: Separating Effects Influencing Detector Response in Small MV Photon Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegener, S; Sauer, O

    2016-06-15

    Purpose: Different detector properties influence their responses especially in field sizes below the lateral electron range. Due to the finite active volume, the detector density and electron perturbation at other structural parts, the response factor is in general field size dependent. We aimed to visualize and separate the main effects contributing to detector behavior for a variety of detector types. This was achieved in an experimental setup, shielding the field center. Thus, effects caused by scattered radiation could be examined separately. Methods: Signal ratios for field sizes down to 8 mm (SSD 90 cm, water depth 10 cm) of amore » 6MV beam from a Siemens Primus LINAC were recorded with several detectors: PTW microDiamond and PinPoint ionization chamber, shielded diodes (PTW P-60008, IBA PFD and SNC Edge) and unshielded diodes (PTW E-60012 and IBA SFD). Measurements were carried out in open fields and with an aluminum pole of 4 mm diameter as a central block. The geometric volume effect was calculated from profiles obtained with Gafchromic EBT3 film, evaluated using FilmQA Pro software (Ashland, USA). Results: Volume corrections were 1.7% at maximum. After correction, in small open fields, unshielded diodes showed a lower response than the diamond, i.e. diamond detector over-response seems to be higher than that for unshielded diodes. Beneath the block, this behavior was amplified by a factor of 2. For the shielded diodes, the overresponse for small open fields could be confirmed. However their lateral response behavior was strongly type dependent, e.g. the signal ratio dropped from 1.02 to 0.98 for the P-60008 diode. Conclusion: The lateral detector response was experimentally examined. Detector volume and density alone do not fully account for the field size dependence of detector response. Detector construction details play a major role, especially for shielded diodes.« less

  9. Soft poly(2-chloroaniline)/pectin hydrogel and its electromechanical properties.

    PubMed

    Kongkaew, Wanar; Sangwan, Watchara; Lerdwijitjarud, Wanchai; Sirivat, Anuvat

    2018-01-01

    Pectin hydrogels were successfully fabricated with various physical crosslinkers and concentrations for soft actuator applications. A small amount of synthesized P2ClAn was added as a dispersed phase into the pectin matrix. The electromechanical properties of the pectin hydrogels and blends were investigated under the effects of electric field strength, ionic crosslinker type and concentration, and P2ClAn concentration. The electromechanical properties of the pectin hydrogel as crosslinked by Fe 2+ were superior to other pectin hydrogels. The pristine pectin hydrogel and the P2ClAn/Pectin hydrogel blended with 0.10%v/v P2ClAn provided the high storage modulus sensitivity values of 8.61 and 14.01, respectively, under the electric field strength of 800 V/mm. The P2ClAn/Pectin hydrogel blend responded to the electric field with higher dielectrophoretic forces, but lower deflections relative to the pristine pectin hydrogel due to the additional P2ClAn polarization and the latter lower rigidity.

  10. Similar recent selection criteria associated with different behavioural effects in two dog breeds.

    PubMed

    Sundman, A-S; Johnsson, M; Wright, D; Jensen, P

    2016-11-01

    Selection during the last decades has split some established dog breeds into morphologically and behaviourally divergent types. These breed splits are interesting models for behaviour genetics since selection has often been for few and well-defined behavioural traits. The aim of this study was to explore behavioural differences between selection lines in golden and Labrador retriever, in both of which a split between a common type (pet and conformation) and a field type (hunting) has occurred. We hypothesized that the behavioural profiles of the types would be similar in both breeds. Pedigree data and results from a standardized behavioural test from 902 goldens (698 common and 204 field) and 1672 Labradors (1023 and 649) were analysed. Principal component analysis revealed six behavioural components: curiosity, play interest, chase proneness, social curiosity, social greeting and threat display. Breed and type affected all components, but interestingly there was an interaction between breed and type for most components. For example, in Labradors the common type had higher curiosity than the field type (F 1,1668 = 18.359; P < 0.001), while the opposite was found in goldens (F 1,897 = 65.201; P < 0.001). Heritability estimates showed considerable genetic contributions to the behavioural variations in both breeds, but different heritabilities between the types within breeds was also found, suggesting different selection pressures. In conclusion, in spite of similar genetic origin and similar recent selection criteria, types behave differently in the breeds. This suggests that the genetic architecture related to behaviour differs between the breeds. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  11. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    PubMed

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.

  12. Visual acuity and visual field impairment in Usher syndrome.

    PubMed

    Edwards, A; Fishman, G A; Anderson, R J; Grover, S; Derlacki, D J

    1998-02-01

    To determine the extent of visual acuity and visual field impairment in patients with types 1 and 2 Usher syndrome. The records of 53 patients with type 1 and 120 patients with type 2 Usher syndrome were reviewed for visual acuity and visual field area at their most recent visit. Visual field areas were determined by planimetry of the II4e and V4e isopters obtained with a Goldmann perimeter. Both ordinary and logistic regression models were used to evaluate differences in visual acuity and visual field impairment between patients with type 1 and type 2 Usher syndrome. The difference in visual acuity of the better eye between patients with type 1 and type 2 varied by patient age (P=.01, based on a multiple regression model). The maximum difference in visual acuity between the 2 groups occurred during the third and fourth decades of life (with the type 1 patients being more impaired), while more similar acuities were seen in both younger and older patients. Fifty-one percent (n=27) of the type 1 patients had a visual acuity of 20/40 or better in at least 1 eye compared with 72% (n=87) of the type 2 patients (age-adjusted odds ratio, 3.9). Visual field area to both the II4e (P=.001) and V4e (P<.001) targets was more impaired in the better eye of type 1 patients than type 2 patients. A concentric central visual field greater than 20 degrees in at least 1 eye was present in 20 (59%) of the available 34 visual fields of type 1 patients compared with 70 (67%) of the available 104 visual fields of type 2 patients (age-adjusted odds ratio, 2.9) with the V4e target and in 6 (21%) of the available 29 visual fields of type 1 patients compared with 36 (38%) of the available 94 visual fields of type 2 patients (age-adjusted odds ratio, 4.9) with the II4e target. The fraction of patients who had a visual acuity of 20/40 or better and a concentric central visual field greater than 20 degrees to the II4e target in at least 1 eye was 17% (n=5) in the type 1 patients and 35% (n=33) in the type 2 patients (age-adjusted odds ratio, 3.9). Visual acuity and visual field area were more impaired in patients with type 1 than type 2 Usher syndrome. Of note, 27 of 53 type 1 (51%) and 87 of 120 type 2 (72%) patients had a visual acuity of 20/40 or better in at least 1 eye. These data are useful for overall counseling of patients with Usher syndrome.

  13. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode.

    PubMed

    Jariwala, Deep; Sangwan, Vinod K; Wu, Chung-Chiang; Prabhumirashi, Pradyumna L; Geier, Michael L; Marks, Tobin J; Lauhon, Lincoln J; Hersam, Mark C

    2013-11-05

    The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from monolayered materials and their heterostructures, a p-n heterojunction diode derived from ultrathin materials is notably absent and constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (SWCNTs) and single-layer molybdenum disulfide as p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias to achieve a wide range of charge transport behavior ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 10(4). This heterojunction diode also responds strongly to optical irradiation with an external quantum efficiency of 25% and fast photoresponse <15 μs. Because SWCNTs have a diverse range of electrical properties as a function of chirality and an increasing number of atomically thin 2D nanomaterials are being isolated, the gate-tunable p-n heterojunction concept presented here should be widely generalizable to realize diverse ultrathin, high-performance electronics and optoelectronics.

  14. Gate-tunable carbon nanotube–MoS2 heterojunction p-n diode

    PubMed Central

    Jariwala, Deep; Sangwan, Vinod K.; Wu, Chung-Chiang; Prabhumirashi, Pradyumna L.; Geier, Michael L.; Marks, Tobin J.; Lauhon, Lincoln J.; Hersam, Mark C.

    2013-01-01

    The p-n junction diode and field-effect transistor are the two most ubiquitous building blocks of modern electronics and optoelectronics. In recent years, the emergence of reduced dimensionality materials has suggested that these components can be scaled down to atomic thicknesses. Although high-performance field-effect devices have been achieved from monolayered materials and their heterostructures, a p-n heterojunction diode derived from ultrathin materials is notably absent and constrains the fabrication of complex electronic and optoelectronic circuits. Here we demonstrate a gate-tunable p-n heterojunction diode using semiconducting single-walled carbon nanotubes (SWCNTs) and single-layer molybdenum disulfide as p-type and n-type semiconductors, respectively. The vertical stacking of these two direct band gap semiconductors forms a heterojunction with electrical characteristics that can be tuned with an applied gate bias to achieve a wide range of charge transport behavior ranging from insulating to rectifying with forward-to-reverse bias current ratios exceeding 104. This heterojunction diode also responds strongly to optical irradiation with an external quantum efficiency of 25% and fast photoresponse <15 μs. Because SWCNTs have a diverse range of electrical properties as a function of chirality and an increasing number of atomically thin 2D nanomaterials are being isolated, the gate-tunable p-n heterojunction concept presented here should be widely generalizable to realize diverse ultrathin, high-performance electronics and optoelectronics. PMID:24145425

  15. Investigation of InP/In0.65Ga0.35As metamorphic p-channel doped-channel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui

    2016-07-01

    In this article, the device mechanism and characteristics of InP/InGaAs metamorphic p-channel field-effect transistor (FET), which has a high indium mole fraction of InGaAs channel, grown on the GaAs substrate is demonstrated. The device was fabricated on the top of the InxGa1-xP graded metamorphic buffer layer, and the In0.65Ga0.35As pseudomorphic channel was employed to elevate the transistor performance. For the p-type FET, due to the considerably large valence band discontinuity at InP/In0.65Ga0.35As heterojunction and a relatively thin as well as heavily doped pseudomorphic In0.65Ga0.35As channel between two undoped InP layers, a maximum extrinsic transconductance of 27.3 mS/mm and a maximum saturation current density of -54.3 mA/mm are obtained. Consequently, the studied metamorphic FET is suitable for the development in signal amplification, integrated circuits, and low supply-voltage complementary logic inverters.

  16. Effect of grain boundary on the field-effect mobility of microrod single crystal organic transistors.

    PubMed

    Kim, Jaekyun; Kang, Jingu; Cho, Sangho; Yoo, Byungwook; Kim, Yong-Hoon; Park, Sung Kyu

    2014-11-01

    High-performance microrod single crystal organic transistors based on a p-type 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) semiconductor are fabricated and the effects of grain boundaries on the carrier transport have been investigated. The spin-coating of C8-BTBT and subsequent solvent vapor annealing process enabled the formation of organic single crystals with high aspect ratio in the range of 10 - 20. It was found that the organic field-effect transistors (OFETs) based on these single crystals yield a field-effect mobility and an on/off current ratio of 8.04 cm2/Vs and > 10(5), respectively. However, single crystal OFETs with a kink, in which two single crystals are fused together, exhibited a noticeable drop of field-effect mobility, and we claim that this phenomenon results from the carrier scattering at the grain boundary.

  17. Effects of ultrasonic disintegration of excess sludge obtained in disintegrators of different constructions.

    PubMed

    Zielewicz, Ewa; Tytła, Malwina

    2015-01-01

    The ultrasonic disintegration of excess sludge is placed after the mechanical thickening but before the digestion tanks in order to intensify the process of sludge stabilization. The effects obtained directly after ultrasonic disintegration depend on many factors and can be grouped in two main categories: factors affecting the quality of sludge and those associated with the construction of disintegrators and its parameters. The ultrasonic disintegration research was carried out using three types of structural solutions of disintegrators. Two of them, that is, WK-2000 ultrasonic generator (P = 400 W) working with a thin sonotrode and WK-2010 ultrasonic generator (P = 100-1000 W) working with a new type construction emitter lens sonotrode, were compared with the influence of a washer with a flat emitter. The investigations have shown that in the same sludge, using the same value of volumetric energy, the resulting effect depends on the construction of the ultrasonic disintegrator, that is, design of the head and the ratio between the field of the emitter and the field of the chamber in sonicated medium.

  18. GaAs/InAs Multi Quantum Well Solar Cell

    DTIC Science & Technology

    2012-12-01

    excited states, which explains the temperature dependence of these materials and the thermoelectric or Seebeck effect. 5 Figure 4. Temperature...dependence of conductivity [from Ref. 1] The thermoelectric field E is given by the equation: dTE Q dx  (1) where Q= thermoelectric ...G. JUNCTIONS A photovoltaic cell is a basic a pn-junction diode where p-type and n-type semiconductors are combined, as shown in Figure 17

  19. Voltage- and Light-Controlled Spin Properties of a Two-Dimensional Hole Gas in p-Type GaAs/AlAs Resonant Tunneling Diodes

    NASA Astrophysics Data System (ADS)

    Galeti, H. V. A.; Galvão Gobato, Y.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2018-03-01

    We have investigated the spin properties of a two-dimensional hole gas (2DHG) formed at the contact layer of a p-type GaAs/AlAs resonant tunneling diode (RTD). We have measured the polarized-resolved photoluminescence of the RTD as a function of bias voltage, laser intensity and external magnetic field up to 15T. By tuning the voltage and the laser intensity, we are able to change the spin-splitting from the 2DHG from almost 0 meV to 5 meV and its polarization degree from - 40% to + 50% at 15T. These results are attributed to changes of the local electric field applied to the two-dimensional gas which affects the valence band and the hole Rashba spin-orbit effect.

  20. The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate

    PubMed Central

    2012-01-01

    We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor. PMID:22277096

  1. Comparison of the IN VITRO Cytotoxicities of Nitrogen Doped (p-TYPE) and n-TYPE Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Fujihara, Junko; Hashimoto, Hideki; Nishimoto, Naoki; Tongu, Miki; Fujita, Yasuhisa

    The use of NPs in the health care field is increasing. Before their biological application, investigating the toxicities of both n-type ZnO nanoparticles (NPs) and nitrogen-doped (“p-type”) NPs is important. Using L929 cells, the cell viability, oxidative stress, apoptosis induction, inflammatory responses, and cellular uptake were assayed 24h after the addition of n-type ZnO NPs and nitrogen-doped NPs (which act as p-type) (25μg/mL). The ZnO NPs were fabricated using a gas evaporation method. Increased H2O2 generation and decreased levels of glutathione were more evident in with n-type than in those treated with nitrogen-doped (“p-type”) ZnO NPs. Caspase-3/-7 activity was higher in cells treated with n-type ZnO NPs than in those treated with nitrogen-doped (“p-type”) NPs. Elevated levels of TNF-α and IL-1β were observed in cell culture supernatants: IL-1β levels were higher in n-type ZnO NPs than nitrogen-doped (“p-type”) NPs. The cellular Zn uptake of n-type ZnO NPs was higher than nitrogen-doped (“p-type”) NPs. These findings show that n-type ZnO NPs have higher cytotoxicity than nitrogen-doped (“p-type”) ZnO NPs. This may be due to a reductive effect of n-type ZnO NPs that induces higher free radical production, reactive oxygen species (ROS) generation, and cellular uptake of this type of ZnO NPs.

  2. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    USGS Publications Warehouse

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  3. The effect of Al segregation on Schottky barrier height and effective work function in TiAl/TiN/HfO2 gate stacks

    NASA Astrophysics Data System (ADS)

    Kim, Geun-Myeong; Oh, Young Jun; Chang, K. J.

    2016-07-01

    We perform first-principles density functional calculations to investigate the effects of Al incorporation on the p-type Schottky barrier height ≤ft({φ\\text{p}}\\right) and the effective work function for various high-k/metal gate stacks, such as TiN/HfO2 with interface Al impurities, Ti1-x Al x N/HfO2, and TiAl/TiN/HfO2. When Al atoms substitute for the interface Ti atoms at TiN/HfO2 interface, interface dipole fields become stronger, leading to the increase of {φ\\text{p}} and thereby the n-type shift of effective work function. In Ti1-x Al x N/HfO2 interface, {φ\\text{p}} linearly increases with the Al content, attributed to the presence of interface Al atoms. On the other hand, in TiAl/TiN/HfO2 interface, where Al is assumed not to segregate from TiAl to TiN, {φ\\text{p}} is nearly independent of the thickness of TiAl. Our results indicate that Al impurities at the metal/dielectric interface play an important role in controlling the effective work function, and provide a clue to understanding the n-type shift of the effective work function observed in TiAl/TiN/HfO2 gate stacks fabricated by using thegate-last process.

  4. A comparative study of spin coated and floating film transfer method coated poly (3-hexylthiophene)/poly (3-hexylthiophene)-nanofibers based field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Shashi; Balasubramanian, S. K.; Takashima, Wataru

    2014-09-07

    A comparative study on electrical performance, optical properties, and surface morphology of poly(3-hexylthiophene) (P3HT) and P3HT-nanofibers based “normally on” type p-channel field effect transistors (FETs), fabricated by two different coating techniques has been reported here. Nanofibers are prepared in the laboratory with the approach of self-assembly of P3HT molecules into nanofibers in an appropriate solvent. P3HT (0.3 wt. %) and P3HT-nanofibers (∼0.25 wt. %) are used as semiconductor transport materials for deposition over FETs channel through spin coating as well as through our recently developed floating film transfer method (FTM). FETs fabricated using FTM show superior performance compared to spin coated devices;more » however, the mobility of FTM films based FETs is comparable to the mobility of spin coated one. The devices based on P3HT-nanofibers (using both the techniques) show much better performance in comparison to P3HT FETs. The best performance among all the fabricated organic field effect transistors are observed for FTM coated P3HT-nanofibers FETs. This improved performance of nanofiber-FETs is due to ordering of fibers and also due to the fact that fibers offer excellent charge transport facility because of point to point transmission. The optical properties and structural morphologies (P3HT and P3HT-nanofibers) are studied using UV-visible absorption spectrophotometer and atomic force microscopy , respectively. Coating techniques and effect of fiber formation for organic conductors give information for fabrication of organic devices with improved performance.« less

  5. Mapping Free-Carriers in Multijunction Silicon Nanowires Using Infrared Near-Field Optical Microscopy.

    PubMed

    Ritchie, Earl T; Hill, David J; Mastin, Tucker M; Deguzman, Panfilo C; Cahoon, James F; Atkin, Joanna M

    2017-11-08

    We report the use of infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) as a nondestructive method to map free-carriers in axially modulation-doped silicon nanowires (SiNWs) with nanoscale spatial resolution. Using this technique, we can detect local changes in the electrically active doping concentration based on the infrared free-carrier response in SiNWs grown using the vapor-liquid-solid (VLS) method. We demonstrate that IR s-SNOM is sensitive to both p-type and n-type free-carriers for carrier densities above ∼1 × 10 19 cm -3 . We also resolve subtle changes in local conductivity properties, which can be correlated with growth conditions and surface effects. The use of s-SNOM is especially valuable in low mobility materials such as boron-doped p-type SiNWs, where optimization of growth has been difficult to achieve due to the lack of information on dopant distribution and junction properties. s-SNOM can be widely employed for the nondestructive characterization of nanostructured material synthesis and local electronic properties without the need for contacts or inert atmosphere.

  6. Phosphorus-Rich Copper Phosphide Nanowires for Field-Effect Transistors and Lithium-Ion Batteries.

    PubMed

    Li, Guo-An; Wang, Chiu-Yen; Chang, Wei-Chung; Tuan, Hsing-Yu

    2016-09-27

    Phosphorus-rich transition metal phosphide CuP2 nanowires were synthesized with high quality and high yield (∼60%) via the supercritical fluid-liquid-solid (SFLS) growth at 410 °C and 10.2 MPa. The obtained CuP2 nanowires have a high aspect ratio and exhibit a single crystal structure of monoclinic CuP2 without any impurity phase. CuP2 nanowires have progressive improvement for semiconductors and energy storages compared with bulk CuP2. Being utilized for back-gate field effect transistor (FET) measurement, CuP2 nanowires possess a p-type behavior intrinsically with an on/off ratio larger than 10(4) and its single nanowire electrical transport property exhibits a hole mobility of 147 cm(2) V(-1) s(-1), representing the example of a CuP2 transistor. In addition, CuP2 nanowires can serve as an appealing anode material for a lithium-ion battery electrode. The discharge capacity remained at 945 mA h g(-1) after 100 cycles, showing a good capacity retention of 88% based on the first discharge capacity. Even at a high rate of 6 C, the electrode still exhibited an outstanding result with a capacity of ∼600 mA h g(-1). Ex-situ transmission electron microscopy and CV tests demonstrate that the stability of capacity retention and remarkable rate capability of the CuP2 nanowires electrode are attributed to the role of the metal phosphide conversion-type lithium storage mechanism. Finally, CuP2 nanowire anodes and LiFePO4 cathodes were assembled into pouch-type lithium batteries offering a capacity over 60 mA h. The full cell shows high capacity and stable capacity retention and can be used as an energy supply to operate electronic devices such as mobile phones and mini 4WD cars.

  7. CMOS integration of high-k/metal gate transistors in diffusion and gate replacement (D&GR) scheme for dynamic random access memory peripheral circuits

    NASA Astrophysics Data System (ADS)

    Dentoni Litta, Eugenio; Ritzenthaler, Romain; Schram, Tom; Spessot, Alessio; O’Sullivan, Barry; Machkaoutsan, Vladimir; Fazan, Pierre; Ji, Yunhyuck; Mannaert, Geert; Lorant, Christophe; Sebaai, Farid; Thiam, Arame; Ercken, Monique; Demuynck, Steven; Horiguchi, Naoto

    2018-04-01

    Integration of high-k/metal gate stacks in peripheral transistors is a major candidate to ensure continued scaling of dynamic random access memory (DRAM) technology. In this paper, the CMOS integration of diffusion and gate replacement (D&GR) high-k/metal gate stacks is investigated, evaluating four different approaches for the critical patterning step of removing the N-type field effect transistor (NFET) effective work function (eWF) shifter stack from the P-type field effect transistor (PFET) area. The effect of plasma exposure during the patterning step is investigated in detail and found to have a strong impact on threshold voltage tunability. A CMOS integration scheme based on an experimental wet-compatible photoresist is developed and the fulfillment of the main device metrics [equivalent oxide thickness (EOT), eWF, gate leakage current density, on/off currents, short channel control] is demonstrated.

  8. Fabricate heterojunction diode by using the modified spray pyrolysis method to deposit nickel-lithium oxide on indium tin oxide substrate.

    PubMed

    Wu, Chia-Ching; Yang, Cheng-Fu

    2013-06-12

    P-type lithium-doped nickel oxide (p-LNiO) thin films were deposited on an n-type indium tin oxide (ITO) glass substrate using the modified spray pyrolysis method (SPM), to fabricate a transparent p-n heterojunction diode. The structural, optical, and electrical properties of the p-LNiO and ITO thin films and the p-LNiO/n-ITO heterojunction diode were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), UV-visible spectroscopy, Hall effect measurement, and current-voltage (I-V) measurements. The nonlinear and rectifying I-V properties confirmed that a heterojunction diode characteristic was successfully formed in the p-LNiO/n-ITO (p-n) structure. The I-V characteristic was dominated by space-charge-limited current (SCLC), and the Anderson model demonstrated that band alignment existed in the p-LNiO/n-ITO heterojunction diode.

  9. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    PubMed

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. ESR study of p-type natural 2H-polytype MoS2 crystals: The As acceptor activity

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Iacovo, S.; Afanas'ev, V. V.

    2016-10-01

    Low-temperature (T = 1.7-77 K) multi frequency electron spin resonance (ESR) study on p-type 2H-polytype geological MoS2 crystals reveals p-type doping predominantly originating from As atoms substituting for S sites in densities of (2.4 ± 0.2) × 1017 cm-3. Observation of a "half field"(g ˜ 3.88) signal firmly correlating with the central Zeeman As accepter signal indicates the presence of spin S > ½ As agglomerates, which together with the distinct multicomponent makeup of the Zeeman signal points to manifest non-uniform As doping; only ˜13% of the total As response originates from individual decoupled As dopants. From ESR monitoring the latter vs. T, an activation energy Ea = (0.7 ± 0.2) meV is obtained. This unveils As as a noticeable shallow acceptor dopant, appropriate for realization of effective p-type doping in targeted 2D MoS2-based switching devices.

  11. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films

    NASA Astrophysics Data System (ADS)

    Xiao, Hai-Qing; Zhou, Chun-Lan; Cao, Xiao-Ning; Wang, Wen-Jing; Zhao, Lei; Li, Hai-Ling; Diao, Hong-Wei

    2009-08-01

    Al2O3 films with a thickness of about 100 nm synthesized by spin coating and thermally treated are applied for field-induced surface passivation of p-type crystalline silicon. The level of surface passivation is determined by techniques based on photoconductance. An effective surface recombination velocity below 100 cm/s is obtained on 10Ω ·cm p-type c-Si wafers (Cz Si). A high density of negative fixed charges in the order of 1012 cm-2 is detected in the Al2O3 films and its impact on the level of surface passivation is demonstrated experimentally. Furthermore, a comparison between the surface passivation achieved for thermal SiO2 and plasma enhanced chemical vapor deposition SiNx:H films on the same c-Si is presented. The high negative fixed charge density explains the excellent passivation of p-type c-Si by Al2O3.

  12. Complementary p- and n-type polymer doping for ambient stable graphene inverter.

    PubMed

    Yun, Je Moon; Park, Seokhan; Hwang, Young Hwan; Lee, Eui-Sup; Maiti, Uday; Moon, Hanul; Kim, Bo-Hyun; Bae, Byeong-Soo; Kim, Yong-Hyun; Kim, Sang Ouk

    2014-01-28

    Graphene offers great promise to complement the inherent limitations of silicon electronics. To date, considerable research efforts have been devoted to complementary p- and n-type doping of graphene as a fundamental requirement for graphene-based electronics. Unfortunately, previous efforts suffer from undesired defect formation, poor controllability of doping level, and subtle environmental sensitivity. Here we present that graphene can be complementary p- and n-doped by simple polymer coating with different dipolar characteristics. Significantly, spontaneous vertical ordering of dipolar pyridine side groups of poly(4-vinylpyridine) at graphene surface can stabilize n-type doping at room-temperature ambient condition. The dipole field also enhances and balances the charge mobility by screening the impurity charge effect from the bottom substrate. We successfully demonstrate ambient stable inverters by integrating p- and n-type graphene transistors, which demonstrated clear voltage inversion with a gain of 0.17 at a 3.3 V input voltage. This straightforward polymer doping offers diverse opportunities for graphene-based electronics, including logic circuits, particularly in mechanically flexible form.

  13. A SiC LDMOS with electric field modulation by a step compound drift region

    NASA Astrophysics Data System (ADS)

    Bao, Meng-tian; Wang, Ying; Yu, Cheng-hao; Cao, Fei

    2018-07-01

    In this paper, we propose a SiC LDMOS structure with a step compound drift region (SC-LDMOS). The proposed device has a compound drift region which consists of an n-type top layer, a step p-type middle layer and an n-type bottom layer. The step p-type middle layer can introduce two new electric field peaks and uniform the distribution of the electric field in the n-type top layer, which can modulate the surface electric field and improve the breakdown voltage of the proposed structure. In addition, the n-type bottom layer is applied under the heavy doping p-type middle layer,which contributes to realize the charge balance. Furthermore, it can also increase the doping concentration of the n-type top layer, which can decrease the on resistance of the proposed device. As a simulated result, the proposed device obtain a high BV of 976 V and a low Rsp,on of 7.74 mΩ·cm2. Compared with the conventional single REUSRF LDMOS and triple RESURF LDMOS, BV of proposed device is enhanced by 42.5% and 14.7%, respectively and Rsp,on is reduced by 37.3% and 30.9%, respectively. Meanwhile, the switching delays of the proposed device are significantly shorter than the conventional triple RESURF LDMOS.

  14. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays.

    PubMed

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-11-07

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.

  15. Subband Structure and Effective Mass in the Inversion Layer of a Strain Si-Based Alloy P-Type MOSFET.

    PubMed

    Chen, Kuan-Ting; Fan, Jun Wei; Chang, Shu-Tong; Lin, Chung-Yi

    2015-03-01

    In this paper, the subband structure and effective mass of an Si-based alloy inversion layer in a PMOSFET are studied theoretically. The strain condition considered in our calculations is the intrinsic strain resulting from growth of the silicon-carbon alloy on a (001) Si substrate and mechanical uniaxial stress. The quantum confinement effect resulting from the vertically effective electric field was incorporated into the k · p calculation. The distinct effective mass, such as the quantization effective mass and the density-of-states (DOS) effective mass, as well as the subband structure of the silicon-carbon alloy inversion layer for a PMOSFET under substrate strain and various effective electric field strengths, were all investigated. Ore results show that subband structure of relaxed silicon-carbon alloys with low carbon content are almost the same as silicon. We find that an external stress applied parallel to the channel direction can efficiently reduce the effective mass along the channel direction, thus producing hole mobility enhancement.

  16. Pharmacologic Treatment Assigned for Niemann Pick Type C1 Disease Partly Changes Behavioral Traits in Wild-Type Mice.

    PubMed

    Schlegel, Victoria; Thieme, Markus; Holzmann, Carsten; Witt, Martin; Grittner, Ulrike; Rolfs, Arndt; Wree, Andreas

    2016-11-09

    Niemann-Pick Type C1 (NPC1) is an autosomal recessive inherited disorder characterized by accumulation of cholesterol and glycosphingolipids. Previously, we demonstrated that BALB/c-npc1 nih Npc1 -/- mice treated with miglustat, cyclodextrin and allopregnanolone generally performed better than untreated Npc1 -/- animals. Unexpectedly, they also seemed to accomplish motor tests better than their sham-treated wild-type littermates. However, combination-treated mutant mice displayed worse cognition performance compared to sham-treated ones. To evaluate effects of these drugs in healthy BALB/c mice, we here analyzed pharmacologic effects on motor and cognitive behavior of wild-type mice. For combination treatment mice were injected with allopregnanolone/cyclodextrin weekly, starting at P7. Miglustat injections were performed daily from P10 till P23. Starting at P23, miglustat was embedded in the chow. Other mice were treated with miglustat only, or sham-treated. The battery of behavioral tests consisted of accelerod, Morris water maze, elevated plus maze, open field and hot-plate tests. Motor capabilities and spontaneous motor behavior were unaltered in both drug-treated groups. Miglustat-treated wild-type mice displayed impaired spatial learning compared to sham- and combination-treated mice. Both combination- and miglustat-treated mice showed enhanced anxiety in the elevated plus maze compared to sham-treated mice. Additionally, combination treatment as well as miglustat alone significantly reduced brain weight, whereas only combination treatment reduced body weight significantly. Our results suggest that allopregnanolone/cyclodextrin ameliorate most side effects of miglustat in wild-type mice.

  17. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  18. Characterization of vertical GaN p-n diodes and junction field-effect transistors on bulk GaN down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Kizilyalli, I. C.; Aktas, O.

    2015-12-01

    There is great interest in wide-bandgap semiconductor devices and most recently in vertical GaN structures for power electronic applications such as power supplies, solar inverters and motor drives. In this paper the temperature-dependent electrical behavior of vertical GaN p-n diodes and vertical junction field-effect transistors fabricated on bulk GaN substrates of low defect density (104 to 106 cm-2) is described. Homoepitaxial MOCVD growth of GaN on its native substrate and the ability to control the doping in the drift layers in GaN have allowed the realization of vertical device architectures with drift layer thicknesses of 6 to 40 μm and net carrier electron concentrations as low as 1 × 1015 cm-3. This parameter range is suitable for applications requiring breakdown voltages of 1.2 kV to 5 kV. Mg, which is used as a p-type dopant in GaN, is a relatively deep acceptor (E A ≈ 0.18 eV) and susceptible to freeze-out at temperatures below 200 K. The loss of holes in p-GaN has a deleterious effect on p-n junction behavior, p-GaN contacts and channel control in junction field-effect transistors at temperatures below 200 K. Impact ionization-based avalanche breakdown (BV > 1200 V) in GaN p-n junctions is characterized between 77 K and 423 K for the first time. At higher temperatures the p-n junction breakdown voltage improves due to increased phonon scattering. A positive temperature coefficient in the breakdown voltage is demonstrated down to 77 K; however, the device breakdown characteristics are not as abrupt at temperatures below 200 K. On the other hand, contact resistance to p-GaN is reduced dramatically above room temperature, improving the overall device performance in GaN p-n diodes in all cases except where the n-type drift region resistance dominates the total forward resistance. In this case, the electron mobility can be deconvolved and is found to decrease with T -3/2, consistent with a phonon scattering model. Also, normally-on vertical junction field-effect transistors with BV = 1000 V and drain currents of 4 A are fabricated and characterized over the same temperature range. It is demonstrated that vertical GaN devices (diodes and transistors) utilizing p-n junctions are suitable for most practical applications including automotive ones (210 K < T < 423 K). While devices are functional at cryogenic temperatures (77 K) there may be some limitations to their performance due the freeze-out of Mg acceptors.

  19. Influence of elk grazing on soil properties in Rocky Mountain National Park

    USGS Publications Warehouse

    Binkley, Dan; Singer, F.; Kaye, M.; Rochelle, R.

    2003-01-01

    We used three 35-year exclosures to examine the effects of high elk populations on a variety of soil properties in three vegetation types: upland sagebrush, aspen, and meadow. Grazing and hoof action by elk significantly increased bulk density (from 0.87 kg/l ungrazed to 0.94 kg/l grazed), with greater effects on soils with fewer rocks. Grazing substantially reduced extractable calcium, magnesium, potassium and phosphorus in the sagebrush type, but not in the aspen or meadow types. The only grazing effect on pH came in aspen types, where grazing prevented aspen establishment, and kept soil pH about 0.7 units higher than under aspen inside the exclosures. Grazing had no overall effect on total soil C and N across all exclosures and vegetation types. The availability of soil nitrogen, indexed by in-field resin bags and net mineralization in soil cores, showed little overall effect of grazing. Limited data on soil leaching indicated a possibility of strong increases in nitrate leaching with grazing for an aspen vegetation type at one exclosure. Although we found little effect of grazing on soil N supply, we note that N fertilization doubled the production of grasses and shrubs; if grazing eventually led to changes in soil N supply, species composition and growth would likely change. ?? 2003 Elsevier B.V. All rights reserved.

  20. Design of high breakdown voltage vertical GaN p-n diodes with high-K/low-K compound dielectric structure for power electronics applications

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Li, Zhenchao; Liu, Dong; Bai, Zhiyuan; Liu, Yang; Yu, Qi

    2017-11-01

    In this work, a vertical GaN p-n diode with a high-K/low-K compound dielectric structure (GaN CD-VGD) is proposed and designed to achieve a record high breakdown voltage (BV) with a low specific on-resistance (Ron,sp). By introducing compound dielectric structure, the electric field near the p-n junction interface is suppressed due to the effects of high-K passivation layer, and a new electric field peak is induced into the n-type drift region, because of a discontinuity of electrical field at the interface of high-K and low-K layer. Therefore the distribution of electric field in GaN p-n diode becomes more uniform and an enhancement of breakdown voltage can be achieved. Numerical simulations demonstrate that GaN CD-VGD with a BV of 10650 V and a Ron,sp of 14.3 mΩ cm2, resulting in a record high figure-of-merit of 8 GW/cm2.

  1. Pseudo 2-transistor active pixel sensor using an n-well/gate-tied p-channel metal oxide semiconductor field eeffect transistor-type photodetector with built-in transfer gate

    NASA Astrophysics Data System (ADS)

    Seo, Sang-Ho; Seo, Min-Woong; Kong, Jae-Sung; Shin, Jang-Kyoo; Choi, Pyung

    2008-11-01

    In this paper, a pseudo 2-transistor active pixel sensor (APS) has been designed and fabricated by using an n-well/gate-tied p-channel metal oxide semiconductor field effect transistor (PMOSFET)-type photodetector with built-in transfer gate. The proposed sensor has been fabricated using a 0.35 μm 2-poly 4-metal standard complementary metal oxide semiconductor (CMOS) logic process. The pseudo 2-transistor APS consists of two NMOSFETs and one photodetector which can amplify the generated photocurrent. The area of the pseudo 2-transistor APS is 7.1 × 6.2 μm2. The sensitivity of the proposed pixel is 49 lux/(V·s). By using this pixel, a smaller pixel area and a higher level of sensitivity can be realized when compared with a conventional 3-transistor APS which uses a pn junction photodiode.

  2. Electrical characteristics of silicon percolating nanonet-based field effect transistors in the presence of dispersion

    NASA Astrophysics Data System (ADS)

    Cazimajou, T.; Legallais, M.; Mouis, M.; Ternon, C.; Salem, B.; Ghibaudo, G.

    2018-05-01

    We studied the current-voltage characteristics of percolating networks of silicon nanowires (nanonets), operated in back-gated transistor mode, for future use as gas or biosensors. These devices featured P-type field-effect characteristics. It was found that a Lambert W function-based compact model could be used for parameter extraction of electrical parameters such as apparent low field mobility, threshold voltage and subthreshold slope ideality factor. Their variation with channel length and nanowire density was related to the change of conduction regime from direct source/drain connection by parallel nanowires to percolating channels. Experimental results could be related in part to an influence of the threshold voltage dispersion of individual nanowires.

  3. Structured-gate organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Aljada, Muhsen; Pandey, Ajay K.; Velusamy, Marappan; Burn, Paul L.; Meredith, Paul; Namdas, Ebinazar B.

    2012-06-01

    We report the fabrication and electrical characteristics of structured-gate organic field-effect transistors consisting of a gate electrode patterned with three-dimensional pillars. The pillar gate electrode was over-coated with a gate dielectric (SiO2) and solution processed organic semiconductors producing both unipolar p-type and bipolar behaviour. We show that this new structured-gate architecture delivers higher source-drain currents, higher gate capacitance per unit equivalent linear channel area, and enhanced charge injection (electrons and/or holes) versus the conventional planar structure in all modes of operation. For the bipolar field-effect transistor (FET) the maximum source-drain current enhancements in p- and n-channel mode were >600% and 28%, respectively, leading to p and n charge mobilities with the same order of magnitude. Thus, we have demonstrated that it is possible to use the FET architecture to manipulate and match carrier mobilities of material combinations where one charge carrier is normally dominant. Mobility matching is advantageous for creating organic logic circuit elements such as inverters and amplifiers. Hence, the method represents a facile and generic strategy for improving the performance of standard organic semiconductors as well as new materials and blends.

  4. Microwave-induced three-photon coherence of Rydberg atomic states

    NASA Astrophysics Data System (ADS)

    Kwak, Hyo Min; Jeong, Taek; Lee, Yoon-Seok; Moon, Han Seb

    2016-12-01

    We investigate the three-photon coherence (TPC) effects of the Rydberg state in a Doppler-broadened four-level ladder-type atomic system for the 5S1/2(F=3)-5P3/2(F‧=4)-50D5/2-51P3/2 transition of 85Rb atoms. Upon interaction of the Rydberg Rb atom of the ladder-type electromagnetically induced transparency (EIT) scheme with a resonant microwave (MW) field, we numerically analyze the spectral features of the Rydberg TPC from two viewpoints, Autler-Townes splitting (AT-splitting) of the Rydberg EIT and three-photon electromagnetically induced absorption (TPEIA). We determine the criterion to differentiate between AT-splitting of the Rydberg EIT and TPEIA in the Doppler-broadened ladder-type atomic system.

  5. Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation

    PubMed Central

    Hagen, Joshua A.; Kim, Sang N.; Bayraktaroglu, Burhan; Leedy, Kevin; Chávez, Jorge L.; Kelley-Loughnane, Nancy; Naik, Rajesh R.; Stone, Morley O.

    2011-01-01

    Zinc oxide field effect transistors (ZnO-FET), covalently functionalized with single stranded DNA aptamers, provide a highly selective platform for label-free small molecule sensing. The nanostructured surface morphology of ZnO provides high sensitivity and room temperature deposition allows for a wide array of substrate types. Herein we demonstrate the selective detection of riboflavin down to the pM level in aqueous solution using the negative electrical current response of the ZnO-FET by covalently attaching a riboflavin binding aptamer to the surface. The response of the biofunctionalized ZnO-FET was tuned by attaching a redox tag (ferrocene) to the 3′ terminus of the aptamer, resulting in positive current modulation upon exposure to riboflavin down to pM levels. PMID:22163977

  6. New design of a passive type RADFET reader for enhanced sensitivity

    NASA Astrophysics Data System (ADS)

    Lee, Dae-Hee

    2016-07-01

    We present a new design of a passive type RADFET reader with enhanced radiation sensitivity. Using a electostatic plate, we have applied a static electric field to the gate voltage, which impacts a positive biasing on the p-type MOSFET. The resultant effect shows that 1.8 times of radiation sensitivity increased when we measured the threshold voltage shift of the RADFET exposed to 30 krad irradiation. We discuss further about the characteristic changes of a RADFET according to the positive biasing on the gate voltage.

  7. Biasing, operation and parasitic current limitation in single device equivalent to CMOS, and other semiconductor systems

    DOEpatents

    Welch, James D.

    2003-09-23

    Disclosed are semiconductor devices including at least one junction which is rectifying whether the semiconductor is caused to be N or P-type, by the presence of applied gate voltage field induced carriers in essentially intrinsic, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at substantially equal doping levels, essentially homogeneously simultaneously containing both N and P-type metallurgical dopants at different doping levels, and containing a single metallurgical doping type, and functional combinations thereof. In particular, inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to conventional multiple device CMOS systems, which can be operated as modulators, are disclosed as are a non-latching SCR and an approach to blocking parasitic currents utilizing material(s) which form rectifying junctions with both N and P-type semiconductor whether metallurigically or field induced.

  8. Photoresponse and Field Effect Transport Studies in InAsP-InP Core-Shell Nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Rochelle; Jo, Min Hyeok; Kim, TaeWan; Kim, Hyo Jin; Kim, Doo Gun; Shin, Jae Cheol

    2018-05-01

    A ternary InAsyP1-y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1-y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core-shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core-shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

  9. Photoresponse and Field Effect Transport Studies in InAsP-InP Core-Shell Nanowires

    NASA Astrophysics Data System (ADS)

    Lee, Rochelle; Jo, Min Hyeok; Kim, TaeWan; Kim, Hyo Jin; Kim, Doo Gun; Shin, Jae Cheol

    2018-03-01

    A ternary InAsyP1-y alloy is suitable for an application to near-infrared (NIR) optical devices as their direct bandgap energy covers the entire NIR band. A nanowire (NW) system allows an epitaxial integration of InAsyP1-y alloy on any type of substrate since the lattice mismatch strain can be relieved through the NW sidewall. Nevertheless, the very large surface to volume ratio feature of the NWs leads to enormous surface states which are susceptible to surface recombination of free carriers. Here, ternary InAs0.75P0.25 NWs are grown with InP passivation layer (i.e., core-shell structure) to minimize the influence of the surface states, thus increasing their optical and electrical properties. A photoresponse study was achieved through the modeled band structure of the grown NWs. The model and experimental results suggest that 5-nm-thick InP shell efficiently passivates the surface states of the InAs0.75P0.25 NWs. The fabricated core-shell photodetectors and field-effect transistors exhibit improved photoresponse and transport properties compared to its counterpart core-only structure.

  10. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  11. Spatially-Distributed Cost–Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution

    PubMed Central

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N.; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ‘‘best approach” depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds. PMID:26313561

  12. Spatially-Distributed Cost-Effectiveness Analysis Framework to Control Phosphorus from Agricultural Diffuse Pollution.

    PubMed

    Geng, Runzhe; Wang, Xiaoyan; Sharpley, Andrew N; Meng, Fande

    2015-01-01

    Best management practices (BMPs) for agricultural diffuse pollution control are implemented at the field or small-watershed scale. However, the benefits of BMP implementation on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we introduce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index), model simulation techniques (Hydrological Simulation Program-FORTRAN), and a BMP placement tool at various scales to identify the optimal location for implementing multiple BMPs and estimate BMP effectiveness after implementation. A statistically significant decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of cost-effectiveness curves (total pollution reduction and proportion of watersheds improved) for four allocation approaches. Selection of a ''best approach" depends on the relative importance of the two types of effectiveness, which involves a value judgment based on the random/aggregated degree of BMP distribution among and within sub-watersheds. A statistical optimization framework is developed and evaluated in Chaohe River Watershed located in the northern mountain area of Beijing. Results show that BMP implementation significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strategies where BMPs were randomly located across watersheds. Sensitivity analysis indicated that aggregated BMP placement in particular watershed is the most cost-effective scenario to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchical method for targeting nonpoint source controls across a range of scales from field to farm, to watersheds, to regions. Further, model estimates showed targeting at multiple scales is necessary to optimize program efficiency. The integrated model approach described that selects and places BMPs at varying levels of implementation, provides a new theoretical basis and technical guidance for diffuse pollution management in agricultural watersheds.

  13. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network

    PubMed Central

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone. PMID:27195005

  14. Planning the City Logistics Terminal Location by Applying the Green p-Median Model and Type-2 Neurofuzzy Network.

    PubMed

    Pamučar, Dragan; Vasin, Ljubislav; Atanasković, Predrag; Miličić, Milica

    2016-01-01

    The paper herein presents green p-median problem (GMP) which uses the adaptive type-2 neural network for the processing of environmental and sociological parameters including costs of logistics operators and demonstrates the influence of these parameters on planning the location for the city logistics terminal (CLT) within the discrete network. CLT shows direct effects on increment of traffic volume especially in urban areas, which further results in negative environmental effects such as air pollution and noise as well as increased number of urban populations suffering from bronchitis, asthma, and similar respiratory infections. By applying the green p-median model (GMM), negative effects on environment and health in urban areas caused by delivery vehicles may be reduced to minimum. This model creates real possibilities for making the proper investment decisions so as profitable investments may be realized in the field of transport infrastructure. The paper herein also includes testing of GMM in real conditions on four CLT locations in Belgrade City zone.

  15. Contrasting magma types and steady-state, volume-predictable, basaltic volcanism along the Great Rift, Idaho.

    USGS Publications Warehouse

    Kuntz, M.A.; Champion, D.E.; Spiker, E. C.; Lefebvre, R.H.

    1986-01-01

    The Great Rift is an 85 km-long, 2-8 km-wide volcanic rift zone in the Snake River Plain, Idaho. Three basaltic lava fields, latest Pleistocene to Holocene, are located along the Great Rift: Craters of the Moon, Kings Bowl and Wapi. Craters of the Moon is the largest, covering 1600 km2 and containing approx 30 km3 of lava flows and pyroclastics. Field, radiocarbon and palaeomagnetic data show that this lava field formed in eight eruptive periods, each lasted several hundred years with a recurrence interval of several hundred to approx 3000 yr. The first eruption began approx 15 000 yr B.P. and the last ended at approx 2100 yr B.P. The other two lava fields formed approx 2250 yr B.P. Three magma types fed flows along the Great Rift. A contaminated and a fractionated type were erupted at the Craters of the Moon lava field. The third, little-fractionated Snake River Plain magma-type was erupted at the other two lava fields. The Craters of the Moon segment of the Great Rift has experienced quasi-steady state, volume-predictable volcanism for the last 15 000 yr. Based on this, about 5-6 km3 of lava will be erupted within the next 1000 yr.-L.C.H.

  16. Prediction and theoretical characterization of p-type organic semiconductor crystals for field-effect transistor applications.

    PubMed

    Atahan-Evrenk, Sule; Aspuru-Guzik, Alán

    2014-01-01

    The theoretical prediction and characterization of the solid-state structure of organic semiconductors has tremendous potential for the discovery of new high performance materials. To date, the theoretical analysis mostly relied on the availability of crystal structures obtained through X-ray diffraction. However, the theoretical prediction of the crystal structures of organic semiconductor molecules remains a challenge. This review highlights some of the recent advances in the determination of structure-property relationships of the known organic semiconductor single-crystals and summarizes a few available studies on the prediction of the crystal structures of p-type organic semiconductors for transistor applications.

  17. Influence of deep level intrinsic defects on the carrier transport in p-type Hg1- xCdxTe

    NASA Astrophysics Data System (ADS)

    Hoerstel, W.; Klimakow, A.; Kramer, R.

    1990-04-01

    The magnetic field dependence of the Hall effect in p-type Hg1- xCdxTe is analysed for determining the carrier densities and their mobilities in the mixed conduction range T = 70-250 K. A consistent description of the temperature dependence of the concentrations and mobilities of electrons and holes succeeds by taking into account energy-dependent momentum scattering times in the transport coefficients. Using this formalism, an energy level near 0.7 Eg above the valence band edge caused by intrinsic defects which were influenced by thermal treament is determined and discussed.

  18. Investigations of Cyclotron Resonance in InSb and PbTe: Intraband Transitions between Landau Levels

    NASA Astrophysics Data System (ADS)

    Burstein, Elias

    2005-06-01

    We describe the investigations of cyclotron resonance, and its formulation in terms of intraband transitions between Landau levels, that were carried out at the Naval Research Laboratory and the University of Pennsylvania in the 1950's and 1960's. Measurements were carried out as a function of magnetic field at fixed wavelength in the infrared in both the Faraday and Voigt configurations on an intrinsic sample of InSb sample for which ωP << ωC, and on doped n-type samples for which ωP is comparable to ωC. Azbel'-Kaner cyclotron resonance, which is also observed in the Voigt configuration, was investigated at microwave frequencies in degenerate p-type PbTe where the cyclotron orbit of the carriers is comparable to the skin depth. The results showed that AK-CR is a particularly effective tool for determining the effective mass of carriers in semiconductors at microwave frequencies when ωP cannot be made smaller than ωC.

  19. Carrier polarity engineering in carbon nanotube field-effect transistors by induced charges in polymer insulator

    NASA Astrophysics Data System (ADS)

    Aikawa, Shinya; Kim, Sungjin; Thurakitseree, Theerapol; Einarsson, Erik; Inoue, Taiki; Chiashi, Shohei; Tsukagoshi, Kazuhito; Maruyama, Shigeo

    2018-01-01

    We present that the electrical conduction type in carbon nanotube field-effect transistors (CNT-FETs) can be converted by induced charges in a polyvinyl alcohol (PVA) insulator. When the CNT channels are covered with pure PVA, the FET characteristics clearly change from unipolar p-type to ambipolar. The addition of ammonium ions (NH4+) in the PVA leads to further conversion to unipolar n-type conduction. The capacitance - voltage characteristics indicate that a high density of positive charges is induced at the PVA/SiO2 interface and within the bulk PVA. Electrons are electrostatically accumulated in the CNT channels due to the presence of the positive charges, and thus, stable n-type conduction of PVA-coated CNT-FETs is observed, even under ambient conditions. The mechanism for conversion of the conduction type is considered to be electrostatic doping due to the large amount of positive charges in the PVA. A blue-shift of the Raman G-band peak was observed for CNTs coated with NH4+-doped PVA, which corresponds to unipolar n-type CNT-FET behavior. These results confirm that carrier polarity engineering in CNT-FETs can be achieved with a charged PVA passivation layer.

  20. Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng, E-mail: wcke@saturn.yzu.edu.tw

    2014-03-21

    This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highlymore » nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.« less

  1. Poole-Frenkel effect on electrical characterization of Al-doped ZnO films deposited on p-type GaN

    NASA Astrophysics Data System (ADS)

    Huang, Bohr-Ran; Liao, Chung-Chi; Ke, Wen-Cheng; Chang, Yuan-Ching; Huang, Hao-Ping; Chen, Nai-Chuan

    2014-03-01

    This paper presents the electrical properties of Al-doped ZnO (AZO) films directly grown on two types of p-type GaN thin films. The low-pressure p-GaN thin films (LP-p-GaN) exhibited structural properties of high-density edge-type threading dislocations (TDs) and compensated defects (i.e., nitrogen vacancy). Compared with high-pressure p-GaN thin films (HP-p-GaN), X-ray photoemission spectroscopy of Ga 3d core levels indicated that the surface Fermi-level shifted toward the higher binding-energy side by approximately 0.7 eV. The high-density edge-type TDs and compensated defects enabled surface Fermi-level shifting above the intrinsic Fermi-level, causing the surface of LP-p-GaN thin films to invert to n-type semiconductor. A highly nonlinear increase in leakage current regarding reverse-bias voltage was observed for AZO/LP-p-GaN. The theoretical fits for the reverse-bias voltage region indicated that the field-assisted thermal ionization of carriers from defect associated traps, which is known as the Poole-Frenkel effect, dominated the I-V behavior of AZO/LP-p-GaN. The fitting result estimated the trap energy level at 0.62 eV below the conduction band edge. In addition, the optical band gap increased from 3.50 eV for as-deposited AZO films to 3.62 eV for 300 °C annealed AZO films because of the increased carrier concentration. The increasing Fermi-level of the 300 °C annealed AZO films enabled the carrier transport to move across the interface into the LP-p-GaN thin films without any thermal activated energy. Thus, the Ohmic behavior of AZO contact can be achieved directly on the low-pressure p-GaN films at room temperature.

  2. Tunable SnSe2 /WSe2 Heterostructure Tunneling Field Effect Transistor.

    PubMed

    Yan, Xiao; Liu, Chunsen; Li, Chao; Bao, Wenzhong; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2017-09-01

    The burgeoning 2D semiconductors can maintain excellent device electrostatics with an ultranarrow channel length and can realize tunneling by electrostatic gating to avoid deprivation of band-edge sharpness resulting from chemical doping, which make them perfect candidates for tunneling field effect transistors. Here this study presents SnSe 2 /WSe 2 van der Waals heterostructures with SnSe 2 as the p-layer and WSe 2 as the n-layer. The energy band alignment changes from a staggered gap band offset (type-II) to a broken gap (type-III) when changing the negative back-gate voltage to positive, resulting in the device operating as a rectifier diode (rectification ratio ~10 4 ) or an n-type tunneling field effect transistor, respectively. A steep average subthreshold swing of 80 mV dec -1 for exceeding two decades of drain current with a minimum of 37 mV dec -1 at room temperature is observed, and an evident trend toward negative differential resistance is also accomplished for the tunneling field effect transistor due to the high gate efficiency of 0.36 for single gate devices. The I ON /I OFF ratio of the transfer characteristics is >10 6 , accompanying a high ON current >10 -5 A. This work presents original phenomena of multilayer 2D van der Waals heterostructures which can be applied to low-power consumption devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Black Phosphorus-Zinc Oxide Nanomaterial Heterojunction for p-n Diode and Junction Field-Effect Transistor.

    PubMed

    Jeon, Pyo Jin; Lee, Young Tack; Lim, June Yeong; Kim, Jin Sung; Hwang, Do Kyung; Im, Seongil

    2016-02-10

    Black phosphorus (BP) nanosheet is two-dimensional (2D) semiconductor with distinct band gap and attracting recent attention from researches because it has some similarity to gapless 2D semiconductor graphene in the following two aspects: single element (P) for its composition and quite high mobilities depending on its fabrication conditions. Apart from several electronic applications reported with BP nanosheet, here we report for the first time BP nanosheet-ZnO nanowire 2D-1D heterojunction applications for p-n diodes and BP-gated junction field effect transistors (JFETs) with n-ZnO channel on glass. For these nanodevices, we take advantages of the mechanical flexibility of p-type conducting of BP and van der Waals junction interface between BP and ZnO. As a result, our BP-ZnO nanodimension p-n diode displays a high ON/OFF ratio of ∼10(4) in static rectification and shows kilohertz dynamic rectification as well while ZnO nanowire channel JFET operations are nicely demonstrated by BP gate switching in both electrostatics and kilohertz dynamics.

  4. Magnetic phase transitions and magnetization reversal in MnRuP

    NASA Astrophysics Data System (ADS)

    Lampen-Kelley, P.; Mandrus, D.

    The ternary phosphide MnRuP is an incommensurate antiferromagnetic metal crystallizing in the non-centrosymmetric Fe2P-type crystal structure. Below the Neel transition at 250 K, MnRuP exhibits hysteretic anomalies in resistivity and magnetic susceptibility curves as the propagation vectors of the spiral spin structure change discontinuously across T1 = 180 K and T2 = 100 K. Temperature-dependent X-ray diffraction data indicate that the first-order spin reorientation occurs in the absence of a structural transition. A strong magnetization reversal (MR) effect is observed upon cooling the system through TN in moderate dc magnetic fields. Positive magnetization is recovered on further cooling through T1 and maintained in subsequent warming curves. The field dependence and training of the MR effect in MnRuP will be discussed in terms of the underlying magnetic structures and compared to anomalous MR observed in vanadate systems. This work is supported by the Gordon and Betty Moore Foundation GBMF4416 and U.S. DOE, Office of Science, BES, Materials Science and Engineering Division.

  5. Hybrid phototransistors based on bulk heterojunction films of poly(3-hexylthiophene) and zinc oxide nanoparticle.

    PubMed

    Nam, Sungho; Seo, Jooyeok; Park, Soohyeong; Lee, Sooyong; Jeong, Jaehoon; Lee, Hyena; Kim, Hwajeong; Kim, Youngkyoo

    2013-02-01

    Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system. The incident light intensity (P(IN)) was varied up to 43.6 μW/cm², whereas three major wavelengths (525 nm, 555 nm, 605 nm) corresponded to the optical absorption of P3HT were applied. Results showed that the present HPTRs showed typical p-type transistor performance even though the n-type ZnO(NP) content increased up to 50 wt %. The highest transistor performance was obtained at 50 wt %, whereas the lowest performance was measured at 23 wt % because of the immature bulk heterojunction morphology. The drain current (I(D)) was proportionally increased with P(IN) due to the photocurrent generation in addition to the field-effect current. The highest apparent and corrected responsivities (R(A) = 4.7 A/W and R(C) = 2.07 A/W) were achieved for the HPTR with the P3HT:ZnO(NP) film (50 wt % ZnO(NP)) at P(IN) = 0.27 μW/cm² (555 nm).

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Trinh Cham, E-mail: s1240009@jaist.ac.jp; Koyama, Koichi; Ohdaira, Keisuke

    We improve the passivation property of n-type crystalline silicon (c-Si) surface passivated with a catalytic chemical vapor deposited (Cat-CVD) Si nitride (SiN{sub x}) film by inserting a phosphorous (P)-doped layer formed by exposing c-Si surface to P radicals generated by the catalytic cracking of PH{sub 3} molecules (Cat-doping). An extremely low surface recombination velocity (SRV) of 2 cm/s can be achieved for 2.5 Ω cm n-type (100) floating-zone Si wafers passivated with SiN{sub x}/P Cat-doped layers, both prepared in Cat-CVD systems. Compared with the case of only SiN{sub x} passivated layers, SRV decreases from 5 cm/s to 2 cm/s. The decrease in SRVmore » is the result of field effect created by activated P atoms (donors) in a shallow P Cat-doped layer. Annealing process plays an important role in improving the passivation quality of SiN{sub x} films. The outstanding results obtained imply that SiN{sub x}/P Cat-doped layers can be used as promising passivation layers in high-efficiency n-type c-Si solar cells.« less

  7. Study on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dae-Kyu; Oh, Jeong-Do; Shin, Eun-Sol

    2014-04-28

    The neutral cluster beam deposition (NCBD) method has been applied to the production and characterization of ambipolar, heterojunction-based organic light-emitting field-effect transistors (OLEFETs) with a top-contact, multi-digitated, long-channel geometry. Organic thin films of n-type N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide and p-type copper phthalocyanine were successively deposited on the hydroxyl-free polymethyl-methacrylate (PMMA)-coated SiO{sub 2} dielectrics using the NCBD method. Characterization of the morphological and structural properties of the organic active layers was performed using atomic force microscopy and X-ray diffraction. Various device parameters such as hole- and electron-carrier mobilities, threshold voltages, and electroluminescence (EL) were derived from the fits of the observed current-voltage andmore » current-voltage-light emission characteristics of OLEFETs. The OLEFETs demonstrated good field-effect characteristics, well-balanced ambipolarity, and substantial EL under ambient conditions. The device performance, which is strongly correlated with the surface morphology and the structural properties of the organic active layers, is discussed along with the operating conduction mechanism.« less

  8. Perspective analysis of tri gate germanium tunneling field-effect transistor with dopant segregation region at source/drain

    NASA Astrophysics Data System (ADS)

    Liu, Liang-kui; Shi, Cheng; Zhang, Yi-bo; Sun, Lei

    2017-04-01

    A tri gate Ge-based tunneling field-effect transistor (TFET) has been numerically studied with technology computer aided design (TCAD) tools. Dopant segregated Schottky source/drain is applied to the device structure design (DS-TFET). The characteristics of the DS-TFET are compared and analyzed comprehensively. It is found that the performance of n-channel tri gate DS-TFET with a positive bias is insensitive to the dopant concentration and barrier height at n-type drain, and that the dopant concentration and barrier height at a p-type source considerably affect the device performance. The domination of electron current in the entire BTBT current of this device accounts for this phenomenon and the tri-gate DS-TFET is proved to have a higher performance than its dual-gate counterpart.

  9. [Comparison of soil fertility among open-pit mine reclaimed lands in Antaibao regenerated with different vegetation types].

    PubMed

    Wang, Xiang; Li, Jin-chuan; Yue, Jian-ying; Zhou, Xiao-mei; Guo, Chun-yan; Lu, Ning; Wang, Yu-hong; Yang, Sheng-quan

    2013-09-01

    Re-vegetation is mainly applied into regeneration in opencast mine to improve the soil quality. It is very important to choose feasible vegetation types for soil restoration. In this study, three typical forest restoration types were studied at Antaibao mine, namely, Medicago sativa, mixed forests Pinus taebelaefolius-Robinia pseudoacacia-Caragana korshinskii and Elaeagnus angustifolia-Robinia pseudoacacia-Caragana korshinskii-Hipophae rhamnoides, to determine the nutrient contents and enzyme activities in different soil layers. The results showed that re-vegetation markedly increased soil nutrient contents and the enzyme activities during the restoration process. The nutrient content of soil in the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest field was significantly higher than those in other plots. It was found that the soil of the P. taebelaefolius-R. pseudoacacia-C. korshinskii mixed forest had the highest integrated fertility index values. In conclusion, the restoration effects of the P. zaebelaefolius-R. pseudoacacia-C. Korshinskii mixed forest was better than that of E. angustifolia-R. pseudoacacia-C. korshinskii-H. rhamnoides, while M. sativa grassland had the least effect.

  10. Design consideration of high voltage Ga2O3 vertical Schottky barrier diode with field plate

    NASA Astrophysics Data System (ADS)

    Choi, J.-H.; Cho, C.-H.; Cha, H.-Y.

    2018-06-01

    Gallium oxide (Ga2O3) based vertical Schottky barrier diodes (SBDs) were designed for high voltage switching applications. Since p-type Ga2O3 epitaxy growth or p-type ion implantation technique has not been developed yet, a field plate structure was employed in this study to maximize the breakdown voltage by suppressing the electric field at the anode edge. TCAD simulation was used for the physical analysis of Ga2O3 SBDs from which it was found that careful attention must be paid to the insulator under the field plate. Due to the extremely high breakdown field property of Ga2O3, an insulator with both high permittivity and high breakdown field must be used for the field plate formation.

  11. Electric field tuned MoS2/metal interface for hydrogen evolution catalyst from first-principles investigations

    NASA Astrophysics Data System (ADS)

    Ling, F. L.; Zhou, T. W.; Liu, X. Q.; Kang, W.; Zeng, W.; Zhang, Y. X.; Fang, L.; Lu, Y.; Zhou, M.

    2018-01-01

    Understanding the interfacial properties of catalyst/substrate is crucial for the design of high-performance catalyst for important chemical reactions. Recent years have witnessed a surge of research in utilizing MoS2 as a promising electro-catalyst for hydrogen production, and field effect has been employed to enhance the activity (Wang et al 2017 Adv. Mater. 29, 1604464; Yan et al 2017 Nano Lett. 17, 4109-15). However, the underlying atomic mechanism remains unclear. In this paper, by using the prototype MoS2/Au system as a probe, we investigate effects of external electric field on the interfacial electronic structures via density functional theory (DFT) based first-principles calculations. Our results reveal that although there is no covalent interaction between MoS2 overlayer and Au substrate, an applied electric field efficiently adjusts the charge transfer between MoS2 and Au, leading to tunable Schottky barrier type (n-type to p-type) and decrease of barrier height to facilitate charge injection. Furthermore, we predict that the adsorption energy of atomic hydrogen on MoS2/Au to be readily controlled by electric field to a broad range within a modest magnitude of field, which may benefit the performance enhancement of hydrogen evolution reaction. Our DFT results provide valuable insight into the experimental observations and pave the way for future understanding and control of catalysts in practice, such as those with vacancies, defects, edge states or synthesized nanostructures.

  12. The Cluster AgeS Experiment (CASE). Variable Stars in the Field of the Globular Cluster M22

    NASA Astrophysics Data System (ADS)

    Rozyczka, M.; Thompson, I. B.; Pych, W.; Narloch, W.; Poleski, R.; Schwarzenberg-Czerny, A.

    2017-09-01

    The field of the globular cluster M22 (NGC 6656) was monitored between 2000 and 2008 in a search for variable stars. BV light curves were obtained for 359 periodic, likely periodic, and long-term variables, 238 of which are new detections. 39 newly detected variables, and 63 previously known ones are members or likely members of the cluster, including 20 SX Phe, 10 RRab and 16 RRc type pulsators, one BL Her type pulsator, 21 contact binaries, and 9 detached or semi-detached eclipsing binaries. The most interesting among the identified objects are V112 - a bright multimode SX Phe pulsator, V125 - a β Lyr type binary on the blue horizontal branch, V129 - a blue/yellow straggler with a W UMa-like light curve, located halfway between the extreme horizontal branch and red giant branch, and V134 - an extreme horizontal branch object with P=2.33 d and a nearly sinusoidal light curve. All four of them are proper motion members of the cluster. Among nonmembers, a P=2.83 d detached eclipsing binary hosting a δ Sct type pulsator was found, and a peculiar P=0.93 d binary with ellipsoidal modulation and narrow minimum in the middle of one of the descending shoulders of the sinusoid. We also collected substantial new data for previously known variables. In particular we revise the statistics of the occurrence of the Blazhko effect in RR Lyr type variables of M22.

  13. Why childhood-onset type 1 diabetes impacts labour market outcomes: a mediation analysis.

    PubMed

    Persson, Sofie; Dahlquist, Gisela; Gerdtham, Ulf-G; Steen Carlsson, Katarina

    2018-02-01

    Previous studies show a negative effect of type 1 diabetes on labour market outcomes such as employment and earnings later in life. However, little is known about the mechanisms underlying these effects. This study aims to analyse the mediating role of adult health, education, occupation and family formation. A total of 4179 individuals from the Swedish Childhood Diabetes Register and 16,983 individuals forming a population control group born between 1962 and 1979 were followed between 30 and 50 years of age. The total effect of having type 1 diabetes was broken down into a direct effect and an indirect (mediating) effect using statistical mediation analysis. We also analysed whether type 1 diabetes has different effects on labour market outcome between the sexes and across socioeconomic status. Childhood-onset type 1 diabetes had a negative impact on employment (OR 0.68 [95% CI 0.62, 0.76] and OR 0.76 [95% CI 0.67, 0.86]) and earnings (-6%, p < 0.001 and -8%, p < 0.001) for women and men, respectively. Each of the mediators studied contributed to the total effect with adult health and occupational field accounting for the largest part. However, some of the effect could not be attributed to any of the mediators studied and was therefore likely related to other characteristics of the disease that hamper career opportunities. The effect of type 1 diabetes on employment and earnings did not vary significantly according to socioeconomic status of the family (parental education and earnings). A large part of the effect of type 1 diabetes on the labour market is attributed to adult health but there are other important mediating factors that need to be considered to reduce this negative effect.

  14. A hole modulator for InGaN/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2015-02-01

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ˜332 meV to ˜294 meV at 80 A/cm2 and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  15. Magneto-transport studies of a few hole GaAs double quantum dot in tilted magnetic fields

    NASA Astrophysics Data System (ADS)

    Studenikin, Sergei; Bogan, Alex; Tracy, Lisa; Gaudreau, Louis; Sachrajda, Andy; Korkusinski, Marek; Reno, John; Hargett, Terry

    Compared to equivalent electron devices, single-hole spins interact weakly with lattice nuclear spins leading to extended quantum coherence times. This makes p-type Quantum Dots (QD) particularly attractive for practical quantum devices such as qubit circuits, quantum repeaters, quantum sensors etc. where long coherence time is required. Another property of holes is the possibility to tune their g-factor as a result of the strong anisotropy of the valance band. Hole g-factors can be conveniently tuned in situ from a large value to almost zero by tilting the magnetic field relative to the 2D hole gas surface normal. In this work we explore high-bias magneto-transport properties of a p-type double quantum dot (DQD) device fabricated from a GaAs/AlGaAs heterostructures using lateral split-gate technology. A charge detection technique is used to monitor number of holes and tune the p-DQD in a single hole regime around (1,1) and (2,0) occupation states where Pauli spin-blockaded transport is expected. Four states are identified in quantizing magnetic fields within the high-bias current stripe - three-fold triplet and a singlet which allows determining effective heavy hole g-factor as a function of the tilt angle from 90 to 0 degrees.

  16. pH Control of Untreated Water for Irrigation

    NASA Astrophysics Data System (ADS)

    Poyen, Faruk Bin; Kundu, Palash K.; Ghosh, Apurba K.

    2018-05-01

    Irrigation in India still plays a pivotal role in the country's economic and employment structure. But due to unawareness and lack of technological upgradations and ill and careless agricultural practices, the yield from the fields is poor and not to its best capacity. There exists a lot of reasons and factors that brings down the crop productivity. One among them is the quality of irrigation water that is supplied to the fields. It is a common practice in India and other sub-continental countries not to access the water qualitatively before getting fed to the fields. Albeit, it does not have catastrophic effects on the productivity, but it affects the nourishment of the crops to some good extent. Water pH has a strong effect on the soil and crop, when it comes to absorption of nutrients by the plant bodies. With properly regulating the pH level of the irrigation water, it is possible to create an ambiance where the symbiotic effects between the soil and the plant can be optimized. In this paper, it is tried to regulate the pH levels of the water based on the type of soil and the optimal requirement by the crop. The work in this paper involves neutralization of acidic or alkaline water before it is being supplied to the farmlands. The process model is simulation based which gave considerably good and acceptable results.

  17. Characterization and Analysis of Indium-Doped Silicon Extrinsic Detector Material

    DTIC Science & Technology

    1980-06-01

    lines are likely to be due to donor- acceptor complexes of some type. The observation of these lines marks the first time that anyone has observed such...York, 1972. 18. R.S.C. Cobbold , Theory and Applications of Field Effect Transistors, John Wiley and Sons, New York, 1970. 19. W.N. Carr, and J.P. Mize

  18. [Effects of ex situ rice straw incorporation on organic matter content and main physical properties of hilly red soil].

    PubMed

    Zhu, Han-hua; Huang, Dao-you; Liu, Shou-long; Zhu, Qi-hong

    2007-11-01

    Two typical land-use types, i.e., newly cultivated slope land and mellow upland, were selected to investigate the effects of ex situ rice straw incorporation on the organic matter content, field water-holding capacity, bulk density, and porosity of hilly red soil, and to approach the correlations between these parameters. The results showed that ex situ incorporation of rice straw increased soil organic matter content, ameliorated soil physical properties, and improved soil water storage. Comparing with non-fertilization and applying chemical fertilizers, ex situ incorporation of rice straw increased the contents of organic matter (5.8%-28.9%) and > 0.25 mm water-stable aggregates in 0-20 cm soil layer, and increased the field water-holding capacity (6.8%-16.2%) and porosity (4.8%-7.7%) significantly (P < 0.05) while decreased the bulk density (4.5%-7.5%) in 10-15 cm soil layer. The organic matter content in 0-20 cm soil layer was significantly correlated to the bulk density, porosity, and field water-holding capacity in 10-15 cm soil layer (P < 0.01), and the field water-holding capacity in 0-20 cm and 10-15 cm soil layers was significantly correlated to the bulk density and porosity in these two layers (P < 0.05).

  19. The effect of light soaking on crystalline silicon surface passivation by atomic layer deposited Al2O3

    NASA Astrophysics Data System (ADS)

    Liao, Baochen; Stangl, Rolf; Mueller, Thomas; Lin, Fen; Bhatia, Charanjit S.; Hoex, Bram

    2013-01-01

    The effect of light soaking of crystalline silicon wafer lifetime samples surface passivated by thermal atomic layer deposited (ALD) Al2O3 is investigated in this paper. Contrary to other passivation materials used in solar cell applications (i.e., SiO2, SiNx), using thermal ALD Al2O3, an increase in effective carrier lifetime after light soaking under standard testing conditions is observed for both p-type (˜45%) and n-type (˜60%) FZ c-Si lifetime samples. After light soaking and storing the samples in a dark and dry environment, the effective lifetime decreases again and practically returns to the value before light soaking. The rate of lifetime decrease after light soaking is significantly slower than the rate of lifetime increase by light soaking. To investigate the underlying mechanism, corona charge experiments are carried out on p-type c-Si samples before and after light soaking. The results indicate that the negative fixed charge density Qf present in the Al2O3 films increases due to the light soaking, which results in an improved field-effect passivation. Numerical calculations also confirm that the improved field-effect passivation is the main contributor for the increased effective lifetime after light soaking. To further understand the light soaking phenomenon, a kinetic model—a charge trapping/de-trapping model—is proposed to explain the time dependent behavior of the lifetime increase/decrease observed under/after light soaking. The trap model fits the experimental results very well. The observed light enhanced passivation for ALD Al2O3 passivated c-Si is of technological relevance, because solar cell devices operate under illumination, thus an increase in solar cell efficiency due to light soaking can be expected.

  20. Establishment and effectiveness of inoculated arbuscular mycorrhizal fungi in agricultural soils.

    PubMed

    Köhl, Luise; Lukasiewicz, Catherine E; van der Heijden, Marcel G A

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) are promoted as biofertilizers for sustainable agriculture. So far, most researchers have investigated the effects of AMF on plant growth under highly controlled conditions with sterilized soil, soil substrates or soils with low available P or low inoculum potential. However, it is still poorly documented whether inoculated AMF can successfully establish in field soils with native AMF communities and enhance plant growth. We inoculated grassland microcosms planted with a grass-clover mixture (Lolium multiflorum and Trifolium pratense) with the arbuscular mycorrhizal fungus Rhizoglomus irregulare. The microcosms were filled with eight different unsterilized field soils that varied greatly in soil type and chemical characteristics and indigenous AMF communities. We tested whether inoculation with AMF enhanced plant biomass and R. irregulare abundance using a species specific qPCR. Inoculation increased the abundance of R. irregulare in all soils, irrespective of soil P availability, the initial abundance of R. irregulare or the abundance of native AM fungal communities. AMF inoculation had no effect on the grass but significantly enhanced clover yield in five out of eight field soils. The results demonstrate that AMF inoculation can be successful, even when soil P availability is high and native AMF communities are abundant. © 2015 John Wiley & Sons Ltd.

  1. Influence of non-adherent yeast cells on electrical characteristics of diamond-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Procházka, Václav; Cifra, Michal; Kulha, Pavel; Ižák, Tibor; Rezek, Bohuslav; Kromka, Alexander

    2017-02-01

    Diamond thin films provide unique features as substrates for cell cultures and as bio-electronic sensors. Here we employ solution-gated field effect transistors (SGFET) based on nanocrystalline diamond thin films with H-terminated surface which exhibits the sub-surface p-type conductive channel. We study an influence of yeast cells (Saccharomyces cerevisiae) on electrical characteristics of the diamond SGFETs. Two different cell culture solutions (sucrose and yeast peptone dextrose-YPD) are used, with and without the cells. We have found that transfer characteristics of the SGFETs exhibit a negative shift of the gate voltage by -26 mV and -42 mV for sucrose and YPD with cells in comparison to blank solutions without the cells. This effect is attributed to a local pH change in close vicinity of the H-terminated diamond surface due to metabolic processes of the yeast cells. The pH sensitivity of the diamond-based SGFETs, the role of cell and protein adhesion on the gate surface and the role of negative surface charge of yeast cells on the SGFETs electrical characteristics are discussed as well.

  2. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells

    NASA Astrophysics Data System (ADS)

    Łepkowski, Sławomir P.; Bardyszewski, Witold

    2017-05-01

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  3. Anomalous Rashba spin-orbit interaction in electrically controlled topological insulator based on InN/GaN quantum wells.

    PubMed

    Łepkowski, Sławomir P; Bardyszewski, Witold

    2017-05-17

    We study theoretically the topological phase transition and the Rashba spin-orbit interaction in electrically biased InN/GaN quantum wells. We show that that for properly chosen widths of quantum wells and barriers, one can effectively tune the system through the topological phase transition applying an external electric field perpendicular to the QW plane. We find that in InN/GaN quantum wells with the inverted band structure, when the conduction band s-type level is below the heavy hole and light hole p-type levels, the spin splitting of the subbands decreases with increasing the amplitude of the electric field in the quantum wells, which reveals the anomalous Rashba effect. Derived effective Rashba Hamiltonians can describe the subband spin splitting only for very small wave vectors due to strong coupling between the subbands. Furthermore, we demonstrate that for InN/GaN quantum wells in a Hall bar geometry, the critical voltage for the topological phase transition depends distinctly on the width of the structure and a significant spin splitting of the edge states lying in the 2D band gap can be almost switched off by increasing the electric field in quantum wells only by a few percent. We show that the dependence of the spin splitting of the upper branch of the edge state dispersion curve on the wave vector has a threshold-like behavior with the on/off spin splitting ratio reaching two orders of magnitude for narrow Hall bars. The threshold wave vector depends weakly on the Hall bar width, whereas it increases significantly with the bias voltage due to an increase of the energetic distance between the s-type and p-type quantum well energy levels and a reduction of the coupling between the subbands.

  4. Annealing effect on effective mass of two-dimensional electrons in InGaAsN/GaAsSb type II quantum well

    NASA Astrophysics Data System (ADS)

    Kawamata, Shuichi; Tanaka, Sho; Hibino, Akira; Kawamura, Yuichi

    2018-03-01

    The InP-based InGaAs/GaAsSb type II multiple quantum well is the system for developing optical devices for 2 – 3 μm wavelength regions. By doping nitrogen into InGaAs layers, the system becomes effective to fabricate the optical devices with longer wavelength. The epitaxial layers of InGaAsN/GaAsSb on InP substrates are grown by the molecular beam epitaxy. The electrical resistance has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 8 K. The effective mass is obtained from the temperature dependence of the amplitude of the Shubnikov-de Haas oscillations. We have reported the nitrogen concentration dependence of the effective mass on the InGaAsN/GaAsSb type II system. The effective mass increases as the nitrogen concentration increases from 0.0 to 1.5 %. In this report, the annealing effect on the effective mass is investigated. The effective mass decreases by the annealing. This result suggests that some amount of nitrogen atoms of the InGaAsN layers are considered to diffuse to the GaAsSb layers by the annealing.

  5. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    PubMed

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x < 3) with high stability and high performance is first applied in a p-type silicon solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  6. Blood metals concentration in type 1 and type 2 diabetics.

    PubMed

    Forte, Giovanni; Bocca, Beatrice; Peruzzu, Angela; Tolu, Francesco; Asara, Yolande; Farace, Cristiano; Oggiano, Riccardo; Madeddu, Roberto

    2013-12-01

    Mechanisms for the onset of diabetes and the development of diabetic complications remain under extensive investigations. One of these mechanisms is abnormal homeostasis of metals, as either deficiency or excess of metals, can contribute to certain diabetic outcomes. Therefore, this paper will report the blood levels of chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), mercury (Hg), nickel (Ni), lead (Pb), selenium (Se), and zinc (Zn) in subjects with type 1 diabetes (n = 192, mean age 48.8 years, mean disease duration 20.6 years), type 2 diabetes (n = 68, mean age 68.4 years, mean disease duration 10.2 years), and in control subjects (n = 59, mean age 57.2 years), and discuss the results indicating their possible role in diabetes. The metal concentrations were measured by sector field inductively coupled plasma mass spectrometry after microwave-induced acid digestion of blood samples. The accuracy was checked using a blood-based certified reference material, and recoveries of all elements were in the range of 92-101 % of certified values. Type 1 diabetes was found to be associated with Cr (p = 0.02), Mn (p < 0.001), Ni (p < 0.001), Pb (p = 0.02), and Zn (p < 0.001) deficiency, and type 2 diabetes with Cr (p = 0.014), Mn (p < 0.001), and Ni (p < 0.001) deficiency. These deficiencies were appreciated also subdividing the understudied patients for gender and age groups. Furthermore, in type 1 diabetes, there was a positive correlation between Pb and age (p < 0.001, ρ = 0.400) and Pb and BMI (p < 0.001, ρ = 0.309), while a negative correlation between Fe and age (p = 0.002, ρ = -0.218). In type 2 diabetes, there was a negative correlation between Fe and age (p = 0.017, ρ = -0.294) and Fe and BMI (p = 0.026, ρ = -0.301). Thus, these elements may play a role in both forms of diabetes and combined mineral supplementations could have beneficial effects.

  7. [Effect of nerve growth factor on osteogenic potential of type 2 diabetic mice bone marrow stromal cell in vitro].

    PubMed

    Cui, G S; Zeng, J Y; Zhang, J; Lu, R

    2018-02-09

    Objective: To study the effects of nerve growth factor (NGF) on the proliferation, osteogenic differentiation and mineralization of type 2 diabetic mice bone marrow stromal cell (BMSC), providing basis for clinical application of NGF. Methods: Three 8-week-old male db/db mice and two 8-week-old male C57BL/6J mice were used in the study. BMSC derived from femur were cultured though adherence method. BMSC of C57BL/6J mice and db/db mice was divided into normal group and diabetic group to conduct the osteogenic potential experiment, named experiment one. In experiment two, diabetic BMSC was divided into 3 groups: diabetic control group, NGF group, and K252a+NGF group [K252a was the inhibitor of tyrosine kinase A (TrkA), which was the high affinity receptor of NGF], to investigate effect of NGF on osteogenic potential of diabetic mice BMSC. After seeding BMSC, K252a was added into K252a+NGF group, then NGF was added 30 min later. NGF was added into NGF group and K252a+NGF group, but not diabetic control group. The proliferation of BMSC at 1, 3, 5 and 7 d in experiment one and the proliferation of BMSC at 1, 2 and 3 d in experiment two were evaluated through methyl thiazolyl tetrazolium, and the level of alkaline phosphatase (ALP) at 3, 5 and 7 d in both experiments were measured. After being osteogenic induced for 14 d, mineralized nodules in both experiments were quantitated by alizarin red calcium stain. Five holes were set in every group, and all experiments were repeated 3 times. Results: The BMSC proliferation of diabetic group was significantly higher than that of the normal group at 3, 5 and 7 d ( P< 0.05). After being osteogenic inducted for 3, 5 and 7 d, ALP level of diabetic group were significantly lower than that of normal group ( P< 0.05). After being osteogenic inducted for 14 d, calcium nodule count of diabetic group [(23.1±6.4) nodule/field] were significantly lower than that of normal group [(36.9±7.9) nodule/field]( P< 0.05). At 1, 2 and 3 d, BMSC proliferations of diabetic control group, NGF group and K252a+NGF group were not statistically different ( P> 0.05). After being osteogenic inducted for 3 and 5 d, ALP level of NGF group was significantly higher than that of diabetic control group ( P< 0.05). After being osteogenic inducted for 3, 5, and 7 d, ALP level of K252a+NGF group was significantly lower than that of NGF group ( P< 0.05) and diabetic control group ( P< 0.05). After being osteogenic induced for 14 d, calcium nodule count of NGF group [(45.2±6.8) nodule/field] was significantly more than that of diabetic control group [(23.1±6.4) nodule/field]( P< 0.05); while calcium nodule count of K252a+NGF group [(18.0±4.5) nodule/field] was significantly less than that of NGF group ( P< 0.05) and diabetic control group ( P< 0.05). Conclusions: The differentiation and mineralization of type 2 diabetic mice BMSC was significantly reduced. NGF promoted the osteoblastic differentiation and mineralization of diabetic mice BMSC in viro though combining with TrkA.

  8. Exchange Bias in Layered GdBaCo2O5.5 Cobaltite

    NASA Astrophysics Data System (ADS)

    Solin, N. I.; Naumov, S. V.; Telegin, S. V.; Korolev, A. V.

    2017-12-01

    It is established that excess oxygen content δ influences the exchange bias (EB) in layered GdBa-Co2O5 + δ cobaltite. The EB effect arises in p-type (δ > 0.5) cobaltite and disappears in n-type (δ < 0.5) cobaltite. The main parameters of EB in GdBaCo2O5.52(2) polycrystals are determined, including the field and temperature dependences of EB field H EB , blocking temperature T B , exchange coupling energy J i of antiferromagnet-ferromagnet (AFM-FM) interface, and dimensions of FM clusters. The training effect inherent in systems with EB has been studied. The results are explained in terms of exchange interaction between the FM and AFM phases. It is assumed that the EB originates from the coexistence of Co3+ and Co4+ ions that leads to the formation of monodomain FM clusters in the AFM matrix of cobaltite.

  9. A study of effects of electrode contacts on performance of organic-based light-emitting field-effect transistors

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Kyu; Choi, Jong-Ho

    2018-02-01

    Herein is presented a comparative performance analysis of heterojunction organic-based light-emitting field-effect transistors (OLEFETs) with symmetric (Au only) and asymmetric (Au and LiF/Al) electrode contacts. The devices had a top source-drain contact with long-channel geometry and were produced by sequentially depositing p-type pentacene and n-type N,N‧-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13) using a neutral cluster beam deposition apparatus. The spectroscopic, structural and morphological properties of the organic thin films were examined using photoluminescence (PL) spectroscopy, X-ray diffraction (XRD) method, laser scanning confocal and atomic force microscopy (LSCM, AFM). Based upon the growth of high-quality, well-packed crystalline thin films, the devices demonstrated ambipolar field-effect characteristics, stress-free operational stability, and light emission under ambient conditions. Various device parameters were derived from the fits of the observed characteristics. The hole mobilities were nearly equal irrespective of the electrode contacts, whereas the electron mobilities of the transistors with LiF/Al drain electrodes were higher due to the low injection barrier. For the OLEFETs with symmetric electrodes, electroluminescence (EL) occurred only in the vicinity of the hole-injecting electrode, whereas for the OLEFETs with asymmetric electrodes, the emission occurred in the vicinity of both hole- and electron-injecting electrodes. By tuning the carrier injection and transport through high- and low-work function metals, the hole-electron recombination sites could be controlled. The operating conduction and light emission mechanism are discussed with the aid of EL images obtained using a charge-coupled device (CCD) camera.

  10. An improved performance of copper phthalocyanine OFETs with channel and source/drain contact modifications

    NASA Astrophysics Data System (ADS)

    Huanqin, Dang; Xiaoming, Wu; Xiaowei, Sun; Runqiu, Zou; Ruochuan, Zhang; Shougen, Yin

    2015-10-01

    We report an effective method to improve the performance of p-type copper phthalocyanine (CuPc) based organic field-effect transistors (OFETs) by employing a thin para-quaterphenyl (p-4p) film and simultaneously applying V2O5 to the source/drain regions. The p-4p layer was inserted between the insulating layer and the active layer, and V2O5 layer was added between CuPc and Al in the source-drain (S/D) area. As a result, the field-effect saturation mobility and on/off current ratio of the optimized device were improved to 5 × 10-2 cm2/(V·s) and 104, respectively. We believe that because p-4p could induce CuPc to form a highly oriented and continuous film, this resulted in the better injection and transport of the carriers. Moreover, by introducing the V2O5 electrode's modified layers, the height of the carrier injection barrier could be effectively tuned and the contact resistance could be reduced. Project supported by the National Natural Science Foundation of China (No. 60676051), the National High Technology Research and Development Program of China (No. 2013A A014201), the Scientific Developing Foundation of Tianjin Education Commission (No. 2011ZD02), the Key Science and Technology Support Program of Tianjin (No. 14ZCZDGX00006), and the Foundation of Key Discipline of Material Physics and Chemistry of Tianjin.

  11. Two-dimensional n -InSe/p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance

    NASA Astrophysics Data System (ADS)

    Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo

    2018-03-01

    Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.

  12. Energy band engineering and controlled p-type conductivity of CuAlO2 thin films by nonisovalent Cu-O alloying

    NASA Astrophysics Data System (ADS)

    Yao, Z. Q.; He, B.; Zhang, L.; Zhuang, C. Q.; Ng, T. W.; Liu, S. L.; Vogel, M.; Kumar, A.; Zhang, W. J.; Lee, C. S.; Lee, S. T.; Jiang, X.

    2012-02-01

    The electronic band structure and p-type conductivity of CuAlO2 films were modified via synergistic effects of energy band offset and partial substitution of less-dispersive Cu+ 3d10 with Cu2+ 3d9 orbitals in the valence band maximum by alloying nonisovalent Cu-O with CuAlO2 host. The Cu-O/CuAlO2 alloying films show excellent electronic properties with tunable wide direct bandgaps (˜3.46-3.87 eV); Hall measurements verify the highest hole mobilities (˜11.3-39.5 cm2/Vs) achieved thus far for CuAlO2 thin films and crystals. Top-gate thin film transistors constructed on p-CuAlO2 films were presented, and the devices showed pronounced performance with Ion/Ioff of ˜8.0 × 102 and field effect mobility of 0.97 cm2/Vs.

  13. Nitrogen plasma-treated multilayer graphene-based field effect transistor fabrication and electronic characteristics

    NASA Astrophysics Data System (ADS)

    Su, Wei-Jhih; Chang, Hsuan-Chen; Honda, Shin-ichi; Lin, Pao-Hung; Huang, Ying-Sheng; Lee, Kuei-Yi

    2017-08-01

    Chemical doping with hetero-atoms is an effective method used to change the characteristics of materials. Nitrogen doping technology plays a critical role in regulating the electronic properties of graphene. Nitrogen plasma treatment was used in this work to dope nitrogen atoms to modulate multilayer graphene electrical properties. The measured I-V multilayer graphene-base field-effect transistor characteristics (GFETs) showed a V-shaped transfer curve with the hole and electron region separated from the measured current-voltage (I-V) minimum. GFETs fabricated with multilayer graphene from chemical vapor deposition (CVD) exhibited p-type behavior because of oxygen adsorption. After using different nitrogen plasma treatment times, the minimum in I-V characteristic shifted into the negative gate voltage region with increased nitrogen concentration and the GFET channel became an n-type semiconductor. GFETs could be easily fabricated using this method with potential for various applications. The GFET transfer characteristics could be tuned precisely by adjusting the nitrogen plasma treatment time.

  14. Effect of co-site dilution on the magnetism of RCo5 (R = Gd, Y) compounds

    NASA Astrophysics Data System (ADS)

    Nikitin, S. A.; Bogdanov, A. E.; Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Ovchenkova, I. A.; Smirnov, A. V.; Nirmala, R.; Quezado, S.; Malik, S. K.

    2018-03-01

    The magnetic and magnetocaloric properties of the RCo5‑x Ga x (R = Gd, Y; x = 1, 1.5, 1.6, 1.7) compounds have been studied. X-ray and electron microprobe analysis show that the samples are single phase and crystallize in the hexagonal CaCu5 - type structure (space group P6/mmm, N 191, hP6). The magnetic properties have been studied from 2 to 400 K under magnetic fields in the region of 1 to 140 kOe. With increasing Ga amount the magnetic ordering temperature decreases rapidly. The increase in Ga concentration leads to the reduction of the magnetic moment of Co sublattice and the Curie temperature. It has been found that the paramagnetic susceptibility follows the Néel-type law for GdCo5‑x Ga x (x = 1.5, 1.6, 1.7) and the Curie-Weiss law for YCo3.3Ga1.7. The molecular field coefficients and sublattice magnetizations were determined on a basis of the Néel theory and experimental data. The magnetocaloric effect and refrigerant capacity have been estimated over a wide temperature range of 10–350 K.

  15. Functional zinc oxide nanostructures for electronic and energy applications

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek

    ZnO has proven to be a multifunctional material with important nanotechnological applications. ZnO nanostructures can be grown in various forms such as nanowires, nanorods, nanobelts, nanocombs etc. In this work, ZnO nanostructures are grown in a double quartz tube configuration thermal Chemical Vapor Deposition (CVD) system. We focus on functionalized ZnO Nanostructures by controlling their structures and tuning their properties for various applications. The following topics have been investigated: (1) We have fabricated various ZnO nanostructures using a thermal CVD technique. The growth parameters were optimized and studied for different nanostructures. (2) We have studied the application of ZnO nanowires (ZnONWs) for field effect transistors (FETs). Unintentional n-type conductivity was observed in our FETs based on as-grown ZnO NWs. We have then shown for the first time that controlled incorporation of hydrogen into ZnO NWs can introduce p-type characters to the nanowires. We further found that the n-type behaviors remained, leading to the ambipolar behaviors of hydrogen incorporated ZnO NWs. Importantly, the detected p- and n- type behaviors are stable for longer than two years when devices were kept in ambient conditions. All these can be explained by an ab initio model of Zn vacancy-Hydrogen complexes, which can serve as the donor, acceptors, or green photoluminescence quencher, depend on the number of hydrogen atoms involved. (3) Next ZnONWs were tested for electron field emission. We focus on reducing the threshold field (Eth) of field emission from non-aligned ZnO NWs. As encouraged by our results on enhancing the conductivity of ZnO NWs by hydrogen annealing described in Chapter 3, we have studied the effect of hydrogen annealing for improving field emission behavior of our ZnO NWs. We found that optimally annealed ZnO NWs offered much lower threshold electric field and improved emission stability. We also studied field emission from ZnO NWs at moderate vacuum levels. We found that there exists a minimum Eth as we scale the threshold field with pressure. This behavior is explained by referring to Paschen's law.(4) We have studied the application of ZnO nanostructures for solar energy harvesting. First, as-grown and (CdSe) ZnS QDs decorated ZnO NBs and ZnONWs were tested for photocurrent generation. All these nanostructures offered fast response time to solar radiation. The decoration of QDs decreases the stable current level produced by ZnONWs but increases that generated by NBs. It is possible that NBs offer more stable surfaces for the attachment of QDs. In addition, our results suggests that performance degradation of solar cells made by growing ZnO NWs on ITO is due to the increase in resistance of ITO after the high temperature growth process. Hydrogen annealing also improve the efficiency of the solar cells by decreasing the resistance of ITO. Due to the issues on ITO, we use Ni foil as the growth substrates. Performance of solar cells made by growing ZnO NWs on Ni foils degraded after Hydrogen annealing at both low (300°C) and high (600°C) temperatures since annealing passivates native defects in ZnONWs and thus reduce the absorption of visible spectra from our solar simulator. Decoration of QDs improves the efficiency of such solar cells by increasing absorption of light in the visible region. Using a better electrolyte than phosphate buffer solution (PBS) such as KI also improves the solar cell efficiency. (5) Finally, we have attempted p-type doping of ZnO NWs using various growth precursors including phosphorus pentoxide, sodium fluoride, and zinc fluoride. We have also attempted to create p-type carriers via introducing interstitial fluorine by annealing ZnO nanostructures in diluted fluorine gas. In brief, we are unable to reproduce the growth of reported p-type ZnO nanostructures. However; we have identified the window of temperature and duration of post-growth annealing of ZnO NWs in dilute fluorine gas which leads to suppression of native defects. This is the first experimental effort on post-growth annealing of ZnO NWs in dilute fluorine gas although this has been suggested by a recent theory for creating p-type semiconductors. In our experiments the defect band peak due to native defects is found to decrease by annealing at 300°C for 10 -- 30 minutes. One of the major future works will be to determine the type of charge carriers in our annealed ZnONWs.

  16. Can deficit irrigation techniques be used to enhance phosphorus and water use efficiency and benefit crop yields?

    NASA Astrophysics Data System (ADS)

    Wright, Hannah R.; Dodd, Ian C.; Blackwell, Martin S. A.; Surridge, Ben W. J.

    2015-04-01

    Soil drying and rewetting (DRW) affects the forms and availability of phosphorus (P). Water soluble P has been reported to increase 1.8- to 19-fold after air-drying with the majority of the increase (56-100%) attributable to organic P. Similarly, in two contrasting soil types DRW increased concentrations of total P and reactive P in leachate, likely due to enhanced P mineralisation and physiochemical processes causing detachment of soil colloids, with faster rewetting rates related to higher concentrations of P. The intensity of drying as well as the rate of rewetting influences organic and inorganic P cycling. How these dynamics are driven by soil water status, and impact crop P acquisition and growth, remains unclear. Improving P and water use efficiencies and crop yields is globally important as both P and water resources become increasingly scarce, whilst demand for food increases. Irrigation supply below the water requirement for full crop evapotranspiration is employed by agricultural practitioners where water supply is limited. Regulated deficit irrigation describes the scheduling of water supply to correspond to the times of highest crop demand. Alternate wetting and drying (AWD) is applied in lowland irrigated rice production to avoid flooding at certain times of crop development, and has benefited P nutrition and yields. This research aims to optimise the benefits of P availability and uptake achieved by DRW by guiding deficit irrigation management strategies. Further determination of underlying processes driving P cycling at fluctuating soil moisture status is required. Presented here is a summary of the literature on DRW effects on soil P availability and plant P uptake and partitioning, in a range of soil types and cropping systems, with emphasis on alternate wetting and drying irrigation (AWD) compared to continuous flooding in lowland irrigated rice production. Soil water contents and matric potentials, and effects on P dynamics, are highly variable across studies (at laboratory, greenhouse and field scales). Aiming to understand this variation, two sets of results are presented. Firstly, the effects of soil type on responses to DRW, and relationships between soil gravimetric water content and matric potential and thresholds at which DRW increases P availability, are shown and physiological implications suggested (from laboratory experiments). Further evidence is given for the role of the microbial biomass in elevated P availability, and P increased in soil that was partially air-dried and maintained above -1.5 MPa, the permanent wilting point. Secondly, effects of DRW on soil P availability, plant P nutrition, water use and physiology in pot-grown plants are shown (from glasshouse experiments). Soil P availability has been quantified by water and sodium bicarbonate extracts, and plant P concentrations via ICP-OES. Further understanding the effects of soil water status on P cycling is needed to improve irrigation and other management strategies to optimise P and water use efficiencies and crop yields. Thus, future experiments will investigate how different sources of P (organic and inorganic) respond to DRW regimes (including field experiments).

  17. Fast identification of the conduction-type of nanomaterials by field emission technique.

    PubMed

    Yang, Xun; Gan, Haibo; Tian, Yan; Peng, Luxi; Xu, Ningsheng; Chen, Jun; Chen, Huanjun; Deng, Shaozhi; Liang, Shi-Dong; Liu, Fei

    2017-10-12

    There are more or less dopants or defects existing in nanomaterials, so they usually have different conduct-types even for the same substrate. Therefore, fast identification of the conduction-type of nanomaterials is very essential for their practical application in functional nanodevices. Here we use the field emission (FE) technique to research nanomaterials and establish a generalized Schottky-Nordheim (SN) model, in which an important parameter λ (the image potential factor) is first introduced to describe the effective image potential. By regarding λ as the criterion, their energy-band structure can be identified: (a) λ = 1: metal; (b) 0.5 < λ < 1: n-type semiconductor; (c) 0 < λ < 0.5: p-type semiconductor. Moreover, this method can be utilized to qualitatively evaluate the doping-degree for a given semiconductor. We test numerically and experimentally a group of nanomaterial emitters and all results agree with our theoretical results very well, which suggests that our method based on FE measurements should be an ideal and powerful tool to fast ascertain the conduction-type of nanomaterials.

  18. Sedimentation field-flow fractionation for characterization of citric acid-modified Hβ zeolite particles: Effect of particle dispersion and carrier composition.

    PubMed

    Dou, Haiyang; Bai, Guoyi; Ding, Liang; Li, Yueqiu; Lee, Seungho

    2015-11-27

    In this study, sedimentation field-flow fractionation (SdFFF) was, for the first time, applied for determination of size distribution of Hβ zeolite particles modified by citric acid (CA-Hβ). Effects of the particle dispersion and the carrier liquid composition (type of dispersing reagent (surfactant) and salt added in the carrier liquid, ionic strength, and pH) on SdFFF elution behavior of CA-Hβ zeolite particles were systematically investigated. Also the SdFFF separation efficiency of the particles was discussed in terms of the forces such as van der Waals, hydrophobic, and induced-dipole interactions. Results reveal that the type of salt and pH of the carrier liquid significantly affect the SdFFF separation efficiency of the zeolite particles. It was found that addition of a salt (NaN3) into the carrier liquid affects the characteristic of the SdFFF channel surface. It was found that the use of an acidic medium (pH 3.2) leads to a particle-channel interaction, while the use of a basic medium (pH 10.6) promotes an inter-particle hydrophobic interaction. Result from SdFFF was compared with those from scanning electron microscopy (SEM) and dynamic light scattering (DLS). It seems that, once the experimental conditions are optimized, SdFFF becomes a valuable tool for size characterization of the zeolite particles. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Visualization and Analyses of Jet Structures from a Cluster-Type Linear Aerospike Nozzle

    NASA Astrophysics Data System (ADS)

    Niimi, Tomohide; Mori, Hideo; Okabe, Kazuki; Masai, Yusuke; Taniguchi, Mashio

    Aerospike nozzles have been expected as a candidate for an engine of reusable space shuttles to respond to growing demand for rocket-launching and its cost reduction. In this study, the flow field structure in any cross sections around the linear-type aerospike nozzle are visualized and analyzed, using laser induced fluorescence (LIF) of NO seeded in the carrier gas N2. Since the flow field structure is affected mainly by the pressure ratio (P/P), the linear-type aerospike nozzle is set inside the vacuum chamber to carry out the experiments in the wide range of pressure ratios from 75 to 250. Flow fields are visualized in several cross-sections, demonstrating the complicated three-dimensional flow field structures. Pressure sensitive paint (PSP) of PtTFPP bound by poly(TMSP) is also applied successfully to measurement of the complicated pressure distribution on the spike surface.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlos-Pinedo, C.; Rodríguez-Vargas, I.; Martínez-Orozco, J. C.

    In this work we present the results obtained from the calculation of the level structure of a n-type delta-doped well Field Effect Transistor when is subjected to hydrostatic pressure. We study the energy level structure as a function of hydrostatic pressure within the range of 0 to 6 kbar for different Schottky barrier height (SBH). We use an analytical expression for the effect of hydrostatic pressure on the SBH and the pressure dependence of the basic parameters of the system as the effective mass m(P) and the dielectric constant ε(P) of GaAs. We found that due to the effects ofmore » hydrostatic pressure, in addition to electronic level structure alteration, the profile of the differential capacitance per unit area C{sup −2} is affected.« less

  1. Speeding up nanomagnetic logic by DMI enhanced Pt/Co/Ir films

    NASA Astrophysics Data System (ADS)

    Ziemys, Grazvydas; Ahrens, Valentin; Mendisch, Simon; Csaba, Gyorgy; Becherer, Markus

    2018-05-01

    We investigated a new type of multilayer film for Nanomagnetic Logic with perpendicular anisotropy (pNML) enhanced by the Dzyaloshinskii-Moriya interaction (DMI). The DMI effect provides an additional energy term and widens the design space for pNML film optimization. In this work we added an Ir layer between Co and Pt to our standard pNML multilayer (ML) film stack - [Co/Pt]x4. Multilayer stacks of films with and w/o Ir were sputtered and patterned to nanowires of 400 nm width by means of focused ion beam lithography (FIB). For comparability of the films they were tuned to show identical anisotropy for multilayer stacks with and w/o Ir. The field-driven domain wall (DW) velocity in the nanowires was measured by using wide-field MOKE microscopy. We found a strong impact of Ir on the DW velocity being up to 2 times higher compared to the standard [Co/Pt]x4 ML films. Moreover, the maximum velocity is reached at much lower magnetic field, which is beneficial for pNML operation. These results pave the way for pNML with higher clocking rates and at the same time allow a further reduce power consumption.

  2. Including spatial data in nutrient balance modelling on dairy farms

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Maricke; van Middelaar, Corina; Stoof, Cathelijne; Oenema, Jouke; Stoorvogel, Jetse; de Boer, Imke

    2017-04-01

    The Annual Nutrient Cycle Assessment (ANCA) calculates the nitrogen (N) and phosphorus (P) balance at a dairy farm, while taking into account the subsequent nutrient cycles of the herd, manure, soil and crop components. Since January 2016, Dutch dairy farmers are required to use ANCA in order to increase understanding of nutrient flows and to minimize nutrient losses to the environment. A nutrient balance calculates the difference between nutrient inputs and outputs. Nutrients enter the farm via purchased feed, fertilizers, deposition and fixation by legumes (nitrogen), and leave the farm via milk, livestock, manure, and roughages. A positive balance indicates to which extent N and/or P are lost to the environment via gaseous emissions (N), leaching, run-off and accumulation in soil. A negative balance indicates that N and/or P are depleted from soil. ANCA was designed to calculate average nutrient flows on farm level (for the herd, manure, soil and crop components). ANCA was not designed to perform calculations of nutrient flows at the field level, as it uses averaged nutrient inputs and outputs across all fields, and it does not include field specific soil characteristics. Land management decisions, however, such as the level of N and P application, are typically taken at the field level given the specific crop and soil characteristics. Therefore the information that ANCA provides is likely not sufficient to support farmers' decisions on land management to minimize nutrient losses to the environment. This is particularly a problem when land management and soils vary between fields. For an accurate estimate of nutrient flows in a given farming system that can be used to optimize land management, the spatial scale of nutrient inputs and outputs (and thus the effect of land management and soil variation) could be essential. Our aim was to determine the effect of the spatial scale of nutrient inputs and outputs on modelled nutrient flows and nutrient use efficiencies at Dutch dairy farms. We selected two dairy farms located on cover sands in the Netherlands. One farm was located on relatively homogeneous soil type, and one on many different soil types within the sandy soils. A full year of data of N and P inputs and outputs on farm and field level were provided by the farmers, including field level yields, yield composition, manure composition, degree of grazing and degree of mowing. Soil heterogeneity was defined as the number of soil units within the farm corrected for surface area, and quantified from the Dutch 1:50.000 soil map. N and P balances at farm and field level were determined, as well as differences in nutrient use efficiency, leaching, and N emission. We will present the effect of the spatial scale on nutrient balance analysis and discuss to which degree any differences are caused by within-farm land management and soil variation. This study highlights to which extent within-farm land management and soil variation should be taken into account when modelling nutrient flows and nutrient use efficiencies at farm level, to contribute to field-based decision making for improved land management.

  3. Modeling the spatial distribution of African buffalo (Syncerus caffer) in the Kruger National Park, South Africa

    PubMed Central

    Hughes, Kristen; Budke, Christine M.; Ward, Michael P.; Kerry, Ruth; Ingram, Ben

    2017-01-01

    The population density of wildlife reservoirs contributes to disease transmission risk for domestic animals. The objective of this study was to model the African buffalo distribution of the Kruger National Park. A secondary objective was to collect field data to evaluate models and determine environmental predictors of buffalo detection. Spatial distribution models were created using buffalo census information and archived data from previous research. Field data were collected during the dry (August 2012) and wet (January 2013) seasons using a random walk design. The fit of the prediction models were assessed descriptively and formally by calculating the root mean square error (rMSE) of deviations from field observations. Logistic regression was used to estimate the effects of environmental variables on the detection of buffalo herds and linear regression was used to identify predictors of larger herd sizes. A zero-inflated Poisson model produced distributions that were most consistent with expected buffalo behavior. Field data confirmed that environmental factors including season (P = 0.008), vegetation type (P = 0.002), and vegetation density (P = 0.010) were significant predictors of buffalo detection. Bachelor herds were more likely to be detected in dense vegetation (P = 0.005) and during the wet season (P = 0.022) compared to the larger mixed-sex herds. Static distribution models for African buffalo can produce biologically reasonable results but environmental factors have significant effects and therefore could be used to improve model performance. Accurate distribution models are critical for the evaluation of disease risk and to model disease transmission. PMID:28902858

  4. Simultaneous protection of organic p- and n-channels in complementary inverter from aging and bias-stress by DNA-base guanine/Al2O3 double layer.

    PubMed

    Lee, Junyeong; Hwang, Hyuncheol; Min, Sung-Wook; Shin, Jae Min; Kim, Jin Sung; Jeon, Pyo Jin; Lee, Hee Sung; Im, Seongil

    2015-01-28

    Although organic field-effect transistors (OFETs) have various advantages of lightweight, low-cost, mechanical flexibility, and nowadays even higher mobility than amorphous Si-based FET, stability issue under bias and ambient condition critically hinder its practical application. One of the most detrimental effects on organic layer comes from penetrated atmospheric species such as oxygen and water. To solve such degradation problems, several molecular engineering tactics are introduced: forming a kinetic barrier, lowering the level of molecule orbitals, and increasing the band gap. However, direct passivation of organic channels, the most promising strategy, has not been reported as often as other methods. Here, we resolved the ambient stability issues of p-type (heptazole)/or n-type (PTCDI-C13) OFETs and their bias-stability issues at once, using DNA-base small molecule guanine (C5H5N5O)/Al2O3 bilayer. The guanine protects the organic channels as buffer/and H getter layer between the channels and capping Al2O3, whereas the oxide capping resists ambient molecules. As a result, both p-type and n-type OFETs are simultaneously protected from gate-bias stress and 30 days-long ambient aging, finally demonstrating a highly stable, high-gain complementary-type logic inverter.

  5. Enhanced electrocaloric effect in displacive-type organic ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, L. J., E-mail: dinglinjie82@126.com; Zhong, Y.; Fan, S. W.

    2015-08-07

    We explore the intrinsic feature of electrocaloric effect (ECE) accompanied by ferroelectric (FE)-paraelectric (PE) transition for displacive-type organic ferroelectrics using Green's function theory. It is demonstrated that decreasing elastic constant K or increasing spin-lattice coupling λ can enhance the ECE, as well as polarization P and transition temperature T{sub C}. Indeed, one expects that the optimal operating temperature for solid-state refrigeration is around room temperature, at which the ECE achieves its maximum. As T{sub C} is tuned to ∼310 K, it presents larger ECE response and remanent polarization with lower coercive field for smaller K value, suggesting that well flexible displacive-typemore » organic ferroelectrics are excellent candidates both for electric cooling and data storage in the design of nonvolatile FE random-access memories. Furthermore, in an electric field, it provides a bridge between a Widom line that denotes FE-PE crossover above T{sub C} and a metaelectric transition line below T{sub C} that demonstrates an FE switching behavior with an antiparallel field.« less

  6. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    NASA Astrophysics Data System (ADS)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  7. A hole modulator for InGaN/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall holemore » concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ∼332 meV to ∼294 meV at 80 A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.« less

  8. Ballistic Spin Field Effect Transistor Based on Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Osintsev, Dmitri; Sverdlov, Viktor; Stanojevic, Zlatan; Selberherr, Siegfried

    2011-03-01

    We investigate the properties of ballistic spin field-effect transistors build on silicon nanowires. An accurate description of the conduction band based on the k . p} model is necessary in thin and narrow silicon nanostructures. The subband effective mass and subband splitting dependence on the nanowire dimensions is analyzed and used in the transport calculations. The spin transistor is formed by sandwiching the nanowire between two ferromagnetic metallic contacts. Delta-function barriers at the interfaces between the contacts and the silicon channel are introduced. The major contribution to the electric field-dependent spin-orbit interaction in confined silicon systems is due to the interface-induced inversion asymmetry which is of the Dresselhaus type. We study the current and conductance through the system for the contacts being in parallel and anti-parallel configurations. Differences between the [100] and [110] orientated structures are investigated in details. This work is supported by the European Research Council through the grant #247056 MOSILSPIN.

  9. Chemical potential shift in organic field-effect transistors identified by soft X-ray operando nano-spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamura, Naoka, E-mail: NAGAMURA.Naoka@nims.go.jp; Kitada, Yuta; Honma, Itaru

    2015-06-22

    A chemical potential shift in an organic field effect transistor (OFET) during operation has been revealed by soft X-ray operando nano-spectroscopy analysis performed using a three-dimensional nanoscale electron-spectroscopy chemical analysis system. OFETs were fabricated using ultrathin (3 ML or 12 nm) single-crystalline C10-DNBDT-NW films on SiO{sub 2} (200 nm)/Si substrates with a backgate electrode and top source/drain Au electrodes, and C 1s line profiles under biasing at the backgate and drain electrodes were measured. When applying −30 V to the backgate, there is C 1s core level shift of 0.1 eV; this shift can be attributed to a chemical potential shift correspondingmore » to band bending by the field effect, resulting in p-type doping.« less

  10. Vertical GaN power diodes with a bilayer edge termination

    DOE PAGES

    Dickerson, Jeramy R.; Allerman, Andrew A.; Bryant, Benjamin N.; ...

    2015-12-07

    Vertical GaN power diodes with a bilayer edge termination (ET) are demonstrated. The GaN p-n junction is formed on a low threading dislocation defect density (10 4 - 10 5 cm -2) GaN substrate, and has a 15-μm-thick n-type drift layer with a free carrier concentration of 5 × 10 15 cm -3. The ET structure is formed by N implantation into the p+-GaN epilayer just outside the p-type contact to create compensating defects. The implant defect profile may be approximated by a bilayer structure consisting of a fully compensated layer near the surface, followed by a 90% compensated (p)more » layer near the n-type drift region. These devices exhibit avalanche breakdown as high as 2.6 kV at room temperature. In addition simulations show that the ET created by implantation is an effective way to laterally distribute the electric field over a large area. This increases the voltage at which impact ionization occurs and leads to the observed higher breakdown voltages.« less

  11. The oscillations in ESR spectra of Hg0.76Cd0.24Te implanted by Ag+ at the X and Q-bands

    NASA Astrophysics Data System (ADS)

    Shestakov, A. V.; Fazlizhanov, I. I.; Yatsyk, I. V.; Gilmutdinov, I. F.; Ibragimova, M. I.; Shustov, V. A.; Eremina, R. M.

    2018-05-01

    The objects of the investigation were uniformly Ag+ doped Hg0.76Cd0.24Te mercury chalcogenide monocrystals obtained by ion implantation with subsequent thermal annealing over 20 days. After implantation and annealing the conductivity was inverted from n-type with carrier concentration of 1016 cm‑3 to p-type with carrier concentration of ≈ 3.9 × 1015 cm‑3. The investigations of microwave absorption derivative (dP/dH) showed the existence of strong oscillations in the magnetic field for Ag:Hg0.76Cd0.24Te in the temperature range 4.2–12 K. The concentration and effective mass of charge carrier were determined from oscillation period and temperature dependency of oscillation amplitude. We suppose that this phenomenon is similar to the de Haas–van Alphen effect in weakly correlated electron system with imperfect nesting vector.

  12. Separation of charge-regulated polyelectrolytes by pH-assisted diffusiophoresis.

    PubMed

    Hsu, Jyh-Ping; Hsu, Yen-Rei; Shang-Hung, Hsieh; Tseng, Shiojenn

    2017-03-29

    The potential of separating colloidal particles through simultaneous application of a salt gradient and a pH gradient, or pH-assisted diffusiophoresis, is evaluated by considering the case of spherical polyelectrolytes (PEs) having different equilibrium dissociation constants in an aqueous solution with KCl as the background salt. The simulation results gathered reveal that the dependence of the particle velocity on pH is more sensitive than that in pH-assisted electrophoresis, where an electric field and a pH gradient are applied simultaneously. This implies that the separation efficiency of pH-assisted diffusiophoresis can be better than that of pH-assisted electrophoresis. In particular, two types of PE having different equilibrium dissociation constants can be separated effectively by applying the former by enhancing/reducing their diffusiophoretic velocities.

  13. B-doped diamond field-effect transistor with ferroelectric vinylidene fluoride-trifluoroethylene gate insulator

    NASA Astrophysics Data System (ADS)

    Karaya, Ryota; Baba, Ikki; Mori, Yosuke; Matsumoto, Tsubasa; Nakajima, Takashi; Tokuda, Norio; Kawae, Takeshi

    2017-10-01

    A B-doped diamond field-effect transistor (FET) with a ferroelectric vinylidene fluoride-trifluoroethylene (VDF-TrFE) copolymer gate insulator was fabricated. The VDF-TrFE film deposited on the B-doped diamond showed good insulating and ferroelectric properties. Also, a Pt/VDF-TrFE/B-doped diamond layered structure showed ideal behavior as a metal-ferroelectric-semiconductor (MFS) capacitor, and the memory window width was 11 V, when the gate voltage was swept from 20 to -20 V. The fabricated MFS-type FET structure showed the typical properties of a depletion-type p-channel FET and a maximum drain current density of 0.87 mA/mm at room temperature. The drain current versus gate voltage curves of the proposed FET showed a clockwise hysteresis loop owing to the ferroelectricity of the VDF-TrFE gate insulator. In addition, we demonstrated the logic inverter with the MFS-type diamond FET coupled with a load resistor, and obtained the inversion behavior of the input signal and a maximum gain of 18.4 for the present circuit.

  14. Solution-Processable Low-Molecular Weight Extended Arylacetylenes: Versatile p-Type Semiconductors for Field-Effect Transistors and Bulk Heterojunction Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silvestri, Fabio; Marrocchi, Assunta; Seri, Mirko

    2010-04-08

    We report the synthesis and characterization of a series of five extended arylacetylenes, 9,10-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-anthracene (A-P6t, 1), 9,10-bis-[(p-{[m,p-bis(hexyloxy) phenyl]ethynyl}phenyl)ethynyl]-anthracene (PA-P6t, 2), 4,7-bis-{[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazole (BTZ-P6t, 5), 4,7-bis(5-{[m,p-bis(hexyloxy)phenyl]ethynyl}thien-2-yl)-2,1,3-benzothiadiazole (TBTZ-P6t, 6), and 7,7'-({[m,p-bis(hexyloxy)phenyl]ethynyl}-2,1,3-benzothiadiazol-4,4'-ethynyl)-2,5-thiophene (BTZT-P6t, 7), and two arylvinylenes, 9,10-bis-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}-anthracene (A-P6d, 3), 9,10-bis-[(E)-(p-{(E)-[m,p-bis(hexyloxy)phenyl]vinyl}phenyl)vinyl]-anthracene (PA-P6d, 4). Trends in optical absorption spectra and electrochemical redox processes are first described. Next, the thin-film microstructures and morphologies of films deposited from solution under various conditions are investigated, and organic field-effect transistors (OFETs) and bulk heterojunction photovoltaic (OPV) cells fabricated. We find that substituting acetylenic for olefinic linkers on the molecular cores significantly enhances device performance. OFET measurements reveal that allmore » seven of the semiconductors are FET-active and, depending on the backbone architecture, the arylacetylenes exhibit good p-type mobilities (μ up to ~0.1 cm 2 V -1 s -1) when optimum film microstructural order is achieved. OPV cells using [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) as the electron acceptor exhibit power conversion efficiencies (PCEs) up to 1.3% under a simulated AM 1.5 solar irradiation of 100 mW/cm 2. These results demonstrate that arylacetylenes are promising hole-transport materials for p-channel OFETs and promising donors for organic solar cells applications. A direct correlation between OFET arylacetylene hole mobility and OPV performance is identified and analyzed.« less

  15. Recombinant DNA modification of gibberellin metabolism alters growth rate and biomass allocation in Populus

    DOE PAGES

    Lu, Haiwei; Viswanath, Venkatesh; Ma, Cathleen; ...

    2015-11-13

    Overexpression of genes that modify gibberellin (GA) metabolism and signaling have been previously shown to produce trees with improved biomass production but highly disturbed development. In order to examine if more subtle types of genetic modification of GA could improve growth rate and modify tree architecture, we transformed a model poplar genotype (Populus tremula × P. alba) with eight genes, including two cisgenes (intact copies of native genes), four intragenes (modified copies of native genes), and two transgenes (from sexually incompatible species), and studied their effects under greenhouse and field conditions. In the greenhouse, four out of the eight testedmore » genes produced a significant and often striking improvement of stem volume, and two constructs significantly modified the proportion of root or shoot biomass. Characterization of GA concentrations in the cisgenic population that had an additional copy of a poplar GA20-oxidase gene showed elevated concentrations of 13-hydroxylated GAs compared to wild-type poplars. In the field, we observed growth improvement for three of the six tested constructs, but it was significantly greater for only one of the constructs, a pRGL:GA20-oxidase intragene. The greenhouse and field responses were highly variable, possibly to due to cross-talk among the GA pathway and other stress response pathways, or due to interactions between the cisgenes and intragenes with highly similar endogenes. Our results indicate that extensive field trials, similar to those required for conventional breeding, will be critical to evaluating the value and pleiotropic effects of GA-modifying genes.« less

  16. Recombinant DNA modification of gibberellin metabolism alters growth rate and biomass allocation in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haiwei; Viswanath, Venkatesh; Ma, Cathleen

    Overexpression of genes that modify gibberellin (GA) metabolism and signaling have been previously shown to produce trees with improved biomass production but highly disturbed development. In order to examine if more subtle types of genetic modification of GA could improve growth rate and modify tree architecture, we transformed a model poplar genotype (Populus tremula × P. alba) with eight genes, including two cisgenes (intact copies of native genes), four intragenes (modified copies of native genes), and two transgenes (from sexually incompatible species), and studied their effects under greenhouse and field conditions. In the greenhouse, four out of the eight testedmore » genes produced a significant and often striking improvement of stem volume, and two constructs significantly modified the proportion of root or shoot biomass. Characterization of GA concentrations in the cisgenic population that had an additional copy of a poplar GA20-oxidase gene showed elevated concentrations of 13-hydroxylated GAs compared to wild-type poplars. In the field, we observed growth improvement for three of the six tested constructs, but it was significantly greater for only one of the constructs, a pRGL:GA20-oxidase intragene. The greenhouse and field responses were highly variable, possibly to due to cross-talk among the GA pathway and other stress response pathways, or due to interactions between the cisgenes and intragenes with highly similar endogenes. Our results indicate that extensive field trials, similar to those required for conventional breeding, will be critical to evaluating the value and pleiotropic effects of GA-modifying genes.« less

  17. Bias temperature instability in tunnel field-effect transistors

    NASA Astrophysics Data System (ADS)

    Mizubayashi, Wataru; Mori, Takahiro; Fukuda, Koichi; Ishikawa, Yuki; Morita, Yukinori; Migita, Shinji; Ota, Hiroyuki; Liu, Yongxun; O'uchi, Shinichi; Tsukada, Junichi; Yamauchi, Hiromi; Matsukawa, Takashi; Masahara, Meishoku; Endo, Kazuhiko

    2017-04-01

    We systematically investigated the bias temperature instability (BTI) of tunnel field-effect transistors (TFETs). The positive BTI and negative BTI mechanisms in TFETs are the same as those in metal-oxide-semiconductor FETs (MOSFETs). In TFETs, although traps are generated in high-k gate dielectrics by the bias stress and/or the interface state is degraded at the interfacial layer/channel interface, the threshold voltage (V th) shift due to BTI degradation is caused by the traps and/or the degradation of the interface state locating the band-to-band tunneling (BTBT) region near the source/gate edge. The BTI lifetime in n- and p-type TFETs is improved by applying a drain bias corresponding to the operation conditions.

  18. Contactless electroreflectance study of the Fermi level pinning on GaSb surface in n-type and p-type GaSb Van Hoof structures

    NASA Astrophysics Data System (ADS)

    Kudrawiec, R.; Nair, H. P.; Latkowska, M.; Misiewicz, J.; Bank, S. R.; Walukiewicz, W.

    2012-12-01

    Contactless electroreflectance (CER) has been applied to study the Fermi-level position on GaSb surface in n-type and p-type GaSb Van Hoof structures. CER resonances, followed by strong Franz-Keldysh oscillation of various periods, were clearly observed for two series of structures. This period was much wider (i.e., the built-in electric field was much larger) for n-type structures, indicating that the GaSb surface Fermi level pinning position is closer to the valence-band than the conduction-band. From analysis of the built-in electric fields in undoped GaSb layers, it was concluded that on GaSb surface the Fermi-level is located ˜0.2 eV above the valence band.

  19. Real-time photoelectron spectroscopy study of the oxidation reaction kinetics on p-type and n-type Si (001) surfaces

    NASA Astrophysics Data System (ADS)

    Yu, Zhou

    Silicon oxides thermally grown on Si surface are the core gate materials of metal-oxide-semiconductor field effect transistor (MOSFET). This thin oxide layer insulates the gate terminals and the transistors substrate which make MOSFET has certain advantages over those conventional junctions, such as field-effect transistor (FET) and junction field effect transistor (JFET). With an oxide insulating layer, MOSFET is able to sustain higher input impedance and the corresponding gate leakage current can be minimized. Today, though the oxidation process on Si substrate is popular in industry, there are still some uncertainties about its oxidation kinetics. On a path to clarify and modeling the oxidation kinetics, a study of initial oxidation kinetics on Si (001) surface has attracted attentions due to having a relatively low surface electron density and few adsorption channels compared with other Si surface direction. Based on previous studies, there are two oxidation models of Si (001) that extensively accepted, which are dual oxide species mode and autocatalytic reaction model. These models suggest the oxidation kinetics on Si (001) mainly relies on the metastable oxygen atom on the surface and the kinetic is temperature dependent. Professor Yuji Takakuwa's group, Surface Physics laboratory, Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, observed surface strain existed during the oxidation kinetics on Si (001) and this is the first time that strain was discovered during Si oxidation. Therefore, it is necessary to explain where the strain comes from since none of previous model research included the surface strain (defects generation) into considerations. Moreover, recent developing of complementary metal-oxide-semiconductor (CMOS) requires a simultaneous oxidation process on p- and n-type Si substrate. However, none of those previous models included the dopant factor into the oxidation kinetic modeling. All of these points that further work is necessary to update and modify the traditional Si (001) oxidation models that had been accepted for several decades. To update and complement the Si (001) oxidation kinetics, an understanding of the temperature and dopant factor during initial oxidation kinetics on Si (001) is our first step. In this study, real-time photoelectron spectroscopy is applied to characterize the oxidized (001) surface and surface information was collected by ultraviolet photoelectron spectroscopy technique. By analyzing parameters such as O 2p spectra uptake, change of work function and the surface state in respect of p- and n- type Si (001) substrate under different temperature, the oxygen adsorption structure and the dopant factor can be determined. In this study, experiments with temperature gradients on p-type Si (001) were conducted and this aims to clarify the temperature dependent characteristic of Si (001) surface oxidation. A comparison of the O 2p uptake, change of work function and surface state between p-and n-type Si (001) is made under a normal temperature and these provides with the data to explain how the dopant factor impacts the oxygen adsorption structure on the surface. In the future, the study of the oxygen adsorption structure will lead to an explanation of the surface strain that discovered; therefore, fundamental of the initial oxidation on Si (001) would be updated and complemented, which would contribute to the future gate technology in MOSFET and CMOS.

  20. Analysis of Dynamic Avalanche Phenomenon in SOI Lateral High-speed Diode during Reverse Recovery and Development of a Novel Device Structure for Suppressing Dynamic Avalanche

    NASA Astrophysics Data System (ADS)

    Tokura, Norihito; Yamamoto, Takao; Kato, Hisato; Nakagawa, Akio

    We have studied the dynamic avalanche phenomenon in an SOI lateral diode during reverse recovery by using a mixed-mode device simulation. In the study, it has been found that local impact ionization occurs near an anode-side field oxide edge, where a high-density hole current flows and a high electric field appears simultaneously. We propose that a p-type anode extension region (AER) along a trench side wall effectively sweeps out stored carriers beneath an anode p-diffusion layer during reverse recovery, resulting in reduction of the electric field and remarkable suppression of the dynamic avalanche. The AER reduces the total recovery charge and does not cause any increase in the total stored charge under a forward bias operation. This effect is verified experimentally by the fabricated device with AER. Thus, the developed SOI lateral diode is promising as a high-speed and highly rugged free-wheeling diode, which can be integrated into next-generation SOI microinverters.

  1. Study of CPO resonances on the intercombination line in 173Yb

    NASA Astrophysics Data System (ADS)

    Kumar, Pushpander; Singh, Alok K.; Bharti, Vineet; Natarajan, Vasant; Pandey, Kanhaiya

    2018-02-01

    We study coherent population oscillations in an odd isotope of the two-electron atom Yb. The experiments are done using magnetic sublevels of the {F}g=5/2\\to {F}e=3/2 hyperfine transition in 173Yb of the {}1{{{S}}}0\\to {}3{{{P}}}1 intercombination line. The experiments are done both with and without an applied magnetic field. In the absence of an applied field, the complicated sublevel structure along with the saturated fluorescence effect causes the linewidth to be larger than the 190 kHz natural linewidth of the transition. In the presence of a field (of magnitude 330 mG), a well-defined quantization axis is present which results in the formation of two M-type systems. The total fluorescence is then limited by spin coherence among the ground sublevels. In addition, the pump beam gets detuned from resonance which results in a reduced scattering rate from the {}3{{{P}}}1 state. Both of these effects result in a reduction of the linewidth to a subnatural value of about 100 kHz.

  2. Engineering topological phases in the Luttinger semimetal α -Sn

    NASA Astrophysics Data System (ADS)

    Zhang, Dongqin; Wang, Huaiqiang; Ruan, Jiawei; Yao, Ge; Zhang, Haijun

    2018-05-01

    α -Sn is well known as a typical Luttinger semimetal with a quadratic band touching at the Γ point. Based on the effective k .p analysis as well as first-principles calculations, we demonstrate that multiple topological phases with a rich diagram, including topological insulator, Dirac semimetal, and Weyl semimetal phases, can be induced and engineered in α -Sn by external strains, magnetic fields, and circularly polarized light (CPL). Intriguingly, not only the conventional type-I Weyl nodes but also type-II Weyl nodes and double-Weyl nodes can be generated directly from the quadratic semimetal by applying a magnetic field or CPL. Our results apply equally well to other Luttinger semimetals with similar crystal and electronic structures, and thus open an avenue for realizing and engineering multiple topological phases on a versatile platform.

  3. Unconventional dynamics of electrons in topological insulators in a magnetic field: Berry phase effects

    NASA Astrophysics Data System (ADS)

    Demikhovskii, V. Ya.; Turkevich, R. V.

    2015-04-01

    The semiclassical dynamics of charge carriers moving over the surface of a Bi2Te3-type 3D topological insulator in a static magnetic field is studied. The effects related to the changes in the symmetry of constant energy surfaces (contours), as well as to the nonzero Berry curvature, are taken into account. It is shown that effects related both to the anomalous velocity proportional to the Berry curvature and to the distortions of the trajectories stemming from the additional contribution to the energy proportional the orbital magnetic moment of a wave packet appear in contrast to the conventional dynamics of electrons moving in a uniform static magnetic field along trajectories determined by the conditions E( k) = const and p z = const. This should lead to changes in the cyclotron resonance conditions for surface electrons. Although the magnetic field breaks the time-reversal symmetry and the topological order, the studies of the cyclotron resonance allow finding out whether a given insulator is a trivial one or not in zero magnetic field.

  4. Room-temperature NaI/H2O compression icing: solute-solute interactions.

    PubMed

    Zeng, Qingxin; Yao, Chuang; Wang, Kai; Sun, Chang Q; Zou, Bo

    2017-10-11

    In situ Raman spectroscopy revealed that transiting the concentrated NaI/H 2 O solutions to an ice VI phase and then into an ice VII phase at 298 K proceeds in a way different from that activated by the solute type. Unlike the solute type that raises both the critical pressures P C1 and P C2 , for the liquid-VI, the VI-VII transition simultaneously occurs in the Hofmeister series order: I > Br > Cl > F ∼ 0; concentration increase raises the P C1 faster than the P C2 that remains almost constant at higher NaI/H 2 O molecular number ratios. Concentration increase moves the P C1 along the liquid-VI phase boundary and it finally merges with P C2 at the triple-phase junction featured at 350 K and 3.05 GPa. The highly-deformed H-O bond is less sensitive to the concentration because of the involvement of anion-anion repulsion that weakens the electric field in the hydration shells. Observations confirm that the salt solvation lengthens the O:H nonbond and softens its phonon but relaxes the H-O bond contrastingly. Compression, however, has the opposite effect from that of salt solvation. Therefore, compression recovers the polarization-deformed O:H-O bond first and then proceeds to the phase transitions. The anion-anion interaction discriminates the effect of NaI/H 2 O concentration from that of the solute type at an identical concentration on the phase transitions.

  5. Role of N-type calcium channels in autonomic neurotransmission in guineapig isolated left atria

    PubMed Central

    Serone, Adrian P; Angus, James A

    1999-01-01

    Calcium entry via neuronal calcium channels is essential for the process of neurotransmission. We investigated the calcium channel subtypes involved in the operation of cardiac autonomic neurotransmission by examining the effects of selective calcium channel blockers on the inotropic responses to electrical field stimulation (EFS) of driven (4 Hz) guineapig isolated left atria. In this tissue, a previous report (Hong & Chang, 1995) found no evidence for N-type channels involved in the vagal negative inotropic response and only weak involvement in sympathetic responses. The effects of cumulative concentrations of the selective N-type calcium channel blocker, ω-conotoxin GVIA (GVIA; 0.1–10 nM) and the nonselective N-, P/Q-type calcium channel blocker, ω-conotoxin MVIIC (MVIIC; 0.01–10 nM) were examined on the positive (with atropine, 1 μM present) and negative (with propranolol, 1 μM and clonidine, 1 μM present) inotropic responses to EFS (eight trains, each train four pulses per punctate stimulus). GVIA caused complete inhibition of both cardiac vagal and sympathetic inotropic responses to EFS. GVIA was equipotent at inhibiting positive (pIC50 9.29±0.08) and negative (pIC50 9.13±0.17) inotropic responses. MVIIC also mediated complete inhibition of inotropic responses to EFS and was 160 and 85 fold less potent than GVIA at inhibiting positive (pIC50 7.08±0.10) and negative (pIC50 7.20±0.14) inotropic responses, respectively. MVIIC was also equipotent at inhibiting both sympathetic and vagal responses. Our data demonstrates that N-type calcium channels account for all the calcium current required for cardiac autonomic neurotransmission in the guinea-pig isolated left atrium. PMID:10433500

  6. Effects of grazing and burning on densities and habitats of breeding ducks in North Dakota

    USGS Publications Warehouse

    Kruse, Arnold D.; Bowen, Bonnie S.

    1996-01-01

    Native grassland communities controlled by public agencies become increasingly important to the maintenance of many wildlife species as privately owned grasslands are destroyed or degraded for farming, mining, and development. In turn, wildlife on publicly owned grasslands are affected by the management techniques practiced by local managers. We studied the effects of grazing and prescribed burning on upland-nesting ducks and the structure and type of vegetation from 1980 to 1988 at the Lostwood National Wildlife Refuge (NWR) in northwestern North Dakota. Mallard (Anas platyrhynchos), the most abundant species at Lostwood NWR, had lower (P < 0.05) annual nest densities on experimental and control fields in the later years than in the early years of the study. Spring burning reduced (P = 0.016) nest densities of gadwall (A. strepera). Spring grazing reduced nest densities of gadwall (P = 0.014), and blue-winged teal (A. discors, P = 0.023). Nest density of gadwall increased (P = 0.018) after spring grazing was terminated. On the summer burn/spring graze fields, blue-winged teal had lower (P = 0.010) nest densities after treatments (1987-88) than before treatments (1980-81). Nest success was high (mallard 34%, gadwall 45%, blue-winged teal 31%) but was not influenced (P 0.16) by the burning and grazing treatments. During the study, the amount of grass/brush increased, whereas the amount of brush and brush/grass decreased on control and treatment fields. During the years with burning and grazing, short vegetation increased and tall vegetation decreased. On the spring graze fields, 1 year after grazing ended the vegetation was similar to that on the control fields. The spring burn and summer burn/spring graze fields recovered more slowly. Brushy species such as western snowberry (Symphoricarpos occidentalis) provided attractive nesting habitat for many upland-nesting waterfowl species, especially mallard, gadwall, American wigeon (A. americana), and northern pintail (A. acuta). Habitat needs of additional species of wildlife that depend on grasslands may need to be considered when deciding how to manage habitat.

  7. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals

    NASA Astrophysics Data System (ADS)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.; Karbovnyk, I.

    2018-03-01

    It is shown that at a deformation rate of 0.41 kg/min, the characteristic feature of the dependence of the surface resistance of the p-Si sample on the magnitude of its elastic deformation (R(σ)) is the reduction of the resistance during compression and unclamping. With the increase in the number of "compression-unclamping" cycles, the difference between the positions of the compression and unclamping curves decreases. The transformation of two types of magnetically sensitive defects occurs under the impact of a magnetic field on p-Si crystals. The defects are interrelated with two factors that cause the mutually opposite influence on the conductivity of the crystal. The first factor is that the action of the magnetic field decreases the activation energy of the dislocation holders, which leads to an increase in the electrical conductivity of the sample. The second factor is that due to the decay of molecules of oxygen-containing impurities in the magnetic field, the stable chemisorption bonds appear in the crystal that leads to a decrease in its conductivity. If the sample stays in the magnetic field for a long time, the one or the other mechanism predominates, causing a slow growth or decrease in resistance around a certain (averaged) value. Moreover, the frequency of such changes is greater in the deformed sample. The value of the surface resistance of p-Si samples does not change for a long time without the influence of the magnetic field.

  8. Electrical characteristics of organic perylene single-crystal-based field-effect transistors

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Woo; Kang, Han-Saem; Kim, Min-Ki; Kim, Kihyun; Cho, Mi-Yeon; Kwon, Young-Wan; Joo, Jinsoo; Kim, Jae-Il; Hong, Chang-Seop

    2007-12-01

    We report on the fabrication of organic field-effect transistors (OFETs) using perylene single crystal as the active material and their electrical characteristics. Perylene single crystals were directly grown from perylene powder in a furnace using a relatively short growth time of 1-3 h. The crystalline structure of the perylene single crystals was characterized by means of a single-crystal x-ray diffractometer. In order to place the perylene single crystal onto the Au electrodes of the field-effect transistor, a polymethlymethacrylate thin layer was spin-coated on top of the crystal surface. The OFETs fabricated using the perylene single crystal showed a typical p-type operating mode. The field-effect mobility of the perylene crystal based OFETs was measured to be ˜9.62×10-4 cm2/V s at room temperature. The anisotropy of the mobility implying the existence of different mobilities when applying currents in different directions was observed for the OFETs, and the existence of traps in the perylene crystal was found through the measurements of the temperature-dependent mobility at various operating drain voltages.

  9. Charge Transport in Semiconductor Nanocrystal Solids

    NASA Astrophysics Data System (ADS)

    Talapin, Dmitri; Shevchenko, Elena; Lee, Jong Soo; Urban, Jeffrey; Mitzi, David; Murray, Christopher

    2007-03-01

    Self-assembly of chemically-synthesized nanocrystals can yield complex long-range ordered structures which can be used as model systems for studying transport phenomena in low-dimensional materials [1]. Treatment of close-packed PbSe nanocrystal arrays with hydrazine enhanced exchange coupling between the nanocrystals and improved conductance by more than ten orders of magnitude compared to native nanocrystal films [2]. The conductivity of PbSe nanocrystal solids can be switched between n- and p-type transports by controlling the saturation of electronic states at nanocrystal surfaces. Nanocrystal arrays form the n- and p-channels of field-effect transistors with electron and hole mobilities of 2.5 cm^2V-1s-1 and 0.3 cm^2V-1s-1, respectively, and current modulation Ion/Ioff˜10^3-10^4. The field-effect mobility in PbSe nanocrystal arrays is higher than the mobility of organic transistors while the easy switch between n- and p-transport allows realization of complimentary circuits and p-n junctions for nanocrystal-based solar cells and thermoelectric devices. [1] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray. Nature 439, 55 (2006). [2] D. V. Talapin, C. B. Murray. Science 310, 86 (2005).

  10. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.

    PubMed

    Oh, Soong Ju; Berry, Nathaniel E; Choi, Ji-Hyuk; Gaulding, E Ashley; Paik, Taejong; Hong, Sung-Hoon; Murray, Christopher B; Kagan, Cherie R

    2013-03-26

    We investigate the effects of stoichiometric imbalance on the electronic properties of lead chalcogenide nanocrystal films by introducing excess lead (Pb) or selenium (Se) through thermal evaporation. Hall-effect and capacitance-voltage measurements show that the carrier type, concentration, and Fermi level in nanocrystal solids may be precisely controlled through their stoichiometry. By manipulating only the stoichiometry of the nanocrystal solids, we engineer the characteristics of electronic and optoelectronic devices. Lead chalcogenide nanocrystal field-effect transistors (FETs) are fabricated at room temperature to form ambipolar, unipolar n-type, and unipolar p-type semiconducting channels as-prepared and with excess Pb and Se, respectively. Introducing excess Pb forms nanocrystal FETs with electron mobilities of 10 cm(2)/(V s), which is an order of magnitude higher than previously reported in lead chalcogenide nanocrystal devices. Adding excess Se to semiconductor nanocrystal solids in PbSe Schottky solar cells enhances the power conversion efficiency.

  11. N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect Transistors and Near-Infrared Phototransistors.

    PubMed

    Wang, Cong; Ren, Xiaochen; Xu, Chunhui; Fu, Beibei; Wang, Ruihao; Zhang, Xiaotao; Li, Rongjin; Li, Hongxiang; Dong, Huanli; Zhen, Yonggang; Lei, Shengbin; Jiang, Lang; Hu, Wenping

    2018-04-01

    Organic field-effect transistors and near-infrared (NIR) organic phototransistors (OPTs) have attracted world's attention in many fields in the past decades. In general, the sensitivity, distinguishing the signal from noise, is the key parameter to evaluate the performance of NIR OPTs, which is decided by responsivity and dark current. 2D single crystal films of organic semiconductors (2DCOS) are promising functional materials due to their long-range order in spite of only few molecular layers. Herein, for the first time, air-stable 2DCOS of n-type organic semiconductors (a furan-thiophene quinoidal compound, TFT-CN) with strong absorbance around 830 nm, by the facile drop-casting method on the surface of water are successfully prepared. Almost millimeter-sized TFT-CN 2DCOS are obtained and their thickness is below 5 nm. A competitive field-effect electron mobility (1.36 cm 2 V -1 s -1 ) and high on/off ratio (up to 10 8 ) are obtained in air. Impressively, the ultrasensitive NIR phototransistors operating at the off-state exhibit a very low dark current of ≈0.3 pA and an ultrahigh detectivity (D*) exceeding 6 × 10 14 Jones because the devices can operate in full depletion at the off-state, superior to the majority of the reported organic-based NIR phototransistors. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Cosmic Explosions in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Höflich, Peter; Kumar, Pawan; Wheeler, J. Craig

    2011-08-01

    Introduction: 3-D Explosions: a meditation on rotation (and magnetic fields) J. C. Wheeler; Part I. Supernovae: Observations Today: 1. Supernova explosions: lessons from spectropolarimetry L. Wang; 2. Spectropolarimetric observations of Supernovae A. Filippenko and D. C. Leonard; 3. Observed and physical properties of type II plateau supernovae M. Hamuy; 4. SN1997B and the different types of Type Ic Supernovae A. Clocchiatti, B. Leibundgut, J. Spyromilio, S. Benetti, E. Cappelaro, M. Turatto and M. Phillips; 5. Near-infrared spectroscopy of stripped-envelope Supernovae C. L. Gerardy, R. A. Fesen, G. H. Marion, P. Hoeflich and J. C. Wheeler; 6. Morphology of Supernovae remnants R. Fesen; 7. The evolution of Supernova remnants in the winds of massive stars V. Dwarkadas; 8. Types for the galactic Supernovae B. E. Schaefer; Part II. Theory of Thermonuclear Supernovae: 9. Semi-steady burning evolutionary sequences for CAL 83 and CAL 87: supersoft X-ray binaries are Supernovae Ia progenitors S. Starrfield, F. X. Timmes, W. R. Hix, E. M. Sion, W. M. Sparks and S. Dwyer; 10. Type Ia Supernovae progenitors: effects of the spin-up of the white dwarfs S.-C. Yoon and N. Langer; 11. Terrestrial combustion: feedback to the stars E. S. Oran; 12. Non-spherical delayed detonations E. Livne; 13. Numerical simulations of Type Ia Supernovae: deflagrations and detonations V. N. Gamezo, A. M. Khokhlov and E. S. Oran; 14. Type Ia Supernovae: spectroscopic surprises D. Branch; 15. Aspherity effects in Supernovae P. Hoeflich, C. Gerardy and R. Quimby; 16. Broad light curve SneIa: asphericity or something else? A. Howell and P. Nugent; 17. Synthetic spectrum methods for 3-D SN models R. Thomas; 18. A hole in Ia' spectroscopic and polarimetric signatures of SN Ia asymmetry due to a companion star D. Kasen; 19. Hunting for the signatures of 3-D explosions with 1-D synthetic spectra E. Lentz, E. Baron and P. H. Hauschildt; 20. On the variation of the peak luminosity of Type Ia J. W. Truran, E. X. Timmes and E. F. Brown; Part III. Theory of Core Collapse Supernovae: 21. Rotation of core collapse progenitors: single and binary stars N. Langer; 22. Large scale convection and the convective Supernova mechanism S. Colgate and M. E. Herant; 23. Topics in core-collapse Supernova A. Burrows, C. D. Ott and C. Meakin; 24. MHD Supernova jets: the missing link D. Meier and M. Nakamura; 25. Effects of super strong magnetic fields in core collapse Supernovae I. S. Akiyama; 26. Non radial instability of stalled accretion shocks advective-acoustic cycle T. Foglizzo and P. Galletti; 27. Asymmetry effects in Hypernovae K. Maeda, K. Nomoto, J. Deng and P.A. Mazzali; 28. Turbulent MHD jet collimation and thermal driving P. T. Williams; Part IV. Magnetars, N-Stars, Pulsars: 29. Supernova remnants and pulsar wind nebulae R. Chevalier; 30. X-Ray signatures of Supernovae D. Swartz; 31. Asymmetric Supernovae and Neutron Star Kicks D. Lai and D. Q. Lamb; 32. Triggers of magnetar outbursts R. Duncan; 33. Turbulent MHD Jet Collimation and Thermal Driving P. Williams; 34. The interplay between nuclear electron capture and fluid dynamics in core collapse Supernovae W. R. Hix, O. E. B. Messer and A. Mezzacappa; Part V. Gamma-Ray Bursts: 35. GRB 021004 and Gamma-ray burst distances B. E. Schaefer; 36. Gamma-ray bursts as a laboratory for the study of Type Ic Supernovae D. Q. Lamb, T. Q. Donaghy and C. Graziani; 37. The diversity of cosmic explosions: Gamma-ray bursts and Type Ib/c Supernovae E. Berger; 38. A GRB simulation using 3D relativistic hydrodynamics J. Cannizo, N. Gehrels and E. T. Vishniac; 39. The first direct link in the Supernova/GRB connection: GRB 030329 and SN 2003dh T. Matheson; Part VI. Summary: 40. Three-dimensional explosions C. Wheeler.

  13. Analytic materials

    PubMed Central

    2016-01-01

    The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p. If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p. For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations. PMID:27956882

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru; Grigoryev, V. Yu.; Klyachkin, L. E.

    The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphenmore » (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p-type Si-QW because of the impurity confinement by the stripes consisting of the negative-U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.« less

  15. A multiplex reverse transcription-nested polymerase chain reaction for detection and differentiation of wild-type and vaccine strains of canine distemper virus

    PubMed Central

    2010-01-01

    A multiplex reverse transcription-nested polymerase chain reaction (RT-nPCR) method was developed for the detection and differentiation of wild-type and vaccine strains of canine distemper virus (CDV). A pair of primers (P1 and P4) specific for CDV corresponding to the highly conserved region of the CDV genome were used as a common primer pair in the first-round PCR of the nested PCR. Primers P2 specific for CDV wild-type strains, were used as the forward primer together with the common reverse primer P4 in the second round of nested PCR. Primers P3, P5 specific for CDV wild-type strain or vaccine strain, were used as the forward primer together with the common reverse primer P4+P6 in the second round of nested PCR. A fragment of 177 bp was amplified from vaccine strain genomic RNA, and a fragment of 247 bp from wild-type strain genomic RNA in the RT-nPCR, and two fragments of 247 bp and 177 bp were amplified from the mixed samples of vaccine and wild-type strains. No amplification was achieved for uninfected cells, or cells infected with Newcastle disease virus (NDV), canine parvovirus (CPV), canine coronavirus (CCV), rabies virus (RV), or canine adenovirus (CAV). The RT-nPCR method was used to detect 30 field samples suspected of canine distemper from Heilongjiang and Jilin Provinces, and 51 samples in Shandong province. As a result of 30 samples, were found to be wild-type-like, and 5 to be vaccine-strain-like. The RT-nPCR method can be used to effectively detect and differentiate wild-type CDV-infected dogs from dogs vaccinated with CDV vaccine, and thus can be used in clinical detection and epidemiological surveillance. PMID:20433759

  16. Effects of Rashba spin-orbit coupling, Zeeman splitting and gyrotropy in two-dimensional cavity polaritons under the influence of the Landau quantization

    NASA Astrophysics Data System (ADS)

    Moskalenko, Sveatoslav A.; Podlesny, Igor V.; Dumanov, Evgheni V.; Liberman, Michael A.

    2015-09-01

    We consider the energy spectrum of the two-dimensional cavity polaritons under the influence of a strong magnetic and electric fields perpendicular to the surface of the GaAs-type quantum wells (QWs) with p-type valence band embedded into the resonators. As the first step in this direction the Landau quantization (LQ) of the electrons and heavy-holes (hh) was investigated taking into account the Rashba spin-orbit coupling (RSOC) with third-order chirality terms for hh and with nonparabolicity terms in their dispersion low including as well the Zeeman splitting (ZS) effects. The nonparabolicity term is proportional to the strength of the electric field and was introduced to avoid the collapse of the semiconductor energy gap under the influence of the third order chirality terms. The exact solutions for the eigenfunctions and eigenenergies were obtained using the Rashba method [E.I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960) [Sov. Phys. Solid State 2, 1109 (1960)

  17. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells.

    PubMed

    Czyz, Jaroslaw; Guan, Kaomei; Zeng, Qinghua; Nikolova, Teodora; Meister, Armin; Schönborn, Frank; Schuderer, Jürgen; Kuster, Niels; Wobus, Anna M

    2004-05-01

    Effects of electromagnetic fields (EMF) simulating exposure to the Global System for Mobile Communications (GSM) signals were studied using pluripotent embryonic stem (ES) cells in vitro. Wild-type ES cells and ES cells deficient for the tumor suppressor p53 were exposed to pulse modulated EMF at 1.71 GHz, lower end of the uplink band of GSM 1800, under standardized and controlled conditions, and transcripts of regulatory genes were analyzed during in vitro differentiation. Two dominant GSM modulation schemes (GSM-217 and GSM-Talk), which generate temporal changes between GSM-Basic (active during talking phases) and GSM-DTX (active during listening phases thus simulating a typical conversation), were applied to the cells at and below the basic safety limits for local exposures as defined for the general public by the International Commission on Nonionizing Radiation Protection (ICNIRP). GSM-217 EMF induced a significant upregulation of mRNA levels of the heat shock protein, hsp70 of p53-deficient ES cells differentiating in vitro, paralleled by a low and transient increase of c-jun, c-myc, and p21 levels in p53-deficient, but not in wild-type cells. No responses were observed in either cell type after EMF exposure to GSM-Talk applied at similar slot-averaged specific absorption rates (SAR), but at lower time-averaged SAR values. Cardiac differentiation and cell cycle characteristics were not affected in embryonic stem and embryonic carcinoma cells after exposure to GSM-217 EMF signals. Our data indicate that the genetic background determines cellular responses to GSM modulated EMF. Bioelectromagnetics 25:296-307, 2004. Copyright 2004 Wiley-Liss, Inc.

  18. Spin-dependent Seebeck effects in a graphene superlattice p-n junction with different shapes

    NASA Astrophysics Data System (ADS)

    Zhou, Benhu; Zhou, Benliang; Yao, Yagang; Zhou, Guanghui; Hu, Ming

    2017-10-01

    We theoretically calculate the spin-dependent transmission probability and spin Seebeck coefficient for a zigzag-edge graphene nanoribbon p-n junction with periodically attached stubs under a perpendicular magnetic field and a ferromagnetic insulator. By using the nonequilibrium Green’s function method combining with the tight-binding Hamiltonian, it is demonstrated that the spin-dependent transmission probability and spin Seebeck coefficient for two types of superlattices can be modulated by the potential drop, the magnetization strength, the number of periods of the superlattice, the strength of the perpendicular magnetic field, and the Anderson disorder strength. Interestingly, a metal to semiconductor transition occurs as the number of the superlattice for a crossed superlattice p-n junction increases, and its spin Seebeck coefficient is much larger than that for the T-shaped one around the zero Fermi energy. Furthermore, the spin Seebeck coefficient for crossed systems can be much pronounced and their maximum absolute value can reach 528 μV K-1 by choosing optimized parameters. Besides, the spin Seebeck coefficient for crossed p-n junction is strongly enhanced around the zero Fermi energy for a weak magnetic field. Our results provide theoretical references for modulating the thermoelectric properties of a graphene superlattice p-n junction by tuning its geometric structure and physical parameters.

  19. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    PubMed

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  20. Electric and magnetic field exposures for people living near a 735-kilovolt power line.

    PubMed Central

    Levallois, P; Gauvin, D; St-Laurent, J; Gingras, S; Deadman, J E

    1995-01-01

    The purpose of this study was to assess the effect of a 735-kV transmission line on the electric and magnetic field exposures of people living at the edge of the line's right of way. Exposure of 18 adults, mostly white-collar workers, living in different bungalows located 190-240 feet from the line (exposed subjects) was compared to that of 17 adults living in similar residences far away from any transmission line. Each subject carried a Positron meter for 24 hr during 1 workday, which measured 60-Hz electric and magnetic fields every minute. All measurements were carried out in parallel for exposed and unexposed subjects during the same weeks between September and December. During measurements the average loading on the line varied between 600 and 1100 A. The average magnetic field intensity while at home was 4.4 times higher among exposed subjects than unexposed (7.1 versus 1.6 mG, p = 0.0001) and 6.2 times higher when considering only the sleeping period (6.8 versus 1.1 mG, p = 0.0001). Based on the 24-hr measurement, average magnetic field exposure was three times higher among the exposed. Electric field intensity was also higher among the exposed while at home (26.3 versus 14.0 V/m, p = 0.03). Magnetic field intensity among the exposed was positively correlated with the loading on the line (r = 0.8, p = 0.001). Percentage of time above a magnetic field threshold (2 mG or 7.8 mG) was a good indicator to distinguish the two types of exposure.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1. PMID:7498095

  1. Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Chen, Hong-Wei; Lee, Hsin-Ying

    2003-06-01

    Using a photoelectrochemical method involving a He-Cd laser, Ga2O3 oxide layers were directly grown on n-type GaN. We demonstrated the performance of the resultant metal-oxide-semiconductor devices based on the grown Ga2O3 layer. An extremely low reverse leakage current of 200 pA was achieved when devices operated at -20 V. Furthermore, high forward and reverse breakdown electric fields of 2.80 MV/cm and 5.70 MV/cm, respectively, were obtained. Using a photoassisted current-voltage method, a low interface state density of 2.53×1011 cm-2 eV-1 was estimated. The varactor devices permit formation of inversion layers, so that they may be applied for the fabrication of metal-oxide-semiconductor field-effect transistors.

  2. Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation.

    PubMed

    Liu, Shu-Yen; Sheu, J K; Lee, M L; Lin, Yu-Chuan; Tu, S J; Huang, F W; Lai, W C

    2012-03-12

    In this study, we demonstrated photoelectrochemical (PEC) hydrogen generation using p-GaN photoelectrodes associated with immersed finger-type indium tin oxide (IF-ITO) ohmic contacts. The IF-ITO/p-GaN photoelectrode scheme exhibits higher photocurrent and gas generation rate compared with p-GaN photoelectrodes without IF-ITO ohmic contacts. In addition, the critical external bias for detectable hydrogen generation can be effectively reduced by the use of IF-ITO ohmic contacts. This finding can be attributed to the greatly uniform distribution of the IF-ITO/p-GaN photoelectrode applied fields over the whole working area. As a result, the collection efficiency of photo-generated holes by electrode contacts is higher than that of p-GaN photoelectrodes without IF-ITO contacts. Microscopy revealed a tiny change on the p-GaN surfaces before and after hydrogen generation. In contrast, photoelectrodes composed of n-GaN have a short lifetime due to n-GaN corrosion during hydrogen generation. Findings of this study indicate that the ITO finger contacts on p-GaN layer is a potential candidate as photoelectrodes for PEC hydrogen generation.

  3. Ferroelectric properties of YMnO3 epitaxial films for ferroelectric-gate field-effect transistors

    NASA Astrophysics Data System (ADS)

    Ito, Daisuke; Fujimura, Norifumi; Yoshimura, Takeshi; Ito, Taichiro

    2003-05-01

    Ferroelectric properties of YMnO3 epitaxial films were studied. The ferroelectric properties of epitaxially grown (0001) YMnO3 films on (111)Pt/(0001)sapphire (epi-YMO/Pt) with an excellent crystallinity were compared to (0001)-oriented poly crystalline films on (111)Pt/ZrO2/SiO2/Si. The epi-YMO/Pt had saturated polarization-electric-field (P-E) hysteresis loops, with a remanent polarization (Pr) of 1.7 μC/cm2 and a coercive field (Ec) of 80 kV/cm. The fatigue property showed no degradation up to 1010 measured cycles. These results suggested that the YMnO3 epitaxial films were suitable ferroelectric material for the ferroelectric-gate field-effect transistors. Consequently, epitaxially grown (0001)YMnO3 films on epitaxial Y2O3/Si (epi-YMO/Si) were fabricated. The epi-YMO/Si capacitor had almost equivalent crystallinity compared to epi-YMO/Pt. It was recognized that the epi-YMO/Si capacitor exhibited the ferroelectric type C-V hysteresis loop with the width of the memory window of 4.8 V, which was almost identical to the value of twice coercive voltage of the P-E hysteresis loops of the epi-YMO/Pt. A retention time exceeding 104 s was obtained in the epi-YMO/Si capacitor.

  4. Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices.

    PubMed

    Corradi, Nicolas; Sanders, Ian R

    2006-03-10

    The P-type II ATPase gene family encodes proteins with an important role in adaptation of the cell to variation in external K+, Ca2+ and Na2+ concentrations. The presence of P-type II gene subfamilies that are specific for certain kingdoms has been reported but was sometimes contradicted by discovery of previously unknown homologous sequences in newly sequenced genomes. Members of this gene family have been sampled in all of the fungal phyla except the arbuscular mycorrhizal fungi (AMF; phylum Glomeromycota), which are known to play a key-role in terrestrial ecosystems and to be genetically highly variable within populations. Here we used highly degenerate primers on AMF genomic DNA to increase the sampling of fungal P-Type II ATPases and to test previous predictions about their evolution. In parallel, homologous sequences of the P-type II ATPases have been used to determine the nature and amount of polymorphism that is present at these loci among isolates of Glomus intraradices harvested from the same field. In this study, four P-type II ATPase sub-families have been isolated from three AMF species. We show that, contrary to previous predictions, P-type IIC ATPases are present in all basal fungal taxa. Additionally, P-Type IIE ATPases should no longer be considered as exclusive to the Ascomycota and the Basidiomycota, since we also demonstrate their presence in the Zygomycota. Finally, a comparison of homologous sequences encoding P-type IID ATPases showed unexpectedly that indel mutations among coding regions, as well as specific gene duplications occur among AMF individuals within the same field. On the basis of these results we suggest that the diversification of P-Type IIC and E ATPases followed the diversification of the extant fungal phyla with independent events of gene gains and losses. Consistent with recent findings on the human genome, but at a much smaller geographic scale, we provided evidence that structural genomic changes, such as exonic indel mutations and gene duplications are less rare than previously thought and that these also occur within fungal populations.

  5. Statistical analysis of relationship between negative-bias temperature instability and random telegraph noise in small p-channel metal-oxide-semiconductor field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tega, Naoki; Miki, Hiroshi; Mine, Toshiyuki; Ohmori, Kenji; Yamada, Keisaku

    2014-03-01

    It is demonstrated from a statistical perspective that the generation of random telegraph noise (RTN) changes before and after the application of negative-bias temperature instability (NBTI) stress. The NBTI stress generates a large number of permanent interface traps and, at the same time, a large number of RTN traps causing temporary RTN and one-time RTN. The interface trap and the RTN trap show different features in the recovery process. That is, a re-passivation of interface states is the minor cause of the recovery after the NBTI stress, and in contrast, rapid disappearance of the temporary RTN and the one-time RTN is the main cause of the recovery. The RTN traps are less likely to become permanent. This two-type trap, namely, the interface trap and RTN trap, model simply explains NBTI degradation and recovery in scaled p-channel metal-oxide-semiconductor field-effect transistors.

  6. Magnetic field direction differentially impacts the growth of different cell types.

    PubMed

    Tian, Xiaofei; Wang, Dongmei; Zha, Meng; Yang, Xingxing; Ji, Xinmiao; Zhang, Lei; Zhang, Xin

    2018-04-05

    Magnetic resonance imaging (MRI) machines have horizontal or upright static magnetic field (SMF) of 0.1-3 T (Tesla) at sites of patients and operators, but the biological effects of these SMFs still remain elusive. We examined 12 different cell lines, including 5 human solid tumor cell lines, 2 human leukemia cell lines and 4 human non-cancer cell lines, as well as the Chinese hamster ovary cell line. Permanent magnets were used to provide 0.2-1 T SMFs with different magnetic field directions. We found that an upward magnetic field of 0.2-1 T could effectively reduce the cell numbers of all human solid tumor cell lines we tested, but a downward magnetic field mostly had no statistically significant effect. However, the leukemia cells in suspension, which do not have shape-induced anisotropy, were inhibited by both upward and downward magnetic fields. In contrast, the cell numbers of most non-cancer cells were not affected by magnetic fields of all directions. Moreover, the upward magnetic field inhibited GIST-T1 tumor growth in nude mice by 19.3% (p < 0.05) while the downward magnetic field did not produce significant effect. In conclusion, although still lack of mechanistical insights, our results show that different magnetic field directions produce divergent effects on cancer cell numbers as well as tumor growth in mice. This not only verified the safety of SMF exposure related to current MRI machines but also revealed the possible antitumor potential of magnetic field with an upward direction.

  7. Suppression of type I collagen in human scleral fibroblasts treated with extremely low-frequency electromagnetic fields

    PubMed Central

    Wang, Jie; Cui, Jiefeng

    2013-01-01

    Purpose To investigate the expression differences of type I collagen (COL1A1) and its underlying mechanisms in human fetal scleral fibroblasts (HFSFs) that were treated with conditioned medium from retinal pigment epithelial (RPE) cells under extremely low-frequency electromagnetic fields (ELF-EMFs). Methods The ELF-EMFs used in this study were established by slidac and artificial coils. Growth of the treated HFSFs was evaluated by a cell-counting kit-8 assay. The expression of COL1A1 and matrix metalloproteinases-2 (MMP-2) in the treated HFSFs was detected by reverse transcription PCR (RT-PCR) and western blot, and the expression of transforming growth factor-β2 (TGF-β2) and basic fibroblast growth factor-2 (FGF-2) in RPE cells exposed to EMFs was detected by RT-PCR. The expression of COL1A1 and MMP-2 in HFSFs was further confirmed by immunofluorescence staining. Activation of extracellular signal-regulated kinase 1/2 (ERK1/2 also called p44/p42 mitogen-activated protein kinases [MAPK]) and p38 in HFSFs was measured by western blot. Results We found that exposure to ELF-EMFs resulted in a decreased proliferation rate of HFSFs and that addition of RPE supernatant medium could enhance this effect. Compared with that of the control cells, a significant decrease in collagen synthesis was detected in HFSFs under ELF-EMFs. However, the expression of MMP-2 was upregulated, which could be further enhanced via an RPE supernatant additive. The activities of ERK1/2 and p38 were significantly increased in HFSFs exposed to ELF-EMFs, and this effect could be enhanced by RPE supernatant medium additive. Conclusions Our results suggested that ELF-EMFs can inhibit the expression of type I collagen in HFSFs and contribute to the remodeling of the sclera. PMID:23592926

  8. Pressure-induced depression of synaptic transmission in the cerebellar parallel fibre synapse involves suppression of presynaptic N-type Ca2+ channels.

    PubMed

    Etzion, Y; Grossman, Y

    2000-11-01

    High pressure induces CNS hyperexcitability while markedly depressing synaptic transmitter release. We studied the effect of pressure (up to 10.1 MPa) on the parallel fibre (PF) synaptic response in biplanar cerebellar slices of adult guinea pigs. Pressure mildly reduced the PF volley amplitude and to a greater extent depressed the excitatory field postsynaptic potential (fPSP). The depression of the PF volley was noted even at supramaximal stimulus intensities, indicating an effect of pressure on the amplitude of the action potential in each axon. Low concentrations of TTX mimicked the effects of pressure on the PF volley without affecting the fPSP. Application omega-conotoxin GVIA (omega-CgTx) reduced the synaptic efficacy by 34.3+/-2.7%. However, in the presence of omega-CgTx the synaptic depression at pressure was significantly reduced. Reduced Ca2+ entry by application of Cd2+ or low [Ca2+]o did not have a similar influence on the effects of pressure. Application of omega-AGA IVA, omega-AGA TK and Funnel-web spider toxin did not affect the synaptic response in concentrations that usually block P-type Ca2+ channels, whilst the N/P/Q-type blocker omega-conotoxin MVIIC reduced the response to 52.7+/-5.0% indicating the involvement of Q-type channels and R-type channels in the non-N-type fraction of Ca2+ entry. The results demonstrate that N-type Ca2+ channels play a crucial role in the induction of PF synaptic depression at pressure. This finding suggests a coherent mechanism for the induction of CNS hyperexcitability at pressure.

  9. A change in the electro-physical properties of narrow-band CdHgTe solid solutions acted upon by a volume discharge induced by an avalanche electron beam in the air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, A. V.; Grigor'ev, D. V.; Korotaev, A. G.; Kokhanenko, A. P.; Tarasenko, V. F.; Shulepov, M. A.

    2012-03-01

    The effect of a nanosecond volume discharge forming in an inhomogeneous electrical field at atmospheric pressure on the CdHgTe (MCT) epitaxial films of the p-type conduction with the hole concentration 2·1016 cm3 and mobility 500 cm2·V-1·s-1 is studied. The measurement of the electrophysical parameters of the MCT specimens upon irradiation shows that a layer exhibiting the n-type conduction is formed in the near-surface region of the epitaxial films. After 600 pulses and more, the thickness and the parameters of the layer are such that the measured field dependence of the Hall coefficient corresponds to the material of the n-type conduction. Analysis of the preliminary results reveals that the foregoing nanosecond volume discharge in the air at atmospheric pressure is promising for modification of electro-physical MCT properties.

  10. Efficacy of different types of aerobic exercise in fibromyalgia syndrome: a systematic review and meta-analysis of randomised controlled trials

    PubMed Central

    2010-01-01

    Introduction The efficacy and the optimal type and volume of aerobic exercise (AE) in fibromyalgia syndrome (FMS) are not established. We therefore assessed the efficacy of different types and volumes of AE in FMS. Methods The Cochrane Library, EMBASE, MEDLINE, PsychInfo and SPORTDISCUS (through April 2009) and the reference sections of original studies and systematic reviews on AE in FMS were systematically reviewed. Randomised controlled trials (RCTs) of AE compared with controls (treatment as usual, attention placebo, active therapy) and head-to-head comparisons of different types of AE were included. Two authors independently extracted articles using predefined data fields, including study quality indicators. Results Twenty-eight RCTs comparing AE with controls and seven RCTs comparing different types of AE with a total of 2,494 patients were reviewed. Effects were summarised using standardised mean differences (95% confidence intervals) by random effect models. AE reduced pain (-0.31 (-0.46, -0.17); P < 0.001), fatigue (-0.22 (-0.38, -0.05); P = 0.009), depressed mood (-0.32 (-0.53, -0.12); P = 0.002) and limitations of health-related quality of life (HRQOL) (-0.40 (-0.60, -0.20); P < 0.001), and improved physical fitness (0.65 (0.38, 0.95); P < 0.001), post treatment. Pain was significantly reduced post treatment by land-based and water-based AE, exercises with slight to moderate intensity and frequency of two or three times per week. Positive effects on depressed mood, HRQOL and physical fitness could be maintained at follow-up. Continuing exercise was associated with positive outcomes at follow-up. Risks of bias analyses did not change the robustness of the results. Few studies reported a detailed exercise protocol, thus limiting subgroup analyses of different types of exercise. Conclusions An aerobic exercise programme for FMS patients should consist of land-based or water-based exercises with slight to moderate intensity two or three times per week for at least 4 weeks. The patient should be motivated to continue exercise after participating in an exercise programme. PMID:20459730

  11. The use of TIMS for mapping different pahoehoe surfaces: Mauna Iki, Kilauea

    NASA Technical Reports Server (NTRS)

    Rowland, Scott K.

    1992-01-01

    S-type and p-type pahoehoe record different mechanisms and vigors of activity within an active flow field. There is some controversy about what these mechanisms are exactly, and this study was undertaken with the idea that an accurate map of the two surfaces within a pahoehoe flow field could be helpful in solving the problem. Thermal Infrared Multispectral Scanner (TIMS) allows discrimination between s-type and p-type pahoehoe, and this ability was used to map the two surface types on the Mauna Iki satellite shield (southwest rift zone, Kilauea Volcano). TIMS was previously used to discriminate a'a from pahoehoe as well as to determine relative age relationships of different flows. Although inter-flow variation was minor in the data published by these authors, a second goal presented is to understand such variations to better constrain intra-flow differences used for age dating.

  12. Habitat use of bonobos (Pan paniscus) at Wamba: Selection of vegetation types for ranging, feeding, and night-sleeping.

    PubMed

    Terada, Saeko; Nackoney, Janet; Sakamaki, Tetsuya; Mulavwa, Mbangi Norbert; Yumoto, Takakazu; Furuichi, Takeshi

    2015-06-01

    Understanding the habitat requirements of great apes is essential for effective conservation strategies. We examined annual habitat use of a bonobo group in the Wamba field site within the Luo Scientific Reserve, Democratic Republic of the Congo. Using satellite imagery, we categorized the group's ranging area into three forest types: (1) primary and old secondary forest (P/OS), (2) young secondary forest and agriculture (YS/Ag), and (3) swamp forest (Sw). We tracked the group for 1 year (2007-2008) and compared usage of the three forest types for ranging, feeding, and night-sleeping. We also recorded what the bonobos ate and monitored monthly fruit availability in each forest type. The group ranged and fed more often in P/OS and less often in YS/Ag and Sw than expected based on habitat availability. Also, the group slept mostly in P/OS (94% of nights monitored), but also in YS/Ag (1%), and Sw (5%). Fruit availability in P/OS had no significant effect on habitat selection, but the group fed in YS/Ag most often during the two months when fruits in P/OS were least abundant. In June, when fruit of Uapaca spp. (selectively eaten by bonobos) was generally abundant in Sw, the group mostly ranged and slept there. The bonobos fed most often on herbaceous plants in all three forest types. In Sw, the bonobos frequently ate mushrooms. Our results show that semi-open forest with abundant herbaceous plants such as YS/Ag could be an important feeding habitat and may provide fallback food for bonobos when fruits are scarce. Furthermore, Sw can serve seasonally as a main habitat to complement P/OS if adequate food resources and tree nesting opportunities are available. We conclude that bonobos use diverse habitats depending on their needs and we highlight the importance of minor-use habitats for sustaining populations of target species in conservation planning. © 2015 Wiley Periodicals, Inc.

  13. Classification and spatial mapping of riparian habitat with applications toward management of streams impacted by nonpoint source pollution

    NASA Astrophysics Data System (ADS)

    Delong, Michael D.; Brusven, Merlyn A.

    1991-07-01

    Management of riparian habitats has been recognized for its importance in reducing instream effects of agricultural nonpoint source pollution. By serving as a buffer, well structured riparian habitats can reduce nonpoint source impacts by filtering surface runoff from field to stream. A system has been developed where key characteristics of riparian habitat, vegetation type, height, width, riparian and shoreline bank slope, and land use are classified as discrete categorical units. This classification system recognizes seven riparian vegetation types, which are determined by dominant plant type. Riparian and shoreline bank slope, in addition to riparian width and height, each consist of five categories. Classification by discrete units allows for ready digitizing of information for production of spatial maps using a geographic information system (GIS). The classification system was tested for field efficiency on Tom Beall Creek watershed, an agriculturally impacted third-order stream in the Clearwater River drainage, Nez Perce County, Idaho, USA. The classification system was simple to use during field applications and provided a good inventory of riparian habitat. After successful field tests, spatial maps were produced for each component using the Professional Map Analysis Package (pMAP), a GIS program. With pMAP, a map describing general riparian habitat condition was produced by combining the maps of components of riparian habitat, and the condition map was integrated with a map of soil erosion potential in order to determine areas along the stream that are susceptible to nonpoint source pollution inputs. Integration of spatial maps of riparian classification and watershed characteristics has great potential as a tool for aiding in making management decisions for mitigating off-site impacts of agricultural nonpoint source pollution.

  14. The Dynamics of a Five-level (Double Λ)-type Atom Interacting with Two-mode Field in a Cross Kerr-like Medium

    NASA Astrophysics Data System (ADS)

    Obada, A.-S. F.; Ahmed, M. M. A.; Farouk, Ahmed M.

    2018-04-01

    In this paper, we propose a new transition scheme (Double Λ) for the interaction between a five-level atom and an electromagnetic field and study its dynamics in the presence of a cross Kerr-like medium in the exact-resonance case. The wave function is derived when the atom is initially prepared in its upper most state, and the field is initially prepared in the coherent state. We studied the atomic population inversion, the coherence degree by studying the second-order correlation function, Cauchy-Schwartz inequality (CSI) and the relation with P-function. Finally, we investigate the effect of Kerr-like medium on the evolution of Husimi Q-function of the considered system.

  15. Field-induced magnetic phase transitions and metastable states in Tb3Ni

    NASA Astrophysics Data System (ADS)

    Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.; Suslov, A. V.; Podlesnyak, A.; Prokhnenko, O.; Prokeš, K.; Yokaichiya, F.; Keller, L.; Baranov, N. V.

    2018-04-01

    In this paper we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compound Tb3Ni . The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group P 1121/a 1'(a b 0 ) 0 s s and propagation vector kIC=[" close="]1/2 ,1/2 ,0 ]">0.506 ,0.299 ,0 was found to emerge just below Néel temperature TN=61 K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of k1=[1/2 ,0 ,0 ] below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. The forced ferromagnetic state induced after application of an external magnetic field along the b and c crystallographic axes was found to be irreversible below 3 and 8 K, respectively.

  16. Atomically-thin molecular layers for electrode modification of organic transistors

    NASA Astrophysics Data System (ADS)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03307a

  17. Effects of soil type and rainfall intensity on sheet erosion processes and sediment characteristics along the climatic gradient in central-south China.

    PubMed

    Wu, Xinliang; Wei, Yujie; Wang, Junguang; Xia, Jinwen; Cai, Chongfa; Wei, Zhiyuan

    2018-04-15

    Soil erosion poses a major threat to the sustainability of natural ecosystems. The main objective of this study was to investigate the effects of soil type and rainfall intensity on sheet erosion processes (hydrological, erosional processes and sediment characteristics) from temperate to tropical climate. Field plot experiments were conducted under pre-wetted bare fallow condition for five soil types (two Luvisols, an Alisol, an Acrisol and a Ferralsol) with heavy textures (silty clay loam, silty clay and clay) derived separately from loess deposits, quaternary red clays and basalt in central-south China. Rainfall simulations were performed at two rainfall intensities (45 and 90mmh -1 ) and lasted one hour after runoff generation. Runoff coefficient, sediment concentration, sediment yield rate and sediment effective size distribution were determined at 3-min intervals. Runoff temporal variations were similar at the high rainfall intensity, but exhibited a remarkable difference at the low rainfall intensity among soil types except for tropical Ferralsol. Illite was positively correlated with runoff coefficient (p<0.05). Rainfall intensity significantly contributed to the erosional process (p<0.001). Sediment concentration and yield rate were the smallest for the tropical Ferralsol and sediment concentration was the largest for the temperate Luvisol. The regimes (transport and detachment) limiting erosion varied under the interaction of rainfall characteristics (intensity and duration) and soil types, with amorphous iron oxides and bulk density jointly enhancing soil resistance to erosive forces (Adj-R 2 >88%, p<0.001). Sediment size was dominated by <0.1mm size fraction for the Luvisols and bimodally distributed with the peaks at <0.1mm and 1-0.5mm size for the other soil types. Exchangeable sodium decreased sediment size while rainfall intensity and clay content increased it (Adj-R 2 =96%, p<0.01). These results allow to better understand the climate effect on erosion processes at the spatial-temporal scale from the perspective of soil properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Temporal dynamics of phosphorus during aquatic and terrestrial litter decomposition in an alpine forest.

    PubMed

    Peng, Yan; Yang, Wanqin; Yue, Kai; Tan, Bo; Huang, Chunping; Xu, Zhenfeng; Ni, Xiangyin; Zhang, Li; Wu, Fuzhong

    2018-06-17

    Plant litter decomposition in forested soil and watershed is an important source of phosphorus (P) for plants in forest ecosystems. Understanding P dynamics during litter decomposition in forested aquatic and terrestrial ecosystems will be of great importance for better understanding nutrient cycling across forest landscape. However, despite massive studies addressing litter decomposition have been carried out, generalizations across aquatic and terrestrial ecosystems regarding the temporal dynamics of P loss during litter decomposition remain elusive. We conducted a two-year field experiment using litterbag method in both aquatic (streams and riparian zones) and terrestrial (forest floors) ecosystems in an alpine forest on the eastern Tibetan Plateau. By using multigroup comparisons of structural equation modeling (SEM) method with different litter mass-loss intervals, we explicitly assessed the direct and indirect effects of several biotic and abiotic drivers on P loss across different decomposition stages. The results suggested that (1) P concentration in decomposing litter showed similar patterns of early increase and later decrease across different species and ecosystems types; (2) P loss shared a common hierarchy of drivers across different ecosystems types, with litter chemical dynamics mainly having direct effects but environment and initial litter quality having both direct and indirect effects; (3) when assessing at the temporal scale, the effects of initial litter quality appeared to increase in late decomposition stages, while litter chemical dynamics showed consistent significant effects almost in all decomposition stages across aquatic and terrestrial ecosystems; (4) microbial diversity showed significant effects on P loss, but its effects were lower compared with other drivers. Our results highlight the importance of including spatiotemporal variations and indicate the possibility of integrating aquatic and terrestrial decomposition into a common framework for future construction of models that account for the temporal dynamics of P in decomposing litter. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Interaction of soil pH and phosphorus efficacy: Long-term effects of P fertilizer and lime applications on wheat, barley, and sugar beet.

    PubMed

    von Tucher, Sabine; Hörndl, Dorothea; Schmidhalter, Urs

    2018-01-01

    Phosphorus (P), a plant macronutrient, must be adequately supplied for crop growth. In Germany, many soils are high in plant-available P; specifically in arable farming, P fertilizer application has been reduced or even omitted in the last decade. Therefore, it is important to understand how long these soils can support sustainable crop production, and what concentrations of soil P are required for it. We analyzed a 36-year long-term field experiment regarding the effects of different P application and liming rates on plant growth and soil P concentrations with a crop rotation of sugar beet, wheat, and barley. Sugar beet reacted to low soil P and low soil pH levels more sensitively than wheat, which was not significantly affected by the long-term omitted P application. All three crop species showed adequate growth at soil P levels lower than the currently recommended levels, if low soil pH was optimized by liming. The increase in efficacy of soil and fertilizer P by reduced P application rates therefore requires the adaptation of the soil pH to a soil type-specific optimal level.

  20. Nitrogen and phosphorus availabilities interact to modulate leaf trait scaling relationships across six plant functional types in a controlled-environment study.

    PubMed

    Crous, Kristine Y; O'Sullivan, Odhran S; Zaragoza-Castells, Joana; Bloomfield, Keith J; Negrini, A Clarissa A; Meir, Patrick; Turnbull, Matthew H; Griffin, Kevin L; Atkin, Owen K

    2017-08-01

    Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 μM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Polar phase of superfluid 3He: Dirac lines in the parameter and momentum spaces

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.

    2018-03-01

    The time reversal symmetric polar phase of the spin-triplet superfluid 3He has two types of Dirac nodal lines. In addition to the Dirac loop in the spectrum of the fermionic Bogoliubov quasiparticles in the momentum space (p x , p y , p z ), the spectrum of bosons (magnons) has Dirac loop in the 3D space of parameters-the components of magnetic field (H x , H y , H z ). The bosonic Dirac system lives on the border between the type-I and type-II.

  2. The Influence of the Surface Neutralization of Active Impurities on the Field-Electron Emission Properties of p-Type Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.

    2017-12-01

    Correlation dependences between variations of the structural-phase composition, morphology characteristics, and field-electron-emission (FEE) properties of surface-structured p-type silicon singlecrystalline (100)-oriented wafers have been studied during their stepwise high-dose carbon-ion-beam irradiation. It is established that the stepwise implantation of carbon decreases the FEE threshold and favors an increase in the maximum FEE-current density by more than two orders of magnitude. Physicochemical mechanisms involved in this modification of the properties of near-surface layers of silicon under carbon-ion implantation are considered.

  3. Fabrication and independent control of patterned polymer gate for a few-layer WSe{sub 2} field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Sung Ju; Park, Min; Kang, Hojin

    We report the fabrication of a patterned polymer electrolyte for a two-dimensional (2D) semiconductor, few-layer tungsten diselenide (WSe{sub 2}) field-effect transistor (FET). We expose an electron-beam in a desirable region to form the patterned structure. The WSe{sub 2} FET acts as a p-type semiconductor in both bare and polymer-covered devices. We observe a highly efficient gating effect in the polymer-patterned device with independent gate control. The patterned polymer gate operates successfully in a molybdenum disulfide (MoS{sub 2}) FET, indicating the potential for general applications to 2D semiconductors. The results of this study can contribute to large-scale integration and better flexibilitymore » in transition metal dichalcogenide (TMD)-based electronics.« less

  4. An Investigation into III-V Compounds to Reach 20% Efficiency with Minimum Cell Thickness in Ultrathin-Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Haque, K. A. S. M. Ehteshamul; Galib, Md. Mehedi Hassan

    2013-10-01

    III-V single-junction solar cells have already achieved very high efficiency levels. However, their use in terrestrial applications is limited by the high fabrication cost. High-efficiency, ultrathin-film solar cells can effectively solve this problem, as their material requirement is minimum. This work presents a comparison among several III-V compounds that have high optical absorption capability as well as optimum bandgap (around 1.4 eV) for use as solar cell absorbers. The aim is to observe and compare the ability of these materials to reach a target efficiency level of 20% with minimum possible cell thickness. The solar cell considered has an n-type ZnSe window layer, an n-type Al0.1Ga0.9As emitter layer, and a p-type Ga0.5In0.5P back surface field (BSF) layer. Ge is used as the substrate. In the initial design, a p-type InP base was sandwiched between the emitter and the BSF layer, and the design parameters for the device were optimized by analyzing the simulation outcomes with ADEPT/F, a one-dimensional (1D) simulation tool. Then, the minimum cell thickness that achieves 20% efficiency was determined by observing the efficiency variation with cell thickness. Afterwards, the base material was changed to a few other selected III-V compounds, and for each case, the minimum cell thickness was determined in a similar manner. Finally, these cell thickness values were compared and analyzed to identify more effective base layer materials for III-V single-junction solar cells.

  5. Simulation based comparative analysis of photoresponse in front- and back-illuminated GaN P-I-N ultraviolet photodetectors

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Guo, Jin; Xie, Feng; Wang, Guosheng; Wu, Haoran; Song, Man; Yi, Yuanyuan

    2016-10-01

    This paper presents the comparative analysis of influence of doping level and doping profile of the active region on zero bias photoresponse characteristics of GaN-based p-i-n ultraviolet (UV) photodetectors operating at front- and back-illuminated. A two dimensional physically-based computer simulation of GaN-based p-i-n UV photodetectors is presented. We implemented GaN material properties and physical models taken from the literature. It is shown that absorption layer doping profile has notable impacts on the photoresponse of the device. Especially, the effect of doping concentration and distribution of the absorption layer on photoresponse is discussed in detail. In the case of front illumination, comparative to uniform n-type doping, the device with n-type Gaussian doping profiles at absorption layer has higher responsivity. Comparative to front illumination, back illuminated detector with p-type doping profiles at absorption layer has higher maximum photoresponse, while the Gaussian doping profiles have a weaker ability to enhance the device responsivity. It is demonstrated that electric field distribution, mobility degradation, and recombinations are jointly responsible for the variance of photoresponse. Our work enriches the understanding and utilization of GaN based p-i-n UV photodetectors.

  6. Comparative study of mobility extraction methods in p-type polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Liu, Yuan; Liu, Yu-Rong; En, Yun-Fei; Li, Bin

    2017-07-01

    Channel mobility in the p-type polycrystalline silicon thin film transistors (poly-Si TFTs) is extracted using Hoffman method, linear region transconductance method and multi-frequency C-V method. Due to the non-negligible errors when neglecting the dependence of gate-source voltage on the effective mobility, the extracted mobility results are overestimated using linear region transconductance method and Hoffman method, especially in the lower gate-source voltage region. By considering of the distribution of localized states in the band-gap, the frequency independent capacitance due to localized charges in the sub-gap states and due to channel free electron charges in the conduction band were extracted using multi-frequency C-V method. Therefore, channel mobility was extracted accurately based on the charge transport theory. In addition, the effect of electrical field dependent mobility degradation was also considered in the higher gate-source voltage region. In the end, the extracted mobility results in the poly-Si TFTs using these three methods are compared and analyzed.

  7. Effective mass of two-dimensional electrons in InGaAsN/GaAsSb type II quantum well by Shubnikov-de Haas oscillations

    NASA Astrophysics Data System (ADS)

    Kawamata, Shuichi; Hibino, Akira; Tanaka, Sho; Kawamura, Yuichi

    2016-10-01

    In order to develop optical devices for 2-3 μm wavelength regions, the InP-based InGaAs/GaAsSb type II multiple quantum well system has been investigated. By doping nitrogen into InGaAs layers, the system becomes effective in creating the optical devices with a longer wavelength. In this report, electrical transport properties are reported on the InGaAsN/GaAsSb type II system. The epitaxial layers with the single hetero or multiple quantum well structure on InP substrates are grown by the molecular beam epitaxy. The electrical resistance of samples with different nitrogen concentrations has been measured as a function of the magnetic field up to 9 Tesla at several temperatures between 2 and 6 K. The oscillation of the resistance due to the Shubnikov-de Haas (SdH) effect has been observed at each temperature. The effective mass is obtained from the temperature dependence of the amplitude of the SdH oscillations. The value of the effective mass increases from 0.048 for N = 0.0% to 0.062 for N = 1.2 and 1.5% as the nitrogen concentration increases. The mass enhancement occurs with corresponding to the reduction of the bandgap energy. These results are consistent with the band anticrossing model.

  8. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    PubMed

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.

  9. Framing and visual type: Effect on future Zika vaccine uptake intent

    PubMed Central

    Guidry, Jeanine P.D.; Carlyle, Kellie E.; LaRose, Jessica G.; Perrin, Paul; Ryan, Mark; Messner, Marcus; Adams, Jay

    2018-01-01

    Introduction The Zika virus is associated with the birth defect microcephaly, and while a vaccine was not available in early- 2017, several were under development. This study’s purpose was to identify effective communication strategies to promote uptake of a new vaccine, particularly among women of reproductive age. Design and methods In order to study the effects of Zika message framing (gain vs. loss) and visual type (photo vs. infographic) on future Zika vaccine uptake intent, a 2×2 between-subjects experiment was performed via an online survey in 2017 among 339 U.S. women of reproductive age (18-49 years). Participants were exposed to one of four messages, all resembling Instagram posts: gain-framed vs. loss-framed infographic, and gain-framed vs. loss-framed photo. These messages were followed by questions about Zika vaccine uptake intent as well as intermediate psychosocial variables that could lead to intent. Results There was no interaction between framing and visual type (P=0.116), and there was no effect for framing (P=0.185) or visual type (P=0.724) on future Zika vaccine uptake intent, which is likely indicative of insufficient dosage of the intervention. However, when focusing on intermediate psychosocial constructs that are known to influence behavior and intent, gain-framed messages were more effective in increasing subjective norms (P=0.005) as related to a future Zika vaccine, as well as perceived benefits (P=0.016) and self-efficacy (P=0.032). Conclusions Gain-framed messages seem to be more effective than loss-framed messages to increase several constructs that could, in turn, affect future Zika vaccine uptake intent. This is a novel finding since, traditionally, loss-framed messages are considered more beneficial in promoting vaccine-related health behaviors. Significance for public healthThe study described in this paper is significant for the field of public health for several reasons: It takes a proactive approach in studying messaging focused on the Zika vaccine before that vaccine is available, allowing for quick implementation of its limited results. In addition, this study centers on messaging in the form of realistic images consistent with those that could be posted on Instagram, thereby focusing on a relatively new yet immensely popular communications platform that few are focusing on presently. PMID:29780762

  10. Resilience of the larval slipper limpet Crepidula onyx to direct and indirect-diet effects of ocean acidification.

    PubMed

    Maboloc, Elizaldy A; Chan, Kit Yu Karen

    2017-09-21

    Ocean acidification (OA) is known to directly impact larval physiology and development of many marine organisms. OA also affects the nutritional quality and palatability of algae, which are principal food sources for many types of planktonic larvae. This potential indirect effect of OA via trophic interactions, however, has not been fully explored. In this study, veligers of Crepidula onyx were exposed to different pH levels representing the ambient (as control) and low pH values (pH 7.7 and pH 7.3) for 14 days, and were fed with Isochrysis galbana cultured at these three respective pHs. pH, diet, nor their interactions had no effect on larval mortality. Decrease in pH alone had a significant effect on growth rate and shell size. Structural changes (increased porosity) in larval shells were also observed in the low pH treatments. Interactions between acidification and reduced diet quality promoted earlier settlement. Unlike other calcifying molluscs, this population of slipper limpets introduced to Hong Kong in 1960s appeared to be resilient to OA and decreased algal nutritional value. If this robustness observed in the laboratory applies to the field, competition with native invertebrates may intensify and this non-native snail could flourish in acidified coastal ecosystems.

  11. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

    PubMed Central

    Neumann, G.; Bott, S.; Ohler, M. A.; Mock, H.-P.; Lippmann, R.; Grosch, R.; Smalla, K.

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes. PMID:24478764

  12. Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils.

    PubMed

    Neumann, G; Bott, S; Ohler, M A; Mock, H-P; Lippmann, R; Grosch, R; Smalla, K

    2014-01-01

    Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

  13. Weak antilocalization effect due to topological surface states in Bi2Se2.1Te0.9

    NASA Astrophysics Data System (ADS)

    Shrestha, K.; Graf, D.; Marinova, V.; Lorenz, B.; Chu, C. W.

    2017-10-01

    We have investigated the weak antilocalization (WAL) effect in the p-type Bi2Se2.1Te0.9 topological system. The magnetoconductance shows a cusp-like feature at low magnetic fields, indicating the presence of the WAL effect. The WAL curves measured at different tilt angles merge together when they are plotted as a function of the normal field components, showing that surface states dominate the magnetoconductance in the Bi2Se2.1Te0.9 crystal. We have calculated magnetoconductance per conduction channel and applied the Hikami-Larkin-Nagaoka formula to determine the physical parameters that characterize the WAL effect. The number of conduction channels and the phase coherence length do not change with temperature up to T = 5 K. In addition, the sample shows a large positive magnetoresistance that reaches 1900% under a magnetic field of 35 T at T = 0.33 K with no sign of saturation. The magnetoresistance value decreases with both increasing temperature and tilt angle of the sample surface with respect to the magnetic field. The large magnetoresistance of topological insulators can be utilized in future technology such as sensors and memory devices.

  14. Preparation and Characterization of Surface Photocatalytic Activity with NiO/TiO₂ Nanocomposite Structure.

    PubMed

    Chen, Jian-Zhi; Chen, Tai-Hong; Lai, Li-Wen; Li, Pei-Yu; Liu, Hua-Wen; Hong, Yi-You; Liu, Day-Shan

    2015-07-13

    This study achieved a nanocomposite structure of nickel oxide (NiO)/titanium dioxide (TiO₂) heterojunction on a TiO₂ film surface. The photocatalytic activity of this structure evaluated by decomposing methylene blue (MB) solution was strongly correlated to the conductive behavior of the NiO film. A p -type NiO film of high concentration in contact with the native n -type TiO₂ film, which resulted in a strong inner electrical field to effectively separate the photogenerated electron-hole pairs, exhibited a much better photocatalytic activity than the controlled TiO₂ film. In addition, the photocatalytic activity of the NiO/TiO₂ nanocomposite structure was enhanced as the thickness of the p -NiO film decreased, which was beneficial for the migration of the photogenerated carriers to the structural surface.

  15. Study on oligomerization of glutamate decarboxylase from Lactobacillus brevis using asymmetrical flow field-flow fractionation (AF4) with light scattering techniques.

    PubMed

    Choi, Jaeyeong; Lee, Seungho; Linares-Pastén, Javier A; Nilsson, Lars

    2018-01-01

    In this work, asymmetrical flow field-flow fractionation (AF4) coupled with UV/Vis, multi-angle light scattering (MALS), and differential refractive index (dRI) detectors (AF4-UV-MALS-dRI) was employed for analysis of glutamate decarboxylase (LbGadB) from Lactobacillus brevis (L. brevis). AF4 provided molecular weight (MW) (or size)-based separation of dimer, hexamer, and aggregates of LbGadB. The effect of pH on oligomerization of LbGadB was investigated, and then AF4 results were compared to those from molecular modeling. The MWs measured by AF4-UV-MALS-dRI for dimeric and hexameric forms of LbGadB were 110 and 350 kDa, respectively, which are in good agreements with those theoretically calculated (110 and 330 kDa). The molecular sizes determined by AF4-UV-MALS-dRI were also in good agreement with those obtained from molecular modeling (6 and 10 nm, respectively, for dimeric and hexameric from AF4-UV-MALS-dRI and 6.4 × 7.6 and 7.6 × 13.1 nm from molecular modeling). The effects of temperature, salt type, and salt concentration on oligomerization of LbGadB were also investigated using dynamic light scattering (DLS). It was found that the hexameric form of LbGadB was most stable at pH 6 and in presence of NaCl or KCl. The results indicate that AF4, in combination of various online detectors mentioned above, provides an effective tool for monitoring of oligomerization of LbGadB under different conditions, such as temperature, pH, type of salts, and salt concentrations.

  16. Efficient phosphorus management practices in the Everglades Agricultural Area

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Lang, T. A.; Daroub, S. H.; Alvarez, O.; Tootoonchi, M.; Capasso, J.

    2016-12-01

    In the 450,000 acres of the Everglades Agricultural Area (EAA) of South Florida, farming practices have long been mindful of phosphorus (P) management as it relates to sufficiency and efficiency of P utilization. Over two decades of P best management practices have resulted in 3001 metric-ton of P load reduction from the EAA to downstream ecosystems. During the summer, more than 50,000 acres of fallow sugarcane land is available for rice production. The net value of growing flooded rice in the EAA as a rotational crop with sugarcane far exceeds its monetary return. Soil conservation, improvement in tilth and P load reduction are only some of the benefits. With no P fertilizer applied, a two-year field trial on flooded rice showed improved outflow P concentrations by up to 40% as a result of particulate setting and plant P uptake. Harvested whole grain rice can effectively remove a significant amount of P from a rice field per growing season. In parts of the EAA where soils are sandy, the application of using locally derived organic amendments as potential P fertilizer has gained interest over the past few years. The use of local agricultural and urban organic residues as amendments in sandy soils of South Florida provide options to enhance soil properties and improve sugarcane yields, while reducing waste and harmful effects of agricultural production on the environment. A lysimeter study conducted to determine the effect of mill ash and three types of biochar (rice hulls, yard waste, horse bedding) on sugarcane yields, soil properties, and drainage water quality in sandy soils showed that mill ash and rice hull biochar increased soil TP, Mehlich 3-P (M3-P), and cation exchange capacity (CEC) compared to the control. TP and M3-P content remained constant after 9 months, CEC showed a significant increase over time with rich hull biochar addition. Future projects include the utilization of aquatic vegetation, such as chara and southern naiad as bio-filters in farm ditches to reduce P load. This will be achieved by circulating high P concentration farm canal water through the ditches prior to being discharged off site. Optimizing the flow through the ditches will allow the aquatic vegetation to uptake P. The vegetation will ultimately be harvested and incorporated back on to the fields.

  17. Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport

    NASA Astrophysics Data System (ADS)

    Long, Gen; Xu, Shuigang; Shen, Junying; Hou, Jianqiang; Wu, Zefei; Han, Tianyi; Lin, Jiangxiazi; Wong, Wing Ki; Cai, Yuan; Lortz, Rolf; Wang, Ning

    2016-09-01

    We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V-1 s-1 and 8400 cm2 V-1 s-1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.

  18. Association Between Dentist-Dental Hygienist Communication and Dental Treatment Outcomes.

    PubMed

    Hamasaki, Tomoko; Kato, Hiroaki; Kumagai, Takashi; Hagihara, Akihito

    2017-03-01

    Communication between physician and patient is critical in all fields of medicine, and various types of communication exist in healthcare settings. Cooperation among healthcare professionals is thought to be essential in providing high-quality services. Dental hygienists are key team members in the provision of dental care, and are known to play an important role in the health of their patients. This study aimed to determine the effect of communication between dentists and hygienists on patient satisfaction. Study subjects were dentists, patients, and dental hygienists, and we examined how dentist-dental hygienist communication affected patient outcome indices. A significant difference was observed only for satisfaction in terms of meeting expectations (p = 0.035). Results for patient satisfaction indicated significant differences in explanatory behavior in dentist-dental hygienist evaluations (p = 0.001). The results showed improved health and reduced fear, indicating significant differences for the dentist-dental hygienist evaluations in explanation behavior (p = 0.016). Our evaluation of the effects of dentist-dental hygienist communication on patient outcomes indicated a significant correlation, suggesting that inter-professional communication in the field of dentistry affects patient satisfaction.

  19. Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode.

    PubMed

    Su, Chia-Ying; Lin, Chun-Han; Yao, Yu-Feng; Liu, Wei-Heng; Su, Ming-Yen; Chiang, Hsin-Chun; Tsai, Meng-Che; Tu, Charng-Gan; Chen, Hao-Tsung; Kiang, Yean-Woei; Yang, C C

    2017-09-04

    The high performance of a light-emitting diode (LED) with the total p-type thickness as small as 38 nm is demonstrated. By increasing the Mg doping concentration in the p-AlGaN electron blocking layer through an Mg pre-flow process, the hole injection efficiency can be significantly enhanced. Based on this technique, the high LED performance can be maintained when the p-type layer thickness is significantly reduced. Then, the surface plasmon coupling effects, including the enhancement of internal quantum efficiency, increase in output intensity, reduction of efficiency droop, and increase of modulation bandwidth, among the thin p-type LED samples of different p-type thicknesses that are compared. These advantageous effects are stronger as the p-type layer becomes thinner. However, the dependencies of these effects on p-type layer thickness are different. With a circular mesa size of 10 μm in radius, through surface plasmon coupling, we achieve the record-high modulation bandwidth of 625.6 MHz among c-plane GaN-based LEDs.

  20. Exponential Speedup of Quantum Annealing by Inhomogeneous Driving of the Transverse Field

    NASA Astrophysics Data System (ADS)

    Susa, Yuki; Yamashiro, Yu; Yamamoto, Masayuki; Nishimori, Hidetoshi

    2018-02-01

    We show, for quantum annealing, that a certain type of inhomogeneous driving of the transverse field erases first-order quantum phase transitions in the p-body interacting mean-field-type model with and without longitudinal random field. Since a first-order phase transition poses a serious difficulty for quantum annealing (adiabatic quantum computing) due to the exponentially small energy gap, the removal of first-order transitions means an exponential speedup of the annealing process. The present method may serve as a simple protocol for the performance enhancement of quantum annealing, complementary to non-stoquastic Hamiltonians.

  1. On the challenges of using field spectroscopy to measure the impact of soil type on leaf traits

    NASA Astrophysics Data System (ADS)

    Nunes, Matheus H.; Davey, Matthew P.; Coomes, David A.

    2017-07-01

    Understanding the causes of variation in functional plant traits is a central issue in ecology, particularly in the context of global change. Spectroscopy is increasingly used for rapid and non-destructive estimation of foliar traits, but few studies have evaluated its accuracy when assessing phenotypic variation in multiple traits. Working with 24 chemical and physical leaf traits of six European tree species growing on strongly contrasting soil types (i.e. deep alluvium versus nearby shallow chalk), we asked (i) whether variability in leaf traits is greater between tree species or soil type, and (ii) whether field spectroscopy is effective at predicting intraspecific variation in leaf traits as well as interspecific differences. Analysis of variance showed that interspecific differences in traits were generally much stronger than intraspecific differences related to soil type, accounting for 25 % versus 5 % of total trait variation, respectively. Structural traits, phenolic defences and pigments were barely affected by soil type. In contrast, foliar concentrations of rock-derived nutrients did vary: P and K concentrations were lower on chalk than alluvial soils, while Ca, Mg, B, Mn and Zn concentrations were all higher, consistent with the findings of previous ecological studies. Foliar traits were predicted from 400 to 2500 nm reflectance spectra collected by field spectroscopy using partial least square regression, a method that is commonly employed in chemometrics. Pigments were best modelled using reflectance data from the visible region (400-700 nm), while all other traits were best modelled using reflectance data from the shortwave infrared region (1100-2500 nm). Spectroscopy delivered accurate predictions of species-level variation in traits. However, it was ineffective at detecting intraspecific variation in rock-derived nutrients (with the notable exception of P). The explanation for this failure is that rock-derived elements do not have absorption features in the 400-2500 nm region, and their estimation is indirect, relying on elemental concentrations covarying with structural traits that do have absorption features in that spectral region (constellation effects). Since the structural traits did not vary with soil type, it was impossible for our regression models to predict intraspecific variation in rock-derived nutrients via constellation effects. This study demonstrates the value of spectroscopy for rapid, non-destructive estimation of foliar traits across species, but highlights problems with predicting intraspecific variation indirectly. We discuss the implications of these findings for mapping functional traits by airborne imaging spectroscopy.

  2. An All-Solid-State pH Sensor Employing Fluorine-Terminated Polycrystalline Boron-Doped Diamond as a pH-Insensitive Solution-Gate Field-Effect Transistor.

    PubMed

    Shintani, Yukihiro; Kobayashi, Mikinori; Kawarada, Hiroshi

    2017-05-05

    A fluorine-terminated polycrystalline boron-doped diamond surface is successfully employed as a pH-insensitive SGFET (solution-gate field-effect transistor) for an all-solid-state pH sensor. The fluorinated polycrystalline boron-doped diamond (BDD) channel possesses a pH-insensitivity of less than 3mV/pH compared with a pH-sensitive oxygenated channel. With differential FET (field-effect transistor) sensing, a sensitivity of 27 mv/pH was obtained in the pH range of 2-10; therefore, it demonstrated excellent performance for an all-solid-state pH sensor with a pH-sensitive oxygen-terminated polycrystalline BDD SGFET and a platinum quasi-reference electrode, respectively.

  3. Transplanckian censorship and global cosmic strings

    NASA Astrophysics Data System (ADS)

    Dolan, Matthew J.; Draper, Patrick; Kozaczuk, Jonathan; Patel, Hiren

    2017-04-01

    Large field excursions are required in a number of axion models of inflation. These models also possess global cosmic strings, around which the axion follows a path mirroring the inflationary trajectory. Cosmic strings are thus an interesting theoretical laboratory for the study of transplanckian field excursions. We describe connections be-tween various effective field theory models of axion monodromy and study the classical spacetimes around their supercritical cosmic strings. For small decay constants f < M p and large winding numbers n > M p /f , the EFT is under control and the string cores undergo topological inflation, which may be either of exponential or power-law type. We show that the exterior spacetime is nonsingular and equivalent to a decompactifying cigar geometry, with the radion rolling in a potential generated by axion flux. Signals are able to circumnavigate infinite straight strings in finite but exponentially long time, t ˜ e Δ a/ M p . For finite loops of supercritical string in asymptotically flat space, we argue that if topological inflation occurs, then topological censorship implies transplanckian censorship, or that external observers are forbidden from threading the loop and observing the full excursion of the axion.

  4. Integrated P-channel MOS gyrator

    NASA Technical Reports Server (NTRS)

    Hochmair, E. S. (Inventor)

    1974-01-01

    A gyrator circuit is described which is of the conventional configuration of two amplifiers in a circular loop, one producing zero phase shift and the other producing 180 phase reversal, in a circuit having medium Q composed of all field effect transistors of the same conductivity type. The current source to each gyrator amplifier comprises an amplifier which responds to changes in current, with the amplified signals feed back so as to limit current. The feedback amplifier has a large capacitor connected to bypass high frequency components, thereby stabilizing the output. The design makes possible fabrication of circuits with transistors of only one conductivity type, providing economies in manufacture and use.

  5. Solid State Gas Sensor Research in Germany – a Status Report

    PubMed Central

    Moos, Ralf; Sahner, Kathy; Fleischer, Maximilian; Guth, Ulrich; Barsan, Nicolae; Weimar, Udo

    2009-01-01

    This status report overviews activities of the German gas sensor research community. It highlights recent progress in the field of potentiometric, amperometric, conductometric, impedimetric, and field effect-based gas sensors. It is shown that besides step-by-step improvements of conventional principles, e.g. by the application of novel materials, novel principles turned out to enable new markets. In the field of mixed potential gas sensors, novel materials allow for selective detection of combustion exhaust components. The same goal can be reached by using zeolites for impedimetric gas sensors. Operando spectroscopy is a powerful tool to learn about the mechanisms in n-type and in p-type conductometric sensors and to design knowledge-based improved sensor devices. Novel deposition methods are applied to gain direct access to the material morphology as well as to obtain dense thick metal oxide films without high temperature steps. Since conductometric and impedimetric sensors have the disadvantage that a current has to pass the gas sensitive film, film morphology, electrode materials, and geometrical issues affect the sensor signal. Therefore, one tries to measure directly the Fermi level position either by measuring the gas-dependent Seebeck coefficient at high temperatures or at room temperature by applying a modified miniaturized Kelvin probe method, where surface adsorption-based work function changes drive the drain-source current of a field effect transistor. PMID:22408529

  6. Multilocus sequence typing and pulsed-field gel electrophoresis analysis of Oenococcus oeni from different wine-producing regions of China.

    PubMed

    Wang, Tao; Li, Hua; Wang, Hua; Su, Jing

    2015-04-16

    The present study established a typing method with NotI-based pulsed-field gel electrophoresis (PFGE) and stress response gene schemed multilocus sequence typing (MLST) for 55 Oenococcus oeni strains isolated from six individual regions in China and two model strains PSU-1 (CP000411) and ATCC BAA-1163 (AAUV00000000). Seven stress response genes, cfa, clpL, clpP, ctsR, mleA, mleP and omrA, were selected for MLST testing, and positive selective pressure was detected for these genes. Furthermore, both methods separated the strains into two clusters. The PFGE clusters are correlated with the region, whereas the sequence types (STs) formed by the MLST confirm the two clusters identified by PFGE. In addition, the population structure was a mixture of evolutionary pathways, and the strains exhibited both clonal and panmictic characteristics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Application of pulsed field gel electrophoresis to the 1993 epidemic of whooping cough in the UK.

    PubMed Central

    Syedabubakar, S. N.; Matthews, R. C.; Preston, N. W.; Owen, D.; Hillier, V.

    1995-01-01

    The purpose of this study was to DNA fingerprint the majority (64%) of isolates received at the Pertussis Reference Laboratory during the 1993 whooping cough epidemic by pulsed field gel electrophoresis of Xba I-generated restriction digests. Two DNA restriction patterns, types 1 and 3, predominated (40% and 23%, respectively, of 180 isolates) but type 2, identified in a previous study was notably absent. Twenty-one new DNA types occurred (24% of isolates), some being atypical as bands 155-230 kb were no longer conserved, but there was no statistically significant difference in their incidence in the upswing (June-September) compared to the downswing (October-December) phase of the epidemic. There was a relatively high proportion of new types, compared to type 1, at the peak (September). About 50% of isolates received were from the North Western Region, where 44% of isolates were DNA type 1. Whereas only 1 out of 10 isolates from Scotland were of this type, suggesting some geographic variation. Statistically significant findings included a higher proportion of isolates from female patients (P < 0.01), most marked in the 12-24 months age group (P < 0.05); a higher proportion of infants under 12 months requiring hospital admission compared to older children (P < 0.05); and a greater number of isolates from unvaccinated children (P < 0.01). Analysis of serotype according to four age groups (under 3 months, 3-12 months, 12-24 months and above 2 years) showed statistically significant differences (P < 0.05) with a noticeably lower proportion (38%) of serotype 1,3 in 3-12 months age group and higher prevalence (74%) of serotype 1,3 in the 12-24 months age group. There was no correlation between DNA type and serotype. Images Fig. 2 PMID:7641824

  8. Electronic transport in graphene: p-n junctions, shot noise, and nanoribbons

    NASA Astrophysics Data System (ADS)

    Williams, James Ryan

    2009-12-01

    Novel, two-dimensional materials have allowed for the inception and elucidation of a plethora of physical phenomena. On such material, a hexagonal lattice of carbon atoms called graphene, is a unique, truly two-dimensional molecular conductor. This thesis describes six experiments that elucidate some interesting physical properties and technological applications of graphene, with an emphasis on graphene-based p-n junctions. A technique for the creation of high-quality p-n junctions of graphene is described. Transport measurements at zero magnetic field demonstrate local control of the carrier type and density bipolar graphene-based junctions. In the quantum Hall regime, new plateaus in the conductance are observed and explained in terms of mode mixing at the p-n interface. Shot noise in unipolar and bipolar graphene devices is measured. A density-independent Fano factor is observed, contrary to theoretical expectations. Further, an independence on device geometry is also observed. The role of disorder on the measured Fano factor is discussed, and comparison to recent theory for disordered graphene is made. The effect of a two-terminal geometry, where the device aspect ratio is different from unity, is measured experimentally and analyzed theoretically. A method for extracting layer number from the conductance extrema is proposed. A method for a conformal mapping of a device with asymmetric contacts to a rectangle is demonstrated. Finally, possible origins of discrepancies between theory and experiment are discussed. Transport along p-n junctions in graphene is reported. Enhanced transport along the junction is observed and attributed to states that exist at the p-n interface. A correspondence between the observed phenomena at low-field and in the quantum Hall regime is observed. An electric field perpendicular to the junction is found to reduce the enhanced conductance at the p-n junction. A corollary between the p-n interface states and "snake states" in an inhomogeneous magnetic field is proposed and its relationship to the minimum conductivity in graphene is discussed. A final pair of experiments demonstrate how a helium ion microscope can be used to reduce the dimensionality of graphene one further, producing graphene nanoribbons. The effect of etching on transport and doping level of the graphene nanoribbons is discussed.

  9. The Fano-type transmission and field enhancement in heterostructures composed of epsilon-near-zero materials and truncated photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhi-fang; Jiang, Hai-tao, E-mail: davies2000@163.com, E-mail: jiang-haitao@tongji.edu.cn; Li, Yun-hui

    2013-11-11

    The Fano-type interference effect is studied in the heterostructure composed of an epsilon-near-zero (ENZ) material and a truncated photonic crystal for transverse magnetic polarized light. In the Fano-type interference effect, the ENZ material provides narrow reflection pathway and the photonic crystal provides broadband reflection pathway. The boundary condition across the ENZ interface and the confinement effect provided by the photonic crystal can enhance the electric fields in the ENZ material greatly. The field enhancements, together with the asymmetric property of Fano-type spectrum, possess potential applications for significantly lowering the threshold of nonlinear processes such as optical switching and bistability.

  10. Confinement effect of cylindrical-separatrix-type magnetic field on the plume of magnetic focusing type Hall thruster

    NASA Astrophysics Data System (ADS)

    Yu, Daren; Meng, Tianhang; Ning, Zhongxi; Liu, Hui

    2017-04-01

    A magnetic focusing type Hall thruster was designed with a cylindrical magnetic seperatrix. During the process of a hollow cathode crossing the separatrix, the variance of plume parameter distribution was monitored. Results show that the ion flux on the large spatial angle is significantly lower when the hollow cathode is located in the inner magnetic field. This convergence effect is preserved even in a distant area. A mechanism was proposed for plume divergence from the perspective of cathode-to-plume potential difference, through which the confinement effect of cylindrical-separatrix-type magnetic field on thruster plume was confirmed and proposed as a means of plume protection for plasma propulsion devices.

  11. [Characteristics of soil pH and exchangeable acidity in red soil profile under different vegetation types].

    PubMed

    Ji, Gang; Xu, Ming-gang; Wen, Shi-lin; Wang, Bo-ren; Zhang, Lu; Liu, Li-sheng

    2015-09-01

    The characteristics of soil pH and exchangeable acidity in soil profile under different vegetation types were studied in hilly red soil regions of southern Hunan Province, China. The soil samples from red soil profiles within 0-100 cm depth at fertilized plots and unfertilized plots were collected and analyzed to understand the profile distribution of soil pH and exchangeable acidity. The results showed that, pH in 0-60 cm soil from the fertilized plots decreased as the following sequence: citrus orchard > Arachis hypogaea field > tea garden. As for exchangeable acidity content, the sequence was A. hypogaea field ≤ citrus orchard < tea garden. After tea tree and A. hypogaea were planted for long time, acidification occurred in surface soil (0-40 cm), compared with the deep soil (60-100 cm), and soil pH decreased by 0.55 and 0.17 respectively, but such changes did not occur in citrus orchard. Soil pH in 0-40 cm soil from the natural recovery vegetation unfertilized plots decreased as the following sequence: Imperata cylindrica land > Castanea mollissima garden > Pinus elliottii forest ≥ Loropetalum chinensis forest. As for exchangeable acidity content, the sequence was L cylindrica land < C. mollissima garden < L. chinensis forest ≤ P. elliottii forest. Soil pH in surface soil (0-20 cm) from natural forest plots, secondary forest and Camellia oleifera forest were significantly lower than that from P. massoniana forest, decreased by 0.34 and 0.20 respectively. For exchangeable acidity content in 0-20 cm soil from natural forest plot, P. massoniana forest and secondary forest were significantly lower than C. oleifera forest. Compared with bare land, surface soil acidification in unfertilized plots except I. cylindrica land had been accelerated, and the natural secondary forest was the most serious among them, with surface soil pH decreasing by 0.52. However, the pH increased in deep soils from unfertilized plots except natural secondary forest, and I. cylindrica land was the most obvious among them, with soil pH increasing by 0.43. The effects of fertilization and vegetation type on pH and exchangeable acidity decreased with the increasing soil depth from all plots.

  12. Transpiration as landfill leachate phytotoxicity indicator.

    PubMed

    Białowiec, Andrzej

    2015-05-01

    An important aspect of constructed wetlands design for landfill leachate treatment is the assessment of landfill leachate phytotoxicity. Intravital methods of plants response observation are required both for lab scale toxicity testing and field examination of plants state. The study examined the toxic influence of two types of landfill leachate from landfill in Zakurzewo (L1) and landfill in Wola Pawłowska (L2) on five plant species: reed Phragmites australis (Cav.) Trin. ex Steud, manna grass Glyceria maxima (Hartm.) Holmb., bulrush Schoenoplectus lacustris (L.) Palla, sweet flag Acorus calamus L., and miscanthus Miscanthus floridulus (Labill) Warb. Transpiration measurement was used as indicator of plants response. The lowest effective concentration causing the toxic effect (LOEC) for each leachate type and plant species was estimated. Plants with the highest resistance to toxic factors found in landfill leachate were: sweet flag, bulrush, and reed. The LOEC values for these plants were, respectively, 17%, 16%, 9% in case of leachate L1 and 21%, 18%, 14% in case of L2. Leachate L1 was more toxic than L2 due to a higher pH value under similar ammonia nitrogen content, i.e. pH 8.74 vs. pH 8.00. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate

    NASA Astrophysics Data System (ADS)

    Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; Pitike, Krishna C.; Sohn, Changhee; Nakhmanson, Serge M.; Takoudis, Christos G.; Lee, Ho Nyung; Tonelli, Rachel; Gardner, Jonathan; Scott, James F.; Katiyar, Ram S.; Hong, Seungbum

    2018-02-01

    Tin titanate (SnTi O3 ) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the S n2 + to S n4 + . In the present paper, we show two things: first, perovskite phase SnTi O3 can be prepared by atomic-layer deposition directly onto p -type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p -type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTi O3 . Our films showed well-saturated, square, and repeatable hysteresis loops of around 3 μ C /c m2 remnant polarization at room temperature, as detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt /SnTi O3/Si /SnTi O3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. This is a lead-free room-temperature ferroelectric oxide of potential device application.

  14. Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate

    DOE PAGES

    Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang; ...

    2018-02-20

    Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less

  15. Room-temperature relaxor ferroelectricity and photovoltaic effects in tin titanate directly deposited on a silicon substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Radhe; Sharma, Yogesh; Chang, Siliang

    Tin titanate (SnTiO 3) has been notoriously impossible to prepare as a thin-film ferroelectric, probably because high-temperature annealing converts much of the Sn 2+ to Sn 4+. In the present paper, we show two things: first, perovskite phase SnTiO 3 can be prepared by atomic-layer deposition directly onto p-type Si substrates; and second, these films exhibit ferroelectric switching at room temperature, with p-type Si acting as electrodes. X-ray diffraction measurements reveal that the film is single-phase, preferred-orientation ferroelectric perovskite SnTiO 3. Our films showed well-saturated, square, and repeatable hysteresis loops of around 3μC/cm 2 remnant polarization at room temperature, asmore » detected by out-of-plane polarization versus electric field and field cycling measurements. Furthermore, photovoltaic and photoferroelectricity were found in Pt/SnTiO 3/Si/SnTiO 3/Pt heterostructures, the properties of which can be tuned through band-gap engineering by strain according to first-principles calculations. In conclusion, this is a lead-free room-temperature ferroelectric oxide of potential device application.« less

  16. Visual motion transforms visual space representations similarly throughout the human visual hierarchy.

    PubMed

    Harvey, Ben M; Dumoulin, Serge O

    2016-02-15

    Several studies demonstrate that visual stimulus motion affects neural receptive fields and fMRI response amplitudes. Here we unite results of these two approaches and extend them by examining the effects of visual motion on neural position preferences throughout the hierarchy of human visual field maps. We measured population receptive field (pRF) properties using high-field fMRI (7T), characterizing position preferences simultaneously over large regions of the visual cortex. We measured pRFs properties using sine wave gratings in stationary apertures, moving at various speeds in either the direction of pRF measurement or the orthogonal direction. We find direction- and speed-dependent changes in pRF preferred position and size in all visual field maps examined, including V1, V3A, and the MT+ map TO1. These effects on pRF properties increase up the hierarchy of visual field maps. However, both within and between visual field maps the extent of pRF changes was approximately proportional to pRF size. This suggests that visual motion transforms the representation of visual space similarly throughout the visual hierarchy. Visual motion can also produce an illusory displacement of perceived stimulus position. We demonstrate perceptual displacements using the same stimulus configuration. In contrast to effects on pRF properties, perceptual displacements show only weak effects of motion speed, with far larger speed-independent effects. We describe a model where low-level mechanisms could underlie the observed effects on neural position preferences. We conclude that visual motion induces similar transformations of visuo-spatial representations throughout the visual hierarchy, which may arise through low-level mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Dopant distributions in n-MOSFET structure observed by atom probe tomography.

    PubMed

    Inoue, K; Yano, F; Nishida, A; Takamizawa, H; Tsunomura, T; Nagai, Y; Hasegawa, M

    2009-11-01

    The dopant distributions in an n-type metal-oxide-semiconductor field effect transistor (MOSFET) structure were analyzed by atom probe tomography. The dopant distributions of As, P, and B atoms in a MOSFET structure (gate, gate oxide, channel, source/drain extension, and halo) were obtained. P atoms were segregated at the interface between the poly-Si gate and the gate oxide, and on the grain boundaries of the poly-Si gate, which had an elongated grain structure along the gate height direction. The concentration of B atoms was enriched near the edge of the source/drain extension where the As atoms were implanted.

  18. A gallium phosphide high-temperature bipolar junction transistor

    NASA Technical Reports Server (NTRS)

    Zipperian, T. E.; Dawson, L. R.; Chaffin, R. J.

    1981-01-01

    Preliminary results are reported on the development of a high temperature (350 C) gallium phosphide bipolar junction transistor (BJT) for geothermal and other energy applications. This four-layer p(+)n(-)pp(+) structure was formed by liquid phase epitaxy using a supercooling technique to insure uniform nucleation of the thin layers. Magnesium was used as the p-type dopant to avoid excessive out-diffusion into the lightly doped base. By appropriate choice of electrodes, the device may also be driven as an n-channel junction field-effect transistor. The initial design suffers from a series resistance problem which limits the transistor's usefulness at high temperatures.

  19. Generation of vortex array laser beams with Dove prism embedded unbalanced Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Chun

    2009-02-01

    This paper introduces a scheme for generation of vortex laser beams from a solid-state laser with off-axis laser-diode pumping. The proposed system consists of a Dove prism embedded in an unbalanced Mach-Zehnder interferometer configuration. This configuration allows controlled construction of p × p vortex array beams from Ince-Gaussian modes, IGep,p modes. An incident IGe p,p laser beam of variety order p can easily be generated from an end-pumped solid-state laser with an off-axis pumping mechanism. This study simulates this type of vortex array laser beam generation and discusses beam propagation effects. The formation of ordered transverse emission patterns have applications in a variety of areas such as optical data storage, distribution, and processing that exploit the robustness of soliton and vortex fields and optical manipulations of small particles and atoms in the featured intensity distribution.

  20. A Self-Aligned InGaAs Quantum-Well Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated through a Lift-Off-Free Front-End Process

    NASA Astrophysics Data System (ADS)

    Lin, Jianqiang; Kim, Tae-Woo; Antoniadis, Dimitri A.; del Alamo, Jesús A.

    2012-06-01

    We present a novel n-type InGaAs quantum-well metal-oxide-semiconductor field-effect transistor (QW-MOSFET) fabricated by a self-aligned gate-last process and investigate relevant Si-like manufacturing issues in future III-V MOSFETs. The device structure features a composite InP/Al2O3 gate barrier with a capacitance equivalent thickness (CET) of 3 nm and non alloyed Mo ohmic contacts. We have found that RIE introduces significant damage to the intrinsic device resulting in poor current drive and subthreshold swing. The effect is largely removed through a thermal annealing step. Thermally annealed QW-MOSFETs exhibit a subthreshold swing of 95 mV/dec, indicative of excellent interfacial characteristics. The peak mobility of the MOSFET is 2780 cm2 V-1 s-1.

  1. Promotion of acceptor formation in SnO2 nanowires by e-beam bombardment and impacts to sensor application

    PubMed Central

    Sub Kim, Sang; Gil Na, Han; Woo Kim, Hyoun; Kulish, Vadym; Wu, Ping

    2015-01-01

    We have realized a p-type-like conduction in initially n-type SnO2 nanowires grown using a vapor-liquid-solid method. The transition was achieved by irradiating n-type SnO2 nanowires with a high-energy electron beam, without intentional chemical doping. The nanowires were irradiated at doses of 50 and 150 kGy, and were then used to fabricate NO2 gas sensors, which exhibited n-type and p-type conductivities, respectively. The tuneability of the conduction behavior is assumed to be governed by the formation of tin vacancies (under high-energy electron beam irradiation), because it is the only possible acceptor, excluding all possible defects via density functional theory (DFT) calculations. The effect of external electric fields on the defect stability was studied using DFT calculations. The measured NO2 sensing dynamics, including response and recovery times, were well represented by the electron-hole compensation mechanism from standard electron-hole gas equilibrium statistics. This study elucidates the charge-transport characteristics of bipolar semiconductors that underlie surface chemical reactions. The principles derived will guide the development of future SnO2-based electronic and electrochemical devices. PMID:26030815

  2. Low p-type contact resistance by field-emission tunneling in highly Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Okumura, Hironori; Martin, Denis; Grandjean, Nicolas

    2016-12-01

    Mg-doped GaN with a net acceptor concentration (NA-ND) in the high 1019 cm-3 range was grown using ammonia molecular-beam epitaxy. Electrical properties of NiO contact on this heavily doped p-type GaN were investigated. A potential-barrier height of 0.24 eV was extracted from the relationship between NA-ND and the specific contact resistivity (ρc). We found that there is an optimum NA-ND value of 5 × 1019 cm-3 for which ρc is as low as 2 × 10-5 Ω cm2. This low ρc is ascribed to hole tunneling through the potential barrier at the NiO/p+-GaN interface, which is well accounted for by the field-emission model.

  3. [Advances of tumor targeting peptides drug delivery system with pH-sensitive activities].

    PubMed

    Ma, Yin-yun; Li, Li; Huang, Hai-feng; Gou, San-hu; Ni, Jing-man

    2016-05-01

    The pH-sensitive peptides drug delivery systems, which target to acidic extracellular environment of tumor tissue, have many advantages in drug delivery. They exhibit a high specificity to tumor and low cytotoxicity, which significantly increase the efficacy of traditional anti-cancer drugs. In recent years the systems have received a great attention. The pH-sensitive peptides drug delivery systems can be divided into five types according to the difference in pH-responsive mechanism,type of peptides and carrier materials. This paper summarizes the recent progresses in the field with a focus on the five types of pH-sensitive peptides in drug delivery systems. This may provide a guideline to design and application of tumor targeting drugs.

  4. Charge-Trapping-Induced Non-Ideal Behaviors in Organic Field-Effect Transistors.

    PubMed

    Un, Hio-Ieng; Cheng, Peng; Lei, Ting; Yang, Chi-Yuan; Wang, Jie-Yu; Pei, Jian

    2018-05-01

    Organic field-effect transistors (OFETs) with impressively high hole mobilities over 10 cm 2 V -1 s -1 and electron mobilities over 1 cm 2 V -1 s -1 have been reported in the past few years. However, significant non-ideal electrical characteristics, e.g., voltage-dependent mobilities, have been widely observed in both small-molecule and polymer systems. This issue makes the accurate evaluation of the electrical performance impossible and also limits the practical applications of OFETs. Here, a semiconductor-unrelated, charge-trapping-induced non-ideality in OFETs is reported, and a revised model for the non-ideal transfer characteristics is provided. The trapping process can be directly observed using scanning Kelvin probe microscopy. It is found that such trapping-induced non-ideality exists in OFETs with different types of charge carriers (p-type or n-type), different types of dielectric materials (inorganic and organic) that contain different functional groups (OH, NH 2 , COOH, etc.). As fas as it is known, this is the first report for the non-ideal transport behaviors in OFETs caused by semiconductor-independent charge trapping. This work reveals the significant role of dielectric charge trapping in the non-ideal transistor characteristics and also provides guidelines for device engineering toward ideal OFETs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Spin-lattice relaxation of optically polarized nuclei in p -type GaAs

    NASA Astrophysics Data System (ADS)

    Kotur, M.; Dzhioev, R. I.; Vladimirova, M.; Cherbunin, R. V.; Sokolov, P. S.; Yakovlev, D. R.; Bayer, M.; Suter, D.; Kavokin, K. V.

    2018-04-01

    Spin-lattice relaxation of the nuclear spin system in p -type GaAs is studied using a three-stage experimental protocol including optical pumping and measuring the difference of the nuclear spin polarization before and after a dark interval of variable length. This method allows us to measure the spin-lattice relaxation time T1 of optically pumped nuclei "in the dark," that is, in the absence of illumination. The measured T1 values fall into the subsecond time range, being three orders of magnitude shorter than in earlier studied n -type GaAs. The drastic difference is further emphasized by magnetic-field and temperature dependencies of T1 in p -GaAs, showing no similarity to those in n -GaAs. This unexpected behavior finds its explanation in the spatial selectivity of the optical pumping in p -GaAs, that is only efficient in the vicinity of shallow donors, together with the quadrupole relaxation of nuclear spins, which is induced by electric fields within closely spaced donor-acceptor pairs. The developed theoretical model explains the whole set of experimental results.

  6. Magnetic Resonance Spectroscopy for Evaluating the Effect of Pulsed Electromagnetic Fields on Marrow Adiposity in Postmenopausal Women With Osteopenia.

    PubMed

    Li, Shaojun; Jiang, Hongning; Wang, Bo; Gu, Mingjun; Bi, Xia; Yin, Ying; Wang, Yu

    2018-06-12

    Pulsed electromagnetic fields (PEMFs) could promote osteogenic differentiation and suppress adipogenic differentiation in bone mesenchymal stem cells ex vivo. However, data on the effect of PEMF on marrow adiposity in humans remain elusive. We aimed to determine the in vivo effect of PEMF on marrow adiposity in postmenopausal women using magnetic resonance spectroscopy. Sixty-one postmenopausal women with osteopenia, aged 53 to 85 years, were randomly assigned to receive either PEMF treatment or placebo. The session was performed 3 times per week for 6 months. All women received adequate dietary calcium and vitamin D. Bone mineral density (BMD) by dual-energy x-ray absorptiometry, vertebral marrow fat content by magnetic resonance spectroscopy, and serum biomarkers were evaluated before and after 6 months of treatment. A total of 27 (87.1%) and 25 (83.3%) women completed the treatment schedule in the PEMF and placebo groups, respectively. After the 6-month treatment, lumbar spine and hip BMD increased by 1.46% to 2.04%, serum bone-specific alkaline phosphatase increased by 3.23%, and C-terminal telopeptides of type 1 collagen decreased by 9.12% in the PEMF group (P < 0.05), whereas the mean percentage changes in BMD and serum biomarkers were not significant in the placebo group. Pulsed electromagnetic field treatment significantly reduced marrow fat fraction by 4.81%. The treatment difference between the 2 groups was -4.43% (95% confidence interval, -3.70% to -5.65%; P = 0.009). Pulsed electromagnetic field is an effective physiotherapy in postmenopausal women, and this effect may, at least in part, regulate the amount of fat within the bone marrow. Magnetic resonance spectroscopy may serve as a complementary imaging biomarker for monitoring response to therapy in osteoporosis.

  7. Effects of soil type and organic fertilizers on fatty acids and vitamin E in Korean ginseng (Panax ginseng Meyer).

    PubMed

    Chung, Ill-Min; Kim, Jae-Kwang; Yang, Jin-Hee; Lee, Ji-Hee; Park, Sung-Kyu; Son, Na-Young; Kim, Seung-Hyun

    2017-12-01

    This study examined the effects of soil type and fertilizer regimes on variations in fatty acids (FAs) and vitamin E (Vit-E) in 6-year-old ginseng roots. We observed significant variation in both FA and Vit-E contents owing to the type and quantity of organic fertilizer used in each soil type during cultivation. Unsaturated FAs were approximately 2.7-fold higher in ginseng than in saturated FAs. Linoleic, palmitic, and oleic acids were the most abundant FAs detected in ginseng roots. Additionally, α-tocopherol was the major Vit-E detected. In particular, the increased application of rice straw compost or food waste fertilizer elevated the quantity of nutritionally desirable FAs and bioactive Vit-E in ginseng root. Partial least square-discriminant analysis (PLS-DA) score plots showed that soil type might be the main cause of differences in FA and Vit-E levels in ginseng. Specifically, the PLS-DA model indicated that palmitic acid is a suitable FA marker in determining whether ginseng plants were grown in a paddy-converted field or an upland field. Moreover, linoleic acid levels were highly correlated with α-linolenic acid (r=0.8374; p<0.0001) according to Pearson's correlations and hierarchical clustering analysis. Hence, these preliminary results should prove useful for the reliable production of ginseng containing high phytonutrient quantities according to cultivation conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Can natural variation in grain P concentrations be exploited in rice breeding to lower fertilizer requirements?

    PubMed

    Wang, Fanmiao; King, James Douglas Morrison; Rose, Terry; Kretzschmar, Tobias; Wissuwa, Matthias

    2017-01-01

    Agricultural usage of phosphorus (P) is largely driven by the amount of P removed from fields in harvested plant matter as offtake needs to be balanced by P fertilizer application. Reducing P concentration in grains is a way to decrease P offtake and reduce P fertilizer requirements or soil P mining where insufficient P is applied. Our objective was to assesses the genotypic variation for grain P concentration present within the rice gene pool and resolve to what extent it is affected by environment (P supply) or associated with genetic factors. About 2-fold variation in grain P concentrations were detected in two rice diversity panels, however, environmental effects were stronger than genotype effects. Genome wide association studies identified several putative loci associated with grain P concentrations. In most cases this was caused by minor haplotype associations with high grain P concentrations while associations with reduced P concentrations were identified on chromosomes 1, 6, 8, 11 and 12. Only the latter type of locus is of interest in breeding for reduced P concentrations and the most promising locus was at 20.7 Mb on chromosome 8, where a rare haplotype that was absent from all modern varieties studied reduced grain P concentration by 9.3%. This and all other loci were not consistently detected across environments or association panels, confirming that genetic effects were small compared to effects of environment. We conclude that the genetic effects detected were not sufficiently large or consistent to be of utility in plant breeding. Instead breeding efforts may have to rely on small to medium effect mutants already identified and attempt to achieve a more pronounced reduction in grain P concentration through the introgression of these mutants into a single genetic background.

  9. Can natural variation in grain P concentrations be exploited in rice breeding to lower fertilizer requirements?

    PubMed Central

    Wang, Fanmiao; King, James Douglas Morrison; Rose, Terry; Kretzschmar, Tobias

    2017-01-01

    Agricultural usage of phosphorus (P) is largely driven by the amount of P removed from fields in harvested plant matter as offtake needs to be balanced by P fertilizer application. Reducing P concentration in grains is a way to decrease P offtake and reduce P fertilizer requirements or soil P mining where insufficient P is applied. Our objective was to assesses the genotypic variation for grain P concentration present within the rice gene pool and resolve to what extent it is affected by environment (P supply) or associated with genetic factors. About 2-fold variation in grain P concentrations were detected in two rice diversity panels, however, environmental effects were stronger than genotype effects. Genome wide association studies identified several putative loci associated with grain P concentrations. In most cases this was caused by minor haplotype associations with high grain P concentrations while associations with reduced P concentrations were identified on chromosomes 1, 6, 8, 11 and 12. Only the latter type of locus is of interest in breeding for reduced P concentrations and the most promising locus was at 20.7 Mb on chromosome 8, where a rare haplotype that was absent from all modern varieties studied reduced grain P concentration by 9.3%. This and all other loci were not consistently detected across environments or association panels, confirming that genetic effects were small compared to effects of environment. We conclude that the genetic effects detected were not sufficiently large or consistent to be of utility in plant breeding. Instead breeding efforts may have to rely on small to medium effect mutants already identified and attempt to achieve a more pronounced reduction in grain P concentration through the introgression of these mutants into a single genetic background. PMID:28651022

  10. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    NASA Astrophysics Data System (ADS)

    Collis, Gavin E.

    2015-12-01

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  11. Field verification for the effectiveness of continuity diaphragms for skewed continuous P/C P/S concrete girder bridges.

    DOT National Transportation Integrated Search

    2009-10-01

    The research presented herein describes the field verification for the effectiveness of continuity diaphragms for : skewed continuous precast, prestressed, concrete girder bridges. The objectives of this research are (1) to perform : field load testi...

  12. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effects of concentration and annealing on the performance of regioregular poly(3-hexylthiophene) field-effect transistors

    NASA Astrophysics Data System (ADS)

    Tian, Xue-Yan; Xu, Zheng; Zhao, Su-Ling; Zhang, Fu-Jun; Yuan, Guang-Cai; Xu, Xu-Rong

    2009-08-01

    This paper investigates the effects of concentration on the crystalline structure, the morphology, and the charge carrier mobility of regioregular poly(3-hexylthiophene) (RR-P3HT) field-effect transistors (FETs). The RR-P3HT FETs with RR-P3HT as an active layer with different concentrations of RR-P3HT solution from 0.5 wt% to 2 wt% are prepared. The results indicate that the performance of RR-P3HT FETs improves drastically with the increase of RR-P3HT weight percentages in chloroform solution due to the formation of more microcrystalline lamellae and bigger nanoscale islands. It finds that the field-effect mobility of RR-P3HT FET with 2 wt% can reach 5.78 × 10-3 cm2/Vs which is higher by a factor of 13 than that with 0.5 wt%. Further, an appropriate thermal annealing is adopted to improve the performance of RR-P3HT FETs. The field-effect mobility of RR-P3HT FETs increases drastically to 0.09 cm2/Vs by thermal annealing at 150 °C, and the value of on/off current ratio can reach 104.

  13. Effects of pulsed electromagnetic fields on benign prostate hyperplasia.

    PubMed

    Giannakopoulos, Xenophon K; Giotis, Christos; Karkabounas, Spyridon Ch; Verginadis, Ioannis I; Simos, Yannis V; Peschos, Dimitrios; Evangelou, Angelos M

    2011-12-01

    Benign prostate hyperplasia (BPH) has been treated with various types of electromagnetic radiation methods such as transurethral needle ablation (TUNA), interstitial laser therapy (ILC), holmium laser resection (HoLRP). In the present study, the effects of a noninvasive method based on the exposure of patients with BPH to a pulsative EM Field at radiofrequencies have been investigated. Twenty patients with BPH, aging 68-78 years old (y.o), were enrolled in the study. Patients were randomly divided into two groups: the treatment group (10 patients, 74.0 ± 5.7 y.o) treated with the α-blocker Alfusosin, 10 mg/24 h for at least 4 weeks, and the electromagnetic group (10 patients, 73.7 ± 6.3 y.o) exposed for 2 weeks in a very short wave duration, pulsed electromagnetic field at radiofrequencies generated by an ion magnetic inductor, for 30 min daily, 5 consecutive days per week. Patients of both groups were evaluated before and after drug and EMF treatment by values of total PSA and prostatic PSA fraction, acid phosphate, U/S estimation of prostate volume and urine residue, urodynamic estimation of urine flow rate, and International Prostate Symptom Score (IPSS). There was a statistically significant decrease before and after treatment of IPSS (P < 0.02), U/S prostate volume (P < 0.05), and urine residue (P < 0.05), as well as of mean urine flow rate (P < 0.05) in patients of the electromagnetic group, in contrast to the treatment group who had only improved IPSS (P < 0.05). There was also a significant improvement in clinical symptoms in patients of the electromagnetic group. Follow-up of the patients of this group for one year revealed that results obtained by EMFs treatment are still remaining. Pulsed electromagnetic field at radiofrequencies may benefit patients with benign prostate hyperplasia treated by a non-invasive method.

  14. COMPUTERIZED EXPERT SYSTEM FOR EVALUATION OF AUTOMATED VISUAL FIELDS FROM THE ISCHEMIC OPTIC NEUROPATHY DECOMPRESSION TRIAL: METHODS, BASELINE FIELDS, AND SIX-MONTH LONGITUDINAL FOLLOW-UP

    PubMed Central

    Feldon, Steven E

    2004-01-01

    ABSTRACT Purpose To validate a computerized expert system evaluating visual fields in a prospective clinical trial, the Ischemic Optic Neuropathy Decompression Trial (IONDT). To identify the pattern and within-pattern severity of field defects for study eyes at baseline and 6-month follow-up. Design Humphrey visual field (HVF) change was used as the outcome measure for a prospective, randomized, multi-center trial to test the null hypothesis that optic nerve sheath decompression was ineffective in treating nonarteritic anterior ischemic optic neuropathy and to ascertain the natural history of the disease. Methods An expert panel established criteria for the type and severity of visual field defects. Using these criteria, a rule-based computerized expert system interpreted HVF from baseline and 6-month visits for patients randomized to surgery or careful follow-up and for patients who were not randomized. Results A computerized expert system was devised and validated. The system was then used to analyze HVFs. The pattern of defects found at baseline for patients randomized to surgery did not differ from that of patients randomized to careful follow-up. The most common pattern of defect was a superior and inferior arcuate with central scotoma for randomized eyes (19.2%) and a superior and inferior arcuate for nonrandomized eyes (30.6%). Field patterns at 6 months and baseline were not different. For randomized study eyes, the superior altitudinal defects improved (P = .03), as did the inferior altitudinal defects (P = .01). For nonrandomized study eyes, only the inferior altitudinal defects improved (P = .02). No treatment effect was noted. Conclusions A novel rule-based expert system successfully interpreted visual field defects at baseline of eyes enrolled in the IONDT. PMID:15747764

  15. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    PubMed

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the difference in the effective dielectric constant between the two sides of the reaction center is manifest on the time scale of initial electron transfer. By comparing directly the Stark shift dynamics of the ground-state spectra of the two monomer bacteriochlorophylls, it is evident that there is, in fact, a large dielectric difference between protein environments of the two quasi-symmetric electron-transfer branches on the time scale of initial electron transfer and that the effective dielectric constant in the region continues to evolve on a time scale of hundreds of picoseconds.

  16. General formulation for magnetohydrodynamic wave propagation, fire-hose, and mirror instabilities in Harris-type current sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.

    Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less

  17. The multifaceted biology of plasmacytoid dendritic cells

    PubMed Central

    Swiecki, Melissa; Colonna, Marco

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that specializes in the production of type I interferons (IFNs). pDCs promote antiviral immune responses and have been implicated in the pathogenesis of autoimmune diseases characterized by a type I IFN signature. However, pDCs can also induce tolerogenic immune responses. Here, we review recent progress from the field of pDC biology, focusing on: the molecular mechanisms that regulate pDC development and functions; the pathways involved in their sensing of pathogens and endogenous nucleic acids; the function of pDCs at mucosal sites; and their roles in infections, autoimmunity and cancer. PMID:26160613

  18. Rogers-Schur-Ramanujan Type Identities for the M(p,p') Minimal Models of Conformal Field Theory

    NASA Astrophysics Data System (ADS)

    Berkovich, Alexander; McCoy, Barry M.; Schilling, Anne

    We present and prove Rogers-Schur-Ramanujan (Bose/Fermi) type identities for the Virasoro characters of the minimal model M(p,p'). The proof uses the continued fraction decomposition of p'/p introduced by Takahashi and Suzuki for the study of the Bethe's Ansatz equations of the XXZ model and gives a general method to construct polynomial generalizations of the fermionic form of the characters which satisfy the same recursion relations as the bosonic polynomials of Forrester and Baxter. We use this method to get fermionic representations of the characters for many classes of r and s.

  19. wPip Wolbachia contribution to Aedes albopictus SIT performance: Advantages under intensive rearing.

    PubMed

    Puggioli, Arianna; Calvitti, Maurizio; Moretti, Riccardo; Bellini, Romeo

    2016-12-01

    As a part of a project aiming at the suppression of the mosquito vector Aedes albopictus, a specific Ae. albopictus line producing sterile males, ARwP, was tested for its suitability to intense rearing conditions compatible with mass production and field release. This line was developed by the Italian National Agency for New Technologies, Energy and Sustainable Economic Development thanks to the artificial infection with a heterologous Wolbachia strain, resulting in a bidirectional incompatibility pattern with wild-type Ae. albopictus. ARwP was reared under Standard Operating Procedures at the Centro Agricoltura Ambiente and compared with a wild-type strain in terms of time of pupation onset, production of male pupae in the following 24h and mechanical sexing efficacy. Mating competitiveness of ARwP males was also evaluated in comparison with irradiated wild-type males in large field enclosures. ARwP males demonstrated a significantly shorter time of pupation onset, a higher rate of production of male pupae in the following 24h and a lower percentage of residual contaminant females when applying mechanical sexing procedures. In addition, ARwP males were more efficient than wild-types in competing for wild-type females in large enclosures, thus inducing a level of sterility significantly higher than that expected for an equal mating competitiveness. These results encourage the use of this Ae. albopictus strain as suppression tool against Ae. albopictus based on considerations thoroughly discussed in the manuscript. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode.

    PubMed

    Deng, Yexin; Luo, Zhe; Conrad, Nathan J; Liu, Han; Gong, Yongji; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Xu, Xianfan; Ye, Peide D

    2014-08-26

    Phosphorene, a elemental 2D material, which is the monolayer of black phosphorus, has been mechanically exfoliated recently. In its bulk form, black phosphorus shows high carrier mobility (∼10,000 cm(2)/V·s) and a ∼0.3 eV direct band gap. Well-behaved p-type field-effect transistors with mobilities of up to 1000 cm(2)/V·s, as well as phototransistors, have been demonstrated on few-layer black phosphorus, showing its promise for electronics and optoelectronics applications due to its high hole mobility and thickness-dependent direct band gap. However, p–n junctions, the basic building blocks of modern electronic and optoelectronic devices, have not yet been realized based on black phosphorus. In this paper, we demonstrate a gate-tunable p–n diode based on a p-type black phosphorus/n-type monolayer MoS2 van der Waals p–n heterojunction. Upon illumination, these ultrathin p–n diodes show a maximum photodetection responsivity of 418 mA/W at the wavelength of 633 nm and photovoltaic energy conversion with an external quantum efficiency of 0.3%. These p–n diodes show promise for broad-band photodetection and solar energy harvesting.

  1. Volumetric strain in relation to particle displacements for body and surface waves in a general viscoelastic half-space

    USGS Publications Warehouse

    Borcherdt, R.D.

    1988-01-01

    Dilatational earth strain, associated with the radiation fields for several hundred local, regional, and teleseismic earthquakes, has been recorded over an extended bandwidth and dynamic range at four borehole sites near the San Andreas fault, CA. The general theory of linear viscoelasticity is applied to account for anelasticity of the near-surface materials and to provide a mathematical basis for interpretation of seismic radiation fields as detected simultaneously by co-located volumetric strain meters and seismometers. The general theory is applied to describe volumetric strain and displacement for general (homogeneous or inhomogeneous) P and S waves in an anelastic whole space. Solutions to the free-surface reflection problems for incident general P and S-I waves are used to evaluate the effect of the free surface on observations from co-located sensors. Corresponding expressions are derived for a Rayleigh-type surface wave on a linear viscoelastic half-space. The theory predicts a number of anelastic wave field characteristics that can be inferred from observation of volumetric strains and displacement fields as detected by co-located sensors that cannot be inferred from either sensor alone. -from Author

  2. Effect of two types of control questions and two question formats on the outcomes of polygraph examinations.

    PubMed

    Horvath, Frank; Palmatier, John J

    2008-07-01

    Two major variations of polygraph "Control Question" testing, the Zone Comparison (ZoC) and the Modified General Question Test (MGQT) were evaluated. Within each, the type of control question, Exclusive or "time bar" (e.g., "Before you were 21, did you ever...") and Nonexclusive or "no time bar" (e.g., "Did you ever....?") was manipulated in a mock theft scenario, with 80 male and 40 female subjects randomly assigned to be either innocent or guilty. Polygraphic data collected by experienced field examiners were numerically scored by an evaluator blind to all aspects of the study. Decision accuracy was not related to the type of procedure (ZoC/MGQT) used or the subject's sex. Accuracy was significantly related to the type of control question [chi(2) (2) = 11.46, p = 0.003; tau c = 0.29]. Nonexclusive control questions produced greater accuracy than Exclusive control questions on both innocent and guilty subjects. These results and subjects' self-reports support the general "theory" on which control question (CQ) testing is based. The need for better empirical support of accepted dogma and current field practices is strongly indicated by these findings.

  3. Helicons, magnetoplasma edge, and faraday rotation in solid state plasmas at microwave frequencies.

    PubMed

    Furdyna, J K

    1967-04-01

    The effect of magnetic field on propagation of electromagnetic waves through free carrier plasmas in semiconductors is discussed. The Faraday configuration and the parameter ranges omega(c),omega(p) > omega and omega(c) > tau(-1) are specifically considered. Dispersion of helicon waves, propagation near the magnetoplasma edge (omega(p)(2) = omegaomega(c)), and the Faraday rotation are developed in terms of the one-electron Drude theory. Microwave transmission measurements at 35 Gc/s on n-type InSb are presented. Experiments near the magnetoplasma edge yield the value of the static dielectric constant of the InSb lattice K(l) = 19.3 +/- 0.8. Faraday rotation, observed beyond the edge, is found to be extremely large. Some practical possibilities for this effect are considered.

  4. [Characteristics of soil moisture variation in different land use types in the hilly region of the Loess Plateau, China].

    PubMed

    Tang, Min; Zhao, Xi Ning; Gao, Xiao Dong; Zhang, Chao; Wu, Pu Te

    2018-03-01

    Soil water availability is a key factor restricting the ecological construction and sustainable land use in the loess hilly region. It is of great theoretical and practical significance to understand the soil moisture status of different land use types for the vegetation restoration and the effective utilization of land resources in this area. In this study, EC-5 soil moisture sensors were used to continuously monitor the soil moisture content in the 0-160 cm soil profile in the slope cropland, terraced fields, jujube orchard, and grassland during the growing season (from May to October) in the Yuanzegou catchment on the Loess Plateau, to investigate soil moisture dynamics in these four typical land use types. The results showed that there were differences in seasonal variation, water storage characteristics, and vertical distribution of soil moisture under different land use types in both the normal precipitation (2014) and dry (2015) years. The terraced fields showed good water retention capacity in the dry year, with the average soil moisture content of 0-60 cm soil layer in the growing season being 2.6%, 4.2%, and 1.8% higher than that of the slope cropland, jujube orchard, and grassland (all P<0.05). The water storage of 0-160 cm soil profile was 43.90, 32.08, and 18.69 mm higher than that of slope cropland, jujube orchard, and grassland, respectively. In the normal precipitation year, the average soil moisture content of 0-60 cm soil layer in jujube orchard in the growing season was 2.9%, 3.8%, and 4.5% lower than that of slope cropland, terraced fields, and grassland, respectively (all P<0.05). In the dry year, the effective soil water storage of 0-160 cm soil profile in the jujube orchard accounted for 35.0% of the total soil water storage. The grey relational grade between the soil moisture in the surface layer (0-20 cm) and soil moisture in the middle layer (20-100 cm) under different land use types was large, and the trend for the similarity degree of soil moisture variation followed terraced fields > grassland > slope cropland > jujube orchard. The slope cropland in this area could be transformed into terraced fields to improve the utilization of precipitation and promote the construction of ecological agriculture. Aiming at resolving the severe water shortage in the rain-fed jujube orchard for the sustainable development of jujube orchard in the loess hilly region, appropriate water management measures should be taken to reduce the water consumption of jujube trees and other inefficient water consumption.

  5. Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations

    NASA Astrophysics Data System (ADS)

    Vetoshko, P. M.; Gusev, N. A.; Chepurnova, D. A.; Samoilova, E. V.; Syvorotka, I. I.; Syvorotka, I. M.; Zvezdin, A. K.; Korotaeva, A. A.; Belotelov, V. I.

    2016-08-01

    A new type of f lux-gate vector magnetometer based on epitaxial yttrium iron garnet films has been developed and constructed for magnetocardiography (MCG) investigations. The magnetic field sensor can operate at room temperature and measure MCG signals at a distance of about 1 mm from the thoracic cage. The high sensitivity of the sensor, better than 100 fT/Hz1/2, is demonstrated by the results of MCG measurements on rats. The main MCG pattern details and R-peak on a level of 10 pT are observed without temporal averaging, which allows heart rate anomalies to be studied. The proposed magnetic sensors can be effectively used in MCG investigations.

  6. Cross-Sectional Comparison of Executive Attention Function in Normally Aging Long-Term T'ai Chi, Meditation, and Aerobic Fitness Practitioners Versus Sedentary Adults

    PubMed Central

    Manselle, Wayne; Woollacott, Marjorie H.

    2014-01-01

    Abstract This cross-sectional field study documented the effect of long-term t'ai chi, meditation, or aerobic exercise training versus a sedentary lifestyle on executive function. It was predicted that long-term training in t'ai chi and meditation plus exercise would produce greater benefits to executive function than aerobic exercise. T'ai chi and meditation plus exercise include mental and physical training. Fifty-four volunteers were tested: t'ai chi (n=10); meditation+exercise (n=16); aerobic exercisers (n=16); and sedentary controls (n=12). A one-factor (group), one-covariate (age) multivariate analysis of covariance was performed. Significant main effects of group and age were found (group, 67.9%, p<0.001; age, 76.3%, p=0.001). T'ai chi and meditation practitioners but not aerobic exercisers outperformed sedentary controls on percent switch costs (p=0.001 and p=0.006, respectively), suggesting that there may be differential effects of training type on executive function. PMID:24286339

  7. Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Bing; Zhu, Chen-Hui; Liu, Yi

    Periodically eclipsed π-stacking columns in two-dimensional covalent organic frameworks (2D COFs) could function as direct channel paths for charge carrier transport. Incorporating a welldefined 2D COF into organic electronic devices, however, is still a challenge. Herein, we reported the solvothermal synthesis of a COF TFPy-PPDA film on single layer graphene (SLG), which was constructed via covalent imine-type linkage by employing 1,3,6,8-tetrakis(p-formylphenyl)pyrene (TFPy) and p-phenylenediamine (PPDA) as building blocks. A vertical field-effect transistor (VFET) based on the heterostructure of COF TFPy-PPDA film and SLG shows ambipolar charge carrier behavior under lower modulating voltages. Work-function-tunable contact between SLG and COFTFPy-PPDA film andmore » suitable injection barriers of charge carriers lead to the ambipolar transport with high current density on/off ratio (>10 5) and high on-current density (>4.1 Acm -2). Interfacing 2D COF with graphene for VFET could shed the promising application prospect of 2D COFs in organic electronics and optoelectronics.« less

  8. Polyelectrolyte brushes on dielectric surfaces

    NASA Astrophysics Data System (ADS)

    Antila, Hanne; Luijten, Erik

    When chains of charged polymers are grafted to a solid surface, a polyelectrolyte (PE) brush results. These types of PE assemblies have a wide range of applications ranging from fuel cells and switchable electrodes to drug delivery. Many of these applications stem from the ability of PE brushes to respond to external stimuli: the brush properties can be tuned, for example, by varying electric field, PE grafting density, pH, salt concentration or salt valency. Accordingly, deciphering the brush behavior under different conditions has been a subject of considerable experimental, theoretical, and computational research efforts. However, the effect of the dielectric properties of the substrate on the PE brush has received much less attention. We use coarse-grained molecular dynamics simulations to show how varying the dielectric mismatch between the solvent and the substrate can significantly affect the brush. We demonstrate how tuning this mismatch can either diminish or enhance the effects of other control parameters, such as pH, on the brush properties. Furthermore, we investigate how dielectric properties of the substrate affect the brush, and the ion distribution and mobility within the brush, when the brush is exposed to an electric field.

  9. Oriented Covalent Organic Framework Film on Graphene for Robust Ambipolar Vertical Organic Field-Effect Transistor

    DOE PAGES

    Sun, Bing; Zhu, Chen-Hui; Liu, Yi; ...

    2017-04-13

    Periodically eclipsed π-stacking columns in two-dimensional covalent organic frameworks (2D COFs) could function as direct channel paths for charge carrier transport. Incorporating a welldefined 2D COF into organic electronic devices, however, is still a challenge. Herein, we reported the solvothermal synthesis of a COF TFPy-PPDA film on single layer graphene (SLG), which was constructed via covalent imine-type linkage by employing 1,3,6,8-tetrakis(p-formylphenyl)pyrene (TFPy) and p-phenylenediamine (PPDA) as building blocks. A vertical field-effect transistor (VFET) based on the heterostructure of COF TFPy-PPDA film and SLG shows ambipolar charge carrier behavior under lower modulating voltages. Work-function-tunable contact between SLG and COFTFPy-PPDA film andmore » suitable injection barriers of charge carriers lead to the ambipolar transport with high current density on/off ratio (>10 5) and high on-current density (>4.1 Acm -2). Interfacing 2D COF with graphene for VFET could shed the promising application prospect of 2D COFs in organic electronics and optoelectronics.« less

  10. Does chair type influence outcome in the timed "Up and Go" test in older persons?

    PubMed

    Kalula, S Z; Swingler, G H; Sayer, A A; Badri, M; Ferreira, M

    2010-04-01

    To test the effects of the use of a collapsible, portable chair (chair B), as opposed to a 'standard' chair (chair A), on the outcome of the timed "Up and Go" (TUG) test. Cross-sectional. Multipurpose senior centres. Mobile older persons (N=118, mean age 77 years (range 62-99 years)). Time to complete the timed "Up and Go" test using chair A and chair B, and inter-rater agreement in the time scores. Time taken to complete the TUG test did not differ by chair type [median (interquartile range, IQR) = 12.3 (9.53-15.9) and 12.6 (9.7-16.6)] seconds for Chair A and B respectively, p-value=0.87. In multiple regression analyses, factors that impacted on time difference in test performance for the two chairs were use of a walking aid during the test [Odds ratio (OR) = 3.7 95%CI 1.1-11.9, p=0.031], observed difficulty with mobility (OR= 27.7 95%CI 2.6-290, p=0.006), and a history of arthritis in the knees (OR= 2.9 95%CI 1.0-8.7, P=0.05). In an inter-rater agreement analysis, no significant difference was found between time scores recorded by the two raters; median (IQR) = 12.4 (10.9-15.9) and 12.3 (7.2-59.1) seconds for the occupation therapist and for the research assistant, respectively (Wilcoxon matched pairs test, p=0.124, Spearman correlation coefficient = 0.99, p < 0.001). The use of a portable canvas chair with standardised specifications offers an acceptable alternative to the use of a 'standard' chair in assessments of fall risk using the TUG test in field settings where field workers are reliant on public transport.

  11. Seebeck Effects in N-Type and P-Type Polymers Driven Simultaneously by Surface Polarization and Entropy Differences Based on Conductor/Polymer/Conductor Thin-Film Devices

    DOE PAGES

    Hu, Dehua; Liu, Qing; Tisdale, Jeremy; ...

    2015-04-15

    This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less

  12. Spontaneous C P -violation in the simplest little Higgs model and its future collider tests: The scalar sector

    NASA Astrophysics Data System (ADS)

    Mao, Ying-nan

    2018-04-01

    We propose spontaneous C P violation in the simplest little Higgs model. In this model, the pseudoscalar field can acquire a nonzero vacuum expectation value. This leads to a mixing between the two scalars with different C P charge, which means that spontaneous C P violation occurs. It is also a connection between the composite Higgs mechanism and C P violation. Facing the experimental constraints, the model is still viable for both scenarios in which the extra scalar appears below or around the electroweak scale. We also discuss the future collider tests of C P violation in the scalar sector through measuring h2Z Z and h1h2Z' vertices (see the definitions of the particles in the text), which provide new motivations for future e+e- and p p colliders. This also shows the importance of the vector-vector-scalar- and vector-scalar-scalar-type vertices in discovering C P -violation effects in the scalar sector.

  13. Flux flow and flux dynamics in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Bennett, L. H.; Turchinskaya, M.; Swartzendruber, L. J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D. L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed.

  14. Effects of the local environment on CNT-based nanoelectronics: development of a microenvironment probe station.

    PubMed

    McClain, Devon; Thomas, Nicole; Nguyen, Tri; O'Brien, Kevin P; Jiao, Jun

    2010-11-01

    In this study, we report the development of a microenvironment probe station capable of detecting the effect of small changes to the local environment around a carbon nanotube conduction channel. The microenvironment probe station is highly versatile and is used to characterize alterations in carbon nanotube field effect transistor electrical behavior in response to changes in temperature, gas species, infrared and ultraviolet light. All devices were electrically characterized in atmospheric, ultrahigh vacuum and oxygen-rich environments. The results suggest that devices could be changed from n-type at 1 x 10(-8) torr through an intermediate ambipolar state at 1 x 10(-4) torr to p-type at atmosphere solely by increasing the oxygen concentration. The average resistance of these carbon nanotube field effect transistors after annealing was observed to decrease by approximately 54% from their initial value under ultrahigh vacuum to their final value in the presence of pure oxygen while corresponding threshold voltages shifts were also observed. Illumination with infrared light resulted in a approximately 10% increase in drain current with an estimated response time <1 fs due to photon-induced electron-hole pair generation. Illumination with ultraviolet light resulted in approximately 5-15% reduction in drain current due to photon-induced desorption of oxygen adsorbate.

  15. Effect of pH and pulsed electric field process parameters on the aflatoxin reduction in model system using response surface methodology: Effect of pH and PEF on Aflatoxin Reduction.

    PubMed

    Vijayalakshmi, Subramanian; Nadanasabhapathi, Shanmugam; Kumar, Ranganathan; Sunny Kumar, S

    2018-03-01

    The presence of aflatoxin, a carcinogenic and toxigenic secondary metabolite produced by Aspergillus species, in food matrix has been a major worldwide problem for years now. Food processing methods such as roasting, extrusion, etc. have been employed for effective destruction of aflatoxins, which are known for their thermo-stable nature. The high temperature treatment, adversely affects the nutritive and other quality attributes of the food, leading to the necessity of application of non-thermal processing techniques such as ultrasonication, gamma irradiation, high pressure processing, pulsed electric field (PEF), etc. The present study was focused on analysing the efficacy of the PEF process in the reduction of the toxin content, which was subsequently quantified using HPLC. The process parameters of different pH model system (potato dextrose agar) artificially spiked with aflatoxin mix standard was optimized using the response surface methodology. The optimization of PEF process effects on the responses aflatoxin B1 and total aflatoxin reduction (%) by pH (4-10), pulse width (10-26 µs) and output voltage (20-65%), fitted 2FI model and quadratic model respectively. The response surface plots obtained for the processes were of saddle point type, with the absence of minimum or maximum response at the centre point. The implemented numerical optimization showed that the predicted and actual values were similar, proving the adequacy of the fitted models and also proved the possible application of PEF in toxin reduction.

  16. High-mobility field-effect transistor based on crystalline ZnSnO3 thin films

    NASA Astrophysics Data System (ADS)

    Minato, Hiroya; Fujiwara, Kohei; Tsukazaki, Atsushi

    2018-05-01

    We propose crystalline ZnSnO3 as a new channel material for field-effect transistors. By molecular-beam epitaxy on LiNbO3(0001) substrates, we synthesized films of ZnSnO3, which crystallizes in the LiNbO3-type polar structure. Field-effect transistors on ZnSnO3 exhibit n-type operation with field-effect mobility of as high as 45 cm2V-1s-1 at room temperature. Systematic examination of the transistor operation for channels with different Zn/Sn compositional ratios revealed that the observed high-mobility reflects the nature of stoichiometric ZnSnO3 phase. Moreover, we found an indication of coupling of transistor characteristics with intrinsic spontaneous polarization in ZnSnO3, potentially leading to a distinct type of polarization-induced conduction.

  17. Upset Characterization of the PowerPC405 Hard-core Processor Embedded in Virtex-II Pro Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Swift, Gary M.; Allen, Gregory S.; Farmanesh, Farhad; George, Jeffrey; Petrick, David J.; Chayab, Fayez

    2006-01-01

    Shown in this presentation are recent results for the upset susceptibility of the various types of memory elements in the embedded PowerPC405 in the Xilinx V2P40 FPGA. For critical flight designs where configuration upsets are mitigated effectively through appropriate design triplication and configuration scrubbing, these upsets of processor elements can dominate the system error rate. Data from irradiations with both protons and heavy ions are given and compared using available models.

  18. Investigation of Luminescent Diode Arrays for Photochromic Film Recording

    DTIC Science & Technology

    1969-06-30

    usually measured by Hall effect and rev.istivity measurements using the Van der Pauw technique.) Ami an example, if GP is Initially 3 x i10 P type and...contacta and eettin% the specimen in a known magnetic field. The Van der Pauw technique Is used to meaeure the HAll coefficient. From the Hall coefficient...iraenuitive within 30 minutes after activation. Un~ der ultr’aviolet exposure, dark red ’Iuoro-cence occurs. When the activation properties of the film are

  19. The fabrication of carbon nanotube field-effect transistors with semiconductors as the source and drain contact materials.

    PubMed

    Xiao, Z; Camino, F E

    2009-04-01

    Sb(2)Te(3) and Bi(2)Te(2)Se semiconductor materials were used as the source and drain contact materials in the fabrication of carbon nanotube field-effect transistors (CNTFETs). Ultra-purified single-walled carbon nanotubes (SWCNTs) were ultrasonically dispersed in N-methyl pyrrolidone solvent. Dielectrophoresis was used to deposit and align SWCNTs for fabrication of CNTFETs. The Sb(2)Te(3)- and Bi(2)Te(2)Se-based CNTFETs demonstrate p-type metal-oxide-silicon-like I-V curves with high on/off drain-source current ratio at large drain-source voltages and good saturation of drain-source current with increasing drain-source voltage. The fabrication process developed is novel and has general meaning, and could be used for the fabrication of SWCNT-based integrated devices and systems with semiconductor contact materials.

  20. Bird use of fields treated postharvest with two types of flooding in Tulare Basin, California

    USGS Publications Warehouse

    Fleskes, Joseph P.; Skalos, Daniel A.; Farinha, Melissa A.

    2012-01-01

    We surveyed birds on grain and non-grain fields in the Tulare Basin of California treated post-harvest with two types of flooding that varied in duration and depth of water applied (Flooded-type fields [FLD]: 1 week; Irrigated-type fields [IRG]: 1 week) flooding increased waterbird use of grain fields in the Tulare Basin more than in the northern Central Valley. Thus, even though water costs are high in the Tulare Basin, if net benefit to waterbirds is considered, management programs that increase availability of FLD-type fields (especially grain) in the Tulare Basin may be a cost-effective option to help meet waterbird habitat conservation goals in the Central Valley of California.

  1. Pulsed electromagnetic fields preserve bone architecture and mechanical properties and stimulate porous implant osseointegration by promoting bone anabolism in type 1 diabetic rabbits.

    PubMed

    Cai, J; Li, W; Sun, T; Li, X; Luo, E; Jing, D

    2018-05-01

    The effects of exogenous pulsed electromagnetic field (PEMF) stimulation on T1DM-associated osteopathy were investigated in alloxan-treated rabbits. We found that PEMF improved bone architecture, mechanical properties, and porous titanium (pTi) osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism, and revealed the clinical potential of PEMF stimulation for the treatment of T1DM-associated bone complications. Type 1 diabetes mellitus (T1DM) is associated with deteriorated bone architecture and impaired osseous healing potential; nonetheless, effective methods for resisting T1DM-associated osteopenia/osteoporosis and promoting bone defect/fracture healing are still lacking. PEMF, as a safe and noninvasive method, have proven to be effective for promoting osteogenesis, whereas the potential effects of PEMF on T1DM osteopathy remain poorly understood. We herein investigated the effects of PEMF stimulation on bone architecture, mechanical properties, bone turnover, and its potential molecular mechanisms in alloxan-treated diabetic rabbits. We also developed novel nontoxic Ti2448 pTi implants with closer elastic modulus with natural bone and investigated the impacts of PEMF on pTi osseointegration for T1DM bone-defect repair. The deteriorations of cancellous and cortical bone architecture and tissue-level mechanical strength were attenuated by 8-week PEMF stimulation. PEMF also promoted osseointegration and stimulated more adequate bone ingrowths into the pore spaces of pTi in T1DM long-bone defects. Moreover, T1DM-associated reduction of bone formation was significantly attenuated by PEMF, whereas PEMF exerted no impacts on bone resorption. We also found PEMF-induced activation of osteoblastogenesis-related Wnt/β-catenin signaling in T1DM skeletons, but PEMF did not alter osteoclastogenesis-associated RANKL/RANK signaling gene expression. We reveal that PEMF improved bone architecture, mechanical properties, and pTi osseointegration by promoting bone anabolism through a canonical Wnt/β-catenin signaling-associated mechanism. This study enriches our basic knowledge for understanding skeletal sensitivity in response to external electromagnetic signals, and also opens new treatment alternatives for T1DM-associated osteopenia/osteoporosis and osseous defects in an easy and highly efficient manner.

  2. Theoretical study of charge and spin-resolved quantum transport in III-V semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Botha, Andre Erasmus

    2003-07-01

    This thesis is a theoretical investigation into the spin-resolved transport properties of III-V semiconductor quantum wells. Based on a modified 8 x 8 k · p matrix Hamiltonian, a theory is developed to study the recombination rate in type-II semi metallic quantum wells. The non-parabolicity of the energy band structure and its anisotropy is included via the interband matrix elements and the addition of an anisotropic crystal field potential (parameterized by delta). The effects of externally applied electric and magnetic fields are incorporated into the theory. The electric field is incorporated using a WKB-type approximation. In order to study the anisotropy, the magnetic field is incorporated so that it can be applied at an arbitrary angle theta, with respect to the crystallographic direction c[001]. The case of oblique tunneling (k|| ≠ 0), is also considered. Several interesting results, from calculations of the transmission coefficient, recombination rate, and electron-spin polarization, are presented and discussed for both n-type and p-type single and double quantum wells made from clean InAs and GaSb. For example, in the case of a 150 A wide GaSb/InAs/GaSb quantum well, with B = 4 T, and theta = pi/8, the two maxima in the electron-spin polarization, from the ground and first excited resonant states, are found to be approximately 75%, and 35%, respectively. As theta is varied, a maximum polarization is achieved for a given magnetic field, and this maximum depends on the value of the anisotropy parameter, delta. By using a more sophisticated 14 x 14 band k · p formalism, which explicitly takes into account the coupling between higher bands ( Gc15-Gu 15,Gc1-G u15 , and Gc1-Gc15 ), a theory is developed for the total zero-field spin-splitting and resulting electron-spin polarization in symmetric and asymmetric type-II quantum wells. This theory includes the non-parabolicity, non sphericity, and anisotropy of the energy band structure. The anisotropy in the band structure is introduced via the addition of an anisotropic crystal potential. In the case of an asymmetric GaSb/InAs/GaSb quantum well, it is predicted that the two contributions to the total spin-splitting will be roughly of equal importance. It is also shown that the polarization maxima and minima, for a given resonance state, may not be equal in magnitude. If the resonant state lies close to the forbidden energy gap, the transmission peaks for spin-up and spin-down are skewed. This feature may have potential applications in the design of spintronic filtering and switching devices, in which it is desirable to filter unpolarized electrons (with respect to energy and spin) in order to produce highly polarized, adjustable low-energy beams.

  3. Transient oscillation of shape and membrane conductivity changes by field pulse-induced electroporation in nano-sized phospholipid vesicles.

    PubMed

    Dimitrov, Vasil; Kakorin, Sergej; Neumann, Eberhard

    2013-05-07

    The results of electrooptical and conductometrical measurements on unilamellar lipid vesicles (of mean radius a = 90 nm), filled with 0.2 M NaCl solution, suspended in 0.33 M sucrose solution of 0.2 mM NaCl, and exposed to a stepwise decaying electric field (time constant τE = 154 μs) in the range 10 ≤ E0 (kV cm(-1)) ≤ 90, are analyzed in terms of cyclic changes in vesicle shape and vesicle membrane conductivity. The two peaks in the dichroitic turbidity relaxations reflect two cycles of rapid membrane electroporation and slower resealing of long-lived electropores. The field-induced changes reflect structural transitions between closed (C) and porated (P) membrane states, qualified by pores of type P1 and of type P2, respectively. The transient change in the membrane conductivity and the transient shape oscillation are based on changes in the pore density of the (larger) P2-pores along a hysteresis cycle. The P2-pore formation leads to transient net ion flows across the P2-pores and to transient changes in the membrane field. The kinetic data are numerically processed in terms of coupled structural relaxation modes. Using the torus-hole pore model, the mean inner pore radii are estimated to be r1 = 0.38 (±0.05) nm and r2 = 1.7 (±0.1) nm, respectively. The observation of a transient oscillation of membrane electroporation and of shape changes in a longer lasting external field pulse is suggestive of potential resonance enhancement, for instance, of electro-uptake by, and of electro-release of biogenic molecules from, biological cells in trains of long-lasting low-intensity voltage pulses.

  4. Electric field effect in superconductor-ferroelectric structures

    NASA Technical Reports Server (NTRS)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  5. Type-III and IV interacting Weyl points

    NASA Astrophysics Data System (ADS)

    Nissinen, J.; Volovik, G. E.

    2017-04-01

    3+1-dimensional Weyl fermions in interacting systems are described by effective quasi-relativistic Green's functions parametrized by a 16-element matrix e α μ in an expansion around the Weyl point. The matrix e α μ can be naturally identified as an effective tetrad field for the fermions. The correspondence between the tetrad field and an effective quasi-relativistic metric gμν governing the Weyl fermions allows for the possibility to simulate different classes of metric fields emerging in general relativity in interacting Weyl semimetals. According to this correspondence, there can be four types of Weyl fermions, depending on the signs of the components g 00 and g 00 of the effective metric. In addition to the conventional type-I fermions with a tilted Weyl cone and type-II fermions with an overtilted Weyl cone for g 00 > 0 and, respectively, g 00 > 0 or g 00 < 0, we find additional "type-III" and "type-IV" Weyl fermions with instabilities (complex frequencies) for g 00 < 0 and g 00 > 0 or g 00 < 0, respectively. While the type-I and type-II Weyl points allow us to simulate the black hole event horizon at an interface where g 00 changes sign, the type-III Weyl point leads to effective spacetimes with closed timelike curves.

  6. Anisotropic magnetotail equilibrium and convection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hau, L.N.

    This paper reports on self-consistent two-dimensional equilibria with anisotropic plasma pressure for the Earth's magnetotail. These configurations are obtained by numerically solving the generalized Grad-Shafranov equation, describing anisotropic plasmas with p[parallel] [ne] p[perpendicular], including the Earth's dipolar field. Consistency between these new equilibria and the assumption of steady-state, sunward convection, described by the double-adiabatic laws, is examined. As for the case of isotropic pressure [Erickson and Wolf, 1980], there exists a discrepancy between typical quite-time magnetic field models and the assumption of steady-state double-adiabatic lossless plasma sheet convection. However, unlike that case, this inconsistency cannot be removed by the presencemore » of a weak equatorial normal magnetic field strength in the near tail region: magnetic field configurations of this type produce unreasonably large pressure anisotropies, p[parallel] > p[perpendicular], in the plasma sheet. 16 refs., 5 figs.« less

  7. Boundary States and Broken Bulk Symmetries in WAr Minimal Models

    NASA Astrophysics Data System (ADS)

    Caldeira, Alexandre F.; Wheater, J. F.

    We review the free-field formalism for boundary states. The multi-component free-field formalism is then used to study the boundary states of (p',p) rational conformal field theories having a W symmetry of the type Ar. We show how the classification of primary fields for these models is obtained by demanding modular covariance of cylinder amplitudes and that the resulting modular S matrix satisfies all the necessary conditions. Basis states satisfying the boundary conditions are found in the form of coherent states and as expected we find that W violating states can be found for all these models. We construct consistent physical boundary states for all the rank 2 (p + 1,p) models (of which the already known case of the 3-state Potts model is the simplest example) and find that the W violating sector possesses a direct analogue of the Verlinde formula.

  8. Reversible and Precisely Controllable p/n-Type Doping of MoTe2 Transistors through Electrothermal Doping.

    PubMed

    Chang, Yuan-Ming; Yang, Shih-Hsien; Lin, Che-Yi; Chen, Chang-Hung; Lien, Chen-Hsin; Jian, Wen-Bin; Ueno, Keiji; Suen, Yuen-Wuu; Tsukagoshi, Kazuhito; Lin, Yen-Fu

    2018-03-01

    Precisely controllable and reversible p/n-type electronic doping of molybdenum ditelluride (MoTe 2 ) transistors is achieved by electrothermal doping (E-doping) processes. E-doping includes electrothermal annealing induced by an electric field in a vacuum chamber, which results in electron (n-type) doping and exposure to air, which induces hole (p-type) doping. The doping arises from the interaction between oxygen molecules or water vapor and defects of tellurium at the MoTe 2 surface, and allows the accurate manipulation of p/n-type electrical doping of MoTe 2 transistors. Because no dopant or special gas is used in the E-doping processes of MoTe 2 , E-doping is a simple and efficient method. Moreover, through exact manipulation of p/n-type doping of MoTe 2 transistors, quasi-complementary metal oxide semiconductor adaptive logic circuits, such as an inverter, not or gate, and not and gate, are successfully fabricated. The simple method, E-doping, adopted in obtaining p/n-type doping of MoTe 2 transistors undoubtedly has provided an approach to create the electronic devices with desired performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Highly Sensitive Thin-Film Field-Effect Transistor Sensor for Ammonia with the DPP-Bithiophene Conjugated Polymer Entailing Thermally Cleavable tert-Butoxy Groups in the Side Chains.

    PubMed

    Yang, Yang; Zhang, Guanxin; Luo, Hewei; Yao, Jingjing; Liu, Zitong; Zhang, Deqing

    2016-02-17

    The sensing and detection of ammonia have received increasing attention in recent years because of the growing emphasis on environmental and health issues. In this paper, we report a thin-film field-effect transistor (FET)-based sensor for ammonia and other amines with remarkable high sensitivity and satisfactory selectivity by employing the DPP-bithiophene conjugated polymer pDPPBu-BT in which tert-butoxycarboxyl groups are incorporated in the side chains. This polymer thin film shows p-type semiconducting property. On the basis of TGA and FT-IR analysis, tert-butoxycarboxyl groups can be transformed into the -COOH ones by eliminating gaseous isobutylene after thermal annealing of pDPPBu-BT thin film at 240 °C. The FET with the thermally treated thin film of pDPPBu-BT displays remarkably sensitive and selective response toward ammonia and volatile amines. This can be attributed to the fact that the elimination of gaseous isobutylene accompanies the formation of nanopores with the thin film, which will facilitate the diffusion and interaction of ammonia and other amines with the semiconducting layer, leading to high sensitivity and fast response for this FET sensor. This FET sensor can detect ammonia down to 10 ppb and the interferences from other volatile analytes except amines can be negligible.

  10. Detection of α-fetoprotein in human serum using carbon nanotube transistor

    NASA Astrophysics Data System (ADS)

    So, Hye-Mi; Park, Dong-Won; Lee, Seong-Kyu; Kim, Beom Soo; Chang, Hyunju; Lee, Jeong-O.

    2009-03-01

    We have fabricated antibody-coated carbon nanotube field effect transistor (CNT-FET) sensor for the detection of α-fetoprotein (AFP), single chain glycoprotein of 70 kDa that is normally expressed in the fetal liver, in human serum. The AFP-specific antibodies were immobilized on CNT with linker molecule such as pyrenebutyric acid N-hydroxysuccinimide ester. To prevent nonspecific adsorption of antigen, we performed blocking procedure using bovine serum albumin (BSA). Antibody-antigen binding was determined by measuring electrical conductance change of FET and took an average of thereshold voltage change before and after binding. Also we checked concentration-dependent conductance change in human serum using both p-type SWNT-FETs and n-type SWNT-FETs.

  11. Field occurrences and petrology of eclogites from the Dabie Mountains, Anhui, central China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Jing, Y.; Liou, J. G.; Pan, G.; Liang, W.; Xia, M.; Maruyama, S.

    1990-11-01

    Four distinct types of eclogites are recognized according to their field occurrences and mineral parageneses in a gneiss terrane of the Dabie Mountains, a collision zone between the Sino-Korean and Yangtze cratons in central China. Some eclogites contain coesite and its quartz pseudomorphs enclosed in garnet and omphacite. Type I eclogites occur as layers in serpentinites and contain garnet, clinopyroxene, orthopyroxene, phengite, rutile, and coesite pseudomorph. Type II eclogites occur as lenticular bodies inside serpentinites and contain garnet, clinopyroxene, quartz, rutile, and edenitic hornblende. Type III eclogites occur as blocks of 2 cm to 20 m in size in a matrix of hornblende gneiss and biotite gneiss, and Type IV eclogites occur as thin layers interbedded with amphibolites. P- T estimates for these different eclogites indicate that they were formed under different physical conditions. All the eclogites were affected by later regional metamorphism for which the P- T conditions are estimated. This paper provides an introduction to the abundant eclogites from central China which have not been reported previously in Western literature. Specifically, the mode of field occurrence, petrography, mineral chemistry and formation conditions of the four types of eclogites are described. The paper is thus designed to establish a petrological framework for future detailed studies of the eclogites and their country rocks in an ancient zone of collision.

  12. Long-term oscillations of sunspots and a special class of artifacts in SOHO/MDI and SDO/HMI data

    NASA Astrophysics Data System (ADS)

    Efremov, V. I.; Solov'ev, A. A.; Parfinenko, L. D.; Riehokainen, A.; Kirichek, E.; Smirnova, V. V.; Varun, Y. N.; Bakunina, I.; Zhivanovich, I.

    2018-03-01

    A specific type of artifacts (named as " p2p"), that originate due to displacement of the image of a moving object along the digital (pixel) matrix of receiver are analyzed in detail. The criteria of appearance and the influence of these artifacts on the study of long-term oscillations of sunspots are deduced. The obtained criteria suggest us methods for reduction or even elimination of these artifacts. It is shown that the use of integral parameters can be very effective against the " p2p" artifact distortions. The simultaneous observations of sunspot magnetic field and ultraviolet intensity of the umbra have given the same periods for the long-term oscillations. In this way the real physical nature of the oscillatory process, which is independent of the artifacts have been confirmed again. A number of examples considered here confirm the dependence between the periods of main mode of the sunspot magnetic field long-term oscillations and its strength. The dependence was derived earlier from both the observations and the theoretical model of the shallow sunspot. The anti-phase behavior of time variations of sunspot umbra area and magnetic field of the sunspot demonstrates that the umbra of sunspot moves in long-term oscillations as a whole: all its points oscillate with the same phase.

  13. Superconducting Meissner Effect Bearings for Cryogenic Turbomachines. Phase 1

    DTIC Science & Technology

    1989-05-01

    May 18 16 SUPPLEMENTARY NOTATION I? COSAr ICODES I. SUBJECT TERMS (Continue oan reverse if nocesnay and identify by block number) FIELD GROUP SUB...EXTERNAL FIELD FOR TYPE I AND TYPE II SUPERCONDUCTORS ........................................... 9 2.2 FIELD FROM A PERMANENT MAGNET THROUGH A TYPE II...OF TURBOEXPANDER........................ 33 4.2 TURBINE ROTOR , NOZZLES AND DIFFUSER PARAMETERS ..................... 34 5.1 SPACECRAFT PERIODIC

  14. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics.

    PubMed

    Chen, Wei; Shen, Jana K

    2014-10-15

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here, we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: (1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? (2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force-shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK(a) values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via cotitrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle mesh Ewald, considering the known artifacts due to charge-compensating background plasma. Copyright © 2014 Wiley Periodicals, Inc.

  15. Effects of system net charge and electrostatic truncation on all-atom constant pH molecular dynamics †

    PubMed Central

    Chen, Wei; Shen, Jana K.

    2014-01-01

    Constant pH molecular dynamics offers a means to rigorously study the effects of solution pH on dynamical processes. Here we address two critical questions arising from the most recent developments of the all-atom continuous constant pH molecular dynamics (CpHMD) method: 1) What is the effect of spatial electrostatic truncation on the sampling of protonation states? 2) Is the enforcement of electrical neutrality necessary for constant pH simulations? We first examined how the generalized reaction field and force shifting schemes modify the electrostatic forces on the titration coordinates. Free energy simulations of model compounds were then carried out to delineate the errors in the deprotonation free energy and salt-bridge stability due to electrostatic truncation and system net charge. Finally, CpHMD titration of a mini-protein HP36 was used to understand the manifestation of the two types of errors in the calculated pK a values. The major finding is that enforcing charge neutrality under all pH conditions and at all time via co-titrating ions significantly improves the accuracy of protonation-state sampling. We suggest that such finding is also relevant for simulations with particle-mesh Ewald, considering the known artifacts due to charge-compensating background plasma. PMID:25142416

  16. Male antenna morphology and its effect on scramble competition in false garden mantids

    NASA Astrophysics Data System (ADS)

    Jayaweera, Anuradhi; Barry, Katherine L.

    2017-10-01

    Well-developed antennae are crucial for many insects, but especially for scramble competitors, who race to find their mates using female sex cues. In these systems, the ability of males to locate females quickly is thought to be under strong selection. A rarely tested assumption is that males with more sensory structures are able to locate females faster. In the present study, we used the false garden mantid Pseudomantis albofimbriata to investigate male antennal morphology and its effect on male efficiency in finding a mate. We used scanning electron microscopy to describe the major sensilla types and their arrangement along the length of male antennae. We also conducted field enclosure trials relating male antennal morphology to scramble competition in this system. We identified six different types of antennal sensilla (cheatic, trichoid, basiconic, grooved peg, ceolocapitular and campaniform) on male P. albofimbriata antennae. As expected, males who had more trichoid sensilla located females quicker than did males with fewer sensilla. Results of the current study suggest that antenna morphology plays a significant role in mate location and hence scramble competition in the P. albofimbriata mating system.

  17. Male antenna morphology and its effect on scramble competition in false garden mantids.

    PubMed

    Jayaweera, Anuradhi; Barry, Katherine L

    2017-08-23

    Well-developed antennae are crucial for many insects, but especially for scramble competitors, who race to find their mates using female sex cues. In these systems, the ability of males to locate females quickly is thought to be under strong selection. A rarely tested assumption is that males with more sensory structures are able to locate females faster. In the present study, we used the false garden mantid Pseudomantis albofimbriata to investigate male antennal morphology and its effect on male efficiency in finding a mate. We used scanning electron microscopy to describe the major sensilla types and their arrangement along the length of male antennae. We also conducted field enclosure trials relating male antennal morphology to scramble competition in this system. We identified six different types of antennal sensilla (cheatic, trichoid, basiconic, grooved peg, ceolocapitular and campaniform) on male P. albofimbriata antennae. As expected, males who had more trichoid sensilla located females quicker than did males with fewer sensilla. Results of the current study suggest that antenna morphology plays a significant role in mate location and hence scramble competition in the P. albofimbriata mating system.

  18. A theoretical study of the dissociation of the sI methane hydrate induced by an external electric field

    NASA Astrophysics Data System (ADS)

    Luis, D. P.; Herrera-Hernández, E. C.; Saint-Martin, H.

    2015-11-01

    Molecular dynamics simulations in the equilibrium isobaric—isothermal (NPT) ensemble were used to examine the strength of an external electric field required to dissociate the methane hydrate sI structure. The water molecules were modeled using the four-site TIP4P/Ice analytical potential and methane was described as a simple Lennard-Jones interaction site. A series of simulations were performed at T = 260 K with P = 80 bars and at T = 285 K with P = 400 bars with an applied electric field ranging from 1.0 V nm-1 to 5.0 V nm-1. For both (T,P) conditions, applying a field greater than 1.5 V nm-1 resulted in the orientation of the water molecules such that an ice Ih-type structure was formed, from which the methane was segregated. When the simulations were continued without the external field, the ice-like structures became disordered, resulting in two separate phases: gas methane and liquid water.

  19. Organic farming favours insect-pollinated over non-insect pollinated forbs in meadows and wheat fields.

    PubMed

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators.

  20. Organic Farming Favours Insect-Pollinated over Non-Insect Pollinated Forbs in Meadows and Wheat Fields

    PubMed Central

    Batáry, Péter; Sutcliffe, Laura; Dormann, Carsten F.; Tscharntke, Teja

    2013-01-01

    The aim of this study was to determine the relative effects of landscape-scale management intensity, local management intensity and edge effect on diversity patterns of insect-pollinated vs. non-insect pollinated forbs in meadows and wheat fields. Nine landscapes were selected differing in percent intensively used agricultural area (IAA), each with a pair of organic and conventional winter wheat fields and a pair of organic and conventional meadows. Within fields, forbs were surveyed at the edge and in the interior. Both diversity and cover of forbs were positively affected by organic management in meadows and wheat fields. This effect, however, differed significantly between pollination types for species richness in both agroecosystem types (i.e. wheat fields and meadows) and for cover in meadows. Thus, we show for the first time in a comprehensive analysis that insect-pollinated plants benefit more from organic management than non-insect pollinated plants regardless of agroecosystem type and landscape complexity. These benefits were more pronounced in meadows than wheat fields. Finally, the community composition of insect-pollinated and non-insect-pollinated forbs differed considerably between management types. In summary, our findings in both agroecosystem types indicate that organic management generally supports a higher species richness and cover of insect-pollinated plants, which is likely to be favourable for the density and diversity of bees and other pollinators. PMID:23382979

  1. Control of locomotor stability in stabilizing and destabilizing environments.

    PubMed

    Wu, Mengnan/Mary; Brown, Geoffrey; Gordon, Keith E

    2017-06-01

    To develop effective interventions targeting locomotor stability, it is crucial to understand how people control and modify gait in response to changes in stabilization requirements. Our purpose was to examine how individuals with and without incomplete spinal cord injury (iSCI) control lateral stability in haptic walking environments that increase or decrease stabilization demands. We hypothesized that people would adapt to walking in a predictable, stabilizing viscous force field and unpredictable destabilizing force field by increasing and decreasing feedforward control of lateral stability, respectively. Adaptations in feedforward control were measured using after-effects when fields were removed. Both groups significantly (p<0.05) decreased step width in the stabilizing field. When the stabilizing field was removed, narrower steps persisted in both groups and subjects with iSCI significantly increased movement variability (p<0.05). The after-effect of walking in the stabilizing field was a suppression of ongoing general stabilization mechanisms. In the destabilizing field, subjects with iSCI took faster steps and increased lateral margins of stability (p<0.05). Step frequency increases persisted when the destabilizing field was removed (p<0.05), suggesting that subjects with iSCI made feedforward adaptions to increase control of lateral stability. In contrast, in the destabilizing field, non-impaired subjects increased movement variability (p<0.05) and did not change step width, step frequency, or lateral margin of stability (p>0.05). When the destabilizing field was removed, increases in movement variability persisted (p<0.05), suggesting that non-impaired subjects made feedforward decreases in resistance to perturbations. Published by Elsevier B.V.

  2. Residential magnetic fields predicted from wiring configurations: II. Relationships To childhood leukemia.

    PubMed

    Thomas, D C; Bowman, J D; Jiang, L; Jiang, F; Peters, J M

    1999-10-01

    Case-control data on childhood leukemia in Los Angeles County were reanalyzed with residential magnetic fields predicted from the wiring configurations of nearby transmission and distribution lines. As described in a companion paper, the 24-h means of the magnetic field's magnitude in subjects' homes were predicted by a physically based regression model that had been fitted to 24-h measurements and wiring data. In addition, magnetic field exposures were adjusted for the most likely form of exposure assessment errors: classic errors for the 24-h measurements and Berkson errors for the predictions from wire configurations. Although the measured fields had no association with childhood leukemia (P for trend=.88), the risks were significant for predicted magnetic fields above 1.25 mG (odds ratio=2.00, 95% confidence interval=1.03-3.89), and a significant dose-response was seen (P for trend=.02). When exposures were determined by a combination of predictions and measurements that corrects for errors, the odds ratio (odd ratio=2.19, 95% confidence interval=1.12-4.31) and the trend (p =.007) showed somewhat greater significance. These findings support the hypothesis that magnetic fields from electrical lines are causally related to childhood leukemia but that this association has been inconsistent among epidemiologic studies due to different types of exposure assessment error. In these data, the leukemia risks from a child's residential magnetic field exposure appears to be better assessed by wire configurations than by 24-h area measurements. However, the predicted fields only partially account for the effect of the Wertheimer-Leeper wire code in a multivariate analysis and do not completely explain why these wire codes have been so often associated with childhood leukemia. The most plausible explanation for our findings is that the causal factor is another magnetic field exposure metric correlated to both wire code and the field's time-averaged magnitude. Copyright 1999 Wiley-Liss, Inc.

  3. Design of an Auto-zeroed, Differential, Organic Thin-film Field-effect Transistor Amplifier for Sensor Applications

    NASA Technical Reports Server (NTRS)

    Binkley, David M.; Verma, Nikhil; Crawford, Robert L.; Brandon, Erik; Jackson, Thomas N.

    2004-01-01

    Organic strain gauge and other sensors require high-gain, precision dc amplification to process their low-level output signals. Ideally, amplifiers would be fabricated using organic thin-film field-effect transistors (OTFT's) adjacent to the sensors. However, OTFT amplifiers exhibit low gain and high input-referred dc offsets that must be effectively managed. This paper presents a four-stage, cascaded differential OTFT amplifier utilizing switched capacitor auto-zeroing. Each stage provides a nominal voltage gain of four through a differential pair driving low-impedance active loads, which provide common-mode output voltage control. p-type pentacence OTFT's are used for the amplifier devices and auto-zero switches. Simulations indicate the amplifier provides a nominal voltage gain of 280 V/V and effectively amplifies a 1-mV dc signal in the presence of 500-mV amplifier input-referred dc offset voltages. Future work could include the addition of digital gain calibration and offset correction of residual offsets associated with charge injection imbalance in the differential circuits.

  4. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Masamichi, E-mail: sakai@fms.saitama-u.ac.jp

    2016-06-15

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistencymore » of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.« less

  5. Correlating Charge Transport with Structure in Deconstructed Diketopyrrolopyrrole Oligomers: A Case Study of a Monomer in Field-Effect Transistors.

    PubMed

    Pickett, Alec; Torkkeli, Mika; Mukhopadhyay, Tushita; Puttaraju, Boregowda; Laudari, Amrit; Lauritzen, Andreas E; Bikondoa, Oier; Kjelstrup-Hansen, Jakob; Knaapila, Matti; Patil, Satish; Guha, Suchismita

    2018-06-13

    Copolymers based on diketopyrrolopyrrole (DPP) cores have attracted a lot of attention because of their high p-type as well as n-type carrier mobilities in organic field-effect transistors (FETs) and high power conversion efficiencies in solar cell structures. We report the structural and charge transport properties of n-dialkyl side-chain-substituted thiophene DPP end-capped with a phenyl group (Ph-TDPP-Ph) monomer in FETs which were fabricated by vacuum deposition and solvent coating. Grazing-incidence X-ray diffraction (GIXRD) from bottom-gate, bottom-contact FET architectures was measured with and without biasing. Ph-TDPP-Ph reveals a polymorphic structure with π-conjugated stacking direction oriented in-plane. The unit cell comprises either one monomer with a = 20.89 Å, b = 13.02 Å, c = 5.85 Å, α = 101.4°, β = 90.6°, and γ = 94.7° for one phase (TR1) or two monomers with a = 24.92 Å, b = 25.59 Å, c = 5.42 Å, α = 80.3°, β = 83.5°, and γ = 111.8° for the second phase (TR2). The TR2 phase thus signals a shift from a coplanar to herringbone orientation of the molecules. The device performance is sensitive to the ratio of the two triclinic phases found in the film. Some of the best FET performances with p-type carrier mobilities of 0.1 cm 2 /V s and an on/off ratio of 10 6 are for films that comprise mainly the TR1 phase. GIXRD from in operando FETs demonstrates the crystalline stability of Ph-TDPP-Ph.

  6. Effect of Al-diffusion-induced positive flatband voltage shift on the electrical characteristics of Al-incorporated high-k metal-oxide-semiconductor field-effective transistor

    NASA Astrophysics Data System (ADS)

    Wang, Wenwu; Akiyama, Koji; Mizubayashi, Wataru; Nabatame, Toshihide; Ota, Hiroyuki; Toriumi, Akira

    2009-03-01

    We systematically studied what effect Al diffusion from high-k dielectrics had on the flatband voltage (Vfb) of Al-incorporated high-k gate stacks. An anomalous positive shift fin Vfb with the decreasing equivalent oxide thickness (EOT) of high-k gate stacks is reported. As the SiO2 interfacial layer is aggressively thinned in Al-incorporated HfxAl1-xOy gate stacks with a metal-gate electrode, the Vfb first lies on the well known linear Vfb-EOT plot and deviates toward the positive-voltage direction (Vfb roll-up), followed by shifting toward negative voltage (Vfb roll-off). We demonstrated that the Vfb roll-up behavior remarkably decreases the threshold voltage (Vth) of p-type metal-oxide-semiconductor field-effect transistors (p-MOSFETs), and does not cause severe degradation in the characteristics of hole mobility. The Vfb roll-up behavior, which is independent of gate materials but strongly dependent on high-k dielectrics, was ascribed to variations in fixed charges near the SiO2/Si interface, which are caused by Al diffusion from HfxAl1-xOy through SiO2 to the SiO2/Si interface. These results indicate that anomalous positive shift in Vfb, i.e., Vfb roll-up, should be taken into consideration in quantitatively adjusting Vfb in thin EOT regions and that it could be used to further tune Vth in p-MOSFETs.

  7. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.

    PubMed

    Xia, Feifei; Shao, Zhibin; He, Yuanyuan; Wang, Rongbin; Wu, Xiaofeng; Jiang, Tianhao; Duhm, Steffen; Zhao, Jianwei; Lee, Shuit-Tong; Jie, Jiansheng

    2016-11-22

    Wide band gap II-VI nanostructures are important building blocks for new-generation electronic and optoelectronic devices. However, the difficulty of realizing p-type conductivity in these materials via conventional doping methods has severely handicapped the fabrication of p-n homojunctions and complementary circuits, which are the fundamental components for high-performance devices. Herein, by using first-principles density functional theory calculations, we demonstrated a simple yet efficient way to achieve controlled p-type doping on II-VI nanostructures via surface charge transfer doping (SCTD) using high work function transition metal oxides such as MoO 3 , WO 3 , CrO 3 , and V 2 O 5 as dopants. Our calculations revealed that these oxides were capable of drawing electrons from II-VI nanostructures, leading to accumulation of positive charges (holes injection) in the II-VI nanostructures. As a result, Fermi levels of the II-VI nanostructures were shifted toward the valence band regions after surface modifications, along with the large enhancement of work functions. In situ ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy characterizations verified the significant interfacial charge transfer between II-VI nanostructures and surface dopants. Both theoretical calculations and electrical transfer measurements on the II-VI nanostructure-based field-effect transistors clearly showed the p-type conductivity of the nanostructures after surface modifications. Strikingly, II-VI nanowires could undergo semiconductor-to-metal transition by further increasing the SCTD level. SCTD offers the possibility to create a variety of electronic and optoelectronic devices from the II-VI nanostructures via realization of complementary doping.

  8. Top-gate organic depletion and inversion transistors with doped channel and injection contact

    NASA Astrophysics Data System (ADS)

    Liu, Xuhai; Kasemann, Daniel; Leo, Karl

    2015-03-01

    Organic field-effect transistors constitute a vibrant research field and open application perspectives in flexible electronics. For a commercial breakthrough, however, significant performance improvements are still needed, e.g., stable and high charge carrier mobility and on-off ratio, tunable threshold voltage, as well as integrability criteria such as n- and p-channel operation and top-gate architecture. Here, we show pentacene-based top-gate organic transistors operated in depletion and inversion regimes, realized by doping source and drain contacts as well as a thin layer of the transistor channel. By varying the doping concentration and the thickness of the doped channel, we control the position of the threshold voltage without degrading on-off ratio or mobility. Capacitance-voltage measurements show that an inversion channel can indeed be formed, e.g., an n-doped channel can be inverted to a p-type inversion channel with highly p-doped contacts. The Cytop polymer dielectric minimizes hysteresis, and the transistors can be biased for prolonged cycles without a shift of threshold voltage, indicating excellent operation stability.

  9. Effects of emission layer doping on the spatial distribution of charge and host recombination rate density in organic light emitting devices: A numerical study

    NASA Astrophysics Data System (ADS)

    Li, Yanli; Zhou, Maoqing; Zheng, Tingcai; Yao, Bo; Peng, Yingquan

    2013-12-01

    Based on drift-diffusion theory, a numerical model of the doping of a single energy level trap in the emission layer of an organic light emitting device (OLED) was developed, and the effects of doping of this single energy level trap on the distribution of the charge density, the recombination rate density, and the electric field in single- and double-layer OLEDs were studied numerically. The results show that by doping the n-type (p-type) emission layer with single energy electron (hole) traps, the distribution of the recombination rate density can be tuned and shifted, which is useful for improvement of the device performance by reduced electrode quenching or for realization of desirable special functions, e.g., emission spectrum tuning in multiple dye-doped white OLEDs.

  10. Attraction of position preference by spatial attention throughout human visual cortex.

    PubMed

    Klein, Barrie P; Harvey, Ben M; Dumoulin, Serge O

    2014-10-01

    Voluntary spatial attention concentrates neural resources at the attended location. Here, we examined the effects of spatial attention on spatial position selectivity in humans. We measured population receptive fields (pRFs) using high-field functional MRI (fMRI) (7T) while subjects performed an attention-demanding task at different locations. We show that spatial attention attracts pRF preferred positions across the entire visual field, not just at the attended location. This global change in pRF preferred positions systematically increases up the visual hierarchy. We model these pRF preferred position changes as an interaction between two components: an attention field and a pRF without the influence of attention. This computational model suggests that increasing effects of attention up the hierarchy result primarily from differences in pRF size and that the attention field is similar across the visual hierarchy. A similar attention field suggests that spatial attention transforms different neural response selectivities throughout the visual hierarchy in a similar manner. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effect of experimental diabetes on cholinergic, purinergic and peptidergic motor responses of the isolated rat bladder to electrical field stimulation or capsaicin.

    PubMed

    Benkó, Rita; Lázár, Zsófia; Pórszász, Róbert; Somogyi, George T; Barthó, Loránd

    2003-09-30

    An attempt has been made to pharmacologically isolate cholinergic, P(2) purinoceptor-mediated and peptidergic (capsaicin-sensitive, tachykinin-mediated) contraction of the guanethidine-treated rat bladder detrusor preparation, in vitro. The effect of experimental diabetes was assessed on these types of contraction. Responses were evoked by electrical field stimulation (single shocks or 1 Hz for 30 s or 10 Hz for 40 s). Single shocks and 1-Hz stimulation were applied in the presence of (a). atropine (1 microM) or (b). P(2) purinoceptor antagonists (50 microM pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid) [PPADS] plus 100 microM suramin. Long-term electrical field stimulation (10 Hz for 40 s) (c). was applied with both atropine and the P(2) purinoceptor antagonists present in the organ bath. The effects of capsaicin (d). and ATP (e). were also studied. Three groups of experimental animals were used: streptozotocin-treated (50 mg.kg(-1) i.p., 8 weeks before the experiment), parallel solvent-treated and untreated rats. (a). Responses to electrical field stimulation in the presence of atropine were reduced by half by PPADS plus suramin, but were resistant to capsaicin tachyphylaxis. They were enhanced in preparations taken from diabetic rats. (b). Contractions to electrical field stimulation in the presence of PPADS plus suramin were reduced by 2/3 by atropine, but were left unchanged by capsaicin or diabetes. (c). Contractions to long-term stimulation had a quick and a sustained phase. Especially the latter was inhibited by capsaicin tachypyhlaxis; it was also strongly reduced in preparations taken from diabetic rats. (d). Contractions to capsaicin (30 nM and 1 microM) were resistant to tetrodotoxin, strongly reduced by a combination of tachykinin NK(1) and NK(2) receptor antagonists, and slightly reduced in preparations from diabetic animals. Capsaicin (1 microM) had no acute inhibitory action on cholinergic or purinergic responses, nor did it cause relaxation in precontracted preparations treated with tachykinin receptor antagonists. (e) ATP-induced contractions were strongly reduced by PPADS plus suramin (50 plus 100 microM) and to a similar degree by 100 plus 200 microM, respectively. It is concluded that experimental diabetes selectively impairs peptidergic, capsaicin-sensitive responses (especially those that involve impulse conduction) in the rat detrusor preparation. The contractile response to electrical field stimulation that remains after atropine plus the P(2) purinoceptor antagonists has a yet unknown transmitter background.

  12. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  13. Effects of Cover Crop Species and Season on Population Dynamics of Escherichia coli and Listeria innocua in Soil

    PubMed Central

    Reed-Jones, Neiunna L.; Marine, Sasha Cahn; Everts, Kathryne L.

    2016-01-01

    Cover crops provide several ecosystem services, but their impact on enteric bacterial survival remains unexplored. The influence of cover cropping on foodborne pathogen indicator bacteria was assessed in five cover crop/green manure systems: cereal rye, hairy vetch, crimson clover, hairy vetch-rye and crimson clover-rye mixtures, and bare ground. Cover crop plots were inoculated with Escherichia coli and Listeria innocua in the fall of 2013 and 2014 and tilled into the soil in the spring to form green manure. Soil samples were collected and the bacteria enumerated. Time was a factor for all bacterial populations studied in all fields (P < 0.001). E. coli levels declined when soil temperatures dipped to <5°C and were detected only sporadically the following spring. L. innocua diminished somewhat but persisted, independently of season. In an organic field, the cover crop was a factor for E. coli in year 1 (P = 0.004) and for L. innocua in year 2 (P = 0.011). In year 1, E. coli levels were highest in the rye and hairy vetch-rye plots. In year 2, L. innocua levels were higher in hairy vetch-rye (P = 0.01) and hairy vetch (P = 0.03) plots than in the rye plot. Bacterial populations grew (P < 0.05) or remained the same 4 weeks after green manure incorporation, although initial reductions in L. innocua numbers were observed after tilling (P < 0.05). Green manure type was a factor only for L. innocua abundance in a transitional field (P < 0.05). Overall, the impacts of cover crops/green manures on bacterial population dynamics in soil varied, being influenced by bacterial species, time from inoculation, soil temperature, rainfall, and tillage; this reveals the need for long-term studies. PMID:26729724

  14. In vivo dosimetry using a single diode for megavoltage photon beam radiotherapy: implementation and response characterization.

    PubMed

    Colussi, V C; Beddar, A S; Kinsella, T J; Sibata, C H

    2001-01-01

    The AAPM Task Group 40 reported that in vivo dosimetry can be used to identify major deviations in treatment delivery in radiation therapy. In this paper, we investigate the feasibility of using one single diode to perform in vivo dosimetry in the entire radiotherapeutic energy range regardless of its intrinsic buildup material. The only requirement on diode selection would be to choose a diode with the adequate build up to measure the highest beam energy. We have tested the new diodes from Sun Nuclear Corporation (called QED and ISORAD-p--both p-type) for low-, intermediate-, and high-energy range. We have clinically used both diode types to monitor entrance doses. In general, we found that the dose readings from the ISORAD (p-type) are closer of the dose expected than QED diodes in the clinical setting. In this paper we report on the response of these newly available ISORAD (p-type) diode detectors with respect to certain radiation field parameters such as source-to-surface distance, field size, wedge beam modifiers, as well as other parameters that affect detector characteristics (temperature and detector-beam orientation). We have characterized the response of the high-energy ISORAD (p-type) diode in the low- (1-4 MV), intermediate- (6-12 MV), and high-energy (15-25 MV) range. Our results showed that the total variation of the response of high-energy ISORAD (p-type) diodes to all the above parameters are within +/-5% in most encountered clinical patient treatment setups in the megavoltage photon beam radiotherapy. The usage of the high-energy buildup diode has the additional benefit of amplifying the response of the diode reading in case the wrong energy is used for patient treatment. In the light of these findings, we have since then switched to using only one single diode type, namely the "red" diode; manufacturer designation of the ISORAD (p-type) high-energy (15-25 MV) range diode, for all energies in our institution and satellites.

  15. C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition

    PubMed Central

    Barantal, Sandra; Schimann, Heidy; Fromin, Nathalie; Hättenschwiler, Stephan

    2014-01-01

    Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. PMID:25320173

  16. A Simple Method for Decreasing the Liquid Junction Potential in a Flow-through-Type Differential pH Sensor Probe Consisting of pH-FETs by Exerting Spatiotemporal Control of the Liquid Junction

    PubMed Central

    Yamada, Akira; Mohri, Satoshi; Nakamura, Michihiro; Naruse, Keiji

    2015-01-01

    The liquid junction potential (LJP), the phenomenon that occurs when two electrolyte solutions of different composition come into contact, prevents accurate measurements in potentiometry. The effect of the LJP is usually remarkable in measurements of diluted solutions with low buffering capacities or low ion concentrations. Our group has constructed a simple method to eliminate the LJP by exerting spatiotemporal control of a liquid junction (LJ) formed between two solutions, a sample solution and a baseline solution (BLS), in a flow-through-type differential pH sensor probe. The method was contrived based on microfluidics. The sensor probe is a differential measurement system composed of two ion-sensitive field-effect transistors (ISFETs) and one Ag/AgCl electrode. With our new method, the border region of the sample solution and BLS is vibrated in order to mix solutions and suppress the overshoot after the sample solution is suctioned into the sensor probe. Compared to the conventional method without vibration, our method shortened the settling time from over two min to 15 s and reduced the measurement error by 86% to within 0.060 pH. This new method will be useful for improving the response characteristics and decreasing the measurement error of many apparatuses that use LJs. PMID:25835300

  17. Nonvolatile Ferroelectric Memory Circuit Using Black Phosphorus Nanosheet-Based Field-Effect Transistors with P(VDF-TrFE) Polymer.

    PubMed

    Lee, Young Tack; Kwon, Hyeokjae; Kim, Jin Sung; Kim, Hong-Hee; Lee, Yun Jae; Lim, Jung Ah; Song, Yong-Won; Yi, Yeonjin; Choi, Won-Kook; Hwang, Do Kyung; Im, Seongil

    2015-10-27

    Two-dimensional van der Waals (2D vdWs) materials are a class of new materials that can provide important resources for future electronics and materials sciences due to their unique physical properties. Among 2D vdWs materials, black phosphorus (BP) has exhibited significant potential for use in electronic and optoelectronic applications because of its allotropic properties, high mobility, and direct and narrow band gap. Here, we demonstrate a few-layered BP-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. Experiments showed that our BP-based ferroelectric transistors operate satisfactorily at room temperature in ambient air and exhibit a clear memory window. Unlike conventional ambipolar BP transistors, our ferroelectric transistors showed only p-type characteristics due to the carbon-fluorine (C-F) dipole effect of the P(VDF-TrFE) layer, as well as the highest linear mobility value of 1159 cm(2) V(-1) s(-1) with a 10(3) on/off current ratio. For more advanced memory applications beyond unit memory devices, we implemented two memory inverter circuits, a resistive-load inverter circuit and a complementary inverter circuit, combined with an n-type molybdenum disulfide (MoS2) nanosheet. Our memory inverter circuits displayed a clear memory window of 15 V and memory output voltage efficiency of 95%.

  18. Effects of plasmonic field due to gold nanoparticles and magnetic field on photocurrents of zinc porphyrin-viologen linked compound-gold nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Yonemura, Hiroaki; Niimi, Tomoki; Yamada, Sunao

    2016-03-01

    Composite films of zinc-porphyrin-viologen (ZnP-V2+) linked compound containing six methylene group [ZnP(6)V]-gold nanoparticles (AuNP) were fabricated by combining electrostatic layer-by-layer adsorption and the Langmuir-Blodgett method. The anodic photocurrents of the ZnP(6)V-AuNP composite films are higher than those of the ZnP(6)V films. The large photocurrents in ZnP(6)V-AuNP composite films are most likely attributable to the combination of localized surface plasmon resonance due to AuNP and photoinduced intramolecular electron transfer from excited state of ZnP to V2+. The photocurrents of the ZnP(6)V-AuNP composite films increase in the presence of magnetic field. The photocurrents increase with low magnetic fields (B ≤ 150 mT) and are almost constant under high magnetic fields (B ≥ 150 mT). Magnetic field effects (MFEs) were clearly observed for both ZnP(6)V-AuNP composite films and ZnP(6)V films. The MFEs can be explained by a radical pair mechanism.

  19. Strained silicon based complementary tunnel-FETs: Steep slope switches for energy efficient electronics

    NASA Astrophysics Data System (ADS)

    Knoll, L.; Richter, S.; Nichau, A.; Trellenkamp, S.; Schäfer, A.; Wirths, S.; Blaeser, S.; Buca, D.; Bourdelle, K. K.; Zhao, Q.-T.; Mantl, S.

    2014-08-01

    Electrical characteristics of silicon nanowire tunnel field effect transistors (TFETs) are presented and benchmarked versus other concepts. Particular emphasis is placed on the band to band tunneling (BTBT) junctions, the functional core of the device. Dopant segregation from ion implanted ultrathin silicide contacts is proved as a viable method to achieve steep tunneling junctions. This reduces defect generation by direct implantation into the junction and thus minimizes the risk of trap assisted tunneling. The method is applied to strained silicon, specifically to nanowire array transistors, enabling the realization of n-type and p-type TFETs with fairly high currents and complementary TFET inverters with sharp transitions and good static gain, even at very low drain voltages of VDD = 0.2 V. These achievements suggest a considerable potential of TFETs for ultralow power applications. Gate-all-around Si nanowire array p-type TFETs have been fabricated to demonstrate the impact of electrostatic control on the device performance. A high on-current of 78 μA/μm at VD = VG = 1.1 V is obtained.

  20. Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3

    NASA Astrophysics Data System (ADS)

    Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo

    2018-03-01

    We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.

  1. Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor

    NASA Astrophysics Data System (ADS)

    Yang, Liu; Changchun, Chai; Chunlei, Shi; Qingyang, Fan; Yuqian, Liu

    2016-12-01

    Simulations are carried out to explore the possibility of achieving high breakdown voltage of GaN HEMT (high-electron mobility transistor). GaN cap layers with gradual increase in the doping concentration from 2 × 1016 to 5 × 1019 cm-3 of N-type and P-type cap are investigated, respectively. Simulation results show that HEMT with P-doped GaN cap layer shows more potential to achieve higher breakdown voltage than N-doped GaN cap layer under the same doping concentration. This is because the ionized net negative space charges in P-GaN cap layer could modulate the surface electric field which makes more contribution to RESURF effect. Furthermore, a novel GaN/AlGaN/GaN HEMT with P-doped GaN buried layer in GaN buffer between gate and drain electrode is proposed. It shows enhanced performance. The breakdown voltage of the proposed structure is 640 V which is increased by 12% in comparison to UID (un-intentionally doped) GaN/AlGaN/GaN HEMT. We calculated and analyzed the distribution of electrons' density. It is found that the depleted region is wider and electric field maximum value is induced at the left edge of buried layer. So the novel structure with P-doped GaN buried layer embedded in GaN buffer has the better improving characteristics of the power devices. Project supported by the National Basic Research Program of China (No. 2014CB339900) and the Open Fund of Key Laboratory of Complex Electromagnetic Environment Science and Technology, China Academy of Engineering Physics (No. 2015-0214.XY.K).

  2. Rapid skin profiling with non-contact full-field optical coherence tomography: study of patients with diabetes mellitus type I

    NASA Astrophysics Data System (ADS)

    Zakharov, P.; Talary, M. S.; Kolm, I.; Caduff, A.

    2009-07-01

    The application of the full-field optical coherence tomography (OCT) microscope to the characterisation of skin morphology is described. An automated procedure for analysis and interpretation of the OCT data has been developed which provides measures of the laterally averaged depth profiles of the skin reflectance. The skin at the dorsal side of the upper arm of 22 patients with Type 1 Diabetes Mellitus has been characterised in a non-contact way. The OCT signal profile was compared with the optical histological data obtained with a commercial confocal microscope (CM). The highest correlation to the epidermal thickness (ET) obtained using CM was found for the distance from the entrance OCT peak to the first minimum of the reflection profile (R2=0.657, p<0.0001). The distance to the second OCT reflection peak was found to be less correlated to ET (R2=0.403, p=0.0009). A further analysis was undertaken to explore the relation between the subjects' demographical data and the OCT reflection profile. The distance to the second OCT peak demonstrated a correlation with a marginal statistical significance for the body-mass index (positive correlation with p=0.01) and age (negative correlation with p=0.062). At the same time the amplitude of the OCT signal, when compensated for signal attenuation with depth, is negatively correlated with age (p<0.0002). We suggest that this may be an effect of photo degradation of the dermal collagen. In the patient population studied, no relation could be determined between the measured skin morphology and the duration of diabetes or concentration of glycated haemoglobin in the blood.

  3. Enhancement of particle aggregation in the presence of organic matter during neutralization of acid drainage in a stream confluence and its effect on arsenic immobilization.

    PubMed

    Arce, Guillermo; Montecinos, Mauricio; Guerra, Paula; Escauriaza, Cristian; Coquery, Marina; Pastén, Pablo

    2017-08-01

    Acid drainage (AD) is an important environmental concern that impacts water quality. The formation of reactive Fe and Al oxyhydroxides during the neutralization of AD at river confluences is a natural attenuation process. Although it is known that organic matter (OM) can affect the aggregation of Fe and Al oxyhydroxides and the sorption of As onto their surfaces, the role of OM during the neutralization of AD at river confluences has not been studied. Field and experimental approaches were used to understand this role, using the Azufre River (pH 2) - Caracarani River (pH 8.6) confluence (northern Chile) as model system. Field measurements of organic carbon revealed a 10-15% loss of OM downstream the confluence, which was attributed to associations with Fe and Al oxyhydroxides that settle in the river bed. Laboratory mixtures of AD water with synthetic Caracarani waters under varying conditions of pH, concentration and type of OM revealed that OM promoted the aggregation of Fe oxyhydroxides without reducing As sorption, enhancing the removal of As at slightly acidic conditions (pH ∼4.5). At acidic conditions (pH ∼3), aggregation of OM - metal complexes at high OM concentrations could become the main removal mechanism. One type of OM promoted bimodal particle size distributions with larger mean sizes, possibly increasing the settling velocity of aggregates. This work contributes to a better understanding of the role of OM in AD affected basins, showing that the presence of OM during processes of neutralization of AD can enhance the removal of toxic elements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of dechlorination rates for field DNAPL vs synthetic samples: effect of sample matrix

    NASA Astrophysics Data System (ADS)

    O'Carroll, D. M.; Sakulchaicharoen, N.; Herrera, J. E.

    2015-12-01

    Nanometals have received significant attention in recent years due to their ability to rapidly destroy numerous priority source zone contaminants in controlled laboratory studies. This has led to great optimism surrounding nanometal particle injection for insitu remediation. Reported dechlorination rates vary widely among different investigators. These differences have been ascribed to differences in the iron types (granular, micro, or nano-sized iron), matrix solution chemistry and the morphology of the nZVI surface. Among these, the effects of solution chemistry on rates of reductive dechlorination of various chlorinated compounds have been investigated in several short-term laboratory studies. Variables investigated include the effect of anions or groundwater solutes such as SO4-2, Cl-, NO3-, pH, natural organic matters (NOM), surfactant, and humic acid on dechlorination reaction of various chlorinated compounds such as TCE, carbon tetrachloride (CT), and chloroform (CF). These studies have normally centered on the assessment of nZVI reactivity toward dechlorination of an isolated individual contaminant spiked into a ground water sample under ideal conditions, with limited work conducted using real field samples. In this work, the DNAPL used for the dechlorination study was obtained from a contaminatied site. This approach was selected to adequately simulate a condition where the nZVI suspension was in direct contact with DNAPL and to isolate the dechlorination activity shown by the nZVI from the groundwater matrix effects. An ideal system "synthetic DNAPL" composed of a mixture of chlorinated compounds mimicking the composition of the actual DNAPL was also dechlorinated to evaluate the DNAPL "matrix effect" on NZVI dechlorination activity. This approach allowed us to evaluate the effect of the presence of different types of organic compounds (volatile fatty acids and humic acids) found in the actual DNAPL on nZVI dechlorination activity. This presentation will help provide insights into the degradation kinetics that can be expected in the field and help with field scale implementation of nZVI.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawamata, Shuichi, E-mail: s-kawamata@riast.osakafu-u.ac.jp; Kawamura, Yuichi; Research Organization for University-Community Collaborations, Osaka Prefecture University, Sakai 599-8570

    In order to develop optical devices for 2–3 μm wavelength regions, the InP-based InGaAs/GaAsSb type II multiple quantum well system has been investigated. By doping nitrogen into InGaAs layers, the system becomes effective in creating the optical devices with a longer wavelength. In this report, electrical transport properties are reported on the InGaAsN/GaAsSb type II system. The epitaxial layers with the single hetero or multiple quantum well structure on InP substrates are grown by the molecular beam epitaxy. The electrical resistance of samples with different nitrogen concentrations has been measured as a function of the magnetic field up to 9 Teslamore » at several temperatures between 2 and 6 K. The oscillation of the resistance due to the Shubnikov-de Haas (SdH) effect has been observed at each temperature. The effective mass is obtained from the temperature dependence of the amplitude of the SdH oscillations. The value of the effective mass increases from 0.048 for N = 0.0% to 0.062 for N = 1.2 and 1.5% as the nitrogen concentration increases. The mass enhancement occurs with corresponding to the reduction of the bandgap energy. These results are consistent with the band anticrossing model.« less

  6. Phenytoin inhibits contractions of rat gastrointestinal and portal vein smooth muscle by inhibiting calcium entry.

    PubMed

    Patejdl, R; Leroux, A-C; Noack, T

    2015-10-01

    Phenytoin is widely used as a second-line treatment for status epilepticus. Besides its well-known cardiac pro-arrhythmogenicity, side effects on other organ systems have received less attention. This study investigates the effects of phenytoin on gastrointestinal tissue function using an in vitro model of smooth muscle preparations from rats by combining registrations of pharmacological effects on mechanical contractions, electric field potentials, and dynamic intravital fluorescence microscopy. When added to the bathing solution at a concentration of 30 μM, phenytoin reduced the frequency of spontaneous activity significantly in antrum and portal vein preparations to 72.2 ± 36.5% (p = 0.022) and 80.7 ± 24.4% (p = 0.037) of control values, respectively. At a concentration of 100 μM, the height of spontaneous contractions declined to 9.8 ± 19.6% (p = 0.005) (antrum), 15.7 ± 28.2% (p = 0.004) (portal vein), and 31.8 ± 31.3% (p = 0.005) (colon) in comparison to the control conditions before the application of phenytoin. Depolarization triggered increases in calcium dependent fluorescence signals were reduced by 52.8 ± 39.1% (p = 0.012) The inhibition of spontaneous activity caused by phenytoin was reduced in the presence of the L-type calcium channel agonist BAY K8644(-). Phenytoin exerts strong inhibitory effects on the spontaneous and stimulated contractile activity of smooth muscles from both the upper and lower gastrointestinal tract. The mechanism underlying this effect is not related to the sodium channel blocking activity of phenytoin, but is rather caused by an inhibition of calcium entry through voltage dependent L-type calcium channels. The results of this study should raise vigilance to gastrointestinal complications in patients treated with phenytoin. © 2015 John Wiley & Sons Ltd.

  7. [Dynamics of upland field P pool under a long-term application of fertilizer P in yellow soil area and their effects on P concentration in runoff].

    PubMed

    Liu, Fang; Huang, Changyong; He, Tengbin; Qian, Xiaogang; Liu, Yuansheng; Luo, Haibo

    2003-02-01

    Studies on the dynamics of upland field P pool under a long-term application of fertilizer P in yellow soil area and their effects on P concentration in runoff showed that the contents of A1-P, Fe-P and Ca-P in soil cultivated layer increased greatly, and Olsen-P and algae-available P also accumulated obviously. The correlation coefficients of algae-available P content in the high-P soils (Olsen-P > 25 mg.kg-1) with the quantities of A1-P, Fe-P and Ca-P were 0.859**, 0.903** and 0.650*, respectively, of which, Fe-P was the most important. By a 30-min rainfall simulation experiment with a constant rainfall rate of 63.2 mm.h-1, the concentrations of dissolved reactive P and bio-available P in runoff from low-P upland fields (Olsen-P 4.62-15.9 mg.kg-1) were 2.81-4.17 micrograms.L-1 and 0.723-0.876 mg.L-1, respectively, whereas their concentrations in runoff from high-P upland fields (Olsen-P 29.4-59.2 mg.kg-1) were 0.026-0.714 mg.L-1 and 0.996-1.281 mg.L-1, respectively. Therefore, runoff from high-P upland fields could accelerate water eutrophication.

  8. Tachyon driven quantum cosmology in string theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Compean, H.; Garcia-Jimenez, G.; Obregon, O.

    2005-03-15

    Recently an effective action of the SDp-brane decaying process in string theory has been proposed. This effective description involves the Tachyon driven matter coupled to bosonic ten-dimensional Type II supergravity. Here the Hamiltonian formulation of this system is given. Exact solutions for the corresponding quantum theory by solving the Wheeler-deWitt equation in the late-time limit of the rolling tachyon are found. The energy spectrum and the probability densities for several values of p are shown and their possible interpretation is discussed. In the process the effects of electromagnetic fields are also incorporated and it is shown that in this casemore » the interpretation of tachyon regarded as 'matter clock' is modified.« less

  9. Determination of recombination and polarity correction factors, kS and kP, for small cylindrical ionization chambers PTW 31021 and PTW 31022 in pulsed filtered and unfiltered beams.

    PubMed

    Bruggmoser, Gregor; Saum, Rainer; Kranzer, Rafael

    2018-01-12

    The aim of this technical communication is to provide correction factors for recombination and polarity effect for two new ionization chambers PTW PinPoint 3D (type 31022) and PTW Semiflex 3D (type 31021). The correction factors provided are for the (based on the) German DIN 6800-2 dosimetry protocol and the AAPM TG51 protocol. The measurements were made in filtered and unfiltered high-energy photon beams in a water equivalent phantom at maximum depth of the PDD and a field size on the surface of 10cm×10cm. The design of the new chamber types leads to an ion collection efficiency and a polarity effect that are well within the specifications requested by pertinent dosimetry protocols including the addendum of TG-51. It was confirmed that the recombination effect of both chambers mainly depends on dose per pulse and is independent of the filtration of the photon beam. Copyright © 2018. Published by Elsevier GmbH.

  10. Analyzing the impacts of three types of biochar on soil carbon fractions and physiochemical properties in a corn-soybean rotation.

    PubMed

    Sandhu, Saroop S; Ussiri, David A N; Kumar, Sandeep; Chintala, Rajesh; Papiernik, Sharon K; Malo, Douglas D; Schumacher, Thomas E

    2017-10-01

    Biochar is a solid material obtained when biomass is thermochemically converted in an oxygen-limited environment. In most previous studies, the impacts of biochar on soil properties and organic carbon (C) were investigated under controlled conditions, mainly laboratory incubation or greenhouse studies. This 2-year field study was conducted to evaluate the influence of biochar on selected soil physical and chemical properties and carbon and nitrogen fractions for two selected soil types (clay loam and a sandy loam soil) under a corn (Zea mays L.)-soybean (Glycine max L.) rotation. The three plant based biochar materials used for this study were corn stover (CS), ponderosa pine (Pinus ponderosa Lawson and C. Lawson) wood residue (PW), and switchgrass (Panicum virgatum L.) (SG). Data showed that CS and SG significantly increased the pH of acidic soil at the eroded landscape position but produced no significant change in soil pH at the depositional landscape position. The effects of biochar treatments on cold water extractable C (WSC) and nitrogen (WSN) fractions for the 0-7.5 cm depth were depended on biochar and soil type. Results suggested that alkaline biochars applied at 10 Mg ha -1 can increase the pH and WSC fraction of acidic sandy loam soil, but the 10 Mg ha -1 rate might be low to substantially improve physical properties and hot water extractable C and N fractions of soil. Application of higher rates of biochar and long-term monitoring is needed to quantify the benefits of biochar under field conditions on soils in different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Computer simulation of the linear and nonlinear optical susceptibilities of p-nitroaniline in cyclohexane, 1,4-dioxane, and tetrahydrofuran in quadrupolar approximation. II. Local field effects and optical susceptibilitities.

    PubMed

    Reis, H; Papadopoulos, M G; Grzybowski, A

    2006-09-21

    This is the second part of a study to elucidate the local field effects on the nonlinear optical properties of p-nitroaniline (pNA) in three solvents of different multipolar character, that is, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), employing a discrete description of the solutions. By the use of liquid structure information from molecular dynamics simulations and molecular properties computed by high-level ab initio methods, the local field and local field gradients on p-nitroaniline and the solvent molecules are computed in quadrupolar approximation. To validate the simulations and the induction model, static and dynamic (non)linear properties of the pure solvents are also computed. With the exception of the static dielectric constant of pure THF, a good agreement between computed and experimental refractive indices, dielectric constants, and third harmonic generation signals is obtained for the solvents. For the solutions, it is found that multipole moments up to two orders higher than quadrupole have a negligible influence on the local fields on pNA, if a simple distribution model is employed for the electric properties of pNA. Quadrupole effects are found to be nonnegligible in all three solvents but are especially pronounced in the 1,4-dioxane solvent, in which the local fields are similar to those in THF, although the dielectric constant of DI is 2.2 and that of the simulated THF is 5.4. The electric-field-induced second harmonic generation (EFISH) signal and the hyper-Rayleigh scattering signal of pNA in the solutions computed with the local field are in good to fair agreement with available experimental results. This confirms the effect of the "dioxane anomaly" also on nonlinear optical properties. Predictions based on an ellipsoidal Onsager model as applied by experimentalists are in very good agreement with the discrete model predictions. This is in contrast to a recent discrete reaction field calculation of pNA in 1,4-dioxane, which found that the predicted first hyperpolarizability of pNA deviated strongly from the predictions obtained using Onsager-Lorentz local field factors.

  12. Ferromagnetism in a hexagonal PrRh3 with 4f2 configuration

    NASA Astrophysics Data System (ADS)

    Park, G. B.; Yamane, Y.; Onimaru, T.; Umeo, K.; Takabatake, T.

    2018-05-01

    Electrical resistivity ρ , magnetization M and specific heat C are reported for polycrystalline samples of the hexagonal system PrRh3. The magnetic susceptibility M/B obeys the Curie-Weiss law with the effective magnetic moment μeff = 3.88 μB/Pr and the paramagnetic Curie temperature θp = +2.9 K, which indicates ferro-type magnetic interaction between the trivalent Pr ions. A cusp in C(T) at 3.0 K coincides with a bend in ρ (T). Applying magnetic fields, the peak broadens and shifts to higher temperatures. The field dependence indicates a ferro-type magnetic order. The magnetic entropy Sm is (1/3)Rln2 at TC = 3.0 K, suggesting that part of the Pr ions take part in the magnetic order. A broad tail of the magnetic specific heat Cm observed above TC may result from short-range correlations and/or fluctuations of the active magnetic dipole and quadrupoles in the ground state doublet.

  13. Radiative Amplification of Acoustic Waves in Hot Stars

    NASA Technical Reports Server (NTRS)

    Wolf, B. E.

    1985-01-01

    The discovery of broad P Cygni profiles in early type stars and the detection of X-rays emitted from the envelopes of these stars made it clear, that a considerable amount of mechanical energy has to be present in massive stars. An attack on the problem, which has proven successful when applied to late type stars is proposed. It is possible that acoustic waves form out of random fluctuations, amplify by absorbing momentum from stellar radiation field, steepen into shock waves and dissipate. A stellar atmosphere was constructed, and sinusoidal small amplitude perturbations of specified Mach number and period at the inner boundary was introduced. The partial differential equations of hydrodynamics and the equations of radiation transfer for grey matter were solved numerically. The equation of motion was augmented by a term which describes the absorption of momentum from the radiation field in the continuum and in lines, including the Doppler effect and allows for the treatment of a large number of lines in the radiative acceleration term.

  14. A computational study on tuning the field emission and electronic properties of BN nanocones by impurity atom doping

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Delir Kheirollahi Nezhad, P.; Hosseinian, A.; Vessally, E.

    2018-06-01

    We have inspected the effect of substituting a boron or nitrogen atom of a BN nanocone (BNNC) by two impurity atoms with lower and higher atomic numbers based on the density functional theory calculations. Our results explain the experimental observations in a molecular level. Orbital and partial density of states analyses show that the doping processes increase the electrical conductivity by creating new states within the gap of BNNC as follows: BeB > ON > CB > CN. The electron emission current from the surface of BNNC is improved after the CB and BeB dopings, and it is decreased by CN and ON dopings. The BeB and CN dopings make the BNNC a p-type semiconductor and the CB and ON dopings make it an n-type one in good agreement with the experimental results. The ON and BeB doping processes are suggested for the field emission current, and electrical conductivity enhancement, respectively.

  15. Non-minimal derivative coupling gravity in cosmology

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin; Rangdee, Phongsaphat

    2015-11-01

    We give a brief review of the non-minimal derivative coupling (NMDC) scalar field theory in which there is non-minimal coupling between the scalar field derivative term and the Einstein tensor. We assume that the expansion is of power-law type or super-acceleration type for small redshift. The Lagrangian includes the NMDC term, a free kinetic term, a cosmological constant term and a barotropic matter term. For a value of the coupling constant that is compatible with inflation, we use the combined WMAP9 (WMAP9 + eCMB + BAO + H_0) dataset, the PLANCK + WP dataset, and the PLANCK TT, TE, EE + lowP + Lensing + ext datasets to find the value of the cosmological constant in the model. Modeling the expansion with power-law gives a negative cosmological constants while the phantom power-law (super-acceleration) expansion gives positive cosmological constant with large error bar. The value obtained is of the same order as in the Λ CDM model, since at late times the NMDC effect is tiny due to small curvature.

  16. A Single Crossing-Over Event in Voltage-Sensitive Na+ Channel Genes May Cause Critical Failure of Dengue Mosquito Control by Insecticides

    PubMed Central

    Hirata, Koichi; Komagata, Osamu; Itokawa, Kentaro; Yamamoto, Atsushi; Tomita, Takashi; Kasai, Shinji

    2014-01-01

    The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti. PMID:25166902

  17. Land Use, Land Use History, and Soil Type Affect Soil Greenhouse Gas Fluxes From Agricultural Landscapes of the East African Highlands

    NASA Astrophysics Data System (ADS)

    Wanyama, I.; Rufino, M. C.; Pelster, D. E.; Wanyama, G.; Atzberger, C.; van Asten, P.; Verchot, Louis V.; Butterbach-Bahl, K.

    2018-03-01

    This study aims to explain effects of soil textural class, topography, land use, and land use history on soil greenhouse gas (GHG) fluxes in the Lake Victoria region. We measured GHG fluxes from intact soil cores collected in Rakai, Uganda, an area characterized by low-input smallholder (<2 ha) farming systems, typical for the East African highlands. The soil cores were air dried and rewetted to water holding capacities (WHCs) of 30, 55, and 80%. Soil CO2, CH4, and N2O fluxes were measured for 48 h following rewetting. Cumulative N2O fluxes were highest from soils under perennial crops and the lowest from soils under annual crops (P < 0.001 for all WHC). At WHC of 55% or 80%, the sandy clay loam soils had lower N2O fluxes than the clay soils (P < 0.001 and P = 0.041, respectively). Cumulative soil CO2 fluxes were highest from eucalyptus plantations and lowest from annual crops across multiple WHC (P = 0.014 at 30% WHC and P < 0.001 at both 55 and 80% WHC). Methane fluxes were below detectable limits, a shortcoming for using soil cores from the top soil. This study reveals that land use and soil type have strong effects on GHG fluxes from agricultural land in the study area. Field monitoring of fluxes is needed to confirm whether these findings are consistent with what happens in situ.

  18. Sequencing and diversity analyses reveal extensive similarities between some epsilon-toxin-encoding plasmids and the pCPF5603 Clostridium perfringens enterotoxin plasmid.

    PubMed

    Miyamoto, Kazuaki; Li, Jihong; Sayeed, Sameera; Akimoto, Shigeru; McClane, Bruce A

    2008-11-01

    Clostridium perfringens type B and D isolates produce epsilon-toxin, the third most potent clostridial toxin. The epsilon-toxin gene (etx) is plasmid borne in type D isolates, but etx genetics have been poorly studied in type B isolates. This study reports the first sequencing of any etx plasmid, i.e., pCP8533etx, from type B strain NCTC8533. This etx plasmid is 64.7 kb, carries tcp conjugative transfer genes, and encodes additional potential virulence factors including beta2-toxin, sortase, and collagen adhesin but not beta-toxin. Interestingly, nearly 80% of pCP8533etx open reading frames (ORFs) are also present on pCPF5603, an enterotoxin-encoding plasmid from type A isolate F5603. Pulsed-field gel electrophoresis and overlapping PCR indicated that a pCP8533etx-like etx plasmid is also present in most, if not all, other type B isolates and some beta2-toxin-positive, cpe-negative type D isolates, while other type D isolates carry different etx plasmids. Sequences upstream of the etx gene vary between type B isolates and some type D isolates that do not carry a pCP8533etx-like etx plasmid. However, nearly all type B and D isolates have an etx locus with an upstream IS1151, and those etx loci typically reside near a dcm ORF. These results suggest that pCPF5603 and pCP8533etx evolved from insertion of mobile genetic elements carrying enterotoxin or etx genes, respectively, onto a common progenitor plasmid.

  19. Hemisphere-Dependent Attentional Modulation of Human Parietal Visual Field Representations

    PubMed Central

    Silver, Michael A.

    2015-01-01

    Posterior parietal cortex contains several areas defined by topographically organized maps of the contralateral visual field. However, recent studies suggest that ipsilateral stimuli can elicit larger responses in the right than left hemisphere within these areas, depending on task demands. Here we determined the effects of spatial attention on the set of visual field locations (the population receptive field [pRF]) that evoked a response for each voxel in human topographic parietal cortex. A two-dimensional Gaussian was used to model the pRF in each voxel, and we measured the effects of attention on not only the center (preferred visual field location) but also the size (visual field extent) of the pRF. In both hemispheres, larger pRFs were associated with attending to the mapping stimulus compared with attending to a central fixation point. In the left hemisphere, attending to the stimulus also resulted in more peripheral preferred locations of contralateral representations, compared with attending fixation. These effects of attention on both pRF size and preferred location preserved contralateral representations in the left hemisphere. In contrast, attentional modulation of pRF size but not preferred location significantly increased representation of the ipsilateral (right) visual hemifield in right parietal cortex. Thus, attention effects in topographic parietal cortex exhibit hemispheric asymmetries similar to those seen in hemispatial neglect. Our findings suggest potential mechanisms underlying the behavioral deficits associated with this disorder. PMID:25589746

  20. Catalyst- and template-free low-temperature in situ growth of n-type CdS nanowire on p-type CdTe film and p-n heterojunction properties

    PubMed Central

    Ma, Ligang; Liu, Wenchao; Cai, Hongling; Zhang, Fengming; Wu, Xiaoshan

    2016-01-01

    CdS is an important semiconductor used in optoelectronic devices. Simple techniques for growing CdS nanostructures are thus essential at a low cost. This study presents a novel method for growing single-crystal n-type CdS nanowires on p-type CdTe films by thermal annealing in an H2S/N2 mixed gas flow, which does not require the help of a catalyst or template. The formation process and growth mechanism of the nanowires are investigated. Well-dispersed whiskerlike CdS nanostructures are obtained at an appropriate annealing temperature and duration. We suggest that the stress-driving mechanism of nanowire formation may contribute to the growth of CdS nanowires, and that the evaporation of Te through the boundaries of the CdS grain seeds plays an important role in the sustainable growth of nanowire. In addition, CdS/CdTe heterojunction device is fabricated on Mo glass. The I-V characteristic of the heterojunction in dark shows typical rectifying diode behavior. The turn-on voltage can be regulated by annealing conditions. Meanwhile, the obvious photovoltaic effect is obtained on the in situ growth heterojunction prepared at low annealing temperature. Hence, this is a new fabricated method for CdTe-based materials in the field of energy conversion. PMID:27958306

  1. Logarithmic M(2,p) minimal models, their logarithmic couplings, and duality

    NASA Astrophysics Data System (ADS)

    Mathieu, Pierre; Ridout, David

    2008-10-01

    A natural construction of the logarithmic extension of the M(2,p) (chiral) minimal models is presented, which generalises our previous model of percolation ( p=3). Its key aspect is the replacement of the minimal model irreducible modules by reducible ones obtained by requiring that only one of the two principal singular vectors of each module vanish. The resulting theory is then constructed systematically by repeatedly fusing these building block representations. This generates indecomposable representations of the type which signify the presence of logarithmic partner fields in the theory. The basic data characterising these indecomposable modules, the logarithmic couplings, are computed for many special cases and given a new structural interpretation. Quite remarkably, a number of them are presented in closed analytic form (for general p). These are the prime examples of "gauge-invariant" data—quantities independent of the ambiguities present in defining the logarithmic partner fields. Finally, mere global conformal invariance is shown to enforce strong constraints on the allowed spectrum: It is not possible to include modules other than those generated by the fusion of the model's building blocks. This generalises the statement that there cannot exist two effective central charges in a c=0 model. It also suggests the existence of a second "dual" logarithmic theory for each p. Such dual models are briefly discussed.

  2. P-channel transparent thin-film transistor using physical-vapor-deposited NiO layer

    NASA Astrophysics Data System (ADS)

    Lin, Chiung-Wei; Chung, Wei-Chieh; Zhang, Zhao-De; Hsu, Ming-Chih

    2018-01-01

    The effect of oxygen (O) content on the electrical properties of physical-vapor-deposited nickel oxide (PVD-NiO) was studied. When the NiO target was sputtered, introducing O2 can lead to the formation of Ni3+ ions in the deposited film. These Ni3+ ions can act as acceptors. However, there were too many Ni3+ ions that were obtained following the introduction of O atoms. It resulted in intensive p-type conduction and made the O2-introduced PVD-NiO behave as a conductor. Thus, it was possible to reduce the O content of PVD-NiO to obtain a p-type semiconductor. In this study, a transparent PVD-NiO film with a carrier concentration of 1.62 × 1017 cm-3 and a resistivity of 3.74 Ω cm was sputter-deposited within pure argon plasma. The thin-film transistor (TFT) employing this proposed PVD-NiO can result in good current switching, and even operated at very low drain-source voltage. The ON/OFF current ratio, field-effect carrier mobility, and threshold voltage of the proposed NiO TFT were 3.61 × 104, 1.09 cm2 V-1 s-1 and -3.31 V, respectively.

  3. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    PubMed

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  4. Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan

    High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio andmore » good memory retention.« less

  5. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals.

    PubMed

    Martínez, María Antonia; Úbeda, Alejandro; Moreno, Jorge; Trillo, María Ángeles

    2016-04-06

    The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38.

  6. Power Frequency Magnetic Fields Affect the p38 MAPK-Mediated Regulation of NB69 Cell Proliferation Implication of Free Radicals

    PubMed Central

    Martínez, María Antonia; Úbeda, Alejandro; Moreno, Jorge; Trillo, María Ángeles

    2016-01-01

    The proliferative response of the neuroblastoma line NB69 to a 100 µT, 50 Hz magnetic field (MF) has been shown mediated by activation of the MAPK-ERK1/2 pathway. This work investigates the MF effect on the cell cycle of NB69, the participation of p38 and c-Jun N-terminal (JNK) kinases in the field-induced proliferative response and the potential involvement of reactive oxygen species (ROS) in the activation of the MAPK-ERK1/2 and -p38 signaling pathways. NB69 cultures were exposed to the 100 µT MF, either intermittently for 24, 42 or 63 h, or continuously for periods of 15 to 120 min, in the presence or absence of p38 or JNK inhibitors: SB203580 and SP600125, respectively. Antioxidant N-acetylcysteine (NAC) was used as ROS scavenger. Field exposure induced transient activation of p38, JNK and ERK1/2. The MF proliferative effect, which was mediated by changes in the cell cycle, was blocked by the p38 inhibitor, but not by the JNK inhibitor. NAC blocked the field effects on cell proliferation and p38 activation, but not those on ERK1/2 activation. The MF-induced proliferative effects are exerted through sequential upregulation of MAPK-p38 and -ERK1/2 activation, and they are likely mediated by a ROS-dependent activation of p38. PMID:27058530

  7. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  8. Fermi level pinning at epitaxial Si on GaAs(100) interfaces

    NASA Astrophysics Data System (ADS)

    Silberman, J. A.; de Lyon, T. J.; Woodall, J. M.

    1991-12-01

    GaAs Schottky barrier contacts and metal-insulator-semiconductor structures that include thin epitaxial Si interfacial layers operate in a manner consistent with an unpinned Fermi level at the GaAs interface. These findings raise the question of whether this effect is an intrinsic property of the epitaxial GaAs(100)-Si interface. We have used x-ray photoemission spectroscopy to monitor the Fermi level position during in situ growth of thin epitaxial Si layers. In particular, films formed on heavily doped n- and p-type substrates were compared so as to use the large depletion layer fields available with high impurity concentration as a field-effect probe of the interface state density. The results demonstrate that epitaxial bonding at the interface alone is insufficient to eliminate Fermi level pinning, indicating that other mechanisms affect the interfacial charge balance in the devices that utilize Si interlayers.

  9. Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry

    NASA Astrophysics Data System (ADS)

    Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping

    2018-05-01

    We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.

  10. Field effect transistors based on phosphorene nanoribbon with selective edge-adsorption: A first-principles study

    NASA Astrophysics Data System (ADS)

    Hu, Mengli; Yang, Zhixiong; Zhou, Wenzhe; Li, Aolin; Pan, Jiangling; Ouyang, Fangping

    2018-04-01

    By using density functional theory (DFT) and nonequilibrium Green's function (NEGF), field effect transistor (FET) based on zigzag shaped phosphorene nanoribbons (ZPNR) are investigated. The FETs are constructed with bare-edged ZPNRs as electrodes and H, Cl or OH adsorbed ZPNRs as channel. It is found FETs with the three kinds of channel show similar transport properties. The FET is p-type with a maximum current on/off ratio of 104 and a minimum off-current of 1 nA. The working mode of FETs is dependent on the parity of channel length. It can be either enhancement mode or depletion mode and the off-state current shows an even-odd oscillation. The current oscillations are interpreted with density of states (DOS) analysis and methods of evolution operator and tight-binding Hamiltonian. Operating mechanism of the designed FETs is also presented with projected local density of states and band diagrams.

  11. Magnetic Field Effects on Triplet-Triplet Annihilation in Solutions: Modulation of Visible/NIR Luminescence.

    PubMed

    Mani, Tomoyasu; Vinogradov, Sergei A

    2013-08-06

    Photon upconversion based on sensitized triplet-triplet annihilation (TTA) presents interest for such areas as photovoltaics and imaging. Usually energy upconversion is observed as p -type delayed fluorescence from molecules whose triplet states are populated via energy transfer from a suitable triplet donor, followed by TTA. Magnetic field effects (MFE) on delayed fluorescence in molecular crystals are well known; however, there exist only a few examples of MFE on TTA in solutions, and all of them are limited to UV-emitting materials. Here we present MFE on TTA-mediated visible and near infrared (NIR) emission, sensitized by far-red absorbing metalloporphyrins in solutions at room temperature. In addition to visible delayed fluorescence from annihilator, we also observed NIR emission from the sensitizer, occurring as a result of triplet-triplet energy transfer back from annihilator, termed "delayed phosphorescence". This emission also exhibits MFE, but opposite in sign to the annihilator fluorescence.

  12. Different Types of Ion Populations Upstream of the 2013 October 8 Interplanetary Shock

    NASA Astrophysics Data System (ADS)

    Kajdič, Primož; Hietala, Heli; Blanco-Cano, Xóchitl

    2017-11-01

    We show for the first time that different types of suprathermal ion distributions may exist upstream of a single interplanetary shock. ACE and the two ARTEMIS satellites observed a shock on 2013 October 8. The ARTEMIS P1 and P2 spacecraft first observed field-aligned ions (P1) and gyrating ions (P2) arriving from the shock. These were followed by intermediate ions and later by a diffuse population. At the location of the P2 the shock exhibited an Alfvénic Mach number of M A = 5.7 and was marginally quasi-perpendicular ({θ }{Bn}=47^\\circ ). At P1 spacecraft the shock was weaker (M A = 4.9) and more perpendicular ({θ }{Bn}=61^\\circ ). Consequently, the observed suprathermal ion and ultra-low-frequency wave properties were somewhat different. At P2 the ultra-low-frequency waves are more intense and extend farther upstream from the shock. The energies of field-aligned and gyrating ions in the shock rest-frame were ˜20 keV, which is much more than in the case of the stronger (M A = 6-7) Earth’s bow shock, where they are less than 10 keV.

  13. Hexagonal MoTe2 with Amorphous BN Passivation Layer for Improved Oxidation Resistance and Endurance of 2D Field Effect Transistors.

    PubMed

    Sirota, Benjamin; Glavin, Nicholas; Krylyuk, Sergiy; Davydov, Albert V; Voevodin, Andrey A

    2018-06-06

    Environmental and thermal stability of two-dimensional (2D) transition metal dichalcogenides (TMDs) remains a fundamental challenge towards enabling robust electronic devices. Few-layer 2H-MoTe 2 with an amorphous boron nitride (a-BN) covering layer was synthesized as a channel for back-gated field effect transistors (FET) and compared to uncovered MoTe 2 . A systematic approach was taken to understand the effects of heat treatment in air on the performance of FET devices. Atmospheric oxygen was shown to negatively affect uncoated MoTe 2 devices while BN-covered FETs showed considerably enhanced chemical and electronic characteristic stability. Uncapped MoTe 2 FET devices, which were heated in air for one minute, showed a polarity switch from n- to p-type at 150 °C, while BN-MoTe 2 devices switched only after 200 °C of heat treatment. Time-dependent experiments at 100 °C showed that uncapped MoTe 2 samples exhibited the polarity switch after 15 min of heat treatment while the BN-capped device maintained its n-type conductivity for the maximum 60 min duration of the experiment. X-ray photoelectron spectroscopy (XPS) analysis suggests that oxygen incorporation into MoTe 2 was the primary doping mechanism for the polarity switch. This work demonstrates the effectiveness of an a-BN capping layer in preserving few-layer MoTe 2 material quality and controlling its conductivity type at elevated temperatures in an atmospheric environment.

  14. Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values

    NASA Astrophysics Data System (ADS)

    Pang, Zengyuan; Nie, Qingxin; Lv, Pengfei; Yu, Jian; Huang, Fenglin; Wei, Qufu

    2017-06-01

    We report a room-temperature ammonia sensor with extra high response values and ideal flexibility, including polyaniline (PANI)-coated titanium dioxide-silicon dioxide (TiO2-SiO2) or copper oxide-titanium dioxide-silicon dioxide (CuO-TiO2-SiO2) composite nanofibers. Such flexible inorganic TiO2-SiO2 and CuO-TiO2-SiO2 composite nanofibers were prepared by electrospinning, followed by calcination. Then, in situ polymerization of aniline monomers was carried out with inorganic TiO2-SiO2 and CuO-TiO2-SiO2 composite nanofibers as templates. Gas sensing tests at room temperature indicated that the obtained CuO-TiO2-SiO2/PANI composite nanofibers had much higher response values to ammonia gas (ca. 45.67-100 ppm) than most of those reported before as well as the prepared TiO2-SiO2/PANI composite nanofibers here. These excellent sensing properties may be due to the P-N, P-P heterojunctions and a structure similar to field-effect transistors formed on the interfaces between PANI, TiO2, and CuO, which is p-type, n-type, and p-type semiconductor, respectively. In addition, the prepared free-standing CuO-TiO2-SiO2/PANI composite nanofiber membrane was easy to handle and possessed ideal flexibility, which is promising for potential applications in wearable sensors in the future.

  15. Design of flexible PANI-coated CuO-TiO2-SiO2 heterostructure nanofibers with high ammonia sensing response values.

    PubMed

    Pang, Zengyuan; Nie, Qingxin; Lv, Pengfei; Yu, Jian; Huang, Fenglin; Wei, Qufu

    2017-06-02

    We report a room-temperature ammonia sensor with extra high response values and ideal flexibility, including polyaniline (PANI)-coated titanium dioxide-silicon dioxide (TiO 2 -SiO 2 ) or copper oxide-titanium dioxide-silicon dioxide (CuO-TiO 2 -SiO 2 ) composite nanofibers. Such flexible inorganic TiO 2 -SiO 2 and CuO-TiO 2 -SiO 2 composite nanofibers were prepared by electrospinning, followed by calcination. Then, in situ polymerization of aniline monomers was carried out with inorganic TiO 2 -SiO 2 and CuO-TiO 2 -SiO 2 composite nanofibers as templates. Gas sensing tests at room temperature indicated that the obtained CuO-TiO 2 -SiO 2 /PANI composite nanofibers had much higher response values to ammonia gas (ca. 45.67-100 ppm) than most of those reported before as well as the prepared TiO 2 -SiO 2 /PANI composite nanofibers here. These excellent sensing properties may be due to the P-N, P-P heterojunctions and a structure similar to field-effect transistors formed on the interfaces between PANI, TiO 2 , and CuO, which is p-type, n-type, and p-type semiconductor, respectively. In addition, the prepared free-standing CuO-TiO 2 -SiO 2 /PANI composite nanofiber membrane was easy to handle and possessed ideal flexibility, which is promising for potential applications in wearable sensors in the future.

  16. High performance printed oxide field-effect transistors processed using photonic curing.

    PubMed

    Garlapati, Suresh Kumar; Marques, Gabriel Cadilha; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Tahoori, Mehdi Baradaran; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-08

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV-visible light and UV-laser), we demonstrate facile fabrication of high performance In 2 O 3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  17. High performance printed oxide field-effect transistors processed using photonic curing

    NASA Astrophysics Data System (ADS)

    Garlapati, Suresh Kumar; Cadilha Marques, Gabriel; Gebauer, Julia Susanne; Dehm, Simone; Bruns, Michael; Winterer, Markus; Baradaran Tahoori, Mehdi; Aghassi-Hagmann, Jasmin; Hahn, Horst; Dasgupta, Subho

    2018-06-01

    Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.

  18. Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages.

    PubMed

    Tangney, Mark; Fitzgerald, Gerald F

    2002-04-23

    Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.

  19. Facilitatory effects of selective agonists for tachykinin receptors on cholinergic neurotransmission: evidence for species differences.

    PubMed Central

    Belvisi, M. G.; Patacchini, R.; Barnes, P. J.; Maggi, C. A.

    1994-01-01

    1. Exogenous tachykinins modulate cholinergic neurotransmission in rabbit and guinea-pig airways. We have investigated the effect of selective tachykinin receptor agonists and antagonists on cholinergic neurotransmission evoked by electrical field stimulation (EFS) of bronchial rings in rabbit, guinea-pig and human airways in vitro to assess which type of tachykinin receptor is mediating this facilitatory effect. 2. Bronchial rings were set up for isometric tension recording. Contractile responses to EFS (60 V, 0.4 ms, 2 Hz for 10 s every min) and exogenous acetylcholine (ACh) were obtained and the effects of selective tachykinin agonists and antagonists were investigated. 3. In rabbit bronchi the endogenous tachykinins, substance P (SP) and neurokinin A (NKA) (10 nM) potentiated cholinergic responses to EFS (by 287.6 +/- 121%, P < 0.01 and 181.4 +/- 56.5%, P < 0.001 respectively). 4. The NK1 receptor selective agonist, [Sar9]SP sulphone (10 nM) evoked a maximal facilitatory action on cholinergic responses of 334.9 +/- 63% (P < 0.01) (pD2 = 8.5 +/- 0.06) an effect which was blocked by the selective NK1-receptor antagonist, CP 96,345 (100 nM) (P < 0.05) but not by the NK2 receptor antagonist, MEN 10,376 (100 nM). The NK2 receptor selective agonist, [beta Ala8]NKA(4-10) (10 nM), produced a maximum enhancement of 278 +/- 83.5% (P < 0.01) (pD2 = 8.7 +/- 0.1) an effect which was blocked by MEN 10,376 (100 nM) (P < 0.05) and not by CP 96,345. [MePhe7]NKB, an NK3 receptor selective agonist was without effect.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7516799

  20. Air Force Officer Accession Planning: Addressing Key Gaps in Meeting Career Field Academic Degree Requirements for Nonrated Officers

    DTIC Science & Technology

    2016-06-09

    C O R P O R A T I O N Research Report Air Force Officer Accession Planning Addressing Key Gaps in Meeting Career Field Academic Degree Requirements...various Air Force missions in particular career fields. Key to this goal for nonrated officers is establishing and enforcing academic degree...35 Developing Accession Targets by Academic Degree Type

  1. Comparison of fertility results after vaginal insemination using different thawing procedures and packages for frozen ram semen

    PubMed Central

    Paulenz, Heiko; Ådnøy, Tormod; Söderquist, Lennart

    2007-01-01

    Background The effect of different thawing procedures for ram semen frozen in minitubes and mini straws on the fertility of sheep was tested in a field trial. Methods Altogether, 719 Norwegian Crossbred ewes, aged between six months and six-and-a-half years from 8 farms, were inseminated vaginally in natural oestrus with frozen-thawed semen. Minitubes were thawed at 70°C for 8 sec (T70) and mini straws either at 50°C for 9 sec (S50) or at 35°C for 12 sec (S35). Results Vaginal insemination with 200 × 106 spermatozoa resulted in 25-days non-return rates of 63.2, 59.6, and 62.5% (overall 61.8%), respectively, and lambing rates of 56.8, 55.0, and 59.2% (overall 57.0%), respectively. No significant effect on fertility (as 25-days non-return- or lambing rate) was seen for straw type/thawing temperature (P = 0.5/0.5), but semen filled in mini straws and thawed at 35°C resulted numerically in the highest lambing rate (59.2%). A significant effect was, however, seen for farmer (P = >0.0001/>0.0001) and ram (P = 0.009/0.002). Moreover, age of the ewes had a significant effect on the NR rate (0.007), but not on lambing rate (P = 0.2). Conclusion A vaginal deposition of frozen ram semen containing approximately 200 × 106 spermatozoa, filled in mini straws and thawed at 35°C is a simplified technique that under field conditions and used on a do-it-yourself regime gives acceptable lambing rates in Norway. PMID:17903246

  2. Evaluation of in vivo dose measurements for patients undergoing electron boost treatments.

    PubMed

    Verney, J N; Morgan, A M

    2001-06-01

    This study evaluated p-type silicon diodes for use in in vivo dosimetry in clinical electron beams. A calibrated p-type silicon diode detector was used to measure the dose received by the patient in the centre of the field. Readings were corrected for energy, temperature and stand-off of the electron applicator from the patient surface. The mean difference between measured and prescribed dose was 1.04% (95% CI 0.72 to 1.36 %).

  3. The effect of synthesis parameters on the geometry and dimensions of mesoporous hydroxyapatite nanoparticles in the presence of 1-dodecanethiol as a pore expander.

    PubMed

    Bakhtiari, L; Rezaie, H R; Javadpour, J; Erfan, M; Shokrgozar, M A

    2015-08-01

    Mesoporous hydroxyapatite with different pore diameters and pore volumes were synthesized by the self-assembly method using Cetyltrimethylammonium bromide (CTAB) as the cationic surfactant and 1-dodecanethiol as the pore expander at different micellization pHs, solvent types and surfactant concentrations. Results of field emission scanning electron microscopy (FESEM) showed a decrease in length/diameter ratio of rod-like particles by an increase in micellization pH and also a sphere to rod transition in morphology by an increase in CTAB concentration. Brunauer-Emmett-Teller (BET) surface area and Low angle X-ray diffraction analysis revealed that the optimized mesoporous hydroxyapatite with controlled pore structure can be obtained under basic micellization pH (about 12, pH of complete ionization of 1-dodecanethiol) by using water as the solvent and a high content of cationic surfactant. The results also show that micellization pH has a strong effect on pore structure and changing the pH can shift the mesostructure to a macroporous structure with morphological changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Comparison of carrier transport mechanism under UV/Vis illumination in an AZO photodetector and an AZO/p-Si heterojunction photodiode produced by spray pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shasti, M.; Mortezaali, A., E-mail: mortezaali@alzahra.ac.ir; Dariani, R. S.

    2015-01-14

    In this study, Aluminum doped Zinc Oxide (AZO) layer is deposited on p-type silicon (p-Si) by spray pyrolysis method to fabricate ultraviolet-visible (UV/Vis) photodetector as Al doping process can have positive effect on the photodetector performance. Morphology, crystalline structure, and Al concentration of AZO layer are investigated by SEM, XRD, and EDX. The goal of this study is to analyze the mechanism of carrier transport by means of current-voltage characteristics under UV/Vis illumination in two cases: (a) electrodes connected to the surface of AZO layer and (b) electrodes connected to cross section of heterojunction (AZO/p-Si). Measurements indicate that the AZO/p-Simore » photodiode exhibits a higher photocurrent and lower photoresponse time under visible illumination with respect to AZO photodetector; while under UV illumination, the above result is inversed. Besides, the internal junction field of AZO/p-Si heterojunction plays an important role on this mechanism.« less

  5. Genetic diversity of merozoite surface protein-2 in Plasmodium falciparum isolates from Aceh province, Indonesia

    NASA Astrophysics Data System (ADS)

    Jamil, K. F.; Supargiyono, S.; Syafruddin, D.; Pratama, N.; Silvy, S.

    2018-03-01

    Estimated 3.3 million Indonesian population were infected with malaria. However, extensive genetic polymorphism of the field isolates MSP-2 of P. falciparum represents a major obstacle for the development of malaria treatment. The aim of this study to investigate the genetic diversity of MSP-2 genotype in field isolates of P. falciparum collected in Aceh Province. A total of 90 patients enrolled in this study who were selected from positive malaria from eleven district Hospitals in Aceh from 2013-2015. Data was collected by anamnesis, complete physical examination and laboratory tests for MSP-2. All protocol to diagnose malaria assigned following the WHO 2010 guideline. All samples were stored in Eijkman Biology Molecular Institute, Jakarta.Among 90 samples were 57.7% male and 42.3% female with the most cases ages between 21-30 years old. Allele typing analysis displayed the polymorphic nature of P. falciparum. The MSP-2 have two alleles, 62.2% (56/90) for FC27 type and 58.9% (53/90) for 3D7 type and 21.2% (19/90) for mixed FC27 and 3D7 infection were identified. Diverse allele types from Aceh Province was identified in MSP-2 P. falciparum patients; there is the almost similar number of patients infected with both allele. A moderate level of the mixed allele was also observed.

  6. Administration of non-pathogenic isolates of Escherichia coli and Clostridium perfringens type A to piglets in a herd affected with a high incidence of neonatal diarrhoea.

    PubMed

    Unterweger, C; Kahler, A; Gerlach, G-F; Viehmann, M; von Altrock, A; Hennig-Pauka, I

    2017-04-01

    A bacterial cocktail of living strains of Clostridium perfringens type A (CPA) without β2-toxin gene and non-pathogenic Escherichia coli was administered orally to newborn piglets before first colostrum intake and on 2 consecutive days on a farm with a high incidence of diarrhoea and antibiotic treatment in suckling piglets associated with E. coli and CPA. This clinical field study was driven by the hypothetic principle of competitive exclusion of pathogenic bacteria due to prior colonization of the gut mucosal surface by non-pathogenic strains of the same bacterial species with the aim of preventing disease. Although CPA strains used in this study did not produce toxins in vitro, their lack of pathogenicity cannot be conclusively confirmed. The health status of the herd was impaired by a high incidence of postpartum dysgalactia syndrome in sows (70%) and a high incidence of neonatal diarrhoea caused by enterotoxigenic E. coli and CPA during the study. No obvious adverse effect of the bacterial treatment occurred. On average, more piglets were weaned in litters treated (P=0.009). Visual pathological alterations in the small intestinal wall were more frequent in dead piglets of the control group (P=0.004) and necrotizing enteritis was only found in that group. A higher average daily weight gain of piglets in the control group (P<0.001) may be due to an increased milk uptake due to less competition in the smaller litters. The bacterial cocktail was tested under field conditions for its potential to stabilize gut health status in suckling piglets before disease development due to colibacillosis and clostridial infections; however, the gut flora stabilizing effect of the bacterial cocktail was not clearly discernible in this study. Further basic research is needed to confirm the positive effects of the bacterial treatment used and to identify additional potential bacterial candidates for competitive exclusion.

  7. Effects of single and combined low frequency electromagnetic fields and simulated microgravity on gene expression of human mesenchymal stem cells during chondrogenesis

    PubMed Central

    Hammerschmid, Florian; Blum, Helmut; Krebs, Stefan; Redeker, Julia I.; Holzapfel, Boris M.; Jansson, Volkmar; Müller, Peter E.

    2016-01-01

    Introduction Low frequency electromagnetic fields (LF-EMF) and simulated microgravity (SMG) have been observed to affect chondrogenesis. A controlled bioreactor system was developed to apply LF-EMF and SMG singly or combined during chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in 3D culture. Material and methods An external motor gear SMG bioreactor was combined with magnetic Helmholtz coils for EMF (5 mT; 15 Hz). Pellets of hMSCs (±TGF-β3) were cultured (P5) under SMG, LF-EMF, LF-EMF/SMG and control (1 g) conditions for 3 weeks. Sections were stained with safranin-O and collagen type II. Gene expression was evaluated by microarray and real-time polymerase chain reaction analysis. Results Simulated microgravity application significantly changed gene expression; specifically, COLXA1 but also COL2A1, which represents the chondrogenic potential, were reduced (p < 0.05). Low frequency electromagnetic fields application showed no gene expression changes on a microarray basis. LF-EMF/SMG application obtained significant different expression values from cultures obtained under SMG conditions with a re-increase of COL2A1, therefore rescuing the chondrogenic potential, which had been lowered by SMG. Conclusions Simulated microgravity lowered hypertrophy but also the chondrogenic potential of hMSCs. Combined LF-EMF/SMG provided a rescue effect of the chondrogenic potential of hMSCs although no LF-EMF effect was observed under optimal conditions. The study provides new insights into how LF-EMF and SMG affect chondrogenesis of hMSCs and how they generate interdependent effects. PMID:29765449

  8. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    PubMed

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  9. Quantum transport in graphene in presence of strain-induced pseudo-Landau levels

    NASA Astrophysics Data System (ADS)

    Settnes, Mikkel; Leconte, Nicolas; Barrios-Vargas, Jose E.; Jauho, Antti-Pekka; Roche, Stephan

    2016-09-01

    We report on mesoscopic transport fingerprints in disordered graphene caused by strain-field induced pseudomagnetic Landau levels (pLLs). Efficient numerical real space calculations of the Kubo formula are performed for an ordered network of nanobubbles in graphene, creating pseudomagnetic fields up to several hundreds of Tesla, values inaccessible by real magnetic fields. Strain-induced pLLs yield enhanced scattering effects across the energy spectrum resulting in lower mean free path and enhanced localization effects. In the vicinity of the zeroth order pLL, we demonstrate an anomalous transport regime, where the mean free paths increases with disorder. We attribute this puzzling behavior to the low-energy sub-lattice polarization induced by the zeroth order pLL, which is unique to pseudomagnetic fields preserving time-reversal symmetry. These results, combined with the experimental feasibility of reversible deformation fields, open the way to tailor a metal-insulator transition driven by pseudomagnetic fields.

  10. Tumor cell anaplasia and multinucleation are predictors of disease recurrence in oropharyngeal squamous cell carcinoma, including among just the human papillomavirus-related cancers.

    PubMed

    Lewis, James S; Scantlebury, Juliette B; Luo, Jingqin; Thorstad, Wade L

    2012-07-01

    Oropharyngeal squamous cell carcinoma (SCC) is frequently related to high risk human papillomavirus. This tumor expresses p16, frequently has a nonkeratinizing morphology, and has improved outcomes. Despite having a good prognosis, tumors can have focal or diffuse nuclear anaplasia or multinucleation, the significance of which is unknown. From a database of 270 oropharyngeal SCCs with known histologic typing (using our established system) and p16 immunohistochemistry, all surgically resected cases (149) were reviewed. Anaplasia was defined as any × 40 field with ≥ 3 tumor nuclei with diameters ≥ 5 lymphocyte nuclei (~25 μm), and multinucleation was defined as any × 40 field with ≥ 3 tumor cells with multiple nuclei. p16 was positive in 128 cases (85.9%), 64 cases (43.0%) showed anaplasia, and 71 (47.7%) showed multinucleation. Anaplasia and multinucleation were highly related (P<0.001), and both also correlated with histologic type (P<0.001 and P=0.01, respectively), p16 status (P=0.09 and 0.03, respectively), and partially with nodal extracapsular extension. There was no correlation with any of the other variables. In univariate analysis, cases showing anaplasia or multinucleation had worse overall, disease-specific, and disease-free survival (P<0.006 for all). Higher T-stage, keratinizing histologic type, extracapsular extension, and smoking also all correlated with worse survival. In multivariate analysis, anaplasia and multinucleation both predicted worse disease-specific survival (hazard ratio 9.9, P=0.04; and hazard ratio 11.9, P=0.02, respectively) independent of the other variables. In summary, among surgically resectable oropharyngeal SCC (including among just the p16-positive cohort), tumor cell anaplasia and multinucleation independently correlated with disease recurrence and poorer survival.

  11. Tumor Cell Anaplasia and Multinucleation Are Predictors of Disease Recurrence in Oropharyngeal Squamous Cell Carcinoma, Including Among Just the Human Papillomavirus-Related Cancers

    PubMed Central

    Lewis, James S.; Scantlebury, Juliette B.; Luo, Jingqin; Thorstad, Wade L.

    2013-01-01

    Oropharyngeal squamous cell carcinoma (SCC) is frequently related to high risk human papillomavirus. This tumor expresses p16, frequently has a nonkeratinizing morphology, and has improved outcomes. Despite having a good prognosis, tumors can have focal or diffuse nuclear anaplasia or multinucleation, the significance of which is unknown. From a database of 270 oropharyngeal SCCs with known histologic typing (using our established system) and p16 immunohistochemistry, all surgically resected cases (149) were reviewed. Anaplasia was defined as any ×40 field with ≥ 3 tumor nuclei with diameters ≥ 5 lymphocyte nuclei (~25 μm), and multinucleation was defined as any ×40 field with ≥ 3 tumor cells with multiple nuclei. p16 was positive in 128 cases (85.9%), 64 cases (43.0%) showed anaplasia, and 71 (47.7%) showed multinucleation. Anaplasia and multinucleation were highly related (P < 0.001), and both also correlated with histologic type (P < 0.001 and P = 0.01, respectively), p16 status (P = 0.09 and 0.03, respectively), and partially with nodal extracapsular extension. There was no correlation with any of the other variables. In univariate analysis, cases showing anaplasia or multinucleation had worse overall, disease-specific, and disease-free survival (P < 0.006 for all). Higher T-stage, keratinizing histologic type, extracapsular extension, and smoking also all correlated with worse survival. In multivariate analysis, anaplasia and multinucleation both predicted worse disease-specific survival (hazard ratio 9.9, P = 0.04; and hazard ratio 11.9, P = 0.02, respectively) independent of the other variables. In summary, among surgically resectable oropharyngeal SCC (including among just the p16-positive cohort), tumor cell anaplasia and multinucleation independently correlated with disease recurrence and poorer survival. PMID:22743286

  12. Responses of amphibian populations to water and soil factors in experimentally-treated aquatic macrocosms

    USGS Publications Warehouse

    Sparling, D.W.; Lowe, T.P.; Day, D.; Dolan, K.

    1995-01-01

    Survival of anuran embryos and tadpoles is reduced in acidic (pH < 5.0) waters under laboratory conditions. However, field data on the presence-absence of amphibian species and acidity are equivocal. This study attempts to reconcile some of this discrepancy by using macrocosms to examine the interaction of soil type and water acidification on free-ranging tadpole populations. Tadpoles were caught with activity traps in 24 aquatic macrocosms experimentally treated with H2SO4 and Al2(SO4)3 and lined with either comparatively high metal, Iow organic matter clay soils or lower metal, higher organic matter loams. Northern cricket frog (Acris crepitans) tadpole abundance was less in acidified macrocosms than in circumneutral ones (p < 0.05) and less in those with loam soils than in macrocosms with clay soils (p < 0.04). Gray treefrog (Hyla versicolor) abundance was affected by an interaction between soil and acidification (p < 0.07) in that treatment effects were only observed in macrocosms with clay soils (p < 0.01). No differences were observed among treatments for green frog (Rana clamitans) or southern leopard frog (R. utricularia) tadpoles. The study shows that soil type may interact with water conditions to affect amphibian populations in acidified waters

  13. Electrophysiological evidence for different release mechanism of ATP and NO as inhibitory NANC transmitters in guinea-pig colon.

    PubMed

    Zagorodnyuk, V; Maggi, C A

    1994-08-01

    1. The effect of the P2-purinoceptor antagonist, suramin, the specific N-type voltage-dependent calcium channel blocker, omega-conotoxin GVIA (omega-CgTx) and the delta-opioid receptor agonist [D-Pen2,D-Pen5] enkephalin (DPDPE) on the apamin-sensitive and apamin-resistant inhibitory junction potentials (i.j.ps) produced by electrical field stimulation (EFS) were investigated by means of a sucrose-gap technique in the circular muscle of the guinea-pig colon. 2. After incubation of muscle strips in either atropine (1 microM), guanethidine (3 microM) and NG-nitro-L-arginine (L-NOARG, 30 microM) or atropine, guanethidine and apamin (0.3 microM), the addition of the NK1 receptor antagonist, SR 140,333 (1 microM) abolished the non-adrenergic, non-cholinergic (NANC) excitatory junction potential (e.j.p.) and unmasked a pure apamin-sensitive i.j.p. (in the presence of L-NOARG) or a pure apamin-resistant i.j.p. (in the presence of apamin). Both types of i.j.p. were abolished by tetrodotoxin. 3. Suramin (30-300 microM) concentration-dependently inhibited the apamin-sensitive i.j.p., while the apamin-resistant i.j.p. was not significantly affected by suramin (up to 300 microM). L-NOARG (30 microM) markedly reduced the apamin-resistant i.j.p. 4. The delta-opioid receptor agonist, DPDPE (0.03-3 microM) concentration-dependently reduced the apamin-sensitive i.j.p., while leaving the apamin-resistant i.j.p. unaffected. Naloxone (1 microM) prevented the i.j.p. inhibition evoked by DPDPE (0.3 microM). 5. omega-CgTx (0.3 microM) markedly reduced the apamin-sensitive but not the apamin-resistant i.j.p. The application of DPDPE (3 MicroM), after development of a steady state inhibitory effect by omega-CgTx, evoked further inhibition of the apamin-sensitive ij.p., similar to the effect produced by DPDPE alone. The L-type calcium channel blocker, nifedipine (1 MicroM) did not significantly affect either the apamin-sensitive or the apamin-resistant ij.ps.6. These findings support the purinergic origin of the fast, apamin-sensitive ij.p. produced by EFS in the circular muscle of the guinea-pig colon and strongly suggest that the apamin-sensitive and the apamin-resistant components of the evoked ij.p. utilize different mechanisms for the secretion of theNANC transmitters, ATP and NO, respectively.

  14. Modulation of spike coding by subthreshold extracellular electric fields and neuronal morphology

    NASA Astrophysics Data System (ADS)

    Wei, Xile; Li, Bingjie; Lu, Meili; Yi, Guosheng; Wang, Jiang

    2015-07-01

    We use a two-compartment model, which includes soma and dendrite, to explore how extracellular subthreshold sinusoidal electric fields (EFs) influence the spike coding of an active neuron. By changing the intensity and the frequency of subthreshold EFs, we find that subthreshold EFs indeed affect neuronal coding remarkably within several stimulus frequency windows where the field effects on spike timing are stronger than that on spiking rate. The field effects are maximized at several harmonics of the intrinsic spiking frequency of an active neuron. Our findings implicate the potential resonance mechanism underlying subthreshold field effects. We also discuss how neuronal morphologic properties constrain subthreshold EF effects on spike timing. The morphologic properties are represented by two parameters, gc and p, where gc is the internal conductance between soma and dendrite and geometric factor p characterizes the proportion of area occupied by soma. We find that the contribution to field effects from the variation of p is stronger than that from gc, which suggests that neuronal geometric features play a crucial role in subthreshold field effects. Theoretically, these insights into how subthreshold sinusoidal EFs modulate ongoing neuron behaviors could contribute to uncovering the relevant mechanism of subthreshold sinusoidal EFs effects on neuronal coding. Furthermore, they are useful in rationally designing noninvasive brain stimulation strategies and developing electromagnetic stimulus techniques.

  15. Field-effect transistors (2nd revised and enlarged edition)

    NASA Astrophysics Data System (ADS)

    Bocharov, L. N.

    The design, principle of operation, and principal technical characteristics of field-effect transistors produced in the USSR are described. Problems related to the use of field-effect transistors in various radioelectronic devices are examined, and tables of parameters and mean statistical characteristics are presented for the main types of field-effect transistors. Methods for calculating various circuit components are discussed and illustrated by numerical examples.

  16. Development of references of anomalies detection on P91 material using Self-Magnetic Leakage Field (SMLF) technique

    NASA Astrophysics Data System (ADS)

    Husin, Shuib; Afiq Pauzi, Ahmad; Yunus, Salmi Mohd; Ghafar, Mohd Hafiz Abdul; Adilin Sekari, Saiful

    2017-10-01

    This technical paper demonstrates the successful of the application of self-magnetic leakage field (SMLF) technique in detecting anomalies in weldment of a thick P91 materials joint (1 inch thickness). Boiler components such as boiler tubes, stub boiler at penthouse and energy piping such as hot reheat pipe (HRP) and H-balance energy piping to turbine are made of P91 material. P91 is ferromagnetic material, therefore the technique of self-magnetic leakage field (SMLF) is applicable for P91 in detecting anomalies within material (internal defects). The technique is categorized under non-destructive technique (NDT). It is the second passive method after acoustic emission (AE), at which the information on structures radiation (magnetic field and energy waves) is used. The measured magnetic leakage field of a product or component is a magnetic leakage field occurring on the component’s surface in the zone of dislocation stable slipbands under the influence of operational (in-service) or residual stresses or in zones of maximum inhomogeneity of metal structure in new products or components. Inter-granular and trans-granular cracks, inclusion, void, cavity and corrosion are considered types of inhomogeneity and discontinuity in material where obviously the output of magnetic leakage field will be shown when using this technique. The technique does not required surface preparation for the component to be inspected. This technique is contact-type inspection, which means the sensor has to touch or in-contact to the component’s surface during inspection. The results of application of SMLF technique on the developed P91 reference blocks have demonstrated that the technique is practical to be used for anomaly inspection and detection as well as identification of anomalies’ location. The evaluation of this passive self-magnetic leakage field (SMLF) technique has been verified by other conventional non-destructive tests (NDTs) on the reference blocks where simulated defects/anomalies have been developed inside at the weldment. The results from the inspection test showed that the signatures of magnetic leakage field gradient distribution prove that the peak is found on the location of defect/anomaly in the reference block. It is in agreement with the evidence of anomaly that seen in the radiography test film (RT).

  17. Traps and Interface Fixed Charge Effects on a Solution-Processed n-Type Polymeric-Based Organic Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Hafsi, B.; Boubaker, A.; Guerin, D.; Lenfant, S.; Kalboussi, A.; Lmimouni, K.

    2017-02-01

    Organic field-effect transistors based on poly{[ N, N0- bis(2-octyldodecyl)- naphthalene-1,4,5,8- bis(dicarboximide)-2,6-diyl]-alt-5,50-(2,20-bithiophene)}, [P(NDI2OD-T2)n], were fabricated and characterized. The effect of octadecyltrichlorosilane (OTS) a self-assembled monolayer (SAM) grafted on to a SiO2 gate dielectric was investigated. A significant improvement of the charge mobility ( μ), up to 0.22 cm2/V s, was reached thanks to the OTS treatment. Modifying some technological parameters relating to fabrication, such as solvents, was also studied. We have analyzed the electrical properties of these thin-film transistors by using a two-dimensional drift-diffusion simulator, Integrated System Engineering-Technology Computer Aided Design (ISE-TCAD®). We studied the fixed surface charges at the organic semiconductor/oxide interface and the bulk traps effect. The dependence of the threshold voltage on the density and energy level of the trap states has also been considered. We finally found a good agreement between the output and transfer characteristics for experimental and simulated data.

  18. Collagenase produced from Aspergillus sp. (UCP 1276) using chicken feather industrial residue.

    PubMed

    Ferreira, Catarina Michelle Oliveira; Correia, Patyanne Carvalho; Brandão-Costa, Romero Marcos Pedrosa; Albuquerque, Wendell Wagner Campos; Lin Liu, Tatiana Pereira Shin; Campos-Takaki, Galba Maria; Porto, Ana Lúcia Figueiredo

    2017-05-01

    An extracellular collagenolytic serine protease was purified from Aspergillus sp., isolated from the Caatinga biome in northeast Brazil by a two-step chromatographic procedure, using an anion-exchanger and gel filtration. The enzyme was produced by submerged fermentation of feather residue as a substrate. The purified collagenase showed a 2.09-fold increase in specific activity and 22.85% yield. The enzyme was a monomeric protein with a molecular mass of 28.7 kDa, estimated by an SDS-PAGE and AKTA system. The optimum temperature and pH for enzyme activity were around 40°C and pH 8.0, respectively. The enzyme was strongly inhibited by phenyl-methylsulfonyl fluoride, a serine protease inhibitor, and was thermostable until 65°C for 1 h. We then evaluated the enzyme's potential for degradation of Type I and Type V collagens for producing peptides with antifungal activity. Our results revealed that the cleavage of Type V collagen yielded more effective peptides than Type I, inhibiting growth of Aspergillus terreus, Aspergillus japonicus and Aspergillus parasiticus. Both groups of peptides (Type I and Type V) were identified by SDS-PAGE. To conclude, the thermostable collagenase we purified in this study has various potentially useful applications in the fields of biochemistry, biotechnology and biomedical sciences. Copyright © 2016 John Wiley & Sons, Ltd.

  19. A rationally designed peptide IA-2-P2 against type 1 diabetes in streptozotocin-induced diabetic mice.

    PubMed

    Shen, Lili; Lu, Shiping; Huang, Dongcheng; Li, Guoliang; Liu, Kunfeng; Cao, Rongyue; Zong, Li; Jin, Liang; Wu, Jie

    2017-05-01

    Recent studies have investigated the potential of type 1 diabetes mellitus-related autoantigens, such as heat shock protein 60, to induce immunological tolerance or to suppress the immune response. A functional 24-residue peptide derived from heat shock protein 60 (P277) has shown anti-type 1 diabetes mellitus potential in experimental animals and in clinical studies, but it also carries a potential atherogenic effect. In this study, we have modified P277 to retain an anti-type 1 diabetes mellitus effect and minimize the atherogenic potential by replacing the P277 B epitope with another diabetes-associated autoantigen, insulinoma antigen-2 (IA-2), to create the fusion peptide IA-2-P2. In streptozotocin-induced diabetic C57BL/6J mice, the IA-2-P2 peptide displayed similar anti-diabetic effects to the control P277 peptide. Also, the IA-2-P2 peptide did not show atherogenic activity in a rabbit model. Our findings indicate the potential of IA-2-P2 as a promising vaccine against type 1 diabetes mellitus.

  20. Field Model: An Object-Oriented Data Model for Fields

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.

    2001-01-01

    We present an extensible, object-oriented data model designed for field data entitled Field Model (FM). FM objects can represent a wide variety of fields, including fields of arbitrary dimension and node type. FM can also handle time-series data. FM achieves generality through carefully selected topological primitives and through an implementation that leverages the potential of templated C++. FM supports fields where the nodes values are paired with any cell type. Thus FM can represent data where the field nodes are paired with the vertices ("vertex-centered" data), fields where the nodes are paired with the D-dimensional cells in R(sup D) (often called "cell-centered" data), as well as fields where nodes are paired with edges or other cell types. FM is designed to effectively handle very large data sets; in particular FM employs a demand-driven evaluation strategy that works especially well with large field data. Finally, the interfaces developed for FM have the potential to effectively abstract field data based on adaptive meshes. We present initial results with a triangular adaptive grid in R(sup 2) and discuss how the same design abstractions would work equally well with other adaptive-grid variations, including meshes in R(sup 3).

  1. Application of neutron transmutation doping method to initially p-type silicon material.

    PubMed

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  2. Band gap narrowing in n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si

    NASA Astrophysics Data System (ADS)

    Persson, C.; Lindefelt, U.; Sernelius, B. E.

    1999-10-01

    Doping-induced energy shifts of the conduction band minimum and the valence band maximum have been calculated for n-type and p-type 3C-, 2H-, 4H-, 6H-SiC, and Si. The narrowing of the fundamental band gap and of the optical band gap are presented as functions of ionized impurity concentration. The calculations go beyond the common parabolic treatments of the ground state energy dispersion by using energy dispersion and overlap integrals from band structure calculations. The nonparabolic valence band curvatures influence strongly the energy shifts especially in p-type materials. The utilized method is based on a zero-temperature Green's function formalism within the random phase approximation with local field correction according to Hubbard. We have parametrized the shifts of the conduction and the valence bands and made comparisons with recently published results from a semi-empirical model.

  3. Dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model in an oscillating field: the effective-field theory based on the Glauber-type stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-06-01

    Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.

  4. Protecting effect of PrP codons M142 and K222 in goats orally challenged with bovine spongiform encephalopathy prions.

    PubMed

    Fast, C; Goldmann, W; Berthon, P; Tauscher, K; Andréoletti, O; Lantier, I; Rossignol, C; Bossers, A; Jacobs, J G; Hunter, N; Groschup, M H; Lantier, F; Langeveld, J P M

    2017-09-19

    Breeding towards genetic resistance to prion disease is effective in eliminating scrapie. In sheep, classical forms of scrapie have been eradicated almost completely in several countries by breeding programs using a prion protein (PrP) gene (PRNP) amino acid polymorphism. For goats, field and experimental studies have provided evidence for several amino acid polymorphisms that are associated with resistance to scrapie, but only limited data are available concerning the susceptibility of caprine PRNP genotypes to BSE. In this study, goat kids representing five PRNP genotypes based on three polymorphisms (M142, Q211 and K222 and the wild type I142, R211 and Q222) were orally challenged with bovine or goat BSE. Wild type goats were killed with clinical signs between 24-28 months post inoculation (mpi) to both challenges, and goats with genotype R/Q211 succumbed between 29-36 mpi. I/M142 goats developed clinical signs at 44-45 mpi and M/M142 goats remained healthy until euthanasia at 48 mpi. None of the Q/K222 goats showed definite clinical signs. Taken together the highest attack ratios were seen in wild type and R/Q211 goats, and the lowest in I/M142, M/M142 and Q/K222. In all genotype groups, one or more goats remained healthy within the incubation period in both challenges and without detectable PrP deposition in the tissues. Our data show that both the K222 and M142 polymorphisms lengthen the incubation period significantly compared to wild type animals, but only K222 was associated with a significant increase in resistance to BSE infection after oral exposure to both BSE sources.

  5. Method for separating single-wall carbon nanotubes and compositions thereof

    NASA Technical Reports Server (NTRS)

    Hauge, Robert H. (Inventor); Kittrell, W. Carter (Inventor); Sivarajan, Ramesh (Inventor); Bachilo, Sergei M. (Inventor); Weisman, R. Bruce (Inventor); Smalley, Richard E. (Inventor); Strano, Michael S. (Inventor)

    2006-01-01

    The invention relates to a process for sorting and separating a mixture of (n, m) type single-wall carbon nanotubes according to (n, m) type. A mixture of (n, m) type single-wall carbon nanotubes is suspended such that the single-wall carbon nanotubes are individually dispersed. The nanotube suspension can be done in a surfactant-water solution and the surfactant surrounding the nanotubes keeps the nanotube isolated and from aggregating with other nanotubes. The nanotube suspension is acidified to protonate a fraction of the nanotubes. An electric field is applied and the protonated nanotubes migrate in the electric fields at different rates dependent on their (n, m) type. Fractions of nanotubes are collected at different fractionation times. The process of protonation, applying an electric field, and fractionation is repeated at increasingly higher pH to separated the (n, m) nanotube mixture into individual (n, m) nanotube fractions. The separation enables new electronic devices requiring selected (n, m) nanotube types.

  6. Development of a phosphorus index for pastures fertilized with poultry litter--factors affecting phosphorus runoff.

    PubMed

    DeLaune, Paul B; Moore, Philip A; Carman, Dennis K; Sharpley, Andrew N; Haggard, Brian E; Daniel, Tommy C

    2004-01-01

    Currently, several state and federal agencies are proposing upper limits on soil test phosphorus (P), above which animal manures cannot be applied, based on the assumption that high P concentrations in runoff are due to high soil test P. Recent studies show that other factors are more indicative of P concentrations in runoff from areas where manure is being applied. The original P index was developed as an alternative P management tool incorporating factors affecting both the source and transport of P. The objective of this research was to evaluate the effects of multiple variables on P concentrations in runoff water and to construct a P source component of a P index for pastures that incorporates these effects. The evaluated variables were: (i) soil test P, (ii) soluble P in poultry litter, (iii) P in poultry diets, (iv) fertilizer type, and (v) poultry litter application rate. Field studies with simulated rainfall showed that P runoff was affected by the amount of soluble P applied in the fertilizer source. Before manure applications, soil test P was directly related to soluble P concentrations in runoff water. However, soil test P had little effect on P runoff after animal manure was applied. Unlike most other P indices, weighting factors of the P source components in the P index for pastures are based on results from runoff studies conducted under various management scenarios. As a result, weighting factors for the P source potential variables are well justified. A modification of the P index using scientific data should strengthen the ability of the P index concept to evaluate locations and management alternatives for P losses.

  7. Entanglement-Based dc Magnetometry with Separated Ions*

    NASA Astrophysics Data System (ADS)

    Ruster, T.; Kaufmann, H.; Luda, M. A.; Kaushal, V.; Schmiegelow, C. T.; Schmidt-Kaler, F.; Poschinger, U. G.

    2017-07-01

    We demonstrate sensing of inhomogeneous dc magnetic fields by employing entangled trapped ions, which are shuttled in a segmented Paul trap. As sensor states, we use Bell states of the type |↑↓ ⟩ +ei φ|↓↑ ⟩ encoded in two 40Ca+ ions stored at different locations. The linear Zeeman effect leads to the accumulation of a relative phase φ , which serves for measuring the magnetic-field difference between the constituent locations. Common-mode magnetic-field fluctuations are rejected by the entangled sensor state, which gives rise to excellent sensitivity without employing dynamical decoupling and therefore enables accurate dc sensing. Consecutive measurements on sensor states encoded in the S1 /2 ground state and in the D5 /2 metastable state are used to separate an ac Zeeman shift from the linear dc Zeeman effect. We measure magnetic-field differences over distances of up to 6.2 mm, with accuracies down to 300 fT and sensitivities down to 12 pT /√{Hz }. Our sensing scheme features spatial resolutions in the 20-nm range. For optimizing the information gain while maintaining a high dynamic range, we implement an algorithm for Bayesian frequency estimation.

  8. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    NASA Astrophysics Data System (ADS)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-06-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type- n and type- p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire ( d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  9. Anisotropic Thermoelectric Devices Made from Single-Crystal Semimetal Microwires in Glass Coating

    NASA Astrophysics Data System (ADS)

    Konopko, L. A.; Nikolaeva, A. A.; Kobylianskaya, A. K.; Huber, T. E.

    2018-04-01

    Thermoelectric heat conversion based on the Seebeck and Peltier effects generated at the junction between two materials of type-n and type-p is well known. Here, we present a demonstration of an unconventional thermoelectric energy conversion that is based on a single element made of an anisotropic material. In such materials, a heat flow generates a transverse thermoelectric electric field lying across the heat flow. Potentially, in applications involving miniature devices, the anisotropic thermoelectric (AT) effect has the advantage over traditional thermoelectrics that it simplifies the thermoelectric generator architecture. This is because the generator can be made of a single thermoelectric material without the complexity of a series of contacts forming a pile. A feature of anisotropic thermoelectrics is that the thermoelectric voltage is proportional to the element length and inversely proportional to the effective thickness. The AT effect has been demonstrated with artificial anisotropic thin film consisting of layers of alternating thermoelectric type, but there has been no demonstration of this effect in a long single-crystal. Electronic transport measurements have shown that the semimetal bismuth is highly anisotropic. We have prepared an experimental sample consisting of a 10-m-long glass-insulated single-crystal tin-doped bismuth microwire (d = 4 μm). Crucial for this experiment is the ability to grow the microwire as a single-crystal using a technique of recrystallization with laser heating and under a strong electric field. The sample was wound as a spiral, bonded to a copper disk, and used in various experiments. The sensitivity of the sample to heat flow is as high as 10-2 V/W with a time constant τ of about 0.5 s.

  10. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  11. Strong electroluminescence from direct band and defects in Ge n+/p shallow junctions at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guangyang; Li, Cheng, E-mail: lich@xmu.edu.cn; Chen, Chaowen

    2016-05-09

    Strong room temperature electroluminescence with two emission peaks at around 0.786 eV and 0.747 eV from Ge n+/p shallow junctions was reported. The peak at around 0.786 eV comes from direct band luminescence (DBL) in n + Ge regions, while the peak fixing at 0.747 eV is resulted from defects induced by ion implantation. Heavy n-type doping in Ge renders realization of strong defect-related luminescence (DRL) feasible. The peak intensity ratio of DRL/DBL decreases with increase of injection current since more electrons are filled in Γ valley. Above all, the Ge n+/p shallow junction is fully compatible with the source and drain in Gemore » metal-oxide-semiconductor field effect transistors.« less

  12. Cobalt-doped carbon xerogel with different initial pH values toward oxygen reduction

    NASA Astrophysics Data System (ADS)

    Fitri, Azim; Loh, Kee Shyuan; Puspasari, Ifa; Mohamad, Abu Bakar

    2017-12-01

    In this study, cobalt-doped carbon xerogel (Co-CX) was synthesized via sol-gel polymerization resorcinol-formaldehyde, catalyzed with cobalt nitrate, followed by drying and carbonization process under nitrogen gas flow. The effect of initial pH value (5.5, 6.5 and 7.5) and the type of carbon precursors on the morphology of Co-CX have been investigated with Field Emission-Transmission Electron Microscopy (FESEM). The catalytic activity of Co-CX for the oxygen reduction reaction (ORR) in 0.1 M KOH has been studied by using a rotating ring-disk electrode (RRDE) technique. FESEM revealed that Co doping promotes the formation of more pores. While the conditions allow obtaining xerogel with higher porosity at pH 7.5. The RRDE result display that Co-CX exhibited good catalytic activity tends to favor two electrons pathway.

  13. Numerical simulation of offset-drain amorphous oxide-based thin-film transistors

    NASA Astrophysics Data System (ADS)

    Jeong, Jaewook

    2016-11-01

    In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.

  14. Potential of Pteris vittata L. for phytoremediation of sites co-contaminated with cadmium and arsenic: the tolerance and accumulation.

    PubMed

    Xiao, Xiyuan; Chen, Tongbin; An, Zhizhuang; Lei, Mei; Huang, Zechun; Liao, Xiaoyong; Liu, Yingru

    2008-01-01

    Field investigation and greenhouse experiments were conducted to study the tolerance of Pteris vittata L. (Chinese brake) to cadmium (Cd) and its feasibility for remediating sites co-contaminated with Cd and arsenic (As). The results showed that P. vittata could survive in pot soils spiked with 80 mg/kg of Cd and tolerated as great as 301 mg/kg of total Cd and 26.8 mg/kg of diethyltriaminepenta acetic acid (DTPA)-extractable Cd under field conditions. The highest concentration of Cd in fronds was 186 mg/kg under a total soil concentration of 920 mg As/kg and 98.6 mg Cd/kg in the field, whereas just 2.6 mg/kg under greenhouse conditions. Ecotypes of P. vittata were differentiated in tolerance and accumulation of Cd, and some of them could not only tolerate high concentrations of soil Cd, but also accumulated high concentrations of Cd in their fronds. Arsenic uptake and transportation by P. vittata was not inhibited at lower levels (< or = 20 mg/kg) of Cd addition. Compared to the treatment without addition of Cd, the frond As concentration was increased by 103.8% at 20 mg Cd/kg, with the highest level of 6434 mg/kg. The results suggested that the Cd-tolerant ecotype of P. vittata extracted effectively As and Cd from the site co-contaminated with Cd and As, and might be used to remediate and revegetate this type of site.

  15. Synthesis and Characterization of Cross-Linked Nanocomposite as a Gate Dielectric for p-Type Silicon Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Hashemi, Adeleh; Bahari, Ali; Ghasemi, Shahram

    2018-03-01

    A good cross-linking between a povidone-silicon oxide nanocomposite has been created using a polar solvent. Furthermore, the effect of annealing temperatures (150°C, 200°C, and 240°C) on the solution-processed povidone-silicon oxide dielectric films has been studied. Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy were applied to identify the chemical interactions of the nanocomposite. Morphology of the thin films was examined using atomic force microscopy. Electrical parameters of field effect transistors (FETs) were calculated on the basis of the information obtained from current-voltage (I-V) and capacitance-voltage (C-V) measurements in the metal-insulator-semiconductor structure. Nanocomposite films had very low surface roughness (0.036-0.084 nm). Si-O-Si and Si-O-C covalent bonds as well as Si-OH hydrogen bonds were formed in the nanocomposite structure. High hole mobilities (1.15-3.87 cm2 V-1 s-1) and low leakage current densities were obtained for the p-type Si FETs. The decrease in the Si-OH hydrogen bonds in the dielectric film annealed at 150°C led to a decrease in capacitance and leakage current as well as threshold voltage, and resulted in an increase in mobility and on/off current ratio. By further increasing the annealing temperatures (200°C and 240°C), the binding energies of all the bonds were shifted toward lower values. Therefore, it was concluded that many bonds could have degraded and that defects might have formed in the dielectric film nanostructure leading to a decline in the electrical parameters of the FETs.

  16. Carrier-injection studies in GaN-based light-emitting-diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Dinh Chuong; Vaufrey, David; Leroux, Mathieu

    2015-09-01

    Although p-type GaN has been achieved by Mg doping, the low hole-mobility still remains a difficulty for GaN-based light-emitting diodes (LEDs). Due to the lack of field-dependent-velocity model for holes, in GaN-based LED simulations, the hole mobility is usually supposed to remain constant. However, as the p-GaN-layer conductivity is lower than the n-GaN-layer conductivity, a strong electric-field exists in the p-side of an LED when the applied voltage exceeds the LED's built-in voltage. Under the influence of this field, the mobilities of electrons and holes are expected to decrease. Based on a field-dependent-velocity model that is usually used for narrow-bandgap materials, an LED structure is modelled with three arbitrarily chosen hole saturation-velocities. The results show that a hole saturation-velocity lower than 4x106 cm/s can negatively affect the LED's behaviors.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Dehua; Liu, Qing; Tisdale, Jeremy

    This paper reports Seebeck effects driven by both surface polarization difference and entropy difference by using intramolecular charge-transfer states in n-type and p-type conjugated polymers, namely IIDT and IIDDT, based on vertical conductor/polymer/conductor thin-film devices. Large Seebeck coefficients of -898 V/K and 1300 V/K from are observed from n-type IIDT p-type IIDDT, respectively, when the charge-transfer states are generated by a white light illumination of 100 mW/cm2. Simultaneously, electrical conductivities are increased from almost insulating states in dark condition to conducting states under photoexcitation in both n-type IIDT and p-type IIDDT devices. We find that the intramolecular charge-transfer states canmore » largely enhance Seebeck effects in the n-type IIDT and p-type IIDDT devices driven by both surface polarization difference and entropy difference. Furthermore, the Seebeck effects can be shifted between polarization and entropy regimes when electrical conductivities are changed. This reveals a new concept to develop Seebeck effects by controlling polarization and entropy regimes based on charge-transfer states in vertical conductor/polymer/conductor thin-film devices.« less

  18. Assessment of potential advantages of relevant ions for particle therapy: a model based study.

    PubMed

    Grün, Rebecca; Friedrich, Thomas; Krämer, Michael; Zink, Klemens; Durante, Marco; Engenhart-Cabillic, Rita; Scholz, Michael

    2015-02-01

    Different ion types offer different physical and biological advantages for therapeutic applications. The purpose of this work is to assess the advantages of the most commonly used ions in particle therapy, i.e., carbon ((12)C), helium ((4)He), and protons ((1)H) for different treatment scenarios. A treatment planning analysis based on idealized target geometries was performed using the treatment planning software TRiP98. For the prediction of the relative biological effectiveness (RBE) that is required for biological optimization in treatment planning the local effect model (LEM IV) was used. To compare the three ion types, the peak-to-entrance ratio (PER) was determined for the physical dose (PERPHY S), the RBE (PERRBE), and the RBE-weighted dose (PERBIO) resulting for different dose-levels, field configurations, and tissue types. Further, the dose contribution to artificial organs at risk (OAR) was assessed and a comparison of the dose distribution for the different ion types was performed for a patient with chordoma of the skull base. The study showed that the advantages of the ions depend on the physical and biological properties and the interplay of both. In the case of protons, the consideration of a variable RBE instead of the clinically applied generic RBE of 1.1 indicates an advantage in terms of an increased PERRBE for the analyzed configurations. Due to the fact that protons show a somewhat better PERPHY S compared to helium and carbon ions whereas helium shows a higher PERRBE compared to protons, both protons and helium ions show a similar RBE-weighted dose distribution. Carbon ions show the largest variation of the PERRBE with tissue type and a benefit for radioresistant tumor types due to their higher LET. Furthermore, in the case of a two-field irradiation, an additional gain in terms of PERBIO is observed when using an orthogonal field configuration for carbon ions as compared to opposing fields. In contrast, for protons, the PERBIO is almost independent on the field configuration. Concerning the artificial lateral OAR, the volume receiving 20% of the prescribed RBE-weighted dose (V20) was reduced by over 35% using helium ions and by over 40% using carbon ions compared to protons. The analysis of the patient plan showed that protons, helium, and carbon ions are similar in terms of target coverage whereas the dose to the surrounding tissue is increasing from carbon ions toward protons. The mean dose to the brain stem can be reduced by more than 55% when using helium ions and by further 25% when using carbon ions instead of protons. The comparison of the PERRBE and PERPHY S of the three ion types suggests a strong dependence of the advantages of the three ions on the dose-level, tissue type, and field configuration. In terms of conformity, i.e., dose to the normal tissue, a clear gain is expected using carbon or helium ions compared to protons.

  19. Evaluating the effect of sample type on American alligator ( Alligator mississippiensis) analyte values in a point-of-care blood analyser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Matthew T.; Finger, John W.; Winzeler, Megan E.

    The assessment of wildlife health has been enhanced by the ability of point-of-care (POC) blood analysers to provide biochemical analyses of non-domesticated animals in the field. However, environmental limitations (e.g. temperature, atmospheric humidity and rain) and lack of reference values may inhibit researchers from using such a device with certain wildlife species. Evaluating the use of alternative sample types, such as plasma, in a POC device may afford researchers the opportunity to delay sample analysis and the ability to use banked samples. In this study, we examined fresh whole blood, fresh plasma and frozen plasma (sample type) pH, partial pressuremore » of carbon dioxide (PCO 2), bicarbonate (HCO 3₋), total carbon dioxide (TCO 2), base excess (BE), partial pressure of oxygen (PO 2), oxygen saturation (sO 2) and lactate concentrations in 23 juvenile American alligators (Alligator mississippiensis) using an i-STAT CG4+ cartridge. Our results indicate that sample type had no effect on lactate concentration values (F 2,65 = 0.37, P = 0.963), suggesting that the i-STAT analyser can be used reliably to quantify lactate concentrations in fresh and frozen plasma samples. In contrast, the other seven blood parameters measured by the CG4+ cartridge were significantly affected by sample type. In conclusion, we were able to collect blood samples from all alligators within 2 min of capture to establish preliminary reference ranges for juvenile alligators based on values obtained using fresh whole blood.« less

  20. Evaluating the effect of sample type on American alligator ( Alligator mississippiensis) analyte values in a point-of-care blood analyser

    DOE PAGES

    Hamilton, Matthew T.; Finger, John W.; Winzeler, Megan E.; ...

    2016-01-01

    The assessment of wildlife health has been enhanced by the ability of point-of-care (POC) blood analysers to provide biochemical analyses of non-domesticated animals in the field. However, environmental limitations (e.g. temperature, atmospheric humidity and rain) and lack of reference values may inhibit researchers from using such a device with certain wildlife species. Evaluating the use of alternative sample types, such as plasma, in a POC device may afford researchers the opportunity to delay sample analysis and the ability to use banked samples. In this study, we examined fresh whole blood, fresh plasma and frozen plasma (sample type) pH, partial pressuremore » of carbon dioxide (PCO 2), bicarbonate (HCO 3₋), total carbon dioxide (TCO 2), base excess (BE), partial pressure of oxygen (PO 2), oxygen saturation (sO 2) and lactate concentrations in 23 juvenile American alligators (Alligator mississippiensis) using an i-STAT CG4+ cartridge. Our results indicate that sample type had no effect on lactate concentration values (F 2,65 = 0.37, P = 0.963), suggesting that the i-STAT analyser can be used reliably to quantify lactate concentrations in fresh and frozen plasma samples. In contrast, the other seven blood parameters measured by the CG4+ cartridge were significantly affected by sample type. In conclusion, we were able to collect blood samples from all alligators within 2 min of capture to establish preliminary reference ranges for juvenile alligators based on values obtained using fresh whole blood.« less

  1. The nature and role of trap states in a dendrimer-based organic field-effect transistor explosive sensor

    NASA Astrophysics Data System (ADS)

    Tang, Guoqiang; Chen, Simon S. Y.; Lee, Kwan H.; Pivrikas, Almantas; Aljada, Muhsen; Burn, Paul L.; Meredith, Paul; Shaw, Paul E.

    2013-06-01

    We report the fabrication and charge transport characterization of carbazole dendrimer-based organic field-effect transistors (OFETs) for the sensing of explosive vapors. After exposure to para-nitrotoluene (pNT) vapor, the OFET channel carrier mobility decreases due to trapping induced by the absorbed pNT. The influence of trap states on transport in devices before and after exposure to pNT vapor has been determined using temperature-dependent measurements of the field-effect mobility. These data clearly show that the absorption of pNT vapor into the dendrimer active layer results in the formation of additional trap states. Such states inhibit charge transport by decreasing the density of conducting states.

  2. Further characterization of field strains of rotavirus from Nigeria VP4 genotype P6 most frequently identified among symptomatically infected children.

    PubMed

    Adah, M I; Rohwedder, A; Olaleye, O D; Durojaiye, O A; Werchau, H

    1997-10-01

    Polymerase chain reaction was utilized to characterize the VP4 types of 39 Rotavirus field isolates from symptomatically infected children in Nigeria. Genotype P6 was identified most frequently, occurring in 41.03 per cent of the typed specimens. Genotype P8 was identified as the next most prevalent (33.3% per cent). Genotype p6 was widespread (68.75 per cent) among infected neonates in Southern Nigeria, but mix infection was more prevalent (70 per cent) among Northern Nigerian children. Four distinct strains were identified with four different P genotypes. Overall strain G1P8 predominated (22.22 per cent) followed by G3P6 (17.8 per cent). Strain G1P8 was most prevalent (70 per cent) among infants aged 3.1-9 months, but strain G3P6 was most frequently identified among neonates < or = 3 months (50 per cent). While strain G1P8 was circulating across the country at this time, strain G3P6 was regionally most identified (77.8 per cent) in Southern Nigeria. The presence of untypeable VP4 gene in Nigeria was demonstrated. The occurance of mix infection genotype demonstrates the potential for reassortment events among different rotavirus genogroups in Nigeria. The epidemiological implications of these findings for rotavirus vaccine development and application in the country were discussed.

  3. Substance P is a functional neurotransmitter in the rat parotid gland.

    PubMed

    Gallacher, D V

    1983-09-01

    The technique of electrical field stimulation was employed to stimulate the intrinsic nerves of isolated rat parotid gland fragments. Responses to field stimulation were recorded as changes in enzyme secretion (amylase release), radiolabelled ion fluxes (86Rb efflux) and electrophysiological effects (changes in acinar cell membrane potential and input resistance). All effects of field stimulation were abolished by the neurotoxin, tetrodotoxin (TTX). Selective use of pharmacological antagonists revealed that both the sympathetic and parasympathetic nerves to this tissue were being excited by field stimulation. Importantly a significant component of the response to field stimulation persisted in the presence of combined autonomic receptor blockade by atropine, phentolamine and propranolol, i.e. due to release of a non-cholinergic, non-adrenergic neurotransmitter. The non-cholinergic, non-adrenergic neurotransmitter evoked amylase release, 86Rb efflux and electrophysiological effects seen as changes in acinar cell membrane potential and conductance, i.e. stimulus-permeability coupled. Two biologically active peptides, substance P (SP) and vasoactive intestinal polypeptide (VIP) were shown to evoke amylase release in the presence of combined autonomic blockade. VIP however did not evoke any increase in 86Rb efflux, i.e. not stimulus-permeability coupled. All the effects of the non-cholinergic, non-adrenergic transmitter were mimicked by substance P which evokes 86Rb efflux and electrophysiological effects in addition to amylase release. The non-cholinergic, non-adrenergic field stimulus effects on amylase release and 86Rb efflux were abolished or markedly attenuated in tissues which had been desensitized by prior exposure to exogenous substance P. In the presence of VIP, however, the non-cholinergic, non-adrenergic effects persisted and were apparently potentiated. Acute application of the neurotoxin capsaicin first stimulated a transient release of amylase and subsequently abolished the non-cholinergic, non-adrenergic field stimulus-evoked enzyme release. The putative substance P antagonist, D-Pro2, D-Trp7,9 substance P, reversibly blocked the response to both non-cholinergic, non-adrenergic nerve stimulation and exogenous substance P. It was demonstrated however that prolonged exposure to this antagonist is associated with non-reversible and, importantly, non-specific neurotoxic effects. It is concluded that substance P or a closely related peptide is a functional neurotransmitter in the rat parotid gland.

  4. SU-F-T-445: Effect of Triaxial Cables and Microdetectors in Small Field Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A

    2016-06-15

    Purpose: Advances in radiation treatment especially with smaller fields used in SRS, Gamma knife, Tomotherapy, Cyberknife, and IMRT, require a high degree of precision especially with microdetectors for small field dosimetry (Das et al, Med Ph, 35, 206, 2008; Alfonso et al, Med Phys, 35, 5179, 2008). Due to small signal, the triaxial cable becomes critical in terms of signal to noise ratio (SNR) which is studied with microdetectors. Methods: Six high quality triaxial cables, 9.1 meters long from different manufacturers without any defects were acquired along with 5 most popular microdetectors (microdiamond, plastic scintillators, SRS-diode, edge-diode and pinpoint). Amore » dedicated electrometer was used for each combination except W1 which has its own supermax electrometer. A 6MV photon beam from Varian True beam with 100 MU at a 600 MU/min was used. Measurements were made at a depth of 5 cm in water phantom. Field sizes were varied from 0.5 cm to 10 cm square fields. Readings were taken with combination of cables and microdetectors. Results: Signal is dependent on the quality of the connectors, cables and types of microdetector. The readings varied from nC to pC depending on the type of microdetector. The net signal, S, (Sc-Sn), where Sc is signal with chamber and Sn is without chamber is a linear function of sensitive volume, v; (S = α+β•V), where α and β are constants. The standard deviation (SD) in 3 sets of reading with each combination of cable-detector was extremely low <0.02%. As expected the SD is higher in small fields (<3cm). Maximum estimated error was only ±0.2% in cables-detector combinations. Conclusion: The choice of cables has relatively small effect (±0.2%) with microdosimeter and should be accounted in overall error estimation in k value that is needed to convert ratio of reading to dose in small field dosimetry.« less

  5. Modification of chemical properties, Cu fractionation and enzymatic activities in an acid vineyard soil amended with winery wastes: A field study.

    PubMed

    Rodríguez-Salgado, Isabel; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Díaz-Raviña, Montserrat; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel; Fernández-Calviño, David

    2017-11-01

    The effects of adding two winery wastes, perlite waste (PW) and bentonite waste (BW), to an acid vineyard soil were assessed using some chemical and biological soil properties in a field study that lasted 18 months. The addition of PW (up to 81 Mg ha -1 ) had neither significant nor permanent effects on soil characteristics such as the pH, organic matter content or nutrient concentrations, the amounts of copper or zinc, or the electrical conductivity. Moreover, no persistent negative effects were found on the enzymatic activities after PW application. In contrast, soil that was amended with up to 71 Mg BW ha -1 showed increases in its soil pH values, exchangeable potassium and water soluble potassium and phosphorus contents. In addition, it caused significant increases in the electrical conductivity and water-soluble Cu. In addition, the phosphomonoesterase enzymatic activity decreased significantly (up to 28%) in response to the amendment with 71 Mg BW ha -1 . These results showed that adding BW and PW to the soil may be a good agronomic practice for recycling these types of wastes. However, in the case of PW, its use as a soil amendment must be performed with caution to control its possible harmful effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Synthesis and Characterization of Silicon Nanowires by Electroless Etching

    NASA Astrophysics Data System (ADS)

    Bhujel, Rabina; Rizal, Umesh; Agarwal, Amit; Swain, Bhabani S.; Swain, Bibhu P.

    2018-02-01

    Silicon nanowires (SiNWs) were synthesized by two-step electroless etching of p-type Si (100) wafer and characterized by field emission scanning electron microscopy, UV-Vis spectroscopy, x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The vibrational signature at 1108 and 2087 cm-1 confirmed SiNWs were passivated by both oxygen and hydrogen atoms. Raman peak at 517 cm-1 indicated crystalline SiNWs with tailing toward redshift due to Fano effect. The Si(2p) and Si(2s) core orbital spectra of SiNWs were found at 99.8 and 150.5 eV, respectively. Moreover, the reflection of SiNWs is minimized to 1 to 5% in the 650-nm wavelength.

  7. Workload assessment in building construction related activities in India.

    PubMed

    Maiti, Rina

    2008-11-01

    A field study was conducted to highlight the occupational risk factors related to building construction activities in India among female workers. These workers were engaged in eight different types of activities and related work parameters were studied in detail. From field environmental parameters, the calculated WBGT was obtained as 30.26+/-1.52 degrees C, indicated that these workers worked under a positive heat load condition. Whole day work study was conducted on 11 adult female workers performing concreting operation. They were having age of 28-32 years with 5-7 years of work experience. These workers were mainly performing two types of operations in the field: (A) asymmetric lifting during concreting a boundary wall formwork of a lift unit and (B) carrying the concrete mixture. During asymmetric lifting, the average field working heart rate (HR) was calculated as 124.1+/-12.5 beats min(-1), equivalent to 45.03+/-6.93% of VO(2) max level. These working heart rates (HRs) were significantly (p

  8. Spatial Spread of the Root Parasitic Weed Phelipanche aegyptiaca in Processing Tomatoes by Using Ecoinformatics and Spatial Analysis.

    PubMed

    Cohen, Yafit; Roei, Itai; Blank, Lior; Goldshtein, Eitan; Eizenberg, Hanan

    2017-01-01

    Egyptian broomrape ( Phelipanche aegyptiaca ) is one of the main threats to tomato production in Israel. The seed bank of P. aegyptiaca rapidly develops and spreads in the field. Knowledge about the spatio-temporal distribution of such weeds is required in advance of emergence, as they emerge late in their life cycle when they have already caused major crop damage. The aim of this study is to reveal the effects of two major internal infestation sources: crop rotation and infestation history; and one external source: proximity to infested tomato fields; on infestation of P. aegyptiaca in processing tomatoes. Ecoinformatics, spatial analysis and geostatistics were used to examine these effects. A regional survey was conducted to collect data on field history from 238 tomato fields between 2000 and 2012, in a major tomato-growing region in Israel. Multivariate logistic regression in the framework of generalized linear models (GLM) has demonstrated the importance of all three variables in predicting infestation in tomato fields. The parameters of the overall model indicated a high specificity between tomatoes and P. aegyptiaca , which is potentially responsible for aggravating infestation. In addition, P. aegyptiaca infestation levels were intensively mapped in 43 of the 238 tomato fields in the years 2010-2012. Geostatistical measures showed that 40% of the fields had clustered infestation spatial patterns with infestation clusters located along the fields' borders. Strong linear and negative relationships were found between infestation level and distance from a neighboring infested field, strengthening the role of infested tomato fields in P. aegyptiaca spread. An experiment specifically designed for this study showed that during harvest, P. aegyptiaca seeds are blown from an infested field to a distance of at least 90 m, and may initiate infestation in neighboring fields. Integrating current knowledge about the role of agricultural practices on the spread of P. aegyptiaca with the results of this study enabled us to propose a mechanism for the spread of P. aegyptiaca . Given the major effect of agricultural practices on infestation levels, it is assumed that the spread of this weed can be suppressed by implementing sanitation and using decision support tools for herbicide application.

  9. The Effects of CBI Lesson Sequence Type and Field Dependence on Learning from Computer-Based Cooperative Instruction in Web

    ERIC Educational Resources Information Center

    Ipek, Ismail

    2010-01-01

    The purpose of this study was to investigate the effects of CBI lesson sequence type and cognitive style of field dependence on learning from Computer-Based Cooperative Instruction (CBCI) in WEB on the dependent measures, achievement, reading comprehension and reading rate. Eighty-seven college undergraduate students were randomly assigned to…

  10. Adaptation, teleology, and selection by consequences

    PubMed Central

    Ringen, Jon D.

    1993-01-01

    This paper presents and defends the view that reinforcement and natural selection are selection processes, that selection processes are neither mechanistic nor teleological, and that mentalistic and vitalistic processes are teleological but not mechanistic. The differences between these types of processes are described and used in discussing the conceptual and methodological significance of “selection type theories” and B. F. Skinner's radical behaviorist view that “operant behavior is the field of intention, purpose, and expectation. It deals with that field precisely as the theory of evolution has dealt with another kind of purpose” (1986, p. 716). The antimentalism of radical behaviorism emerges as a post-Darwinian extension of Francis Bacon's (and Galileo's) influential view that “[the introduction of final causes] rather corrupts than advances the sciences” (Bacon, 1905, p. 302). PMID:16812698

  11. Expression of lux-genes as an indicator of metabolic activity of cells in model ecosystem studies

    NASA Astrophysics Data System (ADS)

    Boyandin, A. N.; Popova, L. Yu.

    Quick response to different impacts and easy measurement make the luminescent systems of luminous bacteria an object convenient for application in various fields. Cloning of gene luminescence in different organisms is currently used to study both the survival of microbial cells and the effect of different factors on their metabolic activity, including the environment. A primary test-object in estimating bacteriological contamination of water bodies, Escherichia coli, can be conveniently used as an indicator of bactericidal properties of aquatic ecosystems. The application of Escherichia coli Z905/pPHL7 (lux +) as a marker microorganism can facilitate monitoring the microbiological status of closed biocenoses, including systems with higher organisms. The investigation of various parameters of microecosystems (carbon nutrition type, concentrations of inorganic ions and toxic compounds) shows that the recombinant strain E. coli Z905/pPHL7 can be effectively used as a marker.

  12. Near-thermal limit gating in heavily doped III-V semiconductor nanowires using polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Ullah, A. R.; Carrad, D. J.; Krogstrup, P.; Nygârd, J.; Micolich, A. P.

    2018-02-01

    Doping is a common route to reducing nanowire transistor on-resistance but it has limits. A high doping level gives significant loss in gate performance and ultimately complete gate failure. We show that electrolyte gating remains effective even when the Be doping in our GaAs nanowires is so high that traditional metal-oxide gates fail. In this regime we obtain a combination of subthreshold swing and contact resistance that surpasses the best existing p -type nanowire metal-oxide semiconductor field-effect transistors (MOSFETs). Our subthreshold swing of 75 mV/dec is within 25 % of the room-temperature thermal limit and comparable with n -InP and n -GaAs nanowire MOSFETs. Our results open a new path to extending the performance and application of nanowire transistors, and motivate further work on improved solid electrolytes for nanoscale device applications.

  13. Sunn Hemp Cover Cropping and Organic Fertilizer Effects on the Nematode Community Under Temperate Growing Conditions

    PubMed Central

    Hinds, Jermaine; Wang, Koon-Hui; Marahatta, Sharadchandra P.; Meyer, Susan L. F.; Hooks, Cerruti R. R.

    2013-01-01

    Field experiments were conducted in Maryland to investigate the influence of sunn hemp cover cropping in conjunction with organic and synthetic fertilizers on the nematode community in a zucchini cropping system. Two field treatments, zucchini planted into a sunn hemp living and surface mulch (SH) and zucchini planted into bare-ground (BG) were established during three field seasons from 2009 to 2011. In 2009, although SH slightly increased nematode richness compared with BG by the first harvest (P < 0.10), it reduced nematode diversity and enrichment indices (P < 0.01 and P < 0.10, respectively) and increased the channel index (P < 0.01) compared to BG at the final harvest. This suggests a negative impact of SH on nematode community structure. The experiment was modified in 2010 and 2011 where the SH and BG main plots were further split into two subplots to investigate the added influence of an organic vs. synthetic fertilizer. In 2010, when used as a living and surface mulch in a no-till system, SH increased bacterivorous, fungivorous, and total nematodes (P < 0.05) by the final zucchini harvest, but fertilizer type did not influence nematode community structure. In 2011, when incorporated into the soil before zucchini planting, SH increased the abundance of bacterivorous and fungivorous nematodes early in the cropping season. SH increased species richness also at the end of the season (P < 0.05). Fertilizer application did not appear to influence nematodes early in the season. However, in late season, organic fertilizers increased enrichment and structure indices and decreased channel index by the end of the zucchini cropping cycle. PMID:24379485

  14. Rice available to waterfowl in harvested fields in the Sacramento Valley, California

    USGS Publications Warehouse

    Miller, M.R.; Sharp, D.E.; Gilmer, D.S.; Mulvaney, W.R.

    1989-01-01

    Rice fields in the Sacramento Valley, California were sampled in 1985 and 1986 to determine the weight of rice seed remaining in the fields immediately after harvest and again after the fields were burned. No significant differences were found between years (P>0.05). The pooled mean was 388 kg/ha in harvested fields and 276 kg/ha in burned fields. These values are less than estimates previously available. The values for harvested fields both years were no different (P>0.05) than values obtained by the U.S. Department of Agriculture (USDA). Surveys of rice fields in December both years showed that most fields were left either harvested (26-32%) or burned (37-40%) through the winter. Fields flooded for duck hunting made up 15% of the total. The proportion of fields plowed by December increased from 14% in 1985 to 22% in 1986. Sixty-three percent of all fields that had been flooded for hunting were drained within two weeks after the end of the hunting season. Harvest yield field size levee type (contour, lasered), straw status (spread, windrowed), harvest date, and rice variety did not affect the quantity of seeds remaining after harvest (P>0.05). One harvester model, the Hardy Harvester, left more rice in fields than did others we tested (P<0.001). Specific management programs are recommended to mitigate annual variation in rice seed availability to waterfowl caused by differences in total hectares grown (15% less in 1986) and in the proportion of fields burned and plowed.

  15. A method to determine residue-specific unfolded-state pKa values from analysis of stability changes in single mutant cycles.

    PubMed

    Shen, Jana K

    2010-06-02

    It is now widely recognized that the unfolded state of a protein in equilibrium with the native state under folding conditions may contain significant residual structures. However, due to technical difficulties residue-specific interactions in the unfolded state remain elusive. Here we introduce a method derived from the Wyman-Tanford theory to determine residue-specific pK(a)'s in the unfolded state. This method requires equilibrium stability measurements of the wild type and single-point mutants in which titrable residues are replaced with charge-neutral ones under two pH conditions. Application of the proposed approach reveals a highly depressed pK(a) for Asp8 in the unfolded state of the NTL9 protein. Knowledge of unfolded-state pK(a)'s enables quantitative estimation of the unfolded-state electrostatic effects on protein stability. It also provides valuable benchmarks for the improvement of force fields and validation of microscopic information from molecular dynamics simulations.

  16. Regenerative switching CMOS system

    DOEpatents

    Welch, James D.

    1998-01-01

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a seriesed combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided.

  17. Regenerative switching CMOS system

    DOEpatents

    Welch, J.D.

    1998-06-02

    Complementary Metal Oxide Semiconductor (CMOS) Schottky barrier Field Effect Transistor systems, which are a series combination of N and P-Channel MOSFETS, in which Source Schottky barrier junctions of the N and P-Channel Schottky barrier MOSFETS are electrically interconnected, (rather than the Drains as in conventional diffused junction CMOS), which Schottky barrier MOSFET system demonstrates Regenerative Inverting Switching Characteristics in use are disclosed. Both the N and P-Channel Schottky barrier MOSFET devices are unique in that they provide operational Drain Current vs. Drain to Source voltage as a function of Gate voltage only where the polarities of the Drain voltage and Gate voltage are opposite, referenced to the Source as a common terminal, and where the polarity of the voltage applied to the Gate is appropriate to cause Channel inversion. Experimentally derived results which demonstrate and verify the operation of N and P-Channel Schottky barrier MOSFETS actually fabricated on P and N-type Silicon respectively, by a common procedure using vacuum deposited Chromium as a Schottky barrier forming metal, are also provided. 14 figs.

  18. Military Medicine Publications: What has Happened in the Past Two Decades?

    PubMed Central

    Pinkert, Moshe; Dagan, David; Kreiss, Yitshak

    2014-01-01

    Background Military medical personnel, like all other physician specialists, face the challenge of keeping updated with developments in their field of expertise, in view of the great amount of new medical information published in the literature. The availability of the Internet has triggered tremendous changes in publication characteristics, and in some fields, the number of publications has increased substantially. The emergence of electronic open access journals and the improvement in Web search engines has triggered a significant change in the publication processes and in accessibility of information. Objective The objective of this study was to characterize the temporal trends in the number and types of publications in military medicine in the medical literature. Methods We searched all PubMed-registered publications from January 1, 1990 to December 31, 2010 using the keywords “military” or “army”. We used the publication tag in PubMed to identify and examine major publication types. The trends were tested using the Mann-Kendall test for trend. Results Our search yielded 44,443 publications in military medicine during the evaluation period. Overall, the number of publications showed two distinct phases over time: (1) a moderate increase from 1990 to 2001 with a mean annual increase of 2.78% (r 2=.79, P<.002), and (2) a steeper mean annual increase of 11.20% (r 2=.96, P<.002) from 2002 to 2010. Most of the examined publication types showed a similar pattern. The proportion of high-quality-of-evidence publication types (randomized controlled trials, systematic reviews, and meta-analyses) increased from 2.91% to 8.43% of the overall military medicine publications with a mean annual incremental increase of 14.20%. These publication types demonstrated a similar dual phase pattern of increase (10.01%, r 2=.80, P<.002 for 1990-2001 and 20.66%, r 2=.88, P<.002 for 2002-2010). Conclusions We conclude that over the past twenty years, scholarly work in the field of military medicine has shown a significant increase in volume, particularly among high quality publication types. However, practice guidelines remain rare, and meta-analyses are still limited in number. PMID:24870264

  19. Integrating economic and biophysical data in assessing cost-effectiveness of buffer strip placement.

    PubMed

    Balana, Bedru Babulo; Lago, Manuel; Baggaley, Nikki; Castellazzi, Marie; Sample, James; Stutter, Marc; Slee, Bill; Vinten, Andy

    2012-01-01

    The European Union Water Framework Directive (WFD) requires Member States to set water quality objectives and identify cost-effective mitigation measures to achieve "good status" in all waters. However, costs and effectiveness of measures vary both within and between catchments, depending on factors such as land use and topography. The aim of this study was to develop a cost-effectiveness analysis framework for integrating estimates of phosphorus (P) losses from land-based sources, potential abatement using riparian buffers, and the economic implications of buffers. Estimates of field-by-field P exports and routing were based on crop risk and field slope classes. Buffer P trapping efficiencies were based on literature metadata analysis. Costs of placing buffers were based on foregone farm gross margins. An integrated optimization model of cost minimization was developed and solved for different P reduction targets to the Rescobie Loch catchment in eastern Scotland. A target mean annual P load reduction of 376 kg to the loch to achieve good status was identified. Assuming all the riparian fields initially have the 2-m buffer strip required by the General Binding Rules (part of the WFD in Scotland), the model gave good predictions of P loads (345-481 kg P). The modeling results show that riparian buffers alone cannot achieve the required P load reduction (up to 54% P can be removed). In the medium P input scenario, average costs vary from £38 to £176 kg P at 10% and 54% P reduction, respectively. The framework demonstrates a useful tool for exploring cost-effective targeting of environmental measures. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. The inulin-type oligosaccharides extract from morinda officinalis, a traditional Chinese herb, ameliorated behavioral deficits in an animal model of post-traumatic stress disorder.

    PubMed

    Qiu, Zhi-Kun; Liu, Chun-Hui; Gao, Zhuo-Wei; He, Jia-Li; Liu, Xu; Wei, Qing-Lan; Chen, Ji-Sheng

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a severe psychiatric condition. The allopregnanolone biosynthesis has been implicated as one of the possible contributors to PTSD. Inulin-type oligosaccharides of morinda officinalis (IOMO) had been shown to be effective in the therapy of depression. However, few studies concern the anti-PTSD-like effects of IOMO. To evaluate this, the single prolonged stress (SPS) model was used in the present study. It had been shown that the behavioral deficits of SPS-treated rats were reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), which reversed the increased freezing time in contextual fear paradigm (CFP) and the decreased time and entries in open arms in the elevated plus maze (EPM) test without affecting the locomotor activity in the open field (OF) test. In addition, the decreased allopregnanolone in the prefrontal cortex, hippocampus, and amygdala was reversed by IOMO (25.0 and 50.0 mg/kg, i.p.), respectively. In summary, the present study indicated that the IOMO exert anti-PTSD-like behaviors, which maybe associated with the brain allopregnanolone biosynthesis.

  1. Creation of reduced graphene oxide based field effect transistors and their utilization in the detection and discrimination of nucleoside triphosphates.

    PubMed

    Yu, Chunmeng; Chang, Xingmao; Liu, Jing; Ding, Liping; Peng, Junxia; Fang, Yu

    2015-05-27

    Two low-cost, micropatterned, solution-gated field effect transistors (modified FET and unmodified FET) based on reduced graphene oxide (RGO) were developed and used for detection and discrimination of nucleoside triphosphates (NTPs). The modified FET was realized by simple deposition of a positively charged bis-pyrenyl derivative, py-diIM-py, onto the conducting RGO strips of the unmodified FET. The electrical properties and sensing behaviors of the as-prepared devices were studied comprehensively. Electrical transfer property tests revealed that both of the two FETs exhibit V-shaped ambipolar field effect behavior from p-type region to n-type region. Sensing performance studies demonstrated that modification of the native FET with py-diIM-py improves its sensing ability to NTPs-GTP and ATP in particular. The detection limit of GTP and ATP was as low as 400 nM, which is the lowest value for graphene-based electronic sensors reported so far. Furthermore, based on the cross-reactive responses of the two devices to NTPs, NTPs can be conveniently distinguished via combining use of the two devices. The enhancement of the modifier (py-diIM-py) to the sensing performance of the FET is tentatively attributed to its possible mediation role in sticking onto RGO strips and accumulating analytes by electrostatic association with the relevant species. Because they are sensitive and fast in response, simple and low-cost in preparation, and possibly useful in sensor-array fabrication, the developed sensors show great potential in real-life application.

  2. C, N and P fertilization in an Amazonian rainforest supports stoichiometric dissimilarity as a driver of litter diversity effects on decomposition.

    PubMed

    Barantal, Sandra; Schimann, Heidy; Fromin, Nathalie; Hättenschwiler, Stephan

    2014-12-07

    Plant leaf litter generally decomposes faster as a group of different species than when individual species decompose alone, but underlying mechanisms of these diversity effects remain poorly understood. Because resource C : N : P stoichiometry (i.e. the ratios of these key elements) exhibits strong control on consumers, we supposed that stoichiometric dissimilarity of litter mixtures (i.e. the divergence in C : N : P ratios among species) improves resource complementarity to decomposers leading to faster mixture decomposition. We tested this hypothesis with: (i) a wide range of leaf litter mixtures of neotropical tree species varying in C : N : P dissimilarity, and (ii) a nutrient addition experiment (C, N and P) to create stoichiometric similarity. Litter mixtures decomposed in the field using two different types of litterbags allowing or preventing access to soil fauna. Litter mixture mass loss was higher than expected from species decomposing singly, especially in presence of soil fauna. With fauna, synergistic litter mixture effects increased with increasing stoichiometric dissimilarity of litter mixtures and this positive relationship disappeared with fertilizer addition. Our results indicate that litter stoichiometric dissimilarity drives mixture effects via the nutritional requirements of soil fauna. Incorporating ecological stoichiometry in biodiversity research allows refinement of the underlying mechanisms of how changing biodiversity affects ecosystem functioning. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Approximate conditional teleportation of a Λ-type three-level atomic state based on cavity QED method beyond Bell-state measurement

    NASA Astrophysics Data System (ADS)

    Sehati, N.; Tavassoly, M. K.

    2017-08-01

    Inspiring from the scheme proposed in (Zheng in Phys Rev A 69:064,302 2004), our aim is to teleport an unknown qubit atomic state using the cavity QED method without using the explicit Bell-state measurement, and so the additional atom is not required. Two identical Λ-type three-level atoms are interacted separately and subsequently with a two-mode quantized cavity field where each mode is expressed with a single-photon field state. The interaction between atoms and field is well described via the Jaynes-Cummings model. It is then shown that how if the atomic detection results a particular state of atom 1, an unknown state can be appropriately teleported from atom 1 to atom 2. This teleportation procedure successfully leads to the high fidelity F (success probability P_g) in between 69%≲ F≲ 100% (0.14≲ P_g≲ 0.56). At last, we illustrated that our scheme considerably improves similar previous proposals.

  4. Nematodes in Dryland Field Crops in the Semiarid Pacific Northwest United States

    PubMed Central

    Smiley, Richard W.; Merrifield, Kathy; Patterson, Lisa-Marie; Whittaker, Ruth G.; Gourlie, Jennifer A.; Easley, Sandra A.

    2004-01-01

    Soils and roots of field crops in low-rainfall regions of the Pacific Northwest were surveyed for populations of plantparasitic and non-plant-parasitic nematodes. Lesion nematodes (Pratylenchus species) were recovered from 123 of 130 non-irrigated and 18 of 18 irrigated fields. Pratylenchus neglectus was more prevalent than P. thornei, but mixed populations were common. Population densities in soil were affected by crop frequency and rotation but not by tillage or soil type (P < 0.05). Many fields (25%) cropped more frequently than 2 of 4 years had potentially damaging populations of lesion nematodes. Pratylenchus neglectus density in winter wheat roots was inversely correlated with grain yield (r2 = 0.64, P = 0.002), providing the first field-derived evidence that Pratylenchus is economically important in Pacific Northwest dryland field crops. Stunt nematodes (Tylenchorhynchus clarus and Geocenamus brevidens) were detected in 35% of fields and were occasionally present in high numbers. Few fields were infested with pin (Paratylenchus species) and root-knot (Meloidogyne naasi and M. chitwoodi) nematodes. Nematodes detected previously but not during this survey included cereal cyst (Heterodera avenae), dagger (Xiphinema species), and root-gall (Subanguina radicicola) nematodes. PMID:19262788

  5. PREFACE: Colloidal and molecular electro-optics Colloidal and molecular electro-optics

    NASA Astrophysics Data System (ADS)

    Palberg, Thomas; Löwen, Hartmut

    2010-12-01

    The Kerr effect, also known as the quadratic electro-optic effect, was discovered more than a hundred years ago by John Kerr, a Scottish physicist [1]. It describes the change in the refractive index of a material in response to an applied electric field. Around 1950 its application swayed from simple to complex fluids. A strong contribution was made through a number of seminal papers by the French polymer scientist H Benoit [2-4]. These and others initiated wide interest from researchers working on macromolecular solutions or colloidal dispersions. Experimental activities were further boosted by the advent of the laser and theoretical approaches strongly drew from growing computer power. Use of AC or pulsed field techniques, as well as of inhomogeneous fields, including laser tweezers, studies of electrophoretic, dielectrophoretic, electro-osmotic and other types of motion by advanced optical methods and combinations with other external fields have had the greatest impact on our understanding of the electric field induced optical properties of soft matter systems. Today the field has matured and its techniques are broadly employed as versatile tools with applications ranging from biological systems to electronic ink. Fundamental interest still continues but more and more side branches have evolved fruitfully. This collection of papers was, therefore, brought together to take a fresh look at this traditional field. Further, we are to celebrate 35 years of a successful conference series, ELOPTO, with the last one held at Waldthausen Castle hosted by the Johannes Gutenberg University, MainzNote1 and the DFG Collaborative Research Centre TR6 'Physics of colloidal dispersions in external fields'Note2. In this issue we have collected the articles of some of the leading experts in the area, well garnished with novel approaches and clever ideas by younger colleagues. With our selection we hope to cover a representative spectrum of the ongoing research, catch the most exciting trends and earn the interest of a good fraction of contemporary soft matter scientists. Note1 http://www.elopto2010.fb08.uni-mainz.de Note2 http://www.sfb-tr6.de References [1] Weinberger P 2008 John Kerr and his effects found in 1877 and 1878 Phil. Mag. Lett. 88 897-907 [2] Benoit H 1948 Calcul de l'écart quadratique moyen entre les extrémités de diverses chaînes moléculaires de type usuel J. Polym. Sci. 3 376-87 [3] Benoit H 1949 Sur un dispositif de mesure de l'effet Kerr par impulsions electriques isoles Comptes Rendus 228 1716-8 [4] Benoit H 1951 Contribution a l'etude de l'effet Kerr presente par les solutions diluees de macromolecules rigide Ann. Phys. 6 561-609 Colloidal and molecular electro-optics contents Electric dichroism transients of aqueous solutions of DNA J A Bertolotto, G M Corral, E M Farias de La Torre and G B Roston The role of effective charges in the electrophoresis of highly charged colloids Apratim Chatterji and Jürgen Horbach Nonlinear response of the electric birefringence of polyelectrolyte solutions J L Déjardin and J M Martinez Kerr constant of multi-subunit particles and semiflexible, wormlike chains J García de la Torre, F G Díaz Baños and H E Pérez Sánchez Self-assembling electroactive hydrogels for flexible display technology Scott L Jones, Kok Hou Wong, Pall Thordarson and François Ladouceur Electrooptical effects in colloid systems subjected to short pulses of strong electric field S A Klemeshev, M P Petrov, A A Trusov and A V Voitylov The effect of ionic strength on electrical properties of polyelectrolyte multilayers on colloidal particles V Milkova and Ts Radeva Charge transport and current in non-polar liquids Kristiaan Neyts, Filip Beunis, Filip Strubbe, Matthias Marescaux, Bart Verboven, Masoumeh Karvar and Alwin Verschueren Ionic concentration- and pH-dependent electrophoretic mobility as studied by single colloid electrophoresis I Semenov, P Papadopoulos, G Stober and F Kremer Effect of magnesium ions and temperature on the sequence-dependent curvature of DNA restriction fragments Nancy C Stellwagen and Yongjun Lu A fluorescence correlation spectroscopy study of macromolecular tracer diffusion in polymer solutions Ute Zettl, Matthias Ballauff and Ludger Harnau Polymer concentration dependence of kilohertz electric polarizability of alumina colloid particles with adsorbed carboxymethyl cellulose Alexandar M Zhivkov and Rosen P Hristov

  6. EDITORIAL: Reigniting innovation in the transistor Reigniting innovation in the transistor

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2012-09-01

    Today the transistor is integral to the electronic circuitry that wires our lives. When Bardeen and Brattain first observed an amplified signal by connecting electrodes to a germanium crystal they saw that their 'semiconductor triode' could prove a useful alternative to the more cumbersome vacuum tubes used at the time [1]. But it was perhaps William Schottky who recognized the extent of the transistor's potential. A basic transistor has three or more terminals and current across one pair of terminals can switch or amplify current through another pair. Bardeen, Brattain and Schottky were jointly awarded a Nobel Prize in 1956 'for their researches on semiconductors and their discovery of the transistor effect' [2]. Since then many new forms of the transistor have been developed and understanding of the underlying properties is constantly advancing. In this issue Chen and Shih and colleagues at Taiwan National University and Drexel University report a pyroelectrics transistor. They show how a novel optothermal gating mechanism can modulate the current, allowing a range of developments in nanoscale optoelectronics and wireless devices [3]. The explosion of interest in nanoscale devices in the 1990s inspired electronics researchers to look for new systems that can act as transistors, such as carbon nanotube [4] and silicon nanowire [5] transistors. Generally these transistors function by raising and lowering an energy barrier of kBT -1, but researchers in the US and Canada have demonstrated that the quantum interference between two electronic pathways through aromatic molecules can also modulate the current flow [6]. The device has advantages for further miniaturization where energy dissipation in conventional systems may eventually cause complications. Interest in transistor technology has also led to advances in fabrication techniques for achieving high production quantities, such as printing [7]. Researchers in Florida in the US demonstrated field effect transistor behaviour in devices fabricated from chemically reduced graphene oxide. The work provided an important step forward for graphene electronics, which has been hampered by difficulties in scaling up the mechanical exfoliation techniques required to produce the high-quality graphene often needed for functioning devices [8]. In Sweden, researchers have developed a transistor design that they fabricate using standard III-V parallel processing, which also has great promise for scaling up production. Their transistor is based on a vertical array of InAs nanowires, which provide high electron mobility and the possibility of high-speed and low-power operation [9]. Different fabrication techniques and design parameters can influence the properties of transistors. Researchers in Belgium used a new method based on high-vacuum scanning spreading resistance microscopy to study the effect of diameter on carrier profile in nanowire transistors [10]. They then used experimental data and simulations to gain a better understanding of how this influenced the transistor performance. In Japan, Y Ohno and colleagues at Nagoya University have reported how atomic layer deposition of an insulating layer of HfO2 on carbon nanotube field effect transistors can change the carrier from p-type to n-type [11]. Carrier type switching—'ambipolar behaviour'—and hysteresis of carbon nanotube network transistors can make achieving reliable device performance challenging. However studies have also suggested that the hysteretic properties may be exploited in non-volatile memory applications. A collaboration of researchers in Italy and the US demonstrated transistor and memory cell behaviour in a system based on a carbon nanotube network [13]. Their device had relatively fast programming, good endurance and the charge retention was successfully enhanced by limiting exposure to air. Progress in understanding transistor behaviour has inspired other innovations in device applications. Nanowires are notoriously sensitive to gases such as CO, opening opportunities for applications in sensing using one-dimensional nanostructure transistors [12]. The pyroelectric transistor reported in this issue represents an intriguing development for device applications of this versatile and ubiquitous electronics component [3]. As the researchers point out, 'By combining the photocurrent feature and optothermal gating effect, the wide range of response to light covering ultraviolet and infrared radiation can lead to new nanoscale optoelectronic devices that are suitable for remote or wireless applications.' In nanotechnology research and development, often the race is on to achieve reliable device behaviour in the smallest possible systems. But sometimes it is the innovations in the approach used that revolutionize technology in industry. The pyroelectric transistor reported in this issue is a neat example of the ingenious innovations in this field of research. While in research the race is never really over, as this work demonstrates the journey itself remains an inspiration. References [1] Bardeen J and Brattain W H 1948 The transistor, a semi-conductor triode Phys. Rev 74 230-1 [2] Shockley W B, Bardeen J and Brattain W H 1956 The nobel prize in physics www.nobelprize.org/nobel_prizes/physics/laureates/1956/# [3] Hsieh C-Y, Lu M-L, Chen J-Y, Chen Y-T, Chen Y-F, Shih W Y and Shih W-H 2012 Single ZnO nanowire-PZT optothermal field effect transistors Nanotechnology 23 355201 [4] Tans S J, Verschueren A R M and Dekker C 1998 Room-temperature transistor based on a single carbon nanotube Nature 393 49-52 [5] Cui Y, Zhong Z, Wang D, Wang W U and Lieber C M 2003 High performance silicon nanowire field effect transistors Nano Lett. 3 149-52 [6]Stafford C A, Cardamone D M and Mazumdar S 2007 The quantum interference effect transistor Nanotechnology 18 424014 [7] Garnier F, Hajlaoui R, Yassar A and Srivastava P 1994 All-polymer field-effect transistor realized by printing techniques Science 265 1684-6 [8] Joung D, Chunder A, Zhai L and Khondaker S I 2010 High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis Nanotechnology 21 165202 [9] Bryllert T, Wernersson L-E, L¨owgren T and Samuelson L 2006 Vertical wrap-gated nanowire transistors Nanotechnology 17 S227-30 [10] Schulze A et al 2011 Observation of diameter dependent carrier distribution in nanowire-based transistors Nanotechnology 22 185701 [11] Moriyama N, Ohno Y, Kitamura T, Kishimoto S and Mizutani T 2010 Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges Nanotechnology 21 165201 [12] Bartolomeo A D, Rinzan M, Boyd A K, Yang Y, Guadagno L, Giubileo F and Barbara P 2010 Electrical properties and memory effects of field-effect transistors from networks of single-and double-walled carbon nanotubes Nanotechnology 21 115204 [13] Liao L et al 2009 Multifunctional CuO nanowire devices: P-type field effect transistors and CO gas sensors Nanotechnology 20 085203

  7. Piezo-Hall effect and fundamental piezo-Hall coefficients of single crystal n-type 3C-SiC(100) with low carrier concentration

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Dinh, Toan; Iacopi, Alan; Walker, Glenn; Phan, Hoang-Phuong; Hold, Leonie; Dimitrijev, Sima

    2017-04-01

    This article reports the results on the piezo-Hall effect in single crystal n-type 3C-SiC(100) having a low carrier concentration. The effect of the crystallographic orientation on the piezo-Hall effect has been investigated by applying stress to the Hall devices fabricated in different crystallographic directions. Single crystal n-type 3C-SiC(100) and 3C-SiC(111) were grown by low pressure chemical vapor deposition at 1250 °C. Fundamental piezo-Hall coefficients were obtained using the piezo-Hall effect measurements as P11 = (-29 ± 1.3) × 10-11 Pa-1, P12 = (11.06 ± 0.5)× 10-11 Pa-1, and P44 = (-3.4 ± 0.7) × 10-11 Pa-1. It has been observed that the piezo-Hall coefficients of n-type 3C-SiC(100) show a completely different behavior as compared to that of p-type 3C-SiC.

  8. Type D patients report poorer health status prior to and after cardiac rehabilitation compared to non-type D patients.

    PubMed

    Pelle, Aline J; Erdman, Ruud A M; van Domburg, Ron T; Spiering, Marquita; Kazemier, Marten; Pedersen, Susanne S

    2008-10-01

    Type D personality is an emerging risk factor in coronary artery disease (CAD). Cardiac rehabilitation (CR) improves outcomes, but little is known about the effects of CR on Type D patients. We examined (1) variability in Type D caseness following CR, (2) Type D as a determinant of health status, and (3) the clinical relevance of Type D as a determinant of health status compared to cardiac history. CAD patients (n = 368) participating in CR completed the Type D Scale, the Short-Form Health Survey 36 pre- and post-CR, and the Hospital Anxiety and Depression Scale pre-CR, to assess health status and depressive and anxious symptomatology, respectively. The prevalence of Type D decreased from 26.6% to 20.7% (p = 0.012) following CR, but Type D caseness remained stable in 81% of patients. Health status significantly improved following CR [F(1,359) = 17.48, p < 0.001], adjusting for demographic and clinical factors and anxious and depressive symptoms. Type D patients reported poorer health status [F(1,359) = 10.40, p = 0.001], with the effect of Type D being stable over time [F(1,359) = 0.49, p = 0.48]. Patients with a cardiac history benefited less from CR [F(1,359) = 5.76, p = 0.02]. The influence of Type D on health status was larger compared to that for cardiac history, as indicated by Cohen's effect size index. Type D patients reported poorer health status compared to non-Type D patients pre- and post-CR. In the majority of patients, CR did not change Type D caseness, with Type D being associated with a stable and clinically relevant effect on outcome. These high-risk patients should be identified in clinical practice and may require adjunctive interventions.

  9. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.

    PubMed

    Hupé, Ginette J; Lewis, John E; Benda, Jan

    2008-01-01

    The brown ghost knifefish, Apteronotus leptorhynchus, is a model wave-type gymnotiform used extensively in neuroethological studies. As all weakly electric fish, they produce an electric field (electric organ discharge, EOD) and can detect electric signals in their environments using electroreceptors. During social interactions, A. leptorhynchus produce communication signals by modulating the frequency and amplitude of their EOD. The Type 2 chirp, a transient increase in EOD frequency, is the most common modulation type. We will first present a description of A. leptorhynchus chirp production from a behavioural perspective, followed by a discussion of the mechanisms by which chirps are encoded by electroreceptor afferents (P-units). Both the production and encoding of chirps are influenced by the difference in EOD frequency between interacting fish, the so-called beat or difference frequency (Df). Chirps are produced most often when the Df is small, whereas attacks are more common when Dfs are large. Correlation analysis has shown that chirp production induces an echo response in interacting conspecifics and that chirps are produced when attack rates are low. Here we show that both of these relationships are strongest when Dfs are large. Electrophysiological recordings from electroreceptor afferents (P-units) have suggested that small, Type 2 chirps are encoded by increases in electroreceptor synchrony at low Dfs only. How Type 2 chirps are encoded at higher Dfs, where the signals seem to exert the greatest behavioural influence, was unknown. Here, we provide evidence that at higher Dfs, chirps could be encoded by a desynchronization of the P-unit population activity.

  10. Spatial Spread of the Root Parasitic Weed Phelipanche aegyptiaca in Processing Tomatoes by Using Ecoinformatics and Spatial Analysis†

    PubMed Central

    Cohen, Yafit; Roei, Itai; Blank, Lior; Goldshtein, Eitan; Eizenberg, Hanan

    2017-01-01

    Egyptian broomrape (Phelipanche aegyptiaca) is one of the main threats to tomato production in Israel. The seed bank of P. aegyptiaca rapidly develops and spreads in the field. Knowledge about the spatio-temporal distribution of such weeds is required in advance of emergence, as they emerge late in their life cycle when they have already caused major crop damage. The aim of this study is to reveal the effects of two major internal infestation sources: crop rotation and infestation history; and one external source: proximity to infested tomato fields; on infestation of P. aegyptiaca in processing tomatoes. Ecoinformatics, spatial analysis and geostatistics were used to examine these effects. A regional survey was conducted to collect data on field history from 238 tomato fields between 2000 and 2012, in a major tomato-growing region in Israel. Multivariate logistic regression in the framework of generalized linear models (GLM) has demonstrated the importance of all three variables in predicting infestation in tomato fields. The parameters of the overall model indicated a high specificity between tomatoes and P. aegyptiaca, which is potentially responsible for aggravating infestation. In addition, P. aegyptiaca infestation levels were intensively mapped in 43 of the 238 tomato fields in the years 2010–2012. Geostatistical measures showed that 40% of the fields had clustered infestation spatial patterns with infestation clusters located along the fields’ borders. Strong linear and negative relationships were found between infestation level and distance from a neighboring infested field, strengthening the role of infested tomato fields in P. aegyptiaca spread. An experiment specifically designed for this study showed that during harvest, P. aegyptiaca seeds are blown from an infested field to a distance of at least 90 m, and may initiate infestation in neighboring fields. Integrating current knowledge about the role of agricultural practices on the spread of P. aegyptiaca with the results of this study enabled us to propose a mechanism for the spread of P. aegyptiaca. Given the major effect of agricultural practices on infestation levels, it is assumed that the spread of this weed can be suppressed by implementing sanitation and using decision support tools for herbicide application. PMID:28676803

  11. Investigation of the Charge Balance in Green Phosphorescent Organic Light-Emitting Diodes by Controlling the Mixed Host Emission Layer.

    PubMed

    Lee, Jeonghyun; Choi, Pyungho; Kim, Minsoo; Lim, Kiwon; Hyeon, Younghwan; Kim, Soonkon; Koo, Kwangjun; Kim, Sangsoo; Choi, Byoungdeog

    2018-09-01

    In this paper, we investigated the use of a mixed host emission layer (MH-EML) in green phosphorescent organic light-emitting diodes (OLEDs). The hole transport type (p-type) material (4,4'-Bis(N-carbazolyl)-1,1'-biphenyl (CBP)) and electron transport type (N-type) material (2,2',2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi)) were mixed with different ratios. The electrons were easily injected through the lowest unoccupied molecular orbital (LUMO) of TPBi in the mixed host system. Also, holes were confined in the EML because of the deep highest occupied molecular orbital (HOMO) level of TPBi (6.7 eV). These results indicate that excitons were formed effectively and the recombination zone became wider under a high electric field in MH-EML devices. For these reasons, the lifetime of the MH-OLED device was 1.36 times higher than that of a single host emission layer (SH-EML) device and showed a reduction in Joule heating. Finally, the external quantum efficiency (EQE) roll-off ratio from 1 mA/cm2 to 100 mA/cm2 in the optimized device (30.46%) was 18.12%p lower than that of the SH-EML (48.58%).

  12. Sensitivity Enhancement in Magnetic Sensors Based on Ferroelectric-Bimorphs and Multiferroic Composites.

    PubMed

    Sreenivasulu, Gollapudi; Qu, Peng; Petrov, Vladimir; Qu, Hongwei; Srinivasan, Gopalan

    2016-02-20

    Multiferroic composites with ferromagnetic and ferroelectric phases have been studied in recent years for use as sensors of AC and DC magnetic fields. Their operation is based on magneto-electric (ME) coupling between the electric and magnetic subsystems and is mediated by mechanical strain. Such sensors for AC magnetic fields require a bias magnetic field to achieve pT-sensitivity. Novel magnetic sensors with a permanent magnet proof mass, either on a ferroelectric bimorph or a ferromagnetic-ferroelectric composite, are discussed. In both types, the interaction between the applied AC magnetic field and remnant magnetization of the magnet results in a mechanical strain and a voltage response in the ferroelectric. Our studies have been performed on sensors with a Nd-Fe-B permanent magnet proof mass on (i) a bimorph of oppositely-poled lead zirconate titanate (PZT) platelets and (ii) a layered multiferroic composite of PZT-Metglas-Ni. The sensors have been characterized in terms of sensitivity and equivalent magnetic noise N. Noise N in both type of sensors is on the order of 200 pT/√Hz at 1 Hz, a factor of 10 improvement compared to multiferroic sensors without a proof mass. When the AC magnetic field is applied at the bending resonance for the bimorph, the measured N ≈ 700 pT/√Hz. We discuss models based on magneto-electro-mechanical coupling at low frequency and bending resonance in the sensors and theoretical estimates of ME voltage coefficients are in very good agreement with the data.

  13. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility.

    PubMed

    Solek, Przemyslaw; Majchrowicz, Lena; Bloniarz, Dominika; Krotoszynska, Ewelina; Koziorowski, Marek

    2017-05-01

    The impact of electromagnetic field (EMF) on the human health and surrounding environment is a common topic investigated over the years. A significant increase in the electromagnetic field concentration arouses public concern about the long-term effects of EMF on living organisms associated with many aspects. In the present study, we investigated the effects of pulsed and continuous electromagnetic field (PEMF/CEMF) on mouse spermatogenic cell lines (GC-1 spg and GC-2 spd) in terms of cellular and biochemical features in vitro. We evaluated the effect of EMF on mitochondrial metabolism, morphology, proliferation rate, viability, cell cycle progression, oxidative stress balance and regulatory proteins. Our results strongly suggest that EMF induces oxidative and nitrosative stress-mediated DNA damage, resulting in p53/p21-dependent cell cycle arrest and apoptosis. Therefore, spermatogenic cells due to the lack of antioxidant enzymes undergo oxidative and nitrosative stress-mediated cytotoxic and genotoxic events, which contribute to infertility by reduction in healthy sperm cells pool. In conclusion, electromagnetic field present in surrounding environment impairs male fertility by inducing p53/p21-mediated cell cycle arrest and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.

    PubMed

    Law, Matt; Luther, Joseph M; Song, Qing; Hughes, Barbara K; Perkins, Craig L; Nozik, Arthur J

    2008-05-07

    We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at approximately 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.

  15. Junction-based field emission structure for field emission display

    DOEpatents

    Dinh, Long N.; Balooch, Mehdi; McLean, II, William; Schildbach, Marcus A.

    2002-01-01

    A junction-based field emission display, wherein the junctions are formed by depositing a semiconducting or dielectric, low work function, negative electron affinity (NEA) silicon-based compound film (SBCF) onto a metal or n-type semiconductor substrate. The SBCF can be doped to become a p-type semiconductor. A small forward bias voltage is applied across the junction so that electron transport is from the substrate into the SBCF region. Upon entering into this NEA region, many electrons are released into the vacuum level above the SBCF surface and accelerated toward a positively biased phosphor screen anode, hence lighting up the phosphor screen for display. To turn off, simply switch off the applied potential across the SBCF/substrate. May be used for field emission flat panel displays.

  16. Super-Lie n-algebra extensions, higher WZW models and super-p-branes with tensor multiplet fields

    NASA Astrophysics Data System (ADS)

    Fiorenza, Domenico; Sati, Hisham; Schreiber, Urs

    2015-12-01

    We formalize higher-dimensional and higher gauge WZW-type sigma-model local prequantum field theory, and discuss its rationalized/perturbative description in (super-)Lie n-algebra homotopy theory (the true home of the "FDA"-language used in the supergravity literature). We show generally how the intersection laws for such higher WZW-type σ-model branes (open brane ending on background brane) are encoded precisely in (super-)L∞-extension theory and how the resulting "extended (super-)space-times" formalize spacetimes containing σ-model brane condensates. As an application we prove in Lie n-algebra homotopy theory that the complete super-p-brane spectrum of superstring/M-theory is realized this way, including the pure σ-model branes (the "old brane scan") but also the branes with tensor multiplet worldvolume fields, notably the D-branes and the M5-brane. For instance the degree-0 piece of the higher symmetry algebra of 11-dimensional (11D) spacetime with an M2-brane condensate turns out to be the "M-theory super-Lie algebra". We also observe that in this formulation there is a simple formal proof of the fact that type IIA spacetime with a D0-brane condensate is the 11D sugra/M-theory spacetime, and of (prequantum) S-duality for type IIB string theory. Finally we give the non-perturbative description of all this by higher WZW-type σ-models on higher super-orbispaces with higher WZW terms in stacky differential cohomology.

  17. A Two-Player Game of Life

    NASA Astrophysics Data System (ADS)

    Levene, Mark; Roussos, George

    We present a new extension of Conway's game of life for two players, which we call ``p2life''. P2life allows one of two types of token, black or white, to inhabit a cell and adds competitive elements into the birth and survival rules of the original game. We solve the mean-field equation for p2life and determine, using simulation, that the asymptotic density of p2life approaches 0.0362.

  18. Pulsed-field gel electrophoresis typing of Staphylococcus aureus isolates

    USDA-ARS?s Scientific Manuscript database

    Pulsed-field gel electrophoresis (PFGE) is the most applied and effective genetic typing method for epidemiological studies and investigation of foodborne outbreaks caused by different pathogens, including Staphylococcus aureus. The technique relies on analysis of large DNA fragments generated by th...

  19. Air-stable n-type semiconductor: core-perfluoroalkylated perylene bisimides.

    PubMed

    Li, Yan; Tan, Lin; Wang, Zhaohui; Qian, Hualei; Shi, Yubai; Hu, Wenping

    2008-02-21

    A series of core-perfluoroalkylated perylene bisimides (PBIs) have been efficiently synthesized by copper-mediated perfluoroalkylation of dibrominated PBIs. Their aromatic cores are highly twisted due to the steric encumbrance in the bay regions as revealed by single-crystal X-ray analysis. The organic field-effect transistors (OFETs) incorporating these new n-type semiconductors show remarkable air-stability and good field effect mobility.

  20. P-12 Engineering Education Research and Practice

    ERIC Educational Resources Information Center

    Moore, Tamara; Richards, Larry G.

    2012-01-01

    This special issue of "Advances in Engineering Education" explores recent developments in P-12 Engineering Education. It includes papers devoted to research and practice, and reports some of the most exciting work in the field today. In our Call of Papers, we solicited two types of papers: Research papers and Practice papers. The former…

Top