Science.gov

Sample records for p-type hydrogenated nanocrystalline

  1. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan

    2006-12-01

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  2. Enhanced p-type conduction of B-doped nanocrystalline diamond films by high temperature annealing

    SciTech Connect

    Gu, S. S.; Hu, X. J.

    2013-07-14

    We report the enhanced p-type conduction with Hall mobility of 53.3 cm{sup 2} V{sup -1} s{sup -1} in B-doped nanocrystalline diamond (NCD) films by 1000 Degree-Sign C annealing. High resolution transmission electronic microscopy, uv, and visible Raman spectroscopy measurements show that a part of amorphous carbon grain boundaries (GBs) transforms to diamond phase, which increases the opportunity of boron atoms located at the GBs to enter into the nano-diamond grains. This phase transition doping is confirmed by the secondary ion mass spectrum depth profile results that the concentration of B atoms in nano-diamond grains increases after 1000 Degree-Sign C annealing. It is also observed that 1000 Degree-Sign C annealing improves the lattice perfection, reduces the internal stress, decreases the amount of trans-polyacetylene, and increases the number or size of aromatic rings in the sp{sup 2}-bonded carbon cluster in B-doped NCD films. These give the contributions to improve the electrical properties of 1000 Degree-Sign C annealed B-doped NCD films.

  3. LIGHT-WEIGHT NANOCRYSTALLINE HYDROGEN STORAGE MATERIALS

    SciTech Connect

    S. G. Sankar; B. Zande; R.T. Obermyer; S. Simizu

    2005-11-21

    During Phase I of this SBIR Program, Advanced Materials Corporation has addressed two key issues concerning hydrogen storage: 1. We have conducted preliminary studies on the effect of certain catalysts in modifying the hydrogen absorption characteristics of nanocrystalline magnesium. 2. We have also conducted proof-of-concept design and construction of a prototype instrument that would rapidly screen materials for hydrogen storage employing chemical combinatorial technique in combination with a Pressure-Composition Isotherm Measurement (PCI) instrument. 3. Preliminary results obtained in this study approach are described in this report.

  4. RETRACTION: Electronic characteristics of n-type nanocrystalline/p-type crystalline silicon heterostructure

    NASA Astrophysics Data System (ADS)

    Wei, Wensheng; Wang, Tianmin; He, Yuliang

    2008-03-01

    It has come to the attention of IOP Publishing that this article should not have been submitted for publication owing to its substantial replication of an earlier paper (Wensheng Wei, Tianmin Wang and Yuliang He 2008 Investigation on high mobility nanocrystalline Si with crystalline Si heterostructure Superlattices and Microstructures 41 216-226). Consequently this paper has been retracted by IOP Publishing.

  5. LiBr passivation effect of porous nanocrystalline hydrogenated silicon

    NASA Astrophysics Data System (ADS)

    Amor, Sana Ben; Haddadi, Ikbel; Seif, El Whibi; Daik, Ridha; Bousbih, Rabaa; Dimassi, Wissem; Ezzaouia, Hatem

    2015-12-01

    Nanocrystalline hydrogenated silicon (nc-Si:H) films were deposited on a p-type silicon substrate by plasma enhanced chemical vapor deposition (PECVD), using SiH4 and H2 as reactive gases. Porous (nc-Si:H) layers were afterward obtained and immersed in a lithium bromide (LiBr) aqueous solution in order to enhance their optical and electrical properties for a potential solar cells application. A decrease in the reflectivity to about 9% for Li/porous nc-Si:H layer deposited at 75 sccm against an increase in the minority carrier lifetime were obtained. We correlate these results to the change in crystalline characteristics and chemical composition of the layers in order to understand the effect of LiBr coating on nc-Si:H Through optical and electrical characterization we have demonstrated the possibility of using such LiBr treatment to improve the properties of porous nc-Si:H.

  6. Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures

    SciTech Connect

    Goto, Masaki; Amano, Ryo; Shimoda, Naotaka; Kato, Yoshimine; Teii, Kungen

    2014-04-14

    Highly rectifying heterojunctions of n-type nanocrystalline diamond (NCD) films to p-type 4H-SiC substrates are fabricated to develop p-n junction diodes operable at high temperatures. In reverse bias condition, a potential barrier for holes at the interface prevents the injection of reverse leakage current from the NCD into the SiC and achieves the high rectification ratios of the order of 10{sup 7} at room temperature and 10{sup 4} even at 570 K. The mechanism of the forward current injection is described with the upward shift of the defect energy levels in the NCD to the conduction band of the SiC by forward biasing. The forward current shows different behavior from typical SiC Schottky diodes at high temperatures.

  7. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-02-15

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted.

  8. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement. PMID:26736028

  9. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    PubMed

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  10. Wide band gap p-type nanocrystalline CuBO{sub 2} as a novel UV photocatalyst

    SciTech Connect

    Santra, S.; Das, N.S.; Chattopadhyay, K.K.

    2013-07-15

    Graphical abstract: - Highlights: • CuBO{sub 2} nanocrystals were synthesized by sol–gel route. • The products have been characterized to confirm the formation of CuBO{sub 2}. • Photocatalytic activity of this material is reported for the first time. - Abstract: Wide band gap copper based delafossite CuBO{sub 2} nanocrystalline powders of different particle sizes were synthesized via sol–gel route. Structural characterization was performed using X-ray diffraction (XRD) and transmission electron microscopy (TEM) which confirmed good crystallinity and proper phase formation of the samples. Compositional analysis was carried out by energy dispersive X-ray studies (EDX), whereas field emission scanning electron microscopy revealed morphological information of the samples. The photocatalytic performance of this delafossite material was studied for the first time with a standard photocatalytic set-up and the photocatalytic efficiency was found to increase with decreasing particle size. The Langmuir–Hinshelwood photocatalytic rate constants increased considerably for the samples synthesized at different pH from 2.75 to 0.5; which eventually varied particle size. The efficient photocatalytic performance, found for the first time here, will make this novel p-type wide band gap semiconductor a truly multifunctional material.

  11. Controllable nonlinear refraction characteristics in hydrogenated nanocrystalline silicon

    SciTech Connect

    Zheng, D. Q.; Ye, Q. H.; Shen, W. Z.; Su, W. A.

    2014-02-07

    Nonlinear refraction (NLR) of hydrogenated nanocrystalline silicon (nc-Si:H) has been investigated through the close aperture Z-scan method. We demonstrate a significant NLR and a unique feature of controllable NLR characteristics between saturable and Kerr NLR with the incident photon energy. We numerically evaluate the proportion of these two mechanisms in different wavelengths by a modified NLR equation. The band tail of nc-Si:H appears to play a crucial role in such NLR responses.

  12. Evidence for an iron-hydrogen complex in p-type silicon

    SciTech Connect

    Leonard, S. Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-20

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90–120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at E{sub v} + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10{sup −17} cm{sup 2}. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  13. Evidence for an iron-hydrogen complex in p-type silicon

    NASA Astrophysics Data System (ADS)

    Leonard, S.; Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-01

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90-120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at Ev + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10-17 cm2. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  14. Sputtering deposition of P-type SnO films with SnO₂ target in hydrogen-containing atmosphere.

    PubMed

    Hsu, Po-Ching; Hsu, Chao-Jui; Chang, Ching-Hsiang; Tsai, Shiao-Po; Chen, Wei-Chung; Hsieh, Hsing-Hung; Wu, Chung-Chih

    2014-08-27

    In this work, we had investigated sputtering deposition of p-type SnO using the widely used and robust SnO2 target in a hydrogen-containing reducing atmosphere. The effects of the hydrogen-containing sputtering gas on structures, compositions, optical, and electrical properties of deposited SnOx films were studied. Results show that polycrystalline and SnO-dominant films could be readily obtained by carefully controlling the hydrogen gas ratio in the sputtering gas and the extent of reduction reaction. P-type conductivity was unambiguously observed for SnO-dominant films with traceable Sn components, exhibiting a p-type Hall mobility of up to ∼3 cm(2) V(-1) s(-1). P-type SnO thin-film transistors using such SnO-dominant films were also demonstrated.

  15. Nanocrystalline zinc indium vanadate: a novel photocatalyst for hydrogen generation.

    PubMed

    Mahapure, Sonali A; Ambekar, Jalindar D; Nikam, Latesh K; Marimuthu, Ramadoss; Kulkarni, Milind V; Kale, Bharat B

    2011-08-01

    Hydrogen is a future fuel and hence production of cheap hydrogen is an important area of research. Recently, the photocatalysts were used to generate hydrogen from water and hydrogen sulfide splitting under solar light. Hence, we designed Zinc Indium Vanadate, a novel visible light active photocatalyst and used for the generation of hydrogen by using solar light. We have demonstrated the synthesis of ZnIn2V2O9 (ZIV) catalyst by sonochemical route using NH4VO3, In (NO3)3 and Zn(CH3COO)2 as a precursors and PVP as a capping agent. The obtained product was further characterized by XRD, UV-DRS and FESEM. The XRD pattern reveals the existence of monoclinic crystal structure and broader peaks indicating the nanocrystalline nature of the material. The particle size was observed in the range of 50-70 nm. The optical study showed the absorption edge cut off at 520 nm with estimated band gap about 2.3 eV. Considering the band gap in visible range, ZnIn2V2O9 was used as a photocatalyst for photodecomposition of H2S under visible light irradiation to produce hydrogen. We observed excellent photocatalytic activity for the hydrogen generation by using this photocatalyst. PMID:22103105

  16. Influence of hydrogen impurities on p-type resistivity in Mg-doped GaN films

    SciTech Connect

    Yang, Jing; Zhao, Degang Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Zhang, Y. T.; Du, G. T.

    2015-03-15

    The effects of hydrogen impurities on p-type resistivity in Mg-doped GaN films were investigated. It was found that hydrogen impurities may have the dual role of passivating Mg{sub Ga} acceptors and passivating donor defects. A decrease in p-type resistivity when O{sub 2} is introduced during the postannealing process is attributed to the fact that annealing in an O{sub 2}-containing environment can enhance the dissociation of Mg{sub Ga}-H complexes as well as the outdiffusion of H atoms from p-GaN films. However, low H concentrations are not necessarily beneficial in Mg-doped GaN films, as H atoms may also be bound at donor species and passivate them, leading to the positive effect of reduced compensation.

  17. Nickel oxide particles catalyze photochemical hydrogen evolution from water--nanoscaling promotes p-type character and minority carrier extraction.

    PubMed

    Nail, Benjamin A; Fields, Jorie M; Zhao, Jing; Wang, Jiarui; Greaney, Matthew J; Brutchey, Richard L; Osterloh, Frank E

    2015-05-26

    Nickel(II) oxide (NiO) is an important wide gap p-type semiconductor used as a hole transport material for dye sensitized solar cells and as a water oxidation electrocatalyst. Here we demonstrate that nanocrystals of the material have increased p-type character and improved photocatalytic activity for hydrogen evolution from water in the presence of methanol as sacrificial electron donor. NiO nanocrystals were synthesized by hydrolysis of Ni(II) nitrate under hydrothermal conditions followed by calcination in air. The crystals have the rock salt structure type and adopt a plate-like morphology (50-90 nm × 10-15 nm). Diffuse reflectance absorbance spectra indicate a band gap of 3.45 eV, similar to bulk NiO. Photoelectrochemical measurements were performed at neutral pH with methylviologen as electron acceptor, revealing photo-onset potentials (Fermi energies) of 0.2 and 0.05 eV (NHE) for nanoscale and bulk NiO, respectively. Nano-NiO and NiO-Pt composites obtained by photodepositon of H2PtCl6 catalyze hydrogen evolution from aqueous methanol at rates of 0.8 and 4.5 μmol H2 h(-1), respectively, compared to 0.5 and 2.1 μmol H2 h(-1) for bulk-NiO and NiO-Pt (20 mg of catalyst, 300 W Xe lamp). Surface photovoltage spectroscopy of NiO and NiO-Pt films on Au substrates indicate a metal Pt-NiO junction with 30 mV photovoltage that promotes carrier separation. The increased photocatalytic and photoelectrochemical performance of nano-NiO is due to improved minority carrier extraction and increased p-type character, as deduced from Mott-Schottky plots, optical absorbance, and X-ray photoelectron spectroscopy data.

  18. High hole mobility p-type GaN with low residual hydrogen concentration prepared by pulsed sputtering

    NASA Astrophysics Data System (ADS)

    Arakawa, Yasuaki; Ueno, Kohei; Kobayashi, Atsushi; Ohta, Jitsuo; Fujioka, Hiroshi

    2016-08-01

    We have grown Mg-doped GaN films with low residual hydrogen concentration using a low-temperature pulsed sputtering deposition (PSD) process. The growth system is inherently hydrogen-free, allowing us to obtain high-purity Mg-doped GaN films with residual hydrogen concentrations below 5 × 1016 cm-3, which is the detection limit of secondary ion mass spectroscopy. In the Mg profile, no memory effect or serious dopant diffusion was detected. The as-deposited Mg-doped GaN films showed clear p-type conductivity at room temperature (RT) without thermal activation. The GaN film doped with a low concentration of Mg (7.9 × 1017 cm-3) deposited by PSD showed hole mobilities of 34 and 62 cm2 V-1 s-1 at RT and 175 K, respectively, which are as high as those of films grown by a state-of-the-art metal-organic chemical vapor deposition apparatus. These results indicate that PSD is a powerful tool for the fabrication of GaN-based vertical power devices.

  19. Hydrogen diffusion in bulk and nanocrystalline palladium: A quasielastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Kofu, Maiko; Hashimoto, Naoki; Akiba, Hiroshi; Kobayashi, Hirokazu; Kitagawa, Hiroshi; Tyagi, Madhusudan; Faraone, Antonio; Copley, John R. D.; Lohstroh, Wiebke; Yamamuro, Osamu

    2016-08-01

    The diffusion dynamics of hydrogen in bulk and nanocrystalline palladium has been examined using quasielastic neutron scattering (QENS). With respect to bulk PdH0.73, two relaxation processes were found. For both processes, the variation of the relaxation times with momentum transfer was well reproduced by a model of jump diffusion between adjacent octahedral sites. Upon cooling the fast relaxation fraction decreases. The result suggests that the slow relaxation corresponds to jumps between the ground states and the fast one between excited states. In nanocrystalline PdH0.47 with a size of 8 nm, we found a fast diffusion process with a smaller activation energy in addition to the one observed in the bulk sample. This process could be due to the motion of hydrogen atoms in the subsurface region where the potential energy surface is substantially modified by surface strain/distortion effects.

  20. Tristate electrochemical metallization memory based in the hydrogenated nanocrystalline silicon films

    SciTech Connect

    Yan, X. B.; Chen, Y. F.; Hao, H.; Zhang, E. P.; Shi, S. S.; Lou, J. Z.; Liu, Q.

    2014-08-18

    The hydrogenated nanocrystalline silicon (nc-Si:H) films have been fabricated as resistive switching medium by radio frequency plasma enhanced chemical vapor deposition technology. The constructed Ag/nc-Si:H/Pt structure exhibits stable three nonvolatile resistance states. Tristate resistive states with large ratio 10{sup 2} and 10{sup 5}, less variation of resistance, and long retention exceeding 2.3 × 10{sup 5 }s are observed in Ag/nc-Si:H/Pt stack. The temperature dependence of high resistance state (HRS) and intermediate resistance state (IRS) both show semiconductor behavior, and the temperature dependence of low resistance state (LRS) represents metallic property. Fitting results demonstrated that the conduction mechanism of HRS, IRS, and LRS showed space charge limited conduction (SCLC), tunneling, and ohmic characteristics, respectively. The discrete Ag filament with Si nanocrystalline and complete Ag filament is proposed to be responsible for the performance IRS and LRS. We supposed that the Ag{sup +} ions prefer to be reduced to Ag atoms near the Si nanocrystalline location. Si nanocrystalline between Ag nanoparticles contribute to the current transport at IRS.

  1. Origins of hole traps in hydrogenated nanocrystalline and amorphous silicon revealed through machine learning

    NASA Astrophysics Data System (ADS)

    Mueller, Tim; Johlin, Eric; Grossman, Jeffrey C.

    2014-03-01

    Genetic programming is used to identify the structural features most strongly associated with hole traps in hydrogenated nanocrystalline silicon with very low crystalline volume fraction. The genetic programming algorithm reveals that hole traps are most strongly associated with local structures within the amorphous region in which a single hydrogen atom is bound to two silicon atoms (bridge bonds), near fivefold coordinated silicon (floating bonds), or where there is a particularly dense cluster of many silicon atoms. Based on these results, we propose a mechanism by which deep hole traps associated with bridge bonds may contribute to the Staebler-Wronski effect.

  2. Hydrogen retention in beryllium: concentration effect and nanocrystalline growth.

    PubMed

    Pardanaud, C; Rusu, M I; Martin, C; Giacometti, G; Roubin, P; Ferro, Y; Allouche, A; Oberkofler, M; Köppen, M; Dittmar, T; Linsmeier, Ch

    2015-12-01

    We herein report on the formation of BeD2 nanocrystalline domes on the surface of a beryllium sample exposed to energetic deuterium ions. A polycrystalline beryllium sample was exposed to D ions at 2 keV/atom leading to laterally averaged deuterium areal densities up to 3.5 10(17) D cm(-2), and studied using nuclear reaction analysis, Raman microscopy, atomic force microscopy, optical microscopy and quantum calculations. Incorporating D in beryllium generates a tensile stress that reaches a plateau at  ≈1.5 10(17) D cm(-2). For values higher than 2.0 10(17) cm(-2), we observed the growth of  ≈90 nm high dendrites, covering up to 10% of the surface in some zones of the sample when the deuterium concentration was 3  ×  10(17) D cm(-2). These dendrites are composed of crystalline BeD2, as evidenced by Raman microscopy and quantum calculations. They are candidates to explain low temperature thermal desorption spectroscopy peaks observed when bombarding Be samples with D ions with fluencies higher than 1.2 10(17) D cm(-2).

  3. Hydrogen retention in beryllium: concentration effect and nanocrystalline growth.

    PubMed

    Pardanaud, C; Rusu, M I; Martin, C; Giacometti, G; Roubin, P; Ferro, Y; Allouche, A; Oberkofler, M; Köppen, M; Dittmar, T; Linsmeier, Ch

    2015-12-01

    We herein report on the formation of BeD2 nanocrystalline domes on the surface of a beryllium sample exposed to energetic deuterium ions. A polycrystalline beryllium sample was exposed to D ions at 2 keV/atom leading to laterally averaged deuterium areal densities up to 3.5 10(17) D cm(-2), and studied using nuclear reaction analysis, Raman microscopy, atomic force microscopy, optical microscopy and quantum calculations. Incorporating D in beryllium generates a tensile stress that reaches a plateau at  ≈1.5 10(17) D cm(-2). For values higher than 2.0 10(17) cm(-2), we observed the growth of  ≈90 nm high dendrites, covering up to 10% of the surface in some zones of the sample when the deuterium concentration was 3  ×  10(17) D cm(-2). These dendrites are composed of crystalline BeD2, as evidenced by Raman microscopy and quantum calculations. They are candidates to explain low temperature thermal desorption spectroscopy peaks observed when bombarding Be samples with D ions with fluencies higher than 1.2 10(17) D cm(-2). PMID:26558478

  4. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage.

    PubMed

    Neltner, Brian; Peddie, Brian; Xu, Alex; Doenlen, William; Durand, Keith; Yun, Dong Soo; Speakman, Scott; Peterson, Andrew; Belcher, Angela

    2010-06-22

    For decades, ethanol has been in use as a fuel for the storage of solar energy in an energy-dense, liquid form. Over the past decade, the ability to reform ethanol into hydrogen gas suitable for a fuel cell has drawn interest as a way to increase the efficiency of both vehicles and stand-alone power generators. Here we report the use of extremely small nanocrystalline materials to enhance the performance of 1% Rh/10% Ni@CeO(2) catalysts in the oxidative steam reforming of ethanol with a ratio of 1.7:1:10:11 (air/EtOH/water/argon) into hydrogen gas, achieving 100% conversion of ethanol at only 300 degrees C with 60% H(2) in the product stream and less than 0.5% CO. Additionally, nanocrystalline 10% Ni@CeO(2) was shown to achieve 100% conversion of ethanol at 400 degrees C with 73% H(2), 2% CO, and 2% CH(4) in the product stream. Finally, we demonstrate the use of biological templating on M13 to improve the resistance of this catalyst to deactivation over 52 h tests at high flow rates (120 000 h(-1) GHSV) at 450 degrees C. This study suggests that the use of highly nanocrystalline, biotemplated catalysts to improve activity and stability is a promising route to significant gains over traditional catalyst manufacture methods.

  5. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide.

    PubMed

    Meng, Fanke; Li, Jiangtian; Cushing, Scott K; Zhi, Mingjia; Wu, Nianqiang

    2013-07-17

    Molybdenum disulfide (MoS2) is a promising candidate for solar hydrogen generation but it alone has negligible photocatalytic activity. In this work, 5-20 nm sized p-type MoS2 nanoplatelets are deposited on the n-type nitrogen-doped reduced graphene oxide (n-rGO) nanosheets to form multiple nanoscale p-n junctions in each rGO nanosheet. The p-MoS2/n-rGO heterostructure shows significant photocatalytic activity toward the hydrogen evolution reaction (HER) in the wavelength range from the ultraviolet light through the near-infrared light. The photoelectrochemical measurement shows that the p-MoS2/n-rGO junction greatly enhances the charge generation and suppresses the charge recombination, which is responsible for enhancement of solar hydrogen generation. The p-MoS2/n-rGO is an earth-abundant and environmentally benign photocatalyst for solar hydrogen generation.

  6. Impact of nitrogen doping on growth and hydrogen impurity incorporation of thick nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Gu, Li-Ping; Tang, Chun-Jiu; Jiang, Xue-Fan; L. Pinto, J.

    2011-05-01

    A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline diamond (MCD) films, grown using the same growth parameters except for nitrogen. These experimental results clearly evidence that defect formation and impurity incorporation (for example, N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CHx (x = 1, 2, 3) growth species for adsorption sites.

  7. Temperature- and Hydrogen-Gas-Dependent Reversible Inversion of n-/ p-Type Conductivity in CVD-Grown Multilayer Graphene (MLG) Film

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Hazra, S. K.; Das, J.; Sarkar, C. K.; Basu, S.

    2016-06-01

    In atmospheric-pressure chemical vapor deposition-grown multilayer graphene films, a reversible change from n- to p-type conductivity has been observed in the temperature range of 25°C to 150°C upon exposure to hydrogen. This study was conducted with a simple Pd/graphene/Pd planar device. The inversion was observed at around 100°C, below which it showed stable n-type response to hydrogen. The hydrogen response was quite fast (1 s to 2 s) at 150°C. A plausible mechanism has been developed to explain such inversion. The selectivity and stability of the device in both n- and p-regions were investigated in the temperature range of 25°C to 150°C.

  8. Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution

    PubMed Central

    2014-01-01

    As a great promising material for third-generation thin-film photovoltaic cells, hydrogenated nanocrystalline silicon (nc-Si:H) thin films have a complex mixed-phase structure, which determines its defectful nature and easy residing of oxygen impurities. We have performed a detailed investigation on the microstructure properties and oxygen impurities in the nc-Si:H thin films prepared under different hydrogen dilution ratio treatment by the plasma-enhanced chemical vapor deposition (PECVD) process. X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and optical transmission spectroscopy have been utilized to fully characterize the microstructure properties of the nc-Si:H films. The oxygen and hydrogen contents have been obtained from infrared absorption spectroscopy. And the configuration state of oxygen impurities on the surface of the films has been confirmed by X-ray photoelectron spectroscopy, indicating that the films were well oxidized in the form of SiO2. The correlation between the hydrogen content and the volume fraction of grain boundaries derived from the Raman measurements shows that the majority of the incorporated hydrogen is localized inside the grain boundaries. Furthermore, with the detailed information on the bonding configurations acquired from the infrared absorption spectroscopy, a full explanation has been provided for the mechanism of the varying microstructure evolution and oxygen impurities based on the two models of ion bombardment effect and hydrogen-induced annealing effect. PMID:24994958

  9. Relationship of deep defects to oxygen and hydrogen content in nanocrystalline silicon photovoltaic materials

    SciTech Connect

    Hugger, Peter G.; Cohen, J. David; Yan Baojie; Yue Guozhen; Yang, Jeffrey; Guha, Subhendu

    2010-12-20

    We report measurements of the structural and compositional properties of a range of hydrogenated nanocrystalline films. We employed Raman spectroscopy for crystallinity and time-of-flight secondary ion mass spectroscopy (TOF-SIMS) for impurity characterizations. The crystalline volume fractions and impurity levels are correlated with the deep state densities determined by drive level capacitance profiling. Those defects were found to have a thermal emission energy of 0.65{+-}.05 eV. We found that the overall crystallinity correlated reasonably well with the density of such defect states and also found a strong correlation between the defect density and the levels of oxygen impurities. Possible origins of these defects are discussed.

  10. Enhancement of hydrogen gas sensing of nanocrystalline nickel oxide by pulsed-laser irradiation.

    PubMed

    Soleimanpour, A M; Khare, Sanjay V; Jayatissa, Ahalapitiya H

    2012-09-26

    This paper reports the effect of post-laser irradiation on the gas-sensing behavior of nickel oxide (NiO) thin films. Nanocrystalline NiO semiconductor thin films were fabricated by a sol-gel method on a nonalkaline glass substrate. The NiO samples were irradiated with a pulsed 532-nm wavelength, using a Nd:YVO(4) laser beam. The effect of laser irradiation on the microstructure, electrical conductivity, and gas-sensing properties was investigated as a function of laser power levels. It was found that the crystallinity and surface morphology were modified by the pulsed-laser irradiation. Hydrogen gas sensors were fabricated using both as-deposited and laser-irradiated NiO films. It was observed that the performance of gas-sensing characteristics could be changed by the change of laser power levels. By optimizing the magnitude of the laser power, the gas-sensing property of NiO thin film was improved, compared to that of as-deposited NiO films. At the optimal laser irradiation conditions, a high response of NiO sensors to hydrogen molecule exposure of as little as 2.5% of the lower explosion threshold of hydrogen gas (40,000 ppm) was observed at 175 °C.

  11. Thermal post-deposition treatment effects on nanocrystalline hydrogenated silicon prepared by PECVD under different hydrogen flow rates

    NASA Astrophysics Data System (ADS)

    Amor, Sana Ben; Meddeb, Hosny; Daik, Ridha; Othman, Afef Ben; Slama, Sonia Ben; Dimassi, Wissem; Ezzaouia, Hatem

    2016-01-01

    In this paper, hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited on mono-crystalline silicon substrate by plasma enhanced chemical vapor deposition (PECVD) under different hydrogen flow rates followed by a thermal treatment in an infrared furnace at different temperature ranging from 300 to 900 °C. The investigated structural, morphological and optoelectronic properties of samples were found to be strongly dependent on the annealing temperature. Raman spectroscopy revealed that nc-Si:H films contain crystalline, amorphous and mixed structures as well. We find that post-deposition thermal treatment may lead to a tendency for structural improvement and a decrease of the disorder in the film network at moderate temperature under 500 °C. As for annealing at higher temperature up to 900 °C induces the recrystallization of the film which is correlated with the grain size and volume fraction in the layer. We demonstrate that high annealing temperature can lead to a decrease of silicon-hydrogen bonds corresponding to a reduction of the amorphous matrix in the layer promoting the formation of covalent Si-Si bonds. The effusion of the hydrogen from the grown film leads to increase its density and therefore induces a decrease in the thickness of the layer. For post-deposition thermal treatment in temperature range under 700 °C, the post-deposition anneal seems to be crucial for obtaining good passivation quality as expressed by a minority carrier lifetime of 17 μs, as it allows a significant reduction in defect states at the layer/substrate interface. While for a temperature higher than 900 °C, the lifetime reduction is obtained because of hydrogen effusion phenomenon, thus a tendency for crystallization in the grown film.

  12. P-type Cu--Ti--O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation.

    PubMed

    Mor, Gopal K; Varghese, Oomman K; Wilke, Rudeger H T; Sharma, Sanjeev; Shankar, Karthik; Latempa, Thomas J; Choi, Kyoung-Shin; Grimes, Craig A

    2008-07-01

    Copper and titanium remain relatively plentiful in the earth's crust; hence, their use for large-scale solar energy conversion technologies is of significant interest. We describe fabrication of vertically oriented p-type Cu-Ti-O nanotube array films by anodization of copper rich (60% to 74%) Ti metal films cosputtered onto fluorine doped tin oxide (FTO) coated glass. Cu-Ti-O nanotube array films 1 mum thick exhibit external quantum efficiencies up to 11%, with a spectral photoresponse indicating that the complete visible spectrum, 380 to 885 nm, contributes significantly to the photocurrent generation. Water-splitting photoelectrochemical pn-junction diodes are fabricated using p-type Cu-Ti-O nanotube array films in combination with n-type TiO 2 nanotube array films. With the glass substrates oriented back-to-back, light is incident upon the UV absorbing n-TiO 2 side, with the visible light passing to the p-Cu-Ti-O side. In a manner analogous to photosynthesis, photocatalytic reactions are powered only by the incident light to generate fuel with oxygen evolved from the n-TiO 2 side of the diode and hydrogen from the p-Cu-Ti-O side. To date, we find under global AM 1.5 illumination that such photocorrosion-stable diodes generate a photocurrent of approximately 0.25 mA/cm (2), at a photoconversion efficiency of 0.30%. PMID:18540655

  13. Nanocrystalline mesoporous SMO thin films prepared by sol gel process for MEMS-based hydrogen sensor

    NASA Astrophysics Data System (ADS)

    Gong, Jianwei; Fei, Weifeng; Seal, Sudipta; Chen, Quanfang

    2004-01-01

    MEMS based SnO2 gas sensor with sol gel synthesized mesoporous nanocrystalline (<10 nm) semiconductor thin (100~150 nm) film has been recently developed. The SnO2 nano film is fabricated with the combination of polymeric sol gel chemistry with block copolymers used for structure directing agents. The novel hydrogen sensor has a fast response time (1s) and quick recovery time (3s), as well as good sensitivity (about 90%), comparing to other hydrogen sensors developed. The improved capabilities are credited to the large surface to volume ratio of gas sensing thin film with nano sized porous surface topology, which can greatly increase the sensitivity even at relatively low working temperature. The gas sensing film is deposited onto a thin dielectric membrane of low thermal conductivity, which provides good thermal isolation between substrate and the gas-sensitive heated area on the membrane. In this way the power consumption can be kept very low. Since the fabrication process is completely compatible with IC industry, it makes mass production possible and greatly reduces the cost. The working temperature of the new sensor can be reduced as low as 100°C. The low working temperature posse advantages such as lower power consumption, lower thermal induced signal shift as well as safe detection in certain environments where temperature is strictly limited.

  14. Enhancement of light-induced degradation under reverse bias in hydrogenated nanocrystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    Yue, Guozhen; Yan, Baojie; Yang, Jeffrey; Guha, Subhendu

    2005-10-01

    The nature of light- and current-induced metastabilities under electrical bias in hydrogenated nanocrystalline silicon (nc-Si:H) solar cells has been found to be different from those in hydrogenated amorphous silicon (a-Si:H)-based solar cells. First, a forward-bias current injection in the dark does not cause any degradation in nc-Si:H cell performance. The phenomenon is explained by the percolation transport through crystalline paths, where the excess carrier recombination does not cause degradation. Second, a reverse bias does not reduce, but enhances the light-induced degradation in the nc-Si:H cell performance. The enhancement increases with the magnitude of the applied reverse bias. By measuring the quantum efficiency losses and color (blue, wavelength=390 nm and red, wavelength=670 nm) fill factors, we suggest that the reverse-bias-enhanced defect generation mostly takes place in the grain-boundary regions. Light-soaking experiments using light with different spectra show that a reverse bias under white light causes more enhancement in the degradation than under blue light (wavelength shorter than 650 nm). No degradation occurs under red light (wavelength longer than 665 nm) in either open-circuit or reverse-bias condition. A ``back-to-back'' diode model is proposed to explain these phenomena in terms of the heterogeneity of the material structure.

  15. Performance Improvement of Hydrogenated Nanocrystalline Silicon Solar Cells by Hydrogen Dilution Profiling

    SciTech Connect

    Yue, G.; Yan, B.; Ganguly, G.; Yang, J.; Guha, S.; Teplin, C. W.; Williamson, D. L.

    2006-01-01

    We have carried out a systematic study on metastability of n-i-p nc-Si:H solar cells with various hydrogen dilution profiles and correlate the results with the material structural properties. We find that the nc-Si:H single-junction cells with a hydrogen dilution profile show not only improved initial efficiency, but also better stability than those with a constant hydrogen dilution. Raman measurements using different excitation wavelengths show that the cells with the improved stability due to the hydrogen dilution profiling have a significant amorphous component, especially near the i/p interface. We speculate that the amorphous volume fraction in the material is not the key parameter for determining the stability of nc-Si:H cells. Other factors, such as the distribution and structure of the amorphous phase and the grain boundary regions, can affect the overall cell stability. By carefully optimizing the hydrogen dilution profiling, we have achieved initial and stable efficiencies of 9.0% and 8.5% in a nc-Si:H single junction, and 14.1% and 13.3% in an a-Si:H/nc-Si:H/nc-Si:H triple-junction structure, respectively.

  16. Electronic transport in mixed-phase hydrogenated amorphous/nanocrystalline silicon thin films

    NASA Astrophysics Data System (ADS)

    Adjallah, Yves Gbemonde

    The opto-electronic properties of amorphous/nanocrystalline hydrogenated silicon (a/nc-Si:H) mixed-phase thin films are investigated. Small crystalline silicon particles (3-5 nm diameter) synthesized in a flow-through reactor are injected into a separate capacitively-coupled plasma (CCP) chamber where mixed-phase hydrogenated amorphous silicon is grown by Plasma Enhanced Chemical Vapor Deposition (PECVD) deposition techniques. This dual-chamber co-deposition system enables the variation of crystallite concentration incorporated into a series of a-Si:H films deposited simultaneously. The structural, optical and electronic properties of these mixed-phase materials are studied as a function of the silicon nanocrystal concentration. That is, we compare a sequence of films deposited in a single run, where the location of the substrate in the CCP chamber determines the density of embedded nanocrystals. Raman spectroscopy is used to determine the volume fraction of nanocrystals in the mixed phase thin films. At a moderate concentration of silicon crystallites, the dark conductivity and photoconductivity are consistently found to be up to several orders of magnitude higher than in mixed phase films with either low or heavy nanocrystalline inclusions. These results are interpreted in terms of a model whereby for low nanocrystal concentrations conduction is influenced by the disorder introduced into the a-Si:H film by the inclusions, while at high nanocrystal densities electronic transport is described by a heterojunction quantum dot model. The thermopower of the undoped a/nc-Si:H has a lower Seebeck coefficient, and similar temperature dependence, to that observed for undoped a-Si:H. In contrast, the addition of nanoparticles in doped a/nc-Si:H thin films leads to a negative Seebeck coefficient (consistent with n-type doping) with a positive temperature dependence, that is, the Seebeck coefficient becomes larger at higher temperatures. The temperature dependence of the

  17. Improving Memory Characteristics of Hydrogenated Nanocrystalline Silicon Germanium Nonvolatile Memory Devices by Controlling Germanium Contents.

    PubMed

    Kim, Jiwoong; Jang, Kyungsoo; Phu, Nguyen Thi Cam; Trinh, Thanh Thuy; Raja, Jayapal; Kim, Taeyong; Cho, Jaehyun; Kim, Sangho; Park, Jinjoo; Jung, Junhee; Lee, Youn-Jung; Yi, Junsin

    2016-05-01

    Nonvolatile memory (NVM) with silicon dioxide/silicon nitride/silicon oxynitride (ONO(n)) charge trap structure is a promising flash memory technology duo that will fulfill process compatibility for system-on-panel displays, down-scaling cell size and low operation voltage. In this research, charge trap flash devices were fabricated with ONO(n) stack gate insulators and an active layer using hydrogenated nanocrystalline silicon germanium (nc-SiGe:H) films at a low temperature. In this study, the effect of the interface trap density on the performance of devices, including memory window and retention, was investigated. The electrical characteristics of NVM devices were studied controlling Ge content from 0% to 28% in the nc-SiGe:H channel layer. The optimal Ge content in the channel layer was found to be around 16%. For nc-SiGe:H NVM with 16% Ge content, the memory window was 3.13 V and the retention data exceeded 77% after 10 years under the programming condition of 15 V for 1 msec. This showed that the memory window increased by 42% and the retention increased by 12% compared to the nc-Si:H NVM that does not contain Ge. However, when the Ge content was more than 16%, the memory window and retention property decreased. Finally, this research showed that the Ge content has an effect on the interface trap density and this enabled us to determine the optimal Ge content. PMID:27483856

  18. Microscopic Measurements of Electrical Potential in Hydrogenated Nanocrystalline Silicon Solar Cells: Preprint

    SciTech Connect

    Jiang, C. S.; Moutinho, H. R.; Reedy, R. C.; Al-Jassim, M. M.; Yan, B.; Yue, G.; Sivec, L.; Yang, J.; Guha, S.; Tong, X.

    2012-04-01

    We report on a direct measurement of electrical potential and field profiles across the n-i-p junction of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells, using the nanometer-resolution potential imaging technique of scanning Kelvin probe force microscopy (SKPFM). It was observed that the electric field is nonuniform across the i layer. It is much higher in the p/i region than in the middle and the n/i region, illustrating that the i layer is actually slightly n-type. A measurement on a nc-Si:H cell with a higher oxygen impurity concentration shows that the nonuniformity of the electric field is much more pronounced than in samples having a lower O impurity, indicating that O is an electron donor in nc-Si:H materials. This nonuniform distribution of electric field implies a mixture of diffusion and drift of carrier transport in the nc-Si:H solar cells. The composition and structure of these nc-Si:H cells were further investigated by using secondary-ion mass spectrometry and Raman spectroscopy, respectively. The effects of impurity and structural properties on the electrical potential distribution and solar cell performance are discussed.

  19. SEMICONDUCTOR PHYSICS: Stability and vibrational properties of the hydrogen atom for p-type AlN doped with group-II: a first-principles study

    NASA Astrophysics Data System (ADS)

    Jianmin, Zhang; Guigui, Xu; Qingyun, Wu; Zhigao, Chen; Zhigao, Huang

    2010-06-01

    The stability and local vibrational mode (LVM) of hydrogen related p-type AlN have been studied by first-principles calculations based on density functional theory. The stable and metastable microscopic geometries of group-II (Be, Mg, Ca, Sr, Ba)-H complexes have been investigated. The calculated results indicate that BC|| is the most stable configuration for isolated interstitial H+ and Be-H complexes, while it is ABN,⊥ for Mg-H, Ca-H, Sr-H and Ba-H complexes. Moreover, the vibrational frequencies and the values of k and |α| for the H atom with LVM are calculated. Here, the values of k and |α| are used to describe the parameters of the harmonic and anharmonic contributions, respectively. The calculated results indicate that the larger the size of the doped ion is, the shorter the N-H bond length is, and the larger the potential energy, the vibrational frequencies, the values of k and |α| are. This implies that the size of the doped ion has an important influence on the vibrational properties of H.

  20. Comparison of crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te nanocrystalline thin films: Effects of homogeneous irradiation with an electron beam

    SciTech Connect

    Takashiri, Masayuki Imai, Kazuo; Uyama, Masato; Nishi, Yoshitake; Hagino, Harutoshi; Miyazaki, Koji; Tanaka, Saburo

    2014-06-07

    The effects of homogenous electron beam (EB) irradiation on the crystal growth and thermoelectric properties of n-type Bi-Se-Te and p-type Bi-Sb-Te thin films were investigated. Both types of thin films were prepared by flash evaporation, after which homogeneous EB irradiation was performed at an acceleration voltage of 0.17 MeV. For the n-type thin films, nanodots with a diameter of less than 10 nm were observed on the surface of rice-like nanostructures, and crystallization and crystal orientation were improved by EB irradiation. The resulting enhancement of mobility led to increased electrical conductivity and thermoelectric power factor for the n-type thin films. In contrast, the crystallization and crystal orientation of the p-type thin films were not influenced by EB irradiation. The carrier concentration increased and mobility decreased with increased EB irradiation dose, possibly because of the generation of defects. As a result, the thermoelectric power factor of p-type thin films was not improved by EB irradiation. The different crystallization behavior of the n-type and p-type thin films is attributed to atomic rearrangement during EB irradiation. Selenium in the n-type thin films is more likely to undergo atomic rearrangement than the other atoms present, so only the crystallinity of the n-type Bi-Se-Te thin films was enhanced.

  1. Effect of hydrogen dilution on photoluminescent properties of nanocrystalline SiC films deposited by helicon wave plasma CVD

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Du, Jie; Zhang, Li; Cui, Shuang Kui; Han, Li; Fu, Guang Sheng

    2007-11-01

    Nanocrystalline silicon carbide (nc-SiC) thin films were deposited by helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique at different hydrogen dilution ratio (RH). The PL peak energy and intensity were systemically analyzed using photoluminescent (PL) and photoluminescent excitation (PLE) methods. As a whole, the PL intensity shows an increasing trend and the PL peak energy presents continuous blue shifts with increasing hydrogen dilution ratio. In addition, it is found that the spectra band of samples deposited at low RH are composed of two components, the high energy band comes from quantum confinement effect and the low energy band is related to radiation of surface defect. The low energy band has a decreasing trend with increasing hydrogen dilution ratio and even disappears finally at high RH. We explain dependence of PL properties in terms of the variation of film microstructure induced by hydrogen dilution during film deposition. The increasing of PL intensity and the decreasing of the low energy band can both be accounted by the microstructure improvement. The decrease of PL peak energy is related to the size decrease of SiC nanocrystals.

  2. Enhanced performance of flexible nanocrystalline silicon thin-film solar cells using seed layers with high hydrogen dilution.

    PubMed

    Lee, Ji-Eun; Kim, Donghwan; Yoon, Kyung Hoon; Cho, Jun-Sik

    2013-12-01

    Flexible hydrogenated nanocrystalline (nc-Si:H) thin-film solar cells were prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD), and the effect of highly crystalline intrinsic Si seed layers at the initial growth stage of i nc-Si:H absorbers on their structural and electrical properties and on the performance of solar cells was investigated. The crystallization of i nc-Si:H absorbers was significantly enforced by the introduction of highly crystalline seed layers, resulting in the reduction of defect-dense a-Si:H grain boundary and incubation layer thickness. The open circuit voltage of the nc-Si:H solar cells with the seed layers was improved by the decrease of charged defect density in the defect-rich amorphous region.

  3. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    SciTech Connect

    Mouro, J.; Gualdino, A.; Chu, V.; Conde, J. P.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three different types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.

  4. Proton-Conducting Nanocrystalline Ceramics for High-Temperature Hydrogen Sensing

    NASA Astrophysics Data System (ADS)

    Tang, Xiling; Xu, Zhi; Trontz, Adam; Jing, Wenheng; Dong, Junhang

    2014-01-01

    The proton-conductive doped ceramic materials, including SrCe0.95Tb0.05O3-δ (SCTb), SrCe0.8Zr0.1Y0.1O3-δ (SCZY), and SrZr0.95Y0.05O3-δ (SZY), are synthesized in the forms of nanoparticles and nanocrystalline thin films on sapphire wafers and long-period grating (LPG) fibers. The H2 chemisorption and electrical conductivity of the nanocrystalline SCTb, SCZY, and SZY materials are measured at high temperature with and without the presence of CO2 gas. The resonant wavelength shifts ( Updelta λ_{{{{R,H}}_{ 2} }} ) of the SCTb, SCZY, and SZY thin-film coated LPGs in response to H2 concentration changes are studied in gas mixtures relevant to coal gasification syngas to evaluate their potential for high-temperature H2 detection. The results show that, at around 773.15 K (500 °C), SCTb has the highest H2 sensitivity but the most severe interferences from impurities such as CO2 and H2S; SZY has the best chemical resistance to impurities but the lowest H2 sensitivity; and SCZY exhibits high H2 sensitivity with reasonable chemical resistance.

  5. Impact of high microwave power on hydrogen impurity trapping in nanocrystalline diamond films grown with simultaneous nitrogen and oxygen addition into methane/hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Tang, C. J.; Fernandes, A. J. S.; Jiang, X. F.; Pinto, J. L.; Ye, H.

    2016-01-01

    In this work, we study for the first time the influence of microwave power higher than 2.0 kW on bonded hydrogen impurity incorporation (form and content) in nanocrystalline diamond (NCD) films grown in a 5 kW MPCVD reactor. The NCD samples of different thickness ranging from 25 to 205 μm were obtained through a small amount of simultaneous nitrogen and oxygen addition into conventional about 4% methane in hydrogen reactants by keeping the other operating parameters in the same range as that typically used for the growth of large-grained polycrystalline diamond films. Specific hydrogen point defect in the NCD films is analyzed by using Fourier-transform infrared (FTIR) spectroscopy. When the other operating parameters are kept constant (mainly the input gases), with increasing of microwave power from 2.0 to 3.2 kW (the pressure was increased slightly in order to stabilize the plasma ball of the same size), which simultaneously resulting in the rise of substrate temperature more than 100 °C, the growth rate of the NCD films increases one order of magnitude from 0.3 to 3.0 μm/h, while the content of hydrogen impurity trapped in the NCD films during the growth process decreases with power. It has also been found that a new H related infrared absorption peak appears at 2834 cm-1 in the NCD films grown with a small amount of nitrogen and oxygen addition at power higher than 2.0 kW and increases with power higher than 3.0 kW. According to these new experimental results, the role of high microwave power on diamond growth and hydrogen impurity incorporation is discussed based on the standard growth mechanism of CVD diamonds using CH4/H2 gas mixtures. Our current experimental findings shed light into the incorporation mechanism of hydrogen impurity in NCD films grown with a small amount of nitrogen and oxygen addition into methane/hydrogen plasma.

  6. Infrared absorption and electron spin resonance studies of nanocrystalline cubic boron nitride/amorphous hydrogenated boron nitride mixed phase thin films

    SciTech Connect

    Lin, S.H.; Brown, I.M.; Feldman, B.J.

    1996-11-01

    Both infrared absorption (IR) and electron spin resonance (ESR) spectroscopies have been used to investigate the complicated structure of nanocrystalline cubic boron nitride/amorphous hydrogenated boron nitride thin films. The ESR spectra from this material consist of a component with a four-line hyperfine structure and/or a component with a ten-line hyperfine structure superimposed upon a broad central line. The hyperfine structures are associated with defect centers located in the nanocrystalline phase, whereas the broad line is attributed to dangling bonds in the amorphous phase. The IR spectra consist of three lines around 1,400 cm{sup {minus}1}: the lines at 1,263 and 1,505 cm{sup {minus}1} originate in a boron-poor amorphous hydrogenated boron nitride region; the line at 1,371 cm{sup {minus}1}, in a boron-rich amorphous hydrogenated boron nitride region. These results, together with previously reported electron diffraction spectra, suggest the following picture: small (2.5 nm) nanocrystallites of cubic boron nitride (about 5% of the material) are imbedded in a mixed amorphous phase. The amorphous region can be approximated by a mixture of boron-rich and boron-poor amorphous hydrogenated boron nitride.

  7. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-09-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni (x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni (x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  8. Viral-templated nanocrystalline Pd nanowires for chemiresistive hydrogen (H2) sensors

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Yan, Yiran; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-08-01

    A palladium (Pd) nanowire-based hydrogen (H2) sensor has been fabricated with a novel viral-templated assembly route. A filamentous M13 bacteriophage was used as the viral-template for assembly of Pd nanowires at ambient conditions. Scanning electron microscopy determined Pd nanowire distribution and morphology with the devices. The phage template concentration controlled the number of physical and electrical nanowire connections across the device. A greater phage concentration resulted in a higher connection density and thicker Pd deposition. A lower phage concentration generated devices which formed chain-like nanowires of Pd nanocrystals, whereas a higher phage concentration formed devices with a continuous mesh-like structure. The lower concentration devices showed 51-78% instantaneous response to 2000 ppm H2 and response time less than 30 s.

  9. Highly sensitive hydrogen sulfide (H₂S) gas sensors from viral-templated nanocrystalline gold nanowires.

    PubMed

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V; Haberer, Elaine D

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppm(v), theoretical lowest detection limit of 2 ppb(v), and 70% recovery within 9 min for 0.025 ppm(v). The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O₂ plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppm(v), the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  10. Highly sensitive hydrogen sulfide (H2 S) gas sensors from viral-templated nanocrystalline gold nanowires

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Zhang, Miluo; Myung, Nosang V.; Haberer, Elaine D.

    2014-04-01

    A facile, site-specific viral-templated assembly method was used to fabricate sensitive hydrogen sulfide (H2S) gas sensors at room temperature. A gold-binding M13 bacteriophage served to organize gold nanoparticles into linear arrays which were used as seeds for subsequent nanowire formation through electroless deposition. Nanowire widths and densities within the sensors were modified by electroless deposition time and phage concentration, respectively, to tune device resistance. Chemiresistive H2S gas sensors with superior room temperature sensing performance were produced with sensitivity of 654%/ppmv, theoretical lowest detection limit of 2 ppbv, and 70% recovery within 9 min for 0.025 ppmv. The role of the viral template and associated gold-binding peptide was elucidated by removing organics using a short O2 plasma treatment followed by an ethanol dip. The template and gold-binding peptide were crucial to electrical and sensor performance. Without surface organics, the resistance fell by several orders of magnitude, the sensitivity dropped by more than a factor of 100 to 6%/ppmv, the lower limit of detection increased, and no recovery was detected with dry air flow. Viral templates provide a novel, alternative fabrication route for highly sensitive, nanostructured H2S gas sensors.

  11. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.

    PubMed

    Zhang, Xin; Liu, Yongfeng; Wang, Ke; Li, You; Gao, Mingxia; Pan, Hongge

    2015-12-21

    A nanocrystalline CeO2@C-containing NaAlH4 composite is successfully synthesized in situ by hydrogenating a NaH-Al mixture doped with CeO2@C. Compared with NaAlH4 , the as-prepared CeO2@C-containing NaAlH4 composite, with a minor amount of excess Al, exhibits significantly improved hydrogen storage properties. The dehydrogenation onset temperature of the hydrogenated [NaH-Al-7 wt % CeO2@C]-0.04Al sample is 77 °C lower than that of the pristine sample because of a reduced kinetic barrier. More importantly, the dehydrogenated sample absorbs ∼4.7 wt % hydrogen within 35 min at 100°C and 10 MPa of hydrogen. Compositional and structural analyses reveal that CeO2 is converted to CeH2 during ball milling and that the newly formed CeH2 works with the excess of Al to synergistically improve the hydrogen storage properties of NaAlH4. Our findings will aid in the rational design of novel catalyst-doped complex hydride systems with low operating temperatures, fast kinetics, and long-term cyclability. PMID:26632764

  12. Ultrafine Nanocrystalline CeO2@C-Containing NaAlH4 with Fast Kinetics and Good Reversibility for Hydrogen Storage.

    PubMed

    Zhang, Xin; Liu, Yongfeng; Wang, Ke; Li, You; Gao, Mingxia; Pan, Hongge

    2015-12-21

    A nanocrystalline CeO2@C-containing NaAlH4 composite is successfully synthesized in situ by hydrogenating a NaH-Al mixture doped with CeO2@C. Compared with NaAlH4 , the as-prepared CeO2@C-containing NaAlH4 composite, with a minor amount of excess Al, exhibits significantly improved hydrogen storage properties. The dehydrogenation onset temperature of the hydrogenated [NaH-Al-7 wt % CeO2@C]-0.04Al sample is 77 °C lower than that of the pristine sample because of a reduced kinetic barrier. More importantly, the dehydrogenated sample absorbs ∼4.7 wt % hydrogen within 35 min at 100°C and 10 MPa of hydrogen. Compositional and structural analyses reveal that CeO2 is converted to CeH2 during ball milling and that the newly formed CeH2 works with the excess of Al to synergistically improve the hydrogen storage properties of NaAlH4. Our findings will aid in the rational design of novel catalyst-doped complex hydride systems with low operating temperatures, fast kinetics, and long-term cyclability.

  13. Depth-dependent crystallinity of nano-crystalline silicon induced by step-wise variation of hydrogen dilution during hot-wire CVD

    NASA Astrophysics Data System (ADS)

    Arendse, C. J.; van Heerden, B. A.; Muller, T. F. G.; Cummings, F. R.; Oliphant, C. J.; Malgas, G. F.; Motaung, D. E.

    2015-06-01

    To induce an amorphous surface in a nano-crystalline silicon (nc-Si:H) thin film, the hydrogen dilution was reduced step-wise at fixed time intervals from 90 - 50% during the hotwire chemical vapour deposition process. This contribution reports on the structural properties of the resultant nc-Si:H thin film as a function of the deposition time. Raman spectroscopy, confirmed by high resolution transmission spectroscopy, indicates crystalline uniformity in the growth direction, accompanied by the progression of an amorphous surface layer as the deposition time is increased. The silicon- and oxygen bonding configurations were probed using infrared spectroscopy and electron energy loss spectroscopy. The growth mechanism is ascribed to the improved etching rate by atomic hydrogen in nano-crystalline silicon towards the film/substrate interface region. The optical properties were calculated by applying the effective medium approximation theory, where the existence of bulk and interfacial layers, as inferred from cross-sectional microscopy, were taken into account.

  14. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  15. P-type gallium nitride

    DOEpatents

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  16. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device

    NASA Astrophysics Data System (ADS)

    Shukla, Satyajit; Agrawal, Rajnikant; Cho, Hyoung J.; Seal, Sudipta; Ludwig, Lawrence; Parish, Clyde

    2005-03-01

    The effect of ultraviolet (UV) radiation exposure on the room-temperature hydrogen (H2) sensitivity of nanocrystalline indium oxide (In2O3)-doped tin oxide (SnO2) thin-film gas sensor is investigated in this article. The present sensor is incorporated into microelectromechanical systems device using sol-gel dip-coating technique. The present sensor exhibits a very high sensitivity, as high as 65 000-110 000, at room temperature, for 900ppm of H2 under the dynamic test condition without UV exposure. The H2 sensitivity is, however, observed to reduce to 200 under UV radiation, which is contrary to the literature data, where an enhanced room-temperature gas sensitivity has been reported under UV radiation. The observed phenomenon is attributed to the reduced surface coverage by the chemisorbed oxygen ions under UV radiation, which is in consonance with the prediction of the constitutive equation, proposed recently by the authors, for the gas sensitivity of nanocrystalline semiconductor oxide thin-film sensors.

  17. Effect of ultraviolet radiation exposure on room-temperature hydrogen sensitivity of nanocrystalline doped tin oxide sensor incorporated into microelectromechanical systems device

    SciTech Connect

    Shukla, Satyajit; Agrawal, Rajnikant; Cho, Hyoung J.; Seal, Sudipta; Ludwig, Lawrence; Parish, Clyde

    2005-03-01

    The effect of ultraviolet (UV) radiation exposure on the room-temperature hydrogen (H{sub 2}) sensitivity of nanocrystalline indium oxide (In{sub 2}O{sub 3})-doped tin oxide (SnO{sub 2}) thin-film gas sensor is investigated in this article. The present sensor is incorporated into microelectromechanical systems device using sol-gel dip-coating technique. The present sensor exhibits a very high sensitivity, as high as 65 000-110 000, at room temperature, for 900 ppm of H{sub 2} under the dynamic test condition without UV exposure. The H{sub 2} sensitivity is, however, observed to reduce to 200 under UV radiation, which is contrary to the literature data, where an enhanced room-temperature gas sensitivity has been reported under UV radiation. The observed phenomenon is attributed to the reduced surface coverage by the chemisorbed oxygen ions under UV radiation, which is in consonance with the prediction of the constitutive equation, proposed recently by the authors, for the gas sensitivity of nanocrystalline semiconductor oxide thin-film sensors.

  18. Influence of helium dilution of silane on microstructure and opto-electrical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films deposited by HW-CVD

    SciTech Connect

    Waman, V.S.; Kamble, M.M.; Ghosh, S.S.; Hawaldar, R.R.; Amalnerkar, D.P.; Sathe, V.G.; Gosavi, S.W.; Jadkar, S.R.

    2012-11-15

    Highlights: ► nc-Si:H films synthesized using HW-CVD method from silane and helium gas mixture without hydrogen. ► Volume fraction of crystallites and its size in the films decreases with increase in He dilution of SiH{sub 4}. ► Increase in Urbach energy and defect density with increase in He dilution of SiH{sub 4}. ► Increasing He dilution, hydrogen bonding in the films shifts from Si-H{sub 2} and (Si-H{sub 2}){sub n} complexes to Si-H. ► Hydrogen content films were found to be <2.2 at.% but the bandgap remains as high as 2.0 eV or even more. -- Abstract: We report influence of helium dilution of silane in hot wire chemical vapor deposition for hydrogenated nano-crystalline silicon films. Structural properties of these films have been investigated by using Raman spectroscopy, low angle x-ray diffraction, Fourier transform infra-red spectroscopy and non-contact atomic force microscopy. Optical characterization has been performed by UV–visible spectroscopy. It has been observed that in contrast to conventional plasma enhanced chemical vapor deposition, the addition of helium with silane in hot wire chemical vapor deposition has an adverse effect on the crystallinity and the material properties. Hydrogen content in the films was found <2.2 at.% whereas the bandgap remain as high as 2 eV or more. Increase in Urbach energy and defect density also suggests the deterioration effect of helium on material properties. The possible reasons for the deterioration of crystallinity and the material properties have been discussed.

  19. Microstructure and lateral conductivity control of hydrogenated nanocrystalline silicon oxide and its application in a-Si:H/a-SiGe:H tandem solar cells

    NASA Astrophysics Data System (ADS)

    Tian-Tian, Li; Tie, Yang; Jia, Fang; De-Kun, Zhang; Jian, Sun; Chang-Chun, Wei; Sheng-Zhi, Xu; Guang-Cai, Wang; Cai-Chi, Liu; Ying, Zhao; Xiao-Dan, Zhang

    2016-04-01

    Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiO x :H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiO x :H film growth process can enhance the formation of nanocrystalline and obtain a uniform microstructure of n-nc-SiO x :H film. In addition, in 20s interval before increasing the deposition power, high density small grains are formed in amorphous SiO x matrix with higher crystalline volume fraction (I c) and have a lower lateral conductivity. This uniform microstructure indicates that the higher I c can leads to better vertical conductivity, lower refractive index, wider optical band-gap. It improves the back reflection in a-Si:H/a-SiGe:H tandem solar cells acting as an n-nc-SiO x :H back reflector prepared by the gradient power during deposition. Compared with the sample with SiO x back reflector, with a constant power used in deposition process, the sample with gradient power SiO x back reflector can enhance the total short-circuit current density (J sc) and the initial efficiency of a-Si:H/a-SiGe:H tandem solar cells by 8.3% and 15.5%, respectively. Project supported by the Hi-Tech Research and Development Program of China (Grant No. 2013AA050302), the National Natural Science Foundation of China (Grant No. 61474065), Tianjin Municipal Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039).

  20. An investigation on the effect of high partial pressure of hydrogen on the nanocrystalline structure of silicon carbide thin films prepared by radio-frequency magnetron sputtering.

    PubMed

    Daouahi, Mohsen; Omri, Mourad; Kerm, Abdul Ghani Yousseph; Al-Agel, Faisal Abdulaziz; Rekik, Najeh

    2015-02-01

    The aim of the study reported in this paper is to investigate the role of the high partial pressure of hydrogen introduced during the growth of nanocrystalline silicon carbide thin films (nc-SiC:H). For this purpose, we report the preparation as well as spectroscopic studies of four series of nc-SiC:H obtained by radio-frequency magnetron sputtering at high partial pressure of hydrogen by varying the percentage of H2 in the gas mixture from 70% to 100% at common substrate temperature (TS=500°C). The effects of the dilution on the structural changes and the chemical bonding of the different series have been studied using Fourier transform infrared and Raman spectroscopy. For this range of hydrogen dilution, two groups of films were obtained. The first group is characterized by the dominance of the crystalline phase and the second by a dominance of the amorphous phase. This result confirms the multiphase structure of the grown nc-SiC:H thin films by the coexistence of the SiC network, carbon-like and silicon-like clusters. Furthermore, infrared results show that the SiC bond is the dominant absorption peak and the carbon atom is preferentially bonded to silicon. The maximum value obtained of the crystalline fraction is about 77%, which is relatively important compared to other results obtained by other techniques. In addition, the concentration of CHn bonds was found to be lower than that of SiHn for all series. Raman measurements revealed that the crystallization occurs in all series even at 100% H2 dilution suggesting that high partial pressure of hydrogen favors the formation of silicon nanocrystallites (nc-Si). The absence of both the longitudinal acoustic band and the transverse optical band indicate that the crystalline phase is dominant.

  1. Magnetic ordering temperature of nanocrystalline Gd: enhancement of magnetic interactions via hydrogenation-induced “negative” pressure

    PubMed Central

    Tereshina, E. A.; Khmelevskyi, S.; Politova, G.; Kaminskaya, T.; Drulis, H.; Tereshina, I. S.

    2016-01-01

    Gadolinium is a nearly ideal soft-magnetic material. However, one cannot take advantage of its properties at temperatures higher than the room temperature where Gd loses the ferromagnetic ordering. By using high-purity bulk samples with grains ~200 nm in size, we present proof-of-concept measurements of an increased Curie point (TC) and spontaneous magnetization in Gd due to hydrogenation. From first-principles we explain increase of TC in pure Gd due to the addition of hydrogen. We show that the interplay of the characteristic features in the electronic structure of the conduction band at the Fermi level in the high-temperature paramagnetic phase of Gd and “negative” pressure exerted by hydrogen are responsible for the observed effect. PMID:26931775

  2. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  3. p-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Sheng, Su; Fang, Guojia; Li, Chun; Xu, Sheng; Zhao, Xingzhong

    2006-06-01

    The recent advance of p-type transparent conductive oxide thin films is reviewed. The focus is on p-type transparent oxide semiconductors CuAlO2, CuGaO2, CuInO2, SrCu2O2, and LaCuOCh (Ch = chalcogen). These materials and related device applications are then shown as examples. Room temperature operation of current injection emission from ultraviolet light-emitting diodes based on p-SCO/n-ZnO p-n junctions has been demonstrated. This changed with the discovery of p-type transparent conducting oxides, thereby opening up the possibility for all-oxide transparent electronics.

  4. p-type metal-base transistor

    NASA Astrophysics Data System (ADS)

    Delatorre, R. G.; Munford, M. L.; Zandonay, R.; Zoldan, V. C.; Pasa, A. A.; Schwarzacher, W.; Meruvia, M. S.; Hümmelgen, I. A.

    2006-06-01

    In this work we present data from a novel p-type metal-base transistor with common-base gain α ˜1, fabricated at ambient temperature and pressure by electrodepositing sequentially on a p-type Si collector, a Co base and a Cu2O emitter. The high gain and the dependence of potential between emitter and base (VEB) on the potential between collector and base (VCB) when the emitter current (IE) is held constant both suggest that the device functions as a natural permeable base transistor for very thin metal bases.

  5. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Stauber, Renaud Emmanuel

    2003-10-01

    Transparent conductors have important energy and general technology applications as transparent front contacts to photovoltaic cells, electrochromic windows and flat panel displays. Conventional transparent conductors such as SnO 2 are n-type (electron) conductors. As yet, there are no comparable, p-type (hole) analogues. However, researchers have recently reported that CuAlO2, N:ZnO and SrCu2O2 films (among others) may be viable p-type transparent conductors, albeit with carrier concentrations three orders of magnitude lower than n-type SnO2. If these materials could be more effectively hole-doped, they would enhance existing technologies and enable new photovoltaic designs through improved transparent contacts to p-type materials and as possible heterojunction partners. This thesis describes our program for growing and evaluating CuAlO2, ZnO and SrCu 2O2 thin films for use as p-type transparent conductors. Our work on CuAlO2 focused on the optimization of crystal growth and transport properties by pulsed laser deposition (PLD) and sputtering. The films with the best surface morphology and phase-purity were formed by annealing precursors that had been sputtered at room temperature at 940°C in 10T of O2. The phase-purity and transparency of these films is higher than any reported in the literature, and we provided the first experimental confirmation of Kawazoe's work on CuAlO2 [1] as a potential p-type conductor. We also attempted to make transparent electrically conductive p-type ZnO by PLD and sputtering using N2, N2O, NO, and NH 3 gases. Expanding on the work of Kawai and coworkers [2,3], we used an ion source, rather than an ECR source in the PLD chamber to dissociate N2O gas, and explored the use of aluminum in addition to gallium as potential co-dopants. The most promising results have been obtained with DC reactive sputtering of un-doped zinc metal targets in NO or NH3. A three to six order of magnitude reduction in n-type conductivity occurred when 2% of

  6. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  7. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  8. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  9. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed. PMID:27459942

  10. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p–n junctions will also be briefly discussed.

  11. Compressibility of Nanocrystalline Forsterite

    SciTech Connect

    Couvy, H.; Chen, J; Drozd, V

    2010-01-01

    We established an equation of state for nanocrystalline forsterite using multi-anvil press and diamond anvil cell. Comparative high-pressure and high-temperature experiments have been performed up to 9.6 GPa and 1,300 C. We found that nanocrystalline forsterite is more compressible than macro-powder forsterite. The bulk modulus of nanocrystalline forsterite is equal to 123.3 ({+-}3.4) GPa whereas the bulk modulus of macro-powder forsterite is equal to 129.6 ({+-}3.2) GPa. This difference is attributed to a weakening of the elastic properties of grain boundary and triple junction and their significant contribution in nanocrystalline sample compare to the bulk counterpart. The bulk modulus at zero pressure of forsterite grain boundary was determined to be 83.5 GPa.

  12. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  13. Effects of hydrogen annealing and codoping (Mn, Fe, Ni, Ga, Y) of nanocrystalline Cu-doped ZnO dilute magnetic semiconductor

    NASA Astrophysics Data System (ADS)

    Bououdina, Mohamed; Aziz Dakhel, Aqeel

    2015-01-01

    Zinc oxide (ZnO) codoped with Cu and M ions (M = Mn, Fe, Ni, Ga, Y) powders were synthesised by simultaneous thermal co-decomposition of a mixture of zinc and metal complexes. The synthesised chemical formula for the prepared solid solution is Zn0.97Cu0.01M0.02O. X-ray diffraction (XRD) analysis confirms the formation of single nanocrystalline structure of the as-prepared powders, thus, both Cu and M ions were incorporated into ZnO lattice forming solid solutions. Magnetic measurements reveal that all the as-synthesised doped ZnO powders gained partial (RT-FM) properties but with different strength and BH-behaviour depends on the nature of the doping (M). Furthermore, H2 post-treatment was subsequently carried out and it was found that the observed RT-FM is enhanced. Very interestingly, in case of Ni dopant, the whole powder becomes completely ferromagnetic with coercivity (Hc), remanence (Mr) and saturation magnetisation (Ms) of 133.6 Oe, 1.086 memu/g and 4.959 memu/g, respectively. The value of Ms was increased by ~ 95% in comparison with as-prepared.

  14. Structural, optical, and magnetic properties of Cu- and Ni-codoped CdO dilute magnetic nanocrystalline semiconductor: effect of hydrogen post-treatment

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Bououdina, M.

    2015-06-01

    Cadmium oxide codoped with Cu and Ni ions powders was synthesised by thermal co-decomposition of a mixture of cadmium, copper, and nickel acetylacetonates. The mass ratio of Cu/Cd was fixed, while the Ni/Cd mass ratio was varied systematically. The purpose of the present study is to prepare powders having room-temperature ferromagnetic (RT-FM) properties. X-ray fluorescence (XRF) and X-ray diffraction (XRD) confirm the purity and the formation of single nanocrystalline structure of the as-prepared powders. The energy bandgap of the as-prepared powders was found to vary slightly and then increases by 3.96-38.02 % after post-H2-treatment. Magnetic measurements reveal that all as-prepared doped CdO powders gained partial (RT-FM) properties. Furthermore, the created RT-FM is dependent on the Ni% doping level. After annealing under H2 gas, a strong enhancement of RT-FM was observed, especially for 1.2 % Ni-doping-level powder where the whole powder became ferromagnetic with coercivity, remanence, and saturation magnetisation of 249.2 Oe, 4.52 memu/g, and 14.57 memu/g, respectively, representing an increase by ~241.3, 1062, and 1700 %, respectively, in comparison with the as-prepared sample. Thus, it was proved, for the first time, the possibility of producing of codoped CdO with RT-FM, where the magnetic characteristics can be tailored by doping and post-treatment under H2 atmosphere, thus a new potential candidate for dilute magnetic semiconductor (DMS).

  15. Hydrogenation thermodynamics of melt-spun magnesium rich Mg-Ni nanocrystalline alloys with the addition of multiwalled carbon nanotubes and TiF3

    NASA Astrophysics Data System (ADS)

    Hou, Xiaojiang; Hu, Rui; Zhang, Tiebang; Kou, Hongchao; Li, Jinshan

    2016-02-01

    Based on the complexity of hydrogen absorption/desorption process and from the perspective of overall control, the as-cast Mg-10wt%Ni (Mg10Ni) alloy has been successively optimized by melt-spinning and surface catalyzed to realize the internal refinement as well as surface modification. The isothermal hydrogenation behavior of modified Mg-rich alloys has been investigated in this work. The results indicate that melt-spun Mg10Ni catalyzed by multiwalled carbon nanotubes (MWCNTs) coupling with TiF3 possesses superior activation properties and can absorb 6.23 wt% at 250 °C under 2.5 MPa. It is worth mentioning that the hydrogenation capacities of Mg10Ni-MWCNTs-TiF3 are 5.93 wt% and 5.99 wt% within the initial 1 min and 5 min, respectively. Meanwhile, the catalytic effect of MWCNTs and TiF3 has been discussed. The improved activation performance as well as the thermodynamics properties of Mg10Ni catalyzed by MWCNTs and TiF3 is attributed to the synergistic effect on dissociation of H2 molecules, diffusion of H-atoms and heterogeneous nucleation of hydrides.

  16. Growth and properties of nanocrystalline germanium films

    SciTech Connect

    Niu Xuejun; Dalal, Vikram L.

    2005-11-01

    We report on the growth characteristics and structure of nanocrystalline germanium films using low-pressure plasma-assisted chemical vapor deposition process in a remote electron-cyclotron-resonance reactor. The films were grown from mixtures of germane and hydrogen at deposition temperatures varying between 130 deg. C and 310 deg. C. The films were measured for structure using Raman and x-ray spectroscopy. It is shown that the orientation of the film depends strongly upon the deposition conditions. Low-temperature growth leads to both <111> and <220> orientations, whereas at higher temperatures, the <220> grain strongly dominates. The Raman spectrum reveals a sharp crystalline peak at 300 cm{sup -1} and a high ratio between crystalline and amorphous peak that is at 285 cm{sup -1}. The grain size in the films is a strong function of hydrogen dilution, with higher dilutions leading to smaller grain sizes. Growth temperature also has a strong influence on grain size, with higher temperatures yielding larger grain sizes. From these results, which are seen to be compatible with the growth of nanocrystalline Si films, it is seen that the natural growth direction for the film is <220>, and that bonded hydrogen interferes with the growth of <220> grains. High hydrogen dilutions lead to more random nucleation.

  17. Structural, optical, and ferromagnetic characterization of Sm-doped LaOCl nanocrystalline synthesized by solvothermal route: Significant effect of hydrogen post treatment

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.

    2016-09-01

    Pure and Sm-doped lanthanum oxychloride (LaOCl) nanomaterials were synthesized by solvothermal route followed by a subsequent heat treatment process. The objective of the present work is to study and develop conditions required to create stable room-temperature ferromagnetic (RT-FM) properties in LaOCl. To achieve that aim, magnetic samarium Sm3+ ions were used as dopant sources for stable FM properties. Systematic structural, optical, and magnetic properties of undoped and Sm-doped LaOCl samples were investigated as function of post-annealing conditions (temperature and atmosphere). The optical absorption properties were studied by diffuse reflection spectroscopy (DRS). The magnetic measurements reveal that Sm-doped LaOCl nanopowders have partial RT-FM properties due to the doped ions. The variations of magnetic properties with pre-annealing temperature were investigated. Furthermore, the electronic medium of host LaOCl crystalline lattice, which carries the spin-spin (S.S) exchange interaction between localised dopant Sm3+(4f5) spins, was developed by annealing in hydrogen gas (hydrogenation). It was established that annealing in hydrogen atmosphere boosts the RT-FM properties so that the saturation magnetisation could be increased by more than 100%. Physical explanations and discussions were given in this paper. Thus, it was proved that the magnetic properties could be tailored to diamagnetic LaOCl compound by Sm-doping and post treatment under H2 atmosphere. Therefore, LaOCl nanocrystals could be used as a potential candidate for optical phosphor applications with magnetic properties.

  18. Nanocrystalline nanowires: I. Structure.

    PubMed

    Allen, Philip B

    2007-01-01

    Geometric constructions of possible atomic arrangements are suggested for inorganic nanowires. These are fragments of bulk crystals, and can be called "nanocrystalline" nanowires (NCNW). To minimize surface polarity, nearly one-dimensional formula units, oriented along the growth axis, generate NCNWs by translation and rotation.

  19. Nanocrystalline heterojunction materials

    SciTech Connect

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  20. Nanocrystalline Heterojunction Materials

    SciTech Connect

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  1. Chemical-free n-type and p-type multilayer-graphene transistors

    NASA Astrophysics Data System (ADS)

    Dissanayake, D. M. N. M.; Eisaman, M. D.

    2016-08-01

    A single-step doping method to fabricate n- and p-type multilayer graphene (MG) top-gate field effect transistors (GFETs) is demonstrated. The transistors are fabricated on soda-lime glass substrates, with the n-type doping of MG caused by the sodium in the substrate without the addition of external chemicals. Placing a hydrogen silsesquioxane (HSQ) barrier layer between the MG and the substrate blocks the n-doping, resulting in p-type doping of the MG above regions patterned with HSQ. The HSQ is deposited in a single fabrication step using electron beam lithography, allowing the patterning of arbitrary sub-micron spatial patterns of n- and p-type doping. When a MG channel is deposited partially on the barrier and partially on the glass substrate, a p-type and n-type doping profile is created, which is used for fabricating complementary transistors pairs. Unlike chemically doped GFETs in which the external dopants are typically introduced from the top, these substrate doped GFETs allow for a top gate which gives a stronger electrostatic coupling to the channel, reducing the operating gate bias. Overall, this method enables scalable fabrication of n- and p-type complementary top-gated GFETs with high spatial resolution for graphene microelectronic applications.

  2. Nanocrystalline nanowires: III. Electrons.

    PubMed

    Allen, Philip B

    2007-05-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction and typically have some rotational symmetry around this direction. Electron eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number) are discussed. The rotational quantum number simplifies discussion of optical properties. For m not equal 0, the +/-m degeneracy allows orbital magnetism. The simplest sensible model which is more complex than a one-dimensional chain is solved. Methods are suggested for incorporating rotational symmetry into preexisting codes with three-dimensional translations.

  3. Nanocrystalline nanowires: 2. Phonons.

    PubMed

    Allen, Philip B

    2007-01-01

    Nanocrystalline nanowires (NCNW) are fragments of bulk crystals that are infinite in only one direction. A construction is given for calculating eigenstates belonging to the symmetry labels (k,m) (wavevector and rotational quantum number). Vibrational harmonic eigenstates are worked out explicitly for a simple model, illustrating the general results: the LA mode has m=0, while with sufficient rotational symmetry, the TA branch is doubly degenerate, has m=+/-1, and has quadratic dispersion with k for k less than the reciprocal diameter of the NCNW. The twiston branch (a fourth Goldstone boson) is an acoustic m=0 branch, additional to the LA and two TA branches.

  4. Magnetism in nanocrystalline gold.

    PubMed

    Tuboltsev, Vladimir; Savin, Alexander; Pirojenko, Alexandre; Räisänen, Jyrki

    2013-08-27

    While bulk gold is well known to be diamagnetic, there is a growing body of convincing experimental and theoretical work indicating that nanostructured gold can be imparted with unconventional magnetic properties. Bridging the current gap in experimental study of magnetism in bare gold nanomaterials, we report here on magnetism in gold nanocrystalline films produced by cluster deposition in the aggregate form that can be considered as a crossover state between a nanocluster and a continuous film. We demonstrate ferromagnetic-like hysteretic magnetization with temperature dependence indicative of spin-glass-like behavior and find this to be consistent with theoretical predictions, available in the literature, based on first-principles calculations.

  5. Synthesis of p-type GaN nanowires.

    PubMed

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-09-21

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.

  6. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, D.M.; Krauss, A.R.

    1998-06-30

    A method and system are disclosed for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip. 40 figs.

  7. Method for the preparation of nanocrystalline diamond thin films

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.

    1998-01-01

    A method and system for manufacturing nanocrystalline diamond film on a substrate such as field emission tips. The method involves forming a carbonaceous vapor, providing a gas stream of argon, hydrocarbon and possibly hydrogen, and combining the gas with the carbonaceous vapor, passing the combined carbonaceous vapor and gas carrier stream into a chamber, forming a plasma in the chamber causing fragmentation of the carbonaceous vapor and deposition of a diamond film on the field emission tip.

  8. Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon

    SciTech Connect

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng; Peng, Wei; Jiang, Xuening; Xu, Hongxia

    2014-01-27

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  9. Ohmic contact to p-type indium phosphide

    NASA Technical Reports Server (NTRS)

    Hawrylo, F. Z.

    1980-01-01

    Low-Series-resistance ohmic contact to p-type InP semiconductor material is achieved in technique utilizing Au-Ge-Zn eutectic alloy. Alloy sets and adheres well to semiconductor surface with higher acceptor concentration at metal semiconductor interface. Technique has provided satisfactory for pn junction LED's and lasers.

  10. p-type conduction in sputtered indium oxide films

    SciTech Connect

    Stankiewicz, Jolanta; Alcala, Rafael; Villuendas, Francisco

    2010-05-10

    We report p-type conductivity in intrinsic indium oxide (IO) films deposited by magnetron sputtering on fused quartz substrates under oxygen-rich ambient. Highly oriented (111) films were studied by x-ray diffraction, optical absorption, and Hall effect measurements. We fabricated p-n homojunctions on these films.

  11. High carrier concentration p-type transparent conducting oxide films

    DOEpatents

    Yan, Yanfa; Zhang, Shengbai

    2005-06-21

    A p-type transparent conducting oxide film is provided which is consisting essentially of, the transparent conducting oxide and a molecular doping source, the oxide and doping source grown under conditions sufficient to deliver the doping source intact onto the oxide.

  12. Synthesis of p-type GaN nanowires

    NASA Astrophysics Data System (ADS)

    Kim, Sung Wook; Park, Youn Ho; Kim, Ilsoo; Park, Tae-Eon; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2013-08-01

    GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo-junction structure (consisting of annealed Cu:GaN NW/n-type GaN thin film) exhibited p-n junction characteristics. A hybrid organic light emitting diode (OLED) employing the annealed Cu:GaN NWs as a hole injection layer (HIL) also demonstrated current injected luminescence. These results suggest that Cu can be used as a p-type dopant for GaN NWs.GaN has been utilized in optoelectronics for two decades. However, p-type doping still remains crucial for realization of high performance GaN optoelectronics. Though Mg has been used as a p-dopant, its efficiency is low due to the formation of Mg-H complexes and/or structural defects in the course of doping. As a potential alternative p-type dopant, Cu has been recognized as an acceptor impurity for GaN. Herein, we report the fabrication of Cu-doped GaN nanowires (Cu:GaN NWs) and their p-type characteristics. The NWs were grown vertically via a vapor-liquid-solid (VLS) mechanism using a Au/Ni catalyst. Electrical characterization using a nanowire-field effect transistor (NW-FET) showed that the NWs exhibited n-type characteristics. However, with further annealing, the NWs showed p-type characteristics. A homo

  13. Nanocrystalline silicon thin films for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Queen, Daniel; Jugdersuren, Battogtokh; Culberston, Jim; Wang, Qi; Nemeth, William; Metcalf, Tom; Liu, Xiao

    2014-03-01

    Recent advances in thermoelectric materials have come from reductions in thermal conductivity by manipulating both chemical composition and nanostructure to limit the phonon mean free path. However, wide spread applications for some of these materials may be limited due to high raw material and integration costs. In this talk we will discuss our recent results on nanocrystalline silicon thin films deposited by both hot-wire and plasma enhanced chemical vapor deposition where the nanocrystal size and crystalline volume fraction are varied by dilution of the silane precursor gas with hydrogen. Nanocyrstalline silicon is an established material technology used in multijunction amorphous silicon solar cells and has the potential to be a low cost and scalable material for use in thermoelectric devices. This work supported by the Office of Naval Research and the National Research Council.

  14. Thermoelectric properties of gallium-doped p-type germanium

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Takarada, Sho; Aikebaier, Yusufu; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke; Miyazaki, Yoshinobu; Uchida, Noriyuki; Tada, Tetsuya

    2016-05-01

    In this study, the temperature-dependent thermoelectric properties of p-type single-crystal Ge, which is a useful material for thermoelectric applications owing to its significantly high carrier mobility, were investigated. The thermoelectric properties of Ga-doped (5.7 × 1016, 3.4 × 1018, and 1.0 × 1019 cm-3) p-type single-crystal Ge were measured from room temperature to 770 K. The sample with a carrier concentration of 1.0 × 1019 cm-3 showed the highest thermoelectric figure of merit, ZT, over the entire measured temperature range. The maximum ZT value was 0.06 at 650 K. A theoretical model based on the Boltzmann transport equation with relaxation-time approximation was developed and quantitatively reproduced the experimentally observed data. The optimal impurity concentration predicted by this model was 3 × 1019 cm-3 at 300 K and increased with temperature.

  15. Anodic etching of p-type cubic silicon carbide

    NASA Technical Reports Server (NTRS)

    Harris, G. L.; Fekade, K.; Wongchotigul, K.

    1992-01-01

    p-Type cubic silicon carbide was anodically etched using an electrolyte of HF:HCl:H2O. The etching depth was determined versus time with a fixed current density of 96.4 mA/sq cm. It was found that the etching was very smooth and very uniform. An etch rate of 22.7 nm/s was obtained in a 1:1:50 HF:HCl:H2O electrolyte.

  16. Single electron transistor with P-type sidewall spacer gates.

    PubMed

    Lee, Jung Han; Li, Dong Hua; Lee, Joung-Eob; Kang, Kwon-Chil; Kim, Kyungwan; Park, Byung-Gook

    2011-07-01

    A single-electron transistor (SET) is one of the promising solutions to overcome the scaling limit of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET). Up to now, various kinds of SETs are being proposed and SETs with a dual gate (DG) structure using an electrical potential barrier have been demonstrated for room temperature operation. To operate DG-SETs, however, extra bias of side gates is necessary. It causes new problems that the electrode for side gates and the extra bias for electrical barrier increase the complexity in circuit design and operation power consumption, respectively. For the reason, a new mechanism using work function (WF) difference is applied to operate a SET at room temperature by three electrodes. Its structure consists of an undoped active region, a control gate, n-doped source/drain electrodes, and metal/silicide or p-type silicon side gates, and a SET with metal/silicide gates or p-type silicon gates forms tunnel barriers induced by work function between an undoped channel and grounded side gates. Via simulation, the effectiveness of the new mechanism is confirmed through various silicide materials that have different WF values. Furthermore, by considering the realistic conditions of the fabrication process, SET with p-type sidewall spacer gates was designed, and its brief fabrication process was introduced. The characteristics of its electrical barrier and the controllability of its control gate were also confirmed via simulation. Finally, a single-hole transistor with n-type sidewall spacer gates was designed. PMID:22121580

  17. P-type conductivity in annealed strontium titanate

    SciTech Connect

    Poole, Violet M.; Corolewski, Caleb D.; McCluskey, Matthew D.

    2015-12-15

    Hall-effect measurements indicate p-type conductivity in bulk, single-crystal strontium titanate (SrTiO{sub 3}, or STO) samples that were annealed at 1200°C. Room-temperature mobilities above 100 cm{sup 2}/V s were measured, an order of magnitude higher than those for electrons (5-10 cm{sup 2}/V s). Average hole densities were in the 10{sup 9}-10{sup 10} cm{sup −3} range, consistent with a deep acceptor.

  18. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  19. Bi-Se doped with Cu, p-type semiconductor

    DOEpatents

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  20. Metal Fluoride Inhibition of a P-type H+ Pump

    PubMed Central

    Pedersen, Jesper Torbøl; Falhof, Janus; Ekberg, Kira; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-01-01

    The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state. PMID:26134563

  1. Voltammetric and impedance behaviours of surface-treated nano-crystalline diamond film electrodes

    SciTech Connect

    Liu, F. B.; Jing, B.; Cui, Y.; Di, J. J.; Qu, M.

    2015-04-15

    The electrochemical performances of hydrogen- and oxygen-terminated nano-crystalline diamond film electrodes were investigated by cyclic voltammetry and AC impedance spectroscopy. In addition, the surface morphologies, phase structures, and chemical states of the two diamond films were analysed by scanning probe microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy, respectively. The results indicated that the potential window is narrower for the hydrogen-terminated nano-crystalline diamond film than for the oxygen-terminated one. The diamond film resistance and capacitance of oxygen-terminated diamond film are much larger than those of the hydrogen-terminated diamond film, and the polarization resistances and double-layer capacitance corresponding to oxygen-terminated diamond film are both one order of magnitude larger than those corresponding to the hydrogen-terminated diamond film. The electrochemical behaviours of the two diamond film electrodes are discussed.

  2. Optoelectronic properties of nanocrystalline silicon composites

    NASA Astrophysics Data System (ADS)

    Posada Marin, Yury

    The interest in silicon at the nano-scale level has gained great impetus since the discovery in the last decade of its photoluminescence properties at room temperature; this characteristic has opened up the possibility of creating microelectronics with optical integrated capabilities and has been the main motivation for new research in photonics and optoelectronics applications. To date, the most cost effective technique used to make silicon nanoparticles is the electroetching of silicon wafers in HF electrolytes solutions; this method generates hydrogen-passivated particles by the electrochemical dispersion of bulk silicon. The ultrasonic fracturing of porous silicon structures produces a colloidal suspension of particles in a large variety of organic solvents that can be readily used as photoluminescent tags and to create new optical materials. Silicon nanoparticles can be also produced by sputtering Si-SiO 2, a technique that can render films with distributions of silicon crystallite sizes. This thesis presents the results of an optoelectronic study of nanocrystalline silicon produced by chemical electroetching of silicon wafers and RF-co sputtering of Si-SiO2. Herein are presented the experimental contributions of this work: the development of two novel materials: silica gel monoliths and microfilms doped with porous silicon nanoclusters that have showed blue shifted photoluminescence emission with intensities over five times higher than the original intensity from the native material used for the sol-gel preparation; the enhancement of the photoluminescence of porous silicon substrates by silica gel spin coating. Finally, through a charge transport study of nanocrystalline silicon in Si-SiO2 a relationship between the photoluminescence with the silicon crystallites sizes and concentrations is demonstrated and analyzed along with the diffusion length.

  3. Anabaena sp. DyP-type peroxidase is a tetramer consisting of two asymmetric dimers.

    PubMed

    Yoshida, Toru; Ogola, Henry Joseph Oduor; Amano, Yoshimi; Hisabori, Toru; Ashida, Hiroyuki; Sawa, Yoshihiro; Tsuge, Hideaki; Sugano, Yasushi

    2016-01-01

    DyP-type peroxidases are a newly discovered family of heme peroxidases distributed from prokaryotes to eukaryotes. Recently, using a structure-based sequence alignment, we proposed the new classes, P, I and V, as substitutes for classes A, B, C, and D [Arch Biochem Biophys 2015;574:49-55]. Although many class V enzymes from eukaryotes have been characterized, only two from prokaryotes have been reported. Here, we show the crystal structure of one of these two enzymes, Anabaena sp. DyP-type peroxidase (AnaPX). AnaPX is tetramer formed from Cys224-Cys224 disulfide-linked dimers. The tetramer of wild-type AnaPX was stable at all salt concentrations tested. In contrast, the C224A mutant showed salt concentration-dependent oligomeric states: in 600 mM NaCl, it maintained a tetrameric structure, whereas in the absence of salt, it dissociated into monomers, leading to a reduction in thermostability. Although the tetramer exhibits non-crystallographic, 2-fold symmetry in the asymmetric unit, two subunits forming the Cys224-Cys224 disulfide-linked dimer are related by 165° rotation. This asymmetry creates an opening to cavities facing the inside of the tetramer, providing a pathway for hydrogen peroxide access. Finally, a phylogenetic analysis using structure-based sequence alignments showed that class V enzymes from prokaryotes, including AnaPX, are phylogenetically closely related to class V enzymes from eukaryotes.

  4. Laser induced lifetime degradation in p-type crystalline silicon

    SciTech Connect

    Ametowobla, M.; Bilger, G.; Koehler, J. R.; Werner, J. H.

    2012-06-01

    Pulsed, green laser irradiation of uncoated p-type silicon leads to a significant reduction of the effective minority carrier lifetime. The reason for the lifetime drop lies in the introduction of recombination centres into the laser melted and recrystallized surface layer, leading to a low local minority carrier lifetime {tau} Almost-Equal-To 10 ns inside this surface layer. The laser treatment introduces the impurities oxygen, carbon and nitrogen into the silicon and further leads to an n-type doping of the surface layer. There are strong indications that these impurities are responsible for the observed n-type doping, as well as the lifetime reduction after irradiation. Both effects are removed by thermal annealing. An estimate shows that the low local lifetime does nevertheless not affect the performance of industrial or contacted selective solar cell emitter structures.

  5. p-Type NiO Hybrid Visible Photodetector.

    PubMed

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light. PMID:26654105

  6. p-Type NiO Hybrid Visible Photodetector.

    PubMed

    Mallows, John; Planells, Miquel; Thakare, Vishal; Bhosale, Reshma; Ogale, Satishchandra; Robertson, Neil

    2015-12-23

    A novel hybrid visible-light photodetector was created using a planar p-type inorganic NiO layer in a junction with an organic electron acceptor layer. The effect of different oxygen pressures on formation of the NiO layer by pulsed laser deposition shows that higher pressure increases the charge carrier density of the film and lowers the dark current in the device. The addition of a monolayer of small molecules containing conjugated π systems and carboxyl groups at the device interface was also investigated and with correct alignment of the energy levels improves the device performance with respect to the quantum efficiency, responsivity, and photogeneration. The thickness of the organic layer was also optimized for the device, giving a responsivity of 1.54 × 10(-2) A W(-1) in 460 nm light.

  7. Laser induced lifetime degradation in p-type crystalline silicon

    NASA Astrophysics Data System (ADS)

    Ametowobla, M.; Bilger, G.; Köhler, J. R.; Werner, J. H.

    2012-06-01

    Pulsed, green laser irradiation of uncoated p-type silicon leads to a significant reduction of the effective minority carrier lifetime. The reason for the lifetime drop lies in the introduction of recombination centres into the laser melted and recrystallized surface layer, leading to a low local minority carrier lifetime τ ≈ 10 ns inside this surface layer. The laser treatment introduces the impurities oxygen, carbon and nitrogen into the silicon and further leads to an n-type doping of the surface layer. There are strong indications that these impurities are responsible for the observed n-type doping, as well as the lifetime reduction after irradiation. Both effects are removed by thermal annealing. An estimate shows that the low local lifetime does nevertheless not affect the performance of industrial or contacted selective solar cell emitter structures.

  8. Gas sensing properties of nanocrystalline diamond at room temperature

    PubMed Central

    Kulha, Pavel; Laposa, Alexandr; Hruska, Karel; Demo, Pavel; Kromka, Alexander

    2014-01-01

    Summary This study describes an integrated NH3 sensor based on a hydrogenated nanocrystalline diamond (NCD)-sensitive layer coated on an interdigitated electrode structure. The gas sensing properties of the sensor structure were examined using a reducing gas (NH3) at room temperature and were found to be dependent on the electrode arrangement. A pronounced response of the sensor, which was comprised of dense electrode arrays (of 50 µm separation distance), was observed. The sensor functionality was explained by the surface transfer doping effect. Moreover, the three-dimensional model of the current density distribution of the hydrogenated NCD describes the transient flow of electrons between interdigitated electrodes and the hydrogenated NCD surface, that is, the formation of a closed current loop. PMID:25551062

  9. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor.

    PubMed

    Izak, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-05-01

    We show the influence of osteoblastic SAOS-2 cells on the transfer characteristics of nanocrystalline diamond solution-gated field-effect transistors (SGFET) prepared on glass substrates. Channels of these fully transparent SGFETs are realized by hydrogen termination of undoped diamond film. After cell cultivation, the transistors exhibit about 100× increased leakage currents (up to 10nA). During and after the cell delamination, the transistors return to original gate currents. We propose a mechanism where this triggering effect is attributed to ions released from adhered cells, which depends on the cell adhesion morphology, and could be used for cell culture monitoring.

  10. n and p type character of single molecule diodes.

    PubMed

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  11. n and p type character of single molecule diodes

    PubMed Central

    Zoldan, Vinícius Claudio; Faccio, Ricardo; Pasa, André Avelino

    2015-01-01

    Looking for single molecule electronic devices, we have investigated the charge transport properties of individual tetra-phenylporphyrin molecules on different substrates by ultrahigh-vacuum scanning tunneling microscopy and spectroscopy and by first-principles calculations. The tetra-phenylporphyrins with a Co atom (Co-TPP) or 2 hydrogens (H2-TPP) in the central macrocycle when deposited on Cu3Au(100) substrates showed a diode-like behavior with p and n type character, respectively. After removing the central hydrogens of H2-TPP molecule with the STM tip an ohmic behavior was measured. The rectifying effect was understood from the theoretical point of view by assuming for Co-TPP HOMO conduction and for H2-TPP LUMO conduction, both selectively elected by the hybridization of states between molecule and substrate surface. PMID:25666850

  12. Electronic processes in uniaxially stressed p-type germanium

    SciTech Connect

    Dubon, O.D. Jr.

    1996-02-01

    Effect of uniaxial stress on acceptor-related electronic processes in Ge single crystals doped with Ga, Be, and Cu were studied by Hall and photo-Hall effect measurements in conjunction with infrared spectroscopy. Stress dependence of hole lifetime in p-type Ge single crystals is used as a test for competing models of non-radiative capture of holes by acceptors. Photo-Hall effect shows that hole lifetime in Ga- and Be-doped Ge increases by over one order of magnitude with uniaxial stress at liq. He temps. Photo-Hall of Ge:Be shows a stress-induced change in the temperature dependence of hole lifetime. This is consistent with observed increase of responsivity of Ge:Ga detectors with uniaxial stress. Electronic properties of Ge:Cu are shown to change dramatically with uniaxial stress; the results provide a first explanation for the performance of uniaxially stressed, Cu-diffused Ge:Ga detectors which display a high conductivity in absence of photon signal and therefore have poor sensitivity.

  13. P type porous silicon resistivity and carrier transport

    SciTech Connect

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  14. (Ga,Fe)Sb: A p-type ferromagnetic semiconductor

    SciTech Connect

    Tu, Nguyen Thanh; Anh, Le Duc; Tanaka, Masaaki; Hai, Pham Nam

    2014-09-29

    A p-type ferromagnetic semiconductor (Ga{sub 1−x},Fe{sub x})Sb (x = 3.9%–13.7%) has been grown by low-temperature molecular beam epitaxy (MBE) on GaAs(001) substrates. Reflection high energy electron diffraction patterns during the MBE growth and X-ray diffraction spectra indicate that (Ga,Fe)Sb layers have the zinc-blende crystal structure without any other crystallographic phase of precipitates. Magnetic circular dichroism (MCD) spectroscopy characterizations indicate that (Ga,Fe)Sb has the zinc-blende band structure with spin-splitting induced by s,p-d exchange interactions. The magnetic field dependence of the MCD intensity and anomalous Hall resistance of (Ga,Fe)Sb show clear hysteresis, demonstrating the presence of ferromagnetic order. The Curie temperature (T{sub C}) increases with increasing x and reaches 140 K at x = 13.7%. The crystal structure analyses, magneto-transport, and magneto-optical properties indicate that (Ga,Fe)Sb is an intrinsic ferromagnetic semiconductor.

  15. Greyscale proton beam writing in p-type Gallium Arsenide

    NASA Astrophysics Data System (ADS)

    Diering, D.; Spemann, D.; Lenzner, J.; Müller, St.; Böntgen, T.; von Wenckstern, H.

    2013-07-01

    Proton beam writing (PBW) is a well known method for micromachining, e.g. of semiconductors. Up to now, only few indication is given on how the resulting structure height in micromachined semiconductors can be controlled by means of fluence variation. This approach for 3D-microstructuring, called Greyscale PBW, was already successfully demonstrated for negative photoresists. In this study (1 0 0) p-type Gallium Arsenide (GaAs) was irradiated with 2.28 MeV protons and fluences in the range from 1.2×1014 H+ cm-2 to 1.0×1018 H+ cm-2 at the ion beam laboratory LIPSION and subsequently electrochemically etched with 10%-KOH. A linear dependency of structure height on ion fluence was established. In this way, pyramid-like structures as well as concave-shaped structures could be created. GaAs showed a lateral anisotropic etch behaviour during the development step with preferential etching along the [0 1 1] directions. On some structures the surface roughness and the change of conductivity were investigated by atomic force and scanning capacitance microscopy, respectively. The rms roughness of the surface of the structures was 5.4 nm and 10.6 nm for a fluence of 7.8×1015 H+ cm-2 and 1.2×1017 H+ cm-2, respectively. We observed an increasing etching rate for fluences larger than 1016 H+ cm-2.

  16. Tensile behavior of nanocrystalline copper

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A. |

    1995-11-01

    High density nanocrystalline copper produced by inert gas condensation was tested in tension. Displacements were measured using foil strain gauges, which greatly improved the accuracy of the strain data. The Young`s modulus of nanocrystalline copper was found to be consistent with that of coarse-grained copper. Total elongations of {approx} 1% were observed in samples with grain sizes less than 50 nm, while a sample with a grain size of 110 nm exhibited more than 10% elongation, perhaps signifying a change to a dislocation-based deformation mechanism in the larger-grained material. In addition, tensile tests were performed as a function of strain rate, with a possible trend of decreased strength and increased elongation as the strain rate was decreased.

  17. Structure of nanocrystalline palladium and copper studied by small angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Barker, J.G.

    1996-12-01

    The structure of nanocrystalline palladium and copper, made by inert gas condensation and compaction, was studied using small angle neutron scattering (SANS), optical microscopy, and scanning electron microscopy. The effects of annealing and warm compaction were also examined with these techniques. The SANS results were interpreted using a maximum entropy routine, combined with knowledge of the Archimedes density and hydrogen concentration determined by prompt gamma activation analysis (PGAA). Similar hydrogen concentrations were detected by SANS and PGAA. This hydrogen content, which was approximately 5 at.{percent} in samples compacted at room temperature, was reduced by both annealing and warm compaction. Defects in several size classes were observed, including missing grain pores ({approx_equal}1{endash}50 nm diameter) and defects of micrometer size. Warm compaction produced a lower number density of pores in nanocrystalline palladium, which led to increased density. The observed structure was correlated with Vickers microhardness and fracture surface morphology. {copyright} {ital 1996 Materials Research Society.}

  18. Tribological behavior of nanocrystalline nickel.

    PubMed

    Guidry, D J; Lian, K; Jiang, J C; Meletis, E I

    2009-07-01

    During the last decade, an intensive investigative effort around the globe has been devoted to the understanding of scale effects on materials properties. In spite of their importance, nanoscale effects on tribological properties have attracted little attention. Such effects are of utmost importance to small scale devices such as nano and micro electromechanical systems that contain nanostructured dynamic components that would be difficult to replace or repair. The significant increase in strength arising from the grain size reduction in the nano domain is expected to impact on mechanical processes at asperity contacts that are dominating wear behavior. In the present work, nanocrystalline Ni produced by electroplating was used as a model system to study scale effects on tribological behavior. It was found that compared to bulk (microcrystalline), nanocrystalline Ni can cause a significant reduction in both, the coefficient of friction and wear rate. A consistent relationship was found between grain size, hardness and tribological behavior. It is suggested that the improved tribological behavior of the nanocrystalline Ni is due to the refinement of mechanical processes inhibiting plastic deformation by extensive dislocation motion leading to fracture events. PMID:19916423

  19. Pore distributions in nanocrystalline metals from small-angle neutron scattering

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Eastman, J.A.

    1998-07-24

    Recent upgrades in inert-gas condensation processing equipment have produced nanocrystalline metal samples with high densities and low-impurity levels. Typical Cu and Pd samples have densities {ge}98% of theoretical and oxygen and hydrogen impurity concentrations {le}0.5 at. %. Lower porosity and impurity levels may make it difficult to produce and maintain samples with the smallest nanocrystalline grain sizes. These improved samples were studied by small-angle neutron scattering (SANS) to determine the volume fraction and size distribution of pores. Excellent correlation was obtained between the total volume fraction of pores and the Archimedes density for Pd, signifying that most of the pores were relatively small and in the detectability range of SANS ({approx}1--100 nm). Nanocrystalline Cu is shown to exhibit a wider pore size distribution. For Pd, the average pore sizes were slightly smaller than the average grain size, while for Cu the pore size and grain size were about the same. Both materials exhibited a trend of increasing pore size with increasing grain size. In terms of processing prerequisites, the principal condition for the production of high-density nanocrystalline Cu is an exceptionally clean synthesis environment, while nanocrystalline Pd requires compaction at elevated temperatures. These differences are the result of Cu having both a lower melting point and a greater susceptibility to contamination by gaseous impurities such as oxygen.

  20. Irradiation and annealing of p-type silicon carbide

    SciTech Connect

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor'eva, Maria V.; Lebedev, Sergey P.; Kozlovski, Vitaly V.

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  1. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  2. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  3. Computational approaches for classification and prediction of P-type ATPase substrate specificity in Arabidopsis.

    PubMed

    Zinati, Zahra; Alemzadeh, Abbas; KayvanJoo, Amir Hossein

    2016-01-01

    As an extended gamut of integral membrane (extrinsic) proteins, and based on their transporting specificities, P-type ATPases include five subfamilies in Arabidopsis, inter alia, P4ATPases (phospholipid-transporting ATPase), P3AATPases (plasma membrane H(+) pumps), P2A and P2BATPases (Ca(2+) pumps) and P1B ATPases (heavy metal pumps). Although, many different computational methods have been developed to predict substrate specificity of unknown proteins, further investigation needs to improve the efficiency and performance of the predicators. In this study, various attribute weighting and supervised clustering algorithms were employed to identify the main amino acid composition attributes, which can influence the substrate specificity of ATPase pumps, classify protein pumps and predict the substrate specificity of uncharacterized ATPase pumps. The results of this study indicate that both non-reduced coefficients pertaining to absorption and Cys extinction within 280 nm, the frequencies of hydrogen, Ala, Val, carbon, hydrophilic residues, the counts of Val, Asn, Ser, Arg, Phe, Tyr, hydrophilic residues, Phe-Phe, Ala-Ile, Phe-Leu, Val-Ala and length are specified as the most important amino acid attributes through applying the whole attribute weighting models. Here, learning algorithms engineered in a predictive machine (Naive Bays) is proposed to foresee the Q9LVV1 and O22180 substrate specificities (P-type ATPase like proteins) with 100 % prediction confidence. For the first time, our analysis demonstrated promising application of bioinformatics algorithms in classifying ATPases pumps. Moreover, we suggest the predictive systems that can assist towards the prediction of the substrate specificity of any new ATPase pumps with the maximum possible prediction confidence. PMID:27186030

  4. Functionalization of nanocrystalline diamond films with phthalocyanines

    NASA Astrophysics Data System (ADS)

    Petkov, Christo; Reintanz, Philipp M.; Kulisch, Wilhelm; Degenhardt, Anna Katharina; Weidner, Tobias; Baio, Joe E.; Merz, Rolf; Kopnarski, Michael; Siemeling, Ulrich; Reithmaier, Johann Peter; Popov, Cyril

    2016-08-01

    Phthalocyanine (Pc) derivatives containing different central metal atoms (Mn, Cu, Ti) and different peripheral chains were synthesized and comprehensively characterized. Their interaction with nanocrystalline diamond (NCD) films, as-grown by hot-filament chemical vapor deposition or after their modification with oxygen plasma to exchange the hydrogen termination with oxygen-containing groups, was studied by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The elemental composition as determined by XPS showed that the Pc were grafted on both as-grown and O-terminated NCD. Mn, Cu and Ti were detected together with N stemming from the Pc ring and S in case of the Ti-Pc from the peripheral ligands. The results for the elemental surface composition and the detailed study of the N 1s, S 2p and O 1s core spectra revealed that Ti-Pc grafted better on as-grown NCD but Cu-Pc and Mn-Pc on O-terminated films. Samples of Mn-Pc on as-grown and O-terminated NCD were further investigated by NEXAFS spectroscopy. The results showed ordering of the grafted molecules, laying flat on the H-terminated NCD surface while only the macrocycles were oriented parallel to the O-terminated surface with the peripheral chains perpendicular to it.

  5. Picosecond intersubband hole relaxation in p-type quantum wells

    SciTech Connect

    Xu, Z.; Fauchet, P.M.; Rella, C.W.; Schwettman, H.A.

    1995-12-31

    We report the first direct measurement of the relaxation time of holes in p-type quantum wells using tunable, subpicosecond mid-infrared laser pulses in a pump-probe arrangement. The QW layers consisted of 50 In{sub 0.5}Ga{sub 0.5}As/Al{sub 0.5}Ga{sub 0.5}As periods. The In{sub 0.5}Ga{sub 0.5}As well was 4 nm wide and the Al{sub 0.5}Ga{sub 0.5}As barrier was 8 nm wide. The dopant concentration was 10{sup 19} CM{sup -3} which corresponds to a sheet density of 1.2 x 10{sup 13} CM{sup -2}. The room temperature IR spectrum showed a 50 meV wide absorption peak at 5.25 {mu}m (220 meV). This energy agrees with the calculated n=1 heavy hole to n=1 light hole transition energy of 240 meV (150 meV for strain and 90 meV for confinement). The large absorption width results from hole-hole scattering and the difference in dispersion relations between the two subbands. The equal-wavelength pump-probe transmission measurements were performed using the Stanford free electron laser (FEL). The FEL pulses were tuned between 4 and 6 {mu} m and their duration was less than 1 ps. The measurements were performed as a function of temperature, pump wavelength and intensity (from 0.3 to 10 GW/cm{sup 2}). In all our experiments, we find an increase of transmission (decrease of absorption or bleaching) following photopumping, which recovers as a single exponential with a time constant (relaxation time) of the order of 1 picosecond. The maximum change in transmission is linear with pump 2 intensity below 1 GW/cm{sup 2} and saturates to {approximately}3% with a saturation intensity I{sub sat} of 3 GW/cm{sup 2}. As the saturation regime is entered, the relaxation time increases from 0.8 ps to 1.8 ps. This relaxation time depends on the temperature T: it increases from 0.8 ps to 1.3 ps as T decreases from 300 K to 77 K. Finally, when we tune the laser through the absorption band, the magnitude of the signal changes but its temporal behavior does not change, within the accuracy of the measurements.

  6. Large piezoresistive effect in surface conductive nanocrystalline diamond

    SciTech Connect

    Janssens, S. D. Haenen, K.; Drijkoningen, S.

    2014-09-08

    Surface conductivity in hydrogen-terminated single crystal diamond is an intriguing phenomenon for fundamental reasons as well as for application driven research. Surface conductivity is also observed in hydrogen-terminated nanocrystalline diamond although the electronic transport mechanisms remain unclear. In this work, the piezoresistive properties of intrinsic surface conductive nanocrystalline diamond are investigated. A gauge factor of 35 is calculated from bulging a diamond membrane of 350 nm thick, with a diameter of 656 μm and a sheet resistance of 1.45 MΩ/sq. The large piezoresistive effect is reasoned to originate directly from strain-induced changes in the resistivity of the grain boundaries. Additionally, we ascribe a small time-dependent fraction of the piezoresistive effect to charge trapping of charge carriers at grain boundaries. In conclusion, time-dependent piezoresistive effect measurements act as a tool for deeper understanding the complex electronic transport mechanisms induced by grain boundaries in a polycrystalline material or nanocomposite.

  7. Deformation behavior and microstructural evolution of nanocrystalline aluminum alloys and composites

    NASA Astrophysics Data System (ADS)

    Ahn, Byungmin

    Nanocrystalline or ultrafine-grained Al alloys are often produced by severe plastic deformation methods and exhibit remarkably enhanced strength and hardness compared to conventional coarse-grained materials, resulting in great potential for structural applications. To achieve nanocrystalline structure, grains were refined by cryomilling (mechanical milling at cryogenic temperature) pre-alloyed powders. Cryomilling provides capability for rapid grain refinement and synthesis of commercial quantities (30-40 kg). The cryomilled powder was primarily consolidated by hot or cold isostatic pressing in general. Secondary consolidation was achieved by extrusion or forging. Alternatively, quasi-isostatic forging was applied either as an initial consolidation or as a further deformation step. To improve insufficient ductility and toughness of nanocrystalline materials, an intelligent design with microstructural modification was introduced by generation of multiple size scales. A bimodal grain structure consisting of nanocrystalline grains and inclusions of coarse-grained material was produced by consolidation of blended powders. The resulting materials exhibited enhanced ductility compared to 100% nanocrystalline materials, with only moderate decreases in strength. A similar process was used to produce hybrid trimodal microstructures comprised of regions of nanocrystalline and coarse grains, as well as hard ceramic particles, providing super-high compressive strength. For cryomilled nanocrystalline Al alloys, effects of degassing temperature were investigated in terms of microstructural evolution. Higher degassing temperatures resulted in higher density and lower hydrogen content, which can reduce loss of toughness in consolidated materials. Different consolidation methods were compared with regard to the relation between the microstructures and mechanical properties. Quasi-isostatic forging led to greater and more isotropic fracture toughness, compared with other processing

  8. Ultraviolet light-emitting diodes with polarization-doped p-type layer

    NASA Astrophysics Data System (ADS)

    Hu, Wenxiao; Qin, Ping; Song, Weidong; Zhang, Chongzhen; Wang, Rupeng; Zhao, Liangliang; Xia, Chao; Yuan, Songyang; Yin, Yian; Li, Shuti

    2016-09-01

    We report ultraviolet light emitting diode (LEDs) with polarization doped p-type layer. Fabricated LEDs with polarization doped p-type layer exhibited reduced forward voltage and enhanced light output power, compared to those with traditional p-type AlGaN layer. The improvement is attributed to improved hole concentration and the smooth valence band by the polarization enhanced p-type doping. Our simulated results reveal that this p-type layer can further enhance the performance of ultraviolet LEDs by removing the electron blocking layer (EBL).

  9. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    PubMed

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices. PMID:19076042

  10. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor.

    PubMed

    Goldgof, Gregory M; Durrant, Jacob D; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M; Manary, Micah J; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W; Slayman, Carolyn W; Amaro, Rommie E; Suzuki, Yo; Winzeler, Elizabeth A

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  11. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor

    PubMed Central

    Goldgof, Gregory M.; Durrant, Jacob D.; Ottilie, Sabine; Vigil, Edgar; Allen, Kenneth E.; Gunawan, Felicia; Kostylev, Maxim; Henderson, Kiersten A.; Yang, Jennifer; Schenken, Jake; LaMonte, Gregory M.; Manary, Micah J.; Murao, Ayako; Nachon, Marie; Stanhope, Rebecca; Prescott, Maximo; McNamara, Case W.; Slayman, Carolyn W.; Amaro, Rommie E.; Suzuki, Yo; Winzeler, Elizabeth A.

    2016-01-01

    The spiroindolones, a new class of antimalarial medicines discovered in a cellular screen, are rendered less active by mutations in a parasite P-type ATPase, PfATP4. We show here that S. cerevisiae also acquires mutations in a gene encoding a P-type ATPase (ScPMA1) after exposure to spiroindolones and that these mutations are sufficient for resistance. KAE609 resistance mutations in ScPMA1 do not confer resistance to unrelated antimicrobials, but do confer cross sensitivity to the alkyl-lysophospholipid edelfosine, which is known to displace ScPma1p from the plasma membrane. Using an in vitro cell-free assay, we demonstrate that KAE609 directly inhibits ScPma1p ATPase activity. KAE609 also increases cytoplasmic hydrogen ion concentrations in yeast cells. Computer docking into a ScPma1p homology model identifies a binding mode that supports genetic resistance determinants and in vitro experimental structure-activity relationships in both P. falciparum and S. cerevisiae. This model also suggests a shared binding site with the dihydroisoquinolones antimalarials. Our data support a model in which KAE609 exerts its antimalarial activity by directly interfering with P-type ATPase activity. PMID:27291296

  12. Helicon wave plasma chemical vapor deposition of nanocrystalline silicon carbide films at low substrate temperature

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Lu, Wanbing; Wang, Baozhu; Han, Li; Fu, Guangsheng

    2005-02-01

    Silicon carbide thin films have been deposited by helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) technique under the conditions of variant deposition temperatures from 300 to 600°C. Silane, methane and hydrogen are used as reactive gas. The structural properties of the deposited films are characterized using Fourier transform infrared (FTIR), scan electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible optical absorption techniques. Detailed analysis of the FTIR spectra indicates that the onset of growing nanocrystalline SiC films at low substrate temperature is closed related with the high plasma ionization rate of helicon wave plasma and the condition of low working gas pressure and strong hydrogen dilution in experiment. The SEM and TEM measurements confirm that the structure of the deposited films is nanocrystalline SiC grains embedded in amorphous matrix and the size of the crystalline gains increases with substrate temperature.

  13. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    SciTech Connect

    Cheng Qijin; Xu, S.

    2007-09-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X{<=}33%) in the gas mixture employed in our experiments.

  14. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  15. Morphological, luminescence and structural properties of nanocrystalline silicon thin films

    SciTech Connect

    Ali, Atif Mossad; Kobayashi, Hikaru; Inokuma, Takao; Al-Hajry, Ali

    2013-03-15

    Highlights: ► The PL spectra showed two stronger peaks and one weaker peak. ► The PL peak energies and optical band-gap values were found higher than 1.12 eV. ► The structural change from an amorphous to nanocrystalline with increasing [SiH{sub 4}]. - Abstract: Nanocrystalline silicon (nc-Si) thin films deposited by plasma-enhanced chemical vapor deposition at various silane flow rates ([SiH{sub 4}]) are studied. The characterization of these films by high-resolution transmission electron microscopy, Raman spectroscopy and X-ray diffraction reveals that no film and very thin film is deposited at [SiH{sub 4}] = 0.0 and 0.1 sccm, respectively. In addition, the structural change from an amorphous to a nanocrystalline phase occurs at around [SiH{sub 4}] = 0.2 sccm. In this study, the importance of arriving species at surfaces and precursors is clearly demonstrated by the effect of a small addition of SiH{sub 4} on the frequency and width of a Raman peak and the structure of the grown film. The infrared spectroscopic analysis shows no hydrogen incorporation in the nc-Si film deposited at the low value of [SiH{sub 4}]. However, the intensity of the peak around 2100 cm{sup −1} due to SiH decreases with increasing [SiH{sub 4}]. All fabricated films give photoluminescence in the range between 1.7 and 2.4 eV at room temperature, indicating enlargement of the band-gap energy. The presence of very small crystallites leads to the appearance of quantum confinement effects. The variations of the photoluminescence energy and spectral width are well correlated with the structural properties of the films such as crystallite size, crystalline volume fraction, and the density of Si-H bonds.

  16. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  17. Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.

    1996-03-26

    A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.

  18. Nanocrystalline diamond synthesized from C60

    SciTech Connect

    Dubrovinskaia, N.; Dubrovinsky, L.; Langehorst, F.; Jacobsen, S.; Liebske, C.

    2010-11-30

    A bulk sample of nanocrystalline cubic diamond with crystallite sizes of 5-12 nm was synthesized from fullerene C{sub 60} at 20(1) GPa and 2000 C using a multi-anvil apparatus. The new material is at least as hard as single crystal diamond. It was found that nanocrystalline diamond at high temperature and ambient pressure kinetically is more stable with respect to graphitization than usual diamonds.

  19. Chemical Bath Deposition of p-Type Transparent, Highly Conducting (CuS)x:(ZnS)1-x Nanocomposite Thin Films and Fabrication of Si Heterojunction Solar Cells.

    PubMed

    Xu, Xiaojie; Bullock, James; Schelhas, Laura T; Stutz, Elias Z; Fonseca, Jose J; Hettick, Mark; Pool, Vanessa L; Tai, Kong Fai; Toney, Michael F; Fang, Xiaosheng; Javey, Ali; Wong, Lydia Helena; Ager, Joel W

    2016-03-01

    P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV). PMID:26855162

  20. Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-k dielectric stack

    SciTech Connect

    Lin, Chi-Chou; Kuo, Yue

    2014-02-28

    Metal-oxide-semiconductor capacitors made of the nanocrystalline cadmium selenide nc-CdSe embedded Zr-doped HfO{sub 2} high-k stack on the p-type silicon wafer have been fabricated and studied for their charge trapping, detrapping, and retention characteristics. Both holes and electrons can be trapped to the nanocrystal-embedded dielectric stack depending on the polarity of the applied gate voltage. With the same magnitude of applied gate voltage, the sample can trap more holes than electrons. A small amount of holes are loosely trapped at the nc-CdSe/high-k interface and the remaining holes are strongly trapped to the bulk nanocrystalline CdSe site. Charges trapped to the nanocrystals caused the Coulomb blockade effect in the leakage current vs. voltage curve, which is not observed in the control sample. The addition of the nanocrystals to the dielectric film changed the defect density and the physical thickness, which are reflected on the leakage current and the breakdown voltage. More than half of the originally trapped holes can be retained in the embedded nanocrystals for more than 10 yr. The nanocrystalline CdSe embedded high-k stack is a useful gate dielectric for this nonvolatile memory device.

  1. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOEpatents

    Carlisle, John A.; Gruen, Dieter M.; Auciello, Orlando; Xiao, Xingcheng

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  2. Small angle neutron scattering from nanocrystalline Pd and Co compacted at elevated temperatures

    SciTech Connect

    Sanders, P.G.; Weertman, J.R.; Barker, J.G.; Siegel, R.W.

    1994-05-01

    Nanocrystalline (n-) Cu and Pd, prepared by inert gas condensation and in situ room temperature (RT) and elevated temperature (warm) compactions, have been studied by small angle neutron scattering (SANS). Previous work on RT compacted and subsequently annealed n-Pd seemed to show that all the scattering could be accounted for by a distribution of pores. Analysis of more extensive SANS measurements, together with results of prompt gamma activation analysis, indicates that the SANS can be explained by the presence of pores and hydrogen. Warm compaction reduces the hydrogen impurity level, while increasing the bulk density and decreasing the pore size. This can lead to a dramatic hardness increase in these materials.

  3. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  4. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  5. Electronic structure studies of nanocrystalline diamond grain boundaries

    SciTech Connect

    Zapol, P.; Sternberg, M.; Frauenheim, T.; Gruen, D. M.; Curtiss, L. A.

    1999-11-29

    Diamond growth from hydrogen-poor plasmas results in diamond structures that are profoundly different from conventionally CVD-grown diamond. High concentration of carbon dimers in the microwave plasma results in a high rate of heterogeneous renucleation leading to formation of nanocrystalline diamond with a typical grain size of 3--10 nm. Therefore, up to 10% of carbon atoms are located in the grain boundaries. In this paper the authors report on density-functional based tight-binding molecular dynamics calculations of the structure of a {Sigma}13 twist (100) grain boundary in diamond. Beginning with a coincidence site lattice model, simulated annealing of the initial structure was performed at 1,500 K followed by relaxation toward lower temperatures. About one-half of the carbons in the grain boundary are found to be three-coordinated. Coordination numbers, bond length and bond angle distributions are analyzed and compared to those obtained in previous studies.

  6. In vitro collagen fibril alignment via incorporation of nanocrystalline cellulose.

    PubMed

    Rudisill, Stephen G; DiVito, Michael D; Hubel, Allison; Stein, Andreas

    2015-01-01

    This study demonstrates a method for producing ordered collagen fibrils on a similar length scale to those in the cornea, using a one-pot liquid-phase synthesis. The alignment persists throughout samples on the mm scale. The addition of nanocrystalline cellulose (NCC), a biocompatible and widely available material, to collagen prior to gelation causes the fibrils to align and achieve a narrow size distribution (36±8nm). The effects of NCC loading in the composites on microstructure, transparency and biocompatibility are studied by scanning electron microscopy, ultraviolet-visible spectroscopy and cell growth experiments. A 2% loading of NCC increases the transparency of collagen while producing an ordered microstructure. A mechanism is proposed for the ordering behavior on the basis of enhanced hydrogen bonding during collagen gel formation.

  7. Nanocrystalline hydroxyapatite prepared under various pH conditions

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Mary Saral, A.; Ruban Kumar, A.

    2014-10-01

    Hydroxyapatite (HAP) has sovereign biomedical application due to its excellent biocompatibility, chemical and crystallographic similitude with natural human bone. In this present work, we discussed about the role of pH in the synthesis of calcium phosphate compound using calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate as starting materials by chemical precipitation method assisted with ultrasonic irradiation technique. 5% polyethylene glycol (PEG600) is added along with the precursors under various pH condition of 7, 9 and 11 respectively. The functional group analysis, crystallized size and fraction of crystallized size are confirmed using Fourier Transformation Infra-Red spectroscopy and X-ray diffraction pattern. Morphological observations are done by scanning electron microscope. The results revealed the presence of nanocrystalline hydroxyapatite at pH above 9.

  8. Structural and optical properties of porous nanocrystalline Ge

    NASA Astrophysics Data System (ADS)

    Kartopu, G.; Sapelkin, A. V.; Karavanskii, V. A.; Serincan, U.; Turan, R.

    2008-06-01

    Nanocrystalline Ge films were prepared by isotropic chemical etching on single-crystalline Ge substrates with 100 and 111 orientations. The structural and optical properties have been investigated by transmission electron microscopy (TEM), electron diffraction (ED), Raman photoluminescence (PL), and infrared spectroscopy. The average size of nanocrystals (NCs) was estimated by fitting of the Raman spectra using a phonon-confinement model developed for spherical semiconductor NCs. Considered collectively TEM, ED, and Raman results indicate that all films contain high density of 3-4 nm diameter, diamond-structured Ge NCs with disordered surfaces. There are indications that surface of nanoparticles is mainly hydrogen terminated even for air-stabilized samples. Red PL is observed at room temperature upon excitation by 1.96 eV with peak energy of ˜1.55 eV and correlates well with recent theoretical calculations of the enlarged optical gap in Ge NCs of similar size.

  9. Optical and Surface Characteristics of Mg-Doped GaAs Nanocrystalline Thin Film Deposited by Thermionic Vacuum Arc Technique

    NASA Astrophysics Data System (ADS)

    Pat, Suat; Özen, Soner; Şenay, Volkan; Korkmaz, Şadan

    2016-08-01

    Magnesium (Mg) is the most promising p-type dopant for gallium arsenide (GaAs) semiconductor technology. Mg-doped GaAs nanocrystalline thin film has been deposited at room temperature by the thermionic vacuum arc technique, a rapid deposition method for production of doped GaAs material. The microstructure and surface and optical properties of the deposited sample were investigated by x-ray diffraction analysis, scanning electron microscopy, energy-dispersive x-ray spectroscopy, atomic force microscopy, ultraviolet-visible spectrophotometry, and interferometry. The crystalline direction of the deposited sample was determined to be (220) plane and (331) plane at 44.53° and 72.30°, respectively. The Mg-doped GaAs nanocrystalline sample showed high transmittance.

  10. Surface acoustic wave hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Bhethanabotla, Venkat R. (Inventor); Bhansali, Shekhar (Inventor)

    2006-01-01

    The present invention provides a delay line SAW device fabricated on a lithium niobate substrate and coated with a bilayer of nanocrystalline or other nanomaterials such as nanoparticles or nanowires of palladiumn and metal free pthalocyanine which will respond to hydrogen gas in near real time, at low (room) temperature, without being affected by CO, O.sub.2, CH.sub.4 and other gases, in air ambient or controlled ambient, providing sensitivity to low ppm levels.

  11. Combinatorial discovery through a distributed outreach program: investigation of the photoelectrolysis activity of p-type Fe, Cr, Al oxides.

    PubMed

    Rowley, John G; Do, Thanh D; Cleary, David A; Parkinson, B A

    2014-06-25

    We report the identification of a semiconducting p-type oxide containing iron, aluminum, and chromium (Fe2-x-yCrxAlyO3) with previously unreported photoelectrolysis activity that was discovered by an undergraduate scientist participating in the Solar Hydrogen Activity research Kit (SHArK) program. The SHArK program is a distributed combinatorial science outreach program designed to provide a simple and inexpensive way for high school and undergraduate students to participate in the search for metal oxide materials that are active for the photoelectrolysis of water. The identified Fe2-x-yCrxAlyO3 photoelectrolysis material possesses many properties that make it a promising candidate for further optimization for potential application in a photoelectrolysis device. In addition to being composed of earth abundant elements, the FeCrAl oxide material has a band gap of 1.8 eV. Current-potential measurements for Fe2-x-yCrxAlyO3 showed an open circuit photovoltage of nearly 1 V; however, the absorbed photon conversion efficiency for hydrogen evolution was low (2.4 × 10(-4) at 530 nm) albeit without any deposited hydrogen evolution catalyst. X-ray diffraction of the pyrolyzed polycrystalline thin Fe2-x-yCrxAlyO3 film on fluorine-doped tin oxide substrates shows a hexagonal phase (hematite structure) and scanning electron microscope images show morphology consisting of small crystallites.

  12. Combinatorial discovery through a distributed outreach program: investigation of the photoelectrolysis activity of p-type Fe, Cr, Al oxides.

    PubMed

    Rowley, John G; Do, Thanh D; Cleary, David A; Parkinson, B A

    2014-06-25

    We report the identification of a semiconducting p-type oxide containing iron, aluminum, and chromium (Fe2-x-yCrxAlyO3) with previously unreported photoelectrolysis activity that was discovered by an undergraduate scientist participating in the Solar Hydrogen Activity research Kit (SHArK) program. The SHArK program is a distributed combinatorial science outreach program designed to provide a simple and inexpensive way for high school and undergraduate students to participate in the search for metal oxide materials that are active for the photoelectrolysis of water. The identified Fe2-x-yCrxAlyO3 photoelectrolysis material possesses many properties that make it a promising candidate for further optimization for potential application in a photoelectrolysis device. In addition to being composed of earth abundant elements, the FeCrAl oxide material has a band gap of 1.8 eV. Current-potential measurements for Fe2-x-yCrxAlyO3 showed an open circuit photovoltage of nearly 1 V; however, the absorbed photon conversion efficiency for hydrogen evolution was low (2.4 × 10(-4) at 530 nm) albeit without any deposited hydrogen evolution catalyst. X-ray diffraction of the pyrolyzed polycrystalline thin Fe2-x-yCrxAlyO3 film on fluorine-doped tin oxide substrates shows a hexagonal phase (hematite structure) and scanning electron microscope images show morphology consisting of small crystallites. PMID:24670777

  13. Deposition of nanocrystalline SiC films using helicon wave plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lu, Wanbing; Yu, Wei; Ma, Luo; Wu, Liping; Fu, Guangsheng

    2008-11-01

    Hydrogenated nanocrystalline SiC films have been deposited by using helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) in H2, SiH4 and CH4 gas mixtures at different RF powers. Their structural and optical properties have been investigated by Fourier transform infrared absorption (FTIR), atomic force microscopy (AFM) and ultraviolet-visible (UV-VIS) transmission spectra. The results indicate that RF power has an important influence on properties of the deposited films. It is found that in a 300 °C low substrate temperature, only amorphous SiC can be deposited at the radio frequency (RF) power of lower than 400 W, while nanocrystalline SiC can be grown at the RF power of equal to or higher than 400 W. The analyses show that the high plasma density of helicon wave plasma source and the high hydrogen dilution condition are two key factors for depositing nanocrystalline SiC films at a low temperature.

  14. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    SciTech Connect

    Sun, Chang Rougieux, Fiacre E.; Macdonald, Daniel

    2014-06-07

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr{sub i} and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ{sub n}/σ{sub p} of Cr{sub i} and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  15. Stacking fault and twinning in nanocrystalline metals.

    SciTech Connect

    Liao, Xiaozhou; Zhao, Y.; Srivilliputhur, S. G.; Zhou, F.; Lavernia, E. J.; Baskes, M. I.; Zhu, Y. T.; Xu, H. F.

    2004-01-01

    Nanocrystalline Al processed by cryogenic ball-milling and nanocrystalline Cu processed by high-pressure torsion at a very low strain rate and at room temperature were investigated using high-resolution transmission electron microscopy. For nanocrystalline Al, we observed partial dislocation emission from grain boundaries, which consequently resulted in deformation stacking faults and twinning. We also observed deformation twins formed via two other mechanisms recently predicted by molecular dynamic simulations. These results are surprising because (1) partial dislocation emission from grain boundaries has not been experimentally observed although it has been predicted by simulations and (2) deformation stacking faults and twinning have not been reported in Al due to its high stacking fault energy. For nanocrystalline Cu, we found that twinning becomes a major deformation mechanism, which contrasts with the literature reports that deformation twinning in coarse-grained Cu occurs only under high strain rate and/or low temperature conditions and that reducing grain sizes suppresses deformation twinning. The investigation of the twinning morphology suggests that twins and stacking faults in nanocrystalline Cu were formed through partial dislocation emissions from grain boundaries. This mechanism differs from the pole mechanism operating in coarse-grained Cu.

  16. Design of Shallow p-type Dopants in ZnO (Presentation)

    SciTech Connect

    Wei, S.H.; Li, J.; Yan. Y.

    2008-05-01

    ZnO is a promising material for short wave-length opto-electronic devices such as UV lasers and LEDs due to its large exciton binding energy and low material cost. ZnO can be doped easily n-type, but the realization of stable p-type ZnO is rather difficult. Using first-principles band structure methods the authors address what causes the p-type doping difficulty in ZnO and how to overcome the p-type doping difficulty in ZnO.

  17. High performance p-type thermoelectric materials and methods of preparation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)

    2005-01-01

    The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4-xAxSb3-yBy wherein 0?x?4, A is a transition metal, B is a pnicogen, and 0?y?3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.

  18. Simulation and bonding of dopants in nanocrystalline diamond.

    PubMed

    Barnard, A S; Russo, S P; Snook, I K

    2005-09-01

    The doping of the wide-band gap semiconductor diamond has led to the invention of many electronic and optoelectronic devices. Impurities can be introduced into diamond during chemical vapor deposition or high pressure-high temperature growth, resulting in materials with unusual physical and chemical properties. For electronic applications one of the main objectives in the doping of diamond is the production of p-type and n-type semiconductors materials; however, the study of dopants in diamond nanoparticles is considered important for use in nanodevices, or as qubits for quantum computing. Such devices require that bonding of dopants in nanodiamond must be positioned substitutionally at a lattice site, and must exhibit minimal or no possibility of diffusion to the nanocrystallite surface. In light of these requirements, a number of computational studies have been undertaken to examine the stability of various dopants in various forms of nanocrystalline diamond. Presented here is a review of some such studies, undertaken using quantum mechanical based simulation methods, to provide an overview of the crystal stability of doped nanodiamond for use in diamondoid nanodevices. PMID:16193953

  19. Rapid phase synthesis of nanocrystalline cobalt ferrite

    SciTech Connect

    Shanmugavel, T.; Raj, S. Gokul; Rajarajan, G.; Kumar, G. Ramesh

    2014-04-24

    Synthesis of single phase nanocrystalline Cobalt Ferrite (CoFe{sub 2}O{sub 4}) was achieved by single step autocombustion technique with the use of citric acid as a chelating agent in mono proportion with metal. Specimens prepared with this method showed significantly higher initial permeability's than with the conventional process. Single phase nanocrystalline cobalt ferrites were formed at very low temperature. Surface morphology identification were carried out by transmission electron microscopy (TEM) analysis. The average grain size and density at low temperature increased gradually with increasing the temperature. The single phase formation is confirmed through powder X-ray diffraction analysis. Magnetization measurements were obtained at room temperature by using a vibrating sample magnetometer (VSM), which showed that the calcined samples exhibited typical magnetic behaviors. Temperature dependent magnetization results showed improved behavior for the nanocrystalline form of cobalt ferrite when compared to the bulk nature of materials synthesized by other methods.

  20. Convergence of valence bands for high thermoelectric performance for p-type InN

    NASA Astrophysics Data System (ADS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  1. Tailoring nanocrystalline diamond film properties

    DOEpatents

    Gruen, Dieter M.; McCauley, Thomas G.; Zhou, Dan; Krauss, Alan R.

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  2. Cholinergic synaptic vesicles contain a V-type and a P-type ATPase.

    PubMed

    Yamagata, S K; Parsons, S M

    1989-11-01

    Fifty to eighty-five percent of the ATPase activity in different preparations of cholinergic synaptic vesicles isolated from Torpedo electric organ was half-inhibited by 7 microM vanadate. This activity is due to a recently purified phosphointermediate, or P-type, ATPase, Acetylcholine (ACh) active transport by the vesicles was stimulated about 35% by vanadate, demonstrating that the P-type enzyme is not the proton pump responsible for ACh active transport. Nearly all of the vesicle ATPase activity was inhibited by N-ethylmaleimide. The P-type ATPase could be protected from N-ethylmaleimide inactivation by vanadate, and subsequently reactivated by complexation of vanadate with deferoxamine. The inactivation-protection pattern suggests the presence of a vanadate-insensitive, N-ethylmaleimide-sensitive ATPase consistent with a vacuolar, or V-type, activity expected to drive ACh active transport. ACh active transport was half-inhibited by 5 microM N-ethylmaleimide, even in the presence of vanadate. The presence of a V-type ATPase was confirmed by Western blots using antisera raised against three separate subunits of chromaffin granule vacuolar ATPase I. Both ATPase activities, the P-type polypeptides, and the 38-kilodalton polypeptide of the V-type ATPase precisely copurify with the synaptic vesicles. Solubilization of synaptic vesicles in octaethyleneglycol dodecyl ether detergent results in several-fold stimulation of the P-type activity and inactivation of the V-type activity, thus explaining why the V-type activity was not detected previously during purification of the P-type ATPase. It is concluded that cholinergic vesicles contain a P-type ATPase of unknown function and a V-type ATPase which is the proton pump. PMID:2552014

  3. p+-n--n+-type power diode with crystalline/nanocrystalline Si mosaic electrodes

    NASA Astrophysics Data System (ADS)

    Wensheng, Wei; Chunxi, Zhang

    2016-06-01

    Using p+-type crystalline Si with n+-type nanocrystalline Si (nc-Si) and n+-type crystalline Si with p+-type nc-Si mosaic structures as electrodes, a type of power diode was prepared with epitaxial technique and plasma-enhanced chemical vapor deposition (PECVD) method. Firstly, the basic p+-n--n+-type Si diode was fabricated by epitaxially growing p+- and n+-type layers on two sides of a lightly doped n--type Si wafer respectively. Secondly, heavily phosphorus-doped Si film was deposited with PECVD on the lithography mask etched p+-type Si side of the basic device to form a component with mosaic anode. Thirdly, heavily boron-doped Si film was deposited on the etched n+-type Si side of the second device to form a diode with mosaic anode and mosaic cathode. The images of high resolution transmission electronic microscope and patterns of X-ray diffraction reveal nanocrystallization in the phosphorus- and boron-deposited films. Electrical measurements such as capacitance-voltage relation, current-voltage feature and reverse recovery waveform were carried out to clarify the performance of prepared devices. The important roles of (n-)Si/(p+)nc-Si and (n-)Si/(n+)nc-Si junctions in the static and dynamic conduction processes in operating diodes were investigated. The performance of mosaic devices was compared to that of a basic one. Project supported by the National Natural Science Foundation of China (No. 61274006).

  4. Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting.

    PubMed

    Kibria, M G; Zhao, S; Chowdhury, F A; Wang, Q; Nguyen, H P T; Trudeau, M L; Guo, H; Mi, Z

    2014-04-30

    Solar water splitting is one of the key steps in artificial photosynthesis for future carbon-neutral, storable and sustainable source of energy. Here we show that one of the major obstacles for achieving efficient and stable overall water splitting over the emerging nanostructured photocatalyst is directly related to the uncontrolled surface charge properties. By tuning the Fermi level on the nonpolar surfaces of gallium nitride nanowire arrays, we demonstrate that the quantum efficiency can be enhanced by more than two orders of magnitude. The internal quantum efficiency and activity on p-type gallium nitride nanowires can reach ~51% and ~4.0 mol hydrogen h(-1) g(-1), respectively. The nanowires remain virtually unchanged after over 50,000 μmol gas (hydrogen and oxygen) is produced, which is more than 10,000 times the amount of photocatalyst itself (~4.6 μmol). The essential role of Fermi-level tuning in balancing redox reactions and in enhancing the efficiency and stability is also elucidated.

  5. Segmentation of the Outer Contact on P-Type Coaxial Germanium Detectors

    SciTech Connect

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.

    2006-09-21

    Germanium detector arrays are needed for low-level counting facilities. The practical applications of such user facilities include characterization of low-level radioactive samples. In addition, the same detector arrays can also perform important fundamental physics measurements including the search for rare events like neutrino-less double-beta decay. Coaxial germanium detectors having segmented outer contacts will provide the next level of sensitivity improvement in low background measurements. The segmented outer detector contact allows performance of advanced pulse shape analysis measurements that provide additional background reduction. Currently, n-type (reverse electrode) germanium coaxial detectors are used whenever a segmented coaxial detector is needed because the outer boron (electron barrier) contact is thin and can be segmented. Coaxial detectors fabricated from p-type germanium cost less, have better resolution, and are larger than n-type coaxial detectors. However, it is difficult to reliably segment p-type coaxial detectors because thick (~1 mm) lithium-diffused (hole barrier) contacts are the standard outside contact for p-type coaxial detectors. During this Phase 1 Small Business Innovation Research (SBIR) we have researched the possibility of using amorphous germanium contacts as a thin outer contact of p-type coaxial detectors that can be segmented. We have developed amorphous germanium contacts that provide a very high hole barrier on small planar detectors. These easily segmented amorphous germanium contacts have been demonstrated to withstand several thousand volts/cm electric fields with no measurable leakage current (<1 pA) from charge injection over the hole barrier. We have also demonstrated that the contact can be sputter deposited around and over the curved outside surface of a small p-type coaxial detector. The amorphous contact has shown good rectification properties on the outside of a small p-type coaxial detector. These encouraging

  6. PATBox: A Toolbox for Classification and Analysis of P-Type ATPases

    PubMed Central

    Søndergaard, Dan; Pedersen, Christian Nørgaard Storm

    2015-01-01

    P-Type ATPases are part of the regulatory system of the cell where they are responsible for transporting ions and lipids through the cell membrane. These pumps are found in all eukaryotes and their malfunction has been found to cause several severe diseases. Knowing which substrate is pumped by a certain P-Type ATPase is therefore vital. The P-Type ATPases can be divided into 11 subtypes based on their specificity, that is, the substrate that they pump. Determining the subtype experimentally is time-consuming. Thus it is of great interest to be able to accurately predict the subtype based on the amino acid sequence only. We present an approach to P-Type ATPase sequence classification based on the k-nearest neighbors, similar to a homology search, and show that this method provides performs very well and, to the best of our knowledge, better than any existing method despite its simplicity. The classifier is made available as a web service at http://services.birc.au.dk/patbox/ which also provides access to a database of potential P-Type ATPases and their predicted subtypes. PMID:26422234

  7. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    PubMed

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented. PMID:26879813

  8. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    PubMed

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  9. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect

    Xiao, Hai; Dong, Junhang; Lin, Jerry; Romero, Van

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  10. MD Simulations of P-Type ATPases in a Lipid Bilayer System.

    PubMed

    Autzen, Henriette Elisabeth; Musgaard, Maria

    2016-01-01

    Molecular dynamics (MD) simulation is a computational method which provides insight on protein dynamics with high resolution in both space and time, in contrast to many experimental techniques. MD simulations can be used as a stand-alone method to study P-type ATPases as well as a complementary method aiding experimental studies. In particular, MD simulations have proved valuable in generating and confirming hypotheses relating to the structure and function of P-type ATPases. In the following, we describe a detailed practical procedure on how to set up and run a MD simulation of a P-type ATPase embedded in a lipid bilayer using software free of use for academics. We emphasize general considerations and problems typically encountered when setting up simulations. While full coverage of all possible procedures is beyond the scope of this chapter, we have chosen to illustrate the MD procedure with the Nanoscale Molecular Dynamics (NAMD) and the Visual Molecular Dynamics (VMD) software suites.

  11. Identification and design principles of low hole effective mass p-type transparent conducting oxides

    PubMed Central

    Hautier, Geoffroy; Miglio, Anna; Ceder, Gerbrand; Rignanese, Gian-Marco; Gonze, Xavier

    2013-01-01

    The development of high-performance transparent conducting oxides is critical to many technologies from transparent electronics to solar cells. Whereas n-type transparent conducting oxides are present in many devices, their p-type counterparts are not largely commercialized, as they exhibit much lower carrier mobilities due to the large hole effective masses of most oxides. Here we conduct a high-throughput computational search on thousands of binary and ternary oxides and identify several highly promising compounds displaying exceptionally low hole effective masses (up to an order of magnitude lower than state-of-the-art p-type transparent conducting oxides), as well as wide band gaps. In addition to the discovery of specific compounds, the chemical rationalization of our findings opens new directions, beyond current Cu-based chemistries, for the design and development of future p-type transparent conducting oxides. PMID:23939205

  12. High performance P-type thermoelectric materials and methods of preparation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)

    2002-01-01

    The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn.sub.4-x A.sub.x Sb.sub.3-y B.sub.y wherein 0.ltoreq.x.ltoreq.4, A is a transition metal, B is a pnicogen, and 0.ltoreq.y.ltoreq.3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn.sub.4 Sb.sub.3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.

  13. The algorithm for the piezoresistance coefficients of p-type polysilicon

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Rongyan, Chuai

    2016-08-01

    In order to improve the piezoresistance theory of polysilicon, based on the tunneling piezoresistance model, using the mechanisms of approximate valence band equation and shifts of the hole transfer and hole conduction mass by stress, a novel algorithm for the piezoresistance coefficients of p-type polysilicon is presented. It proposes three fundamental piezoresistance coefficients π11, π12 and π44 of the grain neutral and grain boundary regions, separately. With those piezoresistance coefficients, the gauge factors of the p-type polysilicon nanofilm and the p-type common polysilicon film are calculated, and then the plots of the gauge factor as a function of doping concentration are given, which are consistent with the experimental results. Project supported by the National Natural Science Foundation of China (No. 61372019).

  14. Resistivity dependence of minority carrier lifetime and cell performance in p-type dendritic web silicon ribbon

    NASA Astrophysics Data System (ADS)

    Hilali, Mohamed; Ebong, Abasifreke; Rohatgi, Ajeet; Meier, Daniel L.

    2001-12-01

    This study shows that the bulk lifetime in 95 μm thick p-type dendritic web silicon solar cells is a strong function of bulk resistivity. The higher the resistivity, the greater the bulk lifetime. This behavior is explained on the basis of dopant-defect interaction, which increases the lifetime limiting trap concentration with the addition of dopant atoms. Model calculations show that in the absence of doping dependence of bulk lifetime ( τ), ˜2 Ω cm web should give the best cell efficiency for bulk lifetimes below 30 μs. However, strong doping dependence of bulk lifetime in p-web cells shifts the optimum resistivity from 2 to 15 Ω cm. Bulk lifetime in the as-grown web material was found to be less than 1 μs for all the resistivities. After the cell processing which involves phosphorus gettering, aluminum gettering, and SiN induced hydrogen passivation of defects, the bulk lifetime increased to 6.68, 11, 31 and 68.9 μs in 0.62, 1.37, 6.45 and 15 Ω cm p-type web material, respectively. Therefore, cell process induced recovery of lifetime in web is doping dependent, which favors high resistivity. Solar cells fabricated on 95 μm thick web silicon by a manufacturable process involving screen-printing and belt-line processing gave 14.5% efficient 4 cm 2 cells on 15 Ω cm resistivity. This represents a record efficiency for such a thin manufacturable screen-printed cell on a low-cost PV grade Si ribbon that requires no wafering or etching.

  15. Electrical and optical properties of p-type InN

    SciTech Connect

    Mayer, Marie A.; Choi, Soojeong; Bierwagen, Oliver; Smith, Holland M.; Haller, Eugene E.; Speck, James S.; Walukiewicz, Wladek

    2011-01-01

    We have performed comprehensive studies of optical, thermoelectric and electrical properties of Mg doped InN with varying Mg doping levels and sample thicknesses. Room temperature photoluminescence spectra show a Mg acceptor related emission and the thermopower provides clear evidence for the presence of mobile holes. Although the effects of the hole transport are clearly observed in the temperature dependent electrical properties, the sign of the apparent Hall coefficient remains negative in all samples. We show that the standard model of two electrically well connected layers (n-type surface electron accumulation and p-type bulk) does not properly describe Hall effect in p-type InN.

  16. Carrier removal and defect behavior in p-type InP

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Drevinsky, P. J.

    1992-01-01

    A simple expression, obtained from the rate equation for defect production, was used to relate carrier removal to defect production and hole trapping rates in p-type InP after irradiation by 1-MeV electrons. Specific contributions to carrier removal from defect levels H3, H4, and H5 were determined from combined deep-level transient spectroscopy (DLTS) and measured carrier concentrations. An additional contribution was attributed to one or more defects not observed by the present DLTS measurements. The high trapping rate observed for H5 suggests that this defect, if present in relatively high concentration, could be dominant in p-type InP.

  17. Dual ohmic contact to N- and P-type silicon carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  18. Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol-gel combustion method

    SciTech Connect

    Han Yingchao; Li Shipu; Wang Xinyu; Chen Xiaoming

    2004-01-03

    The citric acid sol-gel combustion method has been used for the synthesis of nanocrystalline hydroxyapatite (HAP) powder from calcium nitrate, diammonium hydrogen phosphate and citric acid. The phase composition of HAP powder was characterized by X-ray powder diffraction analysis (XRD). The morphology of HAP powder was observed by transmission electron microscope (TEM). The HAP powder has been sintered into microporous ceramic in air at 1200 deg. C with 3 h soaking time. The microstructure and phase composition of the resulting HAP ceramic were characterized by scanning electron microscope (SEM) and XRD, respectively. The physical characterization of open porosity and flexural strength have also been carried out.

  19. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns.

    PubMed

    Kurra, Narendra; Bhadram, Venkata Srinu; Narayana, Chandrabhas; Kulkarni, G U

    2012-10-26

    We describe a transfer-free method for the fabrication of nanocrystalline graphene (nc-graphene) on SiO(2) substrates directly from patterned carbonaceous deposits. The deposits were produced from the residual hydrocarbons present in the vacuum chamber without any external source by using an electron beam induced carbonaceous deposition (EBICD) process. Thermal treatment under vacuum conditions in the presence of Ni catalyst transformed the EBIC deposit into nc-graphene patterns, confirmed using Raman and TEM analysis. The nc-graphene patterns have been employed as an active p-type channel material in a field effect transistor (FET) which showed a hole mobility of ~90 cm(2) V(-1) s(-1). The nc-graphene also proved to be suitable material for IR detection.

  20. Field effect transistors and photodetectors based on nanocrystalline graphene derived from electron beam induced carbonaceous patterns

    NASA Astrophysics Data System (ADS)

    Kurra, Narendra; Srinu Bhadram, Venkata; Narayana, Chandrabhas; Kulkarni, G. U.

    2012-10-01

    We describe a transfer-free method for the fabrication of nanocrystalline graphene (nc-graphene) on SiO2 substrates directly from patterned carbonaceous deposits. The deposits were produced from the residual hydrocarbons present in the vacuum chamber without any external source by using an electron beam induced carbonaceous deposition (EBICD) process. Thermal treatment under vacuum conditions in the presence of Ni catalyst transformed the EBIC deposit into nc-graphene patterns, confirmed using Raman and TEM analysis. The nc-graphene patterns have been employed as an active p-type channel material in a field effect transistor (FET) which showed a hole mobility of ˜90 cm2 V-1 s-1. The nc-graphene also proved to be suitable material for IR detection.

  1. Optical and electrical properties of mechanochemically synthesized nanocrystalline delafossite CuAlO2.

    PubMed

    Prakash, T; Prasad, K Padma; Ramasamy, S; Murty, B S

    2008-08-01

    Nanocrystalline p-type semiconductor copper aluminum oxide (CuAlO2) has been synthesized by mechanical alloying using freshly prepared Cu2O and alpha-AlO2O3 nanocrystals in toluene medium. A study on structural property performed with different alloying and post annealing durations, by X-ray diffraction (XRD) reveals the formation of single phase with average crystallite size approximately 45 nm. Optical absorbance onset at 364.5 nm confirms its wide band gap nature (E(g) = 3.4 eV) and the fluorescence emission behaviour (390 nm) confirms its direct band type transition. The activation energy for electrical conduction has been calculated by Arrhenius plots using impedance measurement. Both grain and grain boundary conductivity takes place with almost equal activation energies of approximately 0.45 eV. The paper discusses synthesis, structural, optical and electrical properties of delafossite CuAlO2 in detail. PMID:19049217

  2. Low energy electron microscopy and Auger electron spectroscopy studies of Cs-O activation layer on p-type GaAs photocathode

    SciTech Connect

    Jin, Xiuguang; Cotta, Alexandre A. C.; Chen, Gong; N'Diaye, Alpha T.; Schmid, Andreas K.; Yamamoto, Naoto

    2014-11-07

    Work function, photoemission yield, and Auger electron spectra were measured on (001) p-type GaAs during negative electron affinity (NEA) surface preparation, surface degradation, and heating processes. The emission current sensitively depends on work function change and its dependence allows us to determine that the shape of the vacuum barrier was close to double triangular. Regarding the NEA surface degradation during photoemission, we discuss the importance of residual gas components the oxygen and hydrogen. We also found that gentle annealing (≤100 °C) of aged photocathodes results in a lower work function and may offer a patch to reverse the performance degradation.

  3. A structural and functional perspective of DyP-type peroxidase family.

    PubMed

    Yoshida, Toru; Sugano, Yasushi

    2015-05-15

    Dye-decolorizing peroxidase from the basidiomycete Bjerkandera adusta Dec 1 (DyP) is a heme peroxidase. This name reflects its ability to degrade several anthraquinone dyes. The substrate specificity, the amino acid sequence, and the tertiary structure of DyP are different from those of the other heme peroxidase (super)families. Therefore, many proteins showing the similar amino acid sequences to that of DyP are called DyP-type peroxidase which is a new family of heme peroxidase identified in 2007. In fact, all structures of this family show a similar structure fold. However, this family includes many proteins whose amino acid sequence identity to DyP is lower than 15% and/or whose catalytic efficiency (kcat/Km) is a few orders of magnitude less than that of DyP. A protein showing an activity different from peroxidase activity (dechelatase activity) has been also reported. In addition, the precise physiological roles of DyP-type peroxidases are unknown. These facts raise a question of whether calling this family DyP-type peroxidase is suitable. Here, we review the differences and similarities of structure and function among this family and propose the reasonable new classification of DyP-type peroxidase family, that is, class P, I and V. In this contribution, we discuss the adequacy of this family name.

  4. P-type ATPase superfamily: evidence for critical roles for kingdom evolution.

    PubMed

    Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio

    2003-04-01

    The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things. PMID:12763799

  5. p -type Bi2Se3 for topological insulator and low-temperature thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Hor, Y. S.; Richardella, A.; Roushan, P.; Xia, Y.; Checkelsky, J. G.; Yazdani, A.; Hasan, M. Z.; Ong, N. P.; Cava, R. J.

    2009-05-01

    The growth and elementary properties of p -type Bi2Se3 single crystals are reported. Based on a hypothesis about the defect chemistry of Bi2Se3 , the p -type behavior has been induced through low-level substitutions (1% or less) of Ca for Bi. Scanning tunneling microscopy is employed to image the defects and establish their charge. Tunneling and angle-resolved photoemission spectra show that the Fermi level has been lowered into the valence band by about 400 meV in Bi1.98Ca0.02Se3 relative to the n -type material. p -type single crystals with ab -plane Seebeck coefficients of +180μV/K at room temperature are reported. These crystals show an anomalous peak in the Seebeck coefficient at low temperatures, reaching +120μVK-1 at 7 K, giving them a high thermoelectric power factor at low temperatures. In addition to its interesting thermoelectric properties, p -type Bi2Se3 is of substantial interest for studies of technologies and phenomena proposed for topological insulators.

  6. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  7. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  8. Optical Properties of p-type ZnO Doped by As Ion Implantation

    SciTech Connect

    Jeong, T.S.; Youn, C.J.; Han, M.S.; Park, Y. S.; Lee, W.S.

    2005-06-30

    As-doped p-type ZnO has been achieved by ion implantation. The As-related optical properties were analyzed by using secondary ion mass spectrometry, the Raman scattering, and the photoluminescence experiments. From the I-V measurement, the behavior of rectifying on these samples is confirmed.

  9. Microemulsion-based synthesis of nanocrystalline materials.

    PubMed

    Ganguli, Ashok K; Ganguly, Aparna; Vaidya, Sonalika

    2010-02-01

    Microemulsion-based synthesis is found to be a versatile route to synthesize a variety of nanomaterials. The manipulation of various components involved in the formation of a microemulsion enables one to synthesize nanomaterials with varied size and shape. In this tutorial review several aspects of microemulsion based synthesis of nanocrystalline materials have been discussed which would be of interest to a cross-section of researchers working on colloids, physical chemistry, nanoscience and materials chemistry. The review focuses on the recent developments in the above area with current understanding on the various factors that control the structure and dynamics of microemulsions which can be effectively used to manipulate the size and shape of nanocrystalline materials. PMID:20111772

  10. Nanosecond magnetization reversal in nanocrystalline magnetic films

    NASA Astrophysics Data System (ADS)

    Rahman, I. Z.; Gandhi, A. A.; Khaddem-Mousavi, M. V.; Lynch, T. F.; Rahman, M. A.

    2007-03-01

    This paper reports on the investigation of dynamic magnetization reversal process in electrodeposited nanocrystalline Ni and Ni80Fe20 films by employing nanosecond magnetic pulse technique. The surface morphology has been investigated using SEM, EDAX, XRD and AFM analyses and static magnetic properties of the films are characterized by vibrating sample magnetometer (VSM). Two different techniques are designed and employed to study the nanosecond magnetization reversal process in nanocrystalline thin films: Magneto-Optical Kerr Effect (MOKE) and nanosecond pulsed field magnetometer. Results of dynamical behavior as a function of several variables such as magnitude of applied bias magnetic field, amplitude and width of the pulsed magnetic field are analyzed in detail using both techniques. A computer simulation package called Object Oriented Micro-Magnetic Framework (OOMMF) has been used to simulate the magnetic domain patterns of the samples.

  11. Cathodoluminescence studies of nanocrystalline silicon films for field emission displays

    NASA Astrophysics Data System (ADS)

    Biaggi Labiosa, Azlin M.

    The cathodoluminescence (CL) emission from p-type porous silicon (PSi) films excited with low energy electron beams compatible with field emission display (FED) technologies was investigated. First, a study was carried out to find the optimal PSi configuration that would yield the strongest CL emission. It was found that the highest, stable CL intensities were obtained from samples prepared from p-type wafers with resistivity between 1-2 Ocm. Afterwards, the effects on the morphological details and the chemical composition due to the electron irradiation of the PSi films were studied. During a continuous irradiation of 10 hours the CL intensity of the films reduced in less than 10%. In situ SIMS analyses before and after prolonged e-beam excitation showed minor compositional changes of the film and reduced sputtering of the silicon nanoparticles due to the electron irradiation. It was also found that the electron bombardment causes microscale morphological modifications of the films, but the nanoscale features appear to be unchanged. The structural changes are manifested by the increase in the density of the nanoparticles which explains the significant enhancement of the photoluminescence (PL) that follows the electron irradiation. Second, after a thorough characterization of the PSi films under electron irradiation, tuning of the CL emission of PSi films was investigated. The PSi films used for this experiment were non-oxidized films unlike the ones used for the CL characterization that were oxidized films. The tuning was achieved by controlling the average size of the nanostructure thus showing that the origin of this CL emission is associated with the quantum confinement and the surface chemistry effects that are known to exist in the porous silicon system. However, the CL emission obtained from these samples was unstable which is attributed to the breaking of Si--H bonds due to the electron irradiation. Dangling bonds are then formed on the surface and this in

  12. P-type Oxides and the Growth of Heterostructure Oxide Devices

    NASA Astrophysics Data System (ADS)

    Hosono, Hideo

    2002-03-01

    Transparent conductive oxides (TCOs) are widely used as transparent metallic electrodes for various displays and solar cells. However, even though TCO is an n-type semiconductor, there is almost no application based on the active function as a compound semiconductor. The primary reason is because most active functions in semiconductors come from the characteristic properties of p-n junction but TCOs do not have a p-type. We anticipate that new frontier of transparent oxide semiconductors (TOSs) utilizing both optical transparency and electron activity in semiconductors will be opened if a p-type TCO is realized. In 1997, we reported on CuAlO2 (thin films) as the first p-type TCO along with a chemical design concept to explore the candidate materials. After that, a series of p-type TCOs based on a Cu+ -based system have been reported following the design concept, i.e., CuGaO2, CuInO2, and SrCu2O2. In 1999, a transparent p-n heterojunction diode exhibiting a rectifying I-V characteristic was fabricated using a combination of p-SrCu2O2 (SCO) and n-ZnO. Ultraviolet-emitting diode (UV-LED) is a typical active device, which can use the features of TOSs. Thus, since the initiation of our project (October, 1999), we concentrated our effort on the fabrication of UV-LED based on transparent p-n junction composed of TOSs. The fabrication was realized(APL,77,475,2000) by the formation of p-n heterojunction composed of heteroepitaxially grown p-SCO and n-ZnO. In this talk I will review our approach to P-type TCOs and UV-LED based on PN heterojuction utilizing TCOs along with recent advances.

  13. The p-type conduction mechanism in Cu2O: a first principles study.

    PubMed

    Nolan, Michael; Elliott, Simon D

    2006-12-01

    Materials based on Cu2O are potential p-type transparent semiconducting oxides. Developing an understanding of the mechanism leading to p-type behaviour is important. An accepted origin is the formation of Cu vacancies. However, the way in which this mechanism leads to p-type properties needs to be investigated. This paper presents a first principles analysis of the origin of p-type semiconducting behaviour in Cu2O with 1.5 and 3% Cu vacancy concentrations. Plane wave density functional theory (DFT) with the Perdew-Burke Ernzerhof (PBE) exchange-correlation functional is applied. In order to investigate the applicability of DFT, we firstly show that CuO, with 50% Cu vacancies cannot be described with DFT and in order to obtain a consistent description of CuO, the DFT + U approach is applied. The resulting electronic structure is consistent with experiment, with a spin moment of 0.64 mu(B) and an indirect band gap of 1.48 eV for U = 7 eV. However, for a 3% Cu vacancy concentration in Cu2O, the DFT and DFT + U descriptions of Cu vacancies are similar, indicating that DFT is suitable for a small concentration of Cu vacancies; the formation energy of a Cu vacancy is no larger than 1.7 eV. Formation of Cu vacancies produces delocalised hole states with hole effective masses consistent with the semiconducting nature of Cu2O. These results demonstrate that the p-type semiconducting properties observed for Cu2O are explained by a small concentration of Cu vacancies. PMID:19810413

  14. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    SciTech Connect

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas; Clark, Blythe; Diantonio, Christopher

    2015-09-01

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. We demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.

  15. Perspectives of High-Temperature Thermoelectric Applications and p-type and n-type Aluminoborides

    NASA Astrophysics Data System (ADS)

    Mori, T.

    2016-08-01

    A need exists to develop high-temperature thermoelectric materials which can utilize high-temperature unutilized/waste heat in thermal power plants, steelworks, factories, incinerators, etc., and also focused solar power. The thermal power plant topping application is of potential high impact since it can sizably increase the efficiency of power plants which are the major supply of electrical power for many countries. Higher borides are possible candidates for their particular high-temperature stability, generally large Seebeck coefficients, α, and intrinsic low thermal conductivity. Excellent (|α| > 200 μV/K) p-type or n-type behavior was recently achieved in the aluminoboride YAl x B14 by varying the occupancy of Al sites, x. Finding p-type and n-type counterparts has long been a difficulty of thermoelectric research not limited to borides. This paper reviews possible high-temperature thermoelectric applications, and recent developments and perspectives of thermoelectric aluminoborides.

  16. Direct observation of proton pumping by a eukaryotic P-type ATPase.

    PubMed

    Veshaguri, Salome; Christensen, Sune M; Kemmer, Gerdi C; Ghale, Garima; Møller, Mads P; Lohr, Christina; Christensen, Andreas L; Justesen, Bo H; Jørgensen, Ida L; Schiller, Jürgen; Hatzakis, Nikos S; Grabe, Michael; Pomorski, Thomas Günther; Stamou, Dimitrios

    2016-03-25

    In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters.

  17. An integrated driving circuit implemented with p-type LTPS TFTs for AMOLED

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Qing; Wu, Chun-Ya; Hao, Da-Shou; Yao, Ying; Meng, Zhi-Guo; Xiong, Shao-Zhen

    2009-03-01

    Based on the technology of low temperature poly silicon thin film transistors (poly-Si-TFTs), a novel p-type TFT AMOLED panel with self-scanned driving circuit is introduced in this paper. A shift register formed with novel p-type TFTs is proposed to realize the gate driver. A flip-latch cooperated with the shift register is designed to conduct the data writing. In order to verify the validity of the proposed design, the circuits are simulated with SILVACO TCAD tools, using the MODEL in which the parameters of LTPS TFTs were extracted from the LTPS TFTs made in our lab. The simulation results indicate that the circuit can fulfill the driving function.

  18. CALCULATING THE HABITABLE ZONE OF BINARY STAR SYSTEMS. II. P-TYPE BINARIES

    SciTech Connect

    Haghighipour, Nader; Kaltenegger, Lisa

    2013-11-10

    We have developed a comprehensive methodology for calculating the circumbinary habitable zone (HZ) in planet-hosting P-type binary star systems. We present a general formalism for determining the contribution of each star of the binary to the total flux received at the top of the atmosphere of an Earth-like planet and use the Sun's HZ to calculate the inner and outer boundaries of the HZ around a binary star system. We apply our calculations to the Kepler's currently known circumbinary planetary systems and show the combined stellar flux that determines the boundaries of their HZs. We also show that the HZ in P-type systems is dynamic and, depending on the luminosity of the binary stars, their spectral types, and the binary eccentricity, its boundaries vary as the stars of the binary undergo their orbital motion. We present the details of our calculations and discuss the implications of the results.

  19. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors

    SciTech Connect

    Lyons, J. L.; Janotti, A.; Van de Walle, C. G.

    2014-01-07

    We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.

  20. Detection of minority carrier traps in p-type 4H-SiC

    SciTech Connect

    Alfieri, G.; Kimoto, T.

    2014-03-03

    Contrarily to the case of n-type 4H-SiC, very little is known about the presence of minority carrier traps in p-type epilayers. In this study, we performed the electrical characterization of as-grown, electron irradiated, and thermally oxidized p-type 4H-SiC, by using minority carrier transient spectroscopy. Four minority carrier traps are reported in 1.6–2.3 eV energy range above the valence band edge (E{sub V}). Particular emphasis is given to the mid-gap minority carrier trap (EH{sub 6∕7}) and to its correlation to an energetically close mid-gap majority carrier trap (HK4)

  1. Use of hexamethyldisiloxane for p-type microcrystalline silicon oxycarbide layers

    NASA Astrophysics Data System (ADS)

    Goyal, Prabal; Hong, Junegie; Haddad, Farah; Maurice, Jean-Luc; Cabarrocas, Pere Roca i.; Johnson, Erik

    2016-01-01

    The use of hexamethyldisiloxane (HMDSO) as an oxygen source for the growth of p-type silicon-based layers deposited by Plasma Enhanced Chemical Vapor Deposition is evaluated. The use of this source led to the incorporation of almost equivalent amounts of oxygen and carbon, resulting in microcrystalline silicon oxycarbide thin films. The layers were examined with characterisation techniques including Spectroscopic Ellipsometry, Dark Conductivity, Fourier Transform Infrared Spectroscopy, Secondary Ion Mass Spectrometry and Transmission Electron Microscopy to check material composition and structure. Materials studies show that the refractive indices of the layers can be tuned over the range from 2.5 to 3.85 (measured at 600 nm) and in-plane dark conductivities over the range from 10-8 S/cm to 1 S/cm, suggesting that these doped layers are suitable for solar cell applications. The p-type layers were tested in single junction amorphous silicon p-i-n type solar cells.

  2. Perspectives of High-Temperature Thermoelectric Applications and p-type and n-type Aluminoborides

    NASA Astrophysics Data System (ADS)

    Mori, T.

    2016-10-01

    A need exists to develop high-temperature thermoelectric materials which can utilize high-temperature unutilized/waste heat in thermal power plants, steelworks, factories, incinerators, etc., and also focused solar power. The thermal power plant topping application is of potential high impact since it can sizably increase the efficiency of power plants which are the major supply of electrical power for many countries. Higher borides are possible candidates for their particular high-temperature stability, generally large Seebeck coefficients, α, and intrinsic low thermal conductivity. Excellent (|α| > 200 μV/K) p-type or n-type behavior was recently achieved in the aluminoboride YAl x B14 by varying the occupancy of Al sites, x. Finding p-type and n-type counterparts has long been a difficulty of thermoelectric research not limited to borides. This paper reviews possible high-temperature thermoelectric applications, and recent developments and perspectives of thermoelectric aluminoborides.

  3. Measurement of the dead layer thickness in a p-type point contact germanium detector

    NASA Astrophysics Data System (ADS)

    Jiang, Hao; Yue, Qian; Li, Yu-Lan; Kang, Ke-Jun; Li, Yuan-Jing; Li, Jin; Lin, Shin-Ted; Liu, Shu-Kui; Ma, Hao; Ma, Jing-Lu; Su, Jian; Tsz-King Wong, Henry; Yang, Li-Tao; Zhao, Wei; Zeng, Zhi

    2016-09-01

    A 994 g mass p-type PCGe detector has been deployed during the first phase of the China Dark matter EXperiment, aiming at direct searches for light weakly interacting massive particles. Measuring the thickness of the dead layer of a p-type germanium detector is an issue of major importance since it determines the fiducial mass of the detector. This work reports a method using an uncollimated 133Ba source to determine the dead layer thickness. The experimental design, data analysis and Monte Carlo simulation processes, as well as the statistical and systematic uncertainties are described. A dead layer thickness of 1.02 mm was obtained based on a comparison between the experimental data and the simulated results. Supported by National Natural Science Foundation of China (10935005, 10945002, 11275107, 11175099)

  4. Absence of positronium formation in clean buried nanocavities in p-type silicon

    SciTech Connect

    Brusa, R.S.; Macchi, C.; Mariazzi, S.; Karwasz, G.P.; Egger, W.; Sperr, P.; Koegel, G.

    2005-06-15

    Buried nanocavities at about 350 nm depth in Si were produced by thermal treatment of He implanted p-type (100) Si. The internal surfaces of the nanocavities were found free of impurity decorations by examining the high-momentum part of the Doppler-broadened positron annihilation spectra. Positron lifetime measurements with a pulsed slow positron beam show neither a short lifetime (125-150 ps) ascribable to parapositronium nor a longer lifetime (2-4 ns) ascribable to pick-off annihilation of orthopositronium. The lifetime of positrons trapped into nanocavities was found to be about 500 ps. The absence of positronium formation could be explained by an insufficient electron density and a lack of electron states in the band gap at the nanocavities internal surfaces produced in the p-type silicon.

  5. Direct observation of proton pumping by a eukaryotic P-type ATPase.

    PubMed

    Veshaguri, Salome; Christensen, Sune M; Kemmer, Gerdi C; Ghale, Garima; Møller, Mads P; Lohr, Christina; Christensen, Andreas L; Justesen, Bo H; Jørgensen, Ida L; Schiller, Jürgen; Hatzakis, Nikos S; Grabe, Michael; Pomorski, Thomas Günther; Stamou, Dimitrios

    2016-03-25

    In eukaryotes, P-type adenosine triphosphatases (ATPases) generate the plasma membrane potential and drive secondary transport systems; however, despite their importance, their regulation remains poorly understood. We monitored at the single-molecule level the activity of the prototypic proton-pumping P-type ATPase Arabidopsis thaliana isoform 2 (AHA2). Our measurements, combined with a physical nonequilibrium model of vesicle acidification, revealed that pumping is stochastically interrupted by long-lived (~100 seconds) inactive or leaky states. Allosteric regulation by pH gradients modulated the switch between these states but not the pumping or leakage rates. The autoinhibitory regulatory domain of AHA2 reduced the intrinsic pumping rates but increased the dwell time in the active pumping state. We anticipate that similar functional dynamics underlie the operation and regulation of many other active transporters. PMID:27013734

  6. p-type ZnS:N nanowires: Low-temperature solvothermal doping and optoelectronic properties

    SciTech Connect

    Wang, Ming-Zheng; Xie, Wei-Jie; Hu, Han; Yu, Yong-Qiang; Wu, Chun-Yan; Wang, Li; Luo, Lin-Bao

    2013-11-18

    Nitrogen doped p-type ZnS nanowires (NWs) were realized using thermal decomposition of triethylamine at a mild temperature. Field-effect transistors made from individual ZnS:N NWs revealed typical p-type conductivity behavior, with a hole mobility of 3.41 cm{sup 2}V{sup −1}s{sup −1} and a hole concentration of 1.67 × 10{sup 17} cm{sup −3}, respectively. Further analysis found that the ZnS:N NW is sensitive to UV light irradiation with high responsivity, photoconductive gain, and good spectral selectivity. The totality of this study suggests that the solvothermal doping method is highly feasible to dope one dimensional semiconductor nanostructures for optoelectronic devices application.

  7. High temperature terahertz response in a p-type quantum dot-in-well photodetector

    SciTech Connect

    Wolde, Seyoum; Lao, Yan-Feng; Unil Perera, A. G.; Zhang, Y. H.; Wang, T. M.; Kim, J. O.; Schuler-Sandy, Ted; Tian, Zhao-Bing; Krishna, S.

    2014-10-13

    Terahertz (THz) response observed in a p-type InAs/In{sub 0.15}Ga{sub 0.85}As/GaAs quantum dots-in-a-well (DWELL) photodetector is reported. This detector displays expected mid-infrared response (from ∼3 to ∼10 μm) at temperatures below ∼100 K, while strong THz responses up to ∼4.28 THz is observed at higher temperatures (∼100–130 K). Responsivity and specific detectivity at 9.2 THz (32.6 μm) under applied bias of −0.4 V at 130 K are ∼0.3 mA/W and ∼1.4 × 10{sup 6} Jones, respectively. Our results demonstrate the potential use of p-type DWELL in developing high operating temperature THz devices.

  8. Electronic Structure and Doping of P-Type Transparent Conducting Oxides: Preprint

    SciTech Connect

    Wei, S.-H.; Nie, X.; Zhang, S. B.

    2002-05-01

    Transparent conducting oxides (TCOs) are a group of materials that are widely used in solar cells and other optoelectronic devices. Recently, Cu-containing p-type TCOs such as MII Cu2 O2 (MIII=Mg, Ca, Sr, Ba) and CuMIII O2 (MIII=Al, Ga, In) have been proposed. Using first-principles band structure methods, we have systematically studied the electronic and optical properties of these p-type transparent oxides. For MII Cu2 O2 , we predict that adding a small amount of Ca into Sr Cu2 O2 can increase the transparency and conductivity. For CuMIII O2 , we explained the doping and band gap anomalies in this system and proposed a new approach to search for bipolar dopable wide-gap materials.

  9. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOEpatents

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  10. Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells.

    PubMed

    Sun, Haocheng; Hou, Xiaomeng; Wei, Qiulong; Liu, Huawei; Yang, Kecheng; Wang, Wei; An, Qinyou; Rong, Yaoguang

    2016-06-21

    A low-temperature solution-processed inorganic p-type contact material of vanadium oxide (VOx) was developed to fabricate planar-heterojunction perovskite solar cells. Using a solvent-assisted process, high-quality uniform and compact perovskite (CH3NH3PbI3) films were deposited on VOx coated substrates. Due to the high transmittance and quenching efficiency of VOx layers, a power conversion efficiency of over 14% was achieved.

  11. Method for producing high carrier concentration p-Type transparent conducting oxides

    DOEpatents

    Li, Xiaonan; Yan, Yanfa; Coutts, Timothy J.; Gessert, Timothy A.; Dehart, Clay M.

    2009-04-14

    A method for producing transparent p-type conducting oxide films without co-doping plasma enhancement or high temperature comprising: a) introducing a dialkyl metal at ambient temperature and a saturated pressure in a carrier gas into a low pressure deposition chamber, and b) introducing NO alone or with an oxidizer into the chamber under an environment sufficient to produce a metal-rich condition to enable NO decomposition and atomic nitrogen incorporation into the formed transparent metal conducting oxide.

  12. Numerical simulation of radiation damage effects in p-type silicon detectors

    NASA Astrophysics Data System (ADS)

    Petasecca, M.; Moscatelli, F.; Passeri, D.; Pignatel, G. U.; Scarpello, C.

    2006-07-01

    In the framework of the CERN-RD50 Collaboration, the adoption of p-type substrates has been proposed as a suitable approach to optimize the long-term radiation hardness of silicon detectors. In this work, we present a numerical model for the simulation of radiation damage effects in p-type silicon, developed within the general-purpose device simulator DESSIS. The model includes radiation-induced deep-level recombination centers in the semiconductor band-gap and the Shockley-Read-Hall statistics. In particular, two deep-level defects have been introduced: one located at EC-0.42 eV, corresponding to a single charge state divacancy and a second one located at EC-0.46 eV, corresponding to a single charge state tri-vacancy. For simulation purposes we have considered a simple, two-dimensional test structure, consisting of a single diode of 40 μm width and 300 μm depth, surrounded by a 6 μm wide guard ring. The n+ implant region depth is 1 μm, with donor concentration of ND=10 18 cm -3 implanted on a high-resistivity p-type substrate ( NA=5×10 12 cm -3). The results of simulations adopting the proposed radiation damage model for p-type substrate have been compared with experimental measurements carried out on similar test structures irradiated with neutrons at high fluence. A good agreement with the experimental data has been obtained for the depletion voltage and diode leakage current. The simulated current damage constant (α=3.75×10 -17 A cm -1) is in satisfactory agreement with values reported in the literature. A preliminary study of charge collection efficiency as a function of the fluence is also reported.

  13. Interfacial energy level bending in a crystalline p/p-type organic heterostructure

    SciTech Connect

    Zhu Feng; Grobosch, Mandy; Treske, Uwe; Knupfer, Martin; Huang Lizhen; Ji Shiliang; Yan Donghang

    2011-05-16

    A conduction channel was observed at the heterointerface of the crystalline p-type organic films copper phthalocyanine (CuPc) and 2,5-bis(4-biphenylyl) bithiophene (BP2T). Energy level bending at the interface is confirmed by photoemission spectroscopy, which verifies a charge transfer between CuPc and BP2T. This provides a further route to utilize interfacial electronic properties in functional devices and also documents the importance of reconsidering the interfacial electronic structure of organic heterostructures.

  14. Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobao; Zhang, Bingyan; Cui, Jin; Xiong, Dehua; Shen, Yan; Chen, Wei; Sun, Licheng; Cheng, Yibing; Wang, Mingkui

    2013-08-01

    Herein, an organic redox couple 1-methy-1H-tetrazole-5-thiolate (T-) and its disulfide dimer (T2) redox shuttle, as an electrolyte, is introduced in a p-type dye-sensitized solar cell (DSC) on the basis of an organic dye (P1) sensitizer and nanocrystal CuCrO2 electrode. Using this iodide-free transparent redox electrolyte in conjunction with the sensitized heterojunction, we achieve a high open-circuit voltage of over 300 mV. An optimal efficiency of 0.23% is obtained using a CoS counter electrode and an optimized electrolyte composition under AM 1.5 G 100 mW cm-2 light illumination which, to the best of our knowledge, represents the highest efficiency that has so far been reported for p-type DSCs using organic redox couples.Herein, an organic redox couple 1-methy-1H-tetrazole-5-thiolate (T-) and its disulfide dimer (T2) redox shuttle, as an electrolyte, is introduced in a p-type dye-sensitized solar cell (DSC) on the basis of an organic dye (P1) sensitizer and nanocrystal CuCrO2 electrode. Using this iodide-free transparent redox electrolyte in conjunction with the sensitized heterojunction, we achieve a high open-circuit voltage of over 300 mV. An optimal efficiency of 0.23% is obtained using a CoS counter electrode and an optimized electrolyte composition under AM 1.5 G 100 mW cm-2 light illumination which, to the best of our knowledge, represents the highest efficiency that has so far been reported for p-type DSCs using organic redox couples. Electronic supplementary information (ESI) available: Optimization of electrolyte concentration and the solvent used in the experiment, and the effects of different redox couples and the counter electrode on the dark current. See DOI: 10.1039/c3nr02169f

  15. Tunable p-type conductivity and transport properties of AlN nanowires via Mg doping.

    PubMed

    Tang, Yong-Bing; Bo, Xiang-Hui; Xu, Jun; Cao, Yu-Lin; Chen, Zhen-Hua; Song, Hai-Sheng; Liu, Chao-Ping; Hung, Tak-Fu; Zhang, Wen-Jun; Cheng, Hui-Ming; Bello, Igor; Lee, Shuit-Tong; Lee, Chun-Sing

    2011-05-24

    Arrays of well-aligned AlN nanowires (NWs) with tunable p-type conductivity were synthesized on Si(111) substrates using bis(cyclopentadienyl)magnesium (Cp(2)Mg) vapor as a doping source by chemical vapor deposition. The Mg-doped AlN NWs are single-crystalline and grow along the [001] direction. Gate-voltage-dependent transport measurements on field-effect transistors constructed from individual NWs revealed the transition from n-type conductivity in the undoped AlN NWs to p-type conductivity in the Mg-doped NWs. By adjusting the doping gas flow rate (0-10 sccm), the conductivity of AlN NWs can be tuned over 7 orders of magnitude from (3.8-8.5) × 10(-6) Ω(-1) cm(-1) for the undoped sample to 15.6-24.4 Ω(-1) cm(-1) for the Mg-doped AlN NWs. Hole concentration as high as 4.7 × 10(19) cm(-3) was achieved for the heaviest doping. In addition, the maximum hole mobility (∼6.4 cm(2)/V s) in p-type AlN NWs is much higher than that of Mg-doped AlN films (∼1.0 cm(2)/V s). (2) The realization of p-type AlN NWs with tunable electrical transport properties may open great potential in developing practical nanodevices such as deep-UV light-emitting diodes and photodetectors. PMID:21480640

  16. WSe2 heterostructures with p-type multi-layer graphene contacts

    NASA Astrophysics Data System (ADS)

    Arefe, Ghidewon; Finney, Nathan; Seo, Dongjea; Kim, Young Duck; Chang, Damien; Cui, Xu; Kang, Kyung Nam; Jerng, Sahng-Kyoon; Chun, Seung Hyun; Yang, Eui-Hyeok; Hone, James

    Recent advances in 2D material research have opened up new opportunities to study fundamental physics and to imagine new applications for this advanced class of materials. 2D tungsten diselenide (WSe2) is a transition metal dichalcogenide (TMDC) semiconductor that is intrinsically p-type with great potential for advanced opto-electronic applications. WSe2 monolayers grown by CVD and highly p-doped PECVD multilayer graphene are used to construct 2D heterostructure p-type field effect transistors as a platform to study the potential for applications and novel physical phenomena. P-type graphene is being used to overcome the challenge of making good electrical contact to WSe2 that is Ohmic at low temperatures and to allow for the construction of an entirely 2D heterostructure. Electrical transport and novel optical effects will be studied in these WSe2 heterostructures that are fully encapsulated in hexagonal boron nitride (h-BN) in order to show greatly improved environmental stability and high mobility at low temperature due to the suppression of extrinsic scattering effects such as charge impurities, surface polar optical phonons, and absorbents from air.

  17. Computational design of p-type contacts for MoS2-based electronic devices

    NASA Astrophysics Data System (ADS)

    Kumar, Priyank; Musso, Tiziana; Foster, Adam; Grossman, Jeffrey

    2015-03-01

    The excellent physical and semiconducting properties of transition metal dichalcogenide (TMDC) monolayers make them promising materials for many applications. A well-known example is MoS2, which has gained significant attention as a channel material for next-generation transistors. While n-type MoS2 field-effect transistors (n-FETs) can be fabricated with relative ease, fabrication of p-FETs remains a challenge as the Fermi-level of elemental metals used as contacts are pinned close to the conduction band, leading to large p-type Schottky barrier heights (SBHs). Using ab initio computations, we design and propose efficient hole contacts utilizing high work function oxide-based hole injection materials, with the aim of advancing p-type MoS2 device technology. Our calculations will highlight the possibility to tune and lower the p-type SBH at the metal/semiconductor interface by controlling the structural properties of oxide materials. Taken together, our results provide an interesting platform for experimental design of next-generation MoS2-based electronic and optoelectronic devices.

  18. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life.

    PubMed

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger; Fuglsang, Anja Thoe

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material. PMID:27644036

  19. Towards p-type doping of ZnO by ion implantation

    SciTech Connect

    Coleman, V; Tan, H H; Jagadish, C; Kucheyev, S; Phillips, M; Zou, J

    2005-01-18

    Zinc oxide is a very attractive material for a range of optoelectronic devices including blue light-emitting diodes and laser diodes. Though n-type doping has been successfully achieved, p-type doing of ZnO is still a challenge that must be overcome before p-n junction devices can be realized. Ion implantation is widely used in the microelectronics industry for selective area doping and device isolation. Understanding damage accumulation and recrystallization processes is important for achieving selective area doping. In this study, As (potential p-type dopant) ion implantation and annealing studies were carried out. ZnO samples were implanted with high dose (1.4 x 10{sup 17} ions/cm{sup 2}) 300 keV As ions at room temperature. Furnace annealing of samples in the range of 900 C to 1200 C was employed to achieve recrystallization of amorphous layers and electrical activation of the dopant. Rutherford backscattering/channeling spectrometry, transmission electron microscopy and cathodolumiescence spectroscopy were used to monitor damage accumulation and annihilation behavior in ZnO. Results of this study have significant implications for p-type doing of ZnO by ion implantation.

  20. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells.

    PubMed

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4'-(2,2-dicyanovinyl)-[1,1'-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  1. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  2. Demethoxycurcumin Is A Potent Inhibitor of P-Type ATPases from Diverse Kingdoms of Life

    PubMed Central

    Dao, Trong Tuan; Sehgal, Pankaj; Tung, Truong Thanh; Møller, Jesper Vuust; Nielsen, John; Palmgren, Michael; Christensen, Søren Brøgger

    2016-01-01

    P-type ATPases catalyze the active transport of cations and phospholipids across biological membranes. Members of this large family are involved in a range of fundamental cellular processes. To date, a substantial number of P-type ATPase inhibitors have been characterized, some of which are used as drugs. In this work a library of natural compounds was screened and we first identified curcuminoids as plasma membrane H+-ATPases inhibitors in plant and fungal cells. We also found that some of the commercial curcumins contain several curcuminoids. Three of these were purified and, among the curcuminoids, demethoxycurcumin was the most potent inhibitor of all tested P-type ATPases from fungal (Pma1p; H+-ATPase), plant (AHA2; H+-ATPase) and animal (SERCA; Ca2+-ATPase) cells. All three curcuminoids acted as non-competitive antagonist to ATP and hence may bind to a highly conserved allosteric site of these pumps. Future research on biological effects of commercial preparations of curcumin should consider the heterogeneity of the material. PMID:27644036

  3. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  4. P-type electronic and thermal transport properties of Mg2Sn1-xSix

    NASA Astrophysics Data System (ADS)

    Kim, Sunphil; Wiendlocha, Bartlomiej; Heremans, Joseph P.

    2013-03-01

    P-type Mg2Sn doped with various acceptors(1)(2) has been studied as a potential thermoelectric material. Because of its narrow band gap and high lattice thermal conductivity, the zT values of the binary compound are limited: zTmax reported is 0.3(3). In this work, we synthesize and characterize p-type-doped Mg2Sn1-xSix with various acceptors. Silicon is added in order to widen the band gap and scatter the phonons. The conduction band degeneracy that yields excellent zT in n-type material in the Mg2Sn1-xSix alloy system unfortunately does not apply to p-type material. Thermomagnetic and galvanomagnetic properties (electrical resistivity, Seebeck, Hall, and Nernst coefficients) are measured, along with thermal conductivity and band gap measurements. Finally, zT values are reported. (1) H. Y. Chen et al. Journal of Electronic Materials, Vol. 38, No. 7, 2009 (2) S. Choi et al. Journal of Electronic Materials, Vol. 41, No. 6, 2012 (3) H. Y. Chen et al. Phys. Status Solidi A 207, No. 11, 2523-2531 (2010) The work is supported by the joint NSF/DOE program on thermoelectrics, NSF-CBET-1048622

  5. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires.

    PubMed

    Wu, Jyh Ming

    2010-06-11

    A p-type ethanol sensor with a response time of approximately 8.3 s at room temperature was produced by SnO(2):Sb nanowires. The electrical properties of p-type SnO(2) nanowires are stable with a hole concentration of 1.544 x 10(17) cm(-3) and a field-effect mobility of 22 cm(2) V(-2) S(-1). X-ray photoelectron spectroscopy (XPS) and Hall measurement revealed that as-synthesized nanowires exhibit p-type behavior. A comprehensive investigation of the p-type sensing mechanism is reported.

  6. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    PubMed

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-01

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future.

  7. Temperature Dependent Tensile Fracture Stress of n- and p-Type Filled-Skutterudite Materials

    SciTech Connect

    Salvador, James R.; Yang, Jihui; Wereszczak, Andrew A; Wang, Hsin; Cho, Jung Y

    2011-01-01

    While materials with excellent thermoelectric performance are most desirable for higher heat to electrical energy conversion efficiency, thermoelectric materials must also be sufficiently mechanically robust to withstand the large number of thermal cycles and vibrational stresses likely to be encountered while in service, particularly in automotive applications. Further these TE materials should be composed of non-toxic and naturally abundant constituent elements and be available as both n- and p-type varieties. Skutterudite based thermoelectric materials seemingly fit this list of criteria. In this contribution we report on the synthesis, tensile fracture strengths, low temperature electrical and thermal transport properties, and coefficients of thermal expansion (CTE), of the n-type skutterudite La{sub 0.05({+-}0.01)}Ba{sub 0.07({+-}0.04)}Yb{sub 0.08({+-}0.02)}Co{sub 4.00({+-}0.01)}Sb{sub 12.02({+-}0.03)} and the p-type Ce{sub 0.30({+-}0.02)}Co{sub 2.57({+-}0.02)}Fe{sub 1.43({+-}0.02)}Sb{sub 11.98({+-}0.03)}. Both materials have tensile fracture strengths that are temperature independent up to 500 C, and are in the range of {approx}140 MPa as measured by a three point bend flexure test fixture described herein. The CTE's were measured by dual rod dilatometry and were determined to be 10.3 ppm/C for the n-type material and 11.5 ppm/C for p-type up to 450 C.

  8. Ivermectin is a nonselective inhibitor of mammalian P-type ATPases.

    PubMed

    Pimenta, Paulo Henrique Cotrim; Silva, Claudia Lucia Martins; Noël, François

    2010-02-01

    Ivermectin is a large spectrum antiparasitic drug that is very safe at the doses actually used. However, as it is being studied for new applications that would require higher doses, we should pay attention to its effects at high concentrations. As micromolar concentrations of ivermectin have been reported to inhibit the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA), we decided to investigate its putative inhibitory effect on other two important P-type ATPases, namely the Na(+) , K(+)-ATPase and H(+)/K(+)-ATPase. We first extended the data on SERCA, using preparations from rat enriched in SERCA1a (extensor digitorum longus) and 1b (heart) isoforms. Secondly, we tested the effect of ivermectin in two preparations of rat Na(+), K(+)-ATPase in order to appreciate its putative selectivity towards the alpha(1) isoform (kidney) and the alpha(2)/alpha(3) isoforms (brain), and in an H(+)/K(+)-ATPase preparation from rat stomach. Ivermectin inhibited all these ATPases with similar IC(50) values (6-17 microM). With respect to the inhibition of the Na(+), K(+)-ATPase, ivermectin acts by a mechanism different from the classical cardiac glycosides, based on selectivity towards the isoforms, sensibility to the antagonistic effect of K(+) and to ionic conditions favoring different conformations of the enzyme. We conclude that ivermectin is a nonselective inhibitor of three important mammalian P-type ATPases, which is indicative of putative important adverse effects if this drug were used at high doses. As a consequence, we propose that novel analogs of ivermectin should be developed and tested both for their parasitic activity and in vitro effects on P-type ATPases.

  9. Quasi-perpetual discharge behaviour in p-type Ge-air batteries.

    PubMed

    Ocon, Joey D; Kim, Jin Won; Abrenica, Graniel Harne A; Lee, Jae Kwang; Lee, Jaeyoung

    2014-11-01

    Metal-air batteries continue to become attractive energy storage and conversion systems due to their high energy and power densities, safer chemistries, and economic viability. Semiconductor-air batteries - a term we first define here as metal-air batteries that use semiconductor anodes such as silicon (Si) and germanium (Ge) - have been introduced in recent years as new high-energy battery chemistries. In this paper, we describe the excellent doping-dependent discharge kinetics of p-type Ge anodes in a semiconductor-air cell employing a gelled KOH electrolyte. Owing to its Fermi level, n-type Ge is expected to have lower redox potential and better electronic conductivity, which could potentially lead to a higher operating voltage and better discharge kinetics. Nonetheless, discharge measurements demonstrated that this prediction is only valid at the low current regime and breaks down at the high current density region. The p-type Ge behaves extremely better at elevated currents, evident from the higher voltage, more power available, and larger practical energy density from a very long discharge time, possibly arising from the high overpotential for surface passivation. A primary semiconductor-air battery, powered by a flat p-type Ge as a multi-electron anode, exhibited an unprecedented full discharge capacity of 1302.5 mA h gGe(-1) (88% anode utilization efficiency), the highest among semiconductor-air cells, notably better than new metal-air cells with three-dimensional and nanostructured anodes, and at least two folds higher than commercial Zn-air and Al-air cells. We therefore suggest that this study be extended to doped-Si anodes, in order to pave the way for a deeper understanding on the discharge phenomena in alkaline metal-air conversion cells with semiconductor anodes for specific niche applications in the future. PMID:24975009

  10. Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection

    SciTech Connect

    Mandalapu, L.J.; Yang, Z.; Xiu, F.X.; Zhao, D.T.; Liu, J.L.

    2006-02-27

    ZnO-based p-n homojunctions were grown using molecular-beam epitaxy. Sb and Ga were used as dopants to achieve the p-type and n-type ZnO, respectively. The mesa devices were fabricated by employing wet etching and standard photolithography techniques. Al/Ti metal was deposited by electron-beam evaporation and annealed to form Ohmic contacts. Current-voltage measurements of the device showed good rectifying behavior, from which a turn-on voltage of about 2 V was obtained. Very good response to ultraviolet light illumination was observed from photocurrent measurements.

  11. Direct Measurement of Electron Beam Induced Currents in p-type Silicon

    SciTech Connect

    Han, M.G.; Zhu, Y.; Sasaki, K.; Kato, T.; Fisher, C.A.J.; Hirayama, T.

    2010-08-01

    A new method for measuring electron beam induced currents (EBICs) in p-type silicon using a transmission electron microscope (TEM) with a high-precision tungsten probe is presented. Current-voltage (I-V) curves obtained under various electron-beam illumination conditions are found to depend strongly on the current density of the incoming electron beam and the relative distance of the beam from the point of probe contact, consistent with a buildup of excess electrons around the contact. This setup provides a new experimental approach for studying minority carrier transport in semiconductors on the nanometer scale.

  12. Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler

    SciTech Connect

    Gahlawat, S.; Wheeler, L.; White, K. W. E-mail: kwwhite@uh.edu; He, R.; Chen, S.; Ren, Z. F. E-mail: kwwhite@uh.edu

    2014-08-28

    This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.

  13. Ferromagnetic-resonance induced electromotive forces in Ni81Fe19 | p-type diamond

    NASA Astrophysics Data System (ADS)

    Fukui, Naoki; Morishita, Hiroki; Kobayashi, Satoshi; Miwa, Shinji; Mizuochi, Norikazu; Suzuki, Yoshishige

    2016-10-01

    We report on direct-current (DC) electromotive forces (emfs) in a nickel-iron alloy (Ni81 Fe19) | p-type diamond under the ferromagnetic resonance of the Ni81Fe19 layer at room temperature. The observed DC emfs take its maximum around the ferromagnetic resonant frequency of the Ni81Fe19, and their signs are reversed by reversing the direction of an externally-applied magnetic field; it shows that the observed DC emfs are spin-related emfs.

  14. Bipolar resistive switching in p-type Co3O4 nanosheets prepared by electrochemical deposition

    PubMed Central

    2013-01-01

    Metal oxide nanosheets have potential applications in novel nanoelectronics as nanocrystal building blocks. In this work, the devices with a structure of Au/p-type Co3O4 nanosheets/indium tin oxide/glass having bipolar resistive switching characteristics were successfully fabricated. The experimental results demonstrate that the device have stable high/low resistance ratio that is greater than 25, endurance performance more than 200 cycles, and data retention more than 10,000 s. Such a superior performance of the as-fabricated device could be explained by the bulk film and Co3O4/indium tin oxide glass substrate interface effect. PMID:23331856

  15. Electronic structure of p-type transparent conducting oxide CuAlO2

    NASA Astrophysics Data System (ADS)

    Mo, Sung-Kwan; Yoon, Joonseok; Liu, Xiaosong; Yang, Wanli; Mun, Bongjin; Ju, Honglyoul

    2014-03-01

    CuAlO2 is a prototypical p-type transparent conducting oxide. Despite its importance for potential applications and number of studies on its band structure and gap characteristics, experimental study on the momentum-resolved electronic structure has been lacking. We present angle-resolved photoemission data on single crystalline CuAlO2 using synchrotron light source to reveal complete band structure. Complemented by the x-ray absorption and emission spectra, we also study band gap characteristics and compare them with theory.

  16. Fabrication and performance tests of a segmented p-type HPGe detector

    NASA Astrophysics Data System (ADS)

    King, George S.; Avignone, Frank T.; Cox, Christopher E.; Hossbach, Todd W.; Jennings, Wayne; Reeves, James H.

    2008-10-01

    A p-type semi-coaxial HPGe detector has been segmented by cutting, with a diamond saw, and etching four circumferential grooves through the Li-diffused dead layer. The degree of segmentation was tested using a well-collimated low-energy gamma-ray source. An analysis cut that rejected events depositing energy in more than one segment was applied to an energy interval of 2038±5 keV, the region of interest ( Q ββ) for 76Ge 0 νββ decay experiments. This segmentation cut resulted in a reduction of the Compton continuum of 59%.

  17. Does p-type ohmic contact exist in WSe2-metal interfaces?

    NASA Astrophysics Data System (ADS)

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2015-12-01

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for

  18. Method of mitigating titanium impurities effects in p-type silicon material for solar cells

    NASA Technical Reports Server (NTRS)

    Salama, A. M. (Inventor)

    1980-01-01

    Microstructural evaluation tests performed on Cu-doped, Ti-doped and Cu/Ti doped p-type silicon single crystal wafers, before and after the solar cell fabrication, and evaluation of both dark forward and reverse I-V characteristic records for the solar cells produced from the corresponding silicon wafers, show that Cu mitigates the unfavorable effects of Ti, and thus provides for higher conversion efficiency, thereby providing an economical way to reduce the deleterious effects of titanium, one of the impurities present in metallurgical grade silicon material.

  19. Photovoltaic properties of ZnO nanorods/p-type Si heterojunction structures

    PubMed Central

    Witkowski, Bartlomiej Slawomir; Luka, Grzegorz; Wachnicki, Lukasz; Gieraltowska, Sylwia; Kopalko, Krzysztof; Zielony, Eunika; Bieganski, Piotr; Placzek-Popko, Ewa; Godlewski, Marek

    2014-01-01

    Summary Selected properties of photovoltaic (PV) structures based on n-type zinc oxide nanorods grown by a low temperature hydrothermal method on p-type silicon substrates (100) are investigated. PV structures were covered with thin films of Al doped ZnO grown by atomic layer deposition acting as transparent electrodes. The investigated PV structures differ in terms of the shapes and densities of their nanorods. The best response is observed for the structure containing closely-spaced nanorods, which show light conversion efficiency of 3.6%. PMID:24605282

  20. Single-hole transistor in p-type GaAs /AlGaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Grbić, Boris; Leturcq, Renaud; Ensslin, Klaus; Reuter, Dirk; Wieck, Andreas D.

    2005-12-01

    A single-hole transistor is patterned in a p-type, C-doped GaAs /AlGaAs heterostructure by scanning probe oxidation lithography. Clear Coulomb blockade resonances have been observed at Thole=300mK. A charging energy of ˜1.5meV is extracted from Coulomb diamond measurements, in agreement with the lithographic dimensions of the dot. The absence of excited states in Coulomb diamond measurements, as well as the temperature dependence of Coulomb peak heights indicate that the dot is in the multilevel transport regime. Fluctuations in peak spacings larger than the estimated mean single-particle level spacing are observed.

  1. Preparation of nanocrystalline yttria-stabilized zirconia

    SciTech Connect

    Venkatachari, K.R.; Huang, D.; Ostrander, S.P.; Schulze, W.A.; Stangle, G.C.

    1995-03-01

    Nanocrystalline powder with an average crystalline size of 8--12 nm, which was produced by a combustion synthesis process, was used to prepare dense, nanocrystalline articles. Green compacts of high green density were prepared by dry pressing and densified by a fast-firing process. During fast-firing, the dwell temperature significantly affected the final grain size and final density. On the other hand, the ranges of heating rates and dwell times that were used had a much less significant effect on the final density and final grain size. It was determined, however, that a high final density ({gt}99% {rho}{sub th}) and a very fine final average grain size ({lt}200 nm) can be simultaneously achieved under three different firing conditions. The high densification rates are, in part, a result of the minimal coarsening that the particles undergo when the sample is taken rapidly through the temperature regime in which surface diffusion predominates to the temperature regime in which the densification mechanisms of grain boundary and lattice diffusion predominate.

  2. Nanocrystalline cerium oxide materials for solid fuel cell systems

    SciTech Connect

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  3. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  4. On the hardening and softening of nanocrystalline materials

    SciTech Connect

    Fougere, G.E.; Weertman, J.R. . Dept. of Materials Science and Engineering); Siegel, R.W. . Materials Science Div.)

    1993-04-01

    Nanocrystalline Pd and Cu samples have been thermally treated to determine whether the relation between hardness and grain size depend on the method used to vary the grain sizes. Previous reports indicate that hardening with decreasing grain size resulted from data obtained using individual samples, while softening with decreasing grain size resulted from data from a given sample that had been thermally treated. Hardening and softening regimes were evident for the nanocrystalline cu, and the hardness improvements over the original as-consolidated state were maintained throughout the thermal treatments. This review examines our hardness results for Cu and Pd and those for other nanocrystalline materials.

  5. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel.

    PubMed

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-12-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer. PMID:26831689

  6. Formation of Surface Corrosion-Resistant Nanocrystalline Structures on Steel

    NASA Astrophysics Data System (ADS)

    Nykyforchyn, Hryhoriy; Kyryliv, Volodymyr; Maksymiv, Olha; Slobodyan, Zvenomyra; Tsyrulnyk, Oleksandr

    2016-02-01

    Engineering materials with nanocrystalline structure could be exploited under simultaneous action of mechanical loading and corrosion environments; therefore, their corrosion resistance is important. Surface nanocrystalline structure was generated on middle carbon steels by severe plastic deformation using the method of mechanical pulse friction treatment. This treatment additionally includes high temperature phase transformation and alloying. Using a complex of the corrosive, electrochemical and physical investigations, it was established that nanocrystalline structures can be characterized by lower or increased corrosion resistance in comparison with the reference material. It is caused by the action of two confronting factors: arising energy level and anticorrosive alloying of the surface layer.

  7. HGMS: Glasses and Nanocomposites for Hydrogen Storage.

    SciTech Connect

    Lipinska, Kris; Hemmers, Oliver

    2013-02-17

    The primary goal of this project is to fabricate and investigate different glass systems and glass-derived nanocrystalline composite materials. These glass-based, two-phased materials will contain nanocrystals that can attract hydrogen and be of potential interest as hydrogen storage media. The glass materials with intrinsic void spaces that are able to precipitate functional nanocrystals capable to attract hydrogen are of particular interest. Proposed previously, but never practically implemented, one of promising concepts for storing hydrogen are micro-containers built of glass and shaped into hollow microspheres. The project expanded this concept to the exploration of glass-derived nanocrystalline composites as potential hydrogen storage media. It is known that the most desirable materials for hydrogen storage do not interact chemically with hydrogen and possess a high surface area to host substantial amounts of hydrogen. Glasses are built of disordered networks with ample void spaces that make them permeable to hydrogen even at room temperature. Glass-derived nanocrystalline composites (two-phased materials), combination of glasses (networks with ample voids) and functional nanocrystals (capable to attract hydrogen), appear to be promising candidates for hydrogen storage media. Key advantages of glass materials include simplicity of preparation, flexibility of composition, chemical durability, non-toxicity and mechanical strength, as well as low production costs and environmental friendliness. This project encompasses a fundamental research into physics and chemistry of glasses and nanocrystalline composite materials, derived from glass. Studies are aimed to answer questions essential for considering glass-based materials and composites as potential hydrogen storage media. Of particular interest are two-phased materials that combine glasses with intrinsic voids spaces for physisorption of hydrogen and nanocrystals capable of chemisorption. This project does not

  8. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    SciTech Connect

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  9. Does p-type ohmic contact exist in WSe2-metal interfaces?

    PubMed

    Wang, Yangyang; Yang, Ruo Xi; Quhe, Ruge; Zhong, Hongxia; Cong, Linxiao; Ye, Meng; Ni, Zeyuan; Song, Zhigang; Yang, Jinbo; Shi, Junjie; Li, Ju; Lu, Jing

    2016-01-14

    Formation of low-resistance metal contacts is the biggest challenge that masks the intrinsic exceptional electronic properties of two dimensional WSe2 devices. We present the first comparative study of the interfacial properties between monolayer/bilayer (ML/BL) WSe2 and Sc, Al, Ag, Au, Pd, and Pt contacts by using ab initio energy band calculations with inclusion of the spin-orbital coupling (SOC) effects and quantum transport simulations. The interlayer coupling tends to reduce both the electron and hole Schottky barrier heights (SBHs) and alters the polarity for the WSe2-Au contact, while the SOC chiefly reduces the hole SBH. In the absence of the SOC, the Pd contact has the smallest hole SBH. Dramatically, the Pt contact surpasses the Pd contact and becomes the p-type ohmic or quasi-ohmic contact with inclusion of the SOC. Therefore, p-type ohmic or quasi-ohmic contact exists in WSe2-metal interfaces. Our study provides a theoretical foundation for the selection of favorable metal electrodes in ML/BL WSe2 devices.

  10. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides.

    PubMed

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa(1-x)N/GaN superlattice structure, by modulation doping of Mg in the AlxGa(1-x)N barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 10(18) cm(-3) has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  11. Easily doped p-type, low hole effective mass, transparent oxides

    PubMed Central

    Sarmadian, Nasrin; Saniz, Rolando; Partoens, Bart; Lamoen, Dirk

    2016-01-01

    Fulfillment of the promise of transparent electronics has been hindered until now largely by the lack of semiconductors that can be doped p-type in a stable way, and that at the same time present high hole mobility and are highly transparent in the visible spectrum. Here, a high-throughput study based on first-principles methods reveals four oxides, namely X2SeO2, with X = La, Pr, Nd, and Gd, which are unique in that they exhibit excellent characteristics for transparent electronic device applications – i.e., a direct band gap larger than 3.1 eV, an average hole effective mass below the electron rest mass, and good p-type dopability. Furthermore, for La2SeO2 it is explicitly shown that Na impurities substituting La are shallow acceptors in moderate to strong anion-rich growth conditions, with low formation energy, and that they will not be compensated by anion vacancies VO or VSe. PMID:26854336

  12. Structural and Thermoelectric Properties of Polycrystalline p-Type Mg2- x Li x Si

    NASA Astrophysics Data System (ADS)

    Nieroda, P.; Kolezynski, A.; Oszajca, M.; Milczarek, J.; Wojciechowski, K. T.

    2016-07-01

    The aim of this study was to determine the location of Li atoms in Mg2Si structure, and verify the influence of Li dopant on the transport properties of obtained thermoelectric materials. The results of theoretical studies of the electronic band structure (full potential linearized augmented plane wave method) in Li-doped Mg2Si are presented. Theoretical calculations indicate that only in the case when Li is located in the Mg position, the samples will have p-type conduction. To confirm the theoretical predictions, a series of samples with nominal composition Mg2- x Li x Si ( x = 0-0.5) were prepared using the spark plasma sintering (SPS) method. Structural and phase composition analyses were carried out by x-ray and neutron powder diffraction, as well as scanning electron microscopy. Neutron diffraction studies confirmed that the lithium atoms substitute magnesium in the Mg2Si structure. The investigations of the influence of Li dopant on the transport properties, i.e. electrical conductivity, the Seebeck coefficient and the thermal conductivity, were carried out in a temperature range from 340 K to 720 K. Carrier concentration was measured with Hall method. The positive values of the Seebeck coefficient and Hall coefficient indicate that all examined samples show p-type conductivity. On the basis of the experimental data, the temperature dependencies of the thermoelectric figure of merit ZT were calculated.

  13. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    PubMed Central

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1−xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1−xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm−3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports. PMID:26777294

  14. P-type Gate Electrode Formation Using B18H22 Ion Implantation

    NASA Astrophysics Data System (ADS)

    Henke, Dietmar; Jakubowski, Frank; Deichler, Josef; Venezia, Vincent C.; Ameen, M. S.; Harris, M. A.

    2006-11-01

    We have investigated the use of octadecaborane (B18H22) cluster ion implantation to form highly active p-type gate electrodes in a 90 nm CMOS process. As device dimensions scale, the influence of poly-depletion and short channel effect control on device performance continues to become more significant. Increasing gate electrode doping via high dose ion implantation is a standard method for reducing poly-depletion. Poly-silicon gate doping with the molecular ion B18H22 offers throughput advantages over monatomic B ion implantation. For instance each molecular ion introduces 18-B atoms, thereby reducing the implant dose. In addition, each B constituent of the molecular ion is implanted with 1/20th the ion energy, making it possible to achieve low energy dopant distribution while taking advantage of higher beam energy currents. In this work, B18H22 implantation conditions (energy, dose) were matched to those of the standard B+ process of record (POR) used for gate electrode doping. We show that the poly-depletion, threshold voltage, and yield of devices implanted with B18H22 are comparable to those implanted with the POR. We combine this device results with materials data to demonstrate that the high dose implants necessary to form p-type gate electrodes with minimum poly-depletion can be achieved with B18H22 ion implants without impacting the device performance.

  15. Atomic layer deposition of undoped TiO2 exhibiting p-type conductivity.

    PubMed

    Iancu, Andrei T; Logar, Manca; Park, Joonsuk; Prinz, Fritz B

    2015-03-11

    With prominent photocatalytic applications and widespread use in semiconductor devices, TiO2 is one of the most popular metal oxides. However, despite its popularity, it has yet to achieve its full potential due to a lack of effective methods for achieving p-type conductivity. Here, we show that undoped p-type TiO2 films can be fabricated by atomic layer deposition (ALD) and that their electrical properties can be controlled across a wide range using proper postprocessing anneals in various ambient environments. Hole mobilities larger than 400 cm(2)/(V·s) are accessible superseding the use of extrinsic doping, which generally produces orders of magnitude smaller values. Through a combination of analyses and experiments, we provide evidence that this behavior is primarily due to an excess of oxygen in the films. This discovery enables entirely new categories of TiO2 devices and applications, and unlocks the potential to improve existing ones. TiO2 homojunction diodes fabricated completely by ALD are developed as a demonstration of the utility of these techniques and shown to exhibit useful rectifying characteristics even with minimal processing refinement.

  16. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    PubMed

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  17. A P-type ATPase importer that discriminates between essential and toxic transition metals.

    PubMed

    Lewinson, Oded; Lee, Allen T; Rees, Douglas C

    2009-03-24

    Transition metals, although being essential cofactors in many physiological processes, are toxic at elevated concentrations. Among the membrane-embedded transport proteins that maintain appropriate intracellular levels of transition metals are ATP-driven pumps belonging to the P-type ATPase superfamily. These metal transporters may be differentiated according to their substrate specificities, where the majority of pumps can extrude either silver and copper or zinc, cadmium, and lead. In the present report, we have established the substrate specificities of nine previously uncharacterized prokaryotic transition-metal P-type ATPases. We find that all of the newly identified exporters indeed fall into one of the two above-mentioned categories. In addition to these exporters, one importer, Pseudomonas aeruginosa Q9I147, was also identified. This protein, designated HmtA (heavy metal transporter A), exhibited a different substrate recognition profile from the exporters. In vivo metal susceptibility assays, intracellular metal measurements, and transport experiments all suggest that HmtA mediates the uptake of copper and zinc but not of silver, mercury, or cadmium. The substrate selectivity of this importer ensures the high-affinity uptake of essential metals, while avoiding intracellular contamination by their toxic counterparts.

  18. p-Type polymer-hybridized high-performance piezoelectric nanogenerators.

    PubMed

    Lee, Keun Young; Kumar, Brijesh; Seo, Ju-Seok; Kim, Kwon-Ho; Sohn, Jung Inn; Cha, Seung Nam; Choi, Dukhyun; Wang, Zhong Lin; Kim, Sang-Woo

    2012-04-11

    Enhancing the output power of a nanogenerator is essential in applications as a sustainable power source for wireless sensors and microelectronics. We report here a novel approach that greatly enhances piezoelectric power generation by introducing a p-type polymer layer on a piezoelectric semiconducting thin film. Holes at the film surface greatly reduce the piezoelectric potential screening effect caused by free electrons in a piezoelectric semiconducting material. Furthermore, additional carriers from a conducting polymer and a shift in the Fermi level help in increasing the power output. Poly(3-hexylthiophene) (P3HT) was used as a p-type polymer on piezoelectric semiconducting zinc oxide (ZnO) thin film, and phenyl-C(61)-butyric acid methyl ester (PCBM) was added to P3HT to improve carrier transport. The ZnO/P3HT:PCBM-assembled piezoelectric power generator demonstrated 18-fold enhancement in the output voltage and tripled the current, relative to a power generator with ZnO only at a strain of 0.068%. The overall output power density exceeded 0.88 W/cm(3), and the average power conversion efficiency was up to 18%. This high power generation enabled red, green, and blue light-emitting diodes to turn on after only tens of times bending the generator. This approach offers a breakthrough in realizing a high-performance flexible piezoelectric energy harvester for self-powered electronics. PMID:22409420

  19. Origin of p -type conduction in single-crystal CuAlO2

    NASA Astrophysics Data System (ADS)

    Tate, J.; Ju, H. L.; Moon, J. C.; Zakutayev, A.; Richard, A. P.; Russell, J.; McIntyre, D. H.

    2009-10-01

    We report measurements of the structural, optical, transport, and magnetic properties of single crystals of the anisotropic p -type transparent semiconductor CuAlO2 . The indirect and direct band gaps are 2.97 and 3.47 eV, respectively. Temperature-dependent Hall measurements yield a positive Hall coefficient in the measured range and an activated carrier temperature dependence. The resistivity is anisotropic, with the ab -plane resistivity about 25 times smaller than the c -axis resistivity at room temperature. Both are activated with similar activation energies. The room-temperature ab -plane mobility is relatively large at 3cm2V-1s-1 , and we infer a c -axis mobility of 0.12cm2V-1s-1 . The Seebeck coefficient is positive at all measured temperatures, and has a T-1 dependence over most of the measured range. The low-temperature paramagnetic moment is consistent with a spin-1/2 defect with a density of 3.4×1020cm-3 . These results suggest that the conduction mechanism for p -type carriers in CuAlO2 is charge transport in the valence band and that the holes are thermally activated from copper-vacancy acceptor states located about 700 meV above the valence-band maximum.

  20. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Beaty, John S.; Rolfe, Jonathon L.; Vandersande, Jan; Fleurial, Jean-Pierre

    1992-01-01

    Spark erosion was used to produce ultra-fine particles of SiGe thermoelectric material and boron nitride, an inert phonon-scattering material. A homogeneous powder was made by mixing the two powders. The mixture was hot pressed to produce a thermoelectric material with uniformity dispersed, ultra-fine, inert, phonon-scattering centers. It is shown that, in samples with inert boron nitride or silicon nitride, thermal conductivity of a SiGe alloy can be reduced by about 25 percent while maintaining the electrical properties of the samples. Annealing of all the samples at 1525 K caused grain growth to over a micron, eliminating the detrimental effect attributable to small grains. Only in the sample with boron nitride the thermal conductivity did remain well below that for standard p-type SiGe (about 25 percent), while the electrical resistivity and Seebeck coefficient were very close to the values for standard p-type 80/20 SiGe.

  1. Nitrogen doped p-type ZnO films and p-n homojunction

    NASA Astrophysics Data System (ADS)

    Snigurenko, D.; Kopalko, K.; Krajewski, T. A.; Jakiela, R.; Guziewicz, E.

    2015-01-01

    We demonstrate the ZnO homojunction fully obtained by the atomic layer deposition technique at low temperature growth of 100-130 °C. For the n-type partner of the junction we used undoped ZnO film obtained at 130 °C, while nitrogen doped ZnO acted as the p-type partner of the junction. Nitrogen was introduced into the ZnO film during the ALD process by using ammonia water as an oxygen precursor and diethylzinc as a zinc precursor. The p-type conductivity of ZnO was activated by the subsequent annealing of the ZnO:N film in an oxygen or nitrogen atmosphere. The initial rectification ratio of 102 at ±2 V was raised to 4 · 104 by inserting an ultrathin Al2O3 layer between p- and n-type ZnO. The resulting rectification ratio is among the best parameters reported for a ZnO homojunction so far.

  2. Preparation of p-type InP layers for detection of radiation

    NASA Astrophysics Data System (ADS)

    Procházková, O.; Grym, J.; Zavadil, J.; Zdánský, K.

    2005-02-01

    We have focused on the investigation of the impact of Ce, Tm, Tm 2O 3, and Lu addition in the liquid-phase epitaxial growth process on the structural and electro-optical properties of InP layers in the context of their possible application in detector structures, where detection will be mediated via the depletion layer of high quality Schottky contact. The effect of Tm 2O 3 and Lu is reported for the first time. The grown layers were examined via scanning electron microscopy, low-temperature photoluminescence spectroscopy, capacitance-voltage measurements using the mercury probe and by the temperature-dependent Hall effect. Availing Tm addition with concentration 5.4×10 -2 at%, we have prepared thick (>10 μm) p-type conductivity InP layers with the structural defect density reduced by a half-order of magnitude and reduced electrically active impurity concentration up to ˜7×10 14 cm -3. We point out that Tm appears as a promising candidate for the preparation of very pure p-type InP layers. The mechanism of purification efficiency of different rare earths from donors and acceptors leading to the n→p conductivity type crossover has been discussed.

  3. Impurity Resonant States p-type Doping in Wide-Band-Gap Nitrides

    NASA Astrophysics Data System (ADS)

    Liu, Zhiqiang; Yi, Xiaoyan; Yu, Zhiguo; Yuan, Gongdong; Liu, Yang; Wang, Junxi; Li, Jinmin; Lu, Na; Ferguson, Ian; Zhang, Yong

    2016-01-01

    In this work, a new strategy for achieving efficient p-type doping in high bandgap nitride semiconductors to overcome the fundamental issue of high activation energy has been proposed and investigated theoretically, and demonstrated experimentally. Specifically, in an AlxGa1-xN/GaN superlattice structure, by modulation doping of Mg in the AlxGa1-xN barriers, high concentration of holes are generated throughout the material. A hole concentration as high as 1.1 × 1018 cm-3 has been achieved, which is about one order of magnitude higher than that typically achievable by direct doping GaN. Results from first-principle calculations indicate that the coupling and hybridization between Mg 2p impurity and the host N 2p orbitals are main reasons for the generation of resonant states in the GaN wells, which further results in the high hole concentration. We expect this approach to be equally applicable for other high bandgap materials where efficient p-type doing is difficult. Furthermore, a two-carrier-species Hall-effect model is proposed to delineate and discriminate the characteristics of the bulk and 2D hole, which usually coexist in superlattice-like doping systems. The model reported here can also be used to explain the abnormal freeze-in effect observed in many previous reports.

  4. Transporters, chaperones, and P-type ATPases controlling grapevine copper homeostasis.

    PubMed

    Leng, Xiangpeng; Mu, Qian; Wang, Xiaomin; Li, Xiaopeng; Zhu, Xudong; Shangguan, Lingfei; Fang, Jinggui

    2015-11-01

    With more copper and copper-containing compounds used as bactericides and fungicides in viticulture, copper homeostasis in grapevine (Vitis) has become one of the serious environmental crises with great risk. To better understand the regulation of Cu homeostasis in grapevine, grapevine seedlings cultured in vitro with different levels of Cu were utilized to investigate the tolerance mechanisms of grapevine responding to copper availability at physiological and molecular levels. The results indicated that Cu contents in roots and leaves arose with increasing levels of Cu application. With copper concentration increasing, malondialdehyde (MDA) content increased in roots and leaves and the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) increased to protect the plant itself from damage. The expression patterns of 19 genes, encoding transporters, chaperones, and P-type ATPases involved in copper homeostasis in root and leaf of grapevine seedling under various levels of Cu(2+) were further analyzed. The expression patterns indicated that CTr1, CTr2, and CTr8 transporters were significantly upregulated in response both to Cu excess and deficiency. ZIP2 was downregulated in response to Cu excess and upregulated under Cu-deficient conditions, while ZIP4 had an opposite expression pattern under similar conditions. The expression of chaperones and P-type ATPases in response to Cu availability in grapevine were also briefly studied.

  5. Tailoring of the Metal-N/P-Type GaSb Interface Properties for Device Production

    SciTech Connect

    Varblianska, K.; Tzeneva, S.; Comninou, Ph.; Nihtianova, D.

    2007-04-23

    There are some difficulties in producing Schottky barriers (SB) to p-type GaSb and ohmic contacts (OC) to n-type GaSb connected with the physical nature of the GaSb itself. By applying low energy Ar ion sputtering at 200-700V and (NH4)2S solution treatment of the p-type substrates we achieved a rectifying behavior of the p-GaSb/Pd contacts. The same procedure combined with a proper annealing led to the production of good n-GaSb/Pd/Ge/Au ohmic contacts. The electrical behavior of the SB and OC is inferred from their current-voltage characteristics on specially prepared diode structures. SEM and TEM investigations are conducted to specify the surface and interface reactions during the processing. We interpret these results in terms of the generation of such a Ga to Sb vacancy concentration ratio during the ion sputtering that enhances the incorporation of Ge and S as donor impurities in the GaSb surface.

  6. Characterization of irradiated detectors fabricated on p-type silicon substrates for super-LHC

    NASA Astrophysics Data System (ADS)

    Miñano, M.; Campabadal, F.; Escobar, C.; García, C.; González, S.; Lacasta, C.; Lozano, M.; Martí i García, S.; Pellegrini, G.; Rafí, J. M.; Ullán, M.

    2007-12-01

    An upgrade of the large hadron collider (LHC), the Super-LHC (SLHC), towards higher luminosities is currently being discussed as an extension of the LHC physics program. The goal of the SLHC is to operate at a luminosity of 10 35 cm -2 s -1 (10 times larger than that of the LHC one). Thus, the operation of the SLHC implies a need to upgrade the detectors of the LHC experiments. The current tracking system of ATLAS will not cope with that luminosity. New solutions must be investigated to improve the radiation tolerance of the semiconductor detector. p-Type bulk sensors are being considered for the ATLAS tracking system for the SLHC. Microstrip detectors fabricated by CNM-IMB on p-type high-resistivity float zone silicon have been irradiated with neutrons at the TRIGA Mark II reactor in Ljubljana up to a fluence of 10 16 cm -2 (as expected in the innermost region of the ATLAS upgrade) and have been characterized at IFIC Laboratory. The collected charge, after irradiation, has been measured by infrared laser illumination. The leakage current of those sensors is also reported.

  7. Fullerene C{sub 70} as a p-type donor in organic photovoltaic cells

    SciTech Connect

    Zhuang, Taojun; Wang, Xiao-Feng E-mail: zrhong@ucla.edu Sano, Takeshi; Kido, Junji E-mail: zrhong@ucla.edu; Hong, Ziruo E-mail: zrhong@ucla.edu; Li, Gang; Yang, Yang

    2014-09-01

    Fullerenes and their derivatives have been widely used as n-type materials in organic transistor and photovoltaic devices. Though it is believed that they shall be ambipolar in nature, there have been few direct experimental proofs for that. In this work, fullerene C{sub 70}, known as an efficient acceptor, has been employed as a p-type electron donor in conjunction with 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile as an electron acceptor in planar-heterojunction (PHJ) organic photovoltaic (OPV) cells. High fill factors (FFs) of more than 0.70 were reliably achieved with the C{sub 70} layer even up to 100 nm thick in PHJ cells, suggesting the superior potential of fullerene C{sub 70} as the p-type donor in comparison to other conventional donor materials. The optimal efficiency of these unconventional PHJ cells was 2.83% with a short-circuit current of 5.33 mA/cm{sup 2}, an open circuit voltage of 0.72 V, and a FF of 0.74. The results in this work unveil the potential of fullerene materials as donors in OPV devices, and provide alternative approaches towards future OPV applications.

  8. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  9. Microwave plasma chemical synthesis of nanocrystalline carbon film structures and study their properties

    NASA Astrophysics Data System (ADS)

    Bushuev, N.; Yafarov, R.; Timoshenkov, V.; Orlov, S.; Starykh, D.

    2015-08-01

    The self-organization effect of diamond nanocrystals in polymer-graphite and carbon films is detected. The carbon materials deposition was carried from ethanol vapors out at low pressure using a highly non-equilibrium microwave plasma. Deposition processes of carbon film structures (diamond, graphite, graphene) is defined. Deposition processes of nanocrystalline structures containing diamond and graphite phases in different volume ratios is identified. The solid film was obtained under different conditions of microwave plasma chemical synthesis. We investigated the electrical properties of the nanocrystalline carbon films and identified it's from various factors. Influence of diamond-graphite film deposition mode in non-equilibrium microwave plasma at low pressure on emission characteristics was established. This effect is justified using the cluster model of the structure of amorphous carbon. It was shown that the reduction of bound hydrogen in carbon structures leads to a decrease in the threshold electric field of emission from 20-30 V/m to 5 V/m. Reducing the operating voltage field emission can improve mechanical stability of the synthesized film diamond-graphite emitters. Current density emission at least 20 A/cm2 was obtained. Nanocrystalline carbon film materials can be used to create a variety of functional elements in micro- and nanoelectronics and photonics such as cold electron source for emission in vacuum devices, photonic devices, cathodoluminescent flat display, highly efficient white light sources. The obtained graphene carbon net structure (with a net size about 6 μm) may be used for the manufacture of large-area transparent electrode for solar cells and cathodoluminescent light sources

  10. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.

    PubMed

    Odobel, Fabrice; Le Pleux, Loïc; Pellegrin, Yann; Blart, Errol

    2010-08-17

    Because solar energy is the most abundant renewable energy resource, the clear connection between human activity and global warming has strengthened the interest in photovoltaic science. Dye-sensitized solar cells (DSSCs) provide a promising low-cost technology for harnessing this energy source. Until recently, much of the research surrounding DSSCs had been focused on the sensitization of n-type semiconductors, such as titanium dioxide (Gratzel cells). In an n-type dye-sensitized solar cell (n-DSSC), an electron is injected into the conduction band of an n-type semiconductor (n-SC) from the excited state of the sensitizer. Comparatively few studies have examined the sensitization of wide bandgap p-type semiconductors. In a p-type DSSC (p-DSSC), the photoexcited sensitizer is reductively quenched by hole injection into the valence band of a p-type semiconductor (p-SC). The study of p-DSSCs is important both to understand the factors that control the rate of hole photoinjection and to aid the rational design of efficient p-DSSCs. In theory, p-DSSCs should be able to work as efficiently as n-DSSCs. In addition, this research provides a method for preparing tandem DSSCs consisting of a TiO(2)-photosensitized anode and a photosensitized p-type SC as a cathode. Tandem DSSCs are particularly important because they represent low-cost photovoltaic devices whose photoconversion efficiencies could exceed 15%. This Account describes recent research results on p-DSSCs. Because these photoelectrochemical devices are the mirror images of conventional n-DSSCs, they share some structural similarities, but they use different materials and have different charge transfer kinetics. In this technology, nickel oxide is the predominant p-SC material used, but much higher photoconversion efficiencies could be achieved with new p-SCs materials with deeper valence band potential. Currently, iodide/triiodide is the main redox mediator of electron transport within these devices, but we expect

  11. Monolithic Nanocrystalline Au Fabricated by the Compaction of Nanoscale Foam

    SciTech Connect

    Hodge, A M; Biener, J; Hsiung, L M; Hamza, A V; Satcher Jr., J H

    2004-07-28

    We describe a two-step dealloying/compaction process to produce nanocrystalline Au. First, nanocrystalline/nanoporous Au foam is synthesized by electrochemically-driven dealloying. The resulting Au foams exhibit porosities of 60 and 70% with pore sizes of {approx} 40 and 100 nm, respectively, and a typical grain size of <50 nm. Second, the nanoporous foams are fully compacted to produce nanocrystalline monolithic Au. The compacted Au was characterized by TEM and X-ray diffraction and tested by depth-sensing nanoindentation. The compacted nanocrystalline Au exhibits an average grain size of <50 nm and hardness values ranging from 1.4 to 2.0 GPa, which are up to 4.5 times higher than the hardness values obtained from polycrystalline Au.

  12. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  13. Surface Modification of CoO(x) Loaded BiVO₄ Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation.

    PubMed

    Zhong, Miao; Hisatomi, Takashi; Kuang, Yongbo; Zhao, Jiao; Liu, Min; Iwase, Akihide; Jia, Qingxin; Nishiyama, Hiroshi; Minegishi, Tsutomu; Nakabayashi, Mamiko; Shibata, Naoya; Niishiro, Ryo; Katayama, Chisato; Shibano, Hidetaka; Katayama, Masao; Kudo, Akihiko; Yamada, Taro; Domen, Kazunari

    2015-04-22

    Photoelectrochemical (PEC) devices that use semiconductors to absorb solar light for water splitting offer a promising way toward the future scalable production of renewable hydrogen fuels. However, the charge recombination in the photoanode/electrolyte (solid/liquid) junction is a major energy loss and hampers the PEC performance from being efficient. Here, we show that this problem is addressed by the conformal deposition of an ultrathin p-type NiO layer on the photoanode to create a buried p/n junction as well as to reduce the charge recombination at the surface trapping states for the enlarged surface band bending. Further, the in situ formed hydroxyl-rich and hydroxyl-ion-permeable NiOOH enables the dual catalysts of CoO(x) and NiOOH for the improved water oxidation activity. Compared to the CoO(x) loaded BiVO4 (CoO(x)/BiVO4) photoanode, the ∼6 nm NiO deposited NiO/CoO(x)/BiVO4 photoanode triples the photocurrent density at 0.6 V(RHE) under AM 1.5G illumination and enables a 1.5% half-cell solar-to-hydrogen efficiency. Stoichiometric oxygen and hydrogen are generated with Faraday efficiency of unity over 12 h. This strategy could be applied to other narrow band gap semiconducting photoanodes toward the low-cost solar fuel generation devices. PMID:25802975

  14. NbFeSb based p-type half-Heusler for power generation applications

    NASA Astrophysics Data System (ADS)

    Joshi, Giri; He, Ran; Engber, Michael; Samsonidze, Georgy; Pantha, Tej; Dahal, Ekraj; Dahal, Keshab; Yang, Jian; Lan, Yucheng; Kozinsky, Boris; Ren, Zhifeng

    2015-03-01

    We report a peak dimensionless figure-of-merit (ZT) of ~1 at 700 oC in nanostructured p-type Nb0.6Ti0.4FeSb0.95Sn0.05composition. Even though the power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is improved by 25% in comparison to the previously reported p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2, the ZT value is not increased due to a higher thermal conductivity. However, the higher power factor of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition led to a 15% increase in power output of a thermoelectric device in comparison to a device made from the previous best material Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. The n-type material used to make the unicouple device is the best reported nanostructured Hf0.25Zr0.75NiSn0.99Sb0.01 composition with the lowest hafnium (Hf) content. Both the p- and n-type nanostructured samples are prepared by ball milling the arc melted ingot and hot pressing the finely ground powders. Moreover, the raw material cost of the Nb0.6Ti0.4FeSb0.95Sn0.05 composition is more than six times lower compared to the cost of the previous best p-type Hf0.44Zr0.44Ti0.12CoSb0.8Sn0.2. This cost reduction is crucial for these materials to be used in large-scale quantities for vehicle and industrial waste heat recovery applications. DOE:DE-EE0004840.

  15. Supra- and nanocrystallinities: a new scientific adventure.

    PubMed

    Pileni, M P

    2011-12-21

    Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices.The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young's modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals.Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process.At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface.Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed. They

  16. Nanocrystalline Zeolites: Synthesis, Mechanism, and Applications

    NASA Astrophysics Data System (ADS)

    Severance, Michael Andrew

    Nanocrystalline zeolite particles are becoming an important material in many technical applications (e.g. zeolite membranes). Synthetic methods that minimize the zeolite crystal diameter, while providing a narrow particle size distribution, are of primary importance in these technical applications. However, there are several limitations to currently existing synthetic routes aimed at producing nanozeolites and zeolite membrane devices. For example, zeolite growth in these contexts typically requires days to weeks at high temperature to crystallize. Despite excellent performance of zeolite membranes in several separation applications, the long synthesis times required undermine any practical application of these technologies. This work focuses on chemical manipulation of zeolite nucleation processes in sol gel systems in effort to address such limitations. The primary findings indicate that careful control of the nucleation stage of a clear zeolite synthesis (optically transparent sol gel) allow the formation of zeolite Y nanocrystals less than 50 nm in diameter with a polydispersity index less than 0.2. Furthermore, chemical perturbations made during the nucleation stage of zeolite Y hydrogel synthesis is shown to accelerate crystal growth by a factor of 3-4, depending on the specific sol gel chemistry. These findings are applied to the nanocrystal seeding and rapid hydrothermal growth of zeolite Y membranes on inexpensive polymeric supports. A novel synthetic method is developed to this end. Also, the chemical and physical properties of monodisperse nanocrystalline zeolite Y synthesized herein are explored by electrochemical impedance spectroscopy. It is found that the particle interface plays an important role in the ionic conductivity of nanocrystalline zeolites in contrast to their larger zeolite counterparts in analogy to other ceramic and metal oxide ion conductors. Finally, the possibility to produce novel organic and inorganic composite systems through

  17. Supra- and nanocrystallinities: a new scientific adventure

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2011-12-01

    Nanomaterials exist in the interstellar medium, in biology, in art and also metallurgy. Assemblies of nanomaterials were observed in the early solar system as well as silicate particle opals. The latter exhibits unusual optical properties directly dependent on particle ordering in 3D superlattices. The optical properties of noble metal nanoparticles (Ag, Au and Cu) change with the ordering of atoms in the nanocrystals, called nanocrystallinity. The vibrational properties related to nanocrystallinity markedly differ with the vibrational modes studied. Hence, a drastic effect on nanocrystallinity is observed on the confined acoustic vibrational property of the fundamental quadrupolar modes whereas the breathing acoustic modes remain quasi-unchanged. The mechanical properties characterized by the Young’s modulus of multiply twinned particle (MTP) films are markedly lower than those of single nanocrystals. Two fcc supracrystal growth mechanisms, supported by simulation, of Au nanocrystals are proposed: heterogeneous and homogeneous growth processes. The final morphology of nanocrystal assemblies, with either films by layer-by-layer growth characterized by their plastic deformation or well-defined shapes grown in solution, depends on the solvent used to disperse the nanocrystals before the evaporation process. At thermodynamic equilibrium, two simultaneous supracrystal growth processes of Au nanocrystals take place in solution and at the air-liquid interface. These growth processes are rationalized by simulation. They involve, on the one hand, van der Waals interactions and, on the other hand, the attractive interaction between nanocrystals and the interface. Ag nanocrystals (5 nm) self-order in colloidal crystals with various arrangements called supracrystallinities. As in bulk materials, phase diagrams of supracrystals with structural transitions from face-centered-cubic (fcc) to hexagonal-close-packed (hcp) and body-centered-cubic (bcc) structures are observed

  18. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  19. Influence of annealing in H atmosphere on the electrical properties of Al2O3 layers grown on p-type Si by the atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Stübner, R.; Langa, S.; Wende, U.; Kaiser, B.; Conrad, H.; Schenk, H.

    2016-09-01

    In the present study the electrical properties of 100 nm and 400 nm alumina films grown by the atomic layer deposition technique on p-type Si before and after a post-deposition annealing at 440 °C and after a dc H plasma treatment at different temperatures are investigated. We show that the density of interface states is below 2 × 1010 cm-2 in these samples and this value is significantly lower compared to that reported previously in thinner alumina layers (below 50 nm). The effective minority carrier lifetime τg,eff and the effective surface recombination velocity seff in untreated p-type Si samples with 100 nm and 400 nm aluminum oxide is comparable with those obtained after thermal oxidation of 90 nm SiO2. Both, a post-deposition annealing in forming gas (nitrogen/hydrogen) at elevated temperatures and a dc H-plasma treatment at temperatures close to room temperature lead to the introduction of negatively charged defects in alumina films. The results obtained in samples annealed in different atmospheres at different temperatures or subjected to a dc H plasma treatment allow us to correlate these centers with H-related defects. By comparing with theory we tentatively assign them to negatively charged interstitial H atoms.

  20. InP nanowire p-type doping via Zinc indiffusion

    NASA Astrophysics Data System (ADS)

    Haggren, Tuomas; Otnes, Gaute; Mourão, Renato; Dagyte, Vilgaile; Hultin, Olof; Lindelöw, Fredrik; Borgström, Magnus; Samuelson, Lars

    2016-10-01

    We report an alternative pathway for p-type InP nanowire (NW) doping by diffusion of Zn species from the gas phase. The diffusion of Zn was performed in a MOVPE reactor at 350-500 °C for 5-20 min with either H2 environment or additional phosphorus in the atmosphere. In addition, Zn3P2 shells were studied as protective caps during post-diffusion annealing. This post-diffusion annealing was performed to outdiffuse and activate Zn in interstitial locations. The characterization methods included photoluminescence and single NW conductivity and carrier concentration measurements. The acquired carrier concentrations were in the order of >1017 cm-3 for NWs without post-annealing, and up to 1018 cm-3 for NWs annealed with the Zn3P2 shells. The diffused Zn caused redshift to the photoluminescence signal, and the degree of redshift depended on the diffusion process.

  1. SrCu2O2: A p-type conductive oxide with wide band gap

    NASA Astrophysics Data System (ADS)

    Kudo, Atsushi; Yanagi, Hiroshi; Hosono, Hideo; Kawazoe, Hiroshi

    1998-07-01

    SrCu2O2 thin films were prepared on SiO2 glass substrates by pulsed laser deposition. The film deposited in O2 atmosphere of 7×10-4 Pa at 573 K showed high optical transmission in visible and near-infrared regions. Potassium was doped at Sr site for substitutional doping. The optical band gap of the K-doped film was estimated to be ˜3.3 eV. The dc electrical conductivity of the K-doped film at 300 K was 4.8×10-2 S cm-1 and the activation energy was 0.10 eV. Positive sign of Seebeck and Hall coefficients demonstrated the p-type conduction of the film. Hole concentration and mobility at 300 K were 6.1×1017cm-3 and 0.46 cm2 V-1 s-1, respectively.

  2. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    NASA Astrophysics Data System (ADS)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-09-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells ( p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency ( η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  3. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  4. Thermoelectric Properties of Sintered n-Type and p-Type Tellurides

    NASA Astrophysics Data System (ADS)

    Hassel, J.; Tervo, J.

    2013-07-01

    Characterization of powder-metallurgically manufactured (Bi x Sb1- x )2(Te y Se1- y )3 thermoelectric materials is presented. The manufacturing methods were spark plasma sintering (SPS) and hot isostatic pressing (HIP). x-Ray diffraction (XRD) and density measurements as well as transport characterization and scanning electron microscopy were performed on the materials. It is shown that both sintering techniques yield reasonable thermoelectric characteristics for p-type ( x = 0.2, y = 1) as well as n-type ( x = 0.95, y = 0.95) materials. Insight into the underlying reasons such as the scattering processes limiting the characteristics is gained by fitting experimental transport data using a theoretical model. The limitations and further optimization issues of our approach in thermoelectric material preparation are discussed.

  5. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs

    NASA Astrophysics Data System (ADS)

    Bioud, Youcef A.; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard

    2016-10-01

    We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As2O3. Finally, a qualitative model is proposed to explain the porous As2O3 layer formation on p-GaAs substrate.

  6. Improved performance of P-type DSCs with a compact blocking layer coated by different thicknesses

    NASA Astrophysics Data System (ADS)

    Ho, Phuong; Bao, Le Quoc; Cheruku, Rajesh; Kim, Jae Hong

    2016-07-01

    The introduction of different thicknesses of a compact NiO blocking layer coating with different spin speeds on FTO and followed by a coating of photoactive NiO electrode for p-type dye-sensitized solar cells (p-DSCs). This study examined the fabrication of a compact NiO blocking layer by decomposing an ethanolic precursor solution of nickel acetate tetrahydrate. The DCBZ dye used as the photosensitizer for the NiO electrode in the p-DSCs device and their performances have been analyzed. The enhancement of photovoltaic performance and resulted from an increase in the power conversion efficiency (η). The electrochemical impedance spectroscopy (EIS) measurement demonstrated that charge recombination was suppressed when a compact NiO blocking layer was applied. The results showed that the best p-DSC was achieved by employing 3000 rpm spin-coated process for different times of blocking layer.

  7. Improved thermoelectric efficiency in p-type ZnSb through Zn deficiency

    NASA Astrophysics Data System (ADS)

    Guo, Qilong; Luo, Sijun

    2015-12-01

    We herein report a feasible approach to improve the thermoelectric performance of p-type ZnSb compound by Zn content regulation. It is found that Zn vacancies formed by Zn deficiency not only efficiently enhance the electrical conductivity due to the improved hole concentration but also markedly lower the lattice thermal conductivity on account of the reinforced point defect scattering of phonons. The ZnSb compound with a nominal 3 mol.% Zn deficiency shows a maximum thermoelectric figure of merit ZT of 0.8 at 700 K which is a 60% improvement over the pristine sample. The strategies of further enhancing the performance of ZnSb-based material have been discussed.

  8. Studies of minority carrier diffusion length increase in p-type ZnO:Sb

    SciTech Connect

    Lopatiuk-Tirpak, O.; Chernyak, L.; Xiu, F. X.; Liu, J. L.; Jang, S.; Ren, F.; Pearton, S. J.; Gartsman, K.; Feldman, Y.; Osinsky, A.; Chow, P.

    2006-10-15

    Minority electron diffusion length was measured in p-type, Sb-doped ZnO as a function of temperature using the electron beam induced current technique. A thermally induced increase of electron diffusion length was determined to have an activation energy of 184{+-}10 meV. Irradiation with a low energy (5 kV) electron beam also resulted in an increase of diffusion length with a similar activation energy (219{+-}8 meV). Both phenomena are suggested to involve a Sb{sub Zn}-2V{sub Zn} acceptor complex. Saturation and relaxation dynamics of minority carrier diffusion length are explored. Details of a possible mechanism for diffusion length increase are presented.

  9. P-type InGaN across the entire alloy composition range

    SciTech Connect

    Wang, K.; Araki, T.; Katsuki, T.; Yu, K. M.; Mayer, M. A.; Ager, J. W. III; Walukiewicz, W.; Alarcon-Llado, E.; Nanishi, Y.

    2013-03-11

    A systematic investigation on Mg doped and undoped InGaN epilayers grown by plasma-assisted molecular beam epitaxy has been conducted. Single phase InGaN alloys across the entire composition range were synthesized and Mg was doped into In{sub x}Ga{sub 1-x}N (0.1 {<=} x {<=} 0.88) epilayers up to {approx}10{sup 20}/cm{sup 3}. Hall effect, thermopower, and electrochemical capacitance voltage experimental results demonstrate the realization of p-type InGaN across the entire alloy composition range for properly Mg doped InGaN. Hole densities have been measured or estimated to be in the lower {approx}10{sup 18}/cm{sup 3} range when the net acceptor concentrations are in the lower {approx}10{sup 19}/cm{sup 3} range across the composition range.

  10. Formation and annealing of radiation defects in tin-doped p-type germanium crystals

    SciTech Connect

    Litvinov, V. V. Petukh, A. N.; Pokotilo, Ju. M.; Markevich, V. P.; Lastovskii, S. B.

    2012-05-15

    The effect of tin on the formation and annealing of radiation defects in p-type germanium crystals irradiated with 6-MeV electrons at a temperature of 80 K is studied. It is shown that acceptor complexes SnV with a hole ionization enthalpy of 0.16 eV are dominant in irradiated Ge:(Sn, Ga) crystals after their heating to a temperature of 300 K. These complexes disappeared as a result of the annealing of irradiated crystals in the temperature range 30-75 Degree-Sign C. Annealing of irradiated crystals at temperatures in the range 110-150 Degree-Sign C brings about the formation of deep-level centers with a donor level at E{sub v} + 0.29 eV; this center is presumably related to a complex consisting of a tin atom and an interstitial gallium atom.

  11. Origin of resistivity anomaly in p-type leads chalcogenide multiphase compounds

    SciTech Connect

    Aminorroaya Yamini, Sima E-mail: jsnyder@caltech.edu; Dou, Shi Xue; Mitchell, David R. G.; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Snyder, G. Jeffrey E-mail: jsnyder@caltech.edu

    2015-05-15

    The electrical resistivity curves for binary phase compounds of p-type lead chalcogenide (PbTe){sub (0.9−x)}(PbSe){sub 0.1}(PbS){sub x,} (x = 0.15, 0.2, 0.25), which contain PbS-rich secondary phases, show different behaviour on heating and cooling between 500-700 K. This is contrast to single phase compounds which exhibit similar behaviour on heating and cooling. We correlate these anomalies in the electrical resistivities of multiphase compounds to the variation in phase composition at high temperatures. The inhomogeneous distribution of dopants between the matrix and secondary phase is found to be crucial in the electronic transport properties of the multiphase compounds. These results can lead to further advances in designing composite Pb-chalcogenides with high thermoelectric performance.

  12. Phonon bottleneck in p-type Ge/Si quantum dots

    SciTech Connect

    Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.

    2015-11-23

    We study the effect of quantum dot size on the mid-infrared photo- and dark current, photoconductive gain, and hole capture probability in ten-period p-type Ge/Si quantum dot heterostructures. The dot dimensions are varied by changing the Ge coverage and the growth temperature during molecular beam epitaxy of Ge/Si(001) system in the Stranski-Krastanov growth mode. In all samples, we observed the general tendency: with decreasing the size of the dots, the dark current and hole capture probability are reduced, while the photoconductive gain and photoresponse are enhanced. Suppression of the hole capture probability in small-sized quantum dots is attributed to a quenched electron-phonon scattering due to phonon bottleneck.

  13. Novel method of separating macroporous arrays from p-type silicon substrate

    NASA Astrophysics Data System (ADS)

    Bobo, Peng; Fei, Wang; Tao, Liu; Zhenya, Yang; Lianwei, Wang; Fu, Ricky K. Y.; Chu, Paul K.

    2012-04-01

    This paper presents a novel method to fabricate separated macroporous silicon using a single step of photo-assisted electrochemical etching. The method is applied to fabricate silicon microchannel plates in 100 mm p-type silicon wafers, which can be used as electron multipliers and three-dimensional Li-ion microbatteries. Increasing the backside illumination intensity and decreasing the bias simultaneously can generate additional holes during the electrochemical etching which will create lateral etching at the pore tips. In this way the silicon microchannel can be separated from the substrate when the desired depth is reached, then it can be cut into the desired shape by using a laser cutting machine. Also, the mechanism of lateral etching is proposed.

  14. Ultrafast hole carrier relaxation dynamics in p-type CuO nanowires

    PubMed Central

    2011-01-01

    Ultrafast hole carrier relaxation dynamics in CuO nanowires have been investigated using transient absorption spectroscopy. Following femtosecond pulse excitation in a non-collinear pump-probe configuration, a combination of non-degenerate transmission and reflection measurements reveal initial ultrafast state filling dynamics independent of the probing photon energy. This behavior is attributed to the occupation of states by photo-generated carriers in the intrinsic hole region of the p-type CuO nanowires located near the top of the valence band. Intensity measurements indicate an upper fluence threshold of 40 μJ/cm2 where carrier relaxation is mainly governed by the hole dynamics. The fast relaxation of the photo-generated carriers was determined to follow a double exponential decay with time constants of 0.4 ps and 2.1 ps. Furthermore, time-correlated single photon counting measurements provide evidence of three exponential relaxation channels on the nanosecond timescale. PMID:22151927

  15. Effect of acidity on the glycine-nitrate combustion synthesis of nanocrystalline alumina powder

    SciTech Connect

    Peng Tianyou . E-mail: typeng@whu.edu.cn; Liu Xun; Dai Ke; Xiao Jiangrong; Song Haibo

    2006-09-14

    Nanocrystalline alumina powders were prepared by combustion synthesis using glycine as fuel and nitrate as an oxidizer. The effect of the pH values in the precursor solutions on crystallite sizes, surface areas and morphologies of the synthesized alumina powder has been investigated by X-ray diffractometry, thermal analysis, nitrogen adsorption-desorption, and transmission electron microscopy. With decreasing the pH values in the precursor solutions, the obtained materials could be modified from segregated nanoparticles (pH 10.5) to aggregates of nanoparticles (pH 6.0), and finally to a flaky morphology (pH 2.5). The rates of decomposition, the interaction of coordination as well as the hydrogen bonding of the glycine and the Al-hydroxides species at different pH values were found to be responsible for the generation of flake and/or segregated nanoparticles during auto-ignition reactions. The as-prepared combustion ashes were converted into pure nanocrystalline alumina after calcination at elevated temperatures. The specific surface areas of the products calcined at 800 deg. C ranged from 96 to 39 m{sup 2}/g with the pH decreased from 10.5 to 2.5.

  16. p-type Ge cyclotron-resonance laser: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Pfeffer, P.; Zawadzki, W.; Unterrainer, K.; Kremser, C.; Wurzer, C.; Gornik, E.; Murdin, B.; Pidgeon, C. R.

    1993-02-01

    p-type germanium in crossed magnetic and electric fields is used as a continuously tunable laser source in the far infrared. To describe magneto-optical transitions responsible for the laser action, we use the complete version of the Pidgeon and Brown model, which accounts for the nonparabolicity and nonsphericity of the Γ8 valence bands in Ge. It is demonstrated that both features are of importance in the correct assignment of the transitions. Also, the heating effects in the light-hole Landau levels are estimated theoretically. The calculations are performed for magnetic fields B∥[110] and B∥[111]. We compare our theoretical results to experimental work in which we are able to achieve laser action in a tuning range from 28 to 76 cm-1 by varying the magnetic field between 1.4 and 3.7 T. The laser output consists of a single line having a width of 0.25 cm-1 and a maximum power of about 300 mW for a pulsewidth of 1 μsec. Hall measurements are performed on p-type Ge samples with the same configuration as that of the laser crystals in order to determine the effective electric fields involved in the laser action. It is shown that the effective fields differ considerably from the applied fields. We conclude that the laser action, for B∥[110], at low magnetic fields (B<2.7 T) is governed by the 2-3 transition in the b set of light holes, while the action at high fields (B>2.8 T) is governed by the light-hole transition 0-1 in the same set. This agrees with estimations of the population inversion determined by other authors.

  17. Magnetic Properties of Grain Boundaries of Nanocrystalline Ni and of Ni Precipitates in Nanocrystalline NiCu Alloys

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Guan, Z.; Li, X.; Wichert, Th.

    2001-11-01

    Perturbed γγ-angular correlation spectroscopy (PAC) was used to investigate nanocrystalline Ni and NiCu alloys, which are prepared by pulsed electrodeposition (PED). Using diffusion for doping nanocrystalline Ni with 111In four different ordered grain boundary structures are observed, which are characterized by unique electric field gradients. The incorporation of 111In on substitutional bulk sites of Ni is caused by moving grain boundaries below 1000 K and by volume diffusion above 1000 K. The nanocrystalline NiCu alloys prepared by PED are microscopically inhomogeneous as observed by PAC. In contrast, this inhomogeneity cannot be detected by X-ray diffraction. The influence of the temperature of the electrolyte, the current density during deposition, and the optional addition of saccharin to the electrolyte on the homogeneity of nanocrystalline NiCu alloys was investigated.

  18. Toughness and strength of nanocrystalline graphene

    PubMed Central

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-01

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link' statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidate the nanoscale origins of the grain-size dependence of its strength and toughness. Our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials. PMID:26817712

  19. Nanocrystalline diamond coatings for mechanical seals applications.

    PubMed

    Santos, J A; Neto, V F; Ruch, D; Grácio, J

    2012-08-01

    A mechanical seal is a type of seal used in rotating equipment, such as pumps and compressors. It consists of a mechanism that assists the connection of the rotating shaft to the housings of the equipments, preventing leakage or avoiding contamination. A common cause of failure of these devices is end face wear out, thus the use of a hard, smooth and wear resistant coating such as nanocrystalline diamond would be of great importance to improve their working performance and increase their lifetime. In this paper, different diamond coatings were deposited by the HFCVD process, using different deposition conditions. Additionally, the as-grown films were characterized for, quality, morphology and microstructure using scanning electron microscopy (SEM) and Raman spectroscopy. The topography and the roughness of the films were characterized by atomic force microscopy (AFM). PMID:22962831

  20. Dye-sensitized nanocrystalline solar cells.

    PubMed

    Peter, Laurence M

    2007-06-01

    The basic physical and chemical principles behind the dye-sensitized nanocrystalline solar cell (DSC: also known as the Grätzel cell after its inventor) are outlined in order to clarify the differences and similarities between the DSC and conventional semiconductor solar cells. The roles of the components of the DSC (wide bandgap oxide, sensitizer dye, redox electrolyte or hole conductor, counter electrode) are examined in order to show how they influence the performance of the system. The routes that can lead to loss of DSC performance are analyzed within a quantitative framework that considers electron transport and interfacial electron transfer processes, and strategies to improve cell performance are discussed. Electron transport and trapping in the mesoporous oxide are discussed, and a novel method to probe the electrochemical potential (quasi Fermi level) of electrons in the DSC is described. The article concludes with an assessment of the prospects for future development of the DSC concept.

  1. Thermal Conductivity in Nanocrystalline Ceria Thin Films

    SciTech Connect

    Marat Khafizov; In-Wook Park; Aleksandr Chernatynskiy; Lingfeng He; Jianliang Lin; John J. Moore; David Swank; Thomas Lillo; Simon R. Phillpot; Anter El-Azab; David H. Hurley

    2014-02-01

    The thermal conductivity of nanocrystalline ceria films grown by unbalanced magnetron sputtering is determined as a function of temperature using laser-based modulated thermoreflectance. The films exhibit significantly reduced conductivity compared with stoichiometric bulk CeO2. A variety of microstructure imaging techniques including X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron analysis, and electron energy loss spectroscopy indicate that the thermal conductivity is influenced by grain boundaries, dislocations, and oxygen vacancies. The temperature dependence of the thermal conductivity is analyzed using an analytical solution of the Boltzmann transport equation. The conclusion of this study is that oxygen vacancies pose a smaller impediment to thermal transport when they segregate along grain boundaries.

  2. Mesoscopically structured nanocrystalline metal oxide thin films

    NASA Astrophysics Data System (ADS)

    Carretero-Genevrier, Adrian; Drisko, Glenna L.; Grosso, David; Boissiere, Cédric; Sanchez, Clement

    2014-11-01

    This review describes the main successful strategies that are used to grow mesostructured nanocrystalline metal oxide and SiO2 films via deposition of sol-gel derived solutions. In addition to the typical physicochemical forces to be considered during crystallization, mesoporous thin films are also affected by the substrate-film relationship and the mesostructure. The substrate can influence the crystallization temperature and the obtained crystallographic orientation due to the interfacial energies and the lattice mismatch. The mesostructure can influence the crystallite orientation, and affects nucleation and growth behavior due to the wall thickness and pore curvature. Three main methods are presented and discussed: templated mesoporosity followed by thermally induced crystallization, mesostructuration of already crystallized metal oxide nanobuilding units and substrate-directed crystallization with an emphasis on very recent results concerning epitaxially grown piezoelectric structured α-quartz films via crystallization of amorphous structured SiO2 thin films.

  3. Toughness and strength of nanocrystalline graphene

    DOE PAGESBeta

    Shekhawat, Ashivni; Ritchie, Robert O.

    2016-01-28

    Pristine monocrystalline graphene is claimed to be the strongest material known with remarkable mechanical and electrical properties. However, graphene made with scalable fabrication techniques is polycrystalline and contains inherent nanoscale line and point defects—grain boundaries and grain-boundary triple junctions—that lead to significant statistical fluctuations in toughness and strength. These fluctuations become particularly pronounced for nanocrystalline graphene where the density of defects is high. Here we use large-scale simulation and continuum modelling to show that the statistical variation in toughness and strength can be understood with ‘weakest-link’ statistics. We develop the first statistical theory of toughness in polycrystalline graphene, and elucidatemore » the nanoscale origins of the grain-size dependence of its strength and toughness. Lastly, our results should lead to more reliable graphene device design, and provide a framework to interpret experimental results in a broad class of two-dimensional materials.« less

  4. Glucose-assisted reduction achieved transparent p-type cuprous oxide thin film by a solution method

    NASA Astrophysics Data System (ADS)

    Nie, Sha; Sun, Jian; Gong, Hao; Chen, Zequn; Huang, Yifei; Xu, Jianmei; Zhao, Ling; Zhou, Wei; Wang, Qing

    2016-08-01

    The fabrication of p-type cuprous oxide thin film via a cheap and simple chemical method has been known as challenging. We first find that glucose can assist reduce Cu to a lower valence state in the preparation of cuprous oxide films by the sol-gel method. By first adding glucose in the sol as reducing agent, oxidation from the oxygen in the environment is limited and transparent p-type cuprous oxide films are eventually achieved under optimized experimental conditions. We have developed a p-type cuprous oxide thin film with an optimal Hall mobility of ∼8 cm2/Vs and an optical transmittance of 78%.

  5. Mechanisms for p -type behavior of ZnO, Zn1 -xMgxO , and related oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Urban, Daniel F.; Körner, Wolfgang; Elsässer, Christian

    2016-08-01

    The possibilities of turning intrinsically n -type oxide semiconductors like ZnO and Zn1 -xMgxO into p -type materials are investigated. Motivated by recent experiments on Zn1 -xMgxO doped with nitrogen, we analyze the electronic defect levels of point defects NO,vZn, and NO-vZn pairs in ZnO and Zn1 -xMgxO by means of self-interaction-corrected density functional theory calculations. We show how the interplay of defects can lead to shallow acceptor defect levels, although the levels of individual point defects NO are too deep in the band gap to be responsible for p -type conduction. We relate our results to p -type conduction paths at grain boundaries seen in polycrystalline ZnO and develop an understanding of a p -type mechanism which is common to ZnO, Zn1 -xMgxO , and related materials.

  6. First-principles prediction of a promising p-type transparent conductive material CsGeCl3

    NASA Astrophysics Data System (ADS)

    Huang, Dan; Zhao, Yu-Jun; Ju, Zhi-Ping; Gan, Li-Yong; Chen, Xin-Man; Li, Chang-Sheng; Yao, Chun-mei; Guo, Jin

    2014-04-01

    Most reported p-type transparent conductive materials are Cu-based compounds such as CuAlO2 and CuCrO2. Here, we report that compounds based on ns2 cations with low binding energy can also possess high valence band maximum, which is crucial for the p-type doping according to the doping limit rules. In particular, CsGeCl3, a compound with valence band maximum from ns2 cations, is predicted as a promising p-type transparent conductive material by first-principles calculations. Our results show that the p-type defect Ge vacancy dominates its intrinsic defects with a shallow transition level, and the calculated hole effective masses are low in CsGeCl3.

  7. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds.

    PubMed

    Cho, Soo-Yeon; Yoo, Hae-Wook; Kim, Ju Ye; Jung, Woo-Bin; Jin, Ming Liang; Kim, Jong-Seon; Jeon, Hwan-Jin; Jung, Hee-Tae

    2016-07-13

    The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure.

  8. Carrier transport mechanism in the SnO2:F/p-type a-Si:H heterojunction

    NASA Astrophysics Data System (ADS)

    Cannella, G.; Principato, F.; Foti, M.; Di Marco, S.; Grasso, A.; Lombardo, S.

    2011-07-01

    We characterize SnO2:F/p-type a-Si:H/Mo structures by current-voltage (I-V) and capacitance-voltage (C-V) measurements at different temperatures to determine the transport mechanism in the SnO2:F/p-type a-Si:H heterojunction. The experimental I-V curves of these structures, almost symmetric around the origin, are ohmic for |V|<0.1V and have a super-linear behavior (power law) for |V|<0.1V. The structure can be modeled as two diodes back to back connected so that the main current transport mechanisms are due to the reverse current of the diodes. To explain the measured C-V curves, the capacitance of the heterostructure is modeled as the series connection of the depletion capacitances of the two back to back connected SnO2:F/p-type a-Si:H and Mo/p-type a-Si:H junctions. We simulated the reverse I-V curves of the SnO2:F/p-type a-Si:H heterojunction at different temperatures by using the simulation software SCAPS 2.9.03. In the model the main transport mechanism is generation of holes enhanced by tunneling by acceptor-type interface defects with a trap energy of 0.4 eV above the valence bandedge of the p-type a-Si:H layer and with a density of 4.0 × 1013 cm-2. By using I-V simulations and the proposed C-V model the built-in potential (Vbi) of the SnO2:F/p-type a-Si:H (0.16 V) and p-type a-Si:H/Mo (0.14 V) heterojunctions are extracted and a band diagram of the characterized structure is proposed.

  9. High-Resolution p-Type Metal Oxide Semiconductor Nanowire Array as an Ultrasensitive Sensor for Volatile Organic Compounds.

    PubMed

    Cho, Soo-Yeon; Yoo, Hae-Wook; Kim, Ju Ye; Jung, Woo-Bin; Jin, Ming Liang; Kim, Jong-Seon; Jeon, Hwan-Jin; Jung, Hee-Tae

    2016-07-13

    The development of high-performance volatile organic compound (VOC) sensor based on a p-type metal oxide semiconductor (MOS) is one of the important topics in gas sensor research because of its unique sensing characteristics, namely, rapid recovery kinetics, low temperature dependence, high humidity or thermal stability, and high potential for p-n junction applications. Despite intensive efforts made in this area, the applications of such sensors are hindered because of drawbacks related to the low sensitivity and slow response or long recovery time of p-type MOSs. In this study, the VOC sensing performance of a p-type MOS was significantly enhanced by forming a patterned p-type polycrystalline MOS with an ultrathin, high-aspect-ratio (∼25) structure (∼14 nm thickness) composed of ultrasmall grains (∼5 nm size). A high-resolution polycrystalline p-type MOS nanowire array with a grain size of ∼5 nm was fabricated by secondary sputtering via Ar(+) bombardment. Various p-type nanowire arrays of CuO, NiO, and Cr2O3 were easily fabricated by simply changing the sputtering material. The VOC sensor thus fabricated exhibited higher sensitivity (ΔR/Ra = 30 at 1 ppm hexane using NiO channels), as well as faster response or shorter recovery time (∼30 s) than that of previously reported p-type MOS sensors. This result is attributed to the high resolution and small grain size of p-type MOSs, which lead to overlap of fully charged zones; as a result, electrical properties are predominantly determined by surface states. Our new approach may be used as a route for producing high-resolution MOSs with particle sizes of ∼5 nm within a highly ordered, tall nanowire array structure. PMID:27304752

  10. Growth and Characterization of the p-type Semiconductors Tin Sulfide and Bismuth Copper Oxy Selenide

    NASA Astrophysics Data System (ADS)

    Francis, Jason

    BiCuOSe and SnS are layered, moderate band gap (epsilon G ≈ 1 eV) semiconductors that exhibit intrinsic p type conductivity. Doping of BiCuOSe with Ca results in a slight expansion of the lattice and an increase of the hole concentration from 10 18 cm--3 to greater than 1020 cm --3. The large carrier density in undoped films is the result of copper vacancies. Mobility is unaffected by doping, remaining constant at 1.5 cm2V--1s--1 in both undoped and doped films, because the Bi-O layers serve as the source of carriers, while transport occurs within the Cu-Se layers. Bi possesses a 6s2 lone pair that was expected to hybridize with the oxygen p states at the top of the valence band, resulting in high hole mobility as compared to similar materials such as LaCuOSe, which lack this lone pair. However, both LaCuOSe and BiCuOSe have similar hole mobility. X-ray absorption and emission spectroscopy, combined with density functional theory calculations, reveal that the Bi 6 s states contribute deep within the valence band, forming bonding and anti-bonding states with O 2p at 11 eV and 3 eV below the valence band maximum, respectively. Hence, the Bi lone pair does not contribute at the top of the valence band and does not enhance the hole mobility. The Bi 6p states contribute at the bottom of the conduction band, resulting in a smaller band gap for BiCuOSe than LaCuOSe (1 eV vs. 3 eV). SnS is a potential photovoltaic absorber composed of weakly coupled layers stacked along the long axis. This weak coupling results in the formation of strongly oriented films on amorphous substrates. The optical band gap is 1.2 eV, in agreement with GW calculations. Absorption reaches 105 cm--1 within 0.5 eV of the band gap. The p type conduction arises from energetically favorable tin vacancies. Variation of growth conditions yields carrier densities of 1014 -- 1016 cm--3 and hole mobility of 7 -- 15 cm2V--1s--1. SnS was alloyed with rocksalt CaS, which was predicted to form a rocksalt

  11. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    PubMed

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly. PMID:26789206

  12. Few-Layer MoS₂ p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation.

    PubMed

    Nipane, Ankur; Karmakar, Debjani; Kaushik, Naveen; Karande, Shruti; Lodha, Saurabh

    2016-02-23

    P-type doping of MoS2 has proved to be a significant bottleneck in the realization of fundamental devices such as p-n junction diodes and p-type transistors due to its intrinsic n-type behavior. We report a CMOS compatible, controllable and area selective phosphorus plasma immersion ion implantation (PIII) process for p-type doping of MoS2. Physical characterization using SIMS, AFM, XRD and Raman techniques was used to identify process conditions with reduced lattice defects as well as low surface damage and etching, 4X lower than previous plasma based doping reports for MoS2. A wide range of nondegenerate to degenerate p-type doping is demonstrated in MoS2 field effect transistors exhibiting dominant hole transport. Nearly ideal and air stable, lateral homogeneous p-n junction diodes with a gate-tunable rectification ratio as high as 2 × 10(4) are demonstrated using area selective doping. Comparison of XPS data from unimplanted and implanted MoS2 layers shows a shift of 0.67 eV toward lower binding energies for Mo and S peaks indicating p-type doping. First-principles calculations using density functional theory techniques confirm p-type doping due to charge transfer originating from substitutional as well as physisorbed phosphorus in top few layers of MoS2. Pre-existing sulfur vacancies are shown to enhance the doping level significantly.

  13. Furfural resin-based bio-nanocomposites reinforced by reactive nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Wang, C.; Sun, S.; Zhao, G.; He, B.; Xiao, H.

    2009-07-01

    The work presented herein has been focused on reinforcing the furfural resins (FA) by reactive-modified nanocrystalline cellulose (NCC) in an attempt to create a bio-nanocomposite completely based on natural resources. FA prepolymers were synthesized with an acid catalyst, and NCC was rendered reactive via the grafting of maleic anhydride (MAH). The resulting NCC and nanocomposites were characterized using TEM, SEM and FT-IR. It was found that NCC appeared to be spherical in shape with diameters under 100 nm. FT-IR confirmed that there were hydrogen and esterification bonding between MAH and NCC or FA prepolymer. After solidified with paratoluenesulfonic acid, NCC-reinforced FA resin composites showed granular cross-section while FA resin with layered structures. Mechanical property tests indicated that NCC-reinforced FA resin composites possessed the improved tensile and flexural strengths, in comparison with FA resin.

  14. Defect studies in copper-based p-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  15. New segmented p-type germanium detector for neutrino-less double-beta decay

    NASA Astrophysics Data System (ADS)

    King, George Savage, III

    Neutrino-less double-beta decay (0nubetabetabeta - decay) has been selected by the American Physical Society Joint Study of Neutrino Physics, and by the Neutrino Science Advisory Group (NUSAG) as a top priority for consideration by the National Science Foundation and the US Department of Energy. The proposed Majorana 76Ge experiment was recommended as one of the two top projects in the US. It involves five US National Laboratories, nine universities, two Russian Institutes, and two Canadian Institutes. The experiment involves ultra-low background segmented germanium detectors of Ge enriched to 86% in 76Ge. Segmented Ge detectors have always been made from n-type germanium. Accordingly they are very expensive and have a production rate far too low to satisfy the Majorana construction schedule. This research project was successful in designing and producing the first five-segment p-type detector and test cryostat. Experiments performed in our laboratory have produced data that document that the segmentation is superior to the n-type segmented test detector specially made for the Majorana project, while the cost was lower and the production time was shorter. This type of detector is now one of several options for the Majorana experiment detector array modules. Neutrino-less double-beta decay is the only practical way to determine if neutrinos are their own anti particles, and if so the most sensitive way by far to determine the neutrino mass scale. The theoretical issues in neutrino physics and double-beta decay are discussed, the status of the experimental programs is given, as well as a description of the technology for the development of p-type segmented Ge detectors. Data documenting the efficacy of this detector in rejecting background is presented. Whether or not this option is chosen for the Majorana project, this development will be very useful in many projects in particle-astrophysics, nuclear physics, nuclear chemistry, and in national security. The detector

  16. High-Performance p-Type Black Phosphorus Transistor with Scandium Contact.

    PubMed

    Li, Ling; Engel, Michael; Farmer, Damon B; Han, Shu-Jen; Wong, H-S Philip

    2016-04-26

    A record high current density of 580 μA/μm is achieved for long-channel, few-layer black phosphorus transistors with scandium contacts after 400 K vacuum annealing. The annealing effectively improves the on-state current and Ion/Ioff ratio by 1 order of magnitude and the subthreshold swing by ∼2.5×, whereas Al2O3 capping significantly degrades transistor performances, resulting in 5× lower on-state current and 3× lower Ion/Ioff ratio. The influences of moisture on black phosphorus metal contacts are elucidated by analyzing the hysteresis of 3-20 nm thick black phosphorus transistors with scandium and gold contacts under different conditions: as-fabricated, after vacuum annealing, and after Al2O3 capping. The optimal black phosphorus film thickness for transistors with scandium contacts is found to be ∼10 nm. Moreover, p-type performance is shown in all transistors with scandium contacts, suggesting that the Fermi level is pinned closer to the valence band regardless of the flake thickness.

  17. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs.

    PubMed

    Zhang, Jia-Hong; Huang, Qing-An; Yu, Hong; Lei, Shuang-Ying

    2009-01-01

    In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  18. Accelerated light-induced degradation for detecting copper contamination in p-type silicon

    SciTech Connect

    Inglese, Alessandro Savin, Hele; Lindroos, Jeanette

    2015-08-03

    Copper is a harmful metal impurity that significantly impacts the performance of silicon-based devices if present in active regions. In this contribution, we propose a fast method consisting of simultaneous illumination and annealing for the detection of copper contamination in p-type silicon. Our results show that, within minutes, such method is capable of producing a significant reduction of the minority carrier lifetime. A spatial distribution map of copper contamination can then be obtained through the lifetime values measured before and after degradation. In order to separate the effect of the light-activated copper defects from the other metastable complexes in low resistivity Cz-silicon, we carried out a dark anneal at 200 °C, which is known to fully recover the boron-oxygen defect. Similar to the boron-oxygen behavior, we show that the dark anneal also recovers the copper defects. However, the recovery is only partial and it can be used to identify the possible presence of copper contamination.

  19. Raman Spectroscopy Determination of Hole Concentration in p-Type GaSb

    SciTech Connect

    Maslar JE, Hurst WS, Wang CA

    2007-04-05

    Room temperature p-type GaSb bulk coupled mode spectra were measured as a function of hole concentration. These spectra were obtained using an optical system based on 752.55 nm excitation in order to obtain more sensitivity to bulk GaSb coupled mode scattering than possible with visible wavelength excitation-based systems. A relatively simple spectral model for the electronic contribution to the dielectric function was evaluated for determination of hole concentration from the bulk coupled mode spectra. Optically-derived values for hole concentration were determined by minimizing the sum of the residuals squared between an experimental and simulated spectrum as a function of total hole concentration and a plasmon damping parameter. Hole concentrations obtained from the Raman spectroscopic measurements deviated from the values determined from single field Hall effect measurements that were corrected to account for two band conduction by {approx}20% to {approx}65%. These deviations were attributed to the limitations of the spectral model employed and uncertainties in GaSb materials properties.

  20. High-Performance p-Type Black Phosphorus Transistor with Scandium Contact.

    PubMed

    Li, Ling; Engel, Michael; Farmer, Damon B; Han, Shu-Jen; Wong, H-S Philip

    2016-04-26

    A record high current density of 580 μA/μm is achieved for long-channel, few-layer black phosphorus transistors with scandium contacts after 400 K vacuum annealing. The annealing effectively improves the on-state current and Ion/Ioff ratio by 1 order of magnitude and the subthreshold swing by ∼2.5×, whereas Al2O3 capping significantly degrades transistor performances, resulting in 5× lower on-state current and 3× lower Ion/Ioff ratio. The influences of moisture on black phosphorus metal contacts are elucidated by analyzing the hysteresis of 3-20 nm thick black phosphorus transistors with scandium and gold contacts under different conditions: as-fabricated, after vacuum annealing, and after Al2O3 capping. The optimal black phosphorus film thickness for transistors with scandium contacts is found to be ∼10 nm. Moreover, p-type performance is shown in all transistors with scandium contacts, suggesting that the Fermi level is pinned closer to the valence band regardless of the flake thickness. PMID:27023751

  1. Investigation of the optical and electrical properties of p-type porous GaAs structure

    NASA Astrophysics Data System (ADS)

    Saghrouni, H.; Missaoui, A.; Hannachi, R.; Beji, L.

    2013-12-01

    Porous GaAs layers have been formed by electrochemical anodic etching of (1 0 0) heavily doped p-type GaAs substrate in a HF:C2H5OH solution. The surface morphology of porous GaAs has been studied using atomic force microscopy (AFM). Nano-structural nature of the porous layer has been demonstrated by X-ray diffraction analysis (XRD) and confirmed by AFM. An estimation of the main size of the GaAs crystallites obtained from effective mass theory and based on PL data was close to the lowest value obtained from the AFM results. The porous p-GaAs samples are characterised by spectroscopic ellipsometry and modulation spectroscopy techniques. The objective of this study is to determine the porosity, refractive index, and thickness. The porosity of GaAs determined by atomic force microscopy confirmed by the value obtained from the spectroscopic ellipsometry. In fact the current-voltage I(V) characteristics of metal-semiconductor Au/p-GaAs are investigated and compared with Au/p-porous GaAs structures. From the forward bias I(V) characteristics of these devices, the main electrical parameters such as ideality factor, barrier height, and series resistance have been determined.

  2. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe

    SciTech Connect

    Shi, Guangsha; Kioupakis, Emmanouil

    2015-02-14

    We used density functional and many-body perturbation theory to calculate the quasiparticle band structures and electronic transport parameters of p-type SnSe both for the low-temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect band gap of 0.829 eV, while the Cmcm has a direct band gap of 0.464 eV. Both phases exhibit multiple local band extrema within an energy range comparable to the thermal energy of carriers from the global extrema. We calculated the electronic transport coefficients as a function of doping concentration and temperature for single-crystal and polycrystalline materials to understand the previous experimental measurements. The electronic transport coefficients are highly anisotropic and are strongly affected by bipolar transport effects at high temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at high temperature when doped in the 10{sup 19}–10{sup 20 }cm{sup −3} range.

  3. Ferromagnetic ordering of Cr and Fe doped p-type diamond: An ab initio study

    SciTech Connect

    Benecha, E. M.; Lombardi, E. B.

    2014-02-21

    Ferromagnetic ordering of transition metal dopants in semiconductors holds the prospect of combining the capabilities of semiconductors and magnetic systems in single hybrid devices for spintronic applications. Various semiconductors have so far been considered for spintronic applications, but low Curie temperatures have hindered room temperature applications. We report ab initio DFT calculations on the stability and magnetic properties of Fe and Cr impurities in diamond, and show that their ground state magnetic ordering and stabilization energies depend strongly on the charge state and type of co-doping. We predict that divacancy Cr{sup +2} and substitutional Fe{sup +1} order ferromagnetically in p-type diamond, with magnetic stabilization energies (and magnetic moment per impurity ion) of 16.9 meV (2.5 μ{sub B}) and 33.3 meV (1.0 μ{sub B}), respectively. These magnetic stabilization energies are much larger than what has been achieved in other semiconductors at comparable impurity concentrations, including the archetypal dilute magnetic semiconductor GaAs:Mn. In addition, substitutional Fe{sup +1} exhibits a strong half-metallic character, with the Fermi level crossing bands in only the spin down channel. These results, combined with diamond’s extreme properties, demonstrate that Cr or Fe dopedp-type diamond may successfully be considered in the search for room temperature spintronic materials.

  4. Accelerated light-induced degradation for detecting copper contamination in p-type silicon

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Lindroos, Jeanette; Savin, Hele

    2015-08-01

    Copper is a harmful metal impurity that significantly impacts the performance of silicon-based devices if present in active regions. In this contribution, we propose a fast method consisting of simultaneous illumination and annealing for the detection of copper contamination in p-type silicon. Our results show that, within minutes, such method is capable of producing a significant reduction of the minority carrier lifetime. A spatial distribution map of copper contamination can then be obtained through the lifetime values measured before and after degradation. In order to separate the effect of the light-activated copper defects from the other metastable complexes in low resistivity Cz-silicon, we carried out a dark anneal at 200 °C, which is known to fully recover the boron-oxygen defect. Similar to the boron-oxygen behavior, we show that the dark anneal also recovers the copper defects. However, the recovery is only partial and it can be used to identify the possible presence of copper contamination.

  5. Enhanced thermoelectric figure of merit of p-type half-Heuslers.

    PubMed

    Yan, Xiao; Joshi, Giri; Liu, Weishu; Lan, Yucheng; Wang, Hui; Lee, Sangyeop; Simonson, J W; Poon, S J; Tritt, T M; Chen, Gang; Ren, Z F

    2011-02-01

    Half-Heuslers would be important thermoelectric materials due to their high temperature stability and abundance if their dimensionless thermoelectric figure of merit (ZT) could be made high enough. The highest peak ZT of a p-type half-Heusler has been so far reported about 0.5 due to the high thermal conductivity. Through a nanocomposite approach using ball milling and hot pressing, we have achieved a peak ZT of 0.8 at 700 °C, which is about 60% higher than the best reported 0.5 and might be good enough for consideration for waste heat recovery in car exhaust systems. The improvement comes from a simultaneous increase in Seebeck coefficient and a significant decrease in thermal conductivity due to nanostructures. The samples were made by first forming alloyed ingots using arc melting and then creating nanopowders by ball milling the ingots and finally obtaining dense bulk by hot pressing. Further improvement in ZT is expected when average grain sizes are made smaller than 100 nm.

  6. Improved source design for p-type tunnel field-effect transistors: Towards truly complementary logic

    SciTech Connect

    Verreck, Devin Groeseneken, Guido; Verhulst, Anne S.; Collaert, Nadine; Mocuta, Anda; Thean, Aaron; Sorée, Bart

    2014-12-15

    Complementary logic based on tunnel field-effect transistors (TFETs) would drastically reduce power consumption thanks to the TFET's potential to obtain a sub-60 mV/dec subthreshold swing (SS). However, p-type TFETs typically do not meet the performance of n-TFETs for direct bandgap III-V configurations. The p-TFET SS stays well above 60 mV/dec, due to the low density of states in the conduction band. We therefore propose a source configuration in which a highly doped region is maintained only near the tunnel junction. In the remaining part of the source, the hot carriers in the exponential tail of the Fermi-Dirac distribution are blocked by reducing the doping degeneracy, either with a source section with a lower doping concentration or with a heterostructure. We apply this concept to n-p-i-p configurations consisting of In{sub 0.53}Ga{sub 0.47}As and an InP-InAs heterostructure. 15-band quantum mechanical simulations predict that the configurations with our source design can obtain sub-60 mV/dec SS, with an on-current comparable to the conventional source design.

  7. Localization of P-type calcium channels in the central nervous system.

    PubMed

    Hillman, D; Chen, S; Aung, T T; Cherksey, B; Sugimori, M; Llinás, R R

    1991-08-15

    The distribution of the P-type calcium channel in the mammalian central nervous system has been demonstrated immunohistochemically by using a polyclonal specific antibody. This antibody was generated after P-channel isolation via a fraction from funnel-web spider toxin (FTX) that blocks the voltage-gated P channels in cerebellar Purkinje cells. In the cerebellar cortex, immunolabeling to the antibody appeared throughout the molecular layer, while all the other regions were negative. Intensely labeled patches of reactivity were seen on Purkinje cell dendrites, especially at bifurcations; much weaker reactivity was present in the soma and stem segment. Electron microscopic localization revealed labeled patches of plasma membrane on the soma, main dendrites, spiny branchlets, and spines; portions of the smooth endoplasmic reticulum were also labeled. Strong labeling was present in the periglomerular cells of the olfactory bulb and scattered neurons in the deep layer of the entorhinal and pyriform cortices. Neurons in the brainstem, habenula, nucleus of the trapezoid body and inferior olive and along the floor of the fourth ventricle were also labeled intensely. Medium-intensity reactions were observed in layer II pyramidal cells of the frontal cortex, the CA1 cells of the hippocampus, the lateral nucleus of the substantia nigra, lateral reticular nucleus, and spinal fifth nucleus. Light labeling was seen in the neocortex, striatum, and in some brainstem neurons.

  8. p-type doping of MoS{sub 2} thin films using Nb

    SciTech Connect

    Laskar, Masihhur R.; Nath, Digbijoy N.; Lee, Edwin W.; Lee, Choong Hee; Yang, Zihao; Ma, Lu; Wu, Yiying; Kent, Thomas; Mishra, Rohan; Roldan, Manuel A.; Idrobo, Juan-Carlos; Pantelides, Sokrates T.; Pennycook, Stephen J.; Myers, Roberto C.; Rajan, Siddharth

    2014-03-03

    We report on the first demonstration of p-type doping in large area few-layer films of (0001)-oriented chemical vapor deposited MoS{sub 2}. Niobium was found to act as an efficient acceptor up to relatively high density in MoS{sub 2} films. For a hole density of 3.1 × 10{sup 20} cm{sup −3}, Hall mobility of 8.5 cm{sup 2} V{sup −1} s{sup −1} was determined, which matches well with the theoretically expected values. X-ray diffraction scans and Raman characterization indicated that the film had good out-of-plane crystalline quality. Absorption measurements showed that the doped sample had similar characteristics to high-quality undoped samples, with a clear absorption edge at 1.8 eV. Scanning transmission electron microscope imaging showed ordered crystalline nature of the Nb-doped MoS{sub 2} layers stacked in the [0001] direction. This demonstration of substitutional p-doping in large area epitaxial MoS{sub 2} could help in realizing a wide variety of electrical and opto-electronic devices based on layered metal dichalcogenides.

  9. Nonpolar a-plane p-type GaN and p-n Junction Diodes

    SciTech Connect

    Chakraborty, Arpan; Xing, H.; Craven, M.D.; Keller, S.; Mates, T.; Speck, J.S.; Baars, S.P. den; Mishra, U.K.

    2004-10-15

    Growth and electrical characteristics of Mg-doped p-type nonpolar (1120) a-plane GaN films, grown on (1102) r-plane sapphire substrates via metalorganic chemical vapor deposition, were investigated as a function of growth rate, the ammonia to trimethylgallium flow ratio (V/III ratio), and the growth temperature. The electrical conductivity of the films exhibited a strong dependence on the growth parameters. Secondary-ion-mass-spectroscopy measurements indicated that more Mg was incorporated at higher growth rate and at lower growth temperatures. The Mg concentration in the films increased linearly with the Mg flow. A maximum hole concentration of 6.8x10{sup 17}cm{sup -3} was achieved at room temperature for a Mg concentration of 7.6x10{sup 19}cm{sup -3}, corresponding to 0.9% ionization. Further increase in the Mg concentration resulted in increased surface roughness as well as a significant decrease in the hole concentration. p-n junction diodes were fabricated using nonpolar a-plane GaN, and the current-voltage characteristics of these diodes showed a sharp turn-on at {approx}3 V.

  10. Spin-lattice relaxation in p-type gallium arsenide single crystals

    NASA Astrophysics Data System (ADS)

    Zerrouati, K.; Fabre, F.; Bacquet, G.; Bandet, J.; Frandon, J.; Lampel, G.; Paget, D.

    1988-01-01

    An optical-pumping technique is used to measure the spin-relaxation time of photogenerated conduction electrons in several p-type GaAs single crystals doped with various amounts of acceptors in the 1.7-300 K temperature range. Our experimental results are compared with those of the literature and with the predictions of the existing theoretical calculations. From about 10 K, the Bir-Aronov-Pikus (BAP) mechanism is found to be relevant for moderately doped (1017-1018 cm-3), up to about 150 K, or degenerate (up to 300 K) semiconductors, using the electronic temperature, deduced from the luminescence spectra, rather than the sample temperature. The D'yakonov-Perel' (DP) process was found to be active above 200 K for moderately doped samples and from about 80 K to room temperature for samples doped in the (1.6-6)×1016-cm-3 acceptor-concentration range. Our original results obtained at liquid-helium temperatures at whatever the doping level cannot be explained either by the DP mechanism or by the BAP process.

  11. Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Cui, Jin; Han, Junbo; Zhang, Junpei; Zhang, Yibo; Luan, Lin; Alemu, Getachew; Wang, Zhong; Shen, Yan; Xiong, Dehua; Chen, Wei; Wei, Zhanhua; Yang, Shihe; Hu, Bin; Cheng, Yibing; Wang, Mingkui

    2014-01-01

    Over the past few decades, the field of p-type dye-sensitized solar cell (p-DSSC) devices has undergone tremendous advances, in which Cu-based delafossite nanocrystal is of prime interest. This paper presents an augment of about 87% improvement in photocurrent observed in a particular configuration of organic dye P1 sensitized CuCrO2 delafossite nanocrystal electrode coupled with organic redox shuttle, 1-methy-1H- tetrazole-5-thiolate and its disulfide dimer when Au nanoparticles (NPs, with diameter of about 20 nm) is added into the photocathode, achieving a power convert efficiency of 0.31% (measured under standard AM 1.5 G test conditions). Detailed investigation shows that the local electrical-magnetic field effect, induced by Au NPs among the mesoporous CuCrO2 film, can improve the charge injection efficiency at dye/semiconductor interface, which is responsible for the bulk of the gain in photocurrent. PMID:24492539

  12. Growth of antimony doped P-type zinc oxide nanowires for optoelectronics

    DOEpatents

    Wang, Zhong Lin; Pradel, Ken

    2016-09-27

    In a method of growing p-type nanowires, a nanowire growth solution of zinc nitrate (Zn(NO.sub.3).sub.2), hexamethylenetetramine (HMTA) and polyethylenemine (800 M.sub.w PEI) is prepared. A dopant solution to the growth solution, the dopant solution including an equal molar ration of sodium hydroxide (NaOH), glycolic acid (C.sub.2H.sub.4O.sub.3) and antimony acetate (Sb(CH.sub.3COO).sub.3) in water is prepared. The dopant solution and the growth solution combine to generate a resulting solution that includes antimony to zinc in a ratio of between 0.2% molar to 2.0% molar, the resulting solution having a top surface. An ammonia solution is added to the resulting solution. A ZnO seed layer is applied to a substrate and the substrate is placed into the top surface of the resulting solution with the ZnO seed layer facing downwardly for a predetermined time until Sb-doped ZnO nanowires having a length of at least 5 .mu.m have grown from the ZnO seed layer.

  13. Observations of exciton and carrier spin relaxation in Be doped p-type GaAs

    SciTech Connect

    Asaka, Naohiro; Harasawa, Ryo; Tackeuchi, Atsushi; Lu, Shulong; Dai, Pan

    2014-03-17

    We have investigated the exciton and carrier spin relaxation in Be-doped p-type GaAs. Time-resolved spin-dependent photoluminescence (PL) measurements revealed spin relaxation behaviors between 10 and 100 K. Two PL peaks were observed at 1.511 eV (peak 1) and 1.497 eV (peak 2) at 10 K, and are attributed to the recombination of excitons bound to neutral Be acceptors (peak 1) and the band-to-acceptor transition (peak 2). The spin relaxation times of both PL peaks were measured to be 1.3–3.1 ns at 10–100 K, and found to originate from common electron spin relaxation. The observed existence of a carrier density dependence of the spin relaxation time at 10–77 K indicates that the Bir-Aronov-Pikus process is the dominant spin relaxation mechanism.

  14. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes.

    PubMed

    Roques, Magali; Wall, Richard J; Douglass, Alexander P; Ramaprasad, Abhinay; Ferguson, David J P; Kaindama, Mbinda L; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S; Wheatley, Sally P; Yamano, Hiroyuki; Holder, Anthony A; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-11-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei.

  15. High performance p-type NiOx thin-film transistor by Sn doping

    NASA Astrophysics Data System (ADS)

    Lin, Tengda; Li, Xiuling; Jang, Jin

    2016-06-01

    Major obstacles towards power efficient complementary electronics employing oxide thin-film transistors (TFTs) lie in the lack of equivalent well performing p-channel devices. Here, we report a significant performance enhancement of solution-processed p-type nickel oxide (NiOx) TFTs by introducing Sn dopant. The Sn-doped NiOx (Sn-NiOx) TFTs annealed at 280 °C demonstrate substantially improved electrical performances with the increase in the on/off current ratio (Ion/Ioff) by ˜100 times, field-effect mobility (μlin) by ˜3 times, and the decrease in subthreshold swing by half, comparing with those of pristine NiOx TFTs. X-ray photoelectron spectroscopy and X-ray diffraction results confirm that Sn atoms tend to substitute Ni sites and induce more amorphous phase. A decrease in density of states in the gap of NiOx by Sn doping and the shift of Fermi level (EF) into the midgap lead to the improvements of TFT performances. As a result, Sn-NiOx can be a promising material for the next-generation, oxide-based electronics.

  16. Copper-related deep-level centers in irradiated p-type silicon

    SciTech Connect

    Yarykin, Nikolai; Weber, Joerg

    2011-03-15

    Deep-level centers are investigated in the p-type Si on copper-contaminated samples which were also electron irradiated. Standard and Laplace-transform deep-level transient spectroscopy techniques were employed to characterize the samples. Several Cu-related centers are observed to form either as a result of the low-temperature Cu diffusion into the irradiated crystals or due to irradiation of the Cu-contaminated samples and subsequent annealing up to 400 deg. C. In all crystals, two Cu-related defects are found to be the most abundant; each of them possesses a pair of levels in the lower half of the gap. The Arrhenius signatures for one pair are measured to be practically identical to those for the donor and acceptor levels of substitutional copper Cu{sub s}, respectively, the levels of other defect being only barely different from the Cu{sub s} levels. Analysis of the introduction rates and depth profiles of the deep-level centers points to the vacancy-oxygen complex (VO, the A center) as the precursor of the most abundant Cu-related defects. It is inferred that Cu{sub s} is formed in irradiated silicon due to interaction with the VO centers via the rather stable intermediate CuVO complex.

  17. Improved source design for p-type tunnel field-effect transistors: Towards truly complementary logic

    NASA Astrophysics Data System (ADS)

    Verreck, Devin; Verhulst, Anne S.; Sorée, Bart; Collaert, Nadine; Mocuta, Anda; Thean, Aaron; Groeseneken, Guido

    2014-12-01

    Complementary logic based on tunnel field-effect transistors (TFETs) would drastically reduce power consumption thanks to the TFET's potential to obtain a sub-60 mV/dec subthreshold swing (SS). However, p-type TFETs typically do not meet the performance of n-TFETs for direct bandgap III-V configurations. The p-TFET SS stays well above 60 mV/dec, due to the low density of states in the conduction band. We therefore propose a source configuration in which a highly doped region is maintained only near the tunnel junction. In the remaining part of the source, the hot carriers in the exponential tail of the Fermi-Dirac distribution are blocked by reducing the doping degeneracy, either with a source section with a lower doping concentration or with a heterostructure. We apply this concept to n-p-i-p configurations consisting of In0.53Ga0.47As and an InP-InAs heterostructure. 15-band quantum mechanical simulations predict that the configurations with our source design can obtain sub-60 mV/dec SS, with an on-current comparable to the conventional source design.

  18. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs.

    PubMed

    Zhang, Jia-Hong; Huang, Qing-An; Yu, Hong; Lei, Shuang-Ying

    2009-01-01

    In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET) pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors. PMID:22574043

  19. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO.

  20. Realization of Cu-Doped p-Type ZnO Thin Films by Molecular Beam Epitaxy.

    PubMed

    Suja, Mohammad; Bashar, Sunayna B; Morshed, Muhammad M; Liu, Jianlin

    2015-04-29

    Cu-doped p-type ZnO films are grown on c-sapphire substrates by plasma-assisted molecular beam epitaxy. Photoluminescence (PL) experiments reveal a shallow acceptor state at 0.15 eV above the valence band edge. Hall effect results indicate that a growth condition window is found for the formation of p-type ZnO thin films, and the best conductivity is achieved with a high hole concentration of 1.54 × 10(18) cm(-3), a low resistivity of 0.6 Ω cm, and a moderate mobility of 6.65 cm(2) V(-1) s(-1) at room temperature. Metal oxide semiconductor capacitor devices have been fabricated on the Cu-doped ZnO films, and the characteristics of capacitance-voltage measurements demonstrate that the Cu-doped ZnO thin films under proper growth conditions are p-type. Seebeck measurements on these Cu-doped ZnO samples lead to positive Seebeck coefficients and further confirm the p-type conductivity. Other measurements such as X-ray diffraction, X-ray photoelectron, Raman, and absorption spectroscopies are also performed to elucidate the structural and optical characteristics of the Cu-doped p-type ZnO films. The p-type conductivity is explained to originate from Cu substitution of Zn with a valency of +1 state. However, all p-type samples are converted to n-type over time, which is mostly due to the carrier compensation from extrinsic defects of ZnO. PMID:25835032

  1. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-05-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  2. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    PubMed Central

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  3. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    PubMed

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  4. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    PubMed

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  5. Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD

    SciTech Connect

    Wiora, M; Bruehne, K; Floeter, A; Gluche, P; Willey, T M; Kucheyev, S O; Van Buuren, A W; Hamza, A V; Biener, J; Fecht, H

    2008-08-01

    Nanocrystalline diamond (NCD) films with a thickness of {approx}6 {micro}m and with average grain sizes ranging from 60 to 9 nm were deposited on silicon wafers using a hot-filament chemical vapor deposition (HFCVD) process. These samples were then characterized with the goal to identify correlations between grain size, chemical composition and mechanical properties. The characterization reveals that our films are phase pure and exhibit a relatively smooth surface morphology. The levels of sp{sup 2}-bonded carbon and hydrogen impurities are low, and showed a systematic variation with the grain size. The hydrogen content increases with decreasing grain size, whereas the sp{sup 2} carbon content decreases with decreasing grain size. The material is weaker than single crystalline diamond, and both stiffness and hardness decrease with decreasing grain size. These trends suggest gradual changes of the nature of the grain boundaries, from graphitic in the case of the 60 nm grain size material to hydrogen terminated sp{sup 3} carbon for the 9 nm grain size material. The films exhibit low levels of internal stress and freestanding structures with a length of several centimeters could be fabricated without noticeable bending.

  6. Plasmodium P-Type Cyclin CYC3 Modulates Endomitotic Growth during Oocyst Development in Mosquitoes

    PubMed Central

    Ferguson, David J. P.; Kaindama, Mbinda L.; Brusini, Lorenzo; Joshi, Nimitray; Rchiad, Zineb; Brady, Declan; Guttery, David S.; Wheatley, Sally P.; Yamano, Hiroyuki; Holder, Anthony A.; Pain, Arnab; Wickstead, Bill; Tewari, Rita

    2015-01-01

    Cell-cycle progression and cell division in eukaryotes are governed in part by the cyclin family and their regulation of cyclin-dependent kinases (CDKs). Cyclins are very well characterised in model systems such as yeast and human cells, but surprisingly little is known about their number and role in Plasmodium, the unicellular protozoan parasite that causes malaria. Malaria parasite cell division and proliferation differs from that of many eukaryotes. During its life cycle it undergoes two types of mitosis: endomitosis in asexual stages and an extremely rapid mitotic process during male gametogenesis. Both schizogony (producing merozoites) in host liver and red blood cells, and sporogony (producing sporozoites) in the mosquito vector, are endomitotic with repeated nuclear replication, without chromosome condensation, before cell division. The role of specific cyclins during Plasmodium cell proliferation was unknown. We show here that the Plasmodium genome contains only three cyclin genes, representing an unusual repertoire of cyclin classes. Expression and reverse genetic analyses of the single Plant (P)-type cyclin, CYC3, in the rodent malaria parasite, Plasmodium berghei, revealed a cytoplasmic and nuclear location of the GFP-tagged protein throughout the lifecycle. Deletion of cyc3 resulted in defects in size, number and growth of oocysts, with abnormalities in budding and sporozoite formation. Furthermore, global transcript analysis of the cyc3-deleted and wild type parasites at gametocyte and ookinete stages identified differentially expressed genes required for signalling, invasion and oocyst development. Collectively these data suggest that cyc3 modulates oocyst endomitotic development in Plasmodium berghei. PMID:26565797

  7. Electron spin relaxation in p-type GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Jiang, J. H.; Wu, M. W.

    2009-11-01

    We investigate electron spin relaxation in p-type GaAs quantum wells from a fully microscopic kinetic spin Bloch equation approach, with all the relevant scatterings, such as electron-impurity, electron-phonon, electron-electron Coulomb, electron-hole Coulomb and electron-hole exchange (the Bir-Aronov-Pikus (BAP) mechanism) scatterings, explicitly included. Via this approach, we examine the relative importance of the D'yakonov-Perel' (DP) and BAP mechanisms in wide ranges of temperature, hole density, excitation density and impurity density, and present a phase-diagram-like picture showing the parameter regime where the DP or BAP mechanism is more important. It is discovered that in the impurity-free case the temperature regime where the BAP mechanism is more efficient than the DP one is around the hole Fermi temperature for high hole density, regardless of excitation density. However, in the high impurity density case with the impurity density identical to the hole density, this regime is roughly from the electron Fermi temperature to the hole Fermi temperature. Moreover, we predict that for the impurity-free case, in the regime where the DP mechanism dominates the spin relaxation at all temperatures, the temperature dependence of the spin relaxation time (SRT) presents a peak around the hole Fermi temperature, which originates from the electron-hole Coulomb scattering. We also predict that at low temperature, the hole-density dependence of the electron SRT exhibits a double-peak structure in the impurity-free case, whereas it shows first a peak and then a valley in the case of identical impurity and hole densities. These intriguing behaviors are due to the contribution from holes in high subbands.

  8. Analytical approximation of effective surface recombination velocity of dielectric-passivated p-type silicon

    NASA Astrophysics Data System (ADS)

    Brody, Jed; Rohatgi, Ajeet

    2001-09-01

    New analytical equations are derived to approximate the effective surface recombination velocity ( Seff) on p-type silicon for three different cases: low-level injection (LLI) with surface hole concentration ( ps) much greater than surface electron concentration ( ns) and with silicon charge ( QSi) due primarily to ionized acceptors, LLI with ns≫ ps and QSi due primarily to ionized acceptors, and high-level injection with ns≫ ps and QSi due primarily to mobile electrons. The three new equations predict the dependence of Seff on individual parameters such as injection level ( Δn), doping level ( NA), and fixed dielectric charge ( Qf). The new equations complement a previously derived result (for LLI with ns≫ ps and QSi due primarily to mobile electrons) and together allow reasonable explanations to be given for all sections of all Seff vs. Δn and Seff vs. NA curves generated by a quasi-exact numerical method. The analytical approximations are compared with the full numerical solutions. Under appropriate conditions, the analytical approximations agree with the numerical solutions within a factor of 3. Guided by the analytical approximations, numerical solutions are fitted to two sets of experimental data: the injection level dependence of Seff for an oxide-passivated wafer; and the doping dependence of Seff for wafers passivated by plasma-enhanced chemical vapor deposited nitride (SiN x), conventional furnace oxide (CFO), and the SiN x/CFO stack. The SiN x/CFO stack not only provides surface passivation that is superior to either dielectric alone; it is also less doping dependent. The analytical approximations indicate that this suppressed doping dependence could be due to a lower interface state density or a higher fixed dielectric charge ( Qf).

  9. Nanocrystalline films for gas-reactive applications

    DOEpatents

    Eastman, Jeffrey A.; Thompson, Loren J.

    2004-02-17

    A gas sensor for detection of oxidizing and reducing gases, including O.sub.2, CO.sub.2, CO, and H.sub.2, monitors the partial pressure of a gas to be detected by measuring the temperature rise of an oxide-thin-film-coated metallic line in response to an applied electrical current. For a fixed input power, the temperature rise of the metallic line is inversely proportional to the thermal conductivity of the oxide coating. The oxide coating contains multi-valent cation species that change their valence, and hence the oxygen stoichiometry of the coating, in response to changes in the partial pressure of the detected gas. Since the thermal conductivity of the coating is dependent on its oxygen stoichiometry, the temperature rise of the metallic line depends on the partial pressure of the detected gas. Nanocrystalline (<100 nm grain size) oxide coatings yield faster sensor response times than conventional larger-grained coatings due to faster oxygen diffusion along grain boundaries rather than through grain interiors.

  10. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  11. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  12. Films prepared from electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Yang, Han; Tejado, Alvaro; Alam, Nur; Antal, Miro; van de Ven, Theo G M

    2012-05-22

    Electrosterically stabilized nanocrystalline cellulose (ENCC) was modified in three ways: (1) the hydroxyl groups on C2 and C3 of glucose repeat units of ENCC were converted to aldehyde groups by periodate oxidation to various extents; (2) the carboxyl groups in the sodium form on ENCC were converted to the acid form by treating them with an acid-type ion-exchange resin; and (3) ENCC was cross-linked in two different ways by employing adipic dihydrazide as a cross-linker and water-soluble 1-ethyl-3-[3-(dimethylaminopropyl)] carbodiimide as a carboxyl-activating agent. Films were prepared from these modified ENCC suspensions by vacuum filtration. The effects of these three modifications on the properties of films were investigated by a variety of techniques, including UV-visible spectroscopy, a tensile test, thermogravimetric analysis (TGA), the water vapor transmission rate (WVTR), and contact angle (CA) studies. On the basis of the results from UV spectra, the transmittance of these films was as high as 87%, which shows them to be highly transparent. The tensile strength of these films was increased with increasing aldehyde content. From TGA and WVTR experiments, cross-linked films showed much higher thermal stability and lower water permeability. Furthermore, although the original cellulose is hydrophilic, these films also exhibited a certain hydrophobic behavior. Films treated by trichloromethylsilane become superhydrophobic. The unique characteristics of these transparent films are very promising for potential applications in flexible packaging and other high-technology products. PMID:22482733

  13. Mesoporous junctions and nanocrystalline solar cells

    NASA Astrophysics Data System (ADS)

    Graetzel, Michael

    2000-03-01

    Learning from the concepts used by green plants, we have developed a molecular photovoltaic system based on the sensitization of nanocrystalline TiO2 films. In analogy to photosyntesis, light is absorbed by a monolayer of dye attached to the surface of a wide-band-gap oxide. The mesoporous morphology of the layer provides a substrate characterized by a very large surface area. The roughness factor of a 10-micron thick film reaches easily 1000. Light penetrating the dye loaded TiO2 nanocrystals is therefore collected in an efficient manner, similar to the thylakoid vesicles in green leafs which are stacked in order to enhance solar light harvesting. The excited dye injects an electron in the conduction band of the oxide resulting in efficient and very rapid charge separation. Nearly quantitative conversion of photons in electric current have been achieved with these devices over the whole visible and near-IR range of the spectrum. The overall AM 1.5 solar-to electric power conversion efficiency has reached already 11unravel the dynamics of interfacial charge transfer reactions at these dye- sensitized heterojunctions.

  14. Photoluminescence study of p-type vs. n-type Ag-doped ZnO films

    SciTech Connect

    Myers, M. A.; Jian, J.; Khranovskyy, V.; Lee, J. H.; Wang, Han; Wang, Haiyan E-mail: hwang00@tamu.edu

    2015-08-14

    Silver doped ZnO films have been grown on sapphire (0001) substrates by pulsed laser deposition. Hall measurements indicate that p-type conductivity is realized for the films deposited at 500 °C and 750 °C. Transmission electron microscopy images show more obvious and higher density of stacking faults (SFs) present in the p-type ZnO films as compared to the n-type films. Top view and cross sectional photoluminescence of the n- and p-type samples revealed free excitonic emission from both films. A peak at 3.314 eV, attributed to SF emission, has been observed only for the n-type sample, while a weak neutral acceptor peak observed at 3.359 eV in the p-type film. The SF emission in the n-type sample suggests localization of acceptor impurities nearby the SFs, while lack of SF emission for the p-type sample indicates the activation of the Ag acceptors in ZnO.

  15. Direct-Coated Photoconducting Nanocrystalline PbS Thin Films with Tunable Band Gap

    NASA Astrophysics Data System (ADS)

    Vankhade, Dhaval; Kothari, Anjana; Chaudhuri, Tapas K.

    2016-06-01

    Nanocrystalline PbS thin films are deposited on glass by direct coating from a precursor solution of lead acetate and thiourea in methanol. A single coating has a thickness of 50 nm and greater thicknesses are obtained from layer by layer deposition. The films are smooth and shiny with roughness (rms) of about 1.5 nm. X-ray diffraction studies show that films are cubic PbS with crystallite size about 10 nm. The films are p-type with dark electrical conductivities in the range of 0.4-0.5 S/cm. These films are basically photoconducting. Photoconductivity monotonically increases with increase in thickness. The band gap of the films strongly depends on the thickness of the films. The band gap decreases from 2.4 eV to 1.6 eV as the thickness is increased from 50 nm to 450 nm. The tunability of the band gap is useful for technical applications, such as solar cells and photodetectors.

  16. In vivo evaluation of matrix pellets containing nanocrystalline ketoprofen.

    PubMed

    Vergote, G J; Vervaet, C; Van Driessche, I; Hoste, S; De Smedt, S; Demeester, J; Jain, R A; Ruddy, S; Remon, J P

    2002-06-20

    The aim of this study was to evaluate the in-vivo behaviour of matrix pellets formulated with nanocrystalline ketoprofen after oral administration to dogs. No significant differences in AUC-values were seen between pellet formulations containing nanocrystalline or microcrystalline ketoprofen and a commercial ketoprofen formulation (reference: Rofenid 200 Long Acting). C(max) of the formulations containing nano- or microcrystalline ketoprofen was significantly higher compared to reference, whereas t(max) was significantly lower. The in-vivo burst release observed for the spray dried nanocrystalline ketoprofen matrix pellets was reduced following compression of the pellets in combination with placebo wax/starch pellets. These matrix tablets sustained the ketoprofen plasma concentrations during 5.6 and 5.4 h for formulations containing nano- and microcrystalline ketoprofen, respectively.

  17. Mechanochemical processing of nanocrystalline Ti-6Al-4V alloy

    NASA Astrophysics Data System (ADS)

    Pirzada, M. D. S.; (Sam) Froes, F. H.; Patankar, S. N.

    2004-06-01

    Synthesis of nanocrystalline Ti-6Al-4V was explored using mechanochemical processing. The reaction mixture was comprised of CaH2, Mg powder, anhydrous AlCl3, anhydrous VCl3, and TiCl4. The milled powder (reaction product) primarily consisted of nanocrystalline alloy hydride having a composition (Ti-6Al-4V)H1.942, along with MgCl2 and CaCl2 as by-products. Aqueous solutions of nitric acid, sulfuric acid, and 1 pct sodium sulfite were found to be very effective in leaching of the chlorides from the milled powder. The (Ti-6Al-4V)H1.942 on dehydrogenation at 375°C resulted in nanocrystalline Ti-6Al-4V alloy powder.

  18. Kinetic constants of abnormal grain growth in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Aleshin, A. N.

    2016-02-01

    The grain growth in nanocrystalline nickel with a purity of 99.5 at % during non-isothermal annealing was experimentally investigated using differential scanning calorimetry and transmission electron microscopy. Nanocrystalline nickel was prepared by electrodeposition and had an average grain size of approximately 20 nm. It was shown that, at a temperature corresponding to the calorimetric signal peak, abnormal grain growth occurs with the formation of a bimodal grain microstructure. Calorimeters signals were processed within the Johnson-Mehl-Avrami formalism. This made it possible to determine the exponent of the corresponding equation, the frequency factor, and the activation energy of the grain growth, which was found to be equal to the activation energy of the vacancy migration. The reasons for the abnormal grain growth in nanocrystalline nickel were discussed.

  19. A combustion synthesis process for synthesizing nanocrystalline zirconia powders

    SciTech Connect

    Venkatachari, K.R.; Huang, D.; Ostrander, S.P.; Schulze, W.A.; Stangle, G.C.

    1995-03-01

    Materials with nanocrystalline features are expected to have improved or unique properties when compared to those of conventional materials. Methods for the practical and economical production of nanoparticles in large quantities are not presently available. A method based on combustion synthesis for preparing nanocrystalline powders was investigated in this work. Yttria-doped zirconia powders with an average crystalline size of 10 nm were synthesized. The characteristics of the powder (e.g., surface area and phase content) were found to depend strongly on the fuel content in the starting mixture and on the ignition temperature used in the process. The method is expected to be suitable for commercial fabrication of nanocrystalline multicomponent oxide ceramic powders.

  20. Influence of particle size on H2 and H2S sensing characteristics of nanocrystalline nickel ferrite

    NASA Astrophysics Data System (ADS)

    Ghosh, P.; Mukherjee, A.; Fu, M.; Chattopadhyay, S.; Mitra, P.

    2015-11-01

    Nanocrystalline nickel ferrite (NiFe2O4) was synthesized by sol-gel self-combustion technique. Ball milling at room temperature was carried out to control the particle size. Characterization of synthesized powders was made using X-ray diffraction (XRD) and Transmission electron microscopy (TEM) analysis. Fine powder resulted from milling was used to prepare gas sensing elements in pellet form. The gas-sensing properties were studied in presence of hydrogen and hydrogen sulfide as test gases. The gas-response was found to be strongly influenced by the particle size. Significantly high sensitivity of ~75% was found for ~5.35 nm nickel ferrite in presence of 200 ppm H2 S at an operating temperature of 150 °C. Sensitivity was found to increase with temperature before being maximum at a particular operating temperature.

  1. Uncovering the complex behavior of hydrogen in Cu2O.

    PubMed

    Scanlon, David O; Watson, Graeme W

    2011-05-01

    The behavior of hydrogen in p-type Cu(2)O has been reported to be quite unusual. Muon experiments have been unable to ascertain the preferential hydrogen site within the Cu(2)O lattice, and indicate that hydrogen causes an electrically active level near the middle of the band gap, whose nature, whether accepting or donating, is not known. In this Letter, we use screened hybrid-density-functional theory to study the nature of hydrogen in Cu(2)O, and identify for the first time the "quasiatomic" site adopted by hydrogen in Cu(2)O. We show that hydrogen will always act as a hole killer in p-type Cu(2)O, and is one likely cause of the low performance of Cu(2)O solar cell devices. PMID:21635109

  2. Hydrogen sensor

    DOEpatents

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  3. Tuning the formation of p-type defects by peroxidation of CuAlO2 films

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Lin, Yow-Jon; Hung, Hao-Che; Liu, Chia-Jyi; Yang, Yao-Wei

    2013-07-01

    p-type conduction of CuAlO2 thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (VCu), and interstitial oxygen (Oi) was established. It is shown that peroxidation of CuAlO2 films may lead to the increased formation probability of acceptors (VCu and Oi), thus, increasing the hole concentration. The dependence of the VCu density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO2. Understanding the defect-related p-type conductivity of CuAlO2 is essential for designing optoelectronic devices and improving their performance.

  4. Boric acid solution concentration influencing p-type emitter formation in n-type crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Singha, Bandana; Singh Solanki, Chetan

    2016-09-01

    Boric acid (BA) is a spin on dopant (BSoD) source which is used to form p+ emitters in n-type c-Si solar cells. High purity boric acid powder (99.99% pure) when mixed with deionized (DI) water can result in high quality p-type emitter with less amount of surface defects. In this work, we have used different concentrations of boric acid solution concentrations to fabricate p-type emitters with sheet resistance values < 90 Ω/□. The corresponding junction depths for the same are less than 500 nm as measured by SIMS analysis. Boron rich layer (BRL), which is considered as detrimental in emitter performance is found to be minimal for BA solution concentration less than 2% and hence useful for p-type emitter formation.

  5. Tuning the formation of p-type defects by peroxidation of CuAlO{sub 2} films

    SciTech Connect

    Luo, Jie; Lin, Yow-Jon; Yang, Yao-Wei; Hung, Hao-Che; Liu, Chia-Jyi

    2013-07-21

    p-type conduction of CuAlO{sub 2} thin films was realized by the rf sputtering method. Combining with Hall, X-ray photoelectron spectroscopy, energy dispersive spectrometer, and X-ray diffraction results, a direct link between the hole concentration, Cu vacancy (V{sub Cu}), and interstitial oxygen (O{sub i}) was established. It is shown that peroxidation of CuAlO{sub 2} films may lead to the increased formation probability of acceptors (V{sub Cu} and O{sub i}), thus, increasing the hole concentration. The dependence of the V{sub Cu} density on growth conditions was identified for providing a guide to tune the formation of p-type defects in CuAlO{sub 2}. Understanding the defect-related p-type conductivity of CuAlO{sub 2} is essential for designing optoelectronic devices and improving their performance.

  6. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices

    SciTech Connect

    Liu, Shuai; Liu, Shu-Liang; Liu, Ling-Zhi; Liu, Yi-Chen; Long, Yun-Ze; Zhang, Hong-Di; Zhang, Jun-Cheng; Han, Wen-Peng

    2014-01-27

    Ce-doped p-type ZnO nanofibers were synthesized by electrospinning and followed calcinations. The surface morphology, elementary composition, and crystal structure of the nanofibers were investigated. The field effect curve confirms that the resultant Ce-doped ZnO nanofibers are p-type semiconductor. A p-n heterojunction device consisting of Ce-doped p-type ZnO nanofibers and n-type indium tin oxide (ITO) thin film was fabricated on a piece of quartz substrate. The current-voltage (I-V) characteristic of the p-n heterojunction device shows typical rectifying diode behavior. The turn-on voltage appears at about 7 V under the forward bias and the reverse current is impassable.

  7. Studies on electrochemically constructed n- and p-type photoelectrodes for use in solar energy conversion

    NASA Astrophysics Data System (ADS)

    Kang, Donghyeon

    Among several pathways to harvest solar energy, solar water splitting is one of the most efficient methods to convert solar light to hydrogen, which is a clean and easy to store chemical that has the potential to be used as a fuel source. Solar water splitting can be achieved primarily by photoelectrochemical cells (PECs), which utilize semiconductors as photoelectrodes for the water splitting reaction. Photoelectrodes play the crucial role of generating hydrogen but, to date, very few photoelectrodes have been developed that can produce hydrogen in a stable and efficient manner. Thus, development and modification of efficient, stable photoelectrodes are highly desirable to improve performance of solar water splitting PECs. This dissertation demonstrates the development of semiconductors as photoelectrodes and their modifications to advance solar energy conversion performance by newly established electrochemical synthetic routes. To improve the photoelectrochemical performance of photoelectrodes, various strategies were introduced, such as, morphology control, extrinsic doping, and the integration of catalysts. After successfully demonstrating the electrochemical synthesis of photoelectrodes, photoelectrochemical and electrochemical properties of electrodeposited photoelectrodes in PECs are discussed. The chapters can be categorized into three major themes. The first theme is the preparation of Bi-based photoanodes for the water oxidation reaction. Chapter 2 presents a study of Mo-doping into the BiVO4 photoanode to enhance charge separation properties. After Mo-doping was achieved successfully, a FeOOH oxygen evoltuion catalyst was integrated into the Mo-doped BiVO 4 photoanode to increase the water oxidation performance. Chapter 3 introduces another electrochemical synthesis method to control the morphology of Bi-based oxide photoanode materials. The second theme of this dissertation is the preparation of photocathode materials for the water reduction reaction

  8. Small, but perfectly formed: The microstructure of nanocrystalline oxides

    NASA Astrophysics Data System (ADS)

    Chadwick, A. V.

    2003-01-01

    There is considerable interest in nanocrystalline materials due to their unusual properties that offer the possibility of exciting technological applications. This paper concentrates on the microstructure of nanocrystalline binary oxides as revealed by X-ray absorption studies. It will be shown that these experiments yield a picture of the materials in which, even when the particles are only a few nanometres in size, the crystallites are highly ordered and the interfaces are similar to grain boundaries in normal bulk solids. This is in conflict with earlier ideas where it was often assumed the surfaces of nanocrystals and the interfaces between them were very disordered.

  9. Research Update: Phonon engineering of nanocrystalline silicon thermoelectrics

    NASA Astrophysics Data System (ADS)

    Shiomi, Junichiro

    2016-10-01

    Nanocrystalline silicon thermoelectrics can be a solution to improve the cost-effectiveness of thermoelectric technology from both material and integration viewpoints. While their figure-of-merit is still developing, recent advances in theoretical/numerical calculations, property measurements, and structural synthesis/fabrication have opened up possibilities to develop the materials based on fundamental physics of phonon transport. Here, this is demonstrated by reviewing a series of works on nanocrystalline silicon materials using calculations of multiscale phonon transport, measurements of interfacial heat conduction, and synthesis from nanoparticles. Integration of these approaches allows us to engineer phonon transport to improve the thermoelectric performance by introducing local silicon-oxide structures.

  10. Ultrasound assisted additive free synthesis of nanocrystalline zinc oxide.

    PubMed

    Bhatte, Kushal D; Fujita, Shin-Ichiro; Arai, Masahiko; Pandit, Anirudha B; Bhanage, Bhalchandra M

    2011-01-01

    A novel method for the synthesis of nanocrystalline zinc oxide without any additive was developed using zinc acetate and 1,4-butanediol through sonication. The structure and morphology of prepared nanocrystalline zinc oxide was investigated by various techniques like TEM, XRD, EDAX, UV-Vis spectroscopy. The solvent 1,4-butanediol played a dual role of fuel as well as capping agent eliminating addition of any extraneous species. The results showed that using ultrasound sonication is green, cost effective compared to conventional wet chemical method for ZnO nanoparticle synthesis. PMID:20634118

  11. Incorporation Of Nanocrystalline Silver on Carbon Nanotubes by Electrodeposition Technique

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Pal, A. K.

    2008-10-01

    Nanocrystalline silver incorporated carbon nanotubes were grown on Si (001) substrate from an electrolytic bath containing acetonitrile (1% v/v) and water with appropriate amount of silver acetate at an applied d.c. potential ˜20V. The films were characterized by measuring their microstructural properties, FTIR and Raman studies. HRTEM image indicated that the diameter of the nanotubes as ˜5 nm and the d spacing as ˜0.34 nm for (002) plane of CNT. With the addition of nanocrystalline silver, the intensity of G-band decreases while the D-band located ˜1352 cm-1 becomes sharper.

  12. Development of high permeability nanocrystalline permalloy by electrodeposition

    NASA Astrophysics Data System (ADS)

    Seet, H. L.; Li, X. P.; Zhao, Z. J.; Kong, Y. K.; Zheng, H. M.; Ng, W. C.

    2005-05-01

    In this study, for developing microsensors for weak magnetic field, methods for developing high permeability nanocrystalline permalloy by electrodeposition and the relationship between the grain size and magnetic properties of the nanocrystalline permalloy are investigated. By dc plating with and without saccharin added and pulse plating with saccharin added, permalloy samples of grain sizes from 52 nm to 11 nm are obtained. The coercivity and magnetoimpedance (MI) ratio of the samples are tested against the grain size variation. Results show that the coercivity decreases rapidly and MI ratio increases greatly with grain size decrease from 52 nm to 11 nm.

  13. Development of high permeability nanocrystalline permalloy by electrodeposition

    SciTech Connect

    Seet, H.; Li, X.P.; Zhao, Z.J.; Kong, Y.K.; Zheng, H.M.; Ng, W.C.

    2005-05-15

    In this study, for developing microsensors for weak magnetic field, methods for developing high permeability nanocrystalline permalloy by electrodeposition and the relationship between the grain size and magnetic properties of the nanocrystalline permalloy are investigated. By dc plating with and without saccharin added and pulse plating with saccharin added, permalloy samples of grain sizes from 52 nm to 11 nm are obtained. The coercivity and magnetoimpedance (MI) ratio of the samples are tested against the grain size variation. Results show that the coercivity decreases rapidly and MI ratio increases greatly with grain size decrease from 52 nm to 11 nm.

  14. A mild reduction phosphidation approach to nanocrystalline GaP

    NASA Astrophysics Data System (ADS)

    Chen, Luyang; Luo, Tao; Huang, Mingxing; Gu, Yunle; Shi, Liang; Qian, Yitai

    2004-12-01

    Nanocrystalline gallium phosphide (GaP) has been prepared through a reduction-phosphidation by using Ga, PCl 3 as gallium and phosphorus sources and metallic sodium as reductant at 350 °C. The XRD pattern can be indexed as cublic GaP with the lattice constant of a=5.446 Å. The TEM image shows particle-like polycrystals and flake-like single crystals. The PL spectrum exhibits one peak at 330 nm for the as-prepared nanocrystalline GaP.

  15. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-01

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  16. Tribological properties of nanocrystalline diamond films

    SciTech Connect

    Erdemir, A.; Fenske, G. R.; Kraus, A. R.; Gruen, D. M.; McCauley, T.; Csencsits, R. T.

    2000-01-26

    In this paper, the authors present the friction and wear properties of nanocrystalline diamond (NCD) films grown in A-fullerene (C{sub 60}) and Ar-CH{sub 4} microwave plasmas. Specifically, they address the fundamental tribological issues posed by these films during sliding against Si{sub 3}N{sub 4} counterfaces in ambient air and inert gases. Grain sizes of the films grown by the new method are very small (10--30 nm) and are much smoother (20-40 nm, root mean square) than those of films grown by the conventional H{sub 2}-CH{sub 4} microwave-assisted chemical-vapor-deposition (CVD) process. Transmission electron microscopy (TEM) revealed that the grain boundaries of these films are very sharp and free of nondiamond phases. The microcrystalline diamond (MCD) films grown by most conventional methods consist of large grains and a rough surface finish, which can cause severe abrasion during sliding against other materials. The friction coefficients of films grown by the new method (i.e., in Ar-C{sub 60} and Ar-CH{sub 4} plasmas) are comparable to those of natural diamond, and wear damage on counterface materials is minimal. Fundamental tribological studies indicate that these films may undergo phase transformation during long-duration, high-speed and/or high-load sliding tests and that the transformation products trapped at the sliding interfaces can intermittently dominate friction and wear performance. Using results from a combination of TEM, electron diffraction, Raman spectroscopy, and electron energy loss spectroscopy (EELS), they describe the structural chemistry of the debris particles trapped at the sliding interfaces and elucidate their possible effects on friction and wear of NCD films in dry N{sub 2}. Finally, they suggest a few potential applications in which NCD films can improve performance and service lives.

  17. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    PubMed

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-01

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most. PMID:25950624

  18. Characterization of p-type wide band gap transparent oxide for heterojunction devices

    NASA Astrophysics Data System (ADS)

    Lim, Sang-Hyun

    Transparent p-type CuCr1-xMgxO2 wide band gap oxide semiconductor thin films were deposited over quartz substrates by chemical spray pyrolysis technique using metalloorganic precursors. A mechanism of synthesis of CuCrO2 films involving precursor decomposition, oxidation, and reaction between constituent oxides in the spray deposition process is presented. Crystalline single phase CuCrO2 delafossite structure was dominant in ≥700ºC argon ambient annealed films but the as-deposited films contained spinel CuCr2O4 mixed phases as shown by XRD and XPS studies. Spin-orbital energy ˜9.8eV in Cr 2p electron spectra consistent with Cr3+ valence state and Cr 2p3/2 resolved peaks show mixed valence state on Cr4+ /Cr6+ confirming CuCr1-xMgxO 2 compound phase in the films. Effect of substrate temperature, film thickness, and acceptor Mg2+ doping on crystallographic structure, optical, electrical conductivity and thermoelectric coefficient was investigated. The invariance of the alpha- and increase of the c-lattice parameter with Mg concentration suggests that Mg2+ ions are introduced at the Cr3+ site. Highly transparent ≥80% CuCr 0.93Mg0.07O2 films with direct and indirect optical band gaps 3.08 and 2.58eV for 155 nm and 3.14 and 2.79eV for 305nm thin films, respectively were obtained. Photoluminescence emission bands at 532 and 484nm interpreted to arise from 3d94s1 and 3d 10 Cu+ intra-band transitions. Electrical conductivity of CuCr0.93Mg0.07O 2 films ranged from 0.6-1.0 Scm-1 and exhibits activation energies ˜0.11eV in 300-420K and ˜0.23eV in ≥ 420K region ascribed to activated conduction and grain boundary trap assisted conduction, respectively. Restricted by the Mg solubility, the substituted Mg dopants limited to x≤0.05 are only able to contribute to the optimum hole carrier in the range ˜2-4x1019cm-3 and thus no substantial increase of electrical conductivity could be realized with increased Mg concentration. A major fraction of Mg atoms do not act as

  19. Study of p-type ZnO and MgZnO Thin Films for Solid State Lighting

    SciTech Connect

    Liu, Jianlin

    2015-07-31

    This project on study of p-type ZnO and MgZnO thin films for solid state lighting was carried out by research group of Prof. Jianlin Liu of UCR during the four-year period between August 2011 and July 2015. Tremendous progress has been made on the proposed research. This final report summarizes the important findings.

  20. Optical and electronic properties of delafossite CuBO{sub 2}p-type transparent conducting oxide

    SciTech Connect

    Ruttanapun, Chesta E-mail: krchesta@kmitl.ac.th

    2013-09-21

    CuBO{sub 2} delafossite was prepared by solid state reaction and calcined/sintered at 1005 °C. The optical properties of this p-type transparent conducting oxide were investigated. Its crystal structure, morphology, composition, oxygen decomposition, and optical and electronic properties were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, thermal gravimetric analysis (TGA), ultraviolet-visible-near-infrared (UV-VIS-NIR) and fluorescence spectroscopies, Seebeck coefficient, and electrical conductivity measurements. CuBO{sub 2} delafossite possesses a hexagonal space group R3{sup ¯}m. TGA indicated a weight loss of 10%, which was attributed to excess oxygen. The positive Seebeck coefficient confirmed p-type behavior. Emission at 355 nm indicated a direct band type transition, and the UV-VIS-NIR spectrum indicated an optical direct gap of 3.6 eV. Activation energies for carrier production and electrical conduction were 0.147 and 0.58 eV, respectively, indicating the thermal activation of carriers. CuBO{sub 2} delafossite is a p-type transparent conducting oxide with a wide band gap and may have potential in industrial p-type electrodes.

  1. Engineering a Prototypic P-type ATPase Listeria monocytogenes Ca(2+)-ATPase 1 for Single-Molecule FRET Studies.

    PubMed

    Dyla, Mateusz; Andersen, Jacob Lauwring; Kjaergaard, Magnus; Birkedal, Victoria; Terry, Daniel S; Altman, Roger B; Blanchard, Scott C; Nissen, Poul; Knudsen, Charlotte R

    2016-09-21

    Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes. Mutational analyses of the endogenous cysteine residues in LMCA1 were performed to reduce background labeling without compromising activity. Pairs of cysteines were introduced into the optimized low-reactivity background, and labeled with maleimide derivatives of Cy3 and Cy5 resulting in site-specifically double-labeled protein with moderate activity. Ensemble and confocal single-molecule FRET studies revealed changes in FRET distribution related to structural changes during the transport cycle, consistent with those observed by X-ray crystallography for the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Notably, the cytosolic headpiece of LMCA1 was found to be distinctly more compact in the E1 state than in the E2 state. Thus, the established experimental system should allow future real-time FRET studies of the structural dynamics of LMCA1 as a representative P-type ATPase. PMID:27501274

  2. Mechanism for doping induced p type C60 using thermally evaporated molybdenum trioxide (MoO3) as a dopant

    NASA Astrophysics Data System (ADS)

    Yang, Jin-Peng; Wang, Wen-Qing; Cheng, Li-Wen; Li, Yan-Qing; Tang, Jian-Xin; Kera, Satoshi; Ueno, Nobuo; Zeng, Xiang-hua

    2016-05-01

    Thermally evaporated molybdenum trioxide (MoO3) doped C60 films, which could change n type features of pristine C60 to form a p type mixed C60 layer, are investigated by x-ray and ultraviolet photoelectron spectroscopy. It is found that C60 HOMO progressively shifts closer to the Fermi level after increased MoO3 doping concentration, and final onset of C60 HOMO is pinned at binding energy of 0.20 eV, indicating the formation of p type C60 films. It is proposed that in charge transfer induced p type C60 formation, due to large electron affinity of MoO3 (6.37 eV), electrons from HOMO of C60 could easily transfer to MoO3 to form cations and therefore increase hole concentration, which could gradually push C60 HOMO to the Fermi level and finally form p type C60 films. Moreover, clear different types of C60 species have been confirmed from UPS spectra in highly doped films.

  3. Patterned growth of p-type MoS2 atomic layers using sol-gel as precursor

    DOE PAGESBeta

    Zheng, Wei; Lin, Junhao; Feng, Wei; Xiao, Kai; Qiu, Yunfeng; Chen, XiaoShuang; Liu, Guangbo; Cao, Wenwu; Pantelides, Sokrates T.; Zhou, Wu; et al

    2016-07-19

    2D layered MoS2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS2 film due to the incomplete reduction of W precursormore » at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS2, which shows strong rectifying behavior.« less

  4. Engineering a Prototypic P-type ATPase Listeria monocytogenes Ca(2+)-ATPase 1 for Single-Molecule FRET Studies.

    PubMed

    Dyla, Mateusz; Andersen, Jacob Lauwring; Kjaergaard, Magnus; Birkedal, Victoria; Terry, Daniel S; Altman, Roger B; Blanchard, Scott C; Nissen, Poul; Knudsen, Charlotte R

    2016-09-21

    Approximately 30% of the ATP generated in the living cell is utilized by P-type ATPase primary active transporters to generate and maintain electrochemical gradients across biological membranes. P-type ATPases undergo large conformational changes during their functional cycle to couple ATP hydrolysis in the cytoplasmic domains to ion transport across the membrane. The Ca(2+)-ATPase from Listeria monocytogenes, LMCA1, was found to be a suitable model of P-type ATPases and was engineered to facilitate single-molecule FRET studies of transport-related structural changes. Mutational analyses of the endogenous cysteine residues in LMCA1 were performed to reduce background labeling without compromising activity. Pairs of cysteines were introduced into the optimized low-reactivity background, and labeled with maleimide derivatives of Cy3 and Cy5 resulting in site-specifically double-labeled protein with moderate activity. Ensemble and confocal single-molecule FRET studies revealed changes in FRET distribution related to structural changes during the transport cycle, consistent with those observed by X-ray crystallography for the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA). Notably, the cytosolic headpiece of LMCA1 was found to be distinctly more compact in the E1 state than in the E2 state. Thus, the established experimental system should allow future real-time FRET studies of the structural dynamics of LMCA1 as a representative P-type ATPase.

  5. New route to the fabrication of nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Varshney, Deepak; Palomino, Javier; Gil, Jennifer; Resto, Oscar; Weiner, Brad R.; Morell, Gerardo

    2014-02-01

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

  6. New route to the fabrication of nanocrystalline diamond films

    SciTech Connect

    Varshney, Deepak Morell, Gerardo; Palomino, Javier; Resto, Oscar; Gil, Jennifer; Weiner, Brad R.

    2014-02-07

    Nanocrystalline diamond (NCD) thin films offer applications in various fields, but the existing synthetic approaches are cumbersome and destructive. A major breakthrough has been achieved by our group in the direction of a non-destructive, scalable, and economic process of NCD thin-film fabrication. Here, we report a cheap precursor for the growth of nanocrystalline diamond in the form of paraffin wax. We show that NCD thin films can be fabricated on a copper support by using simple, commonplace paraffin wax under reaction conditions of Hot Filament Chemical Vapor Deposition (HFCVD). Surprisingly, even the presence of any catalyst or seeding that has been conventionally used in the state-of-the-art is not required. The structure of the obtained films was analyzed by scanning electron microscopy and transmission electron microscopy. Raman spectroscopy and electron energy-loss spectroscopy recorded at the carbon K-edge region confirm the presence of nanocrystalline diamond. The process is a significant step towards cost-effective and non-cumbersome fabrication of nanocrystalline diamond thin films for commercial production.

  7. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  8. The Thermal Stability of Nanocrystalline Au-Cu Alloys

    SciTech Connect

    Jankowski, A F; Saw, C K; Hayes, J P

    2006-02-15

    Grain refinement to the nanocrystalline scale is known to enhance physical properties as strength and surface hardness. For the case of Au-Cu alloys, development of the pulsed electroplating has led to the functional control of nanocrystalline grain size in the as-deposited condition. The thermal aging of Au-Cu electrodeposits is now investigated to assess the stability of the nanocrystalline grain structure and the difference between two diffusion mechanisms. The mobility of grain boundaries, dominant at low temperatures, leads to coarsening of grain size whereas at high temperature the process of bulk diffusion dominates. Although the kinetics of bulk diffusion are slow below 500 K at 10{sup -20} cm{sup 2} {center_dot} sec, the kinetics of grain boundary diffusion are faster at 10{sup -16} cm{sup 2} {center_dot} sec. The diffusivity values indicate that the grain boundaries of the as-deposited nanocrystalline Au-Cu are mobile and sensitive to low-temperature anneal treatments affecting the grain size, hence the strength of the material.

  9. Synthesis and characterization of nanocrystalline and mesoporous zeolites

    NASA Astrophysics Data System (ADS)

    Petushkov, Anton

    2011-12-01

    Mesoporous aggregates of nanocrystalline zeolites with MFI and BEA frameworks have been synthesized using a one-pot and single structure directing agent. The effect of different reaction conditions, such as temperature, time, pH and water content, on the particle size, surface area and mesopore volume has been studied. Nanocrystalline and mesoporous ZSM-5, beta and Y zeolites were modified with different transition metals and the resulting single- and double metal containing catalyst materials were characterized. Nanocrystalline Silicalite-1 zeolite samples with varying particle size were functionalized with different organosilane groups and the cytotoxic activity of the zeolite nanocrystals was studied as a function of particle size, concentration, organic functional group type, as well as the type of cell line. Framework stability of nanocrystalline NaY zeolite was tested under different pH conditions. The synthesized zeolites used in this work were characterized using a variety of physico-chemical methods, including powder X-ray diffraction, Solid State NMR, nitrogen sorption, electron microscopy, Inductively Coupled Plasma -- Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy.

  10. Positron lifetime calculation for possible defects in nanocrystalline copper

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Zhang, Ting; Wang, Zhu

    2015-10-01

    Structural models for dislocation, vacancy clusters, twin boundary, stacking fault and nanocrystalline sample are constructed using copper as a model material. Positron lifetimes and momentum distributions of annihilating electron-positron pairs are calculated for these structural models. The calculated results indicate that the dislocation, twin boundary and stacking fault are shallow traps to positrons. The dislocation associated with monovacancies gives rise to a positron lifetime similar to that of monovacancies. The calculated positron lifetimes of the nanocrystalline copper show no dependence on the mean grain size. The as-constructed nanocrystalline samples contain vacancy clusters in grain boundaries, and positrons are localized by the vacancy clusters. However after relaxation the samples show only other two kinds of free volumes: one is the interatomic space in grain boundaries which is a shallow trap to positrons; the other is similar to a monovacancy. The latter contributes a positron lifetime of about 163 ps. This kind of free volume is not only observed in grain boundaries but also in the regions near grain boundaries. Positron lifetime calculation combined with the momentum distribution calculation is useful to identify the defect in the nanocrystalline Cu.

  11. Development of Bulk Nanocrystalline Cemented Tungsten Carbide for Industrial Applicaitons

    SciTech Connect

    Z. Zak Fang, H. Y. Sohn

    2009-03-10

    This report contains detailed information of the research program entitled "Development of Bulk Nanocrystalline Cemented Tungsten Carbide Materials for Industrial Applications". The report include the processes that were developed for producing nanosized WC/Co composite powders, and an ultrahigh pressure rapid hot consolidation process for sintering of nanosized powders. The mechanical properties of consolidated materials using the nanosized powders are also reported.

  12. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  13. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGESBeta

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; O’Brien, Christopher J.; Clark, Blythe G.; Arrington, Christian L.; Pillars, Jamin R.

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  14. Light emission, light detection and strain sensing with nanocrystalline graphene

    NASA Astrophysics Data System (ADS)

    Riaz, Adnan; Pyatkov, Feliks; Alam, Asiful; Dehm, Simone; Felten, Alexandre; Chakravadhanula, Venkata S. K.; Flavel, Benjamin S.; Kübel, Christian; Lemmer, Uli; Krupke, Ralph

    2015-08-01

    Graphene is of increasing interest for optoelectronic applications exploiting light detection, light emission and light modulation. Intrinsically, the light-matter interaction in graphene is of a broadband type. However, by integrating graphene into optical micro-cavities narrow-band light emitters and detectors have also been demonstrated. These devices benefit from the transparency, conductivity and processability of the atomically thin material. To this end, we explore in this work the feasibility of replacing graphene with nanocrystalline graphene, a material which can be grown on dielectric surfaces without catalyst by graphitization of polymeric films. We have studied the formation of nanocrystalline graphene on various substrates and under different graphitization conditions. The samples were characterized by resistance, optical transmission, Raman and x-ray photoelectron spectroscopy, atomic force microscopy and electron microscopy measurements. The conducting and transparent wafer-scale material with nanometer grain size was also patterned and integrated into devices for studying light-matter interaction. The measurements show that nanocrystalline graphene can be exploited as an incandescent emitter and bolometric detector similar to crystalline graphene. Moreover the material exhibits piezoresistive behavior which makes nanocrystalline graphene interesting for transparent strain sensors.

  15. S-type and P-type habitability in stellar binary systems: A comprehensive approach. I. Method and applications

    SciTech Connect

    Cuntz, M.

    2014-01-01

    A comprehensive approach is provided for the study of both S-type and P-type habitability in stellar binary systems, which in principle can also be expanded to systems of higher order. P-type orbits occur when the planet orbits both binary components, whereas in the case of S-type orbits, the planet orbits only one of the binary components with the second component considered a perturbator. The selected approach encapsulates a variety of different aspects, which include: (1) the consideration of a joint constraint, including orbital stability and a habitable region for a putative system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ), needs to be met; (2) the treatment of conservative, general, and extended zones of habitability for the various systems as defined for the solar system and beyond; (3) the provision of a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are presented for the kind of system in which S-type and P-type habitability is realized; (4) applications of the attained theoretical approach to standard (theoretical) main-sequence stars. In principle, five different cases of habitability are identified, which are S-type and P-type habitability provided by the full extent of the RHZs; habitability, where the RHZs are truncated by the additional constraint of planetary orbital stability (referred to as ST- and PT-type, respectively); and cases of no habitability at all. Regarding the treatment of planetary orbital stability, we utilize the formulae of Holman and Wiegert as also used in previous studies. In this work, we focus on binary systems in circular orbits. Future applications will also consider binary systems in elliptical orbits and provide thorough comparisons to other methods and results given in the literature.

  16. Impact of differently modified nanocrystalline diamond on the growth of neuroblastoma cells.

    PubMed

    Vaitkuviene, Aida; McDonald, Matthew; Vahidpour, Farnoosh; Noben, Jean-Paul; Sanen, Kathleen; Ameloot, Marcel; Ratautaite, Vilma; Kaseta, Vytautas; Biziuleviciene, Gene; Ramanaviciene, Almira; Nesladek, Milos; Ramanavicius, Arunas

    2015-01-25

    The aim of this study was to assess the impact of nanocrystalline diamond (NCD) thin coatings on neural cell adhesion and proliferation. NCD was fabricated on fused silica substrates by microwave plasma chemical vapor deposition (MPCVD) method. Different surface terminations were performed through exposure to reactive hydrogen and by UV induced oxidation during ozone treatment. Boron doped NCD coatings were also prepared and investigated. NCD surface wettability was determined by contact angle measurement. To assess biocompatibility of the NCD coatings, the neuroblastoma SH-SY5Y cell line was used. Cells were plated directly onto diamond surfaces and cultured in medium with or without fetal bovine serum (FBS), in order to evaluate the ability of cells to adhere and to proliferate. The obtained results showed that these cells adhered and proliferated better on NCD surfaces than on the bare fused silica. The cell proliferation on NCD in medium with and without FBS after 48h from plating was on average, respectively, 20 and 58% higher than that on fused silica, irrespective of NCD surface modification. Our results showed that the hydrogenated, oxygenated and boron-doped NCD coatings can be used for biomedical purposes, especially where good optical transparency is required.

  17. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  18. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  19. Processing and characterization of nanocrystalline ceria

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Dong

    Ceria and doped ceria have been extensively investigated and applied in various industrial fields, including automotive, energy, polishing media, paint additives and cosmetics. The use of high surface area, nanocrystalline CeO2 powder could benefit all of these applications. This is particularly true for processing dense components, since the high melting point (2400°C) of pure CeO2 makes it difficult to sinter. In this dissertation, a semi-batch reactor method was developed for directly synthesizing undoped and doped, nanometer-scale CeO2 particles at room temperature. Powders exhibited a surface area of ≈170 m 2/g, and could be decreased to 5 m2/g by thermal annealing at 1000°C. Control over the particle size, size distribution and state of agglomeration could be achieved through variation of the mixing conditions, and oxidation pathway. Modeling of the nucleation behavior yielded a surface energy for Ce(OH)3 to be in the range of 2.9--3.7 J/m 2. Size induced lattice relaxation was observed for nanoscale CeO2 single crystals with an average size from 4 to 60 nm. Results showed the finest crystallites exhibited no strain-induced line broadening, while high temperature annealing resulted in larger grain sizes and significant strains. Modeling revealed that the [V••o] was found to be ≈4 x 1020/cm 3 for the 4 nm crystallites, and decreased two orders of magnitude for larger 60 mn single crystals. The microstructural evolution and grain boundary influence on electrical properties of Ce0.90Gd0.10 O1.95 were also studied. The nanoscale powders synthesized from semi-batch reactor exhibited 50% green density and 92% sintering density at 1200°C (≈200°C less than previous studies). A series of impedance spectra as a function of temperature and grain size were analyzed. The Ce 0.90Gd0.10O1.95 with finest grain size possessed highest overall grain boundary resistance; this contribution was eliminated at T>600°C, regardless of grain size. The grain conductivity

  20. Biomolecule-mediated synthesis of nanocrystalline semiconductors

    NASA Astrophysics Data System (ADS)

    Bae, Weon

    CdS and ZnS nanocrystalline semiconductors (NCs) were prepared by titrating inorganic sulfide into preformed Cd(II)- or Zn(II)-complexes of phytochelatins, glutathione or cysteine. This strategy resulted in the formation NCs capped by the chosen biomolecule. The range of sizes and their distributions depended primarily on the quantity of sulfide titrated and the biomolecule chosen for the initial metallo-complex. The processes of NC formation were studied by absorption and fluorescence spectrophotometry. The size distribution was analyzed by gel permeation chromatography. Ethanol precipitation of NCs under aqueous conditions was used to isolate nanoparticles within a very narrow size-range. Reduction of selected dyes was also studied on the surfaces of NCs. Glutathione-capped CdS nanoparticles exhibited significant size heterogeneity even at a single sulfide titration. In contrast, phytochelatins showed much less dispersion in size at a given sulfide titration. Phytochelatins could replace glutathione without changing the size of glutathione-capped CdS nanoparticles. Cysteine appeared to be intermediate between glutathione and phytochelatins in the formation of CdS nanoparticles. The calculated radii, using an effective mass approximation method, were 10.8-17.3, 10.6-11.8, and 13.5-15.5A for glutathione-, phytochelatin-, and cysteine-capped CdS nanoparticles, respectively. Cysteine-capped ZnS showed narrower size distribution than glutathione-capped ZnS. However, elevated temperatures were necessary to accomplish optimal yields of cysteine-capped ZnS NCs. An additional control over the size distribution of NCs was achieved by size-selective precipitation with ethanol. These procedures led to the isolation of nanoparticles that were more uniform in size and chemical compositions as determined by spectroscopic and chemical analyses of size-fractionated samples. Precipitation also allowed preparation of large quantities of powdered nanoparticles that could be

  1. An investigation on the effect of surface morphology and crystalline texture on corrosion behavior, structural and magnetic properties of electrodeposited nanocrystalline nickel films

    NASA Astrophysics Data System (ADS)

    Nasirpouri, F.; Sanaeian, M. R.; Samardak, A. S.; Sukovatitsina, E. V.; Ognev, A. V.; Chebotkevich, L. A.; Hosseini, M.-G.; Abdolmaleki, M.

    2014-02-01

    In this work, nanocrystalline nickel films with different surface morphologies were electrodeposited from Watts bath using direct (DC), pulsed (PC), and pulsed reverse (PRC) current techniques. The effect of electrodeposition conditions on the evolution of microstructure, cathodic efficiency, crystallographic micro-texture, micro-hardness, magnetic and corrosion properties of nickel films were investigated. Ni films electrodeposited by PC method revealed the highest cathodic efficiency due to minimum amount of hydrogen evolution. All films electrodeposited by PC and PRC methods making the films nanocrystalline (NC) exhibited greater hardness values and smaller crystallite size compared to those deposited by DC method. A preferential crystallographic orientation or texture was found in Ni films depending upon the electrodeposition pulse shape, as the microstructure is polycrystalline in the DC electrodeposited films, while exhibits <1 1 1> and <1 0 0> crystallographic growth directions for PC and PRC methods, respectively. Magnetic properties of the nanocrystalline Ni films indicate the existence of strong magnetocrystalline anisotropy depending on the microstructure of the films. Corrosion evaluation results showed that the PC electrodeposited NC-Ni films are more corrosion resistive in 2 mol/l NaOH solution, compared to those electrodeposited by PRC and DC methods. In contrast, in 0.5 mol/l H2SO4 solution, corrosion resistance of the films is in descending order from PC to PRC and DC.

  2. Mechanochemistry of lithium nitride under hydrogen gas.

    PubMed

    Li, Z; Zhang, J; Wang, S; Jiang, L; Latroche, M; Du, J; Cuevas, F

    2015-09-14

    Hydrogen uptake during the mechanochemistry of lithium nitride under 9 MPa hydrogen pressure has been analyzed by means of in situ solid-gas absorption and ex situ X-ray diffraction (XRD) measurements. In situ hydrogenation curves show two H-sorption steps leading to an overall hydrogen uptake of 9.8 wt% H after 3 hours of milling. The milled end-products consist of nanocrystalline (∼10 nm) LiNH2 and LiH phases. The first reaction step comprises the transformation of the polymorph α-Li3N (S.G. P6/mmm) into the β-Li3N (S.G. P63/mmc) metastable phase and the reaction of the latter with hydrogen to form lithium imide: β-Li3N + H2→ Li2NH + LiH. Reaction kinetics of the first step is zero-order. Its rate-limiting control is assigned to the collision frequency between milling balls and Li3N powder. In the second absorption step, lithium imide converts to lithium amide following the reaction scheme Li2NH + H2→ LiNH2 + LiH. Reaction kinetics is here limited by one-dimensional nucleation and the growth mechanism, which, in light of structural data, is assigned to the occurrence of lithium vacancies in the imide compound. This study provides new insights into the reaction paths and chemical kinetics of light hydrogen storage materials during their mechanochemical synthesis.

  3. Perovskite Sr-doped LaCrO3 as a new p-type transparent conducting oxide

    SciTech Connect

    Zhang, Hongliang; Du, Yingge; Papadogianni, Alexandra; Bierwagen, Oliver; Sallis, Shawn; Piper, Louis F. J.; Bowden, Mark E.; Shutthanandan, V.; Sushko, Petr; Chambers, Scott A.

    2015-09-16

    Transparent conducting oxides (TCOs) constitute a unique class of materials which combine the seemingly mutually exclusive properties of electrical conductivity and optical transparency in a single material. TCOs are useful for a wide range of applications including solar cells, displays, light emitting diodes and transparent electronics. Simple post-transition metal oxides such as ZnO, In2O3 and SnO2 are wide gap insulators in which the ionic character generates an oxygen 2p-derived valence band (VB) and a metal s-derived conduction band (CB), resulting in large optical band gaps (>3.0 eV) and excellent n-type conductivity when donor doped. In contrast, the development of efficient p-type TCOs remains a global materials challenge. Converting n-type oxides to p-type analogs by acceptor doping is extremely difficult and these materials display poor conductivity.

  4. Gas sensing properties and p-type response of ALD TiO2 coated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Marichy, Catherine; Donato, Nicola; Latino, Mariangela; Willinger, Marc Georg; Tessonnier, Jean-Philippe; Neri, Giovanni; Pinna, Nicola

    2015-01-01

    Amorphous titanium dioxide-coated carbon nanotubes (CNTs) were prepared by atomic layer deposition (ALD) and investigated as sensing layers for resistive NO2 and O2 gas sensors. By varying ALD process conditions and CNT structure, heterostructures with different metal oxide grain size, morphology and coating thickness were synthesized. Higher responses were observed with homogeneous and continuous 5.5 nm thick films onto CNTs at an operating temperature of 150 °C, while CNTs decorated with either discontinuous film or TiO2 nanoparticles showed a weak response close to the one of device made of bare CNTs. An unexpected p-type behavior in presence of the target gas was also noticed, independently of the metal oxide morphology and thickness. Based on previous works, hypotheses were made in order to explain the p-type behavior of TiO2/CNT sensors.

  5. Facile Surfactant-Free Synthesis of p-Type SnSe Nanoplates with Exceptional Thermoelectric Power Factors.

    PubMed

    Han, Guang; Popuri, Srinivas R; Greer, Heather F; Bos, Jan-Willem G; Zhou, Wuzong; Knox, Andrew R; Montecucco, Andrea; Siviter, Jonathan; Man, Elena A; Macauley, Martin; Paul, Douglas J; Li, Wen-Guang; Paul, Manosh C; Gao, Min; Sweet, Tracy; Freer, Robert; Azough, Feridoon; Baig, Hasan; Sellami, Nazmi; Mallick, Tapas K; Gregory, Duncan H

    2016-05-23

    A surfactant-free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single-phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot-pressed nanostructured compacts (Eg ≈0.85 eV) exhibit excellent electrical conductivity and thermoelectric power factors (S(2) σ) at 550 K. S(2) σ values are 8-fold higher than equivalent materials prepared using citric acid as a structure-directing agent, and electrical properties are comparable to the best-performing, extrinsically doped p-type polycrystalline tin selenides. The method offers an energy-efficient, rapid route to p-type SnSe nanostructures. PMID:27094703

  6. Increased Photoconductivity Lifetime in GaAs Nanowires by Controlled n-Type and p-Type Doping.

    PubMed

    Boland, Jessica L; Casadei, Alberto; Tütüncüoglu, Gözde; Matteini, Federico; Davies, Christopher L; Jabeen, Fauzia; Joyce, Hannah J; Herz, Laura M; Fontcuberta I Morral, Anna; Johnston, Michael B

    2016-04-26

    Controlled doping of GaAs nanowires is crucial for the development of nanowire-based electronic and optoelectronic devices. Here, we present a noncontact method based on time-resolved terahertz photoconductivity for assessing n- and p-type doping efficiency in nanowires. Using this technique, we measure extrinsic electron and hole concentrations in excess of 10(18) cm(-3) for GaAs nanowires with n-type and p-type doped shells. Furthermore, we show that controlled doping can significantly increase the photoconductivity lifetime of GaAs nanowires by over an order of magnitude: from 0.13 ns in undoped nanowires to 3.8 and 2.5 ns in n-doped and p-doped nanowires, respectively. Thus, controlled doping can be used to reduce the effects of parasitic surface recombination in optoelectronic nanowire devices, which is promising for nanowire devices, such as solar cells and nanowire lasers.

  7. Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides

    NASA Astrophysics Data System (ADS)

    Liu, Zhiqiang; Huang, Yang; Yi, Xiaoyan; Fu, Binglei; Yuan, Guodong; Wang, Junxi; Li, Jinmin; Zhang, Yong

    2016-08-01

    A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p-doping of nitrides and could also be used to explain the abnormal and seldom analyzed low characteristic temperature T0 (about 100 K) of thermal quenching in p-type nitrides systems. An In-Mg co-doped GaN system is given as an example to prove the validity of our methods. Furthermore, a hole concentration as high as 1.94 × 1018 cm-3 was achieved through In-Mg co-doping, which is nearly one order of magnitude higher than typically obtained in our lab.

  8. The Use of Metal Fluoride Compounds as Phosphate Analogs for Understanding the Structural Mechanism in P-type ATPases.

    PubMed

    Danko, Stefania J; Suzuki, Hiroshi

    2016-01-01

    The membrane-bound protein family, P-type ATPases, couples ATP hydrolysis with substrate transport across the membrane and forms an obligatory auto-phosphorylated intermediate in the transport cycle. The metal fluoride compounds, BeF x , AlF x , and MgF x , as phosphate analogs stabilize different enzyme structural states in the phosphoryl transfer/hydrolysis reactions, thereby fixing otherwise short-lived intermediate and transient structural states and enabling their biochemical and atomic-level crystallographic studies. The compounds thus make an essential contribution for understanding of the ATP-driven transport mechanism. Here, with a representative member of P-type ATPase, sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA), we describe the method for their binding and for structural and functional characterization of the bound states, and their assignments to states occurring in the transport cycle. PMID:26695034

  9. Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels

    NASA Astrophysics Data System (ADS)

    Huang, B.

    2016-07-01

    We propose a surface doping model of ZnO to elucidate the p-type doping and compensations in ZnO nanomaterials. With an N-dopant, the effects of N on the ZnO surface demonstrate a relatively shallow acceptor level in the band gap. As the dimension of the ZnO materials decreases, the quantum confinement effects will increase and render the charge transfer on surface to influence the shifting of Fermi level, by evidence of transition level changes of the N-dopant. We report that this can overwhelm the intrinsic p-type conductivity and transport of the ZnO bulk system. This may provide a possible route of using surface doping to modify the electronic transport and conductivity of ZnO nanomaterials.

  10. Gas sensing properties and p-type response of ALD TiO2 coated carbon nanotubes.

    PubMed

    Marichy, Catherine; Donato, Nicola; Latino, Mariangela; Willinger, Marc Georg; Tessonnier, Jean-Philippe; Neri, Giovanni; Pinna, Nicola

    2015-01-16

    Amorphous titanium dioxide-coated carbon nanotubes (CNTs) were prepared by atomic layer deposition (ALD) and investigated as sensing layers for resistive NO2 and O2 gas sensors. By varying ALD process conditions and CNT structure, heterostructures with different metal oxide grain size, morphology and coating thickness were synthesized. Higher responses were observed with homogeneous and continuous 5.5 nm thick films onto CNTs at an operating temperature of 150 °C, while CNTs decorated with either discontinuous film or TiO2 nanoparticles showed a weak response close to the one of device made of bare CNTs. An unexpected p-type behavior in presence of the target gas was also noticed, independently of the metal oxide morphology and thickness. Based on previous works, hypotheses were made in order to explain the p-type behavior of TiO2/CNT sensors.

  11. Formation of a self-consistent double quantum well in a wide p-type quantum well

    NASA Astrophysics Data System (ADS)

    Alshanskiǐ, G. A.; Yakunin, M. V.

    2004-11-01

    The process of formation of self-consistent double quantum wells (DQWs) in a wide p-type quantum well in the presence of uniaxial strain is investigated. A feature of p-type systems is the structure of the valence band, which consists of two branches of energy dispersion—light and heavy holes. It is shown that this feature leads to significant splitting of the subbands of symmetric and antisymmetric states, as a result of which it is difficult to form states of the DQW with a vanishingly small tunneling gap; a uniaxial strain, by lifting the degeneracy of the band, suppresses this property, so that the two ground subbands of the size quantization of the DQW remain degenerate to high energies.

  12. Performance enhancement of blue light-emitting diodes by using special designed n and p-type doped barriers

    NASA Astrophysics Data System (ADS)

    Li, Jing; Guo, Zhiyou; Li, Fangzheng; Lin, Hong; Li, Chu; Xiang, Shuli; Zhou, Tengfei; Wan, Nianqing; Liu, Yang

    2015-09-01

    The characteristics of the nitride-based blue light-emitting diode (LED) by using special designed n and p-type doped barriers have been analyzed numerically in this paper. The internal quantum efficiency (IQE), carrier concentrations in the quantum wells (QWs), energy band diagrams, emission spectra and electrostatic fields are investigated. The simulation results indicate that the proposed LED by using the special designed n and p-type doped barriers has a strong enhancement in the optical output power. The improved performance is mainly attributed to the change of electrical field in the active region, resulting in superior electron confinement and improved hole injection efficiency. Further simulation results also indicate that the proposed LED without the p-AlGaN EBL possesses much better hole uniformity, which is due to the reversed electrostatic field in the last barrier.

  13. Analysis of Photoluminescence Thermal Quenching: Guidance for the Design of Highly Effective p-type Doping of Nitrides

    PubMed Central

    Liu, Zhiqiang; Huang, Yang; Yi, Xiaoyan; Fu, Binglei; Yuan, Guodong; Wang, Junxi; Li, Jinmin; Zhang, Yong

    2016-01-01

    A contact-free diagnostic technique for examining position of the impurity energy level of p-type dopants in nitride semiconductors was proposed based on photoluminescence thermal quenching. The Mg ionization energy was extracted by the phenomenological rate-equation model we developed. The diagnostic technique and analysis model reported here are priorities for the design of highly effective p-doping of nitrides and could also be used to explain the abnormal and seldom analyzed low characteristic temperature T0 (about 100 K) of thermal quenching in p-type nitrides systems. An In-Mg co-doped GaN system is given as an example to prove the validity of our methods. Furthermore, a hole concentration as high as 1.94 × 1018 cm−3 was achieved through In-Mg co-doping, which is nearly one order of magnitude higher than typically obtained in our lab. PMID:27550805

  14. Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Ai, Yuejie; Liu, Yunhai; Li, Jiaxing; Ji, Yongfei; Wang, Xiangke

    2016-04-01

    Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH-CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH-Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH-Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-Cl and LDH-CO3 was strongly dependent on pH and ionic strength. Results of theoretical DFT calculations indicated that the coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH-Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment. PMID:26978487

  15. Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study.

    PubMed

    Zou, Yidong; Wang, Xiangxue; Ai, Yuejie; Liu, Yunhai; Li, Jiaxing; Ji, Yongfei; Wang, Xiangke

    2016-04-01

    Graphene oxide (GO) has attracted considerable attention because of its remarkable enhanced adsorption and multifunctional properties. However, the toxic properties of GO nanosheets released into the environment could lead to the instability of biological system. In aqueous phase, GO may interact with fine mineral particles, such as chloridion intercalated nanocrystallined Mg/Al layered double hydroxides (LDH-Cl) and nanocrystallined Mg/Al LDHs (LDH-CO3), which are considered as coagulant molecules for the coagulation and removal of GO from aqueous solutions. Herein the coagulation of GO on LDHs were studied as a function of solution pH, ionic strength, contact time, temperature and coagulant concentration. The presence of LDH-Cl and LDH-CO3 improved the coagulation of GO in solution efficiently, which was mainly attributed to the surface oxygen-containing functional groups of LDH-Cl and LDH-CO3 occupying the binding sites of GO. The coagulation of GO by LDH-Cl and LDH-CO3 was strongly dependent on pH and ionic strength. Results of theoretical DFT calculations indicated that the coagulation of GO on LDHs was energetically favored by electrostatic interactions and hydrogen bonds, which was further evidenced by FTIR and XPS analysis. By integrating the experimental results, it was clear that LDH-Cl could be potentially used as a cost-effective coagulant for the elimination of GO from aqueous solutions, which could efficiently decrease the potential toxicity of GO in the natural environment.

  16. Highly oriented NdFeCoB nanocrystalline magnets from partially disproportionated compacts by reactive deformation under low pressure

    SciTech Connect

    Zheng, Qing; Li, Jun; Liu, Ying Yu, Yunping; Lian, Lixian

    2014-05-07

    In the present investigation, we take advantage of the ultrafine grain size of NdFeCoB partially hydrogen-disproportionated phases, and prepare anisotropic nanocrystalline magnets with full density and homogenous microstructure and texture by reactive deformation under low pressure. Our results suggest that the pressure could properly promote an occurrence of desorption-recombination reaction due to a shorter-range rearrangement of the atoms, and the newly recombined Nd{sub 2}Fe{sub 14}B grains with fine grain size could undergo deformation immediately after the phase transformation, and then an obvious anisotropy and uniform alignment would be obtained. The maximum magnetic properties, (BH){sub max} = 25.8 MGOe, Br = 11.8 kG, H{sub cj} = 5.5 kOe, were obtained after being treated for 5 min at 820 °C in vacuum. The present study highlights the feasibility to prepare anisotropic nanocrystalline magnets with homogeneous microstructure and a strong (00l) texture of uniform grain size under low pressure.

  17. S-type and P-type Habitability in Stellar Binary Systems: A Comprehensive Approach. II. Elliptical Orbits

    NASA Astrophysics Data System (ADS)

    Cuntz, M.

    2015-01-01

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ("radiative habitable zone"; RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  18. Identification and molecular characterization of a novel DyP-type peroxidase from Pseudomonas aeruginosa PKE117.

    PubMed

    Li, Jing; Liu, Chen; Li, Baozhen; Yuan, Hongli; Yang, Jinshui; Zheng, Beiwen

    2012-02-01

    A new DyP-type peroxidase from Pseudomonas aeruginosa PKE117 was identified and characterized. The dypPa was first identified via sequence analysis and then cloned in Escherichia coli. Subsequently, the recombinant protein DyPPa was expressed and purified. Its DNA sequence analysis revealed an open reading frame of 897 bp, encoding a protein monomer of 299 amino acid residues with isoelectric point 4.62. According to SDS-PAGE analysis and FPLC result, DyPPa mainly existed as homodimer (64 kDa). DyPPa displayed typical heme absorbance of Soret band, with an Rz value of 1.18. Inductively coupled plasma-atomic absorption spectrum data also indicated DyPPa contained iron. Multiple amino acid sequence alignment of DyPPa with other members of the DyP-type peroxidases family showed the presence of conserved D139, H210, and R227 amino acids and GXXDG motifs, which were commonly shared by the DyP-type peroxidase family. Although the primary structure homology between DyPPa and other family members was very low, their secondary and tertiary structure displayed high homology, which explained the high decolorizing activity of DyPPa. Specifically, DyPPa displayed a good thermal stability and maximal activity on Reactive blue 5 under pH 3.5. Therefore, it was proposed that DyPPa, with a wide range of substrate specificity, was a novel member of the DyP-type peroxidases family. PMID:22161141

  19. S-TYPE AND P-TYPE HABITABILITY IN STELLAR BINARY SYSTEMS: A COMPREHENSIVE APPROACH. II. ELLIPTICAL ORBITS

    SciTech Connect

    Cuntz, M.

    2015-01-10

    In the first paper of this series, a comprehensive approach has been provided for the study of S-type and P-type habitable regions in stellar binary systems, which was, however, restricted to circular orbits of the stellar components. Fortunately, a modest modification of the method also allows for the consideration of elliptical orbits, which of course entails a much broader range of applicability. This augmented method is presented here, and numerous applications are conveyed. In alignment with Paper I, the selected approach considers a variety of aspects, which comprise the consideration of a joint constraint including orbital stability and a habitable region for a possible system planet through the stellar radiative energy fluxes ({sup r}adiative habitable zone{sup ;} RHZ). The devised method is based on a combined formalism for the assessment of both S-type and P-type habitability; in particular, mathematical criteria are deduced for which kinds of systems S-type and P-type habitable zones are realized. If the RHZs are truncated by the additional constraint of orbital stability, the notation of ST-type and PT-type habitability applies. In comparison to the circular case, it is found that in systems of higher eccentricity, the range of the RHZs is significantly reduced. Moreover, for a considerable number of models, the orbital stability constraint also reduces the range of S-type and P-type habitability. Nonetheless, S-, P-, ST-, and PT-type habitability is identified for a considerable set of system parameters. The method as presented is utilized for BinHab, an online code available at The University of Texas at Arlington.

  20. Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Verma, Payal; Savelyev, Dmitry A.; Khonina, Svetlana N.; Sudhakar, S.; Kumar, Sushil

    2016-04-01

    An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.

  1. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  2. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOEpatents

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo; Setlur, Anant Achyut; Srivastava, Alok Mani

    2013-04-16

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  3. Thermoelectric properties of p-type PbTe/Ag{sub 2}Te bulk composites by extrinsic phase mixing

    SciTech Connect

    Lee, Min Ho; Rhyee, Jong-Soo

    2015-12-15

    We investigated the thermoelectric properties of PbTe/Ag{sub 2}Te bulk composites, synthesized by hand milling, mixing, and hot press sintering. From x-ray diffraction and energy dispersive x-ray spectroscopy measurements, we observed Ag{sub 2}Te phase separation in the PbTe matrix without Ag atom diffusion. In comparison with previously reported pseudo-binary (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} composites, synthesized by high temperature phase separation, the PbTe/Ag{sub 2}Te bulk composites fabricated with a low temperature phase mixing process give rise to p-type conduction of carriers with significantly decreased electrical conductivity. This indicates that Ag atom diffusion in the PbTe matrix changes the sign of the Seebeck coefficient to n-type and also increases the carrier concentration. Effective p-type doping with low temperature phase separation by mixing and hot press sintering can enhance the thermoelectric performance of PbTe/Ag{sub 2}Te bulk composites, which can be used as a p-type counterpart of n-type (PbTe){sub 1−x}(Ag{sub 2}Te){sub x} bulk composites.

  4. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    PubMed Central

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-01-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors. PMID:27349378

  5. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  6. Self-trapping of holes in p-type oxides: Theory for small polarons in MnO

    NASA Astrophysics Data System (ADS)

    Peng, Haowei; Lany, Stephan

    2012-02-01

    Employing the p-d repulsion to increase the valence band dispersion and the energy of the VBM is an important design principle for p-type oxides, as manifested in prototypical p-type oxides like Cu2O or CuAlO2 which show a strong Cu-d/O-p interaction. An alternative opportunity to realize this design principle occurs for Mn(+II) compounds, where the p-d orbital interaction occurs dominantly in the fully occupied d^5 majority spin direction of Mn. However, the ability of Mn to change the oxidation state from +II to +III can lead to a small polaron mechanism for hole transport which hinders p-type conductivity. This work addresses the trends of hole self-trapping for MnO between octahedral (rock-salt structure) and tetrahedral coordination (zinc-blende structure). We employ an on-site hole-state potential so to satisfy the generalized Koopmans condition. This approach avoids the well-known difficulty of density-functional calculations to describe correctly the localization of polaronic states, and allows to quantitatively predict the self-trapping energies. We find that the tetrahedrally coordinated Mn is less susceptible to hole self-trapping than the octahedrally coordinated Mn.

  7. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating.

    PubMed

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-01-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors. PMID:27349378

  8. Fabrication and characterization of p+-i-p+ type organic thin film transistors with electrodes of highly doped polymer

    NASA Astrophysics Data System (ADS)

    Tadaki, Daisuke; Ma, Teng; Zhang, Jinyu; Iino, Shohei; Hirano-Iwata, Ayumi; Kimura, Yasuo; Rosenberg, Richard A.; Niwano, Michio

    2016-04-01

    Organic thin film transistors (OTFTs) have been explored because of their advantageous features such as light-weight, flexible, and large-area. For more practical application of organic electronic devices, it is very important to realize OTFTs that are composed only of organic materials. In this paper, we have fabricated p+-i-p+ type of OTFTs in which an intrinsic (i) regioregular poly (3-hexylthiophene) (P3HT) layer is used as the active layer and highly doped p-type (p+) P3HT is used as the source and drain electrodes. The 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ) was used as the p-type dopant. A fabricating method of p+-i-p+ OTFTs has been developed by using SiO2 and aluminum films as capping layers for micro-scaled patterning of the p+-P3HT electrodes. The characteristics of the OTFTs were examined using the photoelectron spectroscopy and electrical measurements. We demonstrated that the fabricated p+-i-p+ OTFTs work with carrier injection through a built-in potential at p+/i interfaces. We found that the p+-i-p+ OTFTs exhibit better FET characteristics than the conventional P3HT-OTFT with metal (Au) electrodes, indicating that the influence of a carrier injection barrier at the interface between the electrode and the active layer was suppressed by replacing the metal electrodes with p+-P3HT layers.

  9. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-01-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  10. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  11. Extreme creep resistance in a microstructurally stable nanocrystalline alloy.

    PubMed

    Darling, K A; Rajagopalan, M; Komarasamy, M; Bhatia, M A; Hornbuckle, B C; Mishra, R S; Solanki, K N

    2016-09-14

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10(-6) per second-six to eight orders of magnitude lower than most nanocrystalline metals-at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  12. Light emission from conductive paths in nanocrystalline CdSe embedded Zr-doped HfO{sub 2} high-k stack

    SciTech Connect

    Lin, Chi-Chou; Kuo, Yue

    2015-03-23

    Electrical and optical properties of the solid state incandescent light emitting devices made of zirconium doped hafnium oxide high-k films with and without an embedded nanocrystalline CdSe layer on the p-type Si wafer have been studied. The broad band white light was emitted from nano sized conductive paths through the thermal excitation mechanism. Conductive paths formed from the dielectric breakdown have been confirmed from scanning electron microscopic and atomic force microscopic images and the secondary ion mass spectrometric elemental profiles. Si was diffused from the wafer to the device surface through the conductive path during the high temperature light emission process. There are many potential applications of this type of device.

  13. Structural, optical and electric properties of nanocrystalline MgSe thin films deposited by chemical route using triethanolamine as a complexing agent

    NASA Astrophysics Data System (ADS)

    Ubale, Ashok U.; Sakhare, Y. S.; Ibrahim, S. G.; Belkhedkar, M. R.

    2013-09-01

    Semiconducting nanocrystalline thin films of magnesium selenide have been prepared using economic chemical bath deposition technique onto glass substrates at room temperature. The deposition bath consists of magnesium chloride, triethanolamine, hydrazine hydrate and selenium dioxide. The quantity of triethanolamine in the deposition bath was varied to study its effect on growth process as well as on physical properties of MgSe. The deposited films were characterized using X-ray diffraction, scanning electron microscopy and atomic force microscopy techniques. The effect of complexing agent (TEA) on optical and electrical properties is reported. It was found that as the triethanolamine in deposition bath increases, optical band-gap and electrical resistivity decreases. The thermo-emf measurement shows p-type nature of MgSe.

  14. Hydrogen Production

    SciTech Connect

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  15. Combined hydrogen production and storage with subsequent carbon crystallization.

    PubMed

    Lueking, Angela D; Gutierrez, Humberto R; Fonseca, Dania A; Narayanan, Deepa L; Van Essendelft, Dirk; Jain, Puja; Clifford, Caroline E B

    2006-06-21

    We provide evidence of low-temperature hydrogen evolution and possible hydrogen trapping in an anthracite coal derivative, formed via reactive ball milling with cyclohexene. No molecular hydrogen is added to the process. Raman-active molecular hydrogen vibrations are apparent in samples at atmospheric conditions (300 K, 1 bar) for samples prepared 1 year previously and stored in ambient air. Hydrogen evolves slowly at room temperature and is accelerated upon sample heating, with a first increase in hydrogen evolution occurring at approximately 60 degrees C. Subsequent chemical modification leads to the observation of crystalline carbons, including nanocrystalline diamond surrounded by graphene ribbons, other sp2-sp3 transition regions, purely graphitic regions, and a previously unidentified crystalline carbon form surrounded by amorphous carbon. The combined evidence for hydrogen trapping and carbon crystallization suggests hydrogen-induced crystallization of the amorphous carbon materials, as metastable hydrogenated carbons formed via the high-energy milling process rearrange into more thermodynamically stable carbon forms and molecular hydrogen.

  16. Fabrication and characterization of GaN-based light-emitting diodes without pre-activation of p-type GaN.

    PubMed

    Hu, Xiao-Long; Wang, Hong; Zhang, Xi-Chun

    2015-01-01

    We fabricated GaN-based light-emitting diodes (LEDs) without pre-activation of p-type GaN. During the fabrication process, a 100-nm-thick indium tin oxide film was served as the p-type contact layer and annealed at 500°C in N2 ambient for 20 min to increase its transparency as well as to activate the p-type GaN. The electrical measurements showed that the LEDs were featured by a lower forward voltage and higher wall-plug efficiency in comparison with LEDs using pre-activation of p-type GaN. We discussed the mechanism of activation of p-type GaN at 500°C in N2 ambient. Furthermore, x-ray photoemission spectroscopy examinations were carried out to study the improved electrical performances of the LEDs without pre-activation of p-type GaN.

  17. Crystallization induced by thermal annealing with millisecond pulses in silicon-on-insulator films implanted with high doses of hydrogen ions

    SciTech Connect

    Tyschenko, I. E.; Volodin, V. A.; Voelskow, M.; Cherkov, A. G.; Popov, V. P.

    2013-05-15

    The crystallization of silicon-on-insulator films, implanted with high doses of hydrogen ions, upon annealing with millisecond pulses is studied. Immediately after hydrogen-ion implantation, the formation of a three-phase structure composed of silicon nanocrystals, amorphous silicon, and hydrogen bubbles is detected. It is shown that the nanocrystalline structure of the films is retained upon pulsed annealing at temperatures of up to {approx}1000 Degree-Sign C. As the temperature of the millisecond annealing is increased, the nanocrystal dimensions increase from 2 to 5 nm and the fraction of the nanocrystalline phase increases to {approx}70%. From an analysis of the activation energy of crystal phase growth, it is inferred that the process of the crystallization of silicon films with a high ({approx}50 at %) hydrogen content is limited by atomic-hydrogen diffusion.

  18. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    NASA Astrophysics Data System (ADS)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-07-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics.

  19. Grain boundary and triple junction diffusion in nanocrystalline copper

    SciTech Connect

    Wegner, M. Leuthold, J.; Peterlechner, M.; Divinski, S. V.; Song, X.; Wilde, G.

    2014-09-07

    Grain boundary and triple junction diffusion in nanocrystalline Cu samples with grain sizes, 〈d〉, of ∼35 and ∼44 nm produced by spark plasma sintering were investigated by the radiotracer method using the {sup 63}Ni isotope. The measured diffusivities, D{sub eff}, are comparable with those determined previously for Ni grain boundary diffusion in well-annealed, high purity, coarse grained, polycrystalline copper, substantiating the absence of a grain size effect on the kinetic properties of grain boundaries in a nanocrystalline material at grain sizes d ≥ 35 nm. Simultaneously, the analysis predicts that if triple junction diffusion of Ni in Cu is enhanced with respect to the corresponding grain boundary diffusion rate, it is still less than 500⋅D{sub gb} within the temperature interval from 420 K to 470 K.

  20. Grain growth and structural relaxation of nanocrystalline Bi₂Te₃

    SciTech Connect

    Humphry-Baker, Samuel A.; Schuh, Christopher A.

    2014-10-21

    Recovery and grain growth behavior is investigated systematically for the nanocrystalline thermoelectric compound bismuth telluride, synthesized by mechanical alloying. During annealing treatments at elevated temperatures, structural evolution is tracked using x-ray diffraction, electron microscopy and calorimetry. Below a homologous temperature of about 0.6T{sub m}, grain growth occurs slowly with an activation energy of 89 kJ/mol. However above this temperature grain growth becomes more rampant with an activation energy of 242 kJ/mol. The transition is attributed to a shift from a relaxation or recovery process that includes some reordering of the grain boundary structure, to a more conventional diffusionally-limited grain growth process. By extrapolating the measured grain growth and microstrain evolution kinetics, a thermal budget map is constructed, permitting recommendations for improving the thermoelectric properties of nanocrystalline materials processed via a powder route.

  1. Laser-induced refractive index changes in nanocrystalline diamond membranes.

    PubMed

    Preclíková, Jana; Kromka, Alexander; Rezek, Bohuslav; Malý, Petr

    2010-02-15

    We have observed what we believe to be a new phenomenon in nanocrystalline diamond membranes. The optical thickness of the membrane is changed under laser irradiation, which leads to a spectral shift of interference fringes in the transmission and photoluminescence spectra of high-quality thin self-supporting nanocrystalline membranes. The direction of the spectral shift (red/blue) can be tuned by the ambient air pressure. The effect is reversible and is accompanied by changes in photoluminescence intensity. We interpret the results in terms of the changes in the index of refraction caused by the photoinduced adsorption/desorption of air molecules that subsequently affect the properties of subgap energy states related to the surface and the grain boundaries of the nanocrystals.

  2. Nanocrystalline zinc oxide: Pyrolytic synthesis and spectroscopic characteristics

    SciTech Connect

    Demyanets, L. N. Li, L. E.; Lavrikov, A. S.; Nikitin, S. V.

    2010-01-15

    Nanocrystalline and microcrystalline ZnO powders are synthesized by the pyrolysis of organic zinc salts in the presence of a reducing catalyst represented by a porous cellulose carrier. The specimens obtained are characterized by X-ray powder diffraction, energy dispersive analysis, scanning electron microscopy, and pulse cathodoluminescence. Lasing characteristics of the specimens are studied. The synthesis conditions, under which specimens with the crystallite morphology optimal for a low-threshold lasing are obtained, are found.

  3. Structural Modification of Nanocrystalline Ceria by Ion Beams

    SciTech Connect

    Zhang, Yanwen; Edmondson, Philip D.; Varga, Tamas; Moll, Sandra J.; Namavar, Fereydoon; Lan, Chune; Weber, William J.

    2011-05-25

    Using energetic ions, we have demonstrated effective modification of grain size in nanocrystalline ceria in the critical region for controlling exceptional size-dependent electronicionic conductivity. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale.

  4. Twinning in nanocrystalline Ni by severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Feng, X. Y.; Cheng, Z. Y.; Wu, X.; Wang, T. C.; Hong, Y. S.

    2006-02-01

    Deformation twinning is confirmed upon large plastic deformation in nanocrystalline (nc) Ni by transmission electron microscopy examinations. New and compelling evidence has been obtained for several twinning mechanisms that operate in nc grains, with the grain boundary emission of partial dislocations determined as the most proficient. Twinning in nc Ni may be interpreted in terms of molecular dynamics simulation based on generalized planar fault energy curves.

  5. Role of nanocrystalline cerium oxide coatings on austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Zhang, Haiying

    Protective nanocrystalline cerium oxide coating has been applied to ASTM grade 304L and 304 austenitic stainless steels to improve its oxidation resistance at elevated temperatures. Experimentally, the selected alloy was exposed to 800°C/1000°C under dry air conditions. Weight changes (DeltaW/A) were monitored as a function of time and the results were compared with uncoated alloys tested under similar conditions. It was found that the oxidation resistances of 304L and 304 stainless steels were significantly improved. A comparison of the oxidation rates indicated that the nanocrystalline cerium oxide coating reduced the rate of oxidation by more than two orders of magnitude. Nevertheless, a comprehensive understanding of the mechanisms responsible for the reduction in the oxidation rate is not clear. Consequently, this work is aimed at investigating the mechanisms involved during scale growth in the presence or absence of nanocrystalline coatings. For this purpose, density functional theory was carried out in order to predict oxygen and iron diffusion microscopic activation energies and reveal the intrinsic characteristics of nanocrystalline coatings. A numerical simulation of corrosion process has also been conducted to predict the corrosion rates of alloys with and without coatings. Hence, the results from simulations are compared with the experimental outcome, and possible explanations are given to account for the reduction in the exhibited oxidation rates. The simulation results will provide a highly valuable tool for the realization of functional nanostructures and architectures "by design", particularly in the development of novel coatings, and a new approach of life assessment.

  6. Magnons as a Bose-Einstein Condensate in Nanocrystalline Gadolinium

    SciTech Connect

    Kaul, S. N.; Mathew, S. P.

    2011-06-17

    The recent observation [S. P. Mathew et al., J. Phys. Conf. Ser. 200, 072047 (2010)] of the anomalous softening of spin-wave modes at low temperatures in nanocrystalline gadolinium is interpreted as a Bose-Einstein condensation (BEC) of magnons. A self-consistent calculation, based on the BEC picture, is shown to closely reproduce the observed temperature variations of magnetization and specific heat at constant magnetic fields.

  7. Magnetic irreversibility and magnetocrystalline anisotropy in nanocrystalline nickel

    NASA Astrophysics Data System (ADS)

    Prakash, P. V.; Madduri, Srinath, S.; Kaul, S. N.

    2015-06-01

    Magnetic properties of nanocrystalline Ni samples, with average grain sizes, d = 11(1) nm, 19(1) nm and 30(2) nm, synthesized by pulse electrodeposition, have been studied. We observed that (i) at low temperatures, the effective magneto-crystalline anisotropy constant, K1, increases with the crystallite size so as to reach the bulk value at d = 30 nm, and (ii) the rate of thermal decline of K1(T) slows down as the crystallite size reduces.

  8. Characterisation of amorphous and nanocrystalline molecular materials by total scattering

    SciTech Connect

    Billinge, Simon J.L.; Dykhne, Timur; Juhás, Pavol; Boin, Emil; Taylor, Ryan; Florence, Alastair J.; Shankland, Kenneth

    2010-09-17

    The use of high-energy X-ray total scattering coupled with pair distribution function analysis produces unique structural fingerprints from amorphous and nanostructured phases of the pharmaceuticals carbamazepine and indomethacin. The advantages of such facility-based experiments over laboratory-based ones are discussed and the technique is illustrated with the characterisation of a melt-quenched sample of carbamazepine as a nanocrystalline (4.5 nm domain diameter) version of form III.

  9. Substrate bias effect on preparation of nanocrystalline silicon carbide thin films in helicon wave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yu, Wei; Lu, Wanbing; Wang, Chunsheng; Ding, Wenge; Fu, Guangsheng

    2006-01-01

    Silicon carbide thin films are prepared by helicon wave plasma enhanced chemical vapor deposition (HW-PECVD) using a gas mixture of silane, methane, and hydrogen at a constant gas flow ratio under varying negative DC bias voltage. The structural and optical properties of the deposited films are investigated using Fourier transform infrared spectra (FTIR), ultraviolet-visible (UV-VIS) transmission spectra, and scanning electron microscopy (SEM). It is found that by applying the moderate bias on the substrates to accelerate the energetic ions, nanocrystalline silicon carbide can be deposited at lower onset temperature than without bias, and the crystalline grain size of the films is smaller and more uniform. The mechanism about the enhancing effect of the bias is discussed on the performance of positive ions in the plasma.

  10. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  11. Model for temperature-dependent magnetization of nanocrystalline materials

    SciTech Connect

    Bian, Q.; Niewczas, M.

    2015-01-07

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau–Lifshitz–Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc–Ni is discussed.

  12. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  13. Model of the magnetization of nanocrystalline materials at low temperatures

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2014-07-01

    A theoretical model incorporating the material texture has been developed to simulate the magnetic properties of nanocrystalline materials at low temperatures where the effect of thermal energy on magnetization is neglected. The method is based on Landau-Lifshitz-Gilbert (LLG) theory and it describes the magnetization dynamics of individual grains in the effective field. The modified LLG equation incorporates the intrinsic fields from the intragrain magnetocrystalline and grain boundary anisotropies and the interacting fields from intergrain dipolar and exchange couplings between the neighbouring grains. The model is applied to study magnetic properties of textured nanocrystalline Ni samples at 2K and is capable to reproduce closely the hysteresis loop behaviour at different orientations of applied magnetic field. Nanocrystalline Ni shows the grain boundary anisotropy constant K 1 s = - 6.0 × 104 J / m 3 and the intergrain exchange coupling denoted by the effective exchange constant Ap = 2.16 × 10-11 J/m. Analytical expressions to estimate the intergrain exchange energy density and the effective exchange constant have been formulated.

  14. Low temperature solid-state synthesis of nanocrystalline gallium nitride

    SciTech Connect

    Wang, Liangbiao; Shi, Liang; Li, Qianwen; Si, Lulu; Zhu, Yongchun; Qian, Yitai

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► GaN nanocrystalline was prepared via a solid-state reacion at relatively low temperature. ► The sizes and crystallinities of the GaN samples obtained at the different temperatures are investigated. ► The GaN sample has oxidation resistance and good thermal stability below 1000 °C. -- Abstract: Nanocrystalline gallium nitride was synthesized by a solid-state reaction of metallic magnesium powder, gallium sesquioxide and sodium amide in a stainless steel autoclave at a relatively low temperature (400–550 °C). The structures and morphologies of the obtained products were derived from X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns indicated that the products were hexagonal GaN (JCPDS card no. 76-0703). The influence of reaction temperature on size of the products was studied by XRD and TEM. Furthermore, the thermal stability and oxidation resistance of the nanocrystalline GaN were also investigated. It had good thermal stability and oxidation resistance below 800 °C in air.

  15. MOLECULAR DYNAMICS STUDY OF DIFFUSIONAL CREEP IN NANOCRYSTALLINE UO2

    SciTech Connect

    Tapan G. Desai; Paul C. Millett; Dieter Wolf

    2008-09-01

    We present the results of molecular dynamics (MD) simulations to study hightemperature deformation of nanocrystalline UO2. In qualitative agreement with experimental observations, the oxygen sub-lattice undergoes a structural transition at a temperature of about 2200 K (i.e., well below the melting point of 3450 K of our model system), whereas the uranium sub-lattice remains unchanged all the way up to melting. At temperatures well above this structural transition, columnar nanocrystalline model microstructures with a uniform grain size and grain shape were subjected to constantstress loading at levels low enough to avoid microcracking and dislocation nucleation from the GBs. Our simulations reveal that in the absence of grain growth, the material deforms via GB diffusion creep (also known as Coble creep). Analysis of the underlying self-diffusion behavior in undeformed nanocrystalline UO2 reveals that, on our MD time scale, the uranium ions diffuse only via the grain boundaries (GBs) whereas the much faster moving oxygen ions diffuse through both the lattice and the GBs. As expected for the Coble-creep mechanism, the creep activation energy agrees well with that for GB diffusion of the slowest moving species, i.e., of the uranium ions.

  16. Hardness and microplasticity of nanocrystalline and amorphous calcium phosphate coatings

    NASA Astrophysics Data System (ADS)

    Ievlev, V. M.; Kostyuchenko, A. V.; Darinskii, B. M.; Barinov, S. M.

    2014-02-01

    The hardness of thin (1.0-4.0 μm) hydroxyapatite coatings with different structures (nanocrystalline, amorphous-crystalline, and amorphous) grown by rf magnetron sputtering on Ti and Si plates has been studied using the nanoindentation method. All the grown structures are characterized by the strain which has reversible and irreversible components. The hardness of nanocrystalline coatings (about 10 GPa) corresponds to the average hardness of hydroxyapatite single crystals. The structure of nanocrystalline coatings in the indentation zone and outside it has been investigated and changes in the structure under the indenter have been revealed using high-resolution transmission electron microscopy. From a comparison of the hardnesses of coatings with different structures and based on an analysis of the intragranular structure, it has been assumed that the plastic deformation occurs according to a dislocation-free mechanism. The plastic deformation is interpreted in terms of the cluster representation of the hydroxyapatite structure and amorphous calcium phosphates of the same elemental composition and cluster-boundary sliding during the deformation.

  17. Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Dai, P. Q.; Zhang, C.; Wen, J. C.; Rao, H. C.; Wang, Q. T.

    2016-02-01

    Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (~1265 to 1640 MPa) and elongation to failure (~5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.

  18. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    PubMed Central

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-01-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content. PMID:26269034

  19. Thermoluminescence characteristics of LiF: Cu nanocrystalline phosphor

    NASA Astrophysics Data System (ADS)

    Seth, Pooja; Aggarwal, Shruti

    2016-05-01

    Copper (Cu) activated LiF phosphor in nanocrystalline form has been prepared by the chemical co-precipitation method for radiation dosimetry application. The formation of nanocrystalline structure has been confirmed by X-ray diffraction and Scanning electron microscopy. Cubical shaped nanostructure with average particle size of 33nm has been formed. The sample was prepared at different concentration of Cu from 0.01mol% to 3 mol%. TL properties were investigated by studying the glow curve after irradiating the phosphor to gamma ray Co60 source with dose of 15 Gy. It has been found that nanocrystalline LiF: Cu show simple glow curve structure with a single glow peak at 404 K where as commercially available phosphors exhibits multi peak complex glow curve structure. The effect of different normality on the TL properties of phosphor has been studied. Maximum TL intensity for LiF: Cu (0.1mol %) phosphor is observed at the normality of 0.5N and annealing temperature of 200°C. The phosphor showed good linearity up to 10 KGy.

  20. MSRC-based defective nanocrystalline soft magnetic ribbon detection

    NASA Astrophysics Data System (ADS)

    He, Zaixing; Zhao, Xinyue

    2015-09-01

    The traditional manual inspection of nanocrystalline soft magnetic materials based on metallographic samples is a time-consuming and somewhat unreliable task. It is also difficult to achieve high accuracy by simply adopting existing automatic signal processing methods as an alternative. To address the issue, a novel automatic microscopic defect recognition method for nanocrystalline soft magnetic ribbon using high-resolution optical microscopic images is proposed. The target problem is viewed as a pattern recognition problem, in which images are classified as non-defective and defective. An effective and highly efficient random feature is used to describe the structures of the nanocrystalline soft magnetic ribbons. Then the extracted features are used to recognize defects via a modified sparse representation-based classifier (MSRC). In the experiment, two well-known features, LBP (local binary pattern) and PCA (principal component analysis), and different classifiers, SVM (support vector machine) and SRC (sparse representation classifier), are compared. The experimental results demonstrate that the proposed method can provide low error rates in recognizing ribbon defects.

  1. Transformation of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon; mechanism of divacancy diffusion

    SciTech Connect

    Ganagona, N. Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2014-01-21

    In this work, a comprehensive study on the transition of divacancy (V{sub 2}) to divacancy-oxygen (V{sub 2}O) pairs in p-type silicon has been performed with deep level transient spectroscopy (DLTS). Czochralski grown, boron doped p-type, silicon samples, with a doping concentration of 2 × 10{sup 15} cm{sup −3} and oxygen content of 7.0 ± 1.5 × 10{sup 17} cm{sup −3}, have been irradiated with 1.8 MeV protons. Isothermal annealing at temperatures in the range of 200 °C–300 °C shows a close to one-to-one correlation between the loss in the donor state of V{sub 2} and the formation of the donor state of V{sub 2}O, located at 0.23 eV above the valence band edge. A concurrent transition takes place between the single acceptor states of V{sub 2} and V{sub 2}O, as unveiled by injection of electrons through optical excitation during the trap filling sequence of the DLTS measurements. Applying the theory for diffusion limited reactions, the diffusivity of V{sub 2} in the studied p-type samples is determined to be (1.5 ± 0.7) × 10{sup −3}exp[−(1.31 ± 0.03) eV/kT] cm{sup 2}/s, and this represents the neutral charge state of V{sub 2}. Further, the data seem to favor a two-stage diffusion mechanism involving partial dissociation of V{sub 2}, although a one-stage process cannot be fully excluded.

  2. P-type ZnO films by phosphorus doping using plasma immersion ion-implantation technique

    NASA Astrophysics Data System (ADS)

    Nagar, S.; Chakrabarti, S.

    2013-03-01

    ZnO has been a subject of intense research in the optoelectronics community owing to its wide bandgap (3.3eV) and large exciton binding energy (60meV). However, difficulty in doping it p-type posts a hindrance in fabricating ZnO-based devices. In order to make p-type ZnO films, phosphorus implantation, using plasma immersion ion-implantation technique (2kV, 900W, 10μs pulse width) for 30 seconds, was performed on ZnO thin film deposited by RF Magnetron Sputtering (Sample A). The implanted samples were subsequently rapid thermal annealed at 700°C and 1000°C (Samples B and C) in oxygen environment for 30 seconds. Low temperature (8K) photoluminescence spectra reveal dominant donor-bound exciton (D°X) peak at 3.36eV for samples A and B. However, for Sample B the peaks around 3.31eV and 3.22eV corresponding to the free electron-acceptor (FA) and donor to acceptor pair peaks (DAP) are also observed. A dominant peak around 3.35eV, corresponding to acceptor bound exciton (A°X) peak, is detected for Sample C along with the presence of FA and DAP peaks around 3.31eV and 3.22eV. Moreover, the deep level peak around 2.5eV is higher for Sample B which may be due to implantation and acceptor related defects. However, for Sample C, the deep level peaks are very weak compared to the near band edge peaks confirming that these peaks are mainly due to intrinsic defects and not related to acceptors. These results clearly show us a promising way to achieve p-type ZnO films using phosphorus doping.

  3. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE PAGESBeta

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; Li, Yuwei; Xu, Qiaoling; Ma, Yanming; Zheng, Weitao

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can bemore » stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  4. Characterization of boron doped nanocrystalline diamonds

    NASA Astrophysics Data System (ADS)

    Peterlevitz, A. C.; Manne, G. M.; Sampaio, M. A.; Quispe, J. C. R.; Pasquetto, M. P.; Iannini, R. F.; Ceragioli, H. J.; Baranauskas, V.

    2008-03-01

    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range.

  5. Crystallization of P-type ATPases by the High Lipid-Detergent (HiLiDe) Method.

    PubMed

    Sitsel, Oleg; Wang, Kaituo; Liu, Xiangyu; Gourdon, Pontus

    2016-01-01

    Determining structures of membrane proteins remains a significant challenge. A technique utilizing high lipid-detergent concentrations ("HiLiDe") circumvents the major bottlenecks of current membrane protein crystallization methods. During HiLiDe, the protein-lipid-detergent ratio is varied in a controlled way in order to yield initial crystal hits, which may be subsequently optimized by variation of the crystallization conditions and/or utilizing secondary detergents. HiLiDe preserves the advantages of classical lipid-based methods, yet is compatible with both the vapor diffusion and batch crystallization techniques. The method has been applied with particular success to P-type ATPases.

  6. p-type ZnO and ZnMnO by oxidation of Zn(Mn)Te films

    NASA Astrophysics Data System (ADS)

    Przedziecka, E.; Kamiska, E.; Dynowska, E.; Dobrowolski, W.; Jakiea, R.; Kopotowski, .; Sawicki, M.; Kiecana, M.; Kossut, J.

    2006-03-01

    ZnO and ZnMnO doped with N and/or As layers were fabricated by thermal oxidation of ZnTe and ZnMnTe grown by MBE on different substrates. The Hall measurements demonstrated p -type conductivity with the hole concentration of 5 . 1019 cm-3 for ZnO:As and ZnO:As:N on GaAs substrates and 6 . 1017 cm-3 for ZnTe:N on ZnTe substrates. Optical study showed meaningful differences between samples with different acceptor, grown on different substrates. Magnetoptical experiment demonstration Zeeman splitting in ZnMnO samples.

  7. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    NASA Technical Reports Server (NTRS)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  8. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  9. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  10. Quantum size effect in the photoluminescence properties of p-type semiconducting transparent CuAlO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Narayan Banerjee, Arghya; Woo Joo, Sang; Min, Bong-Ki

    2012-12-01

    Photoluminescence properties of CuAlO2 nanoparticles, deposited by a cost-effective direct current sputtering technique, have been studied. The nanoparticles show room-temperature photoluminescence peaks of near-band-edge emission due to recombination of free excitons. A blue-shift in the emission peaks as a decreasing function of the nanoparticle sizes is observed, which is attributed to the quantum confinement effect within the CuAlO2 nanoparticles. Theoretical calculations of bandgap enhancement values are found to be matching fairly well with that of the experimentally obtained values, confirming the existence of the quantum size effect within the nanomaterial. Approximate calculations show that the confinement effect falls within moderate-to-weak confinement regime. X-ray diffraction and electron microscopic measurements confirm the proper phase formation and nanocrystalline structure of the as-deposited nanoparticles. The room-temperature and size-dependent photoluminescence properties of this nanomaterial will be very useful for light emitting diode and similar optoelectronic applications.

  11. Hydrogen Spectrum

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The series of absorption or emission lines that are characteristic of the hydrogen atom. According to the Bohr theory of the hydrogen atom, devised by Danish physicist Neils Bohr (1885-1962) in 1913, the hydrogen atom can be envisaged as consisting of a central nucleus (a proton) around which a single electron revolves. The electron is located in one of a number of possible permitted orbits, each...

  12. Enhanced Activity of Nanocrystalline Zeolites for Selective Catalytic Reduction of NOx

    SciTech Connect

    Sarah C. Larson; Vicki H. Grassian

    2006-12-31

    Nanocrystalline zeolites with discrete crystal sizes of less than 100 nm have different properties relative to zeolites with larger crystal sizes. Nanocrystalline zeolites have improved mass transfer properties and very large internal and external surface areas that can be exploited for many different applications. The additional external surface active sites and the improved mass transfer properties of nanocrystalline zeolites offer significant advantages for selective catalytic reduction (SCR) catalysis with ammonia as a reductant in coal-fired power plants relative to current zeolite based SCR catalysts. Nanocrystalline NaY was synthesized with a crystal size of 15-20 nm and was thoroughly characterized using x-ray diffraction, electron paramagnetic resonance spectroscopy, nitrogen adsorption isotherms and Fourier Transform Infrared (FT-IR) spectroscopy. Copper ions were exchanged into nanocrystalline NaY to increase the catalytic activity. The reactions of nitrogen dioxides (NO{sub x}) and ammonia (NH{sub 3}) on nanocrystalline NaY and CuY were investigated using FT-IR spectroscopy. Significant conversion of NO{sub 2} was observed at room temperature in the presence of NH{sub 3} as monitored by FT-IR spectroscopy. Copper-exchanged nanocrystalline NaY was more active for NO{sub 2} reduction with NH{sub 3} relative to nanocrystalline NaY.

  13. Nanocrystalline silicon quantum dots thin films prepared by magnetron reaction sputtering

    NASA Astrophysics Data System (ADS)

    Zhao, Weiping; Deng, Jinxiang; Yang, Bing; Yu, Zhenrui; Aceves, Mariano

    2009-07-01

    Silicon is a kind of excellent semiconductor material and is one of the core material of microelectronics. But it is not a fine luminescent material. The photoluminescence(PL) will be obtained by excitation only when the size of silicon partials reduced to a certain value. Nanocrystalline silicon films have special structure and many excellent optoelectronic properties and are supposed to be applied in optoelectronic devices and large scale integrated circuits. In this paper, Nanocrystalline silicon films was deposited on silicon substrate by RF magnetron sputtering with pure Si target. And the working gas is the mixture of oxygen and argon .The content of O2 in working gas (O2/ O2 + Ar) and the power of sputtering were changed separately .However, the substrate temperature, working gas pressure and other conditions were definite. After annealing in the stove, we got the Nanocrystalline silicon particles in the thin films. Fourier transform infrared(FTIR) transmittance measurement was carried out to characterized Nanocrystalline silicon films. X-ray photoelectron spectroscopy (XPS) measurement was also performed to estimate the atom ratio of the Nanocrystalline silicon films. Raman scattering measurements was also taken in to characterize the Nanocrystalline silicon films. The formation of Nanocrystalline silicon filmswere depended partly on the parameters of experiment. The annealed silicon films were researched that the size of the Nanocrystalline silicon particles proved to be largely impacted by the annealing temperature in the thin film

  14. Coal hydrogenation

    SciTech Connect

    Sinor, J.E.

    1981-01-06

    Disclosure is made of a method and apparatus for reacting carbonaceous material such as pulverized coal with heated hydrogen to form hydrocarbon gases and liquids suitable for conversion to fuels wherein the reaction involves injection of pulverized coal entrained in a minimum amount of gas and mixing the entrained coal at ambient temperature with a separate source of heated hydrogen. The heated hydrogen and entrained coal are injected through a rocket engine type injector device. The coal particles are reacted with hydrogen in a reaction chamber downstream of the injector. The products of reaction are rapidly quenched as they exit the reaction chamber and are subsequently collected.

  15. Microstructured poly(2-oxazoline) bottle-brush brushes on nanocrystalline diamond.

    PubMed

    Hutter, Naima A; Reitinger, Andreas; Zhang, Ning; Steenackers, Marin; Williams, Oliver A; Garrido, Jose A; Jordan, Rainer

    2010-05-01

    We report on the preparation of microstructured poly(2-oxazoline) bottle-brush brushes (BBBs) on nanocrystalline diamond (NCD). Structuring of NCD was performed by photolithography and plasma treatment to result in a patterned NCD surface with oxidized and hydrogenated areas. Self-initiated photografting and photopolymerization (SIPGP) of 2-isopropenyl-2-oxazoline (IPOx) resulted in selective grafting of poly(2-isopropenyl-2-oxazoline) (PIPOx) polymer brushes only at the oxidized NCD areas. Structured PIPOx brushes were converted by methyl triflate into the polyelectrolyte brush macroinitiator for the living cationic ring-opening polymerization (LCROP) of 2-oxazolines. The LCROP was performed with 2-ethyl-2-oxazoline (EtOx) as well as 2-(carbazolyl)ethyl-2-oxazoline (CarbOx) as monomers, resulting in structured bottle-brush brushes (BBB) with different pendant side chains and functionalities. FT-IR spectroscopy, fluorescence microscopy, and AFM measurements indicated a high side chain grafting density as well as quantitative and selective reactions. Poly(2-oxazoline) BBBs containing hole conducting carbazole moieties on NCD as electrode material may open the way to advanced amperometric biosensing systems.

  16. Structural and electronic properties of dual plasma codeposited mixed-phase amorphous/nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Adjallah, Y.; Anderson, C.; Kortshagen, U.; Kakalios, J.

    2010-02-01

    A dual-plasma codeposition system capable of synthesizing thin films of mixed-phase materials consisting of nanoparticles of one type of material embedded within a thin film semiconductor or insulator matrix is described. This codeposition process is illustrated by the growth of hydrogenated amorphous silicon (a-Si:H) films containing silicon nanocrystalline inclusions (a/nc-Si:H). A capacitively coupled flow-through plasma reactor is used to generate silicon nanocrystallites of diameter 5 nm, which are entrained by a carrier gas and introduced into a capacitively coupled plasma enhanced chemical vapor deposition reactor with parallel plate electrodes, in which a-Si:H is synthesized. The structural and electronic properties of these mixed-phase a/nc-Si:H films are investigated as a function of the silicon nanocrystal concentration. At a moderate concentration (crystalline fraction 0.02-0.04) of silicon nanocrystallites, the dark conductivity is enhanced by up to several orders of magnitude compared to mixed-phase films with either lower or higher densities of nanoparticle inclusions. These results are interpreted in terms of a model whereby in films with a low nanocrystal concentration, conduction is influenced by charges donated into the a-Si:H film by the inclusions, while at high nanocrystal densities electronic transport is affected by increased disorder introduced by the nanoparticles.

  17. A Solid-State NMR Study of Selenium Substitution into Nanocrystalline Hydroxyapatite

    PubMed Central

    Kolmas, Joanna; Kuras, Marzena; Oledzka, Ewa; Sobczak, Marcin

    2015-01-01

    The substitution of selenium oxyanions in the hydroxyapatite structure was examined using multinuclear solid-state resonance spectroscopy (ssNMR). The study was supported by powder X-ray diffractometry (PXRD) and wavelength dispersion X-ray fluorescence (WD-XRF). Samples of pure hydroxyapatite (HA300) and selenate (HA300-1.2SeO4) or selenite (HA300-1.2SeO3) substituted hydroxyapatites were synthesized using the standard wet method and heated at 300 °C to remove loosely bonded water. PXRD data showed that all samples are single-phase, nanocrystalline hydroxyapatite. The incorporation of selenite and selenate ions affected the lattice constants. In selenium-containing samples the concentration of Se was very similar and amounted to 9.55% and 9.64%, for HA300-1.2SeO4 and HA300-1.2SeO3, respectively. PXRD and ssNMR data showed that the selenite doping significantly decreases the crystallite size and crystallinity degree. 31P and 1H NMR experiments demonstrated the developed surface hydrated layer in all samples, especially in HA300-1.2SeO3. 1H NMR studies showed the dehydroxylation of HA during the selenium oxyanions substitution and the existence of hydrogen bonding in structural hydroxyl group channels. 1H→77Se cross polarization NMR experiments indicated that selenites and selenates are located in the crystal lattice and on the crystal surface. PMID:25997001

  18. Solution equilibrium behind the room-temperature synthesis of nanocrystalline titanium dioxide.

    PubMed

    Seisenbaeva, Gulaim A; Daniel, Geoffrey; Nedelec, Jean-Marie; Kessler, Vadim G

    2013-04-21

    Formation of nanocrystalline and monodisperse TiO2 from a water soluble and stable precursor, ammonium oxo-lactato-titanate, (NH4)8Ti4O4(Lactate)8·4H2O, often referred to as TiBALDH or TALH, is demonstrated to be due to a coordination equilibrium. This compound, individual in the solid state, exists in solution in equilibrium with ammonium tris-lactato-titanate, (NH4)2Ti(Lactate)3 and uniform crystalline TiO2 nanoparticles (anatase) stabilized by surface-capping with lactate ligands. This equilibrium can be shifted towards nano-TiO2via application of a less polar solvent like methanol or ethanol, dilution of the solution, introduction of salts or raising the temperature, and reverted on addition of polar and strongly solvating media such as dimethyl sulfoxide, according to NMR. Aggregation and precipitation of the particles were followed by DLS and could be achieved by a decrease in their surface charge by adsorption of strongly hydrogen-bonding cations, e.g. in solutions of ammonia, ethanolamine or amino acid arginine or by addition of ethanol. The observed equilibrium may be involved in formation of nano-titania on the surface of plant roots exerting chelating organic carboxylate ligands and thus potentially influencing plant interactions.

  19. Nanocrystalline magnesium ferrite prepared for photocatalytic applications by using the polymerized complex method

    NASA Astrophysics Data System (ADS)

    Dom, Rekha; Borse, Pramod H.; Hong, Kyong-Soo; Choi, Seyong; Lee, Byeong Seob; Ha, Myoung Gyu; Kim, Jong Pil; Jeong, Euh Duck; Kim, Hyun Gyu

    2015-11-01

    Magnesium ferrite (MgFe2O4) exhibiting a spinel phase was synthesized by using the polymerized complex and the solid-state reaction methods, and its physico-chemical properties were studied to explore the water-splitting under visible light photons. The study revealed the potential for using MgFe2O4 particles for photo-catalytic application. The structural study provided information on ferrite nano-crystallites fabricated by using the polymer complex method. The morphological studies demonstrated that, in contrast to the solid-state reaction method, a homogenous, monodispersed ferrite photocatalyst could be formed by using the polymerized complex method. The optical study revealed a larger visible-light absorption capability for the nanosized MgFe2O4 photocatalysts prepared by using the polymer complex methods, and indicated a red-shift of the bandgap by 0.06 eV as compared to the bandgap of the bulk. These nanocrystallites were highly photoactive with respect to the photodegradation and photocatalytic hydrogen evolution applications. The electrochemical analysis showed that they exhibited favorable bandedge positions suitable for photocatalytic H2 evolution. Thus, nanocrystalline MgFe2O4 is an active visible-light photocatalyst, that might be useful for the decomposition of water.

  20. Performances of miniature microstrip detectors made on oxygen enriched p-type substrates after very high proton irradiation

    NASA Astrophysics Data System (ADS)

    Casse, G.; Allport, P. P.; Martí i Garcia, S.; Lozano, M.; Turner, P. R.

    2004-12-01

    Silicon microstrip detectors with n-type implant read-out strips on FZ p-type bulk (n-in-p) show superior charge collection properties, after heavy irradiation, to the more standard p-strips in n-type silicon (p-in-n). It is also well established that oxygen-enriched n-type silicon substrates show better performance, in terms of degradation of the full depletion voltage after charged hadron irradiation, than the standard FZ silicon used for high energy physics detectors. Silicon microstrip detectors combining both the advantages of oxygenation and of n-strip read-out (n-in-n) have achieved high radiation tolerance to charged hadrons. The manufacturing of n-in-n detectors though requires double-sided processing, resulting in more complicated and expensive devices than standard p-in-n. A cheaper single-sided option, that still combines these advantages, is to use n-in-p devices. P-type FZ wafers have been oxygen-enriched by high temperature diffusion from an oxide layer and succesfully used to process miniature (1×1 cm 2) microstrip detectors. These detectors have been irradiated with 24 GeV/c protons in the CERN/PS T7 irradiation area up to ˜7.5×10 15 cm -2. We report results with these irradiated detectors in terms of the charge collection efficiency as a function of the applied bias voltage.

  1. Optical and piezoelectric properties of p-type ZnO nanowires on transparent flexible substrate for energy harvesting

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Tam, Man Chun; Hu, Lilei; EI-Rayes, Karim; Guo, Qiuquan; Yang, Jun; Mrad, Nezih; Ban, Dayan

    2014-09-01

    High quality, controlled-structure nanowires (NWs), grown on a transparent flexible substrate, have attracted great interest as a mean of harvesting solar and mechanical energy. Clarifying their optical and piezoelectric properties is essential for this application. In this paper, vertically aligned lithium (Li) doped p-type ZnO NWs were grown, on a micro-patterned transparent flexible polyethylene naphthalate (PEN) substrate, by electrochemical deposition at 88 °C. The substrate was coated with aluminum-doped ZnO (AZO) thin layer, which served as a good seed layer and a transparent conductive oxide layer. Varying the seed layer thickness gave control of the individual NWs' diameter, density and alignment. The effect of doping on the optical band-gap, crystalline quality and Schottky barrier were investigated by X-ray diffraction (XRD) spectroscopy and piezoelectric characterization. The piezoelectric polarization induced piezo-potential in strained ZnO NWs can drive the flow of electrons without an applied electric bias, thus can be used to harvest mechanical energy and convert it into electricity. To prove this concept, flexible piezoelectric energy harvesters based on an array of ZnO NWs were fabricated. Results show that the patterned p-type NW-based energy harvester produces 26-fold output voltage and 19-fold current compared to the conventional un-doped ZnO NW energy harvester from the same acceleration input.

  2. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    PubMed Central

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-01-01

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport of e.g. ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins. PMID:26175901

  3. Fundamental piezo-Hall coefficients of single crystal p-type 3C-SiC for arbitrary crystallographic orientation

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Dao, Dzung Viet; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2016-08-01

    Piezo-Hall effect in a single crystal p-type 3C-SiC, grown by LPCVD process, has been characterized for various crystallographic orientations. The quantified values of the piezo-Hall effect in heavily doped p-type 3C-SiC(100) and 3C-SiC(111) for different crystallographic orientations were used to obtain the fundamental piezo-Hall coefficients, P 12 = ( 5.3 ± 0.4 ) × 10 - 11 Pa - 1 , P 11 = ( - 2.6 ± 0.6 ) × 10 - 11 Pa - 1 , and P 44 = ( 11.42 ± 0.6 ) × 10 - 11 Pa - 1 . Unlike the piezoresistive effect, the piezo-Hall effect for (100) and (111) planes is found to be independent of the angle of rotation of the device within the crystal plane. The values of fundamental piezo-Hall coefficients obtained in this study can be used to predict the piezo-Hall coefficients in any crystal orientation which is very important for designing of 3C-SiC Hall sensors to minimize the piezo-Hall effect for stable magnetic field sensitivity.

  4. High performance printed N and P-type OTFTs enabling digital and analog complementary circuits on flexible plastic substrate

    NASA Astrophysics Data System (ADS)

    Jacob, S.; Abdinia, S.; Benwadih, M.; Bablet, J.; Chartier, I.; Gwoziecki, R.; Cantatore, E.; van Roermund, A. H. M.; Maddiona, L.; Tramontana, F.; Maiellaro, G.; Mariucci, L.; Rapisarda, M.; Palmisano, G.; Coppard, R.

    2013-06-01

    This paper presents a printed organic complementary technology on flexible plastic substrate with high performance N and P-type Organic Thin Film Transistors (OTFTs), based on small-molecule organic semiconductors in solution. Challenges related to the integration of both OTFT types in a common complementary flow are addressed, showing the importance of surface treatments. Stability on single devices and on an elementary complementary digital circuit (ring oscillator) is studied, demonstrating that a robust and reliable flow with high electrical performances can be established for printed organic devices. These devices are used to manufacture several analog and digital building blocks. The design is carried out using a model specifically developed for this technology, and taking into account the parametric variability. High-frequency measurements of printed envelope detectors show improved speed performance, resulting from the high mobility of the OTFTs. In addition, a compact dynamic flip-flop and a low-offset comparator are demonstrated, thanks to availability of both n-type and p-type OTFTs in the technology. Measurement results are in good agreement with the simulations. The circuits presented establish a complete library of building blocks for the realization of a printed RFID tag.

  5. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm‑3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K‑1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  6. Inorganic Nano Light-Emitting Transistor: p-Type Porous Silicon Nanowire/n-Type ZnO Nanofilm.

    PubMed

    Lee, Sang Hoon; Kim, Jong Woo; Lee, Tae Il; Myoung, Jae Min

    2016-08-01

    An inorganic nano light-emitting transistor (INLET) consisting of p-type porous Si nanowires (PoSiNWs) and an n-type ZnO nanofilm was integrated on a heavily doped p-type Si substrate with a thermally grown SiO2 layer. To verify that modulation of the Fermi level of the PoSiNWs is key for switchable light emitting, I-V and electroluminescent characteristics of the INLET are investigated as a function of gate bias (V g ). As the V g is changed from 0 V to -20 V, the current level and light-emission intensity in the orange-red range increase by three and two times, respectively, with a forward bias of 20 V in the p-n junction, compared to those at a V g of 0 V. On the other hand, as the V g approaches 10 V, the current level decreases and the emission intensity is reduced and then finally switched off. This result arises from the modulation of the Fermi level of the PoSiNWs and the built-in potential at the p-n junction by the applied gate electric field. PMID:27378257

  7. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    PubMed

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2).

  8. Enhancement of p-Type Dye-Sensitized Solar Cell Performance by Supramolecular Assembly of Electron Donor and Acceptor

    PubMed Central

    Tian, Haining; Oscarsson, Johan; Gabrielsson, Erik; Eriksson, Susanna K.; Lindblad, Rebecka; Xu, Bo; Hao, Yan; Boschloo, Gerrit; Johansson, Erik M. J.; Gardner, James M.; Hagfeldt, Anders; Rensmo, Håkan; Sun, Licheng

    2014-01-01

    Supramolecular interactions based on porphyrin and fullerene derivatives were successfully adopted to improve the photovoltaic performance of p-type dye-sensitized solar cells (DSCs). Photoelectron spectroscopy (PES) measurements suggest a change in binding configuration of ZnTCPP after co-sensitization with C60PPy, which could be ascribed to supramolecular interaction between ZnTCPP and C60PPy. The performance of the ZnTCPP/C60PPy-based p-type DSC has been increased by a factor of 4 in comparison with the DSC with the ZnTCPP alone. At 560 nm, the IPCE value of DSCs based on ZnTCPP/C60PPy was a factor of 10 greater than that generated by ZnTCPP-based DSCs. The influence of different electrolytes on charge extraction and electron lifetime was investigated and showed that the enhanced Voc from the Co2+/3+(dtbp)3-based device is due to the positive EF shift of NiO. PMID:24603319

  9. Thermoelectric properties of p-type Fe-doped TiCoSb half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Wu, Ting; Jiang, Wan; Li, Xiaoya; Zhou, Yanfei; Chen, Lidong

    2007-11-01

    TiFexCo1-xSb half-Heusler materials with randomly distributed TiO2 particles have been synthesized by arc melting and annealing. Thermoelectric properties were measured in the temperature range of ˜300-850 K. TiCoSb shows n-type conduction, while TiFexCo1-xSb transfers to p-type conduction when x ≥0.01. The electrical conductivity of p-type TiFexCo1-xSb increased with increasing Fe content. The maximum Seebeck coefficient reached about 300 μV/K at 850 K for x =0.15. Since Fe powder contained a trace of Fe2O3, a small amount of TiO2 particles formed during the synthesis process. The lattice thermal conductivity dramatically decreased with increasing Fe content, which was mostly caused by the introduction of in situ formed TiO2 particles, as well as the effects of mass fluctuation and strain field fluctuation due to the substitution of Fe to the Co site. The dimensionless figure of merit (ZT =S2σT/κ) was significantly improved over the whole temperature region, and a maximum ZT value of 0.45 has been obtained for the composition of TiFe0.15Co0.85Sb at 850 K.

  10. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    SciTech Connect

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; Messerschmidt, Marc; Seibert, Marvin M.; Williams, Garth J.; Foucar, Lutz; Reinhard, Linda; Sitsel, Oleg; Gregersen, Jonas L.; Clausen, Johannes D.; Boesen, Thomas; Gotfryd, Kamil; Wang, Kai-Tuo; Olesen, Claus; Møller, Jesper V.; Nissen, Poul; Schlichting, Ilme

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data reveal the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.

  11. Inorganic Nano Light-Emitting Transistor: p-Type Porous Silicon Nanowire/n-Type ZnO Nanofilm.

    PubMed

    Lee, Sang Hoon; Kim, Jong Woo; Lee, Tae Il; Myoung, Jae Min

    2016-08-01

    An inorganic nano light-emitting transistor (INLET) consisting of p-type porous Si nanowires (PoSiNWs) and an n-type ZnO nanofilm was integrated on a heavily doped p-type Si substrate with a thermally grown SiO2 layer. To verify that modulation of the Fermi level of the PoSiNWs is key for switchable light emitting, I-V and electroluminescent characteristics of the INLET are investigated as a function of gate bias (V g ). As the V g is changed from 0 V to -20 V, the current level and light-emission intensity in the orange-red range increase by three and two times, respectively, with a forward bias of 20 V in the p-n junction, compared to those at a V g of 0 V. On the other hand, as the V g approaches 10 V, the current level decreases and the emission intensity is reduced and then finally switched off. This result arises from the modulation of the Fermi level of the PoSiNWs and the built-in potential at the p-n junction by the applied gate electric field.

  12. Binary Oxide p-n Heterojunction Piezoelectric Nanogenerators with an Electrochemically Deposited High p-Type Cu2O Layer.

    PubMed

    Baek, Seung Ki; Kwak, Sung Soo; Kim, Joo Sung; Kim, Sang Woo; Cho, Hyung Koun

    2016-08-31

    The high performance of ZnO-based piezoelectric nanogenerators (NGs) has been limited due to the potential screening from intrinsic electron carriers in ZnO. We have demonstrated a novel approach to greatly improve piezoelectric power generation by electrodepositing a high-quality p-type Cu2O layer between the piezoelectric semiconducting film and the metal electrode. The p-n heterojunction using only oxides suppresses the screening effect by forming an intrinsic depletion region, and thus sufficiently enhances the piezoelectric potential, compared to the pristine ZnO piezoelectric NG. Interestingly, a Sb-doped Cu2O layer has high mobility and low surface trap states. Thus, this doped layer is an attractive p-type material to significantly improve piezoelectric performance. Our results revealed that p-n junction NGs consisting of Au/ZnO/Cu2O/indium tin oxide with a Cu2O:Sb (cuprous oxide with a small amount of antimony) layer of sufficient thickness (3 μm) exhibit an extraordinarily high piezoelectric potential of 0.9 V and a maximum output current density of 3.1 μA/cm(2). PMID:27547841

  13. Control of p-type conduction in Mg doped monophase CuCrO2 thin layers

    NASA Astrophysics Data System (ADS)

    Chikoidze, E.; Boshta, M.; Gomaa, M.; Tchelidze, T.; Daraselia, D.; Japaridze, D.; Shengelaya, A.; Dumont, Y.; Neumann-Spallart, M.

    2016-05-01

    This work aims to clarify the origin of hole conduction in undoped and Mg-doped CuCrO2 oxide in order to have the possibility of controlling it by corresponding growth parameters. A chemical spray pyrolysis procedure for the deposition of p-type semiconductor thin films is described. The as-deposited films were amorphous. The formation of highly crystalline CuCrO2 and Mg-doped CuCrO2 films with a single phase delafossite structure was realized by annealing between 600 °C and 960 °C in a nitrogen atmosphere. The carrier concentration and the point defects of the samples are calculated by using the developed Kroger method of quasi-chemical reactions. p-type conductivity was predicted and observed in the undoped and Mg doped CuCrO2 sample, and with n ~ 1018 cm-3 carrier concentrations for 4%Mg doping. The electrical resistivity for a 4% Mg doped sample was 1.4 Ω·cm with a Seebeck coefficient of  +130 μV K-1 at 40 °C. By electroparamagnetic resonance spectroscopy Cr3+ and Cu2+ related defects were studied.

  14. Phosphorous doped ZnO nanowires: acceptor-related cathodoluminescence and p-type conducting FET-characteristics

    NASA Astrophysics Data System (ADS)

    Cao, B. Q.; Lorenz, M.; von Wenckstern, H.; Czekalla, C.; Brandt, M.; Lenzner, J.; Benndorf, G.; Biehne, G.; Grundmann, M.

    2008-02-01

    Phosphorous-doped ZnO (ZnO:P) nanowires were prepared by a high-pressure pulsed laser deposition process. To extend the size range of available wires, μm-thick ZnO:P microwires were grown additionally by a direct carbothermal deposition process. Low-temperature cathodoluminescence of single ZnO:P nanowires grown by both processes exhibit characteristic phosphorus acceptor-related peaks: neutral acceptor-bound exciton emission ((A 0, X), 3.356 eV), free-electron to neutral-acceptor emission ((e, A 0), 3.314 eV), and donor-to-acceptor pair emission (DAP, ~3.24 and ~3.04 eV). This proves that stable phosphorus acceptor levels have been induced into the ZnO:P nano- and microwires. From the quantitative evaluation of the spectroscopic features we deduct an acceptor binding energy of 122 meV. The ZnO:P microwires were used as channels in bottom-gate field effect transistors (FET) built on Si substrates with SiO II gate oxide. The electrical FET-characteristics of several wires show reproducibly clear qualitative indication for p-type conductivity for variation of gate voltage. This behavior is opposite to that of nominally undoped, n-type conducting wires investigated for comparison. The p-type conductivity was found to be stable over more than six months.

  15. Evaluation of Seebeck coefficients in n- and p-type silicon nanowires fabricated by complementary metal-oxide-semiconductor technology.

    PubMed

    Hyun, Younghoon; Park, Youngsam; Choi, Wonchul; Kim, Jaehyeon; Zyung, Taehyoung; Jang, Moongyu

    2012-10-12

    Silicon-based thermoelectric nanowires were fabricated by using complementary metal-oxide-semiconductor (CMOS) technology. 50 nm width n- and p-type silicon nanowires (SiNWs) were manufactured using a conventional photolithography method on 8 inch silicon wafer. For the evaluation of the Seebeck coefficients of the silicon nanowires, heater and temperature sensor embedded test patterns were fabricated. Moreover, for the elimination of electrical and thermal contact resistance issues, the SiNWs, heater and temperature sensors were fabricated monolithically using a CMOS process. For validation of the temperature measurement by an electrical method, scanning thermal microscopy analysis was carried out. The highest Seebeck coefficients were - 169.97 μV K(-1) and 152.82 μV K(-1) and the highest power factors were 2.77 mW m(-1) K(-2) and 0.65 mW m(-1) K(-2) for n- and p-type SiNWs, respectively, in the temperature range from 200 to 300 K. The larger power factor value for n-type SiNW was due to the higher electrical conductivity. The total Seebeck coefficient and total power factor for the n- and p-leg unit device were 157.66 μV K(-1) and 9.30 mW m(-1) K(-2) at 300 K, respectively.

  16. A conserved asparagine in a P-type proton pump is required for efficient gating of protons.

    PubMed

    Ekberg, Kira; Wielandt, Alex G; Buch-Pedersen, Morten J; Palmgren, Michael G

    2013-04-01

    The minimal proton pumping machinery of the Arabidopsis thaliana P-type plasma membrane H(+)-ATPase isoform 2 (AHA2) consists of an aspartate residue serving as key proton donor/acceptor (Asp-684) and an arginine residue controlling the pKa of the aspartate. However, other important aspects of the proton transport mechanism such as gating, and the ability to occlude protons, are still unclear. An asparagine residue (Asn-106) in transmembrane segment 2 of AHA2 is conserved in all P-type plasma membrane H(+)-ATPases. In the crystal structure of the plant plasma membrane H(+)-ATPase, this residue is located in the putative ligand entrance pathway, in close proximity to the central proton donor/acceptor Asp-684. Substitution of Asn-106 resulted in mutant enzymes with significantly reduced ability to transport protons against a membrane potential. Sensitivity toward orthovanadate was increased when Asn-106 was substituted with an aspartate residue, but decreased in mutants with alanine, lysine, glutamine, or threonine replacement of Asn-106. The apparent proton affinity was decreased for all mutants, most likely due to a perturbation of the local environment of Asp-684. Altogether, our results demonstrate that Asn-106 is important for closure of the proton entrance pathway prior to proton translocation across the membrane.

  17. Structural studies of P-type ATPase–ligand complexes using an X-ray free-electron laser

    DOE PAGESBeta

    Bublitz, Maike; Nass, Karol; Drachmann, Nikolaj D.; Markvardsen, Anders J.; Gutmann, Matthias J.; Barends, Thomas R. M.; Mattle, Daniel; Shoeman, Robert L.; Doak, R. Bruce; Boutet, Sébastien; et al

    2015-06-11

    Membrane proteins are key players in biological systems, mediating signalling events and the specific transport ofe.g.ions and metabolites. Consequently, membrane proteins are targeted by a large number of currently approved drugs. Understanding their functions and molecular mechanisms is greatly dependent on structural information, not least on complexes with functionally or medically important ligands. Structure determination, however, is hampered by the difficulty of obtaining well diffracting, macroscopic crystals. Here, the feasibility of X-ray free-electron-laser-based serial femtosecond crystallography (SFX) for the structure determination of membrane protein–ligand complexes using microcrystals of various native-source and recombinant P-type ATPase complexes is demonstrated. The data revealmore » the binding sites of a variety of ligands, including lipids and inhibitors such as the hallmark P-type ATPase inhibitor orthovanadate. By analyzing the resolution dependence of ligand densities and overall model qualities, SFX data quality metrics as well as suitable refinement procedures are discussed. Even at relatively low resolution and multiplicity, the identification of ligands can be demonstrated. This makes SFX a useful tool for ligand screening and thus for unravelling the molecular mechanisms of biologically active proteins.« less

  18. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy

    SciTech Connect

    Xiu, F.X.; Yang, Z.; Mandalapu, L.J.; Zhao, D.T.; Liu, J.L.; Beyermann, W.P.

    2005-10-10

    Reproducible Sb-doped p-type ZnO films were grown on n-Si (100) by electron-cyclotron-resonance-assisted molecular-beam epitaxy. The existence of Sb in ZnO:Sb films was confirmed by low-temperature photoluminescence measurements. An acceptor-bound exciton (A deg. X) emission was observed at 3.358 eV at 8 K. The acceptor energy level of the Sb dopant is estimated to be 0.2 eV above the valence band. Temperature-dependent Hall measurements were performed on Sb-doped ZnO films. At room temperature, one Sb-doped ZnO sample exhibited a low resistivity of 0.2 {omega} cm, high hole concentration of 1.7x10{sup 18} cm{sup -3} and high mobility of 20.0 cm{sup 2}/V s. This study suggests that Sb is an excellent dopant for reliable and reproducible p-type ZnO fabrication.

  19. Benefits of Carrier-Pocket Anisotropy to Thermoelectric Performance: The Case of p -Type AgBiSe2

    DOE PAGESBeta

    Parker, David S.; May, Andrew F.; Singh, David J.

    2015-06-05

    Here we study theoretically the effects of anisotropy on the thermoelectric performance of p-type AgBiSe2. We present an apparent realization of the thermoelectric benefits of one-dimensional plate-like carrier pocket anisotropy in the valence band of this material. Based on first principles calculations we find a substantial anisotropy in the electronic structure, likely favorable for thermoelectric performance, in the valence bands of the hexagonal phase of the silver chalcogenide thermoelectric AgBiSe2, while the conduction bands are more isotropic, and in our experiments do not attain high performance. AgBiSe2 has already exhibited a ZT value of 1.5 in a high-temperature disordered fccmore » phase, but room-temperature performance has not been demonstrated. We develop a theory for the ability of anisotropy to decouple the density-of-states and conductivity effective masses, pointing out the influence of this effect in the high performance thermoelectrics Bi2Te3 and PbTe. From our first principles and Boltzmann transport calculations we find that p-type AgBiSe2 has substantial promise as a room temperature thermoelectric, and estimate its performance.« less

  20. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices

    PubMed Central

    Zheng, T. C.; Lin, W.; Liu, R.; Cai, D. J.; Li, J. C.; Li, S. P.; Kang, J. Y.

    2016-01-01

    A novel multidimensional Mg-doped superlattice (SL) is proposed to enhance vertical hole conductivity in conventional Mg-doped AlGaN SL which generally suffers from large potential barrier for holes. Electronic structure calculations within the first-principle theoretical framework indicate that the densities of states (DOS) of the valence band nearby the Fermi level are more delocalized along the c-axis than that in conventional SL, and the potential barrier significantly decreases. Hole concentration is greatly enhanced in the barrier of multidimensional SL. Detailed comparisons of partial charges and decomposed DOS reveal that the improvement of vertical conductance may be ascribed to the stronger pz hybridization between Mg and N. Based on the theoretical analysis, highly conductive p-type multidimensional Al0.63Ga0.37N/Al0.51Ga0.49N SLs are grown with identified steps via metalorganic vapor-phase epitaxy. The hole concentration reaches up to 3.5 × 1018 cm−3, while the corresponding resistivity reduces to 0.7 Ω cm at room temperature, which is tens times improvement in conductivity compared with that of conventional SLs. High hole concentration can be maintained even at 100 K. High p-type conductivity in Al-rich structural material is an important step for the future design of superior AlGaN-based deep ultraviolet devices. PMID:26906334