Science.gov

Sample records for p-type silicon material

  1. Application of neutron transmutation doping method to initially p-type silicon material.

    PubMed

    Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun

    2009-01-01

    The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.

  2. Method of mitigating titanium impurities effects in p-type silicon material for solar cells

    NASA Technical Reports Server (NTRS)

    Salama, A. M. (Inventor)

    1980-01-01

    Microstructural evaluation tests performed on Cu-doped, Ti-doped and Cu/Ti doped p-type silicon single crystal wafers, before and after the solar cell fabrication, and evaluation of both dark forward and reverse I-V characteristic records for the solar cells produced from the corresponding silicon wafers, show that Cu mitigates the unfavorable effects of Ti, and thus provides for higher conversion efficiency, thereby providing an economical way to reduce the deleterious effects of titanium, one of the impurities present in metallurgical grade silicon material.

  3. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  4. P-type silicon drift detectors

    SciTech Connect

    Walton, J.T.; Krieger, B.; Krofcheck, D.; O`Donnell, R.; Odyniec, G.; Partlan, M.D.; Wang, N.W.

    1995-06-01

    Preliminary results on 16 CM{sup 2}, position-sensitive silicon drift detectors, fabricated for the first time on p-type silicon substrates, are presented. The detectors were designed, fabricated, and tested recently at LBL and show interesting properties which make them attractive for use in future physics experiments. A pulse count rate of approximately 8 {times} l0{sup 6} s{sup {minus}1} is demonstrated by the p-type silicon drift detectors. This count rate estimate is derived by measuring simultaneous tracks produced by a laser and photolithographic mask collimator that generates double tracks separated by 50 {mu}m to 1200 {mu}m. A new method of using ion-implanted polysilicon to produce precise valued bias resistors on the silicon drift detectors is also discussed.

  5. Photoelectron yield spectroscopy and inverse photoemission spectroscopy evaluations of p-type amorphous silicon carbide films prepared using liquid materials

    SciTech Connect

    Murakami, Tatsuya E-mail: mtakashi@jaist.ac.jp; Masuda, Takashi E-mail: mtakashi@jaist.ac.jp; Inoue, Satoshi; Shimoda, Tatsuya; Yano, Hiroshi; Iwamuro, Noriyuki

    2016-05-15

    Phosphorus-doped amorphous silicon carbide films were prepared using a polymeric precursor solution. Unlike conventional polymeric precursors, this polymer requires neither catalysts nor oxidation for its synthesis and cross-linkage, providing semiconducting properties in the films. The valence and conduction states of resultant films were determined directly through the combination of inverse photoemission spectroscopy and photoelectron yield spectroscopy. The incorporated carbon widened energy gap and optical gap comparably in the films with lower carbon concentrations. In contrast, a large deviation between the energy gap and the optical gap was observed at higher carbon contents because of exponential widening of the band tail.

  6. Irradiation and annealing of p-type silicon carbide

    SciTech Connect

    Lebedev, Alexander A.; Bogdanova, Elena V.; Grigor'eva, Maria V.; Lebedev, Sergey P.; Kozlovski, Vitaly V.

    2014-02-21

    The development of the technology of semiconductor devices based on silicon carbide and the beginning of their industrial manufacture have made increasingly topical studies of the radiation hardness of this material on the one hand and of the proton irradiation to form high-receptivity regions on the other hand. This paper reports on a study of the carrier removal rate (V{sub d}) in p-6H-SiC under irradiation with 8 MeV protons and of the conductivity restoration in radiation- compensated epitaxial layers of various p-type silicon carbide polytypes. V{sub d} was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that the complete compensation of samples with the initial value of Na - Nd ≈ 1.5 × 10{sup 18} cm{sup −3} occurs at an irradiation dose of ∼1.1 × 10{sup 16} cm{sup −2}. It is shown that specific features of the sublimation layer SiC (compared to CVD layers) are clearly manifested upon the gamma and electron irradiation and are hardly noticeable under the proton and neutron irradiation. It was also found that the radiation-induced compensation of SiC is retained after its annealing at ≤1000°C. The conductivity is almost completely restored at T ≥ 1200°C. This character of annealing of the radiation compensation is independent of a silicon carbide polytype and the starting doping level of the epitaxial layer. The complete annealing temperatures considerably exceed the working temperatures of SiC-based devices. It is shown that the radiation compensation is a promising method in the technology of high-temperature devices based on SiC.

  7. Recombination sources in p-type high performance multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Cheong Sio, Hang; Pheng Phang, Sieu; Zheng, Peiting; Wang, Quanzhi; Chen, Wei; Jin, Hao; Macdonald, Daniel

    2017-08-01

    This paper presents a comprehensive assessment of the electronic properties of an industrially grown p-type high performance multicrystalline silicon ingot. Wafers from different positions of the ingot are analysed in terms of their material quality before and after phosphorus diffusion and hydrogenation, as well as their final cell performance. In addition to lifetime measurements, we apply a recently developed technique for imaging the recombination velocity of structural defects. Our results show that phosphorus gettering benefits the intra-grain regions but also activates the grain boundaries, resulting in a reduction in the average lifetimes. Hydrogenation can significantly improve the overall lifetimes, predominantly due to its ability to passivate grain boundaries. Dislocation clusters remain strongly recombination active after all processes. It is found that the final cell efficiency coincides with the varying material quality along the ingot. Wafers toward the ingot top are more influenced by carrier recombination at dislocation clusters, whereas wafers near the bottom are more affected by a combination of their lower intra-grain lifetimes and a greater density of recombination active grain boundaries.

  8. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  9. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  10. P type porous silicon resistivity and carrier transport

    SciTech Connect

    Ménard, S.; Fèvre, A.; Billoué, J.; Gautier, G.

    2015-09-14

    The resistivity of p type porous silicon (PS) is reported on a wide range of PS physical properties. Al/PS/Si/Al structures were used and a rigorous experimental protocol was followed. The PS porosity (P{sub %}) was found to be the major contributor to the PS resistivity (ρ{sub PS}). ρ{sub PS} increases exponentially with P{sub %}. Values of ρ{sub PS} as high as 1 × 10{sup 9} Ω cm at room temperature were obtained once P{sub %} exceeds 60%. ρ{sub PS} was found to be thermally activated, in particular, when the temperature increases from 30 to 200 °C, a decrease of three decades is observed on ρ{sub PS}. Based on these results, it was also possible to deduce the carrier transport mechanisms in PS. For P{sub %} lower than 45%, the conduction occurs through band tails and deep levels in the tissue surrounding the crystallites. When P{sub %} overpasses 45%, electrons at energy levels close to the Fermi level allow a hopping conduction from crystallite to crystallite to appear. This study confirms the potential of PS as an insulating material for applications such as power electronic devices.

  11. p-type silicon detector for brachytherapy dosimetry.

    PubMed

    Piermattei, A; Azario, L; Monaco, G; Soriani, A; Arcovito, G

    1995-06-01

    The sensitivity of a cylindrical p-type silicon detector was studied by means of air and water measurements using different photon beams. A lead filter cap around the diode was used to minimize the dependence of the detector response as a function of the brachytherapy photon energy. The radial dose distribution of a high-activity 192Ir source in a brachytherapy phantom was measured by means of the shielded diode and the agreement of these data with theoretical evaluations confirms the method used to compensate diode response in the intermediate energy range. The diode sensitivity was constant over a wide range of dose rates of clinical interest; this allowed one to have a small detector calibrated in terms of absorbed dose in a medium. Theoretical evaluations showed that a single shielding filter around the p-type diode is sufficient to obtain accurate dosimetry for 192Ir, 137Cs, and 60Co brachytherapy sources.

  12. Development of improved p-type silicon-germanium alloys

    NASA Technical Reports Server (NTRS)

    Mclane, George; Wood, Charles; Vandersande, Jan; Raag, Valvo; Heshmatpour, Ben

    1987-01-01

    Annealing experiments in the temperature range 1100-1275 C have been performed on p-type Si(0.8)Ge(0.2) samples with BP, B(6.5)P, and GaSb material additives. Both electrical resistivity and Seebeck coefficient generally decrease for these samples as annealing temperature is increased, with thermoelectric power factor sometimes being improved by annealing.

  13. P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    NASA Astrophysics Data System (ADS)

    Adam, W.; Bergauer, T.; Brondolin, E.; Dragicevic, M.; Friedl, M.; Frühwirth, R.; Hoch, M.; Hrubec, J.; König, A.; Steininger, H.; Waltenberger, W.; Alderweireldt, S.; Beaumont, W.; Janssen, X.; Lauwers, J.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Beghin, D.; Brun, H.; Clerbaux, B.; Delannoy, H.; De Lentdecker, G.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, Th.; Léonard, A.; Luetic, J.; Postiau, N.; Seva, T.; Vanlaer, P.; Vannerom, D.; Wang, Q.; Zhang, F.; Abu Zeid, S.; Blekman, F.; De Bruyn, I.; De Clercq, J.; D'Hondt, J.; Deroover, K.; Lowette, S.; Moortgat, S.; Moreels, L.; Python, Q.; Skovpen, K.; Van Mulders, P.; Van Parijs, I.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Delaere, C.; Delcourt, M.; De Visscher, S.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Michotte, D.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Szilasi, N.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Härkönen, J.; Lampén, T.; Luukka, P.; Peltola, T.; Tuominen, E.; Tuovinen, E.; Eerola, P.; Tuuva, T.; Baulieu, G.; Boudoul, G.; Caponetto, L.; Combaret, C.; Contardo, D.; Dupasquier, T.; Gallbit, G.; Lumb, N.; Mirabito, L.; Perries, S.; Vander Donckt, M.; Viret, S.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bonnin, C.; Brom, J.-M.; Chabert, E.; Chanon, N.; Charles, L.; Conte, E.; Fontaine, J.-Ch.; Gross, L.; Hosselet, J.; Jansova, M.; Tromson, D.; Autermann, C.; Feld, L.; Karpinski, W.; Kiesel, K. M.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Pierschel, G.; Preuten, M.; Rauch, M.; Schael, S.; Schomakers, C.; Schulz, J.; Schwering, G.; Wlochal, M.; Zhukov, V.; Pistone, C.; Fluegge, G.; Kuensken, A.; Pooth, O.; Stahl, A.; Aldaya, M.; Asawatangtrakuldee, C.; Beernaert, K.; Bertsche, D.; Contreras-Campana, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Hansen, K.; Haranko, M.; Harb, A.; Hauk, J.; Keaveney, J.; Kalogeropoulos, A.; Kleinwort, C.; Lohmann, W.; Mankel, R.; Maser, H.; Mittag, G.; Muhl, C.; Mussgiller, A.; Pitzl, D.; Reichelt, O.; Savitskyi, M.; Schuetze, P.; Walsh, R.; Zuber, A.; Biskop, H.; Buhmann, P.; Centis-Vignali, M.; Garutti, E.; Haller, J.; Hoffmann, M.; Lapsien, T.; Matysek, M.; Perieanu, A.; Scharf, Ch.; Schleper, P.; Schmidt, A.; Schwandt, J.; Sonneveld, J.; Steinbrück, G.; Vormwald, B.; Wellhausen, J.; Abbas, M.; Amstutz, C.; Barvich, T.; Barth, Ch.; Boegelspacher, F.; De Boer, W.; Butz, E.; Caselle, M.; Colombo, F.; Dierlamm, A.; Freund, B.; Hartmann, F.; Heindl, S.; Husemann, U.; Kornmayer, A.; Kudella, S.; Muller, Th.; Simonis, H. J.; Steck, P.; Weber, M.; Weiler, Th.; Anagnostou, G.; Asenov, P.; Assiouras, P.; Daskalakis, G.; Kyriakis, A.; Loukas, D.; Paspalaki, L.; Siklér, F.; Veszprémi, V.; Bhardwaj, A.; Dalal, R.; Jain, G.; Ranjan, K.; Bakhshiansohl, H.; Behnamian, H.; Khakzad, M.; Naseri, M.; Cariola, P.; Creanza, D.; De Palma, M.; De Robertis, G.; Fiore, L.; Franco, M.; Loddo, F.; Silvestris, L.; Maggi, G.; Martiradonna, S.; My, S.; Selvaggi, G.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Saizu, M. A.; Tricomi, A.; Tuve, C.; Barbagli, G.; Brianzi, M.; Ciaranfi, R.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Latino, G.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Scarlini, E.; Sguazzoni, G.; Strom, D.; Viliani, L.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Pedrini, D.; Azzi, P.; Bacchetta, N.; Bisello, D.; Dall'Osso, M.; Pozzobon, N.; Tosi, M.; De Canio, F.; Gaioni, L.; Manghisoni, M.; Nodari, B.; Riceputi, E.; Re, V.; Traversi, G.; Comotti, D.; Ratti, L.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Cecchi, C.; Checcucci, B.; Ciangottini, D.; Fanò, L.; Gentsos, C.; Ionica, M.; Leonardi, R.; Manoni, E.; Mantovani, G.; Marconi, S.; Mariani, V.; Menichelli, M.; Modak, A.; Morozzi, A.; Moscatelli, F.; Passeri, D.; Placidi, P.; Postolache, V.; Rossi, A.; Saha, A.; Santocchia, A.; Storchi, L.; Spiga, D.; Androsov, K.; Azzurri, P.; Arezzini, S.; Bagliesi, G.; Basti, A.; Boccali, T.; Borrello, L.; Bosi, F.; Castaldi, R.; Ciampa, A.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Magazzu, G.; Martini, L.; Mazzoni, E.; Messineo, A.; Moggi, A.; Morsani, F.; Palla, F.; Palmonari, F.; Raffaelli, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Bellan, R.; Costa, M.; Covarelli, R.; Da Rocha Rolo, M.; Demaria, N.; Rivetti, A.; Dellacasa, G.; Mazza, G.; Migliore, E.; Monteil, E.; Pacher, L.; Ravera, F.; Solano, A.; Fernandez, M.; Gomez, G.; Jaramillo Echeverria, R.; Moya, D.; Gonzalez Sanchez, F. J.; Vila, I.; Virto, A. L.; Abbaneo, D.; Ahmed, I.; Albert, E.; Auzinger, G.; Berruti, G.; Bianchi, G.; Blanchot, G.; Bonnaud, J.; Caratelli, A.; Ceresa, D.; Christiansen, J.; Cichy, K.; Daguin, J.; D'Auria, A.; Detraz, S.; Deyrail, D.; Dondelewski, O.; Faccio, F.; Frank, N.; Gadek, T.; Gill, K.; Honma, A.; Hugo, G.; Jara Casas, L. M.; Kaplon, J.; Kornmayer, A.; Kottelat, L.; Kovacs, M.; Krammer, M.; Lenoir, P.; Mannelli, M.; Marchioro, A.; Marconi, S.; Mersi, S.; Martina, S.; Michelis, S.; Moll, M.; Onnela, A.; Orfanelli, S.; Pavis, S.; Peisert, A.; Pernot, J.-F.; Petagna, P.; Petrucciani, G.; Postema, H.; Rose, P.; Tropea, P.; Troska, J.; Tsirou, A.; Vasey, F.; Vichoudis, P.; Verlaat, B.; Zwalinski, L.; Bachmair, F.; Becker, R.; di Calafiori, D.; Casal, B.; Berger, P.; Djambazov, L.; Donega, M.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M.; Perozzi, L.; Roeser, U.; Starodumov, A.; Tavolaro, V.; Wallny, R.; Zhu, D.; Amsler, C.; Bösiger, K.; Caminada, L.; Canelli, F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hreus, T.; Kilminster, B.; Lange, C.; Maier, R.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Taroni, S.; Yang, Y.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Kaestli, H.-C.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Streuli, S.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Jacob, J.; Seif El Nasr-Storey, S.; Cole, J.; Hoad, C.; Hobson, P.; Morton, A.; Reid, I. D.; Auzinger, G.; Bainbridge, R.; Dauncey, P.; Hall, G.; James, T.; Magnan, A.-M.; Pesaresi, M.; Raymond, D. M.; Uchida, K.; Garabedian, A.; Heintz, U.; Narain, M.; Nelson, J.; Sagir, S.; Speer, T.; Swanson, J.; Tersegno, D.; Watson-Daniels, J.; Chertok, M.; Conway, J.; Conway, R.; Flores, C.; Lander, R.; Pellett, D.; Ricci-Tam, F.; Squires, M.; Thomson, J.; Yohay, R.; Burt, K.; Ellison, J.; Hanson, G.; Olmedo, M.; Si, W.; Yates, B. R.; Gerosa, R.; Sharma, V.; Vartak, A.; Yagil, A.; Zevi Della Porta, G.; Dutta, V.; Gouskos, L.; Incandela, J.; Kyre, S.; Mullin, S.; Patterson, A.; Qu, H.; White, D.; Dominguez, A.; Bartek, R.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Apresyan, A.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Chramowicz, J.; Christian, D.; Cooper, W. E.; Deptuch, G.; Derylo, G.; Gingu, C.; Grünendahl, S.; Hasegawa, S.; Hoff, J.; Howell, J.; Hrycyk, M.; Jindariani, S.; Johnson, M.; Kahlid, F.; Lei, C. M.; Lipton, R.; Lopes De Sá, R.; Liu, T.; Los, S.; Matulik, M.; Merkel, P.; Nahn, S.; Prosser, A.; Rivera, R.; Schneider, B.; Sellberg, G.; Shenai, A.; Spiegel, L.; Tran, N.; Uplegger, L.; Voirin, E.; Berry, D. R.; Chen, X.; Ennesser, L.; Evdokimov, A.; Evdokimov, O.; Gerber, C. E.; Hofman, D. J.; Makauda, S.; Mills, C.; Sandoval Gonzalez, I. D.; Alimena, J.; Antonelli, L. J.; Francis, B.; Hart, A.; Hill, C. S.; Parashar, N.; Stupak, J.; Bortoletto, D.; Bubna, M.; Hinton, N.; Jones, M.; Miller, D. H.; Shi, X.; Tan, P.; Baringer, P.; Bean, A.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Wilson, G.; Ivanov, A.; Mendis, R.; Mitchell, T.; Skhirtladze, N.; Taylor, R.; Anderson, I.; Fehling, D.; Gritsan, A.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Monroy, J.; Siado, J.; Hahn, K.; Sevova, S.; Sung, K.; Trovato, M.; Bartz, E.; Gershtein, Y.; Halkiadakis, E.; Kyriacou, S.; Lath, A.; Nash, K.; Osherson, M.; Schnetzer, S.; Stone, R.; Walker, M.; Malik, S.; Norberg, S.; Ramirez Vargas, J. E.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kharchilava, A.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; McDermott, K.; Mirman, N.; Rinkevicius, A.; Ryd, A.; Salvati, E.; Skinnari, L.; Soffi, L.; Tao, Z.; Thom, J.; Tucker, J.; Zientek, M.; Akgün, B.; Ecklund, K. M.; Kilpatrick, M.; Nussbaum, T.; Zabel, J.; Betchart, B.; Covarelli, R.; Demina, R.; Hindrichs, O.; Petrillo, G.; Eusebi, R.; Osipenkov, I.; Perloff, A.; Ulmer, K. A.

    2017-06-01

    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision.

  14. Investigations into the electrochemical etching process of p-type silicon using ethanol-surfactant solutions

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Sivakumar; Gun'ko, Yurii K.; Swiegers, Gerhard F.; Perova, Tatiana S.

    2017-09-01

    In this work, the electrochemical etching of p-type silicon was performed in aqueous ethanol-surfactant solutions and the dependence of morphology and luminescent properties of porous silicon with respect to the etching parameters and silicon resistivities have been studied. The obtained porous silicon structures have been studied using various characterisation techniques such as SEM (Scanning Electron Microscopy) and Photoluminescence (PL) spectroscopy.

  15. Empirical model predicting the layer thickness and porosity of p-type mesoporous silicon

    NASA Astrophysics Data System (ADS)

    Wolter, Sascha J.; Geisler, Dennis; Hensen, Jan; Köntges, Marc; Kajari-Schröder, Sarah; Bahnemann, Detlef W.; Brendel, Rolf

    2017-04-01

    Porous silicon is a promising material for a wide range of applications because of its versatile layer properties and the convenient preparation by electrochemical etching. Nevertheless, the quantitative dependency of the layer thickness and porosity on the etching process parameters is yet unknown. We have developed an empirical model to predict the porosity and layer thickness of p-type mesoporous silicon prepared by electrochemical etching. The impact of the process parameters such as current density, etching time and concentration of hydrogen fluoride is evaluated by ellipsometry. The main influences on the porosity of the porous silicon are the current density, the etching time and their product while the etch rate is dominated by the current density, the concentration of hydrogen fluoride and their product. The developed model predicts the resulting layer properties of a certain porosification process and can, for example be used to enhance the utilization of the employed chemicals.

  16. P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    DOE PAGES

    Adam, W.; Bergauer, T.; Brondolin, E.; ...

    2017-06-27

    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. Furthermore, this paper describes the main measurement results and conclusions thatmore » motivated this decision.« less

  17. Ultrathin polytyramine films by electropolymerisation on highly doped p-type silicon electrodes

    NASA Astrophysics Data System (ADS)

    Losic, Dusan; Cole, Martin; Thissen, Helmut; Voelcker, Nicolas H.

    2005-06-01

    In recent years, silicon-based materials have been used extensively in device fabrication for sensors, microfluidic and biomaterial applications. In order to enhance the performance of the material, a number of surface functionalisations are employed. However, until now, silicon has not been used as an electrode material for electrodeposition of functional polymers. Here, highly doped p-type silicon was used as an electrode facilitating the electropolymerisation of ultrathin polytyramine (PT) films by cyclic voltammetry. The influence of resistivity, pre-treatment of the silicon surface and electrochemical conditions on the electropolymerisation process was studied. The results show that ultrathin PT films with a controlled thickness from 2 to 15 nm exhibit good electrochemical stability in buffer solution (pH 6.8) over a large potential window (-1.5 V to 1.5 V) and passivating properties towards a redox probe. In terms of the film morphology, a pinhole-free smooth surface with a roughness below 0.5 nm and with dominantly globular features of 40-60 nm diameter was observed by AFM. XPS characterisation showed that PT films display amine functional groups at the coating surface. UV induced silicon oxidation was used to prepare patterned PT films.

  18. Reassessment of the recombination parameters of chromium in n- and p-type crystalline silicon and chromium-boron pairs in p-type crystalline silicon

    SciTech Connect

    Sun, Chang Rougieux, Fiacre E.; Macdonald, Daniel

    2014-06-07

    Injection-dependent lifetime spectroscopy of both n- and p-type, Cr-doped silicon wafers with different doping levels is used to determine the defect parameters of Cr{sub i} and CrB pairs, by simultaneously fitting the measured lifetimes with the Shockley-Read-Hall model. A combined analysis of the two defects with the lifetime data measured on both n- and p-type samples enables a significant tightening of the uncertainty ranges of the parameters. The capture cross section ratios k = σ{sub n}/σ{sub p} of Cr{sub i} and CrB are determined as 3.2 (−0.6, +0) and 5.8 (−3.4, +0.6), respectively. Courtesy of a direct experimental comparison of the recombination activity of chromium in n- and p-type silicon, and as also suggested by modelling results, we conclude that chromium has a greater negative impact on carrier lifetimes in p-type silicon than n-type silicon with similar doping levels.

  19. Microhardness of carbon-doped (111) p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.; Lim, D. S.; Kalejs, J.

    1985-01-01

    The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.

  20. Microhardness of carbon-doped (111) p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.; Lim, D. S.; Kalejs, J.

    1985-01-01

    The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.

  1. Dual ohmic contact to N- and P-type silicon carbide

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2013-01-01

    Simultaneous formation of electrical ohmic contacts to silicon carbide (SiC) semiconductor having donor and acceptor impurities (n- and p-type doping, respectively) is disclosed. The innovation provides for ohmic contacts formed on SiC layers having n- and p-doping at one process step during the fabrication of the semiconductor device. Further, the innovation provides a non-discriminatory, universal ohmic contact to both n- and p-type SiC, enhancing reliability of the specific contact resistivity when operated at temperatures in excess of 600.degree. C.

  2. Numerical Simulation of Radiation Damage Effects in p-Type and n-Type FZ Silicon Detectors

    NASA Astrophysics Data System (ADS)

    Petasecca, M.; Moscatelli, F.; Passeri, D.; Pignatel, G. U.

    2006-10-01

    In the framework of the CERN-RD50 Collaboration, the adoption of p-type substrates has been proposed as a suitable mean to improve the radiation hardness of silicon detectors up to fluencies of 1times10 16 n/cm2. In this work two numerical simulation models will be presented for p-type and n-type silicon detectors, respectively. A comprehensive analysis of the variation of the effective doping concentration (Neff), the leakage current density and the charge collection efficiency as a function of the fluence has been performed using the Synopsys T-CAD device simulator. The simulated electrical characteristics of irradiated detectors have been compared with experimental measurements extracted from the literature, showing a very good agreement. The predicted behaviour of p-type silicon detectors after irradiation up to 1016 n/cm2 shows better results in terms of charge collection efficiency and full depletion voltage, with respect to n-type material, while comparable behaviour has been observed in terms of leakage current density

  3. Charge collection measurements with p-type Magnetic Czochralski silicon single pad detectors

    NASA Astrophysics Data System (ADS)

    Tosi, C.; Bruzzi, M.; Macchiolo, A.; Scaringella, M.; Petterson, M. K.; Sadrozinski, H. F.-W.; Betancourt, C.; Manna, N.; Creanza, D.; Boscardin, M.; Piemonte, C.; Zorzi, N.; Borrello, L.; Messineo, A.

    2007-09-01

    The charge collected from beta source particles in single pad detectors produced on p-type Magnetic Czochralski (MCz) silicon wafers has been measured before and after irradiation with 26 MeV protons. After a 1 MeV neutron equivalent fluence of 1×1015 cm-2 the collected charge is reduced to 77% at bias voltages below 900 V. This result is compared with previous results from charge collection measurements.

  4. Hot-wire chemical vapor deposition prepared aluminum doped p-type microcrystalline silicon carbide window layers for thin film silicon solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Köhler, Florian; Heidt, Anna; Carius, Reinhard; Finger, Friedhelm

    2014-01-01

    Al-doped p-type microcrystalline silicon carbide (µc-SiC:H) thin films were deposited by hot-wire chemical vapor deposition at substrate temperatures below 400 °C. Monomethylsilane (MMS) highly diluted in hydrogen was used as the SiC source in favor of SiC deposition in a stoichiometric form. Aluminum (Al) introduced from trimethylaluminum (TMAl) was used as the p-type dopant. The material property of Al-doped p-type µc-SiC:H thin films deposited with different deposition pressure and filament temperature was investigated in this work. Such µc-SiC:H material is of mainly cubic (3C) SiC polytype. For certain conditions, like high deposition pressure and high filament temperature, additional hexagonal phase and/or stacking faults can be observed. P-type µc-SiC:H thin films with optical band gap E04 ranging from 2.0 to 2.8 eV and dark conductivity ranging from 10-5 to 0.1 S/cm can be prepared. Such transparent and conductive p-type µc-SiC:H thin films were applied in thin film silicon solar cells as the window layer, resulting in an improved quantum efficiency at wavelengths below 480 nm.

  5. Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization

    SciTech Connect

    Breese, M. B. H.; Champeaux, F. J. T.; Bettiol, A. A.; Teo, E. J.; Blackwood, D. J.

    2006-01-15

    The hole current density flowing through and around proton-irradiated areas of p-type silicon during electrochemical anodization is simulated and studied experimentally using scanning electron microscopy and photoluminescence imaging. It is shown that for certain irradiation geometries the current flow may be either reduced or enhanced in areas adjacent to irradiated lines, resulting in enhanced or reduced rates of porous silicon formation and corresponding changes in photoluminescence intensity and feature height. The current flow to the surface is unaffected by both the beam straggle and the high defect density at the end of ion range, enabling feature dimensions of {approx}200 nm to be attained. This study has enabled fabrication of micromachined and patterned porous silicon structures in anodized wafers with accurate control of feature dimensions, layer thickness, and photoluminescence emission wavelength and intensity.

  6. Hydrogen diffusion at moderate temperatures in p-type Czochralski silicon

    SciTech Connect

    Huang, Y.L.; Ma, Y.; Job, R.; Ulyashin, A.G.

    2004-12-15

    In plasma-hydrogenated p-type Czochralski silicon, rapid thermal donor (TD) formation is achieved, resulting from the catalytic support of hydrogen. The n-type counter doping by TD leads to a p-n junction formation. A simple method for the indirect determination of the diffusivity of hydrogen via applying the spreading resistance probe measurements is presented. Hydrogen diffusion in silicon during both plasma hydrogenation and post-hydrogenation annealing is investigated. The impact of the hydrogenation duration, annealing temperature, and resistivity of the silicon wafers on the hydrogen diffusion is discussed. Diffusivities of hydrogen are determined in the temperature range 270-450 deg. C. The activation energy for the hydrogen diffusion is deduced to be 1.23 eV. The diffusion of hydrogen is interpreted within the framework of a trap-limited diffusion mechanism. Oxygen and hydrogen are found to be the main traps.

  7. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  8. Direct Measurement of Electron Beam Induced Currents in p-type Silicon

    SciTech Connect

    Han, M.G.; Zhu, Y.; Sasaki, K.; Kato, T.; Fisher, C.A.J.; Hirayama, T.

    2010-08-01

    A new method for measuring electron beam induced currents (EBICs) in p-type silicon using a transmission electron microscope (TEM) with a high-precision tungsten probe is presented. Current-voltage (I-V) curves obtained under various electron-beam illumination conditions are found to depend strongly on the current density of the incoming electron beam and the relative distance of the beam from the point of probe contact, consistent with a buildup of excess electrons around the contact. This setup provides a new experimental approach for studying minority carrier transport in semiconductors on the nanometer scale.

  9. Investigation on the structural characterization of pulsed p-type porous silicon

    NASA Astrophysics Data System (ADS)

    Wahab, N. H. Abd; Rahim, A. F. Abd; Mahmood, A.; Yusof, Y.

    2017-08-01

    P-type Porous silicon (PS) was sucessfully formed by using an electrochemical pulse etching (PC) and conventional direct current (DC) etching techniques. The PS was etched in the Hydrofluoric (HF) based solution at a current density of J = 10 mA/cm2 for 30 minutes from a crystalline silicon wafer with (100) orientation. For the PC process, the current was supplied through a pulse generator with 14 ms cycle time (T) with 10 ms on time (Ton) and pause time (Toff) of 4 ms respectively. FESEM, EDX, AFM, and XRD have been used to characterize the morphological properties of the PS. FESEM images showed that pulse PS (PPC) sample produces more uniform circular structures with estimated average pore sizes of 42.14 nm compared to DC porous (PDC) sample with estimated average size of 16.37nm respectively. The EDX spectrum for both samples showed higher Si content with minimal presence of oxide.

  10. Light-induced degradation in p-type gallium co-doped solar grade multicrystalline silicon wafers and solar cells

    NASA Astrophysics Data System (ADS)

    Ren, Xianpei; Cai, Lihan; Fan, Baodian; Cheng, Haoran; Zheng, Songsheng; Chen, Chao

    2013-12-01

    This letter focuses on the evolution under illumination of the minority carrier lifetime and conversion efficiency of p-type gallium (Ga) co-doped solar grade multicrystalline silicon wafers and solar cells. We present experimental data regarding the concentration of boron-oxygen (B-O) defects in this silicon when subjected to illumination, and the concentration was found to depend on [B]-[P] rather than [B] or the net doping p0([B] + [Ga] - [P]). This result implies that the compensated B is unable to form the B-O defect. Minority carrier lifetime and EQE measurements at different degradation states indicate that the B-O defect and Fe-acceptor pairs are the two key centers contributed to LID in this material.

  11. Lateral photovoltaic effect in p-type silicon induced by surface states

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Mei, Chunlian; Gan, Zhikai; Zhou, Peiqi; Wang, Hui

    2017-03-01

    A colossal lateral photovoltaic effect (LPE) was observed at the surface of p-type silicon, which differs from the conventional thought that a large LPE is only observed in Schottky junctions and PN junctions consisting of several layers with different conductivities. It shows a high sensitivity of 499.24 mV/mm and an ultra-broadband spectral responsivity (from 405 nm to 980 nm) at room temperature, which makes it an attractive candidate for near-infrared detection. We propose that this phenomenon can be understood by considering the surface band bending near the surface of p-Si induced by charged surface states. The energy band diagrams of the samples are shown based on X-ray photoelectron spectroscopy suggesting the correlation between the LPE and surface band bending. The conjectures are validated by changing the surface states of p-type silicon using Ni nano-films. These findings reveal a generation mechanism of the LPE and may lead to p-Si based, broadband-responsivity, low-cost, and high-precision optical and optoelectronic applications.

  12. Reflectance modeling of electrochemically P-type porosified silicon by Drude-Lorentz model

    NASA Astrophysics Data System (ADS)

    Kadi, M.; Media, E. M.; Gueddaoui, H.; Outemzabet, R.

    2014-09-01

    Porous silicon remains a promising material for optoelectronic application; in this field monitoring of the refractive index profile of the porous layer is required. We present in this work a procedure based on Drude-Lorentz model for calculating the optical parameters such as the high- and low-frequency dielectric constants, the plasma frequency by fitting the reflectance spectra. The experimental data of different porous silicon layer created above the bulk silicon material by electrochemical etching are extracted from reflectance measurements. The reflectance spectra are recorded in the spectral range 350-2500 nm. First, our computational procedure has been validated by its application on mono-crystalline silicon for the determination of its optical parameters. A good agreement between our results and those found in other works has been achieved in the visible-NIR range. In the second step, the model was applied to porous silicon (PS) layers. Useful optical parameters like the refractive index and the extinction coefficient, respectively, n (λ) and κ(λ), the band gap Eg, of different fabricated porous silicon layer are determined from simulated reflectance spectra. The correlation between the optical properties and the conditions of the electrochemical treatment was observed and analyzed. The main conclusion is that the reflected light from the porous silicon surface, although non-homogeneous and thus possessing the light scattering, is essentially smaller than the reflected light from the bulk crystalline silicon. These results show that the porous surface layer can act as an antireflection coating for silicon and could be used, in particular, in solar cells.

  13. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors.

    PubMed

    Yang, Chen; Barrelet, Carl J; Capasso, Federico; Lieber, Charles M

    2006-12-01

    We report the controlled synthesis of axial modulation-doped p-type/intrinsic/n-type (p-i-n) silicon nanowires with uniform diameters and single-crystal structures. The p-i-n nanowires were grown in three sequential steps: in the presence of diborane for the p-type region, in the absence of chemical dopant sources for the middle segment, and in the presence of phosphine for the n-type region. The p-i-n nanowires were structurally characterized by transmission electron microscopy, and the spatially resolved electrical properties of individual nanowires were determined by electrostatic force and scanning gate microscopies. Temperature-dependent current-voltage measurements recorded from individual p-i-n devices show an increase in the breakdown voltage with temperature, characteristic of band-to-band impact ionization, or avalanche breakdown. Spatially resolved photocurrent measurements show that the largest photocurrent is generated at the intrinsic region located between the electrode contacts, with multiplication factors in excess of ca. 30, and demonstrate that single p-i-n nanowires function as avalanche photodiodes. Electron- and hole-initiated avalanche gain measurements performed by localized photoexcitation of the p-type and n-type regions yield multiplication factors of ca. 100 and 20, respectively. These results demonstrate the significant potential of single p-i-n nanowires as nanoscale avalanche photodetectors and open possible opportunities for studying impact ionization of electrons and holes within quasi-one-dimensional semiconductor systems.

  14. Effective surface passivation of p-type crystalline silicon with silicon oxides formed by light-induced anodisation

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Grant, Nicholas; Lennon, Alison

    2014-12-01

    Electronic surface passivation of p-type crystalline silicon by anodic silicon dioxide (SiO2) was investigated. The anodic SiO2 was grown by light-induced anodisation (LIA) in diluted sulphuric acid at room temperature, a process that is significantly less-expensive than thermal oxidation which is widely-used in silicon solar cell fabrication. After annealing in oxygen and then forming gas at 400 °C for 30 min, the effective minority carrier lifetime of 3-5 Ω cm, boron-doped Czochralski silicon wafers with a phosphorus-doped 80 Ω/□ emitter and a LIA anodic SiO2 formed on the p-type surface was increased by two orders of magnitude to 150 μs. Capacitance-voltage measurements demonstrated a very low positive charge density of 3.4 × 1011 cm-2 and a moderate density of interface states of 6 × 1011 eV-1 cm-2. This corresponded to a silicon surface recombination velocity of 62 cm s-1, which is comparable with values reported for other anodic SiO2 films, which required higher temperatures and longer growth times, and significantly lower than oxides grown by chemical vapour deposition techniques. Additionally, a very low leakage current density of 3.5 × 10-10 and 1.6 × 10-9 A cm-2 at 1 and -1 V, respectively, was measured for LIA SiO2 suggesting its potential application as insulation layer in IBC solar cells and a barrier for potential induced degradation.

  15. Accelerated light-induced degradation for detecting copper contamination in p-type silicon

    SciTech Connect

    Inglese, Alessandro Savin, Hele; Lindroos, Jeanette

    2015-08-03

    Copper is a harmful metal impurity that significantly impacts the performance of silicon-based devices if present in active regions. In this contribution, we propose a fast method consisting of simultaneous illumination and annealing for the detection of copper contamination in p-type silicon. Our results show that, within minutes, such method is capable of producing a significant reduction of the minority carrier lifetime. A spatial distribution map of copper contamination can then be obtained through the lifetime values measured before and after degradation. In order to separate the effect of the light-activated copper defects from the other metastable complexes in low resistivity Cz-silicon, we carried out a dark anneal at 200 °C, which is known to fully recover the boron-oxygen defect. Similar to the boron-oxygen behavior, we show that the dark anneal also recovers the copper defects. However, the recovery is only partial and it can be used to identify the possible presence of copper contamination.

  16. Fabrication of p-type porous silicon nanowire with oxidized silicon substrate through one-step MACE

    SciTech Connect

    Li, Shaoyuan; Ma, Wenhui; Zhou, Yang; Chen, Xiuhua; Xiao, Yongyin; Ma, Mingyu; Wei, Feng; Yang, Xi

    2014-05-01

    In this paper, the simple pre-oxidization process is firstly used to treat the starting silicon wafer, and then MPSiNWs are successfully fabricated from the moderately doped wafer by one-step MACE technology in HF/AgNO{sub 3} system. The PL spectrum of MPSiNWs obtained from the oxidized silicon wafers show a large blue-shift, which can be attributed to the deep Q. C. effect induced by numerous mesoporous structures. The effects of HF and AgNO{sub 3} concentration on formation of SiNWs were carefully investigated. The results indicate that the higher HF concentration is favorable to the growth of SiNWs, and the density of SiNWs is significantly reduced when Ag{sup +} ions concentrations are too high. The deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon surface were studied. According to the experimental results, a model was proposed to explain the formation mechanism of porous SiNWs by etching the oxidized starting silicon. - Graphical abstract: Schematic cross-sectional views of PSiNWs array formation by etching oxidized silicon wafer in HF/AgNO{sub 3} solution. (A) At the starting point; (B) during the etching process; and (C) after Ag dendrites remove. - Highlights: • Prior to etching, a simple pre-oxidation is firstly used to treat silicon substrate. • The medially doped p-type MPSiNWs are prepared by one-step MACE. • Deposition behaviors of Ag{sup +} ions on oxidized and unoxidized silicon are studied. • A model is finally proposed to explain the formation mechanism of PSiNWs.

  17. Percolation network in resistive switching devices with the structure of silver/amorphous silicon/p-type silicon

    SciTech Connect

    Liu, Yanhong; Gao, Ping; Bi, Kaifeng; Peng, Wei; Jiang, Xuening; Xu, Hongxia

    2014-01-27

    Conducting pathway of percolation network was identified in resistive switching devices (RSDs) with the structure of silver/amorphous silicon/p-type silicon (Ag/a-Si/p-Si) based on its gradual RESET-process and the stochastic complex impedance spectroscopy characteristics (CIS). The formation of the percolation network is attributed to amounts of nanocrystalline Si particles as well as defect sites embedded in a-Si layer, in which the defect sites supply positions for Ag ions to nucleate and grow. The similar percolation network has been only observed in Ag-Ge-Se based RSD before. This report provides a better understanding for electric properties of RSD based on the percolation network.

  18. Quantitative copper measurement in oxidized p-type silicon wafers using microwave photoconductivity decay

    NASA Astrophysics Data System (ADS)

    Väinölä, H.; Saarnilehto, E.; Yli-Koski, M.; Haarahiltunen, A.; Sinkkonen, J.; Berenyi, G.; Pavelka, T.

    2005-07-01

    We propose a method to measure trace copper contamination in p-type silicon using the microwave photoconductivity decay (μ-PCD) technique. The method is based on the precipitation of interstitial copper, activated by high-intensity light, which results in enhanced minority carrier recombination activity. We show that there is a quantitative correlation between the enhanced recombination rate and the Cu concentration by comparing μ-PCD measurements with transient ion drift and total reflection x-ray fluorescence measurements. The results indicate that the method is capable of measuring Cu concentrations down to 1010cm-3. There are no limitations to wafer storage time if corona charge is used on the oxidized wafer surfaces as the charge prevents copper outdiffusion. We briefly discuss the role of oxide precipitates both in the copper precipitation and in the charge carrier recombination processes.

  19. Light Activated Copper Defects in P-Type Silicon Studied by PCD

    NASA Astrophysics Data System (ADS)

    Yli-Koski, M.; Väinölä, H.; Haarahiltunen, A.; Storgårds, J.; Saarnilehto, E.; Sinkkonen, J.

    2004-01-01

    We have studied copper defects in p-type silicon by measuring its precipitation kinetics by means of the microwave photoconductive decay (µPCD) technique. Copper atoms precipitated during high intensity light treatment at room temperature. We used the total reflection X-ray fluorescence (TXRF) and the transient ion drift (TID) techniques to determine the bulk concentration of copper. We estimated the density and the radius of the copper precipitates as well as the average capture cross-section for precipitated copper atoms from the measured copper precipitation time constant, bulk concentration of copper, and the change in the recombination rate. We also studied how the density of oxygen defect affects the copper precipitation. Our results show that copper precipitates at two different kinds of defects.

  20. DLTS study of defects in hydrogen plasma treated p-type silicon

    NASA Astrophysics Data System (ADS)

    Wu, L.; Leitch, A. W. R.

    2001-12-01

    A deep level transient spectroscopy (DLTS) study of defects found in float-zone p-type silicon exposed to a DC hydrogen plasma is reported. DLTS measurements of these samples revealed three deep levels. Two of the levels are broad, with ET- EV in the range 0.34-0.39 eV (H2) and 0.40-0.44 eV (H3); these appear as bands in the Arrhenius plot. The third level has an activation energy of 0.09 eV (H1). The variations in the capture cross-sections of H2 and H3 are believed to be strain-related. The concentration of H3 exceeds the other two levels and decreases rapidly into the samples with ∼10 15 cm -3 at a depth of 0.20 μm. H3 is tentatively ascribed to an extended defect.

  1. Abnormal degradation of high-voltage p-type MOSFET with n+ polycrystalline silicon gate during AC stress

    NASA Astrophysics Data System (ADS)

    Lee, Dongjun; Joo, Ikhyung; Lee, Changsub; Song, Duheon; Choi, Byoungdeog

    2016-11-01

    We investigated the abnormal degradation of high-voltage p-type MOSFET (HV pMOSFET) under negative AC gate bias stress. In HV pMOSFET with n+ polycrystalline silicon (poly-Si) gate, the abnormal degradation occurs after the gradual degradation during negative AC stress. The abnormal degradation is suppressed by changing the gate material from n+ poly-Si to p+ poly-Si, and it is caused by hot holes produced by the impact ionization near the surface when electrons move from the gate toward the gate oxide. We suggest a possible mechanism to explain the improvement of degradation by using p+ poly-Si as a gate material.

  2. Evidence for an iron-hydrogen complex in p-type silicon

    SciTech Connect

    Leonard, S. Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-20

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90–120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at E{sub v} + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10{sup −17} cm{sup 2}. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  3. Evidence for an iron-hydrogen complex in p-type silicon

    NASA Astrophysics Data System (ADS)

    Leonard, S.; Markevich, V. P.; Peaker, A. R.; Hamilton, B.; Murphy, J. D.

    2015-07-01

    Interactions of hydrogen with iron have been studied in Fe contaminated p-type Czochralski silicon using capacitance-voltage profiling and deep level transient spectroscopy (DLTS). Hydrogen has been introduced into the samples from a silicon nitride layer grown by plasma enhanced chemical vapor deposition. After annealing of the Schottky diodes on Si:Fe + H samples under reverse bias in the temperature range of 90-120 °C, a trap has been observed in the DLTS spectra which we have assigned to a Fe-H complex. The trap is only observed when a high concentration of hydrogen is present in the near surface region. The trap concentration is higher in samples with a higher concentration of single interstitial Fe atoms. The defect has a deep donor level at Ev + 0.31 eV. Direct measurements of capture cross section of holes have shown that the capture cross section is not temperature dependent and its value is 5.2 × 10-17 cm2. It is found from an isochronal annealing study that the Fe-H complex is not very stable and can be eliminated completely by annealing for 30 min at 125 °C.

  4. P-stop isolation study of irradiated n-in-p type silicon strip sensors for harsh radiation environments

    NASA Astrophysics Data System (ADS)

    Printz, Martin

    2016-09-01

    In order to determine the most radiation hard silicon sensors for the CMS Experiment after the Phase II Upgrade in 2023 a comprehensive study of silicon sensors after a fluence of up to 1.5 ×1015neq /cm2 corresponding to 3000fb-1 after the HL-LHC era has been carried out. The results led to the decision that the future Outer Tracker (20 cm < R < 110 cm) of CMS will consist of n-in-p type sensors. This technology is more radiation hard but also the manufacturing is more challenging compared to p-in-n type sensors due to additional process steps in order to suppress the accumulation of electrons between the readout strips. One possible isolation technique of adjacent strips is the p-stop structure which is a p-type material implantation with a certain pattern for each individual strip. However, electrical breakdown and charge collection studies indicate that the process parameters of the p-stop structure have to be carefully calibrated in order to achieve a sufficient strip isolation but simultaneously high breakdown voltages. Therefore a study of the isolation characteristics with four different silicon sensor manufacturers has been executed in order to determine the most suitable p-stop parameters for the harsh radiation environment during HL-LHC. Several p-stop doping concentrations, doping depths and different p-stop pattern have been realized and experiments before and after irradiation with protons and neutrons have been performed and compared to T-CAD simulation studies with Synopsys Sentaurus. The measurements combine the electrical characteristics measured with a semi-automatic probestation with Sr90 signal measurements and analogue readout. Furthermore, some samples have been investigated with the help of a cosmic telescope with high resolution allowing charge collection studies of MIPs penetrating the sensor between two strips.

  5. Silicone azide fireproof material

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Finely powdered titanium oxide was added to silicone azide as the sintering agent to produce a nonflammable material. Mixing proportions, physical properties, and chemical composition of the fireproofing material are included.

  6. RF performances of inductors integrated on localized p+-type porous silicon regions

    NASA Astrophysics Data System (ADS)

    Capelle, Marie; Billoué, Jérôme; Poveda, Patrick; Gautier, Gaël

    2012-09-01

    To study the influence of localized porous silicon regions on radiofrequency performances of passive devices, inductors were integrated on localized porous silicon regions, full porous silicon sheet, bulk silicon and glass substrates. In this work, a novel strong, resistant fluoropolymer mask is introduced to localize the porous silicon on the silicon wafer. Then, the quality factors and resonant frequencies obtained with the different substrates are presented. A first comparison is done between the performances of inductors integrated on same-thickness localized and full porous silicon sheet layers. The effect of the silicon regions in the decrease of performances of localized porous silicon is discussed. Then, the study shows that the localized porous silicon substrate significantly reduces losses in comparison with high-resistivity silicon or highly doped silicon bulks. These results are promising for the integration of both passive and active devices on the same silicon/porous silicon hybrid substrate.

  7. Precipitates and hydrogen passivation at crystal defects in n- and p-type multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Geerligs, L. J.; Komatsu, Y.; Röver, I.; Wambach, K.; Yamaga, I.; Saitoh, T.

    2007-11-01

    The effects of phosphorous gettering and hydrogenation on the minority carrier recombination at crystal defects in directionally solidified multicrystalline silicon are described. Representative industrial wafers, both p- and n-type, and current technologies for the gettering and hydrogenation are used. The main result of this work is a strong link between activation of extended crystal defects (ECDs) by gettering and their passivation by hydrogenation. It is shown that gettering or annealing increases the recombination at active as well as inactive ECDs. Surprisingly, hydrogenation can neutralize this change in activity due to the gettering. However, it neutralizes only part, at most, of the ECD activity already present before the gettering. Therefore, under current industrial processing techniques, these two high-temperature process steps individually give large change but together much less net change of the crystal defect activity. Related phenomena are observed in wafers with strongly varying impurity concentration. Finally, there is little difference in these observations between n- and p-type wafers.

  8. Comparative study of mobility extraction methods in p-type polycrystalline silicon thin film transistors

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Liu, Yuan; Liu, Yu-Rong; En, Yun-Fei; Li, Bin

    2017-07-01

    Channel mobility in the p-type polycrystalline silicon thin film transistors (poly-Si TFTs) is extracted using Hoffman method, linear region transconductance method and multi-frequency C-V method. Due to the non-negligible errors when neglecting the dependence of gate-source voltage on the effective mobility, the extracted mobility results are overestimated using linear region transconductance method and Hoffman method, especially in the lower gate-source voltage region. By considering of the distribution of localized states in the band-gap, the frequency independent capacitance due to localized charges in the sub-gap states and due to channel free electron charges in the conduction band were extracted using multi-frequency C-V method. Therefore, channel mobility was extracted accurately based on the charge transport theory. In addition, the effect of electrical field dependent mobility degradation was also considered in the higher gate-source voltage region. In the end, the extracted mobility results in the poly-Si TFTs using these three methods are compared and analyzed.

  9. Thermal model for breakdown in p-type hydrogenated amorphous silicon films with coplanar electrodes

    NASA Astrophysics Data System (ADS)

    Avila, A.; Asomoza, R.

    2000-09-01

    p-Type glow discharge hydrogenated amorphous silicon films with nearly placed (˜5 μm) coplanar metallic electrodes were led to breakdown under the effect of voltage bias. Non-ohmicity in the I- V plot was analyzed in order to look for the transport mechanism helping to produce breakdown in the films. A thermal model is shown to fit reasonably the electrical behavior of samples prior to breakdown. Two parts are developed in this approximation: the first one assumes that during the initial homogeneous heating of the semiconductor due to Joule effect, stationary states are reached. The heat is assumed to dissipate from the metallic contacts through a Newton's convection mechanism. From the experimental data and the model proposed, the I- V plot is fitted, the heat transfer area and constant are calculated and the temperature-voltage plot is determined. In the second part, the heat conduction equation along the distance between the contacts is numerically solved in one dimension with this information. The result provides an estimate of the time required by the sample to reach a certain steady-state limiting temperature above which much faster heating produces breakdown. This time correlates well to the delay time reported in the literature.

  10. High performance p-type thermoelectric materials and methods of preparation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)

    2005-01-01

    The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn4-xAxSb3-yBy wherein 0?x?4, A is a transition metal, B is a pnicogen, and 0?y?3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn4Sb3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.

  11. Precipitation of Cu and Ni in n- and p-type Czochralski-grown silicon characterized by photoluminescence imaging

    NASA Astrophysics Data System (ADS)

    Sun, Chang; Nguyen, Hieu T.; Rougieux, Fiacre E.; Macdonald, Daniel

    2017-02-01

    Photoluminescence (PL) images and micro-PL maps were taken on Cu- or Ni-doped monocrystalline silicon wafers, to investigate the distribution of the metal precipitates. Several n-type and p-type wafers were used in which Cu or Ni were introduced in the starting melt of the ingots and precipitated during the ingot cooling (as opposed to surface contamination). The micro-PL mapping allowed investigation of the metal precipitates with a higher spatial resolution. Markedly different precipitation patterns were observed in n- and p-type samples: in both Cu- and Ni-doped n-type samples, circular central regions and edge regions were observed. In these regions, particles were distributed randomly and homogeneously. In the p-type Cu-doped and Ni-doped samples, by contrast, the precipitates occurred in lines along <110> orientations. The difference in the precipitation behaviour in n- and p-type samples is conjectured to be caused by different concentrations of self-interstitials and vacancies remaining in the crystal during the ingot cooling: there are more vacancies in the n-type ingots but more interstitials in the p-type ingots. The dopant effects on the intrinsic point defect concentrations in silicon crystals and possible precipitation mechanisms are discussed based on the findings in this work and the literature.

  12. Enhancement of minority carrier lifetimes in n- and p-type silicon wafers using silver nanoparticle layers

    NASA Astrophysics Data System (ADS)

    Thouti, Eshwar; Kumar, Sanjai; Komarala, Vamsi K.

    2016-01-01

    The quasi-steady state photo conductance technique is employed to probe effective minority carrier lifetime (τ eff) modifications after integrating silver nanoparticles (Ag NPs) on n-type and p-type silicon wafers with a native oxide surface. Our observations reveal that τ eff modification is very sensitive to Ag NPs size, surface coverage and also wafer type. With an optimized Ag NPs, τ eff is enhanced from 4.4 μs to 10 μs for a p-type silicon wafer, and from 8.1 μs to 14 μs for an n-type silicon wafer. We attributed the enhancement in τ eff to the partial field effect passivation of the silicon surface by the surface plasmon resonance near-fields of Ag NPs after excitation. Our investigations demonstrate that an optimized Ag NPs on any silicon wafer with a native oxide layer can work as both a light trapping and a surface-passivating layer.

  13. High performance P-type thermoelectric materials and methods of preparation

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry (Inventor); Borshchevsky, Alexander (Inventor); Fleurial, Jean-Pierre (Inventor)

    2002-01-01

    The present invention is embodied in high performance p-type thermoelectric materials having enhanced thermoelectric properties and the methods of preparing such materials. In one aspect of the invention, p-type semiconductors of formula Zn.sub.4-x A.sub.x Sb.sub.3-y B.sub.y wherein 0.ltoreq.x.ltoreq.4, A is a transition metal, B is a pnicogen, and 0.ltoreq.y.ltoreq.3 are formed for use in manufacturing thermoelectric devices with substantially enhanced operating characteristics and improved efficiency. Two methods of preparing p-type Zn.sub.4 Sb.sub.3 and related alloys of the present invention include a crystal growth method and a powder metallurgy method.

  14. Surface States and Effective Surface Area on Photoluminescent P-Type Porous Silicon

    NASA Technical Reports Server (NTRS)

    Weisz, S. Z.; Porras, A. Ramirez; Resto, O.; Goldstein, Y.; Many, A.; Savir, E.

    1997-01-01

    The present study is motivated by the possibility of utilizing porous silicon for spectral sensors. Pulse measurements on the porous-Si/electrolyte system are employed to determine the surface effective area and the surface-state density at various stages of the anodization process used to produce the porous material. Such measurements were combined with studies of the photoluminescence spectra. These spectra were found to shift progressively to the blue as a function of anodization time. The luminescence intensity increases initially with anodization time, reaches a maximum and then decreases with further anodization. The surface state density, on the other hand, increases with anodization time from an initial value of about 2 x 10(exp 12)/sq cm surface to about 1013 sq cm for the anodized surface. This value is attained already after -2 min anodization and upon further anodization remains fairly constant. In parallel, the effective surface area increases by a factor of 10-30. This behavior is markedly different from the one observed previously for n-type porous Si.

  15. Macropore formation in p-type silicon: toward the modeling of morphology

    PubMed Central

    2014-01-01

    The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface. PMID:25386103

  16. Macropore formation in p-type silicon: toward the modeling of morphology.

    PubMed

    Slimani, Amel; Iratni, Aicha; Henry, Hervé; Plapp, Mathis; Chazalviel, Jean-Noël; Ozanam, François; Gabouze, Noureddine

    2014-01-01

    The formation of macropores in silicon during electrochemical etching processes has attracted much interest. Experimental evidences indicate that charge transport in silicon and in the electrolyte should realistically be taken into account in order to be able to describe the macropore morphology. However, up to now, none of the existing models has the requested degree of sophistication to reach such a goal. Therefore, we have undertaken the development of a mathematical model (phase-field model) to describe the motion and shape of the silicon/electrolyte interface during anodic dissolution. It is formulated in terms of the fundamental expression for the electrochemical potential and contains terms which describe the process of silicon dissolution during electrochemical attack in a hydrofluoric acid (HF) solution. It should allow us to explore the influence of the physical parameters on the etching process and to obtain the spatial profiles across the interface of various quantities of interest, such as the hole concentration, the current density, or the electrostatic potential. As a first step, we find that this model correctly describes the space charge region formed at the silicon side of the interface.

  17. Silicon dendritic web material

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Campbell, R. B.; Sienkiewicz, L. J.; Rai-Choudhury, P.

    1982-01-01

    The development of a low cost and reliable contact system for solar cells and the fabrication of several solar cell modules using ultrasonic bonding for the interconnection of cells and ethylene vinyl acetate as the potting material for module encapsulation are examined. The cells in the modules were made from dendritic web silicon. To reduce cost, the electroplated layer of silver was replaced with an electroplated layer of copper. The modules that were fabricated used the evaporated Ti, Pd, Ag and electroplated Cu (TiPdAg/Cu) system. Adherence of Ni to Si is improved if a nickel silicide can be formed by heat treatment. The effectiveness of Ni as a diffusion barrier to Cu and the ease with which nickel silicide is formed is discussed. The fabrication of three modules using dendritic web silicon and employing ultrasonic bonding for interconnecting calls and ethylene vinyl acetate as the potting material is examined.

  18. Temperature driven p-n-p type conduction switching materials: current trends and future directions.

    PubMed

    Guin, Satya N; Biswas, Kanishka

    2015-04-28

    Modern technological inventions have been going through a "renaissance" period. Development of new materials and understanding of fundamental structure-property correlations are the important steps to move further for advanced technologies. In modern technologies, inorganic semiconductors are the leading materials which are extensively used for different applications. In the current perspective, we present discussion on an important class of materials that show fascinating p-n-p type conduction switching, which can have potential applications in diodes or transistor devices that operate reversibly upon temperature or voltage change. We highlight the key concepts, present the current fundamental understanding and show the latest developments in the field of p-n-p type conduction switching. Finally, we point out the major challenges and opportunities in this field.

  19. The effect of dose rate dependence of p-type silicon detectors on linac relative dosimetry.

    PubMed

    Wilkins, D; Li, X A; Cygler, J; Gerig, L

    1997-06-01

    Cumulative radiation damage to silicon semiconductor diode detectors can induce dose rate dependent sensitivity, a concern in the pulsed beam of a linac. Two p-Si diode photon detectors were used in this study, diodes A and B. Both were preirradiated by the supplier to 5 kGy, with diode A receiving an estimated 8 kGy from measurements, and diode B, 25 kGy. At 6 MV, the PDD measured with diode B was lower (by 4.4% at a depth of 25 cm) than diode A. Using SSD to vary the dose per pulse from 0.02 to 0.64 mGy/pulse, diode A was dose rate independent (within 2%), while the sensitivity of diode B changed by 13%. Silicon diode detectors should be checked regularly against ionization chambers in the pulsed beam of a linac, especially older high-resistivity diodes that have accumulated dose from high-energy photon beams.

  20. Low resistance Ohmic contact to p-type crystalline silicon via nitrogen-doped copper oxide films

    SciTech Connect

    Zhang, Xinyu Wan, Yimao; Bullock, James; Allen, Thomas; Cuevas, Andres

    2016-08-01

    This work explores the application of transparent nitrogen doped copper oxide (CuO{sub x}:N) films deposited by reactive sputtering to create hole-selective contacts for p-type crystalline silicon (c-Si) solar cells. It is found that CuO{sub x}:N sputtered directly onto crystalline silicon is able to form an Ohmic contact. X-ray photoelectron spectroscopy and Raman spectroscopy measurements are used to characterise the structural and physical properties of the CuO{sub x}:N films. Both the oxygen flow rate and the substrate temperature during deposition have a significant impact on the film composition, as well as on the resulting contact resistivity. After optimization, a low contact resistivity of ∼10 mΩ cm{sup 2} has been established. This result offers significant advantages over conventional contact structures in terms of carrier transport and device fabrication.

  1. Investigation of surface passivation schemes for p-type monocrystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Momtazur; Udoy, Ariful Banna

    2016-10-01

    This paper represents an experiment to analyze the dark saturation current densities of passivated surfaces for monocrystalline silicon solar cells. The samples are diffused at peak temperatures of 800-950 °C. Basically, symmetrical lifetime samples with different doping profiles are prepared with alkaline textured and saw damage etched (planar) surfaces. After POCl3 diffusion, the phosphorous silicate glass layers are removed in a wet chemical etching step. Several designs are chosen for the determination of the sheet resistance ( R sh), the concentration profile for excess charge carrier and the minority carrier effective lifetime of the diffused surfaces. The dark saturation current densities ( J o ) and the doping profiles are determined accordingly via quasi-steady state photoconductance decay measurement and electrochemical capacitance-voltage measurement. Three different passivation schemes are investigated as follows: silicon nitride (SiN x ) deposited by plasma-enhanced chemical vapor deposition (PECVD) technique, silicon-rich oxynitride (SiriO x N y ) capped with a PECVD SiN x layer, and thin thermally grown oxide, capped with a PECVD SiN x layer.

  2. Temperature Dependent Tensile Fracture Stress of n- and p-Type Filled-Skutterudite Materials

    SciTech Connect

    Salvador, James R.; Yang, Jihui; Wereszczak, Andrew A; Wang, Hsin; Cho, Jung Y

    2011-01-01

    While materials with excellent thermoelectric performance are most desirable for higher heat to electrical energy conversion efficiency, thermoelectric materials must also be sufficiently mechanically robust to withstand the large number of thermal cycles and vibrational stresses likely to be encountered while in service, particularly in automotive applications. Further these TE materials should be composed of non-toxic and naturally abundant constituent elements and be available as both n- and p-type varieties. Skutterudite based thermoelectric materials seemingly fit this list of criteria. In this contribution we report on the synthesis, tensile fracture strengths, low temperature electrical and thermal transport properties, and coefficients of thermal expansion (CTE), of the n-type skutterudite La{sub 0.05({+-}0.01)}Ba{sub 0.07({+-}0.04)}Yb{sub 0.08({+-}0.02)}Co{sub 4.00({+-}0.01)}Sb{sub 12.02({+-}0.03)} and the p-type Ce{sub 0.30({+-}0.02)}Co{sub 2.57({+-}0.02)}Fe{sub 1.43({+-}0.02)}Sb{sub 11.98({+-}0.03)}. Both materials have tensile fracture strengths that are temperature independent up to 500 C, and are in the range of {approx}140 MPa as measured by a three point bend flexure test fixture described herein. The CTE's were measured by dual rod dilatometry and were determined to be 10.3 ppm/C for the n-type material and 11.5 ppm/C for p-type up to 450 C.

  3. Ultrathin Passivation of P-type silicon Surface by Atomic Layer Deposited Gallium Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Wen, J.; Guo, L. Q.; Tao, J.

    2017-02-01

    Surface passivation performances of Ga2O3 thin films deposited on p-type Czochralski Si wafers by atomic layer deposition (ALD) were investigated as a function of post-deposition annealing conditions. Minority carrier lifetimes were characterized by Semilab WT-2000PVN lifetime tester. The average effective minority carrier lifetime can reduce to 218.09 μs after annealed treatment at the temperatures of 650 °C for 3 min. It found that the surface recombination velocities of Ga2O3 thin film (3.4 nm and 7.6 nm) decrease to ∼30 cm/s and are saturated with the annealing temperature of 600 °C ∼700 °C. Such results indicate that Ga2O3 thin film show the functions of surface passivation for photovoltaic applications.

  4. Silicon material task review

    NASA Technical Reports Server (NTRS)

    Lorenz, J. H.

    1986-01-01

    The objectives of the Flat-plate Solar Array (FSA) Project Silicon Material Task are to evaluate technologies, new and old; to develop the most promising technologies; to establish practicality of the processes to meet production, energy use, and economic criteria; and to develop an information base on impurities in polysilicon and to determine their effects on solar cell performance. The approach involves determining process feasibility, setting milestones for the forced selection of the processes, and establishing the technical readiness of the integrated process.

  5. Formation and origin of the dominating electron trap in irradiated p-type silicon

    SciTech Connect

    Vines, Lasse; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2008-08-15

    Deep level transient spectroscopy and minority-carrier transient spectroscopy (MCTS) have been applied to study electron-irradiated and proton-irradiated p-type Si samples with boron concentrations in the range of 6x10{sup 13}-2x10{sup 15} cm{sup -3}. Both impurity-lean epitaxially grown samples and Czochralski grown samples have been investigated where some of the epitaxial samples were subjected to oxygenation prior to the irradiation in order to controllably vary the oxygen concentration. The MCTS measurements reveal a dominant electron trap at E{sub c}-0.25 eV, where E{sub c} is the conduction-band edge, commonly ascribed to a boron-interstitial oxygen-interstitial complex (B{sub i}O{sub i}). The amplitude of the level increases linearly with the irradiation dose and it anneals out at {approx}175 deg. C but shows, however, no correlation with the boron concentration. The level is dominant even at doping concentrations in the 10{sup 13} cm{sup -3} range and, irrespective of the oxygen concentration, the generation rate decreases by almost 50% as the boron concentration increases by a factor of {approx}30. Comparison with numerical modeling reveals that these results are not consistent with the commonly accepted model of defect reactions in irradiated p-type Si. Different reasons for this discrepancy are discussed, such as an incomplete defect reaction model and alternative identifications of the E{sub c}-0.25 eV level.

  6. Transformation of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon; mechanism of divacancy diffusion

    SciTech Connect

    Ganagona, N. Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2014-01-21

    In this work, a comprehensive study on the transition of divacancy (V{sub 2}) to divacancy-oxygen (V{sub 2}O) pairs in p-type silicon has been performed with deep level transient spectroscopy (DLTS). Czochralski grown, boron doped p-type, silicon samples, with a doping concentration of 2 × 10{sup 15} cm{sup −3} and oxygen content of 7.0 ± 1.5 × 10{sup 17} cm{sup −3}, have been irradiated with 1.8 MeV protons. Isothermal annealing at temperatures in the range of 200 °C–300 °C shows a close to one-to-one correlation between the loss in the donor state of V{sub 2} and the formation of the donor state of V{sub 2}O, located at 0.23 eV above the valence band edge. A concurrent transition takes place between the single acceptor states of V{sub 2} and V{sub 2}O, as unveiled by injection of electrons through optical excitation during the trap filling sequence of the DLTS measurements. Applying the theory for diffusion limited reactions, the diffusivity of V{sub 2} in the studied p-type samples is determined to be (1.5 ± 0.7) × 10{sup −3}exp[−(1.31 ± 0.03) eV/kT] cm{sup 2}/s, and this represents the neutral charge state of V{sub 2}. Further, the data seem to favor a two-stage diffusion mechanism involving partial dissociation of V{sub 2}, although a one-stage process cannot be fully excluded.

  7. Low temperature iron gettering by grown-in defects in p-type Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Yu, Xuegong; Zhu, Xiaodong; Wu, Yichao; He, Jian; Vanhellemont, Jan; Yang, Deren

    2016-11-01

    Low temperature iron gettering in as-grown boron doped Czochralski silicon (Cz-Si) at temperatures between 220 and 500 °C is studied using microwave-photoconductive decay based minority carrier lifetime measurements. Scanning infrared microscopy technique is used to study the defect density/size distribution in the samples before and after anneal. It is found that the decrease of interstitial iron (Fei) concentration shows a double exponential dependence on annealing time at all temperatures. This suggests the existence of two sinks for Fei. Meanwhile, the observed bulk defect densities and sizes in contaminated and as-grown samples are nearly the same, implying that the grown-in defects could be the gettering centers in this process. The results are important for understanding and controlling low temperature Fei gettering during processing of Cz-Si based devices.

  8. Characterisation of thermal annealed WO x on p-type silicon for hole-selective contacts

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Yeh; Aziz, Mohammad Izzat Abdul; Wenham, Stuart; Hoex, Bram

    2017-08-01

    Carrier-selective contacts have recently gained significant interest in the photovoltaic community. Apart from their minority and majority carrier properties, their thermal stability is also important from an application viewpoint. In this paper, we present a detailed study of the thermal stability of WO x , which is a promising hole-selective contact for silicon wafer solar cells. The film properties are studied after a post deposition annealing in the 200 to 800 °C temperature range. Fourier infrared transmission and X-ray diffraction measurements indicate that WO x films remain amorphous for annealing temperatures below 300 °C. For higher annealing temperatures, the film crystallises and a reduction in oxygen content is observed after 800 °C post deposition annealing. The resistance of the test structure Al/Si(p)/WO x /Al decreases rapidly at 600 °C. A minimum resistance of ∼32 mΩ·cm2 was achieved after annealing at 700 °C. Photoluminescence imaging indicates that the minority carrier recombination significantly increases for annealing temperatures above 600 °C.

  9. Detection of low-level copper contamination in p-type silicon by means of microwave photoconductive decay measurements

    NASA Astrophysics Data System (ADS)

    Yli-Koski, M.; Palokangas, M.; Haarahiltunen, A.; Väinölä, H.; Storgårds, J.; Holmberg, H.; Sinkkonen, J.

    2002-12-01

    In order to achieve a better understanding of the behaviour of copper in p-type silicon, studies of the recombination of copper were carried out by the microwave photoconductive decay measurement method (μ PCD) using high-intensity bias light. It was observed that in the presence of small oxygen precipitates, high-intensity light could be used to activate precipitation of interstitial copper. It is suggested that high-intensity light changes the charge state of interstitial copper from positive to neutral, which enhances the precipitation. The precipitation follows Ham's kinetics and results in an increase in the recombination rate, which is detectable even with very low copper concentrations. This phenomenon can be used to detect low levels of copper contamination by the μ PCD method. In addition, it was observed that out-diffusion as well as in-diffusion of interstitial copper could be affected by an external corona charge. Thus, it is suggested that copper atoms do not form stable bonds at the Si-SiO2 interface after out-diffusion from bulk silicon.

  10. Thermal and electromechanical characterization of top-down fabricated p-type silicon nanowires

    NASA Astrophysics Data System (ADS)

    Bosseboeuf, Alain; Allain, Pierre Etienne; Parrain, Fabien; Le Roux, Xavier; Isac, Nathalie; Jacob, Serge; Poizat, Alexis; Coste, Philippe; Maaroufi, Seiffedine; Walther, Arnaud

    2015-01-01

    In this paper we report thermal conductivity and piezoresistivity measurements of top-down fabricated highly boron doped (NA = 1.5 × 1019 cm-3) suspended Si nanowires. These measurements were performed in a cryogenic probe station respectively by using the 3 omega method and by in situ application of a longitudinal tensile stress to the nanowire under test with a direct four point bending of the Si nanowire die. Nanowires investigated have a thickness of 160 nm, a width in the 80-260 nm range and a length in the 2.5-5.2 μm range. We found that for these geometries, thermal conduction still obeys Fourier’s law and that, as expected, the thermal conductivity is largely reduced when the nanowires width is shrunk, but, to a lower extent than published values for nanowires grown by vapor-liquid-solid (VLS) processes. While a large giant piezoresistance effect was evidenced by various authors when a static stress is applied, we only observed a limited nanowire size dependence of the piezoresistivity in our experiments where a dynamical mechanical loading is applied. This confirms that the giant piezoresistance effect in unbiased Si nanowires is not an intrinsic bulk effect but is dominated by surface related effects in agreement with the piezopinch effect model. Invited talk at the 7th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN2014, 2-6 November, 2014, Ha Long, Vietnam

  11. Electron microscopy analysis of crystalline silicon islands formed on screen-printed aluminum-doped p-type silicon surfaces

    SciTech Connect

    Bock, Robert; Schmidt, Jan; Brendel, Rolf

    2008-08-15

    The origin of a not yet understood concentration peak, which is generally measured at the surface of aluminum-doped p{sup +} regions produced in a conventional screen-printing process is investigated. Our findings provide clear experimental evidence that the concentration peak is due to the microscopic structures formed at the silicon surface during the firing process. To characterize the microscopic nature of the islands (lateral dimensions of 1-3 {mu}m) and line networks of self-assembled nanostructures (lateral dimension of {<=}50 nm), transmission electron microscopy, scanning electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis are combined. Aluminum inclusions are detected 50 nm below the surface of the islands and crystalline aluminum precipitates of {<=}7 nm in diameter are found within the bulk of the islands. In addition, aluminum inclusions (lateral dimension of {approx}30 nm) are found within the bulk of the self-assembled line networks.

  12. Characterization of Ag-porous silicon nanostructured layer formed by an electrochemical etching of p-type silicon surface for bio-application

    NASA Astrophysics Data System (ADS)

    Naddaf, M.; Al-Mariri, A.; Haj-Mhmoud, N.

    2017-06-01

    Nanostructured layers composed of silver-porous silicon (Ag-PS) have been formed by an electrochemical etching of p-type (1 1 1) silicon substrate in a AgNO3:HF:C2H5OH solution at different etching times (10 min-30 min). Scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDS) results reveal that the produced layers consist of Ag dendrites and a silicon-rich porous structure. The nanostructuring nature of the layer has been confirmed by spatial micro-Raman scattering and x-ray diffraction techniques. The Ag dendrites exhibit a surface-enhanced Raman scattering (SERS) spectrum, while the porous structure shows a typical PS Raman spectrum. Upon increasing the etching time, the average size of silicon nanocrystallite in the PS network decreases, while the average size of Ag nanocrystals is slightly affected. In addition, the immobilization of prokaryote Salmonella typhimurium DNA via physical adsorption onto the Ag-PS layer has been performed to demonstrate its efficiency as a platform for detection of biological molecules using SERS.

  13. Silicone Cerenkov-Radiator Material

    NASA Technical Reports Server (NTRS)

    Balasubrahmanyan, V.; Ormes, J. F.; Streitmatter, R. E.

    1984-01-01

    Dyes enhance visible output. Three fluorescent dyes combine to increase output of silicone material that normally has low yield of visible Cerenkov radiation by converting large amount of available ultraviolet photons into visible light.

  14. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    NASA Astrophysics Data System (ADS)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  15. Study of nanoparticles TiO{sub 2} thin films on p-type silicon substrate using different alcoholic solvents

    SciTech Connect

    Muaz, A. K. M.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.; Hashim, U. Arshad, M. K. Md.

    2016-07-06

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films. The prepared TiO{sub 2} sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO{sub 2}) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO{sub 2} thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO{sub 2} films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO{sub 2} thin films were measured using two-point-probe technique.

  16. First-principles study of Be doped CuAlS2 for p-type transparent conductive materials

    NASA Astrophysics Data System (ADS)

    Huang, Dan; Zhao, Yu-Jun; Tian, Ren-Yu; Chen, Di-Hu; Nie, Jian-Jun; Cai, Xin-Hua; Yao, Chun-Mei

    2011-06-01

    CuAlS2 has attracted much attention recently as a p-type transparent conductive material. In this paper, we investigate the site preference of substitutional Be in CuAlS2 and the transition level of BeAl using the first-principles calculation. We find that Be would be doped effectively at Al sites in CuAlS2 as a good p-type dopant. In addition, we speculate that Be-Mg or Be-Zn codoped CuAlS2 could have a mobility enhancement and thus a good p-type conductivity due to low lattice distortion.

  17. Encoding Highly Nonequilibrium Boron Concentrations and Abrupt Morphology in p-Type/n-Type Silicon Nanowire Superlattices.

    PubMed

    Hill, David J; Teitsworth, Taylor S; Kim, Seokhyoung; Christesen, Joseph D; Cahoon, James F

    2017-10-11

    Although silicon (Si) nanowires (NWs) grown by a vapor-liquid-solid (VLS) mechanism have been demonstrated for a range of photonic, electronic, and solar-energy applications, continued progress with these NW-based technologies requires increasingly precise compositional and morphological control of the growth process. However, VLS growth typically encounters problems such as nonselective deposition on sidewalls, inadvertent kinking, unintentional or inhomogeneous doping, and catalyst-induced compositional gradients. Here, we overcome several of these difficulties and report the synthesis of uniform, linear, and degenerately doped Si NW superlattices with abrupt transitions between p-type, intrinsic, and n-type segments. The synthesis of these structures is enabled by in situ chlorination of the NW surface with hydrochloric acid (HCl) at temperatures ranging from 500 to 700 °C, yielding uniform NWs with minimal nonselective growth. Surprisingly, we find the boron (B) doping level in p-type segments to be at least 1 order of magnitude above the solid solubility limit, an effect that we attribute to a high incorporation of B in the liquid catalyst and kinetic trapping of B during crystallization at the liquid-solid interface to yield a highly nonequilibrium concentration. For growth at 510 °C, four-point-probe measurements yield active doping levels of at least 4.5 × 10(19) cm(-3), which is comparable to the phosphorus (P) doping level of n-type segments. Because the B and P dopants are in sufficiently high concentrations for the Si to be degenerately doped, both segments inhibit the etching of Si in aqueous potassium hydroxide (KOH) solution. Moreover, we find that the dopant transitions are abrupt, facilitating nanoscale morphological control in both B- and P-doped segments through selective KOH etching of the NW with a spatial resolution of ∼10 nm. The results presented herein enable the growth of complex, degenerately doped p-n junction nanostructures that

  18. Origin of dislocation luminescence centers and their reorganization in p-type silicon crystal subjected to plastic deformation and high temperature annealing

    NASA Astrophysics Data System (ADS)

    Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro

    2017-05-01

    Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects ( N ≥ 104 cm-2) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.

  19. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement.

    PubMed

    Yang, Yongliang; Li, Xinxin

    2011-01-07

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO(2) interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis.

  20. Effect of dopant compensation on the temperature dependence of the transport properties in p-type monocrystalline silicon

    SciTech Connect

    Veirman, J.; Martel, B.; Dubois, S.; Stendera, J.

    2014-02-28

    In this paper, we investigate the temperature variations of the hole transport properties in initially uncompensated boron-doped Czochralski silicon progressively compensated through thermal donors activation. After each donor generation anneal, the boron and thermal donor concentrations in the samples are determined using (1) the change in carrier concentration at room temperature and (2) the analysis of the temperature variation of the carrier concentration in the range 77–350 K. By comparing both methods with theory, evidence is brought that down to 77 K the Hall factor is unaffected by compensation up to high compensation levels. This is of great interest for researchers working on new solar-grade materials since it nicely suggests that Hall factor models previously established for non-compensated silicon can be applied to compensated samples, for example, when extracting the individual dopant concentrations from the temperature variations of the hole concentration. At very high compensation levels, anomalous Hall data lead to erroneously low carrier mobility values. We showed that this artifact was due to the formation of a n-p-n transistor, arising from the preferential formation of thermal donors in the sample's subsurface. After rejecting these unphysical data from the analysis, we confirm that the hole mobility is greatly affected by compensation in the temperature range investigated. We eventually confront our experimental data to current mobility models and discuss the possible sources of discrepancy.

  1. Pure silver ohmic contacts to N- and P- type gallium arsenide materials

    DOEpatents

    Hogan, Stephen J.

    1986-01-01

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components an n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffused layer and the substrate layer, wherein the n-type layer comprises a substantially low doping carrier concentration.

  2. Process for forming pure silver ohmic contacts to N- and P-type gallium arsenide materials

    DOEpatents

    Hogan, S.J.

    1983-03-13

    Disclosed is an improved process for manufacturing gallium arsenide semiconductor devices having as its components a n-type gallium arsenide substrate layer and a p-type gallium arsenide diffused layer. The improved process comprises forming a pure silver ohmic contact to both the diffuse layer and the substrate layer wherein the n-type layer comprises a substantially low doping carrier concentration.

  3. Development of Materials and Structures for p-type Contacts in Cadmium Telluride Solar Cells

    NASA Astrophysics Data System (ADS)

    Ferizovic, Dino

    Solar cells based on CdTe absorbers are attractive due to the optimal direct band gap energy and large absorption coefficient of CdTe, however, their performance and commercialization is hindered by the lack of reliable p-type contacts. CdTe has a low carrier concentration and a large electron affinity, which results in a requirement of non-realistic work functions for metals to be used as back contacts in the solar cell. Even noble metals such as Ag present a significantly large potential barrier for holes, thereby reducing the hole current through the semiconductor/metal interface. Several attempts to resolve this challenge have been tried, however, many drawbacks have been encountered. Two particular systems, namely Cu2Te thin films and CdTe/ZnTe strained-layer superlattices, are investigated for their potential use as ohmic contacts in CdTe solar cells. A detailed analysis of the optical, electrical, and structural properties of Cu2Te thin films deposited by magnetron sputtering is presented. It is shown that these films have an indirect band gap and highly degenerate semiconductor behavior. The large p-type carrier concentration of Cu2Te films is highly desirable for the application of Cu2Te as a p-type contact to CdTe. In-depth studies of optical transitions and miniband transport in strained-layer CdTe/ZnTe superlattices are presented as well. The band offsets between CdTe and ZnTe were determined by comparison of measured and calculated optical transitions. Superlattice structures that offer best contact performance have been identified by use of tunneling probability simulations. Characterization of CdTe solar cells with above mentioned contacts indicated that contacts based on CdTe/ZnTe superlattices are a viable Cu free option for stable and reliable p-type contacts in CdTe solar cell. The contact performance of Cu2Te thin films was comparable to that of CdTe/ZnTe superlattices and both demonstrated an advantage over contacts based on ZnTe:N thin films

  4. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    NASA Astrophysics Data System (ADS)

    Möller, Christian; Bartel, Til; Gibaja, Fabien; Lauer, Kevin

    2014-07-01

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fei) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fei may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  5. Iron-boron pairing kinetics in illuminated p-type and in boron/phosphorus co-doped n-type silicon

    SciTech Connect

    Möller, Christian; Bartel, Til; Gibaja, Fabien; Lauer, Kevin

    2014-07-14

    Iron-boron (FeB) pairing is observed in the n-type region of a boron and phosphorus co-doped silicon sample which is unexpected from the FeB pair model of Kimerling and Benton. To explain the experimental data, the existing FeB pair model is extended by taking into account the electronic capture and emission rates at the interstitial iron (Fe{sub i}) trap level as a function of the charge carrier densities. According to this model, the charge state of the Fe{sub i} may be charged in n-type making FeB association possible. Further, FeB pair formation during illumination in p-type silicon is investigated. This permits the determination of the charge carrier density dependent FeB dissociation rate and in consequence allows to determine the acceptor concentration in the co-doped n-type silicon by lifetime measurement.

  6. Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering.

    PubMed

    Quiroga-González, Enrique; Carstensen, Jürgen; Glynn, Colm; O'Dwyer, Colm; Föll, Helmut

    2014-01-07

    The understanding of the mechanisms of macropore formation in p-type Si with respect to modulation of the pore diameter is still in its infancy. In the present work, macropores with significantly modulated diameters have been produced electrochemically in p-type Si. The effect of the current density and the amount of surfactant in the etching solution are shown to influence the modulation in pore diameter and morphology. Data obtained during the etching process by in situ FFT impedance spectroscopy correlate the pore diameter variation with certain time constants found in the kinetics of the dissolution process. Raman scattering and electron microscopy confirm the mesoscopic structure and roughening of the pore walls. Spectroscopic and microscopic methods confirm that the pore wall morphology is correlated with the conditions of pore modulation.

  7. Interface modification effect between p-type a-SiC:H and ZnO:Al in p-i-n amorphous silicon solar cells.

    PubMed

    Baek, Seungsin; Lee, Jeong Chul; Lee, Youn-Jung; Iftiquar, Sk Md; Kim, Youngkuk; Park, Jinjoo; Yi, Junsin

    2012-01-18

    Aluminum-doped zinc oxide (ZnO:Al) [AZO] is a good candidate to be used as a transparent conducting oxide [TCO]. For solar cells having a hydrogenated amorphous silicon carbide [a-SiC:H] or hydrogenated amorphous silicon [a-Si:H] window layer, the use of the AZO as TCO results in a deterioration of fill factor [FF], so fluorine-doped tin oxide (Sn02:F) [FTO] is usually preferred as a TCO. In this study, interface engineering is carried out at the AZO and p-type a-SiC:H interface to obtain a better solar cell performance without loss in the FF. The abrupt potential barrier at the interface of AZO and p-type a-SiC:H is made gradual by inserting a buffer layer. A few-nanometer-thick nanocrystalline silicon buffer layer between the AZO and a-SiC:H enhances the FF from 67% to 73% and the efficiency from 7.30% to 8.18%. Further improvements in the solar cell performance are expected through optimization of cell structures and doping levels.

  8. Interface modification effect between p-type a-SiC:H and ZnO:Al in p-i-n amorphous silicon solar cells

    PubMed Central

    2012-01-01

    Aluminum-doped zinc oxide (ZnO:Al) [AZO] is a good candidate to be used as a transparent conducting oxide [TCO]. For solar cells having a hydrogenated amorphous silicon carbide [a-SiC:H] or hydrogenated amorphous silicon [a-Si:H] window layer, the use of the AZO as TCO results in a deterioration of fill factor [FF], so fluorine-doped tin oxide (Sn02:F) [FTO] is usually preferred as a TCO. In this study, interface engineering is carried out at the AZO and p-type a-SiC:H interface to obtain a better solar cell performance without loss in the FF. The abrupt potential barrier at the interface of AZO and p-type a-SiC:H is made gradual by inserting a buffer layer. A few-nanometer-thick nanocrystalline silicon buffer layer between the AZO and a-SiC:H enhances the FF from 67% to 73% and the efficiency from 7.30% to 8.18%. Further improvements in the solar cell performance are expected through optimization of cell structures and doping levels. PMID:22257671

  9. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film

    NASA Astrophysics Data System (ADS)

    Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H. M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M.

    2017-07-01

    Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity.

  10. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film

    PubMed Central

    Yang, C.; Souchay, D.; Kneiß, M.; Bogner, M.; Wei, H. M.; Lorenz, M.; Oeckler, O.; Benstetter, G.; Fu, Y. Q.; Grundmann, M.

    2017-01-01

    Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity. PMID:28681842

  11. Transparent flexible thermoelectric material based on non-toxic earth-abundant p-type copper iodide thin film.

    PubMed

    Yang, C; Souchay, D; Kneiß, M; Bogner, M; Wei, H M; Lorenz, M; Oeckler, O; Benstetter, G; Fu, Y Q; Grundmann, M

    2017-07-06

    Thermoelectric devices that are flexible and optically transparent hold unique promise for future electronics. However, development of invisible thermoelectric elements is hindered by the lack of p-type transparent thermoelectric materials. Here we present the superior room-temperature thermoelectric performance of p-type transparent copper iodide (CuI) thin films. Large Seebeck coefficients and power factors of the obtained CuI thin films are analysed based on a single-band model. The low-thermal conductivity of the CuI films is attributed to a combined effect of the heavy element iodine and strong phonon scattering. Accordingly, we achieve a large thermoelectric figure of merit of ZT=0.21 at 300 K for the CuI films, which is three orders of magnitude higher compared with state-of-the-art p-type transparent materials. A transparent and flexible CuI-based thermoelectric element is demonstrated. Our findings open a path for multifunctional technologies combing transparent electronics, flexible electronics and thermoelectricity.

  12. Development of Edgeless Silicon Pixel Sensors on p-type substrate for the ATLAS High-Luminosity Upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Beccherle, R.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2016-09-01

    In view of the LHC upgrade phases towards the High Luminosity LHC (HL-LHC), the ATLAS experiment plans to upgrade the Inner Detector with an all-silicon system. The n-on-p silicon technology is a promising candidate to achieve a large area instrumented with pixel sensors, since it is radiation hard and cost effective. The presentation describes the performance of novel n-in-p edgeless planar pixel sensors produced by FBK-CMM, making use of the active trench for the reduction of the dead area at the periphery of the device. After discussing the sensor technology, some feedback from preliminary results of the first beam test will be discussed.

  13. Inorganic Nano Light-Emitting Transistor: p-Type Porous Silicon Nanowire/n-Type ZnO Nanofilm.

    PubMed

    Lee, Sang Hoon; Kim, Jong Woo; Lee, Tae Il; Myoung, Jae Min

    2016-08-01

    An inorganic nano light-emitting transistor (INLET) consisting of p-type porous Si nanowires (PoSiNWs) and an n-type ZnO nanofilm was integrated on a heavily doped p-type Si substrate with a thermally grown SiO2 layer. To verify that modulation of the Fermi level of the PoSiNWs is key for switchable light emitting, I-V and electroluminescent characteristics of the INLET are investigated as a function of gate bias (V g ). As the V g is changed from 0 V to -20 V, the current level and light-emission intensity in the orange-red range increase by three and two times, respectively, with a forward bias of 20 V in the p-n junction, compared to those at a V g of 0 V. On the other hand, as the V g approaches 10 V, the current level decreases and the emission intensity is reduced and then finally switched off. This result arises from the modulation of the Fermi level of the PoSiNWs and the built-in potential at the p-n junction by the applied gate electric field.

  14. Photoluminescence study of p -type ZnO:Sb prepared by thermal oxidation of the Zn-Sb starting material

    NASA Astrophysics Data System (ADS)

    Przeździecka, E.; Kamińska, E.; Pasternak, I.; Piotrowska, A.; Kossut, J.

    2007-11-01

    We have investigated photoluminescence (PL) from Sb-doped p -type ZnO films obtained by thermal oxidation of the Zn-Sb starting material. Very well resolved PL spectra were obtained from samples, with the hole concentration above 1×1017cm-3 . Acceptor binding energy is determined to be 137meV from free electron to acceptor transitions. The binding energy between the acceptor and the exciton obtained from the analysis of the acceptor bound excitonic PL transitions measured as a function of temperature is 12-15meV .

  15. Design and analysis of nanowire p-type MOSFET coaxially having silicon core and germanium peripheral channel

    NASA Astrophysics Data System (ADS)

    Yu, Eunseon; Cho, Seongjae

    2016-11-01

    In this work, a nanowire p-type metal-oxide-semiconductor field-effect transistor (PMOSFET) coaxially having a Si core and a Ge peripheral channel is designed and characterized by device simulations. Owing to the high hole mobility of Ge, the device can be utilized for high-speed CMOS integrated circuits, with the effective confinement of mobile holes in Ge by the large valence band offset between Si and Ge. Source/drain doping concentrations and the ratio between the Si core and Ge channel thicknesses are determined. On the basis of the design results, the channel length is aggressively scaled down by evaluating the primary DC parameters in order to confirm device scalability and low-power applicability in sub-10-nm technology nodes.

  16. Rectification properties of n-type nanocrystalline diamond heterojunctions to p-type silicon carbide at high temperatures

    SciTech Connect

    Goto, Masaki; Amano, Ryo; Shimoda, Naotaka; Kato, Yoshimine; Teii, Kungen

    2014-04-14

    Highly rectifying heterojunctions of n-type nanocrystalline diamond (NCD) films to p-type 4H-SiC substrates are fabricated to develop p-n junction diodes operable at high temperatures. In reverse bias condition, a potential barrier for holes at the interface prevents the injection of reverse leakage current from the NCD into the SiC and achieves the high rectification ratios of the order of 10{sup 7} at room temperature and 10{sup 4} even at 570 K. The mechanism of the forward current injection is described with the upward shift of the defect energy levels in the NCD to the conduction band of the SiC by forward biasing. The forward current shows different behavior from typical SiC Schottky diodes at high temperatures.

  17. Electrical properties and surface morphology of electron beam evaporated p-type silicon thin films on polyethylene terephthalate for solar cells applications

    SciTech Connect

    Ang, P. C.; Ibrahim, K.; Pakhuruddin, M. Z.

    2015-04-24

    One way to realize low-cost thin film silicon (Si) solar cells fabrication is by depositing the films with high-deposition rate and manufacturing-compatible electron beam (e-beam) evaporation onto inexpensive foreign substrates such as glass or plastic. Most of the ongoing research is reported on e-beam evaporation of Si films on glass substrates to make polycrystalline solar cells but works combining both e-beam evaporation and plastic substrates are still scarce in the literature. This paper studies electrical properties and surface morphology of 1 µm electron beam evaporated Al-doped p-type silicon thin films on textured polyethylene terephthalate (PET) substrate for application as an absorber layer in solar cells. In this work, Si thin films with different doping concentrations (including an undoped reference) are prepared by e-beam evaporation. Energy dispersion X-ray (EDX) showed that the Si films are uniformly doped by Al dopant atoms. With increased Al/Si ratio, doping concentration increased while both resistivity and carrier mobility of the films showed opposite relationships. Root mean square (RMS) surface roughness increased. Overall, the Al-doped Si film with Al/Si ratio of 2% (doping concentration = 1.57×10{sup 16} atoms/cm{sup 3}) has been found to provide the optimum properties of a p-type absorber layer for fabrication of thin film Si solar cells on PET substrate.

  18. Direct ultrasensitive electrical detection of prostate cancer biomarkers with CMOS-compatible n- and p-type silicon nanowire sensor arrays

    NASA Astrophysics Data System (ADS)

    Gao, Anran; Lu, Na; Dai, Pengfei; Fan, Chunhai; Wang, Yuelin; Li, Tie

    2014-10-01

    Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly selective, simultaneous and multiplexed detection of PSA marker at attomolar concentrations, a level useful for clinical diagnosis of prostate cancer, was demonstrated. The detection ability was corroborated to be effective by comparing the detection results at different pH values. Furthermore, the real-time measurement was also carried out in a clinically relevant sample of blood serum, indicating the practicable development of rapid, robust, high-performance, and low-cost diagnostic systems.Sensitive and quantitative analysis of proteins is central to disease diagnosis, drug screening, and proteomic studies. Here, a label-free, real-time, simultaneous and ultrasensitive prostate-specific antigen (PSA) sensor was developed using CMOS-compatible silicon nanowire field effect transistors (SiNW FET). Highly responsive n- and p-type SiNW arrays were fabricated and integrated on a single chip with a complementary metal oxide semiconductor (CMOS) compatible anisotropic self-stop etching technique which eliminated the need for a hybrid method. The incorporated n- and p-type nanowires revealed complementary electrical response upon PSA binding, providing a unique means of internal control for sensing signal verification. The highly

  19. Photo-induced electrochemical anodization of p-type silicon: achievement and demonstration of long term surface stability.

    PubMed

    Dhanekar, Saakshi; Islam, S S; Harsh

    2012-06-15

    Surface stability is achieved and demonstrated by porous silicon (PS) fabricated using a wavelength-dependent photo-electrochemical (PEC) anodization technique. During anodization, the photon flux for all wavelengths was kept constant while only the effect of light wavelength on the surface morphology of PS was investigated. PS optical sensors were realized, characterized and tested using a photoluminescence (PL) quenching technique. An aliphatic chain of alcohols (methanol to n-octanol) was detected in the range of 10-200 ppm. Long term surface stability was observed from samples prepared under red (750-620 nm) and green illumination (570-495 nm), where the PL quenching cycles evoke the possibility of using PS for stable sensor device applications. This study provides a route for preparing highly sensitive organic vapour sensors with a precise selection of the fabrication parameters and demonstrating their prolonged performance.

  20. Photo-induced electrochemical anodization of p-type silicon: achievement and demonstration of long term surface stability

    NASA Astrophysics Data System (ADS)

    Dhanekar, Saakshi; Islam, S. S.; Harsh

    2012-06-01

    Surface stability is achieved and demonstrated by porous silicon (PS) fabricated using a wavelength-dependent photo-electrochemical (PEC) anodization technique. During anodization, the photon flux for all wavelengths was kept constant while only the effect of light wavelength on the surface morphology of PS was investigated. PS optical sensors were realized, characterized and tested using a photoluminescence (PL) quenching technique. An aliphatic chain of alcohols (methanol to n-octanol) was detected in the range of 10-200 ppm. Long term surface stability was observed from samples prepared under red (750-620 nm) and green illumination (570-495 nm), where the PL quenching cycles evoke the possibility of using PS for stable sensor device applications. This study provides a route for preparing highly sensitive organic vapour sensors with a precise selection of the fabrication parameters and demonstrating their prolonged performance.

  1. Development of edgeless silicon pixel sensors on p-type substrate for the ATLAS high-luminosity upgrade

    NASA Astrophysics Data System (ADS)

    Calderini, G.; Bagolini, A.; Bomben, M.; Boscardin, M.; Bosisio, L.; Chauveau, J.; Giacomini, G.; La Rosa, A.; Marchiori, G.; Zorzi, N.

    2014-11-01

    In view of the LHC upgrade for the high luminosity phase (HL-LHC), the ATLAS experiment is planning to replace the inner detector with an all-silicon system. The n-in-p bulk technology represents a valid solution for the modules of most of the layers, given the significant radiation hardness of this option and the reduced cost. The large area necessary to instrument the outer layers will demand to tile the sensors, a solution for which the inefficient region at the border of each sensor needs to be reduced to the minimum size. This paper reports on a joint R&D project by the ATLAS LPNHE Paris group and FBK Trento on a novel n-in-p edgeless planar pixel design, based on the deep-trench process available at FBK.

  2. Further evidence for the quantum confined electrochemistry model of the formation mechanism of p - -type porous silicon

    NASA Astrophysics Data System (ADS)

    Jia, L.; Zang, S. L.; Wong, S. P.; Wilson, I. H.; Hark, S. K.; Liu, Z. F.; Cai, S. M.

    1996-11-01

    Two types of p- porous silicon (PS) were formed in HF solutions of different concentrations. One type with nanoscale (NS) dimensions of about 3 nm and the other with dimensions of about 5 nm. PS samples formed in the lower concentration of HF were anodized again in the higher concentration of HF and vice versa. The photoluminescence peak position and, thus, the size of NS units of PS were found to be related to the concentration of HF in which the PS is formed, independent of the forming time. The larger NS units of PS can be further electrochemically etched by anodization, while the smaller ones cannot. These results give a confirming evidence for the quantum confined electrochemistry model of the formation mechanism of PS based on the quantum confinement effect and classical electrochemical theory [S. L. Zhang, K. S. Ho, Y. T. Hou, B. D. Qian, P. Diao, and S. M. Cai, Appl. Phys. Lett. 62, 642 (1993)].

  3. Thick-film materials for silicon photovoltaic cell manufacture

    NASA Technical Reports Server (NTRS)

    Field, M. B.

    1977-01-01

    Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.

  4. The electrical properties of photodiodes based on nanostructure gallium doped cadmium oxide/p-type silicon junctions

    NASA Astrophysics Data System (ADS)

    Çavaş, M.; Yakuphanoğlu, F.; Karataş, Ş.

    2017-01-01

    Gallium doped cadmium-oxide (CdO: Ga) thin films were successfully deposited by sol-gel spin coating method on p-type Si substrate. The electrical properties of the photodiode based on nanostructure Ga doped n-CdO/p-Si junctions were investigated. The current-voltage (I-V) characteristics of the structure were investigated under various light intensity and dark. It was observed that generated photocurrent of the Au/n-CdO/p-Si junctions depended on light intensity. The capacitance-voltage and conductance-voltage measurements were carried out for this diode in the frequency range between 100 and 1000 kHz at room temperature by steps of 100 kHz. The capacitance decreased with increasing frequency due to a continuous distribution of the interface states. These results suggested that the Au/n-CdO/p-Si Schottky junctions could be utilized as a photosensor. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C-V and G/ω-V measurements and plotted as functions of voltage and frequency. The distribution profile of R S -V gave a peak in the depletion region at low frequencies and disappeared with increasing frequencies.

  5. The electrical properties of photodiodes based on nanostructure gallium doped cadmium oxide/ p-type silicon junctions

    NASA Astrophysics Data System (ADS)

    Çavaş, M.; Yakuphanoğlu, F.; Karataş, Ş.

    2017-04-01

    Gallium doped cadmium-oxide (CdO: Ga) thin films were successfully deposited by sol-gel spin coating method on p-type Si substrate. The electrical properties of the photodiode based on nanostructure Ga doped n-CdO/ p-Si junctions were investigated. The current-voltage ( I- V) characteristics of the structure were investigated under various light intensity and dark. It was observed that generated photocurrent of the Au/ n-CdO/p-Si junctions depended on light intensity. The capacitance-voltage and conductance-voltage measurements were carried out for this diode in the frequency range between 100 and 1000 kHz at room temperature by steps of 100 kHz. The capacitance decreased with increasing frequency due to a continuous distribution of the interface states. These results suggested that the Au/ n-CdO/ p-Si Schottky junctions could be utilized as a photosensor. Furthermore, the voltage and frequency dependence of series resistance were calculated from the C- V and G/ω-V measurements and plotted as functions of voltage and frequency. The distribution profile of R S - V gave a peak in the depletion region at low frequencies and disappeared with increasing frequencies.

  6. Sub-band transport mechanism and switching properties for resistive switching nonvolatile memories with structure of silver/aluminum oxide/p-type silicon

    SciTech Connect

    Liu, Yanhong; Li, La; Wang, Song; Gao, Ping; Pan, Lujun; Zhang, Jialiang; Zhou, Peng; Li, Jinhua; Weng, Zhankun

    2015-02-09

    In this paper, we discuss a model of sub-band in resistive switching nonvolatile memories with a structure of silver/aluminum oxide/p-type silicon (Ag/Al{sub x}O{sub y}/p-Si), in which the sub-band is formed by overlapping of wave functions of electron-occupied oxygen vacancies in Al{sub x}O{sub y} layer deposited by atomic layer deposition technology. The switching processes exhibit the characteristics of the bipolarity, discreteness, and no need of forming process, all of which are discussed deeply based on the model of sub-band. The relationships between the SET voltages and distribution of trap levels are analyzed qualitatively. The semiconductor-like behaviors of ON-state resistance affirm the sub-band transport mechanism instead of the metal filament mechanism.

  7. Wettability of silicone rubber maxillofacial prosthetic materials.

    PubMed

    Waters, M G; Jagger, R G; Polyzois, G L

    1999-04-01

    Maxillofacial prosthetic materials that contact skin or mucosa should have good wettability. A material that is easily wetted will form a superior lubricating layer between the supporting tissues and, thus, reduce friction and patient discomfort. The surface energy of a maxillofacial prosthetic material will give an indication of the amount of energy available for adhesion and of the susceptibility of the material to bacterial adhesion. This study evaluated the wettability and surface energies of a range of commercially available silicone rubber maxillofacial prosthetic materials. Contact angles and surface energies were measured by using a dynamic contact angle measuring technique. Four commonly used silicone maxillofacial materials were tested and their properties compared with those of an acrylic resin denture base material and a widely used denture soft lining material. There were no significant differences in the wettability of the silicone rubber materials. All materials were significantly less wetted than the denture acrylic resin material. There were no significant differences in the surface energies of the silicone rubber materials, but all were significantly lower than denture acrylic resin material. The Cahn dynamic contact angle analyzer was a quick and reproducible method for determining the contact angles and surface energies of maxillofacial materials. Further work is needed to improve the wettability of silicone rubber materials used for maxillofacial prostheses, thus, reducing their potential to produce friction with tissues.

  8. Material-induced shunts in multicrystalline silicon solar cells

    SciTech Connect

    Breitenstein, O. Bauer, J.; Rakotoniaina, J. P.

    2007-04-15

    By applying lock-in thermography imaging, light-beam-induced current imaging, electron-beam-induced current imaging at different stages of sample preparation, and infrared light microscopy in transmission mode, the physical nature of the dominant material-induced shunts in multicrystalline solar cells made from p-type silicon material has been investigated. It turns out that these shunts are due to silicon carbide (SiC) filaments, which grow preferentially in grain boundaries and cross the whole cell. These filaments are highly n-type doped, like the emitter layer on the surface of the cells. They are electrically connected both with the emitter and with the back contact, thereby producing internal shunts in the solar cell.

  9. Modeling of light-induced degradation due to Cu precipitation in p-type silicon. II. Comparison of simulations and experiments

    NASA Astrophysics Data System (ADS)

    Vahlman, H.; Haarahiltunen, A.; Kwapil, W.; Schön, J.; Inglese, A.; Savin, H.

    2017-05-01

    The presence of copper impurities is known to deteriorate the bulk minority carrier lifetime of silicon. In p-type silicon, the degradation occurs only under carrier injection (e.g., illumination), but the reason for this phenomenon called copper-related light-induced degradation (Cu-LID) has long remained uncertain. To clarify the physics of this problem, a mathematical model of Cu-LID was introduced in Paper I of this article. Within the model, kinetic precipitation simulations are interlinked with a Schottky junction model for electric behavior of metallic precipitates. As this approach enables simulating precipitation directly at the minority carrier lifetime level, the model is verified in this second part with a direct comparison to the corresponding degradation experiments and literature data. Convincing agreement is found with different doping and Cu concentrations as well as at increased temperature, and in the dark, both simulated degradation and measured degradation are very slow. In addition, modeled final lifetimes after illumination are very close to experimental final lifetimes, and a correlation with the final precipitate size is found. However, the model underestimates experimentally observed differences in the degradation rate at different illumination intensities. Nevertheless, the results of this work support the theory of Cu-LID as a precipitate formation process. Part of the results also imply that heterogeneous nucleation sites play a role during precipitate nucleation. The model reveals fundamental aspects of the physics of Cu-LID including how doping and heterogeneous nucleation site concentrations can considerably influence the final recombination activity.

  10. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials

    PubMed Central

    Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun

    2015-01-01

    Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron–phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm−2 at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability. PMID:26330371

  11. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials.

    PubMed

    Fu, Chenguang; Bai, Shengqiang; Liu, Yintu; Tang, Yunshan; Chen, Lidong; Zhao, Xinbing; Zhu, Tiejun

    2015-09-02

    Solid-state thermoelectric technology offers a promising solution for converting waste heat to useful electrical power. Both high operating temperature and high figure of merit zT are desirable for high-efficiency thermoelectric power generation. Here we report a high zT of ∼1.5 at 1,200 K for the p-type FeNbSb heavy-band half-Heusler alloys. High content of heavier Hf dopant simultaneously optimizes the electrical power factor and suppresses thermal conductivity. Both the enhanced point-defect and electron-phonon scatterings contribute to a significant reduction in the lattice thermal conductivity. An eight couple prototype thermoelectric module exhibits a high conversion efficiency of 6.2% and a high power density of 2.2 W cm(-2) at a temperature difference of 655 K. These findings highlight the optimization strategy for heavy-band thermoelectric materials and demonstrate a realistic prospect of high-temperature thermoelectric modules based on half-Heusler alloys with low cost, excellent mechanical robustness and stability.

  12. Lithium insertion in carbonaceous materials containing silicon

    NASA Astrophysics Data System (ADS)

    Wilson, Alfred Macdonald

    Three different series of silicon-containing carbonaceous materials were synthesized for use as anodes in lithium ion cells. Disordered (or pregraphitic) carbons containing nanodispersed silicon were prepared by the chemical vapour deposition (CVD) of various chlorosilanes (SiClsb4, (CHsb3)sb2Clsb2Si, and (CHsb3)sb3ClSi) with benzene in two different apparatuses. Silicon oxycarbide glasses were synthesized by the pyrolysis of over 50 silicon-containing polymers at various temperatures, although the principal materials in the study were prepared at 1000sp°C. Finally, materials which we believe to be similar to disordered carbons containing nanodispersed silicon were prepared by the pyrolysis of various blends of pitches with polysilanes. Powder X-ray diffraction was used to learn about the structure of all the materials made. Thermal gravimetric analysis was used to determine the silicon content in the CVD materials and, when coupled to a residual gas analyzer, to study the decomposition process of the polymers. Near edge X-ray absorption spectroscopy measurements of the silicon L- and K-edges of CVD materials and the silicon K-edges of silicon oxycarbides were used to learn about local chemical environments of the silicon atoms. Lithium metal electrochemical test cells of the silicon-containing CVD materials showed larger capacities (up to 500 mAh/g) than pure carbons prepared in the same way (˜300 mAh/g). The additional capacity was observed to be centered near 0.4 V on charge, the average voltage observed for the removal of lithium from a silicon-lithium alloy. Chemical analysis showed that the stoichiometries of materials made by polymer pyrolysis were distributed over a well-defined region in the Si-O-C Gibbs phase diagram. An interesting series of materials is found near the line in the Si-O-C Gibbs triangle connecting carbon to SiOsb{1.3}. Lithium metal electrochemical test cells made using all the silicon oxycarbides synthesized showed that a stoichiometry

  13. The performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate

    NASA Astrophysics Data System (ADS)

    Wang, Shulong; Chen, Yuhai; Liu, Hongxia; Zhang, Hailin

    2016-11-01

    In this study, the performance of Y2O3 as interface layer between La2O3 and p-type silicon substrate is studied with the help of atomic layer deposition (ALD) and magnetron sputtering technology. The surface morphology of the bilayer films with different structures are observed after rapid thermal annealing (RTA) by atomic force microscopy (AFM). The results show that Y2O3/Al2O3/Si structure has a larger number of small spikes on the surface and its surface roughness is worse than Al2O3/Y2O3/Si structure. The reason is that the density of Si substrate surface is much higher than that of ALD growth Al2O3. With the help of high-frequency capacitance-voltage(C-V) measurement and conductivity method, the density of interface traps can be calculated. After a high temperature annealing, the metal silicate will generate at the substrate interface and result in silicon dangling bond and interface trap charge, which has been improved by X-ray photoelectron spectroscopy (XPS) and interface trap charge density calculation. The interface trapped charge density of La2O3/Al2O3/Si stacked gate structure is lower than that of La2O3/Y2O3/Si gate structure. If Y2O3 is used to replace Al2O3 as the interfacial layer, the accumulation capacitance will increase obviously, which means lower equivalent oxide thickness (EOT). Our results show that interface layer Y2O3 grown by magnetron sputtering can effectively ensure the interface traps near the substrate at relative small level while maintain a relative higher dielectric constant than Al2O3.

  14. A novel technique based on a plasma focus device for nano-porous gallium nitride formation on P-type silicon

    NASA Astrophysics Data System (ADS)

    Sharifi Malvajerdi, S.; Salar Elahi, A.; Habibi, M.

    2017-04-01

    A new deposition formation was observed with a Mather-type Plasma Focus Device (MPFD). MPFD was unitized to fabricate porous Gallium Nitride (GaN) on p-type Silicon (Si) substrate with a (100) crystal orientation for the first time in a deposition process. GaN was deposited on Si with 4 and 7 shots. The samples were subjected to a 3 phase annealing procedure. First, the semiconductors were annealed in the PFD with nitrogen plasma shots after their deposition. Second, a thermal chemical vapor deposition annealed the samples for 1 h at 1050 °C by nitrogen gas at a pressure of 1 Pa. Finally, an electric furnace annealed the samples for 1 h at 1150 °C with continuous flow of nitrogen. Porous GaN structures were observed by Field emission scanning electron microscopy and atomic force microscopy. Furthermore, X-Ray diffraction analysis was carried out to determine the crystallinity of GaN after the samples were annealed. Energy-Dispersive X-Ray Spectroscopy indicated the amount of gallium, nitrogen, and oxygen due to the self-oxidation of the samples. Photoluminescence spectroscopy revealed emissions at 2.94 eV and 3.39 eV, which shows that hexagonal wurtzite crystal structures were formed.

  15. Impact of mechanical stress on gate tunneling currents of germanium and silicon p-type metal-oxide-semiconductor field-effect transistors and metal gate work function

    NASA Astrophysics Data System (ADS)

    Choi, Youn Sung; Numata, Toshinori; Nishida, Toshikazu; Harris, Rusty; Thompson, Scott E.

    2008-03-01

    Uniaxial four-point wafer bending stress-altered gate tunneling currents are measured for germanium (Ge)/silicon (Si) channel metal-oxide-semiconductor field-effect transistors (MOSFETs) with HfO2/SiO2 gate dielectrics and TiN/P+ poly Si electrodes. Carrier separation is used to measure electron and hole currents. The strain-altered hole tunneling current from the p-type inversion layer of Ge is measured to be ˜4 times larger than that for the Si channel MOSFET, since the larger strain-induced valence band-edge splitting in Ge results in more hole repopulation into a subband with a smaller out-of-plane effective mass and a lower tunneling barrier height. The strain-altered electron tunneling current from the metal gate is measured and shown to change due to strain altering the metal work function as quantified by flatband voltage shift measurements of Si MOS capacitors with TaN electrodes.

  16. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    NASA Astrophysics Data System (ADS)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-11-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  17. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones.

    PubMed

    Kim, Yoon-Ha; Khan, Abdul Latif; Kim, Duk-Hwan; Lee, Seung-Yeol; Kim, Kyung-Min; Waqas, Muhammad; Jung, Hee-Young; Shin, Jae-Ho; Kim, Jong-Guk; Lee, In-Jung

    2014-01-09

    Silicon (Si) application has been known to enhance the tolerance of plants against abiotic stresses. However, the protective mechanism of Si under heavy metals contamination is poorly understood. The aim of this study was to assess the role of Si in counteracting toxicity due to cadmium (Cd) and copper (Cu) in rice plants (Oryza sativa). Si significantly improved the growth and biomass of rice plants and reduced the toxic effects of Cd/Cu after different stress periods. Si treatment ameliorated root function and structure compared with non-treated rice plants, which suffered severe root damage. In the presence of Si, the Cd/Cu concentration was significantly lower in rice plants, and there was also a reduction in lipid peroxidation and fatty acid desaturation in plant tissues. The reduced uptake of metals in the roots modulated the signaling of phytohormones involved in responses to stress and host defense, such as abscisic acid, jasmonic acid, and salicylic acid. Furthermore, the low concentration of metals significantly down regulated the mRNA expression of enzymes encoding heavy metal transporters (OsHMA2 and OsHMA3) in Si-metal-treated rice plants. Genes responsible for Si transport (OsLSi1 and OsLSi2), showed a significant up-regulation of mRNA expression with Si treatment in rice plants. The present study supports the active role of Si in the regulation of stresses from heavy metal exposure through changes in root morphology.

  18. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones

    PubMed Central

    2014-01-01

    Background Silicon (Si) application has been known to enhance the tolerance of plants against abiotic stresses. However, the protective mechanism of Si under heavy metals contamination is poorly understood. The aim of this study was to assess the role of Si in counteracting toxicity due to cadmium (Cd) and copper (Cu) in rice plants (Oryza sativa). Results Si significantly improved the growth and biomass of rice plants and reduced the toxic effects of Cd/Cu after different stress periods. Si treatment ameliorated root function and structure compared with non-treated rice plants, which suffered severe root damage. In the presence of Si, the Cd/Cu concentration was significantly lower in rice plants, and there was also a reduction in lipid peroxidation and fatty acid desaturation in plant tissues. The reduced uptake of metals in the roots modulated the signaling of phytohormones involved in responses to stress and host defense, such as abscisic acid, jasmonic acid, and salicylic acid. Furthermore, the low concentration of metals significantly down regulated the mRNA expression of enzymes encoding heavy metal transporters (OsHMA2 and OsHMA3) in Si-metal-treated rice plants. Genes responsible for Si transport (OsLSi1 and OsLSi2), showed a significant up-regulation of mRNA expression with Si treatment in rice plants. Conclusion The present study supports the active role of Si in the regulation of stresses from heavy metal exposure through changes in root morphology. PMID:24405887

  19. Fabrication and characterization of n-type aluminum-boron co-doped ZnO on p-type silicon (n-AZB/p-Si) heterojunction diodes

    SciTech Connect

    Kumar, Vinod; Singh, Neetu; Kapoor, Avinashi; Ntwaeaborwa, Odireleng M.; Swart, Hendrik C.

    2013-11-15

    Graphical abstract: - Highlights: • n-AZB/p-Si heterojunction diodes were formed. • n-AZB/p-Si diode annealed at 700 °C showed best rectifying behavior. • Zn{sub 2}SiO{sub 4} was formed at 800 °C. • n and ϕ{sub b} were estimated to be 1.63 and 0.4 eV, respectively, at 700 °C. • Tailoring of BG was attributed to annealing induced stresses in the films. - Abstract: In this paper, the growth of n-type aluminum boron co-doped ZnO (n-AZB) on a p-type silicon (p-Si) substrate by sol–gel method using spin coating technique is reported. The n-AZB/p-Si heterojunctions were annealed at different temperatures ranging from 400 to 800 °C. The crystallite size of the AZB nanostructures was found to vary from 28 to 38 nm with the variation in annealing temperature. The band gap of the AZB decreased from 3.29 to 3.27 eV, with increasing annealing temperature from 400 to 700 °C and increased to 3.30 eV at 800 °C probably due to the formation of Zn{sub 2}SiO{sub 4} at the interface. The band gap variation is explained in terms of annealing induced stress in the AZB. The n-AZB/p-Si heterojunction exhibited diode behavior. The best rectifying behavior was exhibited at 700 °C.

  20. Thick film silicon growth techniques. [die materials

    NASA Technical Reports Server (NTRS)

    Bates, H. E.; Mlavsky, A. I.; Jewett, D. N.; White, V. E.

    1973-01-01

    The research which was directed toward finding an improved die material is reported. Wetting experiments were conducted with various materials to determine their compatibility with silicon. Work has also continued toward the development of quartz as a die material as new techniques have provided more optimistic results than observed in the past. As a result of the thermal modification previously described, improvements in growth stability have contributed to an increase in ribbon quality.

  1. Silicon Nanowires as Efficient Thermoelectric Materials

    DTIC Science & Technology

    2008-01-10

    LETTERS Silicon nanowires as efficient thermoelectric materials Akram I. Boukai1{, Yuri Bunimovich1{, Jamil Tahir-Kheli1, Jen-Kan Yu1, William A...5600–5609 (2000). 29. Zener, C. Internal friction in solids. I. Theory of internal friction in reeds. Phys. Rev. 52, 230–235 (1937). 30. Gurevich , L

  2. Process Research of Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1984-01-01

    A passivation process (hydrogenation) that will improve the power generation of solar cells fabricated from presently produced, large grain, cast polycrystalline silicon (Semix), a potentially low cost material are developed. The first objective is to verify the operation of a DC plasma hydrogenation system and to investigate the effect of hydrogen on the electrical performance of a variety of polycrystalline silicon solar cells. The second objective is to parameterize and optimize a hydrogenation process for cast polycrystalline silicon, and will include a process sensitivity analysis. The sample preparation for the first phase is outlined. The hydrogenation system is described, and some early results that were obtained using the hydrogenation system without a plasma are summarized. Light beam induced current (LBIC) measurements of minicell samples, and their correlation to dark current voltage characteristics, are discussed.

  3. Replacement of silicone polymer A with silicone polymer B and the subsequent characterization of the new cellular silicone materials

    SciTech Connect

    Schneider, J.W.

    1994-04-01

    The purpose of this project is to replace silicone polymer A with silicone polymer B produced by Vendor B. Silicone polymer B and the resulting B-50 cellular silicone have been used to produce cushions for the W87 program. Approximately 5.5 years of stress relaxation aging study data as well as actual part surveillance data have been collected, characterizing the stockpile life performance of the B-50 cellular silicone cushion material. Process characterization of new cellular silicone materials as a result of replacing silicone polymer A with silicone polymer B has been completed. Load deflection requirements for the new cellular silicone materials based on silicone polymer B have been met. The silicone polymer B based cellular silicone materials must be compounded at densities of approximately 0.03 g/cm{sup 3} less than the silicone polymer A based cellular silicone materials in order to achieve the same load deflection requirements has also been demonstrated. The change in silicone polymers from A to B involved a decrease in volatile content as well as a decrease in part shrinkage.

  4. Ternary chalcogenides Cs2Zn3Se4 and Cs2Zn3Te4 : Potential p -type transparent conducting materials

    DOE PAGES

    Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; ...

    2014-11-11

    Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs2Zn3Ch4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs2Zn3Se4 and Cs2Zn3Te4 are calculated to assess the viability of these materials as p-type TCMs. Cs2Zn3Se4 and Cs2Zn3Te4, which are stable under ambient air, display large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have smallmore » hole effective masses (0.5-0.77 me) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.« less

  5. Reliability of two sintered silicon nitride materials

    NASA Technical Reports Server (NTRS)

    Mieskowski, D. M.; Sanders, W. A.; Pierce, L. A.

    1985-01-01

    Two types of sintered silicon nitride were evaluated in terms of reliability: an experimental high pressure nitrogen sintered material and a commercial material. The results show wide variations in strength for both materials. The Weibull moduli were 5.5, 8.9, and 11 for the experimental material at room temperature, 1200, and 1370 C, respectively. The commercial material showed Weibull moduli of 9.0, 8.6, and 8.9 at these respective temperatures. No correlation between strength and flaw size was noted for the experimental material. The applicability of the Weibull and Griffith theories to processing defects on the order of 100 microns or less in size are discussed.

  6. Maxillofacial Prosthetic Materials- An Inclination Towards Silicones

    PubMed Central

    Choudhary, Sunita; Garg, Hemlata; H.G., Jagadeesh

    2014-01-01

    There have been constant searches and researches which are taking place in the field of dental materials to best suit the ideal selection criteria to satisfy the functionality, biocompatibility, aesthetics as well as the durability as a maxillofacial material. Among all the different materials, Silicone is the most popularly used, but still studies are carried out to overcome their weaknesses and to come out with a material which can be labeled as the “ideal maxillofacial prosthetic material”. This article comprises the materials which were and are in use and the reason for their unpopularity. It also gives us a scope to understand the major fields where the materials lack and thus needs improvement to render an individual with the best maxillo-facial prosthesis. PMID:25654054

  7. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1984-01-01

    Results of hydrogen-passivated polycrystalline silicon solar cells are summarized. Very small grain or short minority-carrier diffusion length silicon was used. Hydrogenated solar cells fabricated from this material appear to have effective minority-carrier diffusion lengths that are still not very long, as shown by the open-circuit voltages of passivated cells that are still significantly less than those of single-crystal solar cells. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. However, the open-circuit voltage, which is sensitive to grain boundary recombination, is sometimes 20 to 40 mV less. The goal was to minimize variations in open-circuit voltage and fill-factor caused by defects by passivating these defects using a hydrogenation process. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystaline silicon solar cells.

  8. Ultralow Contact Resistivity for a Metal/p-Type Silicon Interface by High-Concentration Germanium and Boron Doping Combined with Low-Temperature Annealing

    NASA Astrophysics Data System (ADS)

    Murakoshi, Atsushi; Iwase, Masao; Niiyama, Hiromi; Koike, Mitsuo; Suguro, Kyoichi

    2013-07-01

    A contact resistivity of 6.9×10-9 Ω.cm2 has been obtained in an AlSi (1 wt %)-Cu (0.5 wt %) alloy/silicon system by using heavy-dose ion implantations of germanium and boron combined with low-temperature annealing. The analysis of the combined state showed that B12 cluster was incorporated and the supersaturation activation layer was formed into the region where germanium separated. Separated germanium is expected to have high interface state density. It is considered that this interface state density also has a Fermi level, and in order to reduce the difference from the Fermi level of the substrate, the charge moves to interface state density from the substrate. As a result, it is not based on a metallic material but a work function becomes small because pinning by which a Fermi level is fixed to interface state density occurs owing to the substrate/metal interface. It is considered to be attributable to the existence of a Ge-rich layer formed by low-temperature annealing, and a supersaturation activation layer that lowers contact resistance was formed.

  9. Carbon Cryogel Silicon Composite Anode Materials for Lithium Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 10 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-4,9 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  10. Polycrystalline silicon semiconducting material by nuclear transmutation doping

    DOEpatents

    Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.

    1978-01-01

    A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.

  11. Silicon based materials for drug delivery devices and implants.

    PubMed

    Bernik, Delia L

    2007-01-01

    This patent review focuses on silicon based materials for drug delivery systems and implant devices devoted to medical applications. The article describes some representative examples of the most depictive silicon based compounds associated with drug release formulations and tissue engineering biomaterials. Ranging from inorganic to organic and hybrid inorganic-organic silicon compounds, the paper referrers to patents describing inventions which make use of the best properties of silicon dioxide, silica aerogel and xerogel, silicon bioactive materials, silicones and ormosils, pointing out the usefulness of each kind of compound within the invention embodiment.

  12. Cz-Silicon Produced from Solar-Grade and Recycled Materials. Part II: Investigating Performances of Solar Cell Produced from Solar-Grade Cz-Silicon

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Øvrelid, Eivind Johannes; Di Sabtino, Marisa; Juel, Mari; Tranell, Gabriella

    2015-03-01

    This paper is the second of two, investigating the properties of P-type Cz-silicon materials and solar cells produced with recycled silicon and Elkem Solar Silicon (ESS) materials. While the focus on the first work was on the bulk properties and grown defects of the material, the current study focuses on the solar cell performances. In the processing of the solar cells, the phosphorous diffusion process was optimized to improve the bulk properties and thus to maximize the final solar cell characteristics. Results from the characterization of material defects suggest that the performances of the experimental ingots are limited by the activated grown-in defects, which should be strictly controlled during crystal growth and solar cell processing. The solar cells produced from the investigated ingots showed efficiency values up to 18.5 pct and fill factor values up to 79 pct, comparable to conventional silicon produced from poly silicon. Solar cells produced from mixed recycled and ESS material exhibit a better performance than 100 pct recycled material. Boron and oxygen concentration levels and net doping level showed a concurrent effect on light-induced degradation (LID). Appropriate compensation was finally demonstrated to be an efficient way to improve solar cells efficiency of Cz-silicon produced from recycled silicon, even though higher dopant concentration incurred relatively faster LID.

  13. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements

    DOEpatents

    Guha, Subhendu; Ovshinsky, Stanford R.

    1990-02-02

    A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.

  14. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  15. Space Environment Effects on Silicone Seal Materials

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Daniels, Christopher C.; Dever, Joyce A.; Miller, Sharon K.; Waters, Deborah L.; Finkbeiner, Joshua R.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2010-01-01

    A docking system is being developed by the NASA to support future space missions. It is expected to use redundant elastomer seals to help contain cabin air during dockings between two spacecraft. The sealing surfaces are exposed to the space environment when vehicles are not docked. In space, the seals will be exposed to temperatures between 125 to -75 C, vacuum, atomic oxygen, particle and ultraviolet radiation, and micrometeoroid and orbital debris (MMOD). Silicone rubber is the only class of space flight-qualified elastomeric seal material that functions across the expected temperature range. NASA Glenn has tested three silicone elastomers for such seal applications: two provided by Parker (S0899-50 and S0383-70) and one from Esterline (ELA-SA-401). The effects of atomic oxygen (AO), UV and electron particle radiation, and vacuum on the properties of these three elastomers were examined. Critical seal properties such as leakage, adhesion, and compression set were measured before and after simulated space exposures. The S0899-50 silicone was determined to be inadequate for extended space seal applications due to high adhesion and intolerance to UV, but both S0383-70 and ELA-SA-401 seals were adequate.

  16. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    DOEpatents

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  17. Estimating Seebeck Coefficient of a p-Type High Temperature Thermoelectric Material Using Bee Algorithm Multi-layer Perception

    NASA Astrophysics Data System (ADS)

    Uysal, Fatih; Kilinc, Enes; Kurt, Huseyin; Celik, Erdal; Dugenci, Muharrem; Sagiroglu, Selami

    2017-08-01

    Thermoelectric generators (TEGs) convert heat into electrical energy. These energy-conversion systems do not involve any moving parts and are made of thermoelectric (TE) elements connected electrically in a series and thermally in parallel; however, they are currently not suitable for use in regular operations due to their low efficiency levels. In order to produce high-efficiency TEGs, there is a need for highly heat-resistant thermoelectric materials (TEMs) with an improved figure of merit ( ZT). Production and test methods used for TEMs today are highly expensive. This study attempts to estimate the Seebeck coefficient of TEMs by using the values of existing materials in the literature. The estimation is made within an artificial neural network (ANN) based on the amount of doping and production methods. Results of the estimations show that the Seebeck coefficient can approximate the real values with an average accuracy of 94.4%. In addition, ANN has detected that any change in production methods is followed by a change in the Seebeck coefficient.

  18. Pore formation in a p-type silicon wafer using a platinum needle electrode with application of square-wave potential pulses in HF solution.

    PubMed

    Sugita, Tomohiko; Hiramatsu, Kazuki; Ikeda, Shigeru; Matsumura, Michio

    2013-02-01

    By bringing an anodically biased needle electrode into contact with n-type Si at its tip in a solution containing hydrofluoric acid, Si is etched at the interface with the needle electrode and a pore is formed. However, in the case of p-type Si, although pores can be formed, Si is likely to be corroded and covered with a microporous Si layer. This is due to injection of holes from the needle electrode into the bulk of p-type Si, which shifts its potential to a level more positive than the potential needed for corrosion and formation of a microporous Si layer. However, by applying square-wave potential pulses to a Pt needle electrode, these undesirable changes are prevented because holes injected into the bulk of Si during the period of anodic potential are annihilated with electrons injected into Si during the period of cathodic potential. Even under such conditions, holes supplied to the place near the Si/metal interface are used for etching p-type Si, leading to formation of a pore at the place where the Pt needle electrode was in contact.

  19. Material testing of silicon carbide mirrors

    NASA Astrophysics Data System (ADS)

    Witkin, David B.; Palusinski, Iwona A.

    2009-08-01

    The Aerospace Corporation is developing a space qualification method for silicon carbide optical systems that covers material verification through system development. One of the initial efforts has been to establish testing protocols for material properties. Three different tests have been performed to determine mechanical properties of SiC: modulus of rupture, equibiaxial flexural strength and fracture toughness. Testing materials and methods have been in accordance with the respective ASTM standards. Material from four vendors has been tested to date, as part of the MISSE flight program and other programs. Data analysis has focused on the types of issues that are important when building actual components- statistical modeling of test results, understanding batch-to-batch or other source material variations, and relating mechanical properties to microstructures. Mechanical properties are needed as inputs to design trade studies and development and analysis of proof tests, and to confirm or understand the results of non-destructive evaluations of the source materials. Measuring these properties using standardized tests on a statistically valid number of samples is intended to increase confidence for purchasers of SiC spacecraft components that materials and structures will perform as intended at the highest level of reliability.

  20. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties

    PubMed Central

    Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng

    2016-01-01

    As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524

  1. Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties

    NASA Astrophysics Data System (ADS)

    Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng

    2016-09-01

    As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m-1 K-2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature.

  2. Dendritic web - A viable material for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Scudder, L.; Brandhorst, H. W., Jr.

    1975-01-01

    The dendritic web process is a technique for growing thin silicon ribbon from liquid silicon. The material is suitable for solar cell fabrication and, in fact, cells fabricated on web material are equivalent in performance to cells fabricated on Czochralski-grown material. A recently concluded study has delineated the thermal requirements for silicon web crucibles, and a detailed conceptual design has been developed for a laboratory growth apparatus.

  3. Low cost silicon solar array project silicon materials task

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was established to develop a high temperature silicon production process using existing electric arc heater technology. Silicon tetrachloride and a reductant will be injected into an arc heated mixture of hydrogen and argon. Under these high temperature conditions, a very rapid reaction is expected to occur and proceed essentially to completion, yielding silicon and gaseous sodium chloride. Techniques for high temperature separation and collection of the molten silicon will be developed using standard engineering approaches, and the salt vapor will later be electrolytically separated into its elemental constituents for recycle. Preliminary technical evaluations and economic projections indicate not only that this process appears to be feasible, but that it also has the advantages of rapid, high capacity production of good quality molten silicon at a nominal cost.

  4. Silicon material development for terrestrial solar cells. Phase of exploration

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    1983-03-01

    A material project based on a multicrystalline silicon is reported. It consists of refining the metallurgical grade silicon via hydro and pyrometallurgical processes, preparation of square shaped ingots by (inert) gas protected or open hearth casting methods, and high speed slicing, using a multiple blade slurry saw. Second generation pilot equipment was constructed. Aluminothermic reduction of quartz sand into silicon and the foil casting process were tested. It is concluded that the production of silicon thru the gaseous phase depends upon the marketing of very cheap basic material (SG-Si 10 dollar/Kg) and that the purification of metallurgical grade silicon by refining is the most promising method.

  5. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  6. A review of the silicon material task

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1984-01-01

    The Silicon Material Task of the Flat-Plate Solar Array Project was assigned the objective of developing the technology for low-cost processes for producing polysilicon suitable for terrestrial solar-cell applications. The Task program comprised sections for process developments for semiconductor-grade and solar-cell-grade products. To provide information for deciding upon process designs, extensive investigations of the effects of impurities on material properties and the performance of cells were conducted. The silane process of the Union Carbide Corporation was carried through several stages of technical and engineering development; a pilot plant was the culmination of this effort. The work to establish silane fluidized-bed technology for a low-cost process is continuing. The advantages of the use of dichlorosilane is a siemens-type were shown by Hemlock Semiconductor Corporation. The development of other processes is described.

  7. Nanostructured p-type semiconducting transparent oxides: promising materials for nano-active devices and the emerging field of "transparent nanoelectronics".

    PubMed

    Banerjee, Arghya; Chattopadhyay, Kalyan K

    2008-01-01

    Transparent conducting oxides (TCO) with p-type semiconductivity have recently gained renewed interest for the fabrication of all-oxide transparent junctions, having potential applications in the emerging field of 'Transparent' or 'Invisible Electronics'. This kind of transparent junctions can be used as a "functional" window, which will transmit visible portion of solar radiation, but generates electricity by the absorption of the UV part. Therefore, these devices can be used as UV shield as well as UV cells. In this report, a brief review on the research activities on various p-TCO materials is furnished along-with the fabrication of different transparent p-n homojunction, heterojunction and field-effect transistors. Also the reason behind the difficulties in obtaining p-TCO materials and possible solutions are discussed in details. Considerable attention is given in describing the various patent generations on the field of p-TCO materials as well as transparent p-n junction diodes and light emitting devices. Also, most importantly, a detailed review and patenting activities on the nanocrystalline p-TCO materials and transparent nano-active device fabrication are furnished with considerable attention. And finally, a systematic description on the fabrication and characterization of nanocrystalline, p-type transparent conducting CuAlO(2) thin film, deposited by cost-effective low-temperature DC sputtering technique, by our group, is furnished in details. These p-TCO micro/nano-materials have wide range of applications in the field of optoelectronics, nanoelectronics, space sciences, field-emission displays, thermoelectric converters and sensing devices.

  8. High surface area silicon materials: fundamentals and new technology.

    PubMed

    Buriak, Jillian M

    2006-01-15

    Crystalline silicon forms the basis of just about all computing technologies on the planet, in the form of microelectronics. An enormous amount of research infrastructure and knowledge has been developed over the past half-century to construct complex functional microelectronic structures in silicon. As a result, it is highly probable that silicon will remain central to computing and related technologies as a platform for integration of, for instance, molecular electronics, sensing elements and micro- and nanoelectromechanical systems. Porous nanocrystalline silicon is a fascinating variant of the same single crystal silicon wafers used to make computer chips. Its synthesis, a straightforward electrochemical, chemical or photochemical etch, is compatible with existing silicon-based fabrication techniques. Porous silicon literally adds an entirely new dimension to the realm of silicon-based technologies as it has a complex, three-dimensional architecture made up of silicon nanoparticles, nanowires, and channel structures. The intrinsic material is photoluminescent at room temperature in the visible region due to quantum confinement effects, and thus provides an optical element to electronic applications. Our group has been developing new organic surface reactions on porous and nanocrystalline silicon to tailor it for a myriad of applications, including molecular electronics and sensing. Integration of organic and biological molecules with porous silicon is critical to harness the properties of this material. The construction and use of complex, hierarchical molecular synthetic strategies on porous silicon will be described.

  9. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Yaws, C. L.; Li, K. Y.; Hopper, J. R.; Fang, C. S.; Hansen, K. C.

    1981-01-01

    Results for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells are presented. Analyses of process system properties are important for chemical materials involved in the several processes under consideration for semiconductor and solar cell grade silicon production. Major physical, thermodynamic and transport property data are reported for silicon source and processing chemical materials.

  10. Porous silicon as a neural electrode material.

    PubMed

    Persson, Jörgen; Danielsen, Nils; Wallman, Lars

    2007-01-01

    The electrical properties of the solid state/fluid (Ringer solution) interface for phosphorous- and boron-doped porous silicon are reported and the benefits of using porous silicon as neural recording electrodes are discussed. The impedance, reactance and resistance for doped porous and planar silicon, in Ringer solution, were compared to gold electrodes. Planar silicon displayed approximately a three times higher reactance than porous electrodes. The phosphorous-doped porous electrodes displayed a similar reactance compared to the gold electrodes.

  11. P-type gallium nitride

    DOEpatents

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  12. P-type gallium nitride

    SciTech Connect

    Rubin, Michael; Newman, Nathan; Fu, Tracy; Ross, Jennifer; Chan, James

    1997-01-01

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5.times.10.sup.11 /cm.sup.3 and hole mobilities of about 500 cm.sup.2 /V-sec, measured at 250.degree. K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al.

  13. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wrigley, C. Y.

    1985-01-01

    Results of hydrogen-passivated polycrysalline silicon solar cell research are summarized. The short-circuit current of solar cells fabricated from large-grain cast polycrystalline silicon is nearly equivalent to that of single-crystal cells, which indicates long bulk minority-carrier diffusion length. Treatments with molecular hydrogen showed no effect on large-grain cast polycrystalline silicon solar cells.

  14. Purity of silicon: with great effect on its performance in graphite-silicon anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jin, Chenxin; Xu, Guojun; Liu, Liekai; Yue, Zhihao; Li, Xiaomin; Sun, Fugen; Tang, Hao; Huang, Haibin; Zhou, Lang

    2017-09-01

    Ferrosilicon, industrial grade silicon, solar grade silicon, and electronic grade silicon were ball-milled to form four types of silicon powders, which were mixed with graphite powders at weight ratio of 5:95, respectively, for being used as graphite-silicon anode materials in lithium-ion batteries (LIBs). The effect of the purity of silicon on its electrochemical performance in graphite-silicon anode materials for LIBs was investigated by the cycle and rate tests. Results show that silicon with higher purity shows higher capacity, better cycle, and rate performance. In addition, the significant difference in capacity of the four graphite-silicon anodes with different purities of silicon is not completely resulted from the content of silicon materials, and the influence of the impurity inside the silicon cannot be ignored as well. The sample prepared from electronic grade silicon presents the highest first discharge capacity, which is 440.5 mAh g-1.

  15. Recombination activity of light-activated copper defects in p-type silicon studied by injection- and temperature-dependent lifetime spectroscopy

    NASA Astrophysics Data System (ADS)

    Inglese, Alessandro; Lindroos, Jeanette; Vahlman, Henri; Savin, Hele

    2016-09-01

    The presence of copper contamination is known to cause strong light-induced degradation (Cu-LID) in silicon. In this paper, we parametrize the recombination activity of light-activated copper defects in terms of Shockley—Read—Hall recombination statistics through injection- and temperature dependent lifetime spectroscopy (TDLS) performed on deliberately contaminated float zone silicon wafers. We obtain an accurate fit of the experimental data via two non-interacting energy levels, i.e., a deep recombination center featuring an energy level at Ec-Et=0.48 -0.62 eV with a moderate donor-like capture asymmetry ( k =1.7 -2.6 ) and an additional shallow energy state located at Ec-Et=0.1 -0.2 eV , which mostly affects the carrier lifetime only at high-injection conditions. Besides confirming these defect parameters, TDLS measurements also indicate a power-law temperature dependence of the capture cross sections associated with the deep energy state. Eventually, we compare these results with the available literature data, and we find that the formation of copper precipitates is the probable root cause behind Cu-LID.

  16. Tuning the interfacial hole injection barrier between p-type organic materials and Co using a MoO{sub 3} buffer layer

    SciTech Connect

    Wang Yuzhan; Wee, Andrew T. S.; Cao Liang; Qi Dongchen; Chen Wei; Gao Xingyu

    2012-08-01

    We demonstrate that the interfacial hole injection barrier {Delta}{sub h} between p-type organic materials (i.e., CuPc and pentacene) and Co substrate can be tuned by the insertion of a MoO{sub 3} buffer layer. Using ultraviolet photoemission spectroscopy, it was found that the introduction of MoO{sub 3} buffer layer effectively reduces the hole injection barrier from 0.8 eV to 0.4 eV for the CuPc/Co interface, and from 1.0 eV to 0.4 eV for the pentacene/Co interface, respectively. In addition, by varying the thickness of the buffer, the tuning effect of {Delta}{sub h} is shown to be independent of the thickness of MoO{sub 3} interlayer at both CuPc/Co and pentacene/Co interfaces. This Fermi level pinning effect can be explained by the integer charge-transfer model. Therefore, the MoO{sub 3} buffer layer has the potential to be applied in p-type organic spin valve devices to improve the device performance via reducing the interfacial hole injection barrier.

  17. Enhanced Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 Thermoelectric Materials by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Madavali, Babu; Hong, Soon-Jik

    2016-12-01

    In this research, the microstructure and transport properties of p-type Bi0.5Sb1.5Te3 thermoelectric materials were investigated as a function of milling time. The p-type Bi0.5Sb1.5Te3 alloys were fabricated by mechanical alloying of elemental chunks of bismuth, antimony, and tellurium. This was followed by plasma spark sintering at 673 K. The micro-Vickers hardness (98.7 Hv) was considerably improved in the 90-min sample due to the presence of fine grains in the matrix that prevented crack propagation via grain-boundary hardening. The lowest lattice thermal conductivity (0.63 W/mK) was obtained for the 90-min sample, a value slightly lower than the minimum total thermal conductivity (0.872 ± 0.5 W/mK at 300 K) due to strong scattering of phonons and carriers owing to the completely randomness of the distribution of the fine-grain structure in the bulk samples. The maximum figure-of-merit ( ZT = 0.98 ± 0.5 at 300 K) was obtained for the 90-min sample due to its superior power factor values.

  18. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wohlgemuth, J. H.

    1982-01-01

    Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.

  19. Temperature Dependent Capacitance-Voltage And Deep Level Transient Spectroscopy Study Of Self-Assembled Ge Quantum Dots Embedded In P-type Silicon

    SciTech Connect

    Rangel-Kuoppa, Victor-Tapio; Chen Gang; Jantsch, Wolfgang

    2011-12-23

    Temperature dependent Capacitance-Voltage (TCV) and Deep Level Transient Spectroscopy (DLTS) techniques were used to study how Ge Quantum Dots (QDs) embedded in Silicon trap charge. Atomic Force Microscopy (AFM) is used to obtain the density of QDs, which is in the order of 3x10{sup 11} cm{sup -2}. Three shallow levels, with activation energies of 40, 65 and 90 meV, and densities around 10{sup 16} cm{sup -3}, are found and are related to Boron. Four deep levels, with activation energies of 110, 150, 330 and 380 meV, and densities between 2x10{sup 15} cm{sup -3} and 5x10{sup 15} cm{sup -3}, are also found. TCV results suggest they are related to the Ge QDs.

  20. Silicon carbide alloys: Research reports in materials science

    SciTech Connect

    Dobson, M.M.

    1986-01-01

    The book draws from work done on other silicon materials, silicon nitrides and sialons, to emphasize the importance of the SiC system. A comprehensive treatment of non-oxide silicon ceramics, this work is of special interest to researchers involved in ceramics, materials science, and high-temperature technology. This book covers the alloys of silicon carbide with aluminum nitride. Crystallography and experimental methods including sample preparation, furnace methods, X-ray and electron diffraction, optical and electron microscopy and chemical analysis are covered.

  1. Charge carrier transport and lifetimes in n-type and p-type phosphorene as 2D device active materials: an ab initio study.

    PubMed

    Tea, E; Hin, C

    2016-08-10

    In this work, we provide a detailed analysis of phosphorene's performance as an n-type and p-type active material. This study is based on first principles calculations of the phosphorene electronic structure, and the resulting electron and hole scattering rates and lifetimes. Emphasis is put on extreme regimes commonly found in semiconductor devices, i.e. high electric fields and heavy doping, where impact ionization and Auger recombination can occur. We found that electron-initiated impact ionization is weaker than the hole-initiated process, when compared to carrier-phonon interaction rates, suggesting resilience to impact ionization initiated breakdown. Moreover, calculated minority electron lifetimes are limited by radiative recombination only, not by Auger processes, suggesting that phosphorene could achieve good quantum efficiencies in optoelectronic devices. The provided scattering rates and lifetimes are critical input data for the modeling and understanding of phosphorene-based device physics.

  2. An all-solid-state perovskite-sensitized solar cell based on the dual function polyaniline as the sensitizer and p-type hole-transporting material

    NASA Astrophysics Data System (ADS)

    Xiao, Yaoming; Han, Gaoyi; Chang, Yunzhen; Zhou, Haihan; Li, Miaoyu; Li, Yanping

    2014-12-01

    High performance dual function of polyaniline (PANI) with brachyplast structure is synthesized by using a two-step cyclic voltammetry (CV) approach onto the fluorinated tin oxide (FTO) glass substrate, which acts as the sensitizer and p-type hole-transporting material (p-HTM) for the all-solid-state perovskite-sensitized solar cell (ass-PSSC) due to its π-π* transition and the localized polaron. The ass-PSSC based on the PANI delivers a photovoltaic conversion efficiency of 7.34%, and reduces from 7.34% to 6.71% after 1000 h, thereby 91.42% of the energy conversion efficiency is kept, indicating the device has a good long-term stability.

  3. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  4. Low effective back-surface recombination velocity by boron implantation on 0. 3-. cap omega. -cm p-type silicon solar cells

    SciTech Connect

    Verhoef, L.A.; Zondervan, A.; Lindholm, F.A.; Spitzer, M.B.; Keavney, C.J.

    1988-05-01

    We measure a low effective back-surface recombination velocity Sapprox. =1000 cm/s on boron-implanted back-surface field (BSF) silicon solar cells with a p-base resistivity of 0.3 ..cap omega.. cm. For cells of this low resistivity, this velocity is much lower than values obtained with the conventional Al-alloying technique. Our data indicate that the low surface recombination velocity results from a low value of minority electron diffusivity Dapprox. =0.45 cm/sup 2//s peculiar to these highly doped implanted regions at the back of the solar cells. The effect of a thermal anneal at 950 /sup 0/C, prior to emitter fabrication, on the solar cell parameters was also investigated. The short-circuit current density, minority-carrier diffusion length, and back-surface recombination velocity, improved with a 1- and 2-h anneal of the BSF cells, and either degraded or remained unchanged on ohmic back contact cells. The decrease in S is due to widening of the BSF region during anneal, deduced from spreading resistance measurements.

  5. Impact of the n+ emitter layer on the structural and electrical properties of p-type polycrystalline silicon thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Hidayat, H.; Ke, C.; Chakraborty, S.; Dalapati, G. K.; Widenborg, P. I.; Tan, C. C.; Dolmanan, S.; Aberle, A. G.

    2013-10-01

    The effect of the phosphine (PH3) flow rate on the doping profile, in particular the peak doping concentration of the n+ emitter layer, of solid phase crystallised polycrystalline silicon thin-film solar cells on glass is investigated by electrochemical capacitance-voltage profiling. The peak n+ layer doping is found to increase with increasing PH3 gas flow, resulting in a shift of the p-n junction location towards the centre of the diode. The impact of the PH3 flow rate on the crystal quality of the poly-Si films is analysed using ultraviolet (UV) reflectance and UV/visible Raman spectroscopy. The impact of the PH3 flow rate on the efficiency of poly-Si thin-film solar cells is investigated using electrical measurements. An improvement in the efficiency by 46% and a pseudo energy conversion efficiency of 5% was obtained through precise control of the flow rate at an intermediate n+ emitter layer doping concentration of 1.0 × 1019 cm-3. The best fabricated poly-Si thin-film solar cell is also found to have the highest crystal quality factor, based on both Raman and UV reflectance measurements.

  6. Porous silicon as a substrate material for potentiometric biosensors

    NASA Astrophysics Data System (ADS)

    Thust, Marion; Schöning, M. J.; Frohnhoff, S.; Arens-Fischer, R.; Kordos, P.; Lüth, H.

    1996-01-01

    For the first time porous silicon has been investigated for the purpose of application as a substrate material for potentiometric biosensors operating in aqueous solutions. Porous silicon was prepared from differently doped silicon substrates by a standard anodic etching process. After oxidation, penicillinase, an enzyme sensitive to penicillin, was bound to the porous structure by physical adsorption. To characterize the electrochemical properties of the so build up penicillin biosensor, capacitance - voltage (C - V) measurements were performed on these field-effect structures.

  7. Spray pyrolysis growth of a high figure of merit, nano-crystalline, p-type transparent conducting material at low temperature

    NASA Astrophysics Data System (ADS)

    Farrell, L.; Norton, E.; O'Dowd, B. J.; Caffrey, D.; Shvets, I. V.; Fleischer, K.

    2015-07-01

    In this letter, we demonstrate a low temperature (≈345 °C) growth method for Cu deficient CuCrO2 performed by spray pyrolysis using metal-organic precursors and a simple air blast nozzle. Smooth films were grown on glass substrates with a highest conductivity of 12 S/cm. The most conductive samples retain transparencies above 55% resulting in a figure of merit as high as 350 μS, which is the best performing p-type transparent conducting material grown by solution methods to date. Remarkably, despite the nano-crystallinity of the films, properties comparable with crystalline CuCrO2 are observed. No postannealing of the films is required in contrast to previous reports on crystalline material. The low processing temperature of this method means that the material can be deposited on flexible substrates. As this is a solution based technique, it is more attractive to industry as physical vapour deposition methods are slow and costly in comparison.

  8. A transistor based on 2D material and silicon junction

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoek; Lee, Seunghyun

    2017-07-01

    A new type of graphene-silicon junction transistor based on bipolar charge-carrier injection was designed and investigated. In contrast to many recent studies on graphene field-effect transistor (FET), this device is a new type of bipolar junction transistor (BJT). The transistor fully utilizes the Fermi level tunability of graphene under bias to increase the minority-carrier injection efficiency of the base-emitter junction in the BJT. Single-layer graphene was used to form the emitter and the collector, and a p-type silicon was used as the base. The output of this transistor was compared with a metal-silicon junction transistor ( i.e. surface-barrier transistor) to understand the difference between a graphene-silicon junction and metal-silicon Schottky junction. A significantly higher current gain was observed in the graphene-silicon junction transistor as the base current was increased. The graphene-semiconductor heterojunction transistor offers several unique advantages, such as an extremely thin device profile, a low-temperature (< 110 °C) fabrication process, low cost (no furnace process), and high-temperature tolerance due to graphene's stability. A transistor current gain ( β) of 33.7 and a common-emitter amplifier voltage gain of 24.9 were achieved.

  9. Materials refining for solar cell silicon

    NASA Astrophysics Data System (ADS)

    Dietl, J.

    Metallurgical refining processes for the production of solar cell silicon are described. The aim is to obtain an optimum purification effect with a minimum of process steps. The characterization of refined silicon is limited to chemical purity and its correlation with solar quality. Hydrometallurgical refining and pyrometallurgical refining (liquid-liquid extraction, liquid-gas extraction, and recrystallization in aluminum) are treated.

  10. Aluminum/Silicon Carbide Matrix Material for Targeting System

    DTIC Science & Technology

    2006-07-21

    most common MMC is cast aluminum reinforced with various amounts of silicon carbide . LMMFC is currently machining very high precision components for...targeting systems from cast aluminum/ silicon carbide (AISiC) matrix material (with a very high SiC content) and are experiencing difficulty achieving the

  11. Aluminum / Silicon Carbide Matrix Material Machining for Targeting Systems

    DTIC Science & Technology

    2006-07-21

    most common (MMC) is cast aluminum reinforced with various amounts of silicon carbide . (LMMFC) is currently machining very high precision components for...targeting systems made from cast aluminum/ silicon carbide (AISiC) matrix material (with a very high SiC content) and is experiencing difficulty

  12. Silicon-polymer hybrid materials for drug delivery.

    PubMed

    McInnes, Steven J P; Voelcker, Nicolas H

    2009-09-01

    Silicon and its oxides are widely used in biomaterials research, tissue engineering and drug delivery. These materials are highly biocompatible, easily surface functionalized, degrade into nontoxic silicic acid and can be processed into various forms such as micro- and nano-particles, monoliths, membranes and micromachined structures. The large surface area of porous forms of silicon and silica (up to 1200 m2/g) permits high drug loadings. The degradation kinetics of silicon- and silica-based materials can be tailored by coating or grafting with polymers. Incorporation of polymers also improves control over drug-release kinetics. The use of stimuli-responsive polymers has enabled environmental stimuli-triggered drug release. Simultaneously, silicon microfabrication techniques have facilitated the development of sophisticated implantable drug-delivery microdevices. This paper reviews the synthesis, novel properties and biomedical applications of silicon-polymer hybrid materials with particular emphasis on drug delivery. The biocompatible and bioresorptive properties of mesoporous silica and porous silicon make these materials attractive candidates for use in biomedical applications. The combination of polymers with silicon-based materials has generated a large range of novel hybrid materials tailored to applications in localized and systemic drug delivery.

  13. HEAT-RESISTANT MATERIAL WITH SILICON CARBIDE AS A BASE,

    DTIC Science & Technology

    A new high-temperature material, termed SG-60, is a silicon carbide -graphite composite in which the graphite is the thermostability carrier since it...is more heat-conducting and softer (heat conductivity of graphite is 0.57 cal/g-cm-sec compared with 0.02 cal/g-cm-sec for silicon carbide ) while... silicon carbide is the carrier of high-temperature strength and hardness. The high covalent bonding strength of the atoms of silicon carbide (283 kcal

  14. Holey Silicon as an Efficient Thermoelectric Material

    SciTech Connect

    Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

    2010-09-30

    This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

  15. Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Volker

    2002-04-01

    Silicon has been and will most probably continue to be the dominant material in semiconductor technology. Although the defect-free silicon single crystal is one of the best understood systems in materails science, its electrochemistry to many people is still a kind of "alchemy". This view is partly due to the interdisciplinary aspects of the topic: Physics meets chemistry at the silicon-electrolyte interface. This book gives a comprehensive overview of this important aspect of silicon technology as well as examples of applications ranging from photonic crystals to biochips. It will serve materials scientists as well as engineers involved in silicon technology as a quick reference with its more than 150 technical tables and diagrams and ca. 1000 references cited for easy access of the original literature.

  16. Method of manufacturing silicon from powdered material containing silica

    SciTech Connect

    Santen, S.; Edstrom, J.O.

    1984-03-27

    Silicon is manufactured from powdered material containing silica by injecting this, optionally together with a reducing agent, into a gas plasma with the help of a carrier gas. Thereafter the silica material thus heated, together with the reducing agent if any and the energy-rich plasma gas, is introduced in a reaction chamber surrounded by solid reducing agent in lump form, so that the silica is caused to melt and is reduced to liquid silicon.

  17. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, G.C.

    1983-10-12

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  18. Method for forming fibrous silicon carbide insulating material

    DOEpatents

    Wei, George C.

    1984-01-01

    A method whereby silicon carbide-bonded SiC fiber composites are prepared from carbon-bonded C fiber composites is disclosed. Carbon-bonded C fiber composite material is treated with gaseous silicon monoxide generated from the reaction of a mixture of colloidal silica and carbon black at an elevated temperature in an argon atmosphere. The carbon in the carbon bond and fiber is thus chemically converted to SiC resulting in a silicon carbide-bonded SiC fiber composite that can be used for fabricating dense, high-strength high-toughness SiC composites or as thermal insulating materials in oxidizing environments.

  19. Flat-plate solar array project. Volume 2: Silicon material

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1986-01-01

    The goal of the Silicon Material Task, a part of the Flat Plate Solar Array (FSA) Project, was to develop and demonstate the technology for the low cost production of silicon of suitable purity to be used as the basic material for the manufacture of terrestrial photovoltaic solar cells. Summarized are 11 different processes for the production of silicon that were investigated and developed to varying extent by industrial, university, and Government researchers. The silane production section of the Union Carbide Corp. (UCC) silane process was developed completely in this program. Coupled with Siemens-type chemical vapor deposition reactors, the process was carried through the pilot stage. The overall UCC process involves the conversion of metallurgical-grade silicon to silane followed by decomposition of the silane to purified silicon. The other process developments are described to varying extents. Studies are reported on the effects of impurities in silicon on both silicon-material properties and on solar cell performance. These studies on the effects of impurities yielded extensive information and models for relating specific elemental concentrations to levels of deleterious effects.

  20. Silicon radiation detectors: materials and applications

    SciTech Connect

    Walton, J.T.; Haller, E.E.

    1982-10-01

    Silicon nuclear radiation detectors are available today in a large variety of sizes and types. This profusion has been made possible by the ever increasing quality and diameter silicon single crystals, new processing technologies and techniques, and innovative detector design. The salient characteristics of the four basic detector groups, diffused junction, ion implanted, surface barrier, and lithium drift are reviewed along with the silicon crystal requirements. Results of crystal imperfections detected by lithium ion compensation are presented. Processing technologies and techniques are described. Two recent novel position-sensitive detector designs are discussed - one in high-energy particle track reconstruction and the other in x-ray angiography. The unique experimental results obtained with these devices are presented.

  1. Process Feasibility Study in Support of Silicon Material Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    Analysis of process system properties was continued for silicon source materials under consideration for producing silicon. The following property data are reported for dichlorosilane which is involved in processing operations for silicon: critical constants, vapor pressure, heat of vaporization, heat capacity, density, surface tension, thermal conductivity, heat of formation and Gibb's free energy of formation. The properties are reported as a function of temperature to permit rapid engineering usage. The preliminary economic analysis of the process is described. Cost analysis results for the process (case A-two deposition reactors and six electrolysis cells) are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon. Fixed capital investment estimate for the plant is $12.47 million (1975 dollars) ($17.47 million, 1980 dollars). Product cost without profit is 8.63 $/kg of silicon (1975 dollars)(12.1 $/kg, 1980 dollars).

  2. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Wohlgemuth, J. H.; Culik, J. S.

    1982-01-01

    The mechanisms limiting performance in polycrystalline silicon was determined. The initial set of experiments in this task entails the fabrication of cells of various thicknesses for four different bulk resistivities between 0.1 and 10 omega-cm. The results for the first two lots are presented.

  3. Electronic and material characterization of silicon-germanium and silicon-germanium-carbon epitaxial layers

    NASA Astrophysics Data System (ADS)

    Peterson, Jeffrey John

    This dissertation presents results of material and electronic characterization of strained SiGe and SiGeC epitaxial layers grown on (100) silicon using Atmospheric Pressure Chemical Vapor Deposition and Reduced Pressure Chemical Vapor Deposition. Fabrication techniques for SiGe and SiGeC are also presented. Materials characterization of epitaxial SiGe and SiGeC was done to characterize crystallinity using visual, microscopic, and Rutherford Backscattering (RBS) characterization. Surface roughness was characterized and found to correspond roughly with epitaxial crystal quality. Spectroscopic ellipsometry was used to study epitaxial layer composition and thickness, requiring development of models for nSiGe and nSiGeC versus composition (the first published for nSiGeC) and generation of ellipsometric nomograms. X-ray diffraction (XRD) measurements of epitaxial strain and relaxation showed Ge composition dominates the stress, although strain compensation due to C was observed. XRD, Raman, and Fourier Transform Infrared (FTIR) characterization were done to characterize substitutional C in SiGeC epitaxial layers, finding that C incorporation into SiGeC saturates for C contents >1%. Fabrication techniques for SiGe and SiGeC were examined. Low thermal budget processing of strained layers were investigated as well as fabrication techniques using advantageous material properties of SiGe and SiGeC. Ti/Al contacts were developed and characterized for electrical contact to SiGe and SiGeC. Schottky contacts of Pt silicide on SiGe and SiGeC was done; formation and resistivity were characterized. Four separate resistivity characterization structures have been fabricated using mesa-etch and Si etch-stop techniques. A NPN Heterojunction Bipolar transistor has been fabricated using successive mesa-etches and SiGe (or SiGeC) etch-stops. Electronic characterization of in-situ doped SiGe and SiGeC epitaxial layers was done to determine resistivity, mobility, and bandgap. Resistivities

  4. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1978-01-01

    Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.

  5. Process feasibility study in support of silicon material, task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    Analyses of process system properties were continued for materials involved in the alternate processes under consideration for semiconductor silicon. Primary efforts centered on physical and thermodynamic property data for dichlorosilane. The following property data are reported for dichlorosilane which is involved in processing operations for solar cell grade silicon: critical temperature, critical pressure, critical volume, critical density, acentric factor, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity and density. Work was initiated on the assembly of a system to prepare binary gas mixtures of known proportions and to measure the thermal conductivity of these mixtures between 30 and 350 C. The binary gas mixtures include silicon source material such as silanes and halogenated silanes which are used in the production of semiconductor silicon.

  6. Characterization of some selected vulcanized and raw silicon rubber materials

    NASA Astrophysics Data System (ADS)

    Sasikala, A.; Kala, A.

    2017-06-01

    Silicone Rubber is a high need of importance of Medical devices, Implants, Aviation and Aerospace wiring applications. Silicone rubbers are widely used in industry, and there are in multiple formulations. A raw and vulcanized silicone rubber Chemical and Physical structures of particles was confirmed and mechanical strength has been analyzed by FTIR spectroscopy. Thermal properties studied from Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. Activation energy of the rubber materials were calculated using Broido method, Piloyon-Novikova relation and coats-Red fern methods.

  7. Silicon-Based Nanoscale Composite Energetic Materials

    DTIC Science & Technology

    2013-02-01

    burning than stoichiometric ratios. However, the calculated adiabatic temperature via the equilibrium code, Cheetah 6.0 (30] drops from 3443.6 K...equilibrium code, Cheetah 6.0 [30], though it is also calculated that some excess silicon will react with carbon to form condensed phase SiC at fuel...indicates that AE nSi powder is comprised of roughly 83% SiOz. Accounting for the high oxygen content in thermal equilibrium calculations via Cheetah

  8. Process Feasibility Study in Support of Silicon Material, Task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1979-01-01

    During this reporting period, major activies were devoted to process system properties, chemical engineering and economic analyses. Analyses of process system properties was continued for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for silicon tetrafluoride: critical constants, vapor pressure, heat of varporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analysis of the BCL process was continued with primary efforts being devoted to the preliminary process design. Status and progress are reported for base case conditions; process flow diagram; reaction chemistry; material and energy balances; and major process equipment design.

  9. The Wacker approach to low-cost silicon material technology

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    Proprietary, long-term materials research programs concerned with processes having high cost/energy-saving potential for the production of high-purity solar cell silicon are discussed. Program goals include the development of rugged, high-throughput rate production equipment, and impurity handling, or defect engineering standards, which will yield photovoltaic solar energy conversion efficiencies of a minimum of 10%. Different starting materials for a variety of low-cost crystallization techniques, the machining and slicing of silicon, and such diagnostic techniques as topographic methods, multielement analysis, identification of point defects, and photovoltaic evaluation, are discussed.

  10. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1982-01-01

    The investigation of the performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was continued by fabricating a set of minicell wafers on a selection of 10 cm x 10 cm wafers. A minicell wafer consists of an array of small (approximately 0.2 sq cm in area) photodiodes which are isolated from one another by a mesa structure. The junction capacitance of each minicell was used to obtain the dopant concentration, and therefore the resistivity, as a function of position across each wafer. The results indicate that there is no significant variation in resistivity with position for any of the polycrystalline wafers, whether Semix or Wacker. However, the resistivity of Semix brick 71-01E did decrease slightly from bottom to top.

  11. Porous silicon based anode material formed using metal reduction

    DOEpatents

    Anguchamy, Yogesh Kumar; Masarapu, Charan; Deng, Haixia; Han, Yongbong; Venkatachalam, Subramanian; Kumar, Sujeet; Lopez, Herman A.

    2015-09-22

    A porous silicon based material comprising porous crystalline elemental silicon formed by reducing silicon dioxide with a reducing metal in a heating process followed by acid etching is used to construct negative electrode used in lithium ion batteries. Gradual temperature heating ramp(s) with optional temperature steps can be used to perform the heating process. The porous silicon formed has a high surface area from about 10 m.sup.2/g to about 200 m.sup.2/g and is substantially free of carbon. The negative electrode formed can have a discharge specific capacity of at least 1800 mAh/g at rate of C/3 discharged from 1.5V to 0.005V against lithium with in some embodiments loading levels ranging from about 1.4 mg/cm.sup.2 to about 3.5 mg/cm.sup.2. In some embodiments, the porous silicon can be coated with a carbon coating or blended with carbon nanofibers or other conductive carbon material.

  12. Temperature-dependent Hall effect measurements on Cz-grown silicon pulled from compensated and recycled feedstock materials

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Modanese, Chiara; Di Sabatino, Marisa; Tranell, Gabriella

    2015-11-01

    In this work, temperature-dependent Hall effect measurements in the temperature range 88-350 K were carried out to investigate the electrical properties of three solar grade p-type Czochralski (Cz) silicon ingots, pulled from recycled p-type multi-crystalline silicon top cuts and compensated solar grade (SoG) feedstock. Material bulk properties including Hall mobility, carrier density and resistivity as functions of temperature were studied to evaluate the influence of compensation and impurities. Recycled top cut replacing poly-silicon as feedstock leads to a more uniform resistivity. In addition, higher concentrations of O and C, give rise to oxygen related defects, which act as neutral scattering centers displaying only a slight influence on the electrical properties at low temperature compared to the dominant compensation effect. The electrical performances of all samples are shown to be strongly dependent on compensation level, especially at the lowest temperature (~88 K). A significant presence of incompletely ionized phosphorus was deduced through the measured carrier density. The temperature-dependent Hall effect measurements fit Klaassen's mobility model very well at low temperatures (<150 K), showing consistency with the explanation of a reduced screening effect on ionized dopants for lightly doped silicon, while the deviation at the high temperature probably may be accounted for by the presence of as-grown defects, such as oxygen related defects and phosphorus clusters, which are usually neglected in most mobility models.

  13. Silicone and Fluorosilicone Based Materials for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Palsule, Aniruddha S.

    The biocompatibility and the biodurability of silicones is a result of various material properties such as hydrophobicity, low surface tension, high elasticity and chemical and thermal stability. A variety of biomedical implants employ an inflatable silicone rubber balloon filled with a saline solution. Commercial examples of such a system are silicone breast implants, tissue expanders and gastric bands for obesity control. Despite the advantages, saline filled silicones systems still have a certain set of challenges that need to be addressed in order to improve the functionality of these devices and validate their use as biomaterials. The central goal of this research is to identify these concerns, design solutions and to provide a better understanding of the behavior of implantable silicones. The first problem this research focuses on is the quantification and identification of the low molecular weight silicones that are not crosslinked into the elastomeric matrix and therefore can be leached out by solvent extraction. We have developed an environmentally friendly pre-extraction technique using supercritical CO 2 and also determined the exact nature of the extractables using Gas Chromatography. We have also attempted to address the issue of an observed loss of pressure in the saline filled device during application by studying the relaxation behavior of silicone elastomer using Dynamic Mechanical Analysis and constructing long-term relaxation master curves. We have also developed a technique to develop highly hydrophobic fluorinated barrier layers for the silicone in order to prevent diffusion of water vapor across the walls of the implant. This involves a hybrid process consisting of surface modification by plasma technology followed by two different coating formulations. The first formulation employed UV curable fluorinated acrylate monomers for the coating process and the second was based on Atom Transfer Radical Polymerization (ATRP) to generate a fluorinated

  14. Coated silicon comprising material for protection against environmental corrosion

    NASA Technical Reports Server (NTRS)

    Hazel, Brian Thomas (Inventor)

    2009-01-01

    In accordance with an embodiment of the invention, an article is disclosed. The article comprises a gas turbine engine component substrate comprising a silicon material; and an environmental barrier coating overlying the substrate, wherein the environmental barrier coating comprises cerium oxide, and the cerium oxide reduces formation of silicate glass on the substrate upon exposure to corrodant sulfates.

  15. Materials requirements for high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Wolf, M.

    1985-01-01

    To achieve higher Si solar cell efficiencies (greater than 20%), better single-crystal Si must be produced. It is believed possible to bring Cz (Czochralski) Si up to the same low recombination level as FZ (Float Zone) Si. It is also desirable that solar cell Si meet the following requirements: long minority carrier lifetime (0.2 ohm-cm p-type with tau less than 500 microsec); repeatedly uniform lifetime (not spread from 50 to 1000 microsec); a lifetime that does not decrease during normal device processing; a silicon wafer sheet that is flat and stays throughout normal device processing; uniform and reasonable mechanical strength; and, manufacture at low cost (less than $50/sq m).

  16. Microscale material testing of single crystalline silicon

    NASA Astrophysics Data System (ADS)

    Yi, Taechung

    The mechanical properties of single crystalline silicon (SCS) in microscale are characterized using a uniaxial tension test. The samples are prepared using, various micromachining techniques. The dimensions of the tension specimen at the maximum stress region are 5 to 10 mum in thickness and 20 to 100 mum in width. The sample has two illumination marks on the top surface for strain measurement. The uniaxial tension test setup has been built to accommodate requirements such as sample handling, sample alignment, and friction elimination. Stress is measured using a commercial load cell. Strain is measured by laser interferometry. All the components are connected to a data acquisition board and controlled by a personal computer. Measured Young's moduli in three directions agree well with the reference values and verify the reliability of the setup and measurement procedure. The measured fracture strength is 0.6 GPa to 1.2 GPa, depending on sample preparation methods and loading directions. Preliminary work for fracture toughness measurements using a sharp initial crack is also presented. Future works include further investigation of fracture surfaces, fracture toughness measurement using crack opening criteria, and improvement of the testing apparatus.

  17. Dimensional accuracy of 3 silicone dental impression materials.

    PubMed

    Hassan, A K

    2006-09-01

    This study was carried out to measure the dimensional changes in silicone impression material, which can affect the fitness of the prosthesis. Using both single and double mix techniques, 20 impression samples for each of 3 different proprietary silicones, Xantopren-H, President and Fulldent, were made. Selected measurements were made on the stone casts made from each impression. In all 3 cases, the single mix gave more accurate casts than the double mix technique. The Xantopren-H impressions had the most accurate dimensions.

  18. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1984-01-01

    Advanced processing techniques for non-CZ silicon sheet material that might improve the cost effectiveness of photovoltaic module production were investigated. Specifically, the simultaneous diffusion of liquid boron and liquid phosphorus organometallic precursors into n-type dendritic silicon web was examined. The simultaneous junction formation method for solar cells was compared with the sequential junction formation method. The electrical resistivity of the n-n and p-n junctions was discussed. Further research activities for this program along with a program documentation schedule are given.

  19. TOPICAL REVIEW: New crystalline silicon ribbon materials for photovoltaics

    NASA Astrophysics Data System (ADS)

    Hahn, G.; Schönecker, A.

    2004-12-01

    The objective of this article is to review, in relation to photovoltaic applications, the current status of crystalline silicon ribbon technologies as an alternative to technologies based on wafers originating from ingots. Increased wafer demand, the foreseeable silicon feedstock shortage, and the need for a substantial module cost reduction are the main issues that must be faced in the booming photovoltaic market. Ribbon technologies make excellent use of silicon, as wafers are crystallized directly from the melt at the desired thickness and no kerf losses occur. Therefore, they offer a high potential for significantly reducing photovoltaic electricity costs as compared to technology based on wafers cut from ingots. However, the defect structure present in the ribbon silicon wafers can limit material quality and cell efficiency. We will review the most successful of the ribbon techniques already used in large scale production or currently in the pilot demonstration phase, with special emphasis on the defects incorporated during crystal growth. Because of the inhomogeneous distribution of defects, mapped characterization techniques have to be applied. Al and P gettering studies give an insight into the complex interaction of defects in the multicrystalline materials as the gettering efficiency is influenced by the state of the chemical bonding of the metal atoms. The most important technique for improvement of carrier lifetimes is hydrogenation, whose kinetics are strongly influenced by oxygen and carbon concentrations present in the material. The best cell efficiencies for laboratory-type (17%-18% cell area: 4 cm2) as well as industrial-type (15%-16% cell area: {\\ge } 80~{\\mathrm {cm^{2}}} ) ribbon silicon solar cells are in the same range as for standard wafers cut from ingots. A substantial cost reduction therefore seems achievable, although the most promising techniques need to be improved.

  20. Low cost silicon solar array project silicon materials task: Establishment of the feasibility of a process capable of low-cost, high volume production of silane (step 1) and the pyrolysis of silane to semiconductor-grade silicon (step 2)

    NASA Technical Reports Server (NTRS)

    Breneman, W. C.; Cheung, H.; Farrier, E. G.; Morihara, H.

    1977-01-01

    A quartz fluid bed reactor capable of operating at temperatures of up to 1000 C was designed, constructed, and successfully operated. During a 30 minute experiment, silane was decomposed within the reactor with no pyrolysis occurring on the reactor wall or on the gas injection system. A hammer mill/roller-crusher system appeared to be the most practical method for producing seed material from bulk silicon. No measurable impurities were detected in the silicon powder produced by the free space reactor, using the cathode layer emission spectroscopic technique. Impurity concentration followed by emission spectroscopic examination of the residue indicated a total impurity level of 2 micrograms/gram. A pellet cast from this powder had an electrical resistivity of 35 to 45 ohm-cm and P-type conductivity.

  1. Electrical test structures replicated in silicon-on-insulator material

    SciTech Connect

    Cresswell, M.W.; Ghoshtagore, R.N.; Allen, R.A.; Linholm, L.W.; Villarrubia, J.S.; Sniegowski, J.J.

    1996-02-27

    Measurements of the linewidths of submicrometer features made by different metrology techniques have frequently been characterized by differences of up to 90 nm. The purpose of the work reported here is to address the special difficulties that this phenomenon presents to the certification of reference materials for the calibration of linewidth-measurement instruments. Accordingly, a new test structure has been designed, fabricated, and undergone preliminary tests. Its distinguishing characteristics are assured cross-sectional profile geometries with known side-wall slopes, surface planarity, and compositional uniformity when it is formed in mono-crystalline material at selected orientations to the crystal lattice. To allow the extraction of electrical linewidth, the structure is replicated in a silicon film of uniform conductivity which is separated from the silicon substrate by a buried oxide layer. The utilization of a Silicon-On-Insulator (SKI) substrate further allows the selective removal of substrate material from local regions below the reference features, thus facilitating measurements by optical and electron-beam transmission microscopy. The combination of planar feature surfaces having known side-wall slopes is anticipated to eliminate factors which are believed to be responsible for methods divergence in linewidth measurements, a capability which is a prerequisite for reliable certification of the linewidths of features on reference materials.

  2. Process research on non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1982-01-01

    High risk, high payoff research areas associated with he process for producing photovoltaic modules using non-CZ sheet material are investigated. All investigations are being performed using dendritic web silicon, but all processes are directly applicable to other ribbon forms of sheet material. The technical feasibility of forming front and back junctions in non-CZ silicon using liquid dopant techniques was determined. Numerous commercially available liquid phosphorus and boron dopant solutions are investigated. Temperature-time profiles to achieve N(+) and P(+) sheet resistivities of 60 + or - 10 and 40 + or - s10 ohms per square centimeter respectively are established. A study of the optimal method of liquid dopant application is performed. The technical feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask was also determined.

  3. Nanotribology of nanooxide materials in ionic liquids on silicon wafers

    NASA Astrophysics Data System (ADS)

    Hamidunsani, Ahmad Termizi; Radiman, Shahidan; Hassan, Masjuki Haji; Rahman, Irman Abdul

    2015-09-01

    Nanotribological properties have a significant impact on daily life. Ionic liquids (ILs) are becoming new favourable lubricants currently in researches. Addition of nanooxide materials in lubricants provide improvements to new technology. In this study, we determine nanotribological properties of BMIM+BF4- IL addition of different amount of ZnO nanomaterial on single crystals silicon wafer (Si110). The viscosity changes of IL samples against temperature increase were determined by rheological method. Nanotribological properties were determined by changes in friction coefficient and wear rate on silicon substrate surfaces using a reciprocating friction and wear monitor in 1 hour duration time. Aluminium cylinders acted as pins used to rub Si (110) substrate sample surfaces. Thus, on range between 0 mg to 3.5 mg of ZnO nanooxide material dispersed in 10ml BMIM+BF4- showed a good friction coefficient, wear and surface roughness reduction.

  4. Monolayer MoS2 Nanoribbons as a Promising Material for Both n-type and p-type Legs in Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Arab, A.; Davydov, A. V.; Papaconstantopoulos, D. A.; Li, Q.

    2016-10-01

    First-principles calculations have been performed to study the thermoelectric properties of monolayer MoS2 armchair nanoribbons (ACNRs). The electronic behavior of nanoribbons is dominated by the presence of edge states that are dependent on the number of zigzag chains across the nanoribbon. In addition, it is found that the phonon thermal conductance of monolayer MoS2 ACNRs is smaller than monolayer films due to phonon edge scattering. This effect is more pronounced in narrower nanoribbons, which leads to a higher ZT value compared to a monolayer MoS2 sheet. The effects of sulfur vacancy and edge roughness on the thermoelectric properties of MoS2 ACNRs have also been studied. We found that edge roughness decreased ZT values compared to those of perfect nanoribbons, as its impact on electrical conductance is more severe than on phonon thermal conductance. Sulfur vacancy, however, improved ZT in some subbands. It is shown that ZT values as high as 4 for electron-doped and 3 for hole-doped nanoribbons can be achieved at T = 500 K. The ability to achieve high ZT values for both p-type and n-type nanoribbons makes monolayer MoS2 ACNR a promising candidate for future solid-state thermoelectric generators.

  5. Multifunctional uranyl hybrid materials: structural diversities as a function of pH, luminescence with potential nitrobenzene sensing, and photoelectric behavior as p-type semiconductors.

    PubMed

    Song, Jian; Gao, Xue; Wang, Zhi-Nan; Li, Cheng-Ren; Xu, Qi; Bai, Feng-Ying; Shi, Zhong-Feng; Xing, Yong-Heng

    2015-09-21

    A series of uranyl-organic frameworks (UOFs), {[(UO2)2(H2TTHA)(H2O)]·4,4'-bipy·2H2O}n (1), {[(UO2)3(TTHA)(H2O)3]}n (2), and {[(UO2)5(TTHA) (HTTHA)(H2O)3]·H3O}n (3), have been obtained by the hydrothermal reaction of uranyl acetate with a flexible hexapodal ligand (1,3,5-triazine-2,4,6-triamine hexaacetic acid, H6TTHA). These compounds exhibited three distinct 3D self-assembly architectures as a function of pH by single-crystal structural analysis, although the used ligand was the same in each reaction. Surprisingly, all of the coordination modes of the H6TTHA ligand in this work are first discovered. Furthermore, the photoluminescent results showed that these compounds displayed high-sensitivity luminescent sensing functions for nitrobenzene. Additionally, the surface photovoltage spectroscopy and electric-field-induced surface photovoltage spectroscopy showed that compounds 1-3 could behave as p-type semiconductors.

  6. Study of fast laser induced cutting of silicon materials

    NASA Astrophysics Data System (ADS)

    Weinhold, S.; Gruner, A.; Ebert, R.; Schille, J.; Exner, H.

    2014-03-01

    We report on a fast machining process for cutting silicon wafers using laser radiation without melting or ablating and without additional pretreatment. For the laser induced cutting of silicon materials a defocused Gaussian laser beam has been guided over the wafer surface. In the course of this, the laser radiation caused a thermal induced area of tension without affecting the material in any other way. With the beginning of the tension cracking process in the laser induced area of tension emerged a crack, which could be guided by the laser radiation along any direction over the wafer surface. The achieved cutting speed was greater than 1 m/s. We present results for different material modifications and wafer thicknesses. The qualitative assessment is based on SEM images of the cutting edges. With this method it is possible to cut mono- and polycrystalline silicon wafers in a very fast and clean way, without having any waste products. Because the generated cracking edge is also very planar and has only a small roughness, with laser induced tension cracking high quality processing results are easily accessible.

  7. Carbon Cryogel and Carbon Paper-Based Silicon Composite Anode Materials for Lithium-Ion Batteries

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. 6 One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nano-foams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. 1-5 Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  8. Silicon Composite Anode Materials for Lithium Ion Batteries Based on Carbon Cryogels and Carbon Paper

    NASA Technical Reports Server (NTRS)

    Woodworth, James; Baldwin, Richard; Bennett, William

    2010-01-01

    A variety of materials are under investigation for use as anode materials in lithium-ion batteries, of which, the most promising are those containing silicon. One such material is a composite formed via the dispersion of silicon in a resorcinol-formaldehyde (RF) gel followed by pyrolysis. Two silicon-carbon composite materials, carbon microspheres and nanofoams produced from nano-phase silicon impregnated RF gel precursors have been synthesized and investigated. Carbon microspheres are produced by forming the silicon-containing RF gel into microspheres whereas carbon nanofoams are produced by impregnating carbon fiber paper with the silicon containing RF gel to create a free standing electrode. Both materials have demonstrated their ability to function as anodes and utilize the silicon present in the material. Stable reversible capacities above 400 mAh/g for the bulk material and above 1000 mAh/g of Si have been observed.

  9. Silicon carbide: a versatile material for biosensor applications.

    PubMed

    Oliveros, Alexandra; Guiseppi-Elie, Anthony; Saddow, Stephen E

    2013-04-01

    Silicon carbide (SiC) has been around for more than 100 years as an industrial material and has found wide and varied applications because of its unique electrical and thermal properties. In recent years there has been increased attention to SiC as a viable material for biomedical applications. Of particular interest in this review is its potential for application as a biotransducer in biosensors. Among these applications are those where SiC is used as a substrate material, taking advantage of its surface chemical, tribological and electrical properties. In addition, its potential for integration as system on a chip and those applications where SiC is used as an active material make it a suitable substrate for micro-device fabrication. This review highlights the critical properties of SiC for application as a biosensor and reviews recent work reported on using SiC as an active or passive material in biotransducers and biosensors.

  10. Materials Chemistry and Performance of Silicone-Based Replicating Compounds.

    SciTech Connect

    Brumbach, Michael T.; Mirabal, Alex James; Kalan, Michael; Trujillo, Ana B; Hale, Kevin

    2014-11-01

    Replicating compounds are used to cast reproductions of surface features on a variety of materials. Replicas allow for quantitative measurements and recordkeeping on parts that may otherwise be difficult to measure or maintain. In this study, the chemistry and replicating capability of several replicating compounds was investigated. Additionally, the residue remaining on material surfaces upon removal of replicas was quantified. Cleaning practices were tested for several different replicating compounds. For all replicating compounds investigated, a thin silicone residue was left by the replica. For some compounds, additional inorganic species could be identified in the residue. Simple solvent cleaning could remove some residue.

  11. Proceedings of the Flat-Plate Solar Array Workshop on the Science of Silicon Material Preparation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Several areas of silicon material preparation were addressed including silicon production and purity, thermodynamics, kinetics, mechanisms, particle formation and growth, deposition in fluidized bed reactors, and chemical vapor deposition. Twenty-two papers were presented.

  12. Development and evaluation of die and container materials. Low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wills, R. R.; Niesx, D. E.

    1979-01-01

    Specific compositions of high purity silicon aluminum oxynitride (Sialon) and silicon beryllium oxynitride (Sibeon) solid solutions were shown to be promising refractory materials for handling and manipulating solar grade silicon into silicon ribbon. Evaulation of the interaction of these materials in contact with molten silicon indicated that solid solutions based upon beta-Si3N4 were more stable than those based on Si2N2O. Sibeon was more resistant to molten silicon attack than Sialon. Both materials should preferably be used in an inert atmosphere rather than under vacuum conditions because removal of oxygen from the silicon melt occurs as SiO enhances the dissolution of aluminum and beryllium. The wetting angles of these materials were low enough for these materials to be considered as both die and container materials.

  13. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    High risk, high payoff research areas associated with the Westinghouse process for producing photovoltaic modules using non- CZ sheet material were investigated. All work was performed using dendritic web silicon. The following tasks are discussed and associated technical results are given: (1) determining the technical feasibility of forming front and back junctions in non-CT silicon using dopant techniques; (2) determining the feasibility of forming a liquid applied diffusion mask to replace the more costly chemical vapor deposited SiO2 diffusion mask; (3) determining the feasibility of applying liquid anti-reflective solutions using meniscus coating equipment; (4) studying the production of uniform, high efficiency solar cells using ion implanation junction formation techniques; and (5) quantifying cost improvements associated with process improvements.

  14. Nonmetallic materials handbook. Volume 2: Epoxy and silicone materials

    NASA Technical Reports Server (NTRS)

    Podlaseck, S. E.

    1982-01-01

    Chemical and physical property test data obtained during qualification and receiving inspection testing of nonmetallic materials for the Viking Mars Lander program is presented. Thermochemical data showing degradation as a function of temperature from room temperature through 773 K is included. These data include activation energies for thermal degradation, rate constants, and exo- and/or endotherms. Thermal degradations carried out under vacuum include mass spectral data taken simultaneously during the decomposition. Many materials have supporting data such as condensation rates of degassed products and isothermal weight loss. Changes in mechanical, electrical, and thermal properties after exposure to 408 K in nitrogen for times ranging from 380 to 570 hours are included for many materials.

  15. Silicon nitride/silicon carbide composite densified materials prepared using composite powders

    DOEpatents

    Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.

    1997-07-01

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  16. Surface treatment and profile characterization of p-type graded band gap AlGaN material for preparing high performance photocathode

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoqian; Li, Yang; Li, Zhiming; Zhang, ChunWei; Wang, Xiaohui

    2017-09-01

    Ar+ sputtering was applied for exploring the graded band gap profile and the effectiveness of surface contaminations removal, especially the oxide, of the AlGaN material for preparing high performance photocathodes. The X-ray photoelectron spectroscopy scan(XPS) and spectral curves fitting indicated that after conventional chemical cleaning, there were still large amount of carbon and oxygen on surface, where the oxide mainly included gallium oxide and aluminum oxide. After Ar+ sputtering for 0.5 min and 1 min, these carbon and oxygen were both completely removed from surface and the proportion of Al changed from original 29.8% to 36.7% and 37.8%, respectively, more suitable to the solar blind detection. The variation trend of Al and Ga from surface to bulk confirmed the graded band gap profile of this AlGaN material, which would introduce built-in electric field for preparing high performance photocathode.

  17. Dual-beam laser thermal processing of silicon photovoltaic materials

    NASA Astrophysics Data System (ADS)

    Simonds, Brian J.; Teal, Anthony; Zhang, Tian; Hadler, Josh; Zhou, Zibo; Varlamov, Sergey; Perez-Würfl, Ivan

    2016-03-01

    We have developed an all-laser processing technique by means of two industrially-relevant continuous-wave fiber lasers operating at 1070 nm. This approach is capable of both substrate heating with a large defocused beam and material processing with a second scanned beam, and is suitable for a variety of photovoltaic applications. We have demonstrated this technique for rapid crystallization of thin film (~10 μm) silicon on glass, which is a low cost alternative to wafer-based solar cells. We have also applied this technique to wafer silicon to control dopant diffusion at the surface region where the focused line beam rapidly melts the substrate that then regrows epitaxially. Finite element simulations have been used to model the melt depth as a function of preheat temperature and line beam power. This process is carried out in tens of seconds for an area approximately 10 cm2 using only about 1 kW of total optical power and is readily scalable. In this paper, we will discuss our results with both c-Si wafers and thin-film silicon.

  18. Use of silicone hydrogel material for daily wear.

    PubMed

    Guillon, Michel; Maissa, Cécile

    2007-03-01

    Silicone hydrogel contact lenses were initially developed to optimise oxygen transmissibility for extended wear use. The concerns with such contact lenses have been their higher elastomeric and hydrophobic characteristics associated with the incorporation of silicone type monomers. The use of silicone hydrogel has most recently been suggested for daily wear to eliminate all hypoxic related problems. The primary aim of the investigation was to test in vivo wetting performance and subjective acceptance of the first silicone hydrogel contact lens developed for daily wear, ACUVUE ADVANCE with HYDRACLEAR (galyfilcon A), compared to a conventional hydrogel contact lens for the same application SofLens 66 (alphafilcon A). The investigation was a randomised, subject masked bilateral cross over investigation testing of the two contact lens materials over their approved replacement periods (galyfilcon A 2 weeks and alphafilcon A 2 weeks (USA) and 4 weeks (Europe)). In all cases ReNu Multiplus lens care system was used. The investigation carried out on 24 contact lens wearers showed that: (i) in vivo wettability was superior for galyfilcon A which had a thicker lipid layer (thin layer incidence: galyfilcon A 54%; alphafilcon A 70-86%, p<0.05), a thicker aqueous layer (thick layer incidence: galyfilcon A 88%; alphafilcon A 35-64%, p<0.05) and a more stable tear film (galyfilcon A 7.8s; alphafilcon A 2 weeks 5.6s, p=0.022; 4 weeks 7.4s, p=0.276); (ii) for the intended replacement period, comfort was better with galyfilcon A (2 weeks) compared to alphafilcon A (4 weeks) at insertion (p=0.001) and, throughout the day (daytime and evening p=0.008). Contact lenses made from galyfilcon A and replaced two weekly achieved better in vivo wettability than contact lenses made from alphafilcon A and replaced either two and four weekly; the better wettability was associated with an overall better comfort for galyfilcon A.

  19. Dimensional stability of silicone-based impression materials.

    PubMed

    Fano, V; Gennari, P U; Ortalli, I

    1992-03-01

    This study attempts to demonstrate that the polymerization reaction is not the only factor that affects the shrinkage of silicone-based impression materials because evaporation of the constituents also contributes to the shrinkage. These factors can be evaluated by the study of time-dependent dimensional changes. This is shown both by chemical kinetics and by experimental testing of condensation and addition polymerizing impression materials with different viscosities. Comparison of the different materials shows that the two contributions, polymerization shrinkage, and evaporation shrinkage, can be assessed separately by analysis of the time-dependent shrinkage diagrams. The instability due to the polymerization reaction is complete after a few hours, but the contribution of the constituent evaporation, if present, can have a significant long-term role.

  20. Ultrasonic monitoring of the setting of silicone elastomeric impression materials.

    PubMed

    Kanazawa, Chie; Murayama, Ryosuke; Furuichi, Tetsuya; Imai, Arisa; Suda, Shunichi; Kurokawa, Hiroyasu; Takamizawa, Toshiki; Miyazaki, Masashi

    2017-01-31

    This study used an ultrasonic measurement device to monitor the setting behavior of silicone elastomeric impression materials, and the influence of temperature on setting behavior was determined. The ultrasonic device consisted of a pulser-receiver, transducers, and an oscilloscope. The two-way transit time through the mixing material was divided by two to account for the down-and-back travel path; then it was multiplied by the sonic velocity. Analysis of variance and the Tukey honest significant difference test were used. In the early stages of the setting process, most of the ultrasonic energy was absorbed by the elastomers and the second echoes were relatively weak. As the elastomers hardened, the sonic velocities increased until they plateaued. The changes in sonic velocities varied among the elastomers tested, and were affected by temperature conditions. The ultrasonic method used in this study has considerable potential for determining the setting processes of elastomeric impression materials.

  1. Method to prevent recession loss of silica and silicon-containing materials in combustion gas environments

    DOEpatents

    Brun, Milivoj Konstantin; Luthra, Krishan Lal

    2003-01-01

    While silicon-containing ceramics or ceramic composites are prone to material loss in combustion gas environments, this invention introduces a method to prevent or greatly reduce the thickness loss by injecting directly an effective amount, generally in the part per million level, of silicon or silicon-containing compounds into the combustion gases.

  2. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    PubMed

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  3. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Fang, C. S.; Hansen, K. C.; Miller, J. W., Jr.; Yaws, C. L.

    1978-01-01

    Initial results for gas thermal conductivity of silicon tetrafluoride and trichlorosilane are reported in respective temperature ranges of 25 to 400 C and 50 to 400 C. For chemical engineering analyses, the preliminary process design for the original silane process of Union Carbide was completed for Cases A and B, Regular and Minimum Process Storage. Included are raw material usage, utility requirements, major process equipment lists, and production labor requirements. Because of the large differences in surge tankage between major unit operations the fixed capital investment varied from $19,094,000 to $11,138,000 for Cases A and B, respectively. For the silane process the original flowsheet was revised for a more optimum arrangement of major equipment, raw materials and operating conditions. The initial issue of the revised flowsheet (Case C) for the silane process indicated favorable cost benefits over the original scheme.

  4. Silicon nanowire fabric as a lithium ion battery electrode material.

    PubMed

    Chockla, Aaron M; Harris, Justin T; Akhavan, Vahid A; Bogart, Timothy D; Holmberg, Vincent C; Steinhagen, Chet; Mullins, C Buddie; Stevenson, Keith J; Korgel, Brian A

    2011-12-28

    A nonwoven fabric with paperlike qualities composed of silicon nanowires is reported. The nanowires, made by the supercritical-fluid-liquid-solid process, are crystalline, range in diameter from 10 to 50 nm with an average length of >100 μm, and are coated with a thin chemisorbed polyphenylsilane shell. About 90% of the nanowire fabric volume is void space. Thermal annealing of the nanowire fabric in a reducing environment converts the polyphenylsilane coating to a carbonaceous layer that significantly increases the electrical conductivity of the material. This makes the nanowire fabric useful as a self-supporting, mechanically flexible, high-energy-storage anode material in a lithium ion battery. Anode capacities of more than 800 mA h g(-1) were achieved without the addition of conductive carbon or binder. © 2011 American Chemical Society

  5. Polycrystalline silicon material availability and market pricing outlook study for 1980 to 88: January 1983 update

    NASA Technical Reports Server (NTRS)

    Costogue, E.; Pellin, R.

    1983-01-01

    Photovoltaic solar cell arrays which convert solar energy into electrical energy can become a cost effective, alternative energy source provided that an adequate supply of low priced materials and automated fabrication techniques are available. Presently, silicon is the most promising cell material for achieving the near term cost goals of the Photovoltaics Program. Electronic grade silicon is produced primarily for the semiconductor industry with the photovoltaic industry using, in most cases, the production rejects of slightly lower grade material. Therefore, the future availability of adequate supplies of low cost silicon is one of the major concerns of the Photovoltaic Program. The supply outlook for silicon with emphasis on pricing is updated and is based primarily on an industry survey conducted by a JPL consultant. This survey included interviews with polycrystalline silicon manufacturers, a large cross section of silicon users and silicon solar cell manufacturers.

  6. A brief review of recent developments in the designs that prevent bio-fouling on silicon and silicon-based materials.

    PubMed

    Zhang, Xiaoning; Brodus, DaShan; Hollimon, Valerie; Hu, Hongmei

    2017-01-01

    Silicon and silicon-based materials are essential to our daily life. They are widely used in healthcare and manufacturing. However, silicon and silicon-based materials are susceptible to bio-fouling, which is of great concern in numerous applications. To date, interdisciplinary research in surface science, polymer science, biology, and engineering has led to the implementation of antifouling strategies for silicon-based materials. However, a review to discuss those antifouling strategies for silicon-based materials is lacking. In this article, we summarized two major approaches involving the functionalization of silicon and silicon-based materials with molecules exhibiting antifouling properties, and the fabrication of silicon-based materials with nano- or micro-structures. Both approaches lead to a significant reduction in bio-fouling. We critically reviewed the designs that prevent fouling due to proteins, bacteria, and marine organisms on silicon and silicon-based materials. Graphical abstractStrategies used in the designs that prevent bio-fouling on silicon and silicon-based materials.

  7. Silicon material technology status. [assessment for electronic and photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1983-01-01

    Silicon has been the basic element for the electronic and photovoltaic industries. The use of silicon as the primary element for terrestrial photovoltaic solar arrays is projected to continue. The reasons for this projection are related to the maturity of silicon technology, the ready availability of extremely pure silicon, the performance of silicon solar cells, and the considerable present investment in technology and manufacturing facilities. The technologies for producing semiconductor grade silicon and, to a lesser extent, refined metallurgical grade silicon are considered. It is pointed out that nearly all of the semiconductor grade silicon is produced by processes based on the Siemens deposition reactor, a technology developed 26 years ago. The state-of-the-art for producing silicon by this process is discussed. It is expected that efforts to reduce polysilicon process costs will continue.

  8. Silicon material technology status. [assessment for electronic and photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1983-01-01

    Silicon has been the basic element for the electronic and photovoltaic industries. The use of silicon as the primary element for terrestrial photovoltaic solar arrays is projected to continue. The reasons for this projection are related to the maturity of silicon technology, the ready availability of extremely pure silicon, the performance of silicon solar cells, and the considerable present investment in technology and manufacturing facilities. The technologies for producing semiconductor grade silicon and, to a lesser extent, refined metallurgical grade silicon are considered. It is pointed out that nearly all of the semiconductor grade silicon is produced by processes based on the Siemens deposition reactor, a technology developed 26 years ago. The state-of-the-art for producing silicon by this process is discussed. It is expected that efforts to reduce polysilicon process costs will continue.

  9. Surface modification of an experimental silicone rubber maxillofacial material to improve wettability.

    PubMed

    Aziz, Tariq; Waters, Mark; Jagger, Robert

    2003-03-01

    Good wettability of maxillofacial prosthetic materials is important so that a lubricating layer is formed with supporting tissues thus reducing patient discomfort. The purpose of the study was to surface modify an experimental silicone rubber material in order to improve wettability. Samples of experimental silicone rubber were surface modified by first argon plasma treatment followed by chemisorption of ethyleneoxy functional silanes. These were compared with the same silicone rubber which had ethyleneoxy functional surfactants incorporated into the polymer matrix. In all cases contact angles, tear strength and water uptake were measured. Surface modified materials had comparable contact angles to surfactant modified silicone rubber all being significantly lower than the unmodified material. Surface modified materials, however, had a significantly higher tear strength and lower water uptake in comparison to surfactant modified materials. Argon plasma treatment followed by chemisorption of ethyleneoxy functional silanes proved an effective way of improving the wettability of an experimental silicone rubber maxillofacial prosthetic material without altering bulk properties.

  10. Resistivity measurements on the neutron irradiated detector grade silicon materials

    SciTech Connect

    Li, Zheng

    1993-11-01

    Resistivity measurements under the condition of no or low electrical field (electrical neutral bulk or ENB condition) have been made on various device configurations on detector grade silicon materials after neutron irradiation. Results of the measurements have shown that the ENB resistivity increases with neutron fluence ({Phi}{sub n}) at low {phi}{sub n} (<10{sup 13} n/cm{sup 2}) and saturates at a value between 300 and 400 k{Omega}-cm at {phi}{sub n} {approximately}10{sup 13} n/cm{sup 2}. Meanwhile, the effective doping concentration N{sub eff} in the space charge region (SCR) obtained from the C-V measurements of fully depleted p{sup +}/n silicon junction detectors has been found to increase nearly linearly with {phi}{sub n} at high fluences ({phi}{sub n} > 10{sup 13} n/cm{sup 2}). The experimental results are explained by the deep levels crossing the Fermi level in the SCR and near perfect compensation in the ENB by all deep levels, resulting in N{sub eff} (SCR) {ne} n or p (free carrier concentrations in the ENB).

  11. Why silicon is and will remain the dominant photovoltaic material

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra

    2009-07-01

    Rising demands of energy in emerging economies, coupled with the green house gas emissions related problems around the globe have provided a unique opportunity of exploiting the advantages offered by photovoltaic (PV) systems for green energy electricity generation. Similar to cell phones, power generated by PV systems can reach over two billion people worldwide who have no access to clean energy. Only silicon based PV devices meet the low-cost manufacturing criterion of clean energy conversion (abundance of raw material and no environmental health and safety issues). The use of larger size glass substrates and manufacturing techniques similar to the ones used by the liquid crystal display industry and the large scale manufacturing of amorphous silicon thin films based modules (~ GW per year manufacturing at a single location) can lead to installed PV system cost of $3/Wp. This will open a huge market for grid connected PV systems and related markets. With further research and development, this approach can provide $2/Wp installed PV system costs in the next few years. At this cost level, PV electricity generation is competitive with any other technology, and PV power generation can be a dominant electricity generation technology in the 21st century.

  12. Silicon materials task of the Low Cost Solar Array Project: Effect of impurities and processing on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.

    1982-01-01

    The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.

  13. Silicon materials outlook study for 1980-1985 calendar years

    NASA Technical Reports Server (NTRS)

    Costogue, E.; Ferber, R.; Hasbach, W.; Pellin, R.; Yaws, C.

    1979-01-01

    The polycrystalline silicon industry was studied in relation to future market needs. Analysis of the data obtained indicates that there is a high probability of polycrystalline silicon shortage by the end of 1982 and a strong seller's market after 1981 which will foster price competition for available silicon.

  14. Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material

    NASA Astrophysics Data System (ADS)

    Buonassisi, Tonio; Marcus, Matthew A.; Istratov, Andrei A.; Heuer, Matthias; Ciszek, Theodore F.; Lai, Barry; Cai, Zhonghou; Weber, Eicke R.

    2005-03-01

    In this study, synchrotron-based x-ray absorption microspectroscopy (μ-XAS) is applied to identify the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy, and a segregation coefficient is determined from experimental data to be at least (1-2)×103. Additionally, μ-XAS data directly demonstrate that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

  15. Silicon Materials Research on Growth Processes, Impurities, and Defects

    SciTech Connect

    Ciszek, T. F.; Wang, T. H.; Page, M. R.; Landry. M. D.; Bauer, R. E.

    2003-05-01

    Research progress on silicon crystal growth processes for photovoltaic applications and defect and impurity effects on PV performance is presented. Growth processes, in addition to thin-film silicon growth, include techniques for silicon-feedstock generation and a method for rapid, replenished Czochralski growth. We have produced research samples of silicon with low and very high dislocation densities for collaborative research with other institutes, and have also made samples with varying amounts of incorporated nitrogen and oxygen, again, for collaborative studies with university researchers, concerning the effects of these impurities on mechanical strength. Transition-metal doping of silicon for understanding metallic impurity effects on lifetime and cell performance is ongoing.

  16. Laser doping and metallization of wide bandgap materials: silicon carbide, gallium nitride, and aluminum nitride

    NASA Astrophysics Data System (ADS)

    Salama, Islam Abdel Haleem

    A laser direct write and doping (LDWD) system is designed and utilized for direct metallization and selective area doping in different SiC polytypes, GaN and in dielectrics including AlN. Laser direct metallization in 4H- and 6H-SiC generates metal-like conductive phases that are produced as both rectifying and ohmic contacts without metal deposition. Nd:YAG (lambda = 532, 1064 nm) nanosecond pulsed laser irradiation in SiC induces carbon-rich conductive phases by thermal decomposition of SiC while UV excimer (lambda = 193 nm) laser irradiation produces a silicon-rich phase due to selective carbon photoablation. Linear transmission line method (TLM) pattern is directly fabricated in single crystals SiC by pulsed laser irradiation allowing characterization of the laser fabricated metal-like contacts. Activation of a self focusing effect at the frequency doubled Nd:YAG laser irradiation (lambda = 532 nm) allows to fabricate buried metal like contacts in SiC wafers while maintaining their device-ready surface condition. Gas immersion laser doping (GILD) and laser doping from a molten precursor are utilized to dope both GaN and SiC. Trimethylaluminum (TMAl) and nitrogen are the precursors used to produce p-type and n-type doped SiC; respectively. Nd:YAG and excimer laser nitrogen doping in SiC epilayer and single crystal substrates increases the dopant concentration by two orders of magnitude and produces both deep (500--600 nm) and shallow (50 nm) junctions, respectively. Laser assisted effusion/diffusion is introduced and utilized to dope Al in SiC wafers. Using this technique, a150 nm p-type doped junction is fabricated in semi-insulating 6H- and n-type doped 4H-SiC wafers. Laser-induced p-type doping of Mg in single crystal GaN is conducted using Bis-magnesium dihydrate [Mg(TMHD)2]. Mg concentration and penetration depth up to 10 20--1021 cm-3 and 5mum, respectively are achieved using various laser doping techniques. Laser direct writing and doping (LDWD) is a

  17. Critical technology limits to silicon material and sheet production

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1982-01-01

    Earlier studies have indicated that expenditures related to the preparation of high-purity silicon and its conversion to silicon sheet represent from 40 to 52 percent of the cost of the entire panel. The present investigation is concerned with the elements which were selected for study in connection with the Flat-Plate Solar Array (FSA) Project. The first of two technologies which are being developed within the FSA Project involves the conversion of metallurgical-grade silicon through a silane purification process to silicon particles. The second is concerned with the conversion of trichlorosilane to dichlorosilane, and the subsequent production of silicon using modified rod reactors of the Siemens type. With respect to silicon sheet preparation, efforts have been focused both on the preparation of ingots, followed by wafering, and the direct crystallization of molten silicon into a ribbon or film.

  18. Silicon materials task of the low cost solar array project (Phase III). Effect of impurities and processing on silicon solar cells. Phase III summary and seventeenth quarterly report, Volume 1: characterization methods for impurities in silicon and impurity effects data base

    SciTech Connect

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Campbell, R.B.; Blais, P.D.; Rai-Choudhury, P.; Stapleton, R.E.; Mollenkopf, H.C.; McCormick, J.R.

    1980-01-01

    The object of Phase III of the program has been to investigate the effects of various processes, metal contaminants and contaminant-process interactions on the performance of terrestrial silicon solar cells. The study encompassed a variety of tasks including: (1) a detailed examination of thermal processing effects, such as HCl and POCl/sub 3/ gettering on impurity behavior, (2) completion of the data base and modeling for impurities in n-base silicon, (3) extension of the data base on p-type material to include elements likely to be introduced during the production, refining, or crystal growth of silicon, (4) effects on cell performance on anisotropic impurity distributions in large CZ crystals and silicon webs, and (5) a preliminary assessment of the permanence of the impurity effects. Two major topics are treated: methods to measure and evaluate impurity effects in silicon and comprehensive tabulations of data derived during the study. For example, discussions of deep level spectroscopy, detailed dark I-V measurements, recombination lifetime determination, scanned laser photo-response, and conventional solar cell I-V techniques, as well as descriptions of silicon chemical analysis are included. Considerable data are tabulated on the composition, electrical, and solar cell characteristics of impurity-doped silicon.

  19. SESAME equation of state Number 8010: Boron loaded silicone potting material

    SciTech Connect

    Boettger, J.C.

    1993-05-01

    A new SESAME equation of state (EOS) for boron loaded silicone potting material has been generated using the computer program GRIZZLY. This new EOS has been added to the SESAME EOS library as material number 8010.

  20. Temperature-dependent current-voltage characteristics and ultraviolet light detection of heterojunction diodes comprising n-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite films and p-type silicon substrates

    NASA Astrophysics Data System (ADS)

    Zkria, Abdelrahman; Yoshitake, Tsuyoshi

    2017-07-01

    Heterojunction diodes comprising poorly (1 at. %) nitrogen-doped n-type ultrananocrystalline diamond/hydrogenated amorphous carbon composite (UNCD/a-C:H) films and p-type Si substrates were prepared in nitrogen and hydrogen mixed gas atmosphere by coaxial arc plasma deposition. Dark current density-voltage (J-V) characteristics were studied in the temperature range of 200-400 K, in order to investigate the current transport mechanism through the fabricated heterojunctions. The temperature dependence of the ideality factor and reverse saturation current reveals that carrier transport predominantly occurs in the generation-recombination mechanism and, at low temperatures, it accompanies tunneling via weak traps. The heterojunctions surely exhibited photodetection for 254 nm ultraviolet light illumination. It is expected that photocarriers will be generated at UNCD grains and transported through an a-C:H matrix.

  1. The impact of silicone hydrogel materials on overnight corneal swelling.

    PubMed

    Steffen, Robert B; Schnider, Cristina M

    2007-05-01

    To identify the corneal swelling response associated with silicone hydrogel contact lens wear. Twenty-five subjects were recruited to participate in this single-center, controlled, single-masked, clinical trial. The corneal swelling response was evaluated by central corneal pachymetry after overnight wear of balafilcon A, etafilcon A, lotrafilcon A, senofilcon A, and no lens wear. More specifically, after 8 hours of closed-eye wear of each material, corneal thickness was measured immediately on eye opening, in addition to the first 4 hours of open-eye wear. Paired t tests were used to compare the swelling response from each condition to that associated with senofilcon A, and given the numerous statistical comparisons, a P value of Silicone hydrogel lenses, with high oxygen transmissibilities, are associated with very little corneal swelling after overnight wear of the lenses.

  2. P-type transparent conducting oxides

    NASA Astrophysics Data System (ADS)

    Zhang, Kelvin H. L.; Xi, Kai; Blamire, Mark G.; Egdell, Russell G.

    2016-09-01

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of ‘chemical modulation of the valence band’ to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d 10 orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu+-based delafossites, layered oxychalcogenides, nd 6 spinel oxides, Cr3+-based oxides (3d 3) and post-transition metal oxides with lone pair state (ns 2). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  3. P-type transparent conducting oxides.

    PubMed

    Zhang, Kelvin H L; Xi, Kai; Blamire, Mark G; Egdell, Russell G

    2016-09-28

    Transparent conducting oxides constitute a unique class of materials combining properties of electrical conductivity and optical transparency in a single material. They are needed for a wide range of applications including solar cells, flat panel displays, touch screens, light emitting diodes and transparent electronics. Most of the commercially available TCOs are n-type, such as Sn doped In2O3, Al doped ZnO, and F doped SnO2. However, the development of efficient p-type TCOs remains an outstanding challenge. This challenge is thought to be due to the localized nature of the O 2p derived valence band which leads to difficulty in introducing shallow acceptors and large hole effective masses. In 1997 Hosono and co-workers (1997 Nature 389 939) proposed the concept of 'chemical modulation of the valence band' to mitigate this problem using hybridization of O 2p orbitals with close-shell Cu 3d (10) orbitals. This work has sparked tremendous interest in designing p-TCO materials together with deep understanding the underlying materials physics. In this article, we will provide a comprehensive review on traditional and recently emergent p-TCOs, including Cu(+)-based delafossites, layered oxychalcogenides, nd (6) spinel oxides, Cr(3+)-based oxides (3d (3)) and post-transition metal oxides with lone pair state (ns (2)). We will focus our discussions on the basic materials physics of these materials in terms of electronic structures, doping and defect properties for p-type conductivity and optical properties. Device applications based on p-TCOs for transparent p-n junctions will also be briefly discussed.

  4. Material Analysis of Coated Siliconized Silicon Carbide (SiSiC) Honeycomb Structures for Thermochemical Hydrogen Production.

    PubMed

    Neises-von Puttkamer, Martina; Simon, Heike; Schmücker, Martin; Roeb, Martin; Sattler, Christian; Pitz-Paal, Robert

    2013-01-31

    In the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC) honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM) with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formation of various reaction products such as SiO₂, zircon (ZrSiO₄), iron silicide (FeSi) and hercynite (FeAl₂O₄) indicating the occurrence of various side reactions between the different phases of the coating as well as between the coating and the SiSiC substrate. The investigations showed that the ferrite is mainly reduced through reaction with silicon (Si), which is present in the SiSiC matrix, and silicon carbide (SiC). These results led to the formulation of a new redox mechanism for this system in which Zn-ferrite is reduced through Si forming silicon dioxide (SiO₂) and through SiC forming SiO₂ and carbon monoxide. A decline of hydrogen production within the first 20 cycles is suggested to be due to the growth of a silicon dioxide and zircon layer which acts as a diffusion barrier for the reacting specie.

  5. Material Analysis of Coated Siliconized Silicon Carbide (SiSiC) Honeycomb Structures for Thermochemical Hydrogen Production

    PubMed Central

    Neises-von Puttkamer, Martina; Simon, Heike; Schmücker, Martin; Roeb, Martin; Sattler, Christian; Pitz-Paal, Robert

    2013-01-01

    In the present work, thermochemical water splitting with siliconized silicon carbide (SiSiC) honeycombs coated with a zinc ferrite redox material was investigated. The small scale coated monoliths were tested in a laboratory test-rig and characterized by X-ray diffractometry (XRD) and Scanning Electron Microscopy (SEM) with corresponding micro analysis after testing in order to characterize the changes in morphology and composition. Comparison of several treated monoliths revealed the formation of various reaction products such as SiO2, zircon (ZrSiO4), iron silicide (FeSi) and hercynite (FeAl2O4) indicating the occurrence of various side reactions between the different phases of the coating as well as between the coating and the SiSiC substrate. The investigations showed that the ferrite is mainly reduced through reaction with silicon (Si), which is present in the SiSiC matrix, and silicon carbide (SiC). These results led to the formulation of a new redox mechanism for this system in which Zn-ferrite is reduced through Si forming silicon dioxide (SiO2) and through SiC forming SiO2 and carbon monoxide. A decline of hydrogen production within the first 20 cycles is suggested to be due to the growth of a silicon dioxide and zircon layer which acts as a diffusion barrier for the reacting specie. PMID:28809316

  6. Integrated micro motion systems using silicon and related materials

    NASA Astrophysics Data System (ADS)

    Fujita, Hiroyuki

    Micromechanical elements and micromotors have been fabricated by micromachining techniques for semiconductor devices. Silicon, SiO2, silicon nitride, polyimide, and some metals are used to make them. The future goal of the research is to develop an integrated micromotion system which is composed of micromechanical elements, actuators, sensors and logic circuits. The system is an intelligent system with sense, judgment. and motion.

  7. Silicon nitride used as a rolling-element bearing material

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1975-01-01

    Rolling-element fatigue tests were conducted with hot-pressed silicon nitride to determine its ability to withstand concentrated contacts in rolling-element bearings. If hot-pressed silicon nitride is used for both balls and races, attention must be paid to fitting both shaft and bearing housing.

  8. Piezoresistance and hole transport in beryllium-doped silicon.

    NASA Technical Reports Server (NTRS)

    Littlejohn, M. A.; Robertson, J. B.

    1972-01-01

    The resistivity and piezoresistance of p-type silicon doped with beryllium have been studied as a function of temperature, crystal orientation, and beryllium doping concentration. It is shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gauge factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, while the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  9. Local inhibition of angiogenesis by halofuginone coated silicone materials.

    PubMed

    Jordan, Martin C; Zeplin, Philip H

    2012-05-01

    Anti-angiogenic therapy is a promising approach for the treatment of increased angiogenesis in certain diseases. We aimed to investigate the local anti-angiogenic effect of silicone implants coated with Halofuginone, an angiogenesis inhibitor that inhibits synthesis of collagen-type-I and matrix metalloproteinases. The degree of angiogenesis was observed after implantation of surface modified Halofuginone eluting silicone implants into a submuscular pocket in rats over a period of 3 months. Subsequently, key mediators of angiogenesis (TGF-beta-1, bFGF, COL1A1, MMP-2, MMP-9, VEGF and PDGF) were established by immunohistological staining and RT-PCR and statistically evaluated. In comparison to uncoated silicone implants, Halofuginone eluting silicone implants lead to a significant local decrease of angiogenesis. Halofuginone eluting hybrid surface silicone implants have a significant local anti-angiogenic effect by down-regulating the expression activity of key mediators of angiogenesis.

  10. [Osteosynthesis in facial bones: silicon nitride ceramic as material].

    PubMed

    Neumann, A; Unkel, C; Werry, C; Herborn, C U; Maier, H R; Ragoss, C; Jahnke, K

    2006-12-01

    The favorable properties of silicon nitride (Si3N4) ceramic, such as high stability and biocompatibility suggest its biomedical use as an implant material. The aim of this study was to test its suitability for osteosynthesis. A Si3N4 prototype minifixation system was manufactured and implanted for osteosynthesis of artificial frontal bone defects in three minipigs. After 3 months, histological sections, CT and MRI scans were obtained. Finite element modeling (FEM) was used to simulate stresses and strains on Si3N4 miniplates and screws to calculate survival probabilities. Si3N4 miniplates and screws showed satisfactory intraoperative workability. There was no implant loss, displacement or fracture. Bone healing was complete in all animals and formation of new bone was observed in direct contact to the implants. Si3N4 ceramic showed a good biocompatibility outcome both in vitro and in vivo. This ceramic may serve as biomaterial for osteosynthesis, e.g. of the midface including reconstruction of the floor of the orbit and the skull base. Advantages compared to titanium are no risk of implantation to bone with mucosal attachment, no need for explantation, no interference with radiological imaging.

  11. Compatibility Studies of Various Refractory Materials in Contact with Molten Silicon

    NASA Technical Reports Server (NTRS)

    Odonnell, T.; Leipold, M. H.; Hagan, M.

    1978-01-01

    The production of low cost, efficient solar cells for terrestrial electric power generation involves the manipulation of molten silicon with a present need for noncontaminating, high temperature refractories to be used as containment vessels, ribbon-production dies, and dip-coated substrates. Studies were conducted on the wetting behavior and chemical/physical interactions between molten silicon and various refractory materials.

  12. Silicon materials task of the low cost solar array project, part 2

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rai-Choudhury, P.; Blais, P. D.; Mccormick, J. R.

    1976-01-01

    Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency.

  13. Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing

    NASA Astrophysics Data System (ADS)

    Rea, Ilaria; Terracciano, Monica; Chandrasekaran, Soundarrajan; Voelcker, Nicolas H.; Dardano, Principia; Martucci, Nicola M.; Lamberti, Annalisa; De Stefano, Luca

    2016-09-01

    Native diatoms made of amorphous silica are first converted into silicon structures via magnesiothermic process, preserving the original shape: electron force microscopy analysis performed on silicon-converted diatoms demonstrates their semiconductor behavior. Wet surface chemical treatments are then performed in order to enhance the photoluminescence emission from the resulting silicon diatoms and, at the same time, to allow the immobilization of biological probes, namely proteins and antibodies, via silanization. We demonstrate that light emission from semiconductive silicon diatoms can be used for antibody-antigen recognition, endorsing this material as optoelectronic transducer.

  14. Studies on Thermal and Mechanical Properties of Epoxy-Silicon Oxide Hybrid Materials

    NASA Astrophysics Data System (ADS)

    Ghosh, P. K.; Kumar, Kaushal; Kumar, Arun

    2015-11-01

    Ultrasonic dual mixing (UDM) process involving ultrasonic vibration with simultaneous stirring is used to prepare epoxy-silicon oxide hybrid materials with inorganic nanoscale building blocks by incorporating nanoscale silicon oxide network in epoxy matrix. The silicon oxide network is obtained from tetraethoxysilane (TEOS) by using the in situ sol-gel process. Same epoxy-silica hybrid materials were also prepared by mixing with simple impeller stirring, and its properties were compared with the material of same composition prepared by the UDM process. The epoxy-silicon oxide hybrid materials are characterized by using FT-IR, DSC, FESEM, and XRD techniques. The glass transition temperature, tensile strength, and elastic modulus of the epoxy-silicon oxide hybrid materials treated by UDM process are found comparatively better than those of the materials processed by a rotating impeller. FESEM studies confirm that amount of TEOS varies the distribution and size of silicon oxide network, which remains relatively finer at lower content of TEOS. Significant improvement of thermal and mechanical properties of the neat epoxy is noted in the presence of 3.05 wt.% TEOS content in it is giving rise to the formation of inorganic building block of silicon oxide of size 88 ± 45 nm in the matrix. In this regard, the use of UDM process is found superior to mixing by simple impeller stirring for enhancement of properties of epoxy-silicon oxide hybrid materials. Lowering of properties of the epoxy-silicon oxide hybrid materials with TEOS addition beyond 3.05 wt.% up to 6.1 wt.% occurs primarily due to increase of amount and size (up to 170 ± 82 nm) of the inorganic building block in the matrix.

  15. Impact-resistant silicon-carbide-based ceramic materials

    NASA Astrophysics Data System (ADS)

    Perevislov, S. N.; Bespalov, I. A.

    2017-08-01

    The bullet resistance is determined by an indirect method, by evaluation of time of delay of penetration by bullet of the silicon-carbide-based ceramics obtained by reactive sintering, liquid-phase sintering, and hot pressing.

  16. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    NASA Technical Reports Server (NTRS)

    Hurley, John S.

    1990-01-01

    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  17. Reaction-Based SiC Materials for Joining Silicon Carbide Composites for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Singh, M.; Serizawa, H.; Katoh, Y.; Kohyama, A.

    2000-09-01

    The fabrication of large or complex silicon carbide-fiber-reinforced silicon carbide (SiC/SiC) components for fusion energy systems requires a method to assemble smaller components that are limited in size by manufacturing constraints. Previous analysis indicates that silicon carbide should be considered as candidate joint materials. Two methods to obtain SiC joints rely on a reaction between silicon and carbon to produce silicon carbide. This report summarizes preliminary mechanical properties of joints formed by these two methods. The methods appear to provide similar mechanical properties. Both the test methods and materials are preliminary in design and require further optimization. In an effort to determine how the mechanical test data is influenced by the test methodology and specimen size, plans for detailed finite element modeling (FEM) are presented.

  18. Silicon material task. Part 3: Low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Coldwell, D. M.

    1977-01-01

    The feasibility of a process for carbon reduction of low impurity silica in a plasma heat source was investigated to produce low-cost solar-grade silicon. Theoretical aspects of the reaction chemistry were studied with the aid of a computer program using iterative free energy minimization. These calculations indicate a threshold temperature exists at 2400 K below which no silicon is formed. The computer simulation technique of molecular dynamics was used to study the quenching of product species.

  19. The chemo-mechanical effect of cutting fluid on material removal in diamond scribing of silicon

    NASA Astrophysics Data System (ADS)

    Kumar, Arkadeep; Melkote, Shreyes N.

    2017-07-01

    The mechanical integrity of silicon wafers cut by diamond wire sawing depends on the damage (e.g., micro-cracks) caused by the cutting process. The damage type and extent depends on the material removal mode, i.e., ductile or brittle. This paper investigates the effect of cutting fluid on the mode of material removal in diamond scribing of single crystal silicon, which simulates the material removal process in diamond wire sawing of silicon wafers. We conducted scribing experiments with a diamond tipped indenter in the absence (dry) and in the presence of a water-based cutting fluid. We found that the cutting mode is more ductile when scribing in the presence of cutting fluid compared to dry scribing. We explain the experimental observations by the chemo-mechanical effect of the cutting fluid on silicon, which lowers its hardness and promotes ductile mode material removal.

  20. Thermally conductive metal wool-silicone rubber material can be used as shock and vibration damper

    NASA Technical Reports Server (NTRS)

    Hough, W. W.

    1964-01-01

    Bronze wool pads, impregnated with silicon rubber, meet the requirement for a thermally conductive, shock and vibration absorbing material. They serve as spacers in equipment mounting and are resistant to high temperatures.

  1. Effect of Heat Treatment on Silicon Carbide Based Joining Materials for Fusion Energy

    SciTech Connect

    Lewinsohn, Charles A.; Jones, Russell H.; Nozawa, T.; Kotani, M.; Kishimoto, H.; Katoh, Y.; Kohyama, A.

    2001-10-01

    Two general approaches to obtaining silicon carbide-based joint materials were used. The first method relies on reactions between silicon and carbon to form silicon carbide, or to bond silicon carbide powders together. The second method consists of pyrolysing a polycarbosilane polymer to yield an amorphous, covalently bonded material. In order to assess the long-term durability of the joint materials, various heat treatments were performed and the effects on the mechanical properties of the joints were measured. Although the joints derived from the polycarbosilane polymer were not the strongest, the value of strength measured was not affected by heat treatment. On the other hand, the value of the strength of the reaction-based joints was affected by heat treatment, indicating the presence of residual stresses or unreacted material subsequent to processing. Further investigation of reaction-based joining should consist of detailed microscopic studies; however, continued study of joints derived from polymers is also warranted.

  2. Microscopic Image of Martian Surface Material on a Silicone Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger version of Figure 1

    This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil.

    The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material.

    The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch).

    Zooming in on the Martian Soil

    In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander.

    The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles.

    The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing.

    The shadows at the bottom of image are of the beams of the Atomic Force Microscope.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  3. Microscopic Image of Martian Surface Material on a Silicone Substrate

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for larger version of Figure 1

    This image taken by the Optical Microscope on NASA's Phoenix Mars Lander shows soil sprinkled from the lander's Robot Arm scoop onto a silicone substrate. The substrate was then rotated in front of the microscope. This is the first sample collected and delivered for instrumental analysis onboard a planetary lander since NASA's Viking Mars missions of the 1970s. It is also the highest resolution image yet seen of Martian soil.

    The image is dominated by fine particles close to the resolution of the microscope. These particles have formed clumps, which may be a smaller scale version of what has been observed by Phoenix during digging of the surface material.

    The microscope took this image during Phoenix's Sol 17 (June 11), or the 17th Martian day after landing. The scale bar is 1 millimeter (0.04 inch).

    Zooming in on the Martian Soil

    In figure 1, three zoomed-in portions are shown with an image of Martian soil particles taken by the Optical Microscope on NASA's Phoenix Mars Lander.

    The left zoom box shows a composite particle. The top of the particle has a green tinge, possibly indicating olivine. The bottom of the particle has been reimaged at a different focus position in black and white (middle zoom box), showing that this is a clump of finer particles.

    The right zoom box shows a rounded, glassy particle, similar to those which have also been seen in an earlier sample of airfall dust collected on a surface exposed during landing.

    The shadows at the bottom of image are of the beams of the Atomic Force Microscope.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  4. Material and Energy Flows Associated with Select Metals in GREET 2. Molybdenum, Platinum, Zinc, Nickel, Silicon

    SciTech Connect

    Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.; Kelly, Jarod C.; Dunn, Jennifer B.

    2015-09-01

    In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.

  5. Slicing of Silicon into Sheet Material. Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.; Holden, S. C.; Wolfson, R. G.

    1979-01-01

    The use of multiblade slurry sawing to produce silicon wafers from ingots was investigated. The commercially available state of the art process was improved by 20% in terms of area of silicon wafers produced from an ingot. The process was improved 34% on an experimental basis. Economic analyses presented show that further improvements are necessary to approach the desired wafer costs, mostly reduction in expendable materials costs. Tests which indicate that such reduction is possible are included, although demonstration of such reduction was not completed. A new, large capacity saw was designed and tested. Performance comparable with current equipment (in terms of number of wafers/cm) was demonstrated.

  6. Materials characterization and fracture mechanics of a space grade dielectric silicone insulation

    NASA Technical Reports Server (NTRS)

    Abdel-Latif, A. I.; Tweedie, A. T.

    1982-01-01

    The present investigation is concerned with the DC 93-500 high voltage silicone insulation material employed to pot the gun and the collector end of a traveling wave tube (TWT) used on the Landsat D Satellite. The fracture mechanics behavior of the silicone resin was evaluated by measuring the slow crack velocity as a function of the opening mode of the stress intensity factor at +25 and -10 C, taking into account various uniaxial discrete strain values. It was found that the silicone resins slow crack growth is faster than that for a high voltage insulation polyurethane material at the same stress intensity factor value and room temperature.

  7. Low-temperature Amorphous and Nanocrystalline Silicon Materials and Thin-film Transistors

    NASA Astrophysics Data System (ADS)

    Sazonov, Andrei; Striakhilev, Denis; Nathan, Arokia

    Low-temperature processing and characterization of amorphous silicon (a-Si:H) and nanocrystalline silicon (nc-Si) materials and devices are reviewed. An overview of silicon-based low-temperature thin-film dielectrics is given in the context of thin-film transistor (TFT) device operation. The low-temperature growth and synthesis of these materials are also presented and compared to conventionally fabricated high-temperature processed devices. The effect of using nc-Si contacts on a-Si:H TFTs and the stability of nc-Si TFTs is reviewed.

  8. Materials characterization and fracture mechanics of a space grade dielectric silicone insulation

    NASA Technical Reports Server (NTRS)

    Abdel-Latif, A. I.; Tweedie, A. T.

    1982-01-01

    The present investigation is concerned with the DC 93-500 high voltage silicone insulation material employed to pot the gun and the collector end of a traveling wave tube (TWT) used on the Landsat D Satellite. The fracture mechanics behavior of the silicone resin was evaluated by measuring the slow crack velocity as a function of the opening mode of the stress intensity factor at +25 and -10 C, taking into account various uniaxial discrete strain values. It was found that the silicone resins slow crack growth is faster than that for a high voltage insulation polyurethane material at the same stress intensity factor value and room temperature.

  9. Surface polishing by electrochemical etching of p-type 4H SiC

    NASA Astrophysics Data System (ADS)

    Ke, Y.; Yan, F.; Devaty, R. P.; Choyke, W. J.

    2009-09-01

    Electrochemical polishing of Si- and C-face p-type 4H SiC has been performed. Polishing the Si face leads to a smoother surface compared to the C face within the range of etching conditions studied. However, the results of additional experiments on C-face samples indicate that polishing a lower doped p-type material leads to improved surface quality for this face. Differences in polishing on the two faces are interpreted in terms of preferred electrochemical etching directions in SiC. Etching conditions such as HF concentration, doping, and etching current density were varied to obtain optimized values. Current-voltage plots (voltammograms) show a maximum electrochemical current density for the process. The polishing should be performed at a constant current density near this peak value to obtain both a smooth surface and a rapid rate of removal of material. In contrast to electrochemical polishing of silicon, we suggest that the applied current should match the rate at which the electrolyte can supply ions for reaction to obtain the smoothest surface required for microelectromechanical system device fabrication. Based on the experiments, we propose that, to obtain the smoothest SiC surface using electrochemical polishing, etching should be performed on Si-face p-type 4H SiC in dilute HF solution at the optimum current density determined by the current-voltage measurements.

  10. Use of silicon oxynitride as a sacrificial material for microelectromechanical devices

    DOEpatents

    Habermehl, Scott D.; Sniegowski, Jeffry J.

    2001-01-01

    The use of silicon oxynitride (SiO.sub.x N.sub.y) as a sacrificial material for forming a microelectromechanical (MEM) device is disclosed. Whereas conventional sacrificial materials such as silicon dioxide and silicate glasses are compressively strained, the composition of silicon oxynitride can be selected to be either tensile-strained or substantially-stress-free. Thus, silicon oxynitride can be used in combination with conventional sacrificial materials to limit an accumulation of compressive stress in a MEM device; or alternately the MEM device can be formed entirely with silicon oxynitride. Advantages to be gained from the use of silicon oxynitride as a sacrificial material for a MEM device include the formation of polysilicon members that are substantially free from residual stress, thereby improving the reliability of the MEM device; an ability to form the MEM device with a higher degree of complexity and more layers of structural polysilicon than would be possible using conventional compressively-strained sacrificial materials; and improved manufacturability resulting from the elimination of wafer distortion that can arise from an excess of accumulated stress in conventional sacrificial materials. The present invention is useful for forming many different types of MEM devices including accelerometers, sensors, motors, switches, coded locks, and flow-control devices, with or without integrated electronic circuitry.

  11. An investigation into the reliability of the silicon dioxide/silicon carbide material system

    NASA Astrophysics Data System (ADS)

    Maranowski, Michelle Mathur

    1998-12-01

    The goal of this thesis is to determine the reliability of thermally grown oxide films on SiC. The necessity of performing reliability measurements is to be able to design and fabricate power MOSFETS. Reliability testing occurs under accelerated temperature and field conditions. This allows extrapolation of the data to at-use conditions. This is the first time that a set of comprehensive reliability measurements is taken on the SiC semiconductor. Using the constant voltage stress test technique, time dependent dielectric breakdown (TDDB) measurements are made on both n-type and p-type 6H SiC capacitors. Preliminary measurements are also made on 4H SiC capacitors. The purpose of taking TDDB scans on both n-type and p-type substrates is to understand how the polarity of charge injection affects the reliability of the oxide. TDDB measurements are made at three temperatures(145 C, 240 C, and 305 C) and three or four field values. All measurements are made in accumulation mode so that the applied voltage drops across the oxide only. The results show failure for thermally grown oxides on SiC is multi-modal, consisting of a two part extrinsic failure mode and an intrinsic failure mode. Extrapolation of the intrinsic n-type data taken at 145 C shows that the tsb{50%} at 3 MV/cm is approximately 2,000,000 years. The extrapolation of the extrinsic data shows that tsb{50%} is 10 years. At higher temperatures tsb{50%} decreases for both extrinsic and intrinsic failures. As expected, the activation energy for the extrinsic failures is less than that of the intrinsic failures. This confirms that the mechanism of failure between the two modes differs. In the p-type configuration, charge is injected from the gate into the oxide. This proves to be less damaging than injecting from the semiconductor. The p-type data also varies from the n-type data in the fact that the p-type devices fail slower. As a result, the extrapolation to at-use conditions for p-type data is longer than the

  12. Europium Silicide – a Prospective Material for Contacts with Silicon

    NASA Astrophysics Data System (ADS)

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-05-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics.

  13. LSA silicon material task closed-cycle process development

    NASA Technical Reports Server (NTRS)

    Roques, R. A.; Wakefield, G. F.; Blocher, J. M., Jr.; Browning, M. F.; Wilson, W.

    1979-01-01

    The initial effort on feasibility of the closed cycle process was begun with the design of the two major items of untested equipment, the silicon tetrachloride by product converter and the rotary drum reactor for deposition of silicon from trichlorosilane. The design criteria of the initial laboratory equipment included consideration of the reaction chemistry, thermodynamics, and other technical factors. Design and construction of the laboratory equipment was completed. Preliminary silicon tetrachloride conversion experiments confirmed the expected high yield of trichlorosilane, up to 98 percent of theoretical conversion. A preliminary solar-grade polysilicon cost estimate, including capital costs considered extremely conservative, of $6.91/kg supports the potential of this approach to achieve the cost goal. The closed cycle process appears to have a very likely potential to achieve LSA goals.

  14. Europium Silicide – a Prospective Material for Contacts with Silicon

    PubMed Central

    Averyanov, Dmitry V.; Tokmachev, Andrey M.; Karateeva, Christina G.; Karateev, Igor A.; Lobanovich, Eduard F.; Prutskov, Grigory V.; Parfenov, Oleg E.; Taldenkov, Alexander N.; Vasiliev, Alexander L.; Storchak, Vyacheslav G.

    2016-01-01

    Metal-silicon junctions are crucial to the operation of semiconductor devices: aggressive scaling demands low-resistive metallic terminals to replace high-doped silicon in transistors. It suggests an efficient charge injection through a low Schottky barrier between a metal and Si. Tremendous efforts invested into engineering metal-silicon junctions reveal the major role of chemical bonding at the interface: premier contacts entail epitaxial integration of metal silicides with Si. Here we present epitaxially grown EuSi2/Si junction characterized by RHEED, XRD, transmission electron microscopy, magnetization and transport measurements. Structural perfection leads to superb conductivity and a record-low Schottky barrier with n-Si while an antiferromagnetic phase invites spin-related applications. This development opens brand-new opportunities in electronics. PMID:27211700

  15. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    NASA Technical Reports Server (NTRS)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  16. Silicon materials task of the low cost solar array project, phase 2

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R., Jr.; Blais, P. D.; Rohatgi, A.; Rai-Choudhury, P.; Hanes, M. H.; Mccormick, J. R.

    1977-01-01

    The object of phase 2 of this program is to investigate and define the effects of various processes, contaminants and process-contaminant interactions in the performance of terrestrial solar cells. The major effort this quarter was in the areas of crystal growth and thermal processing, comparison of impurity effects in low and high resistivity silicon, modeling the behavior of p-type ingots containing Mo, and C and, quantitative analysis of bulk lifetime and junction degradation effects in contaminated solar cells. The performance of solar cells fabricated on silicon web crystals grown from melts containing about 10 to the 18th power/cu cm of Cr, Mn, Fe, Ni, Ti, and V, respectively were measured. Deep level spectroscopy of metal-contaminated ingots was employed to determine the level and density of recombination centers due to Ti, V, Ni, and Cr.

  17. Purity of (28)Si-Enriched Silicon Material Used for the Determination of the Avogadro Constant.

    PubMed

    D'Agostino, Giancarlo; Di Luzio, Marco; Mana, Giovanni; Oddone, Massimo; Bennett, John W; Stopic, Attila

    2016-07-05

    At present, counting atoms in a one-kilogram sphere made of (28)Si-enriched silicon allows the determination of the Avogadro constant with the 2.0 × 10(-8) relative standard uncertainty required for the realization of the definition of the new kilogram. With the exception of carbon, oxygen, boron, nitrogen, and hydrogen, the claimed uncertainty is based on the postulation that the silicon material used to manufacture the sphere was above a particular level of purity. Two samples of the silicon were measured using instrumental neutron activation analysis to collect experimental data to test the purity assumption. The results obtained in two experiments carried out using different research reactor neutron sources are reported. The analysis confirmed that the silicon material was of sufficient purity by quantifying the ultratrace concentration of 12 elements and determining the detection limits of another 54 elements.

  18. A New Approach to Joining of Silicon Carbide-Based Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    1998-01-01

    Ceramic joining is recognized as one of the enabling technologies for the application of silicon carbide-based materials in a number of high temperature applications. An affordable, robust technique for the joining of silicon carbide-based ceramics has been developed. This technique is capable of producing joints with tailorable thickness and composition. Microstructure and mechanical properties of reaction formed joints in a reaction bonded silicon carbide have been reported. These joints maintain their mechanical strengths at high temperatures (up to 1350 C) in air. This technique is capable of joining large and complex shaped ceramic components.

  19. Sol-gel preparation of low oxygen content, high surface area silicon nitride and imidonitride materials.

    PubMed

    Sardar, Kripasindhu; Bounds, Richard; Carravetta, Marina; Cutts, Geoffrey; Hargreaves, Justin S J; Hector, Andrew L; Hriljac, Joseph A; Levason, William; Wilson, Felix

    2016-04-07

    Reactions of Si(NHMe)4 with ammonia are effectively catalysed by small ammonium triflate concentrations, and can be used to produce free-standing silicon imide gels. Firing at various temperatures produces amorphous or partially crystallised silicon imidonitride/nitride samples with high surface areas and low oxygen contents. The crystalline phase is entirely α-Si3N4 and structural similarities are observed between the amorphous and crystallised materials.

  20. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  1. Assessment of the advanced clay bonded silicon carbide candle filter materials. Topical report, September 1995

    SciTech Connect

    Alvin, M.A.

    1995-07-01

    Advancements have been made during the past five years to not only increase the strength of the as-manufactured clay bonded silicon carbide candle filter materials, but also to improve their high temperature creep resistance properties. This report reviews these developments, and describes the results of preliminary qualification testing which has been conducted at Westinghouse prior to utilizing the advanced clay bonded silicon carbide filters in high temperature, pressurized, coal-fired combustion and/or gasification applications.

  2. Study of silicone-based materials for the packaging of optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Lin, Yeong-Her

    The first part of this work is to evaluate the main materials used for the packaging of high power light-emitting diodes (LEDs), i.e., the die attach materials, the encapsulant materials, and high color rendering index(CRI) sol-gel composite materials. All of these materials had been discussed the performance, reliability, and issues in high power LED packages. High power white LEDs are created either from blue or near-ultraviolet chips encapsulated with a yellow phosphor, or from red-green-blue LED light mixing systems. The phosphor excited by blue LED chip was mostly used in experiment of this dissertation. The die attach materials contains filler particles possessing a maximum particle size less than 1.5 mum in diameter blended with epoxy polymer matrix. Such compositions enable thin bond line thickness, which decreases thermal resistance that exists between thermal interface materials and the corresponding mating surfaces. The thermal conductivity of nano silver die attach materials is relatively low, the thermal resistance from the junction to board is just 1.6 KW-1 in the bond line thickness of 5.3 mum, which is much lower than the thermal resistance using conventional die attach materials. The silicone die attach adhesive made in the lab cures through the free radical reaction of epoxy-functional organopolysiloxane and through the hydrosilylation reaction between alkenyl-functional organopolysiloxane and silicone-boned hydrogen-functional organopolysiloxane. By the combination of the free radical reaction and the hydrosilylation reaction, the low-molecular-weight silicone oil will not be out-migrated and not contaminate wire bondability to the LED chip and lead frame. Hence, the silicone die attach adhesive made in the lab can pass all reliability tests, such as operating life test JEDEC 85°C/85RH and room temperature operating life test. For LED encapsulating materials, most of commercial silicone encapsulants still suffer thermal/radiation induced

  3. Meteoritic silicon carbide - Pristine material from carbon stars

    NASA Technical Reports Server (NTRS)

    Lewis, Roy S.; Amari, Sachiko; Anders, Edward

    1990-01-01

    All five gases in interstellar silicon carbide grains have grossly nonsolar isotopic and elemental abundances that vary with grain size but are strikingly similar to calculated values for the helium-burning shell of low-mass carbon stars. Apparently these grains formed in carbon-star envelopes, and were impregnated with noble gas ions from a stellar wind. Meteoritic SiC provides a detailed record of nuclear and chemical processes in carbon stars.

  4. Progress research of non-Cz silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1983-01-01

    The simultaneous diffusion of liquid boron and liquid phosphorus dopants into N-type dendritic silicon web for solar cells was investigated. It is planned that the diffusion parameters required to achieve the desired P(+)NN(+) cell structure be determined and the resultant cell properties be compared to cells produced in a sequential differential process. A cost analysis of the simultaneous junction formation process is proposed.

  5. Carbonaceous materials containing silicon as anodes for lithium-ion cells

    SciTech Connect

    Wilson, A.M.; Dahn, J.R.; Xue, J.S.; Gao, Y.; Feng, X.H.

    1995-12-31

    Graphite and pregraphitic carbons capable of reversibly reacting with lithium ions are hosts commonly used in Li-ion cells. As a continuation of previous work, the authors have used chemical vapor deposition of benzene and silicon-containing precursors to prepare carbons containing nanodispersed silicon. The silicon resides within the unorganized regions in the pregraphitic carbons. These materials reversibly react with lithium in electrochemical cells and the reversible specific capacity has been known to increase from {approximately}300 mAhg{sup {minus}1}, in the absence of silicon, to near 500 mAhg{sup {minus}1} as silicon is added. The authors also report on Si-O-C materials which have been shown to reversibly react with Li in electrochemical cells with reversible specific capacities as high as 770 mAhg{sup {minus}1}. These materials have been made by thermal pyrolysis of siloxane polymers and epoxy-silane composites prepared from hardened mixtures of epoxy novolac resin and epoxy-functional silane. These materials all show promise for use as anode materials in advanced rechargeable lithium batteries.

  6. ESP – Data from Restarted Life Tests of Various Silicon Materials

    SciTech Connect

    Schneider, Jim

    2010-10-06

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  7. Synthesis and electrochemical characterization of Silicon clathrates as anode materials for Lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Raghavan, Rahul

    Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown

  8. Study on photon sensitivity of silicon diodes related to materials used for shielding

    NASA Astrophysics Data System (ADS)

    Moiseev, T.

    1999-08-01

    Large area silicon diodes used in electronic neutron dosemeters have a significant over-response to X- and gamma-rays, highly non-linear at photon energies below 200 keV. This over-response to photons is proportional to the diode's active area and strongly affects the neutron sensitivity of such dosemeters. Since silicon diodes are sensitive to light and electromagnetic fields, most diode detector assemblies are provided with a shielding, sometimes also used as radiation filter. In this paper, the influence of materials covering the diode's active area is investigated using the MCNP-4A code by estimating the photon induced pulses in a typical silicon wafer (300 μm thickness and 1 cm diameter) when provided with a front case cover. There have been simulated small-size diode front covers made of several materials with low neutron interaction cross-sections like aluminium, TEFLON, iron and lead. The estimated number of induced pulses in the silicon wafer is calculated for each type of shielding at normal photon incidence for several photon energies from 9.8 keV up to 1.15 MeV and compared with that in a bare silicon wafer. The simulated pulse height spectra show the origin of the photon-induced pulses in silicon for each material used as protective cover: the photoelectric effect for low Z front case materials at low-energy incident photons (up to about 65 keV) and the Compton and build-up effects for high Z case materials at higher photon energies. A simple means to lower and flatten the photon response of silicon diodes over an extended X- and gamma rays energy range is proposed by designing a composed photon filter.

  9. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Beaty, John S.; Rolfe, Jonathon L.; Vandersande, Jan; Fleurial, Jean-Pierre

    1992-01-01

    Spark erosion was used to produce ultra-fine particles of SiGe thermoelectric material and boron nitride, an inert phonon-scattering material. A homogeneous powder was made by mixing the two powders. The mixture was hot pressed to produce a thermoelectric material with uniformity dispersed, ultra-fine, inert, phonon-scattering centers. It is shown that, in samples with inert boron nitride or silicon nitride, thermal conductivity of a SiGe alloy can be reduced by about 25 percent while maintaining the electrical properties of the samples. Annealing of all the samples at 1525 K caused grain growth to over a micron, eliminating the detrimental effect attributable to small grains. Only in the sample with boron nitride the thermal conductivity did remain well below that for standard p-type SiGe (about 25 percent), while the electrical resistivity and Seebeck coefficient were very close to the values for standard p-type 80/20 SiGe.

  10. Reduced thermal conductivity due to scattering centers in p-type SiGe alloys

    NASA Technical Reports Server (NTRS)

    Beaty, John S.; Rolfe, Jonathon L.; Vandersande, Jan; Fleurial, Jean-Pierre

    1992-01-01

    Spark erosion was used to produce ultra-fine particles of SiGe thermoelectric material and boron nitride, an inert phonon-scattering material. A homogeneous powder was made by mixing the two powders. The mixture was hot pressed to produce a thermoelectric material with uniformity dispersed, ultra-fine, inert, phonon-scattering centers. It is shown that, in samples with inert boron nitride or silicon nitride, thermal conductivity of a SiGe alloy can be reduced by about 25 percent while maintaining the electrical properties of the samples. Annealing of all the samples at 1525 K caused grain growth to over a micron, eliminating the detrimental effect attributable to small grains. Only in the sample with boron nitride the thermal conductivity did remain well below that for standard p-type SiGe (about 25 percent), while the electrical resistivity and Seebeck coefficient were very close to the values for standard p-type 80/20 SiGe.

  11. Integration of 2D materials on a silicon photonics platform for optoelectronics applications

    NASA Astrophysics Data System (ADS)

    Youngblood, Nathan; Li, Mo

    2016-12-01

    Owing to enormous growth in both data storage and the demand for high-performance computing, there has been a major effort to integrate telecom networks on-chip. Silicon photonics is an ideal candidate, thanks to the maturity and economics of current CMOS processes in addition to the desirable optical properties of silicon in the near IR. The basics of optical communication require the ability to generate, modulate, and detect light, which is not currently possible with silicon alone. Growing germanium or III/V materials on silicon is technically challenging due to the mismatch between lattice constants and thermal properties. One proposed solution is to use two-dimensional materials, which have covalent bonds in-plane, but are held together by van der Waals forces out of plane. These materials have many unique electrical and optical properties and can be transferred to an arbitrary substrate without lattice matching requirements. This article reviews recent progress toward the integration of 2D materials on a silicon photonics platform for optoelectronic applications.

  12. Well-constructed silicon-based materials as high-performance lithium-ion battery anodes.

    PubMed

    Liu, Lehao; Lyu, Jing; Li, Tiehu; Zhao, Tingkai

    2016-01-14

    Silicon has been considered as one of the most promising anode material alternates for next-generation lithium-ion batteries, because of its high theoretical capacity, environmental friendliness, high safety, low cost, etc. Nevertheless, silicon-based anode materials (especially bulk silicon) suffer from severe capacity fading resulting from their low intrinsic electrical conductivity and great volume variation during lithiation/delithiation processes. To address this challenge, a few special constructions from nanostructures to anchored, flexible, sandwich, core-shell, porous and even integrated structures, have been well designed and fabricated to effectively improve the cycling performance of silicon-based anodes. In view of the fast development of silicon-based anode materials, we summarize their recent progress in structural design principles, preparation methods, morphological characteristics and electrochemical performance by highlighting the material structure. We also point out the associated problems and challenges faced by these anodes and introduce some feasible strategies to further boost their electrochemical performance. Furthermore, we give a few suggestions relating to the developing trends to better mature their practical applications in next-generation lithium-ion batteries.

  13. Implementation Challenges for Sintered Silicon Carbide Fiber Bonded Ceramic Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2011-01-01

    During the last decades, a number of fiber reinforced ceramic composites have been developed and tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. In addition to continuous fiber reinforced composites, other innovative materials have been developed including the fibrous monoliths and sintered fiber bonded ceramics. The sintered silicon carbide fiber bonded ceramics have been fabricated by the hot pressing and sintering of silicon carbide fibers. However, in this system reliable property database as well as various issues related to thermomechanical performance, integration, and fabrication of large and complex shape components has yet to be addressed. In this presentation, thermomechanical properties of sintered silicon carbide fiber bonded ceramics (as fabricated and joined) will be presented. In addition, critical need for manufacturing and integration technologies in successful implementation of these materials will be discussed.

  14. Silicone impression material foreign body in the middle ear: Two case reports and literature review.

    PubMed

    Suzuki, Nobuyoshi; Okamura, Koji; Yano, Takuya; Moteki, Hideaki; Kitoh, Ryosuke; Takumi, Yutaka; Usami, Shin-ichi

    2015-10-01

    We report two cases of impression material foreign body in the middle ear. The first case had been affected with chronic otitis media. The silicone flowed into the middle ear through a tympanic membrane perforation during the process of making an ear mold. About 4 years and 8 months after, the patient had severe vertigo and deafness. We found bone erosion of the prominence of the lateral semicircular canal and diagnosed labyrinthitis caused by silicone impression material. In the second case silicone flowed into the canal wall down mastoid cavity. Both cases required surgery to remove the foreign body. The clinical courses in such cases are variable and timing of surgery is sometimes difficult. In addition to reporting these two cases, we present here a review of the literature regarding impression material foreign bodies.

  15. Brightly photoluminescent phosphor materials based on silicon quantum dots with oxide shell passivation.

    PubMed

    Tu, Chang-Ching; Zhang, Qifeng; Lin, Lih Y; Cao, Guozhong

    2012-01-02

    We demonstrate silicon-based phosphor materials which exhibit bright photoluminescence from near-infra-red to green. The colloidal composites which are composed of silicon quantum dots (SiQDs) attached on micro-size silicon particles are synthesized by electrochemical etching of silicon wafers and then dispersed in ethanol. Subsequently, isotropic etching by HF/HNO3 mixture controls the size so as the emission wavelength of SiQDs, and forms an oxide passivating shell. The phosphors can further react with alkoxysilanes to form a stable suspension in non-polar solvents for solution-processing. The resulting red-light-emitting SiQD-based phosphors in chloroform exhibit photoluminescence external quantum efficiency of 15.9%. Their thin films can be efficiently excited by InGaN light-emitting diodes and are stable in room condition.

  16. Inhibition of bacterial motility and spreading via release of cranberry derived materials from silicone substrates.

    PubMed

    Chan, Michelle; Hidalgo, Gabriela; Asadishad, Bahareh; Almeida, Sergio; Muja, Naser; Mohammadi, Maziar Shah; Nazhat, Showan N; Tufenkji, Nathalie

    2013-10-01

    The motility of bacteria plays a key role in their colonization of surfaces during infection. Derivatives of cranberry fruit have been shown to interfere with bacterial motility. Herein, we report on the incorporation of cranberry derived materials (CDMs) into silicone substrates with the aim of impairing bacterial pathogen motility and spreading on the substrate surface. The release of CDMs from the silicone substrates when soaking in an aqueous medium was quantified for a period of 24h. Next, we showed that CDMs released from two silicone substrates remain bioactive as they downregulate the expression of the flagellin gene of two key uropathogens - Escherichia coli CFT073 and Proteus mirabilis HI4320. Furthermore, we demonstrate that CDM-modified silicone inhibits the swarming motility of P. mirabilis, an aggressive swarmer. The bioactive, CDM-modified substrates can find broad applications in the medical device and food industries where the impairment of bacterial colonization of surfaces is of paramount importance.

  17. Process research of non-Czochralski silicon material

    NASA Technical Reports Server (NTRS)

    Campbell, R. B.

    1986-01-01

    Simultaneous diffusion of liquid precursors containing phosphorus and boron into dendritic web silicon to form solar cell structures was investigated. A simultaneous junction formation techniques was developed. It was determined that to produce high quality cells, an annealing cycle (nominal 800 C for 30 min) should follow the diffusion process to anneal quenched-in defects. Two ohm-cm n-base cells were fabricated with efficiencies greater than 15%. A cost analysis indicated that the simultansous diffusion process costs can be as low as 65% of the costs of the sequential diffusion process.

  18. Erbium-doped silicon-oxycarbide materials for advanced optical waveguide amplifiers

    NASA Astrophysics Data System (ADS)

    Gallis, Spyros

    As a novel silicon based material, amorphous silicon oxycarbide (a-SiC xOyHz) has found many important applications (e.g. as a low-k material for interconnects) in Si microelectronics. This Ph.D. thesis work has explored another potential application of amorphous silicon oxycarbide: as a silicon-based host material for planar erbium-doped waveguide amplifiers (EDWAs) that operate at the telecommunications wavelength of 1540 nm. Such EDWAs are an important component of planar photonic integrated circuits being developed for implementation of the fiber-to-the-home (FTTH) technology. Furthermore, these Si-based EDWAs could be combined with other Si photonic devices (e.g. light sources, detectors, modulators) for achieving opto-electronic integration on Si chips, or silicon micro/nanophotonics. This thesis will start with basics about Er-doped systems and material challenges in the design of EDWAs. A detailed study of the structural and optical properties of a-SiCxOyHz materials under various deposition and processing conditions, concerning several aspects, such as thin film composition, chemical bonding, refractive index and optical gap, will be presented and discussed. Lastly, this work will focus on the photoluminescence (PL) properties of erbium-doped amorphous silicon oxycarbides (a-SiCxOyHz:Er). Results of both Er-related (near infrared ˜1540 nm) and matrix-related (visible) luminescence properties will be presented, and mechanisms leading to efficient excitation of Er ions in the materials will be discussed. This work indicates that a-SiC xOyHz:Er can be a promising matrix for realizing high-performance EDWAs using inexpensive broadband light sources.

  19. Low temperature coefficient of resistance and high gage factor in beryllium-doped silicon

    NASA Technical Reports Server (NTRS)

    Robertson, J. B.; Littlejohn, M. A.

    1974-01-01

    The gage factor and resistivity of p-type silicon doped with beryllium was studied as a function of temperature, crystal orientation, and beryllium doping concentration. It was shown that the temperature coefficient of resistance can be varied and reduced to zero near room temperature by varying the beryllium doping level. Similarly, the magnitude of the piezoresistance gage factor for beryllium-doped silicon is slightly larger than for silicon doped with a shallow acceptor impurity such as boron, whereas the temperature coefficient of piezoresistance is about the same for material containing these two dopants. These results are discussed in terms of a model for the piezoresistance of compensated p-type silicon.

  20. Study of the effects of impurities on the properties of silicon materials and performance of silicon solar cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1980-01-01

    Zinc is a major residue impurity in the preparation of solar grade silicon material by the zinc vapor reduction of silicon tetrachloride. It was found that in order to get a 17 percent AMl cell efficiency, the concentration of the zinc recombination centers in the base region of silicon solar cells must be less than 4 x 10 to the 11th power Zn/cu cm in the p-base n+/p/p+ cell and 7 x 10 to the 11th power Zn/cu cm in the n-base p+/n/n+ cell for a base dopant impurity concentration of 5 x 10 to the 14th power atoms/cu cm. If the base dopant impurity concentration is increased by a factor of 10 to 5 x 10 to the 15th power atoms/cu cm, then the maximum allowable zinc concentration is increased by a factor of about two for a 17 percent AMl efficiency. The thermal equilibrium electron and hole recombination and generation rates at the double acceptor zinc cancers were obtained from previous high field measurements as well as new measurements at zero field. The rates were used in the exact d.c. circuit model to compute the projections.

  1. Timolol maleate release from hyaluronic acid-containing model silicone hydrogel contact lens materials.

    PubMed

    Korogiannaki, Myrto; Guidi, Giuliano; Jones, Lyndon; Sheardown, Heather

    2015-09-01

    This study was designed to assess the impact of a releasable wetting agent, such as hyaluronic acid (HA), on the release profile of timolol maleate (TM) from model silicone hydrogel contact lens materials. Polyvinylpyrrolidone (PVP) was used as an alternative wetting agent for comparison. The model lenses consisted of a hydrophilic monomer, either 2-hydroxyethyl methacrylate or N,N-dimethylacrylamide and a hydrophobic silicone monomer of methacryloxypropyltris (trimethylsiloxy) silane. The loading of the wetting and the therapeutic agent occurred during the synthesis of the silicone hydrogels through the method of direct entrapment. The developed materials were characterized by minimal changes in the water uptake, while lower molecular weight of HA improved their surface wettability. The transparency of the examined silicone hydrogels was found to be affected by the miscibility of the wetting agent in the prepolymer mixture as well as the composition of the developed silicone hydrogels. Sustained release of TM from 4 to 14 days was observed, with the drug transport occurring presumably through the hydrophilic domains of the silicone hydrogels. The release profile was strongly dependent on the hydrophilic monomer composition, the distribution of hydrophobic (silane) domains, and the affinity of the therapeutic agent for the silicone hydrogel matrix. Noncovalent entrapment of the wetting agent did not change the in vitro release duration and kinetics of TM, however the drug release profile was found to be controlled by the simultaneous release of TM and HA or PVP. In the case of HA, depending on the HA:drug ratio, the release rate was decreased and controlled by the release of HA, likely due to electrostatic interactions between protonated TM and anionic HA. Overall, partitioning of the drug within the hydrophilic domains of the silicone hydrogels as well as interactions with the wetting agent determined the drug release profile.

  2. Phosphorus diffusions for gettering-induced improvement of lifetime in various silicon materials

    SciTech Connect

    Gee, J.M.

    1991-01-01

    Solar-grade silicon frequently contains large quantities of defects and impurities that can significantly degrade the excess-carrier lifetime through introduction of recombination sites. The impurities frequently include metals as well as high concentrations of high carbon and/or oxygen. Defects and impurities can also degrade the electrical properties of solar cells fabricated in solar-grade silicon by causing shunt currents or excess junction current. Fabrication of acceptable solar cells from such materials requires processes that are tolerant of, or that can even improve impure and defective material. Phosphorus diffusion is a well-known technique for gettering of impurities in silicon. The effect of phosphorus diffusion on the excess-carrier lifetime in various silicon materials was investigated. The optimum phosphorus diffusion schedule and enhancement of lifetime was found to be material specific, with substantial (5-fold) increases found for some materials. Possible reasons for the variability of phosphorus gettering with different materials is discussed. 11 refs., 6 figs., 3 tabs.

  3. ANALYTICAL NEUTRONIC STUDIES CORRELATING FAST NEUTRON FLUENCE TO MATERIAL DAMAGE IN CARBON, SILICON, AND SILICON CARBIDE

    SciTech Connect

    Jim Sterbentz

    2011-06-01

    This study evaluates how fast neutron fluence >0.1 MeV correlates to material damage (i.e., the total fluence spectrum folded with the respective material’s displacements-per- atom [dpa] damage response function) for the specific material fluence spectra encountered in Next Generation Nuclear Plant (NGNP) service and the irradiation tests conducted in material test reactors (MTRs) for the fuel materials addressed in the white paper. It also reports how the evaluated correlations of >0.1 MeV fluence to material damage vary between the different spectral conditions encountered in material service versus testing.

  4. ESP – Data from Restarted Life Tests of Various Silicone Materials - 2011

    SciTech Connect

    Jim Schneider

    2011-12-31

    Current funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until funding allowed the restart in FY97. This report will provide data on materials used in production and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  5. ESP - Data From Restarted Life Tests of Various Silicone Materials - 2009

    SciTech Connect

    J. W. Schneider

    2010-02-24

    Enhanced Surveillance Project (ESP) funding has allowed the restart of testing of various silicone materials placed in Life Tests or Aging Studies from past efforts. Some of these materials have been in test since 1982, with no testing for approximately 10 years, until ESP funding allowed the restart in FY97. This report will provide data on materials used on various programs and on experimental materials not used in production. Charts for the various materials at different thickness, compression, and temperature combinations illustrate trends for the load-bearing properties of the materials.

  6. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.

    PubMed

    Shi, Jingying; Zhang, Dou Dou; Zi, Wei; Wang, Peng Peng; Liu, Sheng Zhong

    2017-10-04

    Photoelectrochemical (PEC) technology for the conversion of solar energy to chemicals requires cost-effective photoelectrodes to efficiently and stably drive anodic and/or cathodic half-reactions to complete the overall reactions for storing solar energy in chemical bonds. The shared properties among semiconducting photoelectrodes and photovoltaic (PV) materials are light absorption and charge separation and charge transfer. Earth-abundant silicon materials have been widely applied in the PV industry, demonstrating their efficiency as alternative photoabsorbers for photoelectrodes. Many efforts have been made to fabricate silicon photoelectrodes with enhanced performance, and significant progress has been achieved in recent years. In this review, we summarize the recent developments of crystalline and thin-film silicon-based photoelectrodes (including amorphous, microcrystalline and nanocrystalline silicon) immersed in aqueous solution for PEC hydrogen production from water splitting, as well as applications in PEC CO2 reduction and PEC regeneration of discharged species in redox flow batteries. We believe that silicon is an ideal material for the cost-effective production of solar chemicals through PEC methods. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Simple compressive method for treatment of auricular haematoma using dental silicone material.

    PubMed

    Choung, Y H; Park, K; Choung, P H; Oh, J H

    2005-01-01

    Most of the previous treatment methods for auricular haematoma are inconvenient for both patients and doctors because they are time-consuming and complex and must be performed under sterile conditions. The purpose of this study was to evaluate the effectiveness of a simple compressive method using a dental (silicone) impression material and comparing it with other methods for treatment of auricular haematomas. The authors aspirated a haematoma and then placed a mixed base and catalyst of silicone putty material on the anterior and posterior surfaces of the auricle in the shape of an inverted U for seven days. From the 24 cases managed with this method, 23 cases (95.8 per cent) were successfully healed. Eight patients were treated with a collodion-cotton wool cast and 16 of 19 patients were successfully treated with dental cotton-wool rolls. The average number of those visiting the hospital was 2.7 for the collodion-cotton wool cast, 6.9 for the dental cotton-wool roll, and 3.1 for dental silicone. The mean treatment durations were 8.1 days for the collodion-cotton wool cast, 13.8 days for the dental cotton-wool roll, and 8.6 days for dental silicone. The authors believe that this compressive method using dental silicone material is simple and appropriate for the treatment of auricular haematoma.

  8. Use of silicon carbide sludge to form porous alkali-activated materials for insulating application

    NASA Astrophysics Data System (ADS)

    Prud'homme, E.; Joussein, E.; Rossignol, S.

    2015-07-01

    One of the objectives in the field of alkali-activated materials is the development of materials having greater thermal performances than conventional construction materials such as aerated concrete. The aim of this paper is to present the possibility to obtain controlled porosity and controlled thermal properties with geopolymer materials including a waste like silicon carbide sludge. The porosity is created by the reaction of free silicon contains in silicon carbide sludge leading to the formation of hydrogen. Two possible ways are investigated to control the porosity: modification of mixture formulation and additives introduction. The first way is the most promising and allowed the formation of materials presenting the same density but various porosities, which shows that the material is adaptable to the application. The insulation properties are logically linked to the porosity and density of materials. A lower value of thermal conductivity of 0.075 W.m-1.K-1 can be reached for a material with a low density of 0.27 g.cm-3. These characteristics are really good for a mineral-based material which always displays non-negligible resistance to manipulation.

  9. Radiation Resistance Studies of Amorphous Silicon Alloy Photovoltaic Materials

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1994-01-01

    The radiation resistance of commercial solar cells fabricated from hydrogenated amorphous silicon alloys was investigated. A number of different device structures were irradiated with 1.0 MeV protons. The cells were insensitive to proton fluences below 1E12 sq cm. The parameters of the irradiated cells were restored with annealing at 200 C. The annealing time was dependent on proton fluence. Annealing devices for one hour restores cell parameters for fluences below lE14 sq cm require longer annealing times. A parametric fitting model was used to characterize current mechanisms observed in dark I-V measurements. The current mechanisms were explored with irradiation fluence, and voltage and light soaking times. The thermal generation current density and quality factor increased with proton fluence. Device simulation shows the degradation in cell characteristics may be explained by the reduction of the electric field in the intrinsic layer.

  10. Flat-plate collector research area: Silicon material task

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1982-01-01

    Silane decomposition in a fluidized-bed reactor (FBR) process development unit (PDU) to make semiconductor-grade Si is reviewed. The PDU was modified by installation of a new heating system to provide the required temperature profile and better control, and testing was resumed. A process for making trichlorosilane by the hydrochlorination of metallurgical-grade Si and silicon tetrachloride is reported. Fabrication and installation of the test system employing a new 2-in.-dia reactor was completed. A process that converts trichlorosilane to dichlorosilane (DCS), which is reduced by hydrogen to make Si by a chemical vapor deposition step in a Siemens-type reactor is described. Testing of the DCS PDU integraled with Si deposition reactors continued. Experiments in a 2-in.-dia reactor to define the operating window and to investigate the Si deposition kinetics were completed.

  11. Lifetime and diffusion length measurements on silicon material and solar cells

    NASA Technical Reports Server (NTRS)

    Othmer, S.; Chen, S. C.

    1978-01-01

    Experimental methods were evaluated for the determination of lifetime and diffusion length in silicon intentionally doped with potentially lifetime-degrading impurities found in metallurgical grade silicon, impurities which may be residual in low-cost silicon intended for use in terrestrial flat-plate arrays. Lifetime measurements were made using a steady-state photoconductivity method. Diffusion length determinations were made using short-circuit current measurements under penetrating illumination. Mutual consistency among all experimental methods was verified, but steady-state photoconductivity was found preferable to photoconductivity decay at short lifetimes and in the presence of traps. The effects of a number of impurities on lifetime in bulk material, and on diffusion length in cells fabricated from this material, were determined. Results are compared with those obtained using different techniques. General agreement was found in terms of the hierarchy of impurities which degrade the lifetime.

  12. Thermal/environmental barrier coating system for silicon-based materials

    NASA Technical Reports Server (NTRS)

    Spitsberg, Irene T. (Inventor); Wang, Hongyu (Inventor)

    1999-01-01

    A coating system for a substrate containing a silicon-based material, such as silicon carbide-containing ceramic matrix materials containing silicon carbide and used to form articles exposed to high temperatures, including the hostile thermal environment of a gas turbine engine. The coating system includes a layer of barium strontium aluminosilicate (BSAS) as a bond coat for a thermal-insulating top coat. As a bond coat, the BSAS layer serves to adhere the top coat to a SiC-containing substrate. The BSAS bond coat exhibits sufficient environmental resistance such that, if the top coat should spall, the BSAS bond coat continues to provide a level of environmental protection to the underlying SiC-containing substrate.

  13. [The growth behavior of mouse fibroblasts on intraocular lens surface of various silicone and PMMA materials].

    PubMed

    Kammann, J; Kreiner, C F; Kaden, P

    1994-08-01

    Experience with intraocular lenses (IOL) made of PMMA dates back ca. 40 years, while silicone IOLs have been in use for only about 10 years. The biocompatibility of PMMA and silicone caoutchouc was tested in a comparative study investigating the growth of mouse fibroblasts on different IOL materials. Spectrophotometric determination of protein synthesis and liquid scintillation counting of DNA synthesis were carried out. The spreading of cells was planimetrically determined, and the DNA synthesis of individual cells in direct contact with the test sample was tested. The results showed that the biocompatibility of silicone lenses made of purified caoutchouc is comparable with that of PMMA lenses; there is no statistically significant difference. However, impurities arising during material synthesis result in a statistically significant inhibition of cell growth on the IOL surfaces.

  14. Optical and Scanning Electron Microscopy of the Materials International Space Station Experiment (MISSE) Spacecraft Silicone Experiment

    NASA Astrophysics Data System (ADS)

    Hung, Ching-cheh; de Groh, Kim K.; Banks, Bruce A.

    Under a microscope, atomic oxygen (AO) exposed silicone surfaces are crazed and seen as “islands” separated by numerous crack lines, much analogous to mud-tile cracks. This research compared the degree of AO degradation of silicones by analyzing microscopic images of samples exposed to low Earth orbit (LEO) AO as part of the Spacecraft Silicone Experiment. The experiment consisted of eight silicone samples exposed to different AO fluence levels (ranged from 1.46 to 8.43 × 1021 atoms/cm2) during two Materials International Space Station Experiment (MISSE) missions. Image analysis software was used to analyze optical microscopic images. The fraction of sample surface area occupied by crack lines was obtained and used to characterize silicone degradation and the resulted loss of specular transmittance. SEM images from the eight samples exposed to different AO fluences suggest a sequence of surface shrinkage, stress, and crack, followed by re-distribution of stress and shrinking rate on the sample surface. Energy dispersive spectra (EDS) indicated that after long AO exposure, silicone samples will eventually have a SiO2 surface layer with some trapped CO and CO2.

  15. New DEA materials by organic modification of silicone and polyurethane networks

    NASA Astrophysics Data System (ADS)

    Kussmaul, Björn; Risse, Sebastian; Wegener, Michael; Bluemke, Martin; Krause, Jens; Wagner, Joachim; Feller, Torsten; Clauberg, Karin; Hitzbleck, Julia; Gerhard, Reimund; Krueger, Hartmut

    2013-04-01

    Dielectric elastomer actuators (DEAs) can be optimized by modifying the dielectric or mechanical properties of the electroactive polymer. In this work both properties were improved simultaneously by a simple process, the one-step film formation for polyurethane and silicone films. The silicone network contains polydimethylsiloxane (PDMS) chains, as well as cross-linker and grafted molecular dipoles in varying amounts. The process leads to films, which are homogenous down to the molecular level and show higher permittivities as well as reduced stiffnesses. The dipole modification of a new silicone leads to 40 times higher sensitivities, compared to the unmodified films. This new material reaches the sensitivity of the widely used acrylate elatomer VHB4905. A similar silicone modification was obtained by using smart fillers consisting of organic dipoles and additional groups realizing a high compatibility to the silicon network. Polyurethanes are alternative elastomers for DEAs which are compared with the silicones in important properties. Polyurethanes have an intrinsically high dielectric constant (above 7), which is based on the polar nature of the polyurethane fragments. Polyurethanes can be made in roll-to-roll process giving constant mechanical and electrical properties on a high level.

  16. InGaAlAsPN: A Materials System for Silicon Based Optoelectronics and Heterostructure Device Technologies

    NASA Technical Reports Server (NTRS)

    Broekaert, T. P. E.; Tang, S.; Wallace, R. M.; Beam, E. A., III; Duncan, W. M.; Kao, Y. -C.; Liu, H. -Y.

    1995-01-01

    A new material system is proposed for silicon based opto-electronic and heterostructure devices; the silicon lattice matched compositions of the (In,Ga,Al)-(As,P)N 3-5 compounds. In this nitride alloy material system, the bandgap is expected to be direct at the silicon lattice matched compositions with a bandgap range most likely to be in the infrared to visible. At lattice constants ranging between those of silicon carbide and silicon, a wider bandgap range is expected to be available and the high quality material obtained through lattice matching could enable applications such as monolithic color displays, high efficiency multi-junction solar cells, opto-electronic integrated circuits for fiber communications, and the transfer of existing 3-5 technology to silicon.

  17. Performance improvement in amorphous silicon based uncooled microbolometers through pixel design and materials development

    NASA Astrophysics Data System (ADS)

    Ajmera, Sameer; Brady, John; Hanson, Charles; Schimert, Tom; Syllaios, A. J.; Taylor, Michael

    2011-06-01

    Uncooled amorphous silicon microbolometers have been established as a field-worthy technology for a broad range of applications where performance and form factor are paramount, such as soldier-borne systems. Recent developments in both bolometer materials and pixel design at L-3 in the 17μm pixel node have further advanced the state-of-the-art. Increasing the a-Si material temperature coefficient of resistance (TCR) has the impact of improving NETD sensitivity without increasing thermal time constant (TTC), leading to an improvement in the NETD×TTC product. By tuning the amorphous silicon thin-film microstructure using hydrogen dilution during deposition, films with high TCR have been developed. The electrical properties of these films have been shown to be stable even after thermal cycling to temperatures greater than 300oC enabling wafer-level vacuum packaging currently performed at L-3 to reduce the size and weight of the vacuum packaged unit. Through appropriate selection of conditions during deposition, amorphous silicon of ~3.4% TCR has been integrated into the L-3 microbolometer manufacturing flow. By combining pixel design enhancements with improvements to amorphous silicon thin-film technology, L-3's amorphous silicon microbolometer technology will continue to provide the performance required to meet the needs to tomorrow's war-fighter.

  18. Use of Monocrystalline Silicon as Tool Material for Highly Accurate Blanking of Thin Metal Foils

    SciTech Connect

    Hildering, Sven; Engel, Ulf; Merklein, Marion

    2011-05-04

    The trend towards miniaturisation of metallic mass production components combined with increased component functionality is still unbroken. Manufacturing these components by forming and blanking offers economical and ecological advantages combined with the needed accuracy. The complexity of producing tools with geometries below 50 {mu}m by conventional manufacturing methods becomes disproportional higher. Expensive serial finishing operations are required to achieve an adequate surface roughness combined with accurate geometry details. A novel approach for producing such tools is the use of advanced etching technologies for monocrystalline silicon that are well-established in the microsystems technology. High-precision vertical geometries with a width down to 5 {mu}m are possible. The present study shows a novel concept using this potential for the blanking of thin copper foils with monocrystallline silicon as a tool material. A self-contained machine-tool with compact outer dimensions was designed to avoid tensile stresses in the brittle silicon punch by an accurate, careful alignment of the punch, die and metal foil. A microscopic analysis of the monocrystalline silicon punch shows appropriate properties regarding flank angle, edge geometry and surface quality for the blanking process. Using a monocrystalline silicon punch with a width of 70 {mu}m blanking experiments on as-rolled copper foils with a thickness of 20 {mu}m demonstrate the general applicability of this material for micro production processes.

  19. Influence of retentive areas associated to onlay preparations on the dimensional stability of silicone impression materials.

    PubMed

    Yatsuda, Regis A; Lima, Adriano F; Yatsuda, Regiane; Cavalcanti, Andrea N; Capp, Cláudia I; Novelli, Moacyr D; de Cara, Antonio A

    2010-01-01

    This study evaluated the effect of retentive areas on onlay preparations on the dimensional alterations in condensation and addition silicone materials. A standard model with an onlay preparation was made. Each impression material was used through the double or simultaneous impression technique (n=25), resulting in a hundred impressions of the same model. Impressions were poured with type IV dental stone. Digital images were taken with a light microscope and the distances between the reference points created on the plaster dies were compared with the ones on the standard model. In the occlusal, mesial-medium and mesial-cervical segments, the double impression (DI) with condensation silicone presented similar values compared to the standard model. The values of the addition silicone with DI were similar to the standard model only in the mesial-occlusal segment. In the other segments (distal-cervical, distal-medium and distal-occlusal), all groups were statistically different from the control. It could be concluded that addition and condensation silicone impressions provided plaster dies with significant dimensional alterations in most of the evaluated areas when compared to the standard model. The retentive areas related to the onlay preparation influenced the dimensional stability of the addition and condensation silicone impressions.

  20. Sterilization of heat-sensitive silicone implant material by low-pressure gas plasma.

    PubMed

    Hauser, Joerg; Esenwein, Stefan-Alexander; Awakowicz, Peter; Steinau, Hans-Ulrich; Köller, Manfred; Halfmann, Helmut

    2011-01-01

    In recent years, plasma treatment of medical devices and implant materials has gained more and more acceptance. Inactivation of microorganisms by exposure to ultraviolet (UV) radiation produced by plasma discharges and sterilization of medical implants and instruments is one possible application of this technique. The aim of this study was to evaluate the effectiveness of this sterilization technique on silicone implant material. Bacillus atrophaeus spores (10(6) colony-forming units [CFUs]) were sprayed on the surfaces of 12 silicone implant material samples. Four plasma sets with different gas mixtures (argon [Ar], argon-oxygen [Ar:O(2)], argon-hydrogen [Ar:H(2)] and argon-nitrogen [Ar:N(2)]) were tested for their antimicrobial properties. Post-sterilization mechanical testing of the implant material was performed in order to evaluate possible plasma-induced structural damage. The inductively coupled low-pressure plasma technique can achieve fast and efficient sterilization of silicone implant material without adverse materials effects. All four gas mixtures led to a significant spore reduction, and no structural damage to the implant material could be observed.

  1. Preparation and properties of polyurethane/silicone materials for biomimetic gecko setae

    NASA Astrophysics Data System (ADS)

    Yu, Min; Dai, Zhendong; Yang, Shengrong

    2014-03-01

    In the biomimetic design of gecko setae, it is necessary to select materials with appropriate adhesive properties and to understand the effects of materials on normal and tangential adhesive forces. To meet the adhesion performance requirements of the biomimetic gecko robot foot, in this study, performance-improved polyurethane/silicone polymer materials were designed and synthesized, and the normal adhesion and tangential adhesion were measured using an adhesive friction comprehensive tester. The results show that normal adhesion increased with an increase in load when the normal load is small; when the normal load exceeds a critical value, the increase in normal adhesion slows and adhesion saturates. Under the condition of an adhesive state, the tangential adhesive force was larger for a smaller negative normal force, and a relatively large tangential adhesive force could be generated with a very small negative normal force. The elastic modulus of the synthetic polyurethane/silicone material varied with varying ratios of components, and it increased with increasing urethane content. Polyurethane/silicone material with about 30% polyurethane provided greater adhesion than other materials with different contents of polyurethane. The results provide a basis for the choice of biomimetic materials of the biomimetic gecko robot foot.

  2. Silicon-based porous nanocomposite thin-films as an active anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mazaletskiy, L. A.; Rudy, A. S.; Metlitskaya, A. V.

    2016-08-01

    The results of experimental studies of porous silicon nanocomposite materials for future usage as an anode material of lithium-ion batteries are presented. Comparison between original and porous structures in terms of their qualitative and quantitative characteristics is given.

  3. N-type nano-silicon powders with ultra-low electrical resistivity as anode materials in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Yue, Zhihao; Zhou, Lang; Jin, Chenxin; Xu, Guojun; Liu, Liekai; Tang, Hao; Li, Xiaomin; Sun, Fugen; Huang, Haibin; Yuan, Jiren

    2017-06-01

    N-type silicon wafers with electrical resistivity of 0.001 Ω cm were ball-milled to powders and part of them was further mechanically crushed by sand-milling to smaller particles of nano-size. Both the sand-milled and ball-milled silicon powders were, respectively, mixed with graphite powder (silicon:graphite = 5:95, weight ratio) as anode materials for lithium ion batteries. Electrochemical measurements, including cycle and rate tests, present that anode using sand-milled silicon powder performed much better. The first discharge capacity of sand-milled silicon anode is 549.7 mAh/g and it is still up to 420.4 mAh/g after 100 cycles. Besides, the D50 of sand-milled silicon powder shows ten times smaller in particle size than that of ball-milled silicon powder, and they are 276 nm and 2.6 μm, respectively. In addition, there exist some amorphous silicon components in the sand-milled silicon powder excepting the multi-crystalline silicon, which is very different from the ball-milled silicon powder made up of multi-crystalline silicon only.

  4. Correlation of solar cell electrical properties with material characteristics of silicon cast by the ubiquitous crystallization process

    NASA Technical Reports Server (NTRS)

    Hyland, S.; Leung, D.; Morrison, A.; Stika, K.; Yoo, H.

    1983-01-01

    Solar cells were fabricated using a conservative 'baseline' process on 1-3 Omega-cm p-type silicon from ingots cast by the ubiquitous crystallization process. Conversion efficiencies of the cells were measured, as well as spectral response and minority carrier diffusion length. Adjacent slices from the same ingot were studied for their grain size, dislocation distribution, and impurity distribution. Cell performance was related to the observed structural features, as well as to the chemical structure of the ingot.

  5. Correlation of solar cell electrical properties with material characteristics of silicon cast by the ubiquitous crystallization process

    NASA Technical Reports Server (NTRS)

    Hyland, S.; Leung, D.; Morrison, A.; Stika, K.; Yoo, H.

    1983-01-01

    Solar cells were fabricated using a conservative 'baseline' process on 1-3 Omega-cm p-type silicon from ingots cast by the ubiquitous crystallization process. Conversion efficiencies of the cells were measured, as well as spectral response and minority carrier diffusion length. Adjacent slices from the same ingot were studied for their grain size, dislocation distribution, and impurity distribution. Cell performance was related to the observed structural features, as well as to the chemical structure of the ingot.

  6. Bioactive silicon nitride: A new therapeutic material for osteoarthropathy.

    PubMed

    Pezzotti, Giuseppe; Marin, Elia; Adachi, Tetsuya; Rondinella, Alfredo; Boschetto, Francesco; Zhu, Wenliang; Sugano, Nobuhiko; Bock, Ryan M; McEntire, Bryan; Bal, Sonny B

    2017-03-22

    While the reciprocity between bioceramics and living cells is complex, it is principally governed by the implant's surface chemistry. Consequently, a deeper understanding of the chemical interactions of bioceramics with living tissue could ultimately lead to new therapeutic strategies. However, the physical and chemical principles that govern these interactions remain unclear. The intricacies of this biological synergy are explored within this paper by examining the peculiar surface chemistry of a relatively new bioceramic, silicon nitride (Si3N4). Building upon prior research, this paper aims at obtaining new insights into the biological interactions between Si3N4 and living cells, as a consequence of the off-stoichiometric chemical nature of its surface at the nanometer scale. We show here yet unveiled details of surface chemistry and, based on these new data, formulate a model on how, ultimately, Si3N4 influences cellular signal transduction functions and differentiation mechanisms. In other words, we interpret its reciprocity with living cells in chemical terms. These new findings suggest that Si3N4 might provide unique new medicinal therapies and effective remedies for various bone or joint maladies and diseases.

  7. Bioactive silicon nitride: A new therapeutic material for osteoarthropathy

    PubMed Central

    Pezzotti, Giuseppe; Marin, Elia; Adachi, Tetsuya; Rondinella, Alfredo; Boschetto, Francesco; Zhu, Wenliang; Sugano, Nobuhiko; Bock, Ryan M.; McEntire, Bryan; Bal, Sonny B.

    2017-01-01

    While the reciprocity between bioceramics and living cells is complex, it is principally governed by the implant’s surface chemistry. Consequently, a deeper understanding of the chemical interactions of bioceramics with living tissue could ultimately lead to new therapeutic strategies. However, the physical and chemical principles that govern these interactions remain unclear. The intricacies of this biological synergy are explored within this paper by examining the peculiar surface chemistry of a relatively new bioceramic, silicon nitride (Si3N4). Building upon prior research, this paper aims at obtaining new insights into the biological interactions between Si3N4 and living cells, as a consequence of the off-stoichiometric chemical nature of its surface at the nanometer scale. We show here yet unveiled details of surface chemistry and, based on these new data, formulate a model on how, ultimately, Si3N4 influences cellular signal transduction functions and differentiation mechanisms. In other words, we interpret its reciprocity with living cells in chemical terms. These new findings suggest that Si3N4 might provide unique new medicinal therapies and effective remedies for various bone or joint maladies and diseases. PMID:28327664

  8. Bioactive silicon nitride: A new therapeutic material for osteoarthropathy

    NASA Astrophysics Data System (ADS)

    Pezzotti, Giuseppe; Marin, Elia; Adachi, Tetsuya; Rondinella, Alfredo; Boschetto, Francesco; Zhu, Wenliang; Sugano, Nobuhiko; Bock, Ryan M.; McEntire, Bryan; Bal, Sonny B.

    2017-03-01

    While the reciprocity between bioceramics and living cells is complex, it is principally governed by the implant’s surface chemistry. Consequently, a deeper understanding of the chemical interactions of bioceramics with living tissue could ultimately lead to new therapeutic strategies. However, the physical and chemical principles that govern these interactions remain unclear. The intricacies of this biological synergy are explored within this paper by examining the peculiar surface chemistry of a relatively new bioceramic, silicon nitride (Si3N4). Building upon prior research, this paper aims at obtaining new insights into the biological interactions between Si3N4 and living cells, as a consequence of the off-stoichiometric chemical nature of its surface at the nanometer scale. We show here yet unveiled details of surface chemistry and, based on these new data, formulate a model on how, ultimately, Si3N4 influences cellular signal transduction functions and differentiation mechanisms. In other words, we interpret its reciprocity with living cells in chemical terms. These new findings suggest that Si3N4 might provide unique new medicinal therapies and effective remedies for various bone or joint maladies and diseases.

  9. Silicon material task - Low cost solar array project /JPL/DOE/

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1979-01-01

    The paper describes the silicon material task of the low-cost solar array project, which has the objective of establishing a silicon production capability equivalent to 500 mW per year at a price less than 10 dollars/kg (1975 dollars) in 1986. The task program is divided into four phases: technical feasibility, scale-up studies (the present phase), experimental process system development units, and implementation of large-scale production plants, and it involves the development of processes for two groups of materials, that is, semiconductor grade and solar cell grade. In addition, the effects of impurities on solar cell performance are being investigated. Attention is given to problem areas of the task program, such as environmental protection, material compatibility between the reacting chemicals and materials of construction of the equipment, and waste disposal.

  10. Silicon material task - Low cost solar array project /JPL/DOE/

    NASA Technical Reports Server (NTRS)

    Lutwack, R.

    1979-01-01

    The paper describes the silicon material task of the low-cost solar array project, which has the objective of establishing a silicon production capability equivalent to 500 mW per year at a price less than 10 dollars/kg (1975 dollars) in 1986. The task program is divided into four phases: technical feasibility, scale-up studies (the present phase), experimental process system development units, and implementation of large-scale production plants, and it involves the development of processes for two groups of materials, that is, semiconductor grade and solar cell grade. In addition, the effects of impurities on solar cell performance are being investigated. Attention is given to problem areas of the task program, such as environmental protection, material compatibility between the reacting chemicals and materials of construction of the equipment, and waste disposal.

  11. Silicon nitride: A ceramic material with outstanding resistance to thermal shock and corrosion

    NASA Technical Reports Server (NTRS)

    Huebner, K. H.; Saure, F.

    1983-01-01

    The known physical, mechanical and chemical properties of reaction-sintered silicon nitride are summarized. This material deserves interest especially because of its unusually good resistance to thermal shock and corrosion at high temperatures. Two types are distinguished: reaction-sintered (porous) and hot-pressed (dense) Si3N4. Only the reaction-sintered material which is being produced today in large scale as crucibles, pipes, nozzles and tiles is considered.

  12. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  13. Joining of Silicon Carbide-Based Ceramic Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    1997-01-01

    Joining of high temperature silicon carbide-based ceramics has been a critical issue for their successful application. An affordable, robust technique for joining silicon carbide-based ceramics has been developed and is capable of producing joints that can be tailored for thickness and composition. These joints maintain their mechanical strength up to 1350 C (2462 F) in air. This technique is suitable for the joining of large and complex shaped ceramic components and can be extended to the repair of these materials.

  14. Slicing of silicon into sheet material. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Holden, S. C.; Fleming, J. R.

    1978-01-01

    Fabrication of a prototype large capacity multiple blade slurry saw is considered. Design of the bladehead which will tension up to 1000 blades, and cut a 45 cm long silicon ingot as large as 12 cm in diameter is given. The large blade tensioning force of 270,000 kg is applied through two bolts acting on a pair of scissor toggles, significantly reducing operator set-up time. Tests with an upside-down cutting technique resulted in 100% wafering yields and the highest wafer accuracy yet experienced with MS slicing. Variations in oil and abrasives resulted only in degraded slicing results. A technique of continuous abrasive slurry separation to remove silicon debris is described.

  15. Temperature-dependent Young's modulus, shear modulus and Poisson's ratio of p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert D.; Case, Eldon D.; Ni, Jennifer E.; Sakamoto, Jeffrey S.; Trejo, Rosa M.; Lara-Curzio, Edgar

    2012-02-01

    Effective models of the mechanical behavior of thermoelectric materials under device conditions require knowledge of temperature-dependent elastic properties. Between room temperature and 600 K, resonant ultrasound spectroscopy measurements of three skutterudite thermoelectric materials, i.e. n-type Co0.95Pd0.05Te0.05Sb3 (both with and without 0.1 at.% cerium dopant) and p-type Ce0.9Fe3.5Co0.5Sb12, showed that the Young's and shear moduli decreased linearly with temperature at a rate of -0.021 GPa/K to -0.032 GPa/K, and -0.011 GPa/K to -0.013 GPa/K, respectively. In contrast, the Poisson's ratio was approximately 0.22 for the three materials and was relatively insensitive to temperature. For temperatures >600 K, the elastic moduli decreased more rapidly and resonance peaks broadened, indicating the onset of viscoelastic behavior. The viscoelastic relaxation of the moduli was least for Ce-doped n-type material, for which grain boundary precipitates may inhibit grain boundary sliding which in turn has important implications concerning creep resistance. In addition, powder processing of the n- and p-type materials should be done cautiously since submicron-sized powders of both the n- and p-type powders were pyrophoric.

  16. Formation of Mach angle profiles during wet etching of silica and silicon nitride materials

    NASA Astrophysics Data System (ADS)

    Ghulinyan, M.; Bernard, M.; Bartali, R.; Pucker, G.

    2015-12-01

    In integrated circuit technology peeling of masking photoresist films is a major drawback during the long-timed wet etching of materials. It causes an undesired film underetching, which is often accompanied by a formation of complex etch profiles. Here we report on a detailed study of wedge-shaped profile formation in a series of silicon oxide, silicon oxynitride and silicon nitride materials during wet etching in a buffered hydrofluoric acid (BHF) solution. The shape of etched profiles reflects the time-dependent adhesion properties of the photoresist to a particular material and can be perfectly circular, purely linear or a combination of both, separated by a knee feature. Starting from a formal analogy between the sonic boom propagation and the wet underetching process, we model the wedge formation mechanism analytically. This model predicts the final form of the profile as a function of time and fits the experimental data perfectly. We discuss how this knowledge can be extended to the design and the realization of optical components such as highly efficient etch-less vertical tapers for passive silicon photonics.

  17. Preparation of silicon target material by adding Al-B master alloy in directional solidification

    NASA Astrophysics Data System (ADS)

    Li, Pengting; Wang, Kai; Ren, Shiqiang; Jiang, Dachuan; Tan, Yi

    2017-03-01

    The silicon target material was prepared by adding Al-6B master alloy in directional solidification. The microstructure was characterized and the resistivity was studied in this work. The results showed that the purity of the silicon target material was more than 99.999% (5N). The resistivity was ranges from 0.002 to 0.030 Ω·cm along the ingot height. It was revealed that the particles of AlB2 in Al-6B master alloy would react spontaneously and generate clusters of [B] and [Al] in molten silicon at 1723 K. After directional solidification, the content of B and Al were increasing gradually with the increase of solidified fraction. The measured values of B were in good agreement with the curve of the Scheil equation below 80% of the ingot height. The mean concentration of B was about 17.20 ppmw and the mean concentration of Al was about 8.07 ppmw after directional solidification. The measured values of Al were fitting well with the curve of values which the effective segregation coefficient was 0.00378. It was observed that B co-doped Al in directional solidification polysilicon could regulate resistivity mutually. This work provides the theoretical basis and technical support for industrial production of the silicon target material.

  18. [Rapid determination of silicon content in black liquor of straw fibrous material].

    PubMed

    Li, Hai-Long; Chai, Xin-Sheng; Zhan, Huai-Yu; Liu, Meng-Ru; Fu, Shi-Yu; Sun, Li-Jin

    2012-06-01

    The present paper reports a novel method for the determination of silicon content in straw fibrous material black liquor based on alpha-Si--Mo heteropoly acid spectrophotometry. The selected conditions were as follows: detection wavelength 360 nm, pH 4.0, and reaction time 10 min. It was found that the acidic soluble lignin in the sample liquor was the major interference species in the silicon content determination. The interference of acidic soluble lignin can be eliminated by hydrogen peroxide-nitric acid digestion method. The present method is not only simple, rapid, stable and less interferential, but also of good measurement precision and accuracy, with the relative standard deviations of 0.9%, and recoveries of 99.0%-102%. It is suitable for use in high silicon content of black liquor routine rapid analyses.

  19. Porous silicon in drug delivery devices and materials.

    PubMed

    Anglin, Emily J; Cheng, Lingyun; Freeman, William R; Sailor, Michael J

    2008-08-17

    Porous Si exhibits a number of properties that make it an attractive material for controlled drug delivery applications: The electrochemical synthesis allows construction of tailored pore sizes and volumes that are controllable from the scale of microns to nanometers; a number of convenient chemistries exist for the modification of porous Si surfaces that can be used to control the amount, identity, and in vivo release rate of drug payloads and the resorption rate of the porous host matrix; the material can be used as a template for organic and biopolymers, to prepare composites with a designed nanostructure; and finally, the optical properties of photonic structures prepared from this material provide a self-reporting feature that can be monitored in vivo. This paper reviews the preparation, chemistry, and properties of electrochemically prepared porous Si or SiO2 hosts relevant to drug delivery applications.

  20. Chemical processing of materials on silicon: more functionality, smaller features, and larger wafers.

    PubMed

    Marchack, Nathan; Chang, Jane P

    2012-01-01

    The invention of the transistor followed by more than 60 years of aggressive device scaling and process integration has enabled the global information web and subsequently transformed how people communicate and interact. The principles and practices built upon chemical processing of materials on silicon have been widely adapted and applied to other equally important areas, such as microfluidic systems for chemical and biological analysis and microscale energy storage solutions. The challenge of continuing these technological advances hinges on further improving the performance of individual devices and their interconnectivity while making the manufacturing processes economical, which is dictated by the materials' innate functionality and how they are chemically processed. In this review, we highlight challenges in scaling up the silicon wafers and scaling down the individual devices as well as focus on needs and challenges in the synthesis and integration of multifunctional materials.

  1. Electrochemical characterization of carbon coated bundle-type silicon nanorod for anode material in lithium ion secondary batteries

    NASA Astrophysics Data System (ADS)

    Halim, Martin; Kim, Jung Sub; Choi, Jeong-Gil; Lee, Joong Kee

    2015-04-01

    Nanostructured silicon synthesis by surface modification of commercial micro-powder silicon was investigated in order to reduce the maximum volume change over cycle. The surface of micro-powder silicon was modified using an Ag metal-assisted chemical etching technique to produce nanostructured material in the form of bundle-type silicon nanorods. The volume change of the electrode using the nanostructured silicon during cycle was investigated using an in-situ dilatometer. Our result shows that nanostructured silicon synthesized using this method showed a self-relaxant characteristic as an anode material for lithium ion battery application. Moreover, binder selection plays a role in enhancing self-relaxant properties during delithiation via strong hydrogen interaction on the surface of the silicon material. The nanostructured silicon was then coated with carbon from propylene gas and showed higher capacity retention with the use of polyacrylic acid (PAA) binder. While the nano-size of the pore diameter control may significantly affect the capacity fading of nanostructured silicon, it can be mitigated via carbon coating, probably due to the prevention of Li ion penetration into 10 nano-meter sized pores.

  2. Silicon/silicon germanium heterostructures: Materials, physics, quantum functional devices and their integration with heterostructure bipolar transistors

    NASA Astrophysics Data System (ADS)

    Chung, Sung-Yong

    With the advent of the first transistor in 1947, the integrated circuit (IC) industry has rapidly expanded with the tremendous advances in the development of IC technology. The driving force in the evolution of IC technology is the reduction of transistor sizes. Without a doubt, transistor miniaturization will face fundamental physical limitations imposed by further dimensional scaling of silicon transistors in the near future. According to the 2004 International Technology Roadmap for Semiconductors (ITRS), the width of a gate electrode for complementary metal-oxide-semiconductor (CMOS) is projected to be a mere 7 nm by the end of 2018. No further solutions have been found. Since the 2001 ITRS, tunneling devices have been evaluated as an emerging technology to augment silicon CMOS. Transistor circuitry incorporating tunneling devices realized using III-V semiconductors has exhibited superior performance over its transistor-only counterparts. However, due to fundamental differences in material properties, such technology is not readily compatible with the mainstream platforms (>95% market share of semiconductors) of CMOS and HBT technologies. Recently, we demonstrated the successful monolithic integration of Si-based resonant interband tunnel diodes (RITDs) with CMOS and SiGe HBT, which makes them more attractive than III-V based tunnel diodes for system level integration. This dissertation is concerned with the development of quantum functional tunneling devices, RITDs, and high-speed transistors, HBTs, using Si/SiGe heterostructures as well as material growth and electrical properties of Si/SiGe heterostructures. Emphasis is placed on the development of Si/SiGe-based RITDs, HBTs, and their monolithic integration for 3-terminal negative differential resistance (NDR) devices. The operating principles of Si-based RITDs and the integration of RITD with HBT are also discussed.

  3. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects

    NASA Astrophysics Data System (ADS)

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-01

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ˜10-8 Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  4. Rethinking the P-type ATPase problem.

    PubMed

    Scarborough, Gene A

    2003-11-01

    There are very good reasons to stop thinking about the molecular mechanism of the P-type ion-translocating ATPases in terms of the traditional E1E2 model and to start thinking about it in more progressive ways. This makes it possible to see the ion-transport cycle as a rational series of discrete steps with well defined driving forces, including the crucial energy transduction step, where the chemical energy of ATP hydrolysis is exchanged for the osmotic energy of an ion gradient. Importantly, although major enzyme conformational changes accompany each of these steps, none of them drive the energy coupling reaction. Thus, neither the E1E2 model nor conformational energy coupling, the cornerstones of traditional thinking about the P-type ATPases, are reliable paradigms for future efforts to understand how these transporters work. Alternatives must be seriously considered.

  5. Method of making silicon on insalator material using oxygen implantation

    DOEpatents

    Hite, Larry R.; Houston, Ted; Matloubian, Mishel

    1989-01-01

    The described embodiments of the present invention provide a semiconductor on insulator structure providing a semiconductor layer less susceptible to single event upset errors (SEU) due to radiation. The semiconductor layer is formed by implanting ions which form an insulating layer beneath the surface of a crystalline semiconductor substrate. The remaining crystalline semiconductor layer above the insulating layer provides nucleation sites for forming a crystalline semiconductor layer above the insulating layer. The damage caused by implantation of the ions for forming an insulating layer is left unannealed before formation of the semiconductor layer by epitaxial growth. The epitaxial layer, thus formed, provides superior characteristics for prevention of SEU errors, in that the carrier lifetime within the epitaxial layer, thus formed, is less than the carrier lifetime in epitaxial layers formed on annealed material while providing adequate semiconductor characteristics.

  6. Structural silicon nitride materials containing rare earth oxides

    DOEpatents

    Andersson, Clarence A.

    1980-01-01

    A ceramic composition suitable for use as a high-temperature structural material, particularly for use in apparatus exposed to oxidizing atmospheres at temperatures of 400 to 1600.degree. C., is found within the triangular area ABCA of the Si.sub.3 N.sub.4 --SiO.sub.2 --M.sub.2 O.sub.3 ternary diagram depicted in FIG. 1. M is selected from the group of Yb, Dy, Er, Sc, and alloys having Yb, Y, Er, or Dy as one component and Sc, Al, Cr, Ti, (Mg +Zr) or (Ni+Zr) as a second component, said alloy having an effective ionic radius less than 0.89 A.

  7. Preparation and characterization of titania/silicone nanocomposite material

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Wang, L.; Zhang, H.; Wu, T.; Pan, H. Y.

    2015-07-01

    The preparation and properties of high refractive index nanocomposite material were studied. The TiO2 nanoparticles were synthesized by sol-gel method using acetic acid as a chelating ligand. The nanoparticles were dispersed directly into the polymer matrix to prepare transparent high refractive index nanocomposite thin films. The refractive index of films will be enhanced with the increase of titania contents. The particles were characterized by X-ray diffraction (XRD), Transmission Electron Microscope (TEM), and Fourier Transform Infrared Spectroscopy (FTIR), respectively. The results showed that all samples with different amounts of TiO2 exhibit good optical transparency. Furthermore, the pattern of the TiO2 NPs shows a pure anatase phases. From TEM image, the TiO2 has little agglomeration. The FT-IR spectrum indicated that acetate ions and titanium ions show good chelation.

  8. Gold nanorods-silicone hybrid material films and their optical limiting property

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Qi, Yanhai; Hao, Xiongwen; Peng, Xue; Li, Dongxiang

    2015-10-01

    As a kind of new optical limiting materials, gold nanoparticles have optical limiting property owing to their optical nonlinearities induced by surface plasmon resonance (SPR). Gold nanorods (GNRs) possess transversal SPR absorption and tunable longitudinal SPR absorption in the visible and near-infrared region, so they can be used as potential optical limiting materials against tunable laser pulses. In this letter, GNRs were prepared using seed-mediated growth method and surface-modified by silica coating to obtain good dispersion in polydimethylsiloxane prepolymers. Then the silicone rubber films doped with GNRs were prepared after vulcanization, whose optical limiting property and optical nonlinearity were investigated. The silicone rubber samples doped with more GNRs were found to exhibit better optical limiting performance.

  9. Specific Heat Capacity Measurement of Single-Crystalline Silicon as New Reference Material

    NASA Astrophysics Data System (ADS)

    Abe, Haruka; Kato, Hideyuki; Baba, Tetsuya

    2011-11-01

    We started to develop a new certified reference material for specific heat capacity measurement using a new type of cryogenic adiabatic calorimeter, applying a pulse-tube cryocooler in the temperature range from 50 to 350 K. A candidate certified reference material is single-crystalline silicon. To check the performance of the equipment, we measured the specific heat capacity of NIST SRM720, a type of synthetic sapphire. The relative expanded uncertainty of the measurement was estimated to be 0.65% at 350 K and 8.2% at 50 K, and the certified value of SRM720 was within the limits of uncertainty. In the next step, we measured the temperature dependence of the specific heat capacity of single-crystalline silicon. The result was compared with some reference data, and good agreement within 0.6% residual was found.

  10. Change in color of a maxillofacial prosthetic silicone elastomer, following investment in molds of different materials

    PubMed Central

    Sethi, Tania; Kheur, Mohit; Coward, Trevor; Patel, Naimesha

    2015-01-01

    Purpose: In the authors’ experience, the color of silicone elastomer following polymerization in molds made of gypsum products is slightly different from the color that was matched in the presence of the patient, before the silicone is packed. It is hypothesized that the investing materials and separating media have an effect on the color during the polymerization process of the silicone. Materials and Methods: This study compares and evaluates the change in color of silicone elastomer packed in three commonly used investing materials - Dental stone (white color), dental stone (green color), and die stone (orange color); coated with three different separating media – Alginate-based medium, soap solution and a resin-based die hardening material. Pigmented silicone samples of dimensions 1.5 cm × 2 cm × 0.5 cm were made from the elastomer in the above-mentioned mold materials using combinations of the mentioned separating media. These served as test group samples. Control group samples were made by packing a mix of the same pigmented elastomer in stainless steel molds. The L*, a*, b* values of the test and control group samples were determined using a spectrophotometer. The change in color (Delta E) was calculated between the control and test groups. Results: The mean L, a, b values for the control group were, 31.8, 26.2, and 36.3, respectively. Average values of change in color (Delta E) for samples packed utilizing alginate-based medium, die hardener, and soap solution, respectively in white dental stone (2.70, 2.74, and 2.88), green dental stone (2.19, 2.23, 2.42), and orange die stone (3.19, 2.72, 2.80) were tabulated. Conclusion: Among the investing materials studied, die stone showed the most color change (3.19), which was statistically significant. Among the separating media, die hardener showed the least color change (2.23). The best combination of an investing material and separating media as per this investigation is a dental stone (green) and alginate

  11. Experimental Investigation of Material Removal Characteristics in Silicon Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Park, Boumyoung; Jeong, Sukhoon; Lee, Hyunseop; Kim, Hyoungjae; Jeong, Haedo; Dornfeld, David A.

    2009-11-01

    The material removal characteristics of a silicon wafer were experimentally investigated with respect to the chemical dissolution and mechanical abrasion of the wafer during silicon chemical mechanical polishing (CMP) using an alkali-based slurry. The silicon surface without native oxide is rapidly dissolved by the slurry containing an amine agent, which effectively leads to the reduced hardness of the loaded silicon wafer due to Si-Si bond breaking during polishing. The abrasive particles in the slurry easily remove the reacted silicon surface, and the removal rate and wafer non-uniformity for abrasive concentrations of 1.5-3 wt % are better than those for other concentrations because of the low and steady coefficient of friction (COF) owing to the evenness of abrasive particles between the wafer and pad. Also, it was found that a high slurry flow rate of 700-1000 cm3/min improves wafer non-uniformity owing to the reduced temporal variation of temperature, because the slurry acts as a good cooling source during polishing. However, the removal rate remains almost constant upon varying the slurry flow rate because of the effective dissolution characteristic of the slurry with abundant amine as an accelerator, regardless of the reduction of average temperature with increasing slurry flow rate. In the break-in process used to stabilize the material removal, the viscoelastic behaviors of the pad and the ground wafer surface with native oxide and wheel marks cause a temporal change of the friction force during polishing, which is related to the removal rate and wafer non-uniformity. As a result, the stabilization of removal rate and wafer non-uniformity is achieved through a steady-state process with elevated temperature and reduced COF after a total polishing time of 60 min, based on the removal process of the wafer surface and the permanent deformation in the viscoelastic behavior of the pad.

  12. Slicing of Silicon into Sheet Material: Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.

    1979-01-01

    Testing of low cost low suspension power slurry vehicles is presented. Cutting oils are unlikely to work, but a mineral oil with additives should be workable. Two different abrasives were tested. A cheaper silicon carbide from Norton gave excellent results except for excessive kerf loss: the particles were too big. An abrasive treated for lubricity showed no lubricity improvement in mineral oil vehicle. The bounce fixture was tested for the first time under constant cut rate conditions (rather than constant force). Although the cut was not completed before the blades broke, the blade lifetime of thin (100 micrometer) blades was 120 times the lifetime without the fixture. The large prototype saw completed a successful run, producing 90% cutting yield (849 wafers) at 20 wafers/cm. Although inexperience with large numbers of wafers caused cleaning breakage to reduce this yield to 74%, the yield was high enough that the concept of the large saw is proven workable.

  13. 17th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes; Workshop Proceedings

    SciTech Connect

    Sopori, B. L.

    2007-08-01

    The National Center for Photovoltaics sponsored the 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, held in Vail, CO, August 5-8, 2007. This meeting provided a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and relevant non-photovoltaic fields. The theme of this year's meeting was 'Expanding Technology for a Future Powered by Si Photovoltaics.'

  14. [Influence of autoclave sterilization on dimensional stability and detail reproduction of 5 additional silicone impression materials].

    PubMed

    Xu, Tong-kai; Sun, Zhi-hui; Jiang, Yong

    2012-03-01

    To evaluate the dimensional stability and detail reproduction of five additional silicone impression materials after autoclave sterilization. Impressions were made on the ISO 4823 standard mold containing several marking lines, in five kinds of additional silicone. All the impressions were sterilized by high temperature and pressure (135 °C, 212.8 kPa) for 25 min. Linear measurements of pre-sterilization and post-sterilization were made with a measuring microscope. Statistical analysis utilized single-factor analysis with pair-wise comparison of mean values when appropriate. Hypothesis testing was conducted at alpha = 0.05. No significant difference was found between the pre-sterilization and post-sterilization conditions for all locations, and all the absolute valuse of linear rate of change less than 8%. All the sterilization by the autoclave did not affect the surfuce detail reproduction of the 5 impression materials. The dimensional stability and detail reproduction of the five additional silicone impression materials in the study was unaffected by autoclave sterilization.

  15. Studies of material and process compatibility in developing compact silicon vapor chambers

    NASA Astrophysics Data System (ADS)

    Cai, Qingjun; Bhunia, Avijit; Tsai, Chialun; Kendig, Martin W.; DeNatale, Jeffrey F.

    2013-06-01

    The performance and long-term reliability of a silicon vapor chamber (SVC) developed for thermal management of high-power electronics critically depend on compatibility of the component materials. A hermetically sealed SVC presented in this paper is composed of bulk silicon, glass-frit as a bonding agent, lead/tin solder as an interface sealant and a copper charging tube. These materials, in the presence of a water/vapor environment, may chemically react and release noncondensable gas (NCG), which can weaken structural strength and degrade the heat transfer performance with time. The present work reports detailed studies on chemical compatibility of the components and potential solutions to avoid the resulting thermal performance degradation. Silicon surface oxidation and purification of operating liquid are necessary steps to reduce performance degradation in the transient period. A lead-based solder with its low reflow temperature is found to be electrochemically stable in water/vapor environment. High glazing temperature solidifies molecular bonding in glass-frit and mitigates PbO precipitation. Numerous liquid flushes guarantee removal of chemical residual after the charging tube is soldered to SVC. With these improvements on the SVC material and process compatibility, high effective thermal conductivity and steady heat transfer performance are obtained.

  16. Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters.

    PubMed

    Ciampi, Simone; Böcking, Till; Kilian, Kristopher A; Harper, Jason B; Gooding, J Justin

    2008-06-03

    In this paper we report the use of the optical properties of porous silicon photonic crystals, combined with the chemical versatility of acetylene-terminated SAMs, to demonstrate the applicability of "click" chemistry to mesoporous materials. Cu(I)-catalyzed alkyne-azide cycloaddition reactions were employed to modify the internal pore surfaces through a two-step hydrosilylation/cycloaddition procedure. A positive outcome of this catalytic process, here performed in a spatially confined environment, was only observed in the presence of a ligand-stabilized Cu(I) species. Detailed characterization using Fourier transform infrared spectroscopy and optical reflectivity measurements demonstrated that the surface acetylenes had reacted in moderate to high yield to afford surfaces exposing chemical functionalities of interest. The porous silicon photonic crystals modified by the two-step strategy, and exposing oligoether moieties, displayed improved resistance toward the nonspecific adsorption of proteins as determined with fluorescently labeled bovine serum albumin. These results demonstrate that "click" immobilization offers a versatile, experimentally simple, and modular approach to produce functionalized porous silicon surfaces for applications as diverse as porous silicon-based sensing devices and implantable biomaterials.

  17. Assessment of oxidative stress and chromosomal aberration inducing potential of three medical grade silicone polymer materials.

    PubMed

    Vijayalakshmi, P; Geetha, C S; Mohanan, P V

    2013-02-01

    Medical expenditures for devices are increasing along with the ageing of human population and the synthesis of materials such as silicone polymers is on upsurge for manufacturing these devices. The International Organization for Standardization (ISO) emphasizes a battery of tests for preclinical assessment of biocompatibility of medical devices. Genotoxicity assays have become an integral component of these test procedures and it employs a set of in vitro and in vivo experiments to detect mutagens. Hence, this study was performed with an intention to investigate the genotoxic potential of the physiological saline extracts of three medical grade silicone polymer materials by the in vitro chromosomal aberration assay using human peripheral blood lymphocytes. Further, the oxidative stress inducing potential of the material extracts was investigated in vivo in mice liver homogenates using cyclophosphamide as positive control. The investigation revealed that none of the three materials were able to produce marked human lymphocyte chromosomal aberration, suggesting the absence of mutagens. The materials also showed negative results in their oxidative stress inducing potential, which was revealed by the normal levels of lipid peroxidation and unaltered levels of glutathione and its metabolizing enzymes in the mice liver tissue homogenates. It was interesting to observe a significant correlation between the genotoxic and antioxidant parameters investigated. Hence, it is suggested that the estimation of antioxidant status would serve as a better preliminary testing procedure prior to evaluating the genetic and molecular toxicity mechanisms of medical devices and/or materials intended for manufacture of such devices.

  18. Friction and Wear Behavior of Silicon Under Conditions of Sliding.

    NASA Astrophysics Data System (ADS)

    Nadimpalli, Chandrasekhar Venkata

    Silicon is gaining importance as a material in micromechanical applications such as micromotors and microactuators. Friction and wear can affect the performance of these devices and hence it is important to study the friction and wear behavior of silicon. The deformation behavior of n-type silicon is fundamentally different from p-type. On deformation, n -type silicon may convert to p-type, but p-type silicon does not convert to n-type on deformation. This is related to the effect of dislocations interacting with the electrical charge carriers. Friction and wear behavior of n and p-type silicon was studied under conditions of sliding wear. Sliding was selected because the stress system associated with sliding introduces large plastic strains at the surface. The friction and wear behavior of n and p-type silicon is expected to be different due to the differences in their deformation behavior. Also, the n to p transition may show up in the friction and wear behavior. The samples were tested in air and in vacuum. Diamond was used as the slider. The wear tracks showed evidence of plastic flow. The morphology of this material was similar to that seen in more ductile materials. The coefficient of friction was also high. Other researchers have reported that DC Silicon transforms to a more ductile phase when sufficient pressure is applied. When shear stresses are present, as in sliding wear, the pressure for phase transformation has been reported to be about 8 GPa. The maximum pressure under the slider in the present set of experiments was estimated to be 8.2 GPa. Therefore, it is possible that transformed material extruded during sliding to produce the flow-like features observed at the wear track. The work involved in this phase transformation, as well as the work in deforming DC Silicon and/or the ductile product phase would contribute to the frictional energy. The debris from the air tests was DC silicon (as determined by XRD and TEM). No significant differences were

  19. Use of silicone materials to simulate tissue biomechanics as related to deep tissue injury.

    PubMed

    Sparks, Jessica L; Vavalle, Nicholas A; Kasting, Krysten E; Long, Benjamin; Tanaka, Martin L; Sanger, Phillip A; Schnell, Karen; Conner-Kerr, Teresa A

    2015-02-01

    Deep tissue injury (DTI) is caused by prolonged mechanical loading that disrupts blood flow and metabolic clearance. A patient simulator that mimics the biomechanical aspects of DTI initiation, stress and strain in deep muscle tissue, would be potentially useful as a training tool for pressure-relief techniques and testing platform for pressure-mitigating products. As a step toward this goal, this study evaluates the ability of silicone materials to mimic the distribution of stress in muscle tissue under concentrated loading. To quantify the mechanical properties of candidate silicone materials, unconfined compression experiments were conducted on 3 silicone formulations (Ecoflex 0030, Ecoflex 0010, and Dragon Skin; Smooth-On, Inc, Easton, Pennsylvania). Results were fit to an Ogden hyperelastic material model, and the resulting shear moduli (G) were compared with published values for biological tissues. Indentation tests were then conducted on Ecoflex 0030 and porcine muscle to investigate silicone's ability to mimic the nonuniform stress distribution muscle demonstrates under concentrated loading. Finite element models were created to quantify stresses throughout tissue depth. Finally, a preliminary patient simulator prototype was constructed, and both deep and superficial "tissue" pressures were recorded to examine stress distribution. Indentation tests showed similar stress distribution trends in muscle and Ecoflex 0030, but stress magnitudes were higher in Ecoflex 0030 than in porcine muscle. All 3 silicone formulations demonstrated shear moduli within the range of published values for biological tissue. For the experimental conditions reported in this work, Ecoflex 0030 exhibited greater stiffness than porcine muscle. Indentation tests and the prototype patient simulator trial demonstrated similar trends with high pressures closest to the bony prominence with decreasing magnitude toward the interfacial surface. Qualitatively, silicone mimicked the phenomenon

  20. Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same

    DOEpatents

    Lillo, Thomas M.; Chu, Henry S.; Harrison, William M.; Bailey, Derek

    2013-01-22

    Methods of forming composite materials include coating particles of titanium dioxide with a substance including boron (e.g., boron carbide) and a substance including carbon, and reacting the titanium dioxide with the substance including boron and the substance including carbon to form titanium diboride. The methods may be used to form ceramic composite bodies and materials, such as, for example, a ceramic composite body or material including silicon carbide and titanium diboride. Such bodies and materials may be used as armor bodies and armor materials. Such methods may include forming a green body and sintering the green body to a desirable final density. Green bodies formed in accordance with such methods may include particles comprising titanium dioxide and a coating at least partially covering exterior surfaces thereof, the coating comprising a substance including boron (e.g., boron carbide) and a substance including carbon.

  1. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics.

    PubMed

    Hwang, Suk-Won; Park, Gayoung; Edwards, Chris; Corbin, Elise A; Kang, Seung-Kyun; Cheng, Huanyu; Song, Jun-Kyul; Kim, Jae-Hwan; Yu, Sooyoun; Ng, Joanne; Lee, Jung Eun; Kim, Jiyoung; Yee, Cassian; Bhaduri, Basanta; Su, Yewang; Omennetto, Fiorenzo G; Huang, Yonggang; Bashir, Rashid; Goddard, Lynford; Popescu, Gabriel; Lee, Kyung-Mi; Rogers, John A

    2014-06-24

    Single-crystalline silicon nanomembranes (Si NMs) represent a critically important class of material for high-performance forms of electronics that are capable of complete, controlled dissolution when immersed in water and/or biofluids, sometimes referred to as a type of "transient" electronics. The results reported here include the kinetics of hydrolysis of Si NMs in biofluids and various aqueous solutions through a range of relevant pH values, ionic concentrations and temperatures, and dependence on dopant types and concentrations. In vitro and in vivo investigations of Si NMs and other transient electronic materials demonstrate biocompatibility and bioresorption, thereby suggesting potential for envisioned applications in active, biodegradable electronic implants.

  2. Optical properties of atomic layer deposited materials and their application in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Alasaarela, Tapani; Hiltunen, Jussi; Khanna, Amit; Säynätjoki, Antti; Tervonen, Ari; Honkanen, Seppo

    2010-02-01

    Atomic layer deposition (ALD) is a promising method to grow optical materials on waveguide structures. Propagation loss analysis indicates that amorphous TiO2 and Al2O3 films are promising for the waveguide purposes. Instead, polycrystalline ZnO does not work properly as a waveguide by itself, but the waveguiding properties can probably be enhanced by introducing intermediate Al2O3 layers. The wide variety of available materials, conformal growth properties and low scattering losses of many ALD films enable their usage in various waveguide applications. Experimental coating of silicon waveguides is discussed.

  3. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    NASA Astrophysics Data System (ADS)

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  4. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating.

    PubMed

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-06-28

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors.

  5. Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating

    PubMed Central

    Phan, Hoang-Phuong; Dinh, Toan; Kozeki, Takahiro; Qamar, Afzaal; Namazu, Takahiro; Dimitrijev, Sima; Nguyen, Nam-Trung; Dao, Dzung Viet

    2016-01-01

    Cubic silicon carbide is a promising material for Micro Electro Mechanical Systems (MEMS) applications in harsh environ-ments and bioapplications thanks to its large band gap, chemical inertness, excellent corrosion tolerance and capability of growth on a Si substrate. This paper reports the piezoresistive effect of p-type single crystalline 3C-SiC characterized at high temperatures, using an in situ measurement method. The experimental results show that the highly doped p-type 3C-SiC possesses a relatively stable gauge factor of approximately 25 to 28 at temperatures varying from 300 K to 573 K. The in situ method proposed in this study also demonstrated that, the combination of the piezoresistive and thermoresistive effects can increase the gauge factor of p-type 3C-SiC to approximately 20% at 573 K. The increase in gauge factor based on the combination of these phenomena could enhance the sensitivity of SiC based MEMS mechanical sensors. PMID:27349378

  6. Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.

    2011-08-01

    We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.

  7. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  8. Optimization of optical properties of silicon-based anti-reflective spin-on hardmask materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Kyun; Cho, Hyeon Mo; Woo, Changsoo; Koh, Sang Ran; Kim, Mi-Young; Yoon, Hui Chan; Lee, Woojin; Shin, Seung-Wook; Kim, Jong-Seob; Chang, Tuwon

    2008-11-01

    In the current semiconductor industry, hardmasks have become essential for successful patterning in many applications. Silicon-based anti-reflective spin-on hardmask (Si-SOH), which can be built by spin-on coating, is desirable in terms of mass production throughput and cost of ownership. As the design rule shrinks, the thickness of photoresist also becomes thinner, which forces the thickness of Si-SOH to be thinner resulting in a tighter thickness margin. In this case, controlling of optical properties of Si-SOH is important in order to obtain low reflectivity in the exposure process. Previously, we reported papers on silicon-based anti-reflective spin-on hardmask materials for 193 nm lithography and immersion ArF lithography. In this paper, the technique for optimization of optical properties, especially n and k values, of Si-SOH is described. To control n and k values, several chromophores were screened and the ratio among them was optimized. Although the amount of chromophores increased and the silicon contents decreased, our etch resistance enhancement technique allowed Si-SOH to have sufficient etch resistance. Characterization of this Si-SOH and lithographic performance using these materials are described in detail.

  9. Evaluations of candidate encapsulation designs and materials for low-cost silicon photovoltaic arrays

    NASA Technical Reports Server (NTRS)

    Gaines, G. B.; Carmichael, D. C.; Sliemers, F. A.; Brockway, M. C.; Bunk, A. R.; Nance, G. P.

    1978-01-01

    Three encapsulation designs for silicon photovoltaic arrays based on cells with silk-screened Ag metallization have been evaluated: transparent polymeric coatings over cells laminated between two films or sheets of polymeric materials; cells adhesively bonded to a glass cover with a polymer pottant and a glass or other substrate component. Silicone and acrylic coatings were assessed, together with acrylic sheet, 0.635 mm fiberglass-reinforced polyester sheet, 0.102 mm polycarbonate/acrylic dual-layer film, 0.127 mm fluorocarbon film, soda-lime glass, borosilicate glass, low-iron glass, and several adhesives. The encapsulation materials were characterized by light transmittance measurements, determination of moisture barrier properties and bond strengths, and by the performance of cells before and after encapsulation. Silicon and acrylic coatings provided inadequate protection. Acrylic and fluorocarbon films displayed good weatherability and acceptable optical transmittance. Borosilicate, low-iron and soda-lime-float glasses were found to be acceptable candidate encapsulants for most environments.

  10. Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins.

    PubMed

    Krayukhina, Elena; Tsumoto, Kouhei; Uchiyama, Susumu; Fukui, Kiichi

    2015-02-01

    Currently, polymer-based prefillable syringes are being promoted to the pharmaceutical market because they provide an increased break resistance relative to traditionally used glass syringes. Despite this significant advantage, the possibility that barrel material can affect the oligomeric state of the protein drug exists. The present study was designed to compare the effect of different syringe materials and silicone oil lubrication on the protein aggregation. The stability of a recombinant fusion protein, abatacept (Orencia), and a fully human recombinant immunoglobulin G1, adalimumab (Humira), was assessed in silicone oil-free (SOF) and silicone oil-lubricated 1-mL glass syringes and polymer-based syringes in accelerated stress study. Samples were subjected to agitation stress, and soluble aggregate levels were evaluated by size-exclusion chromatography and verified with analytical ultracentrifugation. In accordance with current regulatory expectations, the amounts of subvisible particles resulting from agitation stress were estimated using resonant mass measurement and dynamic flow-imaging analyses. The amount of aggregated protein and particle counts were similar between unlubricated polymer-based and glass syringes. The most significant protein loss was observed for lubricated glass syringes. These results suggest that newly developed SOF polymer-based syringes are capable of providing biopharmaceuticals with enhanced physical stability upon shipping and handling.

  11. Effects of Syringe Material and Silicone Oil Lubrication on the Stability of Pharmaceutical Proteins

    PubMed Central

    Krayukhina, Elena; Tsumoto, Kouhei; Uchiyama, Susumu; Fukui, Kiichi

    2015-01-01

    Currently, polymer-based prefillable syringes are being promoted to the pharmaceutical market because they provide an increased break resistance relative to traditionally used glass syringes. Despite this significant advantage, the possibility that barrel material can affect the oligomeric state of the protein drug exists. The present study was designed to compare the effect of different syringe materials and silicone oil lubrication on the protein aggregation. The stability of a recombinant fusion protein, abatacept (Orencia), and a fully human recombinant immunoglobulin G1, adalimumab (Humira), was assessed in silicone oil-free (SOF) and silicone oil-lubricated 1-mL glass syringes and polymer-based syringes in accelerated stress study. Samples were subjected to agitation stress, and soluble aggregate levels were evaluated by size-exclusion chromatography and verified with analytical ultracentrifugation. In accordance with current regulatory expectations, the amounts of subvisible particles resulting from agitation stress were estimated using resonant mass measurement and dynamic flow-imaging analyses. The amount of aggregated protein and particle counts were similar between unlubricated polymer-based and glass syringes. The most significant protein loss was observed for lubricated glass syringes. These results suggest that newly developed SOF polymer-based syringes are capable of providing biopharmaceuticals with enhanced physical stability upon shipping and handling. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:527–535, 2015 PMID:25256796

  12. Methodologies in Search of p-type Transparent Conductors

    NASA Astrophysics Data System (ADS)

    Lam, Kanber

    P-type transparent conductors are rare in nature but could lead to a lot technological innovations. A systematic search for p-type transparent conductors can be divided into two types: to search for (I) experimentally unknown compounds and (II) experimentally known ones. The difference between the two types of search lies in the fact that we always start with the experimental crystal structure in type II search while such information is lacking in the type I search. To make the type I research possible, a reasonably efficient method in predicting the ground state crystal structure is required. And the evolutionary algorithm with the real-space cut-and-splice method is a promising candidate for the task. For both type I and type II searches, we have to accurately predict the fundamental band gap and the hole conductivity. Corrections to density functional theory band gap, such as screened exchange LDA (sxLDA) or G0W0 , are required. The hole conductivity is linearly dependent on the hole concentration and inversely proportional to the hole effective mass. And we focused on the study of host material properties, the fundamental band gaps and hole effective masses, in the oxide sulfide family and eight promising candidates as p-type transparent conducting hosts were found. The hole population in the known transparent conducting oxides (TCOs) is mostly orig- inating from intrinsic point defects. However, a material La5Cu6O4S7 , whose hole conduc- tivity is an order of magnitude higher than the known TCOs, has its holes originating from a line structure, namely the breaking of dimers on the sulfur chain. The sulfur chain is optically inactive and serves purely to generate holes traveling in the Cu6S6 layers at finite temperature. This interesting hole-generating mechanism could open up new possibilities to achieve high hole conductivity in p-type TCs.

  13. Minority carrier diffusion lengths and absorption coefficients in silicon sheet material

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.; Swimm, R. T.

    1980-01-01

    Most of the methods which have been developed for the measurement of the minority carrier diffusion length of silicon wafers require that the material have either a Schottky or an ohmic contact. The surface photovoltage (SPV) technique is an exception. The SPV technique could, therefore, become a valuable diagnostic tool in connection with current efforts to develop low-cost processes for the production of solar cells. The technique depends on a knowledge of the optical absorption coefficient. The considered investigation is concerned with a reevaluation of the absorption coefficient as a function of silicon processing. A comparison of absorption coefficient values showed these values to be relatively consistent from sample to sample, and independent of the sample growth method.

  14. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    NASA Astrophysics Data System (ADS)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  15. Material configurations for n-type silicon-based terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Valavanis, A.; Dinh, T. V.; Lever, L. J. M.; Ikonić, Z.; Kelsall, R. W.

    2011-05-01

    Silicon-based quantum cascade lasers (QCLs) offer the prospect of integrating coherent terahertz (THz) radiation sources with silicon microelectronics. Theoretical studies have proposed a variety of n-type SiGe-based heterostructures as design candidates; however, the optimal material configuration remains unclear. In this work, an optimization algorithm is used to design equivalent THz QCLs in three recently proposed configurations [(001) Ge/GeSi, (001) Si/SiGe, and (111) Si/SiGe], with emission frequencies of 3 and 4 THz. A systematic comparison of the electronic and optical properties is presented. A semiclassical electron transport simulation is used to model the charge carrier dynamics and calculate the peak gain, the corresponding current density, and the maximum operating temperature. It is shown that (001) Ge/GeSi structures yield the best simulated performance at both emission frequencies.

  16. Study program to develop and evaluate die and container materials for the growth of silicon ribbons

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Initial sessile drop experiments on SiC, Si3N4 and A1N were conducted. Very promising results were achieved on both SiC and Si3N4 where minimal penetration of these CNTD coatings by molten silicon was observed. More detailed characterization of the CNTD microstructures was accomplished as well as X-ray characterization of the third and fourth candidate materials system sets (i.e. A1N and altered Si3N4). Polished sections of post sessile drop specimens were also prepared and evaluated. The techniques of full scale crucible hot pressing were developed and die grinding development was initiated. The apparatus for measurement of oxygen partial pressure was reconstructed and calibrated. The sessile drop temperature measurement procedure was calibrated for absorption by the pyrex view-port and additional Auger electron analysis was performed at the interface of molten silicon with CNTD Si3N4 and A1N.

  17. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    PubMed Central

    Hui, Alex; Sheardown, Heather; Jones, Lyndon

    2012-01-01

    Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted) tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted) tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials. PMID:28817033

  18. Evaluation of the Elastic Properties of Thirteen Silicone Interocclusal Recording Materials

    PubMed Central

    Zietek, Marek

    2016-01-01

    Background. Addition silicones are popular as dental impression materials and are used in bite registration procedures. Objective. This study aimed to compare the postsetting elasticities and other mechanical properties of thirteen addition silicone interocclusal recording materials. Materials and Methods. The following materials were investigated: Colorbite D, Futar D, Genie Bite, Jet Blue Bite fast, Memoreg 2, O-Bite, Occlufast Rock, Omni-Bite Plus, Regidur i, Registrado X-tra, Regofix transparent, StoneBite, and Variotime Bite. Thirty specimens of each material were tested. The elasticities and strengths of the materials were measured with a universal testing machine, and computer software was used to determine the E-moduli, ultimate tensile strengths, and ultimate elongations of the specimens. Results. The results were subjected to statistical analysis using the Kruskal-Wallis test (p ≤ 0.05). The statistics revealed that the mean E-modulus values varied significantly across the materials (p = 0.000) and were highest for the StoneBite and Registrado X-tra and lowest for the Regofix transparent. The ultimate tensile strengths were highest for the Regofix transparent and Registrado X-tra (p = 0.000) and lowest for the Jet Blue Bite fast and Memoreg 2 (p = 0.000). The elongation percentages at the point of breaking varied significantly across the materials (p = 0.000); the lowest value was observed for the StoneBite, whereas the Regofix transparent nearly doubled original length. Conclusions. The authors concluded that materials with the high E-moduli and great ultimate tensile strengths may be most useful clinically. Registrado X-tra and StoneBite best met these criteria. PMID:27747239

  19. Evaluation of the Elastic Properties of Thirteen Silicone Interocclusal Recording Materials.

    PubMed

    Wieckiewicz, Mieszko; Grychowska, Natalia; Zietek, Marek; Wieckiewicz, Wlodzimierz

    2016-01-01

    Background. Addition silicones are popular as dental impression materials and are used in bite registration procedures. Objective. This study aimed to compare the postsetting elasticities and other mechanical properties of thirteen addition silicone interocclusal recording materials. Materials and Methods. The following materials were investigated: Colorbite D, Futar D, Genie Bite, Jet Blue Bite fast, Memoreg 2, O-Bite, Occlufast Rock, Omni-Bite Plus, Regidur i, Registrado X-tra, Regofix transparent, StoneBite, and Variotime Bite. Thirty specimens of each material were tested. The elasticities and strengths of the materials were measured with a universal testing machine, and computer software was used to determine the E-moduli, ultimate tensile strengths, and ultimate elongations of the specimens. Results. The results were subjected to statistical analysis using the Kruskal-Wallis test (p ≤ 0.05). The statistics revealed that the mean E-modulus values varied significantly across the materials (p = 0.000) and were highest for the StoneBite and Registrado X-tra and lowest for the Regofix transparent. The ultimate tensile strengths were highest for the Regofix transparent and Registrado X-tra (p = 0.000) and lowest for the Jet Blue Bite fast and Memoreg 2 (p = 0.000). The elongation percentages at the point of breaking varied significantly across the materials (p = 0.000); the lowest value was observed for the StoneBite, whereas the Regofix transparent nearly doubled original length. Conclusions. The authors concluded that materials with the high E-moduli and great ultimate tensile strengths may be most useful clinically. Registrado X-tra and StoneBite best met these criteria.

  20. Process feasibility study in support of silicon material Task I. Final report, October 1, 1975-February 6, 1981

    SciTech Connect

    Yaws, C.L.; Li, K.Y.; Hopper, J.R.; Fang, C.S.; Hansen, K.C.

    1981-02-06

    The Low-Cost Solar Array (LSA) Project is directed toward effective cost reduction in the production of silicon for solar cells. Results are presented for process system properties, chemical engineering and economic analyses of the new technologies and processes being developed for the production of lower cost silicon for solar cells. Major physical, thermodynamic and transport property data are reported for the following silicon source and processing chemical materials: silane, silicon tetrachloride, trichlorosilane, dichlorosilane, silicon tetrafluoride, and silicon. The property data are reported for critical temperature, critical pressure, critical volume, vapor pressure, heat of vaporization, heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation and Gibb's free energy of formation. Chemical engineering analyses involving the preliminary process design of a plant (1000 MT/yr capacity) to produce silicon via the technology under consideration were accomplished for the following processes: UCC silane process for silicon, BCL process for silicon, conventional polysilicon process (Siemens technology), SiI/sub 4/ decomposition process, and DCS process (dichlorosilane).Major activities in chemical engineering analyses include base case conditions, reaction chemistry, process flowsheet, material balance, energy balance, property data, equipment design, major equipment list, production labor and forward for economic analysis. The process design package provides detailed data for raw materials, utilities, major process equipment and production labor requirements necessary for polysilicon production in each process. Using detailed data from the process design package, economic analyses for a 1000 MT/yr silicon plant were accomplished. Primary results from the economic analyses included plant capital investment and product cost. Results are presented and discussed. (WHK)

  1. Titanium nitride as light trapping plasmonic material in silicon solar cell

    NASA Astrophysics Data System (ADS)

    Venugopal, N.; Gerasimov, V. S.; Ershov, A. E.; Karpov, S. V.; Polyutov, S. P.

    2017-10-01

    Light trapping is a crucial prominence to improve the efficiency in thin film solar cells. However, last few years, plasmonic based thin film solar cells shows potential structure to improve efficiency in photovoltaics. In order to achieve the high efficiency in plasmonic based thin film solar cells, traditionally noble metals like Silver (Ag) and Gold (Au) are extensively used due to their ability to localize the light in nanoscale structures. In this paper, we numerically demonstrated the absorption enhancement due to the incorporation of novel plasmonic TiN nanoparticles on thin film Silicon Solar cells. Absorption enhancement significantly affected by TiN plasmonic nanoparticles on thin film silicon was studied using Finite-Difference-Time-Domain Method (FDTD). The optimal absorption enhancement 1.2 was achieved for TiN nanoparticles with the diameter of 100 nm. The results show that the plasmonic effect significantly dominant to achieve maximum absorption enhancement g(λ) at longer wavelengths (red and near infrared) and as comparable with Au nanoparticle on thin film Silicon. The absorption enhancement can be tuned to the desired position of solar spectrum by adjusting the size of TiN nanoparticles. Effect of nanoparticle diameters on the absorption enhancement was also thoroughly analyzed. The numerically simulated results show that TiN can play the similar role as gold nanoparticles on thin film silicon solar cells. Furthermore, TiN plasmonic material is cheap, abundant and more Complementary Metal Oxide Semiconductor (CMOS) compatible material than traditional plasmonic metals like Ag and Au, which can be easy integration with other optoelectronic devices.

  2. Acoustic characterization of polyvinyl chloride and self-healing silicone as phantom materials

    NASA Astrophysics Data System (ADS)

    Ceh, Dennis; Peters, Terry M.; Chen, Elvis C. S.

    2015-03-01

    Phantoms are physical constructs used in procedure planning, training, medical imaging research, and machine calibration. Depending on the application, the material a phantom is made out of is very important. With ultrasound imaging, phantom materials used need to have similar acoustic properties, specifically speed of sound and attenuation, as a specified tissue. Phantoms used with needle insertion require a material with a similar tensile strength as tissue and, if possible, the ability to self heal increasing its overall lifespan. Soft polyvinyl chloride (PVC) and silicone were tested as possible needle insertion phantom materials. Acoustic characteristics were determined using a time of flight technique, where a pulse was passed through a sample contained in a water bath. The speed of sound and attenuation were both determined manually and through spectral analysis. Soft PVC was determined to have a speed of sound of approximately 1395 m/s and attenuation of 0.441 dB/cm (at 1 MHz). For the silicone mixture, the respective speed of sound values was within a range of 964.7 m/s and 1250.0 m/s with an attenuation of 0.547 dB/cm (at 1 MHz).

  3. Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node

    SciTech Connect

    Yin, Lan; Harburg, Daniel V.; Rogers, John A.; Bozler, Carl; Omenetto, Fiorenzo

    2015-01-05

    Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.

  4. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    PubMed

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  5. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-01

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  6. Slicing of silicon into sheet material: Silicon sheet growth development for the large area silicon sheet task of the Low Cost Silicon Solar Array project

    NASA Technical Reports Server (NTRS)

    Fleming, J. R.

    1978-01-01

    The limits of blade tolerance were defined. The standard blades are T-2 thickness tolerance. Good results were obtained by using a slurry fluid consisting of mineral oil and a lubricity additive. Adjustments of the formulation and fine tuning of the cutting process with the new fluid are necessary. Test results and consultation indicate that the blade breakage encountered with water based slurries is unavoidable. Two full capacity (974 wafer) runs were made on the large prototype saw. Both runs resulted in extremely low yield. However, the reasons for the low yield were lack of proper technique rather than problems with machine function. The test on the effect of amount of material etched off of an as-sawn wafer on solar cell efficiency were completed. The results agree with previous work at JPL in that the minimum material removed per side that gives maximum efficiency is on the order of 10 microns.

  7. Evaluation of selected chemical processes for production of low-cost silicon phase 2. silicon material task, low-cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Blocher, J. M., Jr.; Browning, M. F.; Rose, E. E.; Thompson, W. B.; Schmitt, W. A.; Fippin, J. S.; Kidd, R. W.; Liu, C. Y.; Kerbler, P. S.; Ackley, W. R.

    1978-01-01

    Progress from October 1, 1977, through December 31, 1977, is reported in the design of the 50 MT/year experimental facility for the preparation of high purity silicon by the zinc vapor reduction of silicon tetrachloride in a fluidized bed of seed particles to form a free flowing granular product.

  8. Study of the Effects of Impurities on the Properties of Silicon Materials and Performance of Silicon Solar Cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1979-01-01

    Numerical solutions were obtained from the exact one dimensional transmission line circuit model to study the following effects on the terrestrial performance of silicon solar cells: interband Auger recombination; surface recombination at the contact interfaces; enhanced metallic impurity solubility; diffusion profiles; and defect-impurity recombination centers. Thermal recombination parameters of titanium impurity in silicon were estimated from recent experimental data. Based on those parameters, computer model calculations showed that titanium concentration must be kept below 6x10 to the 12th power Ti/cu cm in order to achieve 16% AM1 efficiency in a silicon solar cell of 250 micrometers thick and 1.5 ohm-cm resistivity.

  9. Influence of molybdenum silicide additions on high-temperature oxidation resistance of silicon nitride materials

    SciTech Connect

    Klemm, H.; Tangermann, K.; Schubert, C.; Hermel, W.

    1996-09-01

    The influence of additions of molybdenum disilicide (MoSi{sub 2}) on the microstructure and the mechanical properties of a silicon nitride (Si{sub 3}N{sub 4}) material, with neodymium oxide (Nd{sub 2}O{sub 3}) and aluminum nitride (AlN) as sintering aids, was studied. The composites, containing 5, 10, and 17.6 wt% MoSi{sub 2}, were fabricated by hot pressing. All materials exhibited a similar phase composition, detected by X-ray diffractometry. Up to MoSi{sub 2} additions of 10 wt%, mechanical properties such as strength, fracture toughness, or creep at 1,400 C were not affected significantly, in comparison to that of monolithic Si{sub 3}N{sub 4}. The oxidation resistance of the composites, in terms of weight gain, degraded. After 1,000 h of oxidation at 1,400 and 1,450 C in air, a greater weight gain (by a factor of approximately three) was obtained, in comparison to that of the material without MoSi{sub 2}. Nevertheless, after 1,000 h of oxidation, the degradation in strength of the composites was considerably less severe than that of the material without MoSi{sub 2}. An additional layer was formed, caused by processes at the surface of the Si{sub 3}N{sub 4} material, preventing the formation of pores, cracks, or glassy-phase-rich areas, which are common features of oxidation damage in Si{sub 3}N{sub 4} materials. This surface layer, containing Mo{sub 5}Si{sub 3} and silicon oxynitride (Si{sub 2}ON{sub 2}), was the result of reactions between MoSi{sub 2}, Si{sub 3}N{sub 4}, and the oxygen penetrating by diffusion into the material during the high-temperature treatment.

  10. Design and evaluation of carbon nanofiber and silicon materials for neural implant applications

    NASA Astrophysics Data System (ADS)

    McKenzie, Janice L.

    Reduction of glial scar tissue around central nervous system implants is necessary for improved efficacy in chronic applications. Design of materials that possess tunable properties inspired by native biological tissue and elucidation of pertinent cellular interactions with these materials was the motivation for this study. Since nanoscale carbon fibers possess the fundamental dimensional similarities to biological tissue and have attractive material properties needed for neural biomaterial implants, this present study explored cytocompatibility of these materials as well as modifications to traditionally used silicon. On silicon materials, results indicated that nanoscale surface features reduced astrocyte functions, and could be used to guide neurite extension from PC12 cells. Similarly, it was determined that astrocyte functions (key cells in glial scar tissue formation) were reduced on smaller diameter carbon fibers (125 nm or less) while PC12 neurite extension was enhanced on smaller diameter carbon fibers (100 nm or less). Further studies implicated laminin adsorption as a key mechanism in enhancing astrocyte adhesion to larger diameter fibers and at the same time encouraging neurite extension on smaller diameter fibers. Polycarbonate urethane (PCU) was then used as a matrix material for the smaller diameter carbon fibers (100 and 60 nm). These composites proved very versatile since electrical and mechanical properties as well as cell functions and directionality could be influenced by changing bulk and surface composition and features of these matrices. When these composites were modified to be smooth at the micronscale and only rough at the nanoscale, P19 cells actually submerged philopodia, extensions, or whole cells bodies beneath the PCU in order to interact with the carbon nanofibers. These carbon nanofiber composites that have been formulated are a promising material to coat neural probes and thereby enhance functionality at the tissue interface. This

  11. Fabrication, characterization, and application in nanoenergetic materials of uncracked nano porous silicon thick films

    NASA Astrophysics Data System (ADS)

    Wang, Shouxu; Shen, Ruiqi; Yang, Cheng; Ye, Yinghua; Hu, Yan; Li, Chuangxin

    2013-01-01

    The porous silicon (PS) film has gained increasing attention in recent years as advanced nanoenergetic materials (nEMs). A simple fabrication method to prepare uncracked PS thick films was successfully realized with precisely controlled electrochemical etching, and the relationship between the current density and the concentration of electrolytes was found in its fabrication. Additionally, the capillary stresses resulted from the liquids in nanopores of PS films was another factor resulted in its crack. The nanopores composed of uncracked PS thick films distributed regularly and their diameters ranged from 2 nm to 6 nm. Its Sa (average roughness) of PS film surface was 6.53 nm, and its thickness ranged from 102.41 μm to 205.75 μm. The specific surface area was 587 m2/g and the average diameter of nanopores was 4.3 nm. The PS film was found to be monocrystal and it was same as the substrate. The crack mechanism of PS films was discussed: the porous structure reduced the strength of PS films comparing the silicon bulk and the capillary effect hastened the crack of PS films. PS films filling with sodium percholorate in nanopores were ignited by laser and the stable combustion showed that they were advantageous to be applied as micro-electromechanical systems (MEMS) compatible devices, such as silicon-based chips of mircothruster and microigniter.

  12. Nanoporous silicon flakes as anode active material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Kim, Young-You; Lee, Jeong-Hwa; Kim, Han-Jung

    2017-01-01

    Nanoporous-silicon (np-Si) flakes were prepared using a combination of an electrochemical etching process and an ultra-sonication treatment and the electrochemical properties were studied as an anode active material for rechargeable lithium-ion batteries (LIBs). This fabrication method is a simple, reproducible, and cost effective way to make high-performance Si-based anode active materials in LIBs. The anode based on np-Si flakes exhibited a higher performances (lower capacity fade rate, stability and excellent rate capability at high C-rate) than the anode based on Si nanowires. The excellent performance of the np-Si flake anode was attributed to the hollowness (nanoporous structure) of the anode active material, which allowed it to accommodate a large volume change during cycling.

  13. Laser annealing of amorphous/poly: Silicon solar cell material flight experiment

    NASA Technical Reports Server (NTRS)

    Cole, Eric E.

    1990-01-01

    The preliminary design proposed for the microelectronics materials processing equipment is presented. An overall mission profile, description of all processing steps, analysis methods and measurement techniques, data acquisition and storage, and a preview of the experimental hardware are included. The goal of the project is to investigate the viability of material processing of semiconductor microelectronics materials in a micro-gravity environment. The two key processes are examined: (1) Rapid Thermal Annealing (RTA) of semiconductor thin films and damaged solar cells, and (2) thin film deposition using a filament evaporator. The RTA process will be used to obtain higher quality crystalline properties from amorphous/poly-silicon films. RTA methods can also be used to repair radiation-damaged solar cells. On earth this technique is commonly used to anneal semiconductor films after ion-implantation. The damage to the crystal lattice is similar to the defects found in solar cells which have been exposed to high-energy particle bombardment.

  14. A comparison of dimensional accuracy between three different addition cured silicone impression materials.

    PubMed

    Forrester-Baker, L; Seymour, K G; Samarawickrama, D; Zou, L; Cherukara, G; Patel, M

    2005-06-01

    Ten impressions of a metal implant abutment were made with each of three addition-cured silicone impression materials. Using the technique of co-ordinate metrology, the shoulder region of the abutment and corresponding regions of both impressions and dies made from these impressions were scanned and measured. Comparison of these measurements indicated that the mean dimension measured from the shoulder region for each group of impression materials was significantly different from those taken from the original metal implant abutment. However, when these impressions were cast in a gypsum based die material, none of the measured dimensions taken from the casts were significantly different from those taken from the original metal implant abutment. Thus, any change in measured dimensions occurring during impression making, was compensated for in some way by the casting process.

  15. Stress Analysis and Design of Silicon Solar Cell Arrays and Related Material Properties

    NASA Technical Reports Server (NTRS)

    Salama, A. M.; Rowe, W. M.; Yasui, R. K.

    1972-01-01

    A systematic approach is presented for the design of solar cell arrays to eliminate mechanical failures that might arise in components of the arrays in a thermal environment. A prerequisite to the approach is the characterization of material properties at different temperatures. Significant data is obtained for the thermal behavior of the silicon solar cell material and adhesives. Upon determining the mechanical and thermal material properties of the components of the solar cell array, utilizing a finite element idealization for predicting the stress fields in the components, and employing the von Mises failure criterion, potential failure areas in various design configurations in a given thermal environment are identified. Guide lines and means to optimize a given design are illustrated by two examples.

  16. Grating-type mid-infrared light absorber based on silicon carbide material.

    PubMed

    Xue, Wenrui; Chen, Xi; Peng, Yanling; Yang, Rongcao

    2016-10-03

    A kind of grating-type mid-infrared light absorber based on silicon carbide (SiC) material is designed and its absorption properties are studied using the finite-difference frequency-domain (FDFD) method. The results show that, its absorption mechanism is the excitation of surface plasmon and magnetic polariton as well as the loss of materials. Due to the optical characteristics of the SiC material in the mid-infrared band and the truncated pyramid structure in the grating, in the range of 10.5-12.5μm and 0-80°, absorptivity of higher than 80% can be obtained with optimized structural parameters. Among six structural parameters, the layer number of the composite layers has a relatively great influence on the absorption properties, while the thickness of the dielectric layer has less influence on the absorption properties.

  17. Large-area free-standing ultrathin single-crystal silicon as processable materials.

    PubMed

    Wang, Shuang; Weil, Benjamin D; Li, Yanbin; Wang, Ken Xingze; Garnett, Erik; Fan, Shanhui; Cui, Yi

    2013-09-11

    Silicon has been driving the great success of semiconductor industry, and emerging forms of silicon have generated new opportunities in electronics, biotechnology, and energy applications. Here we demonstrate large-area free-standing ultrathin single-crystalline Si at the wafer scale as new Si materials with processability. We fabricated them by KOH etching of the Si wafer and show their uniform thickness from 10 to sub-2 μm. These ultrathin Si exhibits excellent mechanical flexibility and bendability more than those with 20-30 μm thickness in previous study. Unexpectedly, these ultrathin Si materials can be cut with scissors like a piece of paper, and they are robust during various regular fabrication processings including tweezer handling, spin coating, patterning, doping, wet and dry etching, annealing, and metal deposition. We demonstrate the fabrication of planar and double-sided nanocone solar cells and highlight that the processability on both sides of surface together with the interesting property of these free-standing ultrathin Si materials opens up exciting opportunities to generate novel functional devices different from the existing approaches.

  18. Effect of Projectile Materials on Foreign Object Damage of a Gas-Turbine Grade Silicon Nitride

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Racz, Zsolt; Bhatt, Ramakrishna T.; Brewer, David N.; Gyekenyesi, John P.

    2005-01-01

    Foreign object damage (FOD) behavior of AS800 silicon nitride was determined using four different projectile materials at ambient temperature. The target test specimens rigidly supported were impacted at their centers by spherical projectiles with a diameter of 1.59 mm. Four different types of projectiles were used including hardened steel balls, annealed steel balls, silicon nitride balls, and brass balls. Post-impact strength of each target specimen impacted was determined as a function of impact velocity to better understand the severity of local impact damage. The critical impact velocity where target specimens fail upon impact was highest with brass balls, lowest with ceramic ball, and intermediate with annealed and hardened steel balls. Degree of strength degradation upon impact followed the same order as in the critical impact velocity with respect to projectile materials. For steel balls, hardened projectiles yielded more significant impact damage than annealed counterparts. The most important material parameter affecting FOD was identified as hardness of projectiles and was correlated in terms of critical impact velocity, impact deformation, and impact load.

  19. High-Columbic-Efficiency Lithium Battery Based on Silicon Particle Materials.

    PubMed

    Zhang, Junying; Zhang, Chunqian; Wu, Shouming; Zhang, Xu; Li, Chuanbo; Xue, Chunlai; Cheng, Buwen

    2015-12-01

    Micro-sized polycrystalline silicon particles were used as anode materials of lithium-ion battery. The columbic efficiency of the first cycle reached a relatively high value of 91.8 % after prelithiation and increased to 99 % in the second cycle. Furthermore, columbic efficiency remained above 99 % for up to 280+ cycles. The excellent performances of the batteries were the results of the use of a proper binder to protect the electrode from cracking and the application of a suitable conductive agent to provide an efficient conductive channel. The good performance was also significantly attributed to the electrolyte in the packaging process.

  20. Study Program to Develop and Evaluate Die and Container Materials for the Growth of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Ounby, P. D.; Yu, B. B.; Barsoum, M. W.

    1979-01-01

    The completion of a major hardware delivery milestone was accomplished with the delivery of three CNTD Si3N4 coated hot pressed Si3N4 crucibles. A limited characterization of the coating was performed at MRL prior to delivery. The coatings were fine grained alpha - Si3N4. It was determined that a two piece die design is required. The importance of the role of oxygen in influencing the attack of the CNTD materials by molten silicon was demonstrated. The stability is greatly enhanced by maintaining the oxygen partial pressure near or below the Si + O2 = SiO2 equilibrium.

  1. Interactions of efficiency and material requirements for terrestrial silicon solar cells

    NASA Technical Reports Server (NTRS)

    Bowler, D. L.; Wolf, M.

    1980-01-01

    The transport velocity transformation method was used to analyze solar cell designs to determine optimum cell structures. It was found that low resistivity materials should be used up to the onset of Auger recombination; a properly designed three-layer structure permits base region approaching an ideal device in performance; and that higher resistivity front regions will need more sophisticated grid metallization structures than those used now. It was concluded that new features will provide idealized silicon cell structures yielding airmass 1 efficiencies in the 24-26.5% range, with real efficiencies near 22%.

  2. Mechanical strength of the silicon carbide-bearing materials under cyclic loading

    SciTech Connect

    Babaev, E.I.; Berdichevskii, I.M.; Kozlovskii, L.V.; Mei, E.P.; Rozhkova, R.A.

    1987-03-01

    The authors seek to optimize the firing process for porcelain both for the resulting properties of the porcelain and for the thermal efficiency of the furnace by finding a structural furnace material which will withstand the designated optimal firing regime. To this end they select and test a silicon carbide refractory for its ultimate flexural and compression strength and its resistance to fracture under thermal cycling and stress conditions.In actual service the refractory is found to increase the service life and reduce the frequency of maintenance of the furnace.

  3. Bi-Se doped with Cu, p-type semiconductor

    DOEpatents

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  4. Method of calculating the phase composition of SiC-Si-C materials obtained by silicon infiltration of carbon matrices

    NASA Astrophysics Data System (ADS)

    Ershov, A. E.; Shikunov, S. L.; Kurlov, V. N.

    2017-06-01

    The synthesis of SiC-Si-C materials by siliconizing porous carbon matrices has been considered, and a method of determining their phase composition has been devised. Preforms of two types have been siliconized, i.e., biomorphic carbon matrices prepared by wood pyrolysis and artificial porous graphites prepared by mixing and compacting carbon powders with an organic binder. The calculated phase compositions are in good agreement with microstructure metallographic examination data.

  5. Experiments with semiconducting p-type misfit compound

    NASA Astrophysics Data System (ADS)

    Heinonen, H.; Tervo, J.

    2012-06-01

    Ca3Co4O9 is a p-type semiconductor and a promising thermoelectric material with misfit layer structure. Cobalt-based layered structure materials have been studied as thermoelectric material candidates because of their nontoxicity, light weight, high thermal and chemical stability and oxidation resistance at high temperature. The operating area of Ca3Co4O9 in thermoelectric applications is roughly from 800K to 1000K. Ca3Co4O9 powders were synthetized by a sol-gel method which enables fabrication of high purity and homogeneous particles. Calcium and cobalt nitrate hydrates were used as feedstock and citric acid as complexing agent in the sol-gel procedure. Powders were calcinated at 1123K and further processing by ball milling. Pure Ca3Co4O9 powders were sintered by SPS and conventional method.

  6. 3D printing PLA and silicone elastomer structures with sugar solution support material

    NASA Astrophysics Data System (ADS)

    Hamidi, Armita; Jain, Shrenik; Tadesse, Yonas

    2017-04-01

    3D printing technology has been used for rapid prototyping since 1980's and is still developing in a way that can be used for customized products with complex design and miniature features. Among all the available 3D printing techniques, Fused Deposition Modeling (FDM) is one of the most widely used technologies because of its capability to build different structures by employing various materials. However, complexity of parts made by FDM is greatly limited by restriction of using support materials. Support materials are often used in FDM for several complex geometries such as fully suspended shapes, overhanging surfaces and hollow features. This paper describes an approach to 3D print a structure using silicone elastomer and polylactide fiber (PLA) by employing a novel support material that is soluble in water. This support material is melted sugar which can easily be prepared at a low cost. Sugar is a carbohydrate, which is found naturally in plants such as sugarcane and sugar beets; therefore, it is completely organic and eco-friendly. As another advantage, the time for removing this material from the part is considerably less than other commercially available support materials and it can be removed easily by warm water without leaving any trace. Experiments were done using an inexpensive desktop 3D printer to fabricate complex structures for use in soft robots. The results envision that further development of this system would contribute to a method of fabrication of complex parts with lower cost yet high quality.

  7. Optical and Scanning Electron Microscopy of the Materials International Space Station Experiment (MISSE) Spacecraft Silicone Experiment

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; de Groh, Kim K.; Banks, Bruce A.

    2012-01-01

    Under a microscope, atomic oxygen (AO) exposed silicone surfaces are crazed and seen as "islands" separated by numerous crack lines, much analogous to mud-tile cracks. This research characterized and compared the degree of AO degradation of silicones by analyzing optical microscope images of samples exposed to low Earth orbit (LEO) AO as part of the Spacecraft Silicone Experiment. The Spacecraft Silicone Experiment consisted of eight DC 93-500 silicone samples exposed to eight different AO fluence levels (ranged from 1.46 to 8.43 10(exp 21) atoms/sq cm) during two different Materials International Space Station Experiment (MISSE) missions. Image analysis software was used to analyze images taken using a digital camera. To describe the morphological degradation of each AO exposed flight sample, three different parameters were selected and estimated: (1) average area of islands was determined and found to be in the 1000 to 3100 sq mm range; (2) total length of crack lines per unit area of the sample surface were determined and found to be in the range of 27 to 59 mm of crack length per sq mm of sample surface; and (3) the fraction of sample surface area that is occupied by crack lines was determined and found to be in the 25 to 56 percent range. In addition, average crack width can be estimated from crack length and crack area measurements and was calculated to be about 10 mm. Among the parameters studied, the fraction of sample surface area that is occupied by crack lines is believed to be most useful in characterizing the degree of silicone conversion to silicates by AO because its value steadily increases with increasing fluence over the entire fluence range. A series of SEM images from the eight samples exposed to different AO fluences suggest a complex sequence of surface stress due to surface shrinkage and crack formation, followed by re-distribution of stress and shrinking rate on the sample surface. Energy dispersive spectra (EDS) indicated that upon AO

  8. Energy Conversion Properties of ZnSiP2, a Lattice-Matched Material for Silicon-Based Tandem Photovoltaics

    SciTech Connect

    Martinez, Aaron D.; Warren, Emily L.; Gorai, Prashun; Borup, Kasper A.; Krishna, Lakshmi; Kuciauskas, Darius; Dippo, Patricia C.; Ortiz, Brenden R.; Stradins, Paul; Stevanovic, Vladan; Toberer, Eric S.; Tamboli, Adele C.

    2016-11-21

    ZnSiP2 demonstrates promising potential as an optically active material on silicon. There has been a longstanding need for wide band gap materials that can be integrated with Si for tandem photovoltaics and other optoelectronic applications. ZnSiP2 is an inexpensive, earth abundant, wide band gap material that is stable and lattice matched with silicon. This conference proceeding summarizes our PV-relevant work on bulk single crystal ZnSiP2, highlighting the key findings and laying the ground work for integration into Si-based tandem devices.

  9. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    DOE PAGES

    Sun, Yuandong; Liu, Kewei; Zhu, Yu

    2017-07-31

    Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulkymore » silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. Finally, in this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.« less

  10. Recent Progress in Synthesis and Application of Low-Dimensional Silicon Based Anode Material for Lithium Ion Battery

    SciTech Connect

    Sun, Yuandong; Liu, Kewei; Zhu, Yu

    2017-01-01

    Silicon is regarded as the next generation anode material for LIBs with its ultra-high theoretical capacity and abundance. Nevertheless, the severe capacity degradation resulting from the huge volume change and accumulative solid-electrolyte interphase (SEI) formation hinders the silicon based anode material for further practical applications. Hence, a variety of methods have been applied to enhance electrochemical performances in terms of the electrochemical stability and rate performance of the silicon anodes such as designing nanostructured Si, combining with carbonaceous material, exploring multifunctional polymer binders, and developing artificial SEI layers. Silicon anodes with low-dimensional structures (0D, 1D, and 2D), compared with bulky silicon anodes, are strongly believed to have several advanced characteristics including larger surface area, fast electron transfer, and shortened lithium diffusion pathway as well as better accommodation with volume changes, which leads to improved electrochemical behaviors. In this review, recent progress of silicon anode synthesis methodologies generating low-dimensional structures for lithium ion batteries (LIBs) applications is listed and discussed.

  11. Development of an aluminum nitride-silicon carbide material set for high-temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Griffin, Benjamin A.; Habermehl, Scott D.; Clews, Peggy J.

    2014-06-01

    A number of important energy and defense-related applications would benefit from sensors capable of withstanding extreme temperatures (>300°C). Examples include sensors for automobile engines, gas turbines, nuclear and coal power plants, and petroleum and geothermal well drilling. Military applications, such as hypersonic flight research, would also benefit from sensors capable of 1000°C. Silicon carbide (SiC) has long been recognized as a promising material for harsh environment sensors and electronics because it has the highest mechanical strength of semiconductors with the exception of diamond and its upper temperature limit exceeds 2500°C, where it sublimates rather than melts. Yet today, many advanced SiC MEMS are limited to lower temperatures because they are made from SiC films deposited on silicon wafers. Other limitations arise from sensor transduction by measuring changes in capacitance or resistance, which require biasing or modulation schemes that can with- stand elevated temperatures. We are circumventing these issues by developing sensing structures directly on SiC wafers using SiC and piezoelectric aluminum nitride (AlN) thin films. SiC and AlN are a promising material combination due to their high thermal, electrical, and mechanical strength and closely matched coefficients of thermal expansion. AlN is also a non-ferroelectric piezoelectric material, enabling piezoelectric transduction at temperatures exceeding 1000°C. In this paper, the challenges of incorporating these two materials into a compatible MEMS fabrication process are presented. The current progress and initial measurements of the fabrication process are shown. The future direction and the need for further investigation of the material set are addressed.

  12. Silicon materials task of the low-cost solar-array project. Effect of impurities and processing on silicon solar cells. Final report

    SciTech Connect

    Hopkins, R.H.; Davis, J.R.; Rohatgi, A.; Hanes, M.H.; Rai-Choudhury, P.; Mollenkopf, H.C.

    1982-02-01

    The object of the program has been to investigate the effects of various processes, metal contaminants, and contaminant-process interactions on the properties of silicon and on the performance of terrestrial silicon solar cells. The study has encompassed topics such as thermochemical (gettering) treatments, base-doping concentration, base-doping type (n vs. p), grain boundary-impurity interaction in polycrystalline devices, and long-term effects of impurities and impurity impacts on high-efficiency cells, as well as a preliminary evaluation of some potential low-cost silicon materials. The effects have been studied of various metallic impurities, introduced singly or in combination into Czochralski, float zone, and polycrystalline silicon ingots and into silicon ribbons grown by the dendritic web process. The solar cell data indicate that impurity-induced performance loss is caused primarily by a reduction in base diffusion length. An analytical model based on this observation has been developed and verified experimentally for both n- and p-base material. Studies of polycrystalline ingots containing impurities indicate that solar cell behavior is species sensitive and that a fraction of the impurities are segregated to the grain boundaries. HCl and POCl gettering improve the performance of single-crystal solar cells containing Fe, Cr, and Ti. In contrast Mo-doped material is barely affected. The efficiencies of solar cells fabricated on impurity-doped wafers is lower when the front junction is formed by ion implantation than when conventional diffusion techniques are used. For most impurity-doped solar cells stability is expected for projected times beyond 20 years. Feedstock impurity concentrations below one part per million for elements like V, or 100 parts per million for more benign impurities like Cu or Ni, will be required.

  13. Thermoelectric materials and methods for synthesis thereof

    DOEpatents

    Ren, Zhifeng; Zhang, Qinyong; Zhang, Qian; Chen, Gang

    2015-08-04

    Materials having improved thermoelectric properties are disclosed. In some embodiments, lead telluride/selenide based materials with improved figure of merit and mechanical properties are disclosed. In some embodiments, the lead telluride/selenide based materials of the present disclosure are p-type thermoelectric materials formed by adding sodium (Na), silicon (Si) or both to thallium doped lead telluride materials. In some embodiments, the lead telluride/selenide based materials are formed by doping lead telluride/selenides with potassium.

  14. Controlling etch properties of silicon-based antireflective spin-on hardmask materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Kyun; Cho, Hyeon Mo; Woo, Changsoo; Koh, Sang Ran; Kim, Mi-Young; Yoon, Hui Chan; Lee, Woojin; Shin, Seung-Wook; Kim, Jong Seob; Chang, Tuwon

    2009-03-01

    In the recent semiconductor mass production, the tri-layer hardmask system has become crucial for successful patterning in many applications. Silicon-based anti-reflective spin-on hardmask (Si-SOH), which can be built by spin-on coating, is desirable in terms of mass production throughput and the overall cost of ownership. As the pattern size shrinks, the thickness of photoresist also becomes thinner, which forces the thickness of Si-SOH to be thinner resulting in a tighter thickness margin. In this case, controlling optical properties of Si-SOH becomes important in order to achieve low reflectivity in the exposure process. In addition, the tri-layer system can be set up more easily when the etch properties of Si-SOH can be controlled. Previously, we reported papers on silicon-based anti-reflective spin-on hardmask materials for 193 nm lithography, immersion ArF lithography, and optimization of optical properties of Si-SOH. In this paper, the technique for controlling etch properties of Si-SOH by a different type of monomer is described. To control etch properties in the same resin platform, the synthesis method was modified. Characterization of the Si-SOH synthesized by the new technique and the lithographic performance using this material are described in detail.

  15. On the origin of dislocation loops in irradiated materials: A point of view from silicon

    NASA Astrophysics Data System (ADS)

    Claverie, Alain; Cherkashin, Nikolay

    2016-05-01

    Numerous dislocation loops are often observed in irradiated and nuclear materials, affecting many physical properties. The understanding of their origin and of their growth mechanism remains unclear rendering all modeling efforts elusive. In this paper, we remind the knowledge which has been gained during the last 20 years on the formation and growth of extrinsic dislocations loops in irradiated/implanted silicon. From the compilation of a large number of experimental results, a unified picture describing the thermal evolution of interstitial defects, from the di-interstitial stable at room temperature, to ;magic-size; clusters then to rod-like defects and finally to large dislocation loops of two types has emerged. All these defects grow by Ostwald ripening, i.e. by interchanging the interstitial atoms they are composed of, and transform from one to the other driven by the resulting reduction of the defect formation energy. A model has been proposed and is now integrated into process simulators which quantitatively describes the thermal evolution of all these defects, based on pertinent formation energies. The influence of the proximity of free surfaces or other recombining interfaces can be integrated, allowing simulating the possible dissolution of defects. It is suggested that, beyond silicon, the same type of scenario may take place in many materials. Dislocation loops are just one, easily detectable among many, type of defects which forms during the growth of self-interstitials. They do not nucleate but result from the growth and transformation of smaller defects.

  16. Formation Mechanism of Titanium Silicon Carbide: The Effect of Different Composition of Starting Materials

    NASA Astrophysics Data System (ADS)

    Solihin; Mursito, Anggoro Tri; Sun, Zhengming

    2017-07-01

    Titanium silicon carbide (Ti3SiC2) is a kind of ceramic that has physical property value similar with metal. Ti3SiC2 has been synthesized through various methods based on solid state reaction. Although Ti3SiC2 has been synthesized through various methods by using various starting materials consisting titanium (Ti), silicon (Si), and carbon (C) the mechanism of Ti3SiC2 formation through sintering has not fully understood. The aim of this research is to reveal the mechanism happening during sintering. Two composition of starting material was used, 2Ti/2Si/3TiC and 5Ti/2Si/3C. The analysis through XRD and SEM-EDS shows that the formation of intermediate phases, TiC and Ti5Si3, takes place prior to the formation of Ti3SiC2. In other words, Ti3SiC2 can only be formed through solid state reaction between TiC and Ti5Si3. Since TiC has already available in the system 2Ti/2Si/3TiC, the phase purity of Ti3SiC2 in 2Ti/2Si/3TiC is always higher than that of 5Ti/2Si/3C.

  17. Ex Situ Investigation of Anisotropic Interconnection in Silicon-Titanium-Nickel Alloy Anode Material

    DOE PAGES

    Cho, Jong -Soo; Alaboina, Pankaj Kumar; Kang, Chan -Soon; ...

    2017-03-10

    Herein we investigate the nanostructural evolution of Silicon-Titanium-Nickel (Si-Ti-Ni) ternary alloy material synthesized by melt spinning process for advanced lithium-ion battery anode. The synthesized material was found to have nano-Silicon particles dispersed in the Ti4Ni4Si7 (STN) alloy buffering matrix and was characterized by X-ray diffraction (XRD), High resolution- transmission electron microscope (HR-TEM), Scanning transmission electron microscopes - energy dispersive X-ray spectrometer (STEM-EDS), and electrochemical performance test. The role of STN matrix is to accommodate the volume expansion stresses of the dispersed Si nanoparticles. However, an interesting behavior was observed during cycling. The Si nanoparticles were observed to form interconnection channelsmore » growing through the weak STN matrix cracks and evolving to a network isolating the STN matrix into small puddles. In conclusion, this unique nanostructural evolution of Si particles and isolation of the STN matrix failing to offer significant buffering effect to the grown Si network eventually accelerates more volume expansions during cycling due to less mechanical confinement and leads to performance degradation and poor cycle stability.« less

  18. Material strength and inelastic deformation of silicon carbide under shock wave compression

    SciTech Connect

    Feng, R.; Raiser, G.F.; Gupta, Y.M.

    1998-01-01

    In-material, lateral, manganin foil gauge measurements were obtained in dense polycrystalline silicon carbide (SiC) shocked to peak longitudinal stresses ranging from 10{endash}24 GPa. The lateral gauge data were analyzed to determine the lateral stresses in the shocked SiC and the results were checked for self-consistency through dynamic two-dimensional computations. Over the stress range examined, the shocked SiC has an extremely high strength: the maximum shear stress supported by the material in the shocked state increases from 4.5 GPa at the Hugoniot elastic limit (HEL) of the material (11.5 GPa) to 7.0 GPa at stresses approximately twice the HEL. The latter value is 3.7{percent} of the shear modulus of the material. The elastic{endash}inelastic transition in the shocked SiC is nearly indistinctive. At stresses beyond twice the HEL, the data suggest a gradual softening with increasing shock compression. The post-HEL material strength evolution resembles neither catastrophic failure due to massive cracking nor classical plasticity response. Stress confinement, inherent in plane shock wave compression, contributes significantly to the observed material response. The results obtained are interpreted qualitatively in terms of an inhomogeneous deformation mechanism involving both in-grain microplasticity and highly confined microfissures. {copyright} {ital 1998 American Institute of Physics.}

  19. Electrodeposited copper front metallization for silicon heterojunction solar cells: materials and processes

    SciTech Connect

    Geissbühler, J.; Martin de Nicolas, S.; Faes, A.; Lachowicz, A.; Tomasi, A.; Paviet-Salomon, B.; Lachenal, D.; Papet, P.; Badel, N.; Barraud, L.; Descoeudres, A.; Despeisse, M.; De Wolf, S.; Ballif, C.

    2014-10-20

    Even though screen-printing of low-temperature silver paste remains the state-of-the-art technique for the front-metallization of SHJ solar cells, recent studies have demonstrated large efficiency improvements when copper-electroplated contacts are used instead of screen-printed ones. However, due to the new materials and the new processes introduced by this technique, it is crucial to individually investigate their compatibility with the SHJ cell structure. In this study, we present a detailed analysis of how the performances of SHJ devices may be modified by these new materials and processes. First, effects on the amorphous silicon (a-Si:H) passivation have been studied for various processes such as DI water rinsing, dips in a copper removal solution and direct evaporation of copper on the a-Si:H. Finally, copper electroplating technique has been adapted in order to be applied to more complex cell structures such as high-efficiency IBC-SHJ.

  20. Contactless Method for Electrical Characterization of Silicon-on-Insulator Materials

    NASA Astrophysics Data System (ADS)

    Okumura, Tsugunori; Eguchi, Kazuyoshi; En, Aimin; Suhara, Michihiko

    2001-09-01

    The Kelvin-probe method, in combination with surface photovoltage (SPV) measurements, is applied to the nondestructive electrical characterization of silicon-on-insulator (SOI) materials. It is shown that a simple sandwich-type electrode configuration can be used for the contactless characterization of the SOI layer, when the capacitance between the vibrating electrode and the SOI surface is much smaller than the buried-oxide (BOX) and depletion-layer series capacitances. The light-intensity dependence of the SPV gives data equivalent to common cuurent-voltage (I-V) characteristics of diodes. Thus, we call the proposed method the contactless I-V method. Lastly, we demonstrate that UV illumination is effective for applying the contactless I-V method to ultrathin SOI layers such as fully depleted SOI material.

  1. Identification of collected volatile condensable material (CVCM) from ASTM E595 of silicone damper fluid

    NASA Astrophysics Data System (ADS)

    Easton, Myriam P.; Labatete-Goeppinger, Aura C.; Fowler, Jesse D.; Liu, De-Ling

    2014-09-01

    Polydimethylsiloxane damping fluids used for structural deployment mechanisms are not required to be low outgassing. During normal use, these damping fluids are typically encapsulated; however, an unintentional leak may occur which would cause an undesirable contamination at the leak point and form volatile condensable that could reach contamination-sensitive surfaces, degrading the performance of satellites. The collected volatile condensable material (CVCM) at 25 °C from ASTM E595 of a damping fluid, MeSi-300K, was < 0.10%, when the damping fluid was maintained at 125 °C for 24 hours under 10-6 Torr vacuum. MeSi-300K viscosity is 300,000 cSt, which indicates an average molecular weight (MW) of 204,000. This large MW polymer would contain about 2,756 dimethyl siloxane (DMS) units in the chain. These long chains are not expected to be volatile; however, during manufacture, linear chains and cyclic compounds of a smaller number of DMS units produced are volatile. Gas chromatography mass spectrometry (GC-MS) was used to identify the CVCM. Characterization of these materials revealed that the CVCM contained higher MW siloxanes, straight chain and cyclic, in the range of 682 to 1196 (9 to 16 DMS units), whereas CVCM from spacequalified, silicone-based materials have lower MW, 222 to 542 (3 to 7 DMS units). Consequently, contamination from MeSi-300K material would produce greater amounts of higher-MW siloxanes than space-qualified silicones. These higher-MW species would be harder to remove by evaporation and could remain on sensitive surfaces.

  2. What are the P-type Asteroids Made Of?

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Pieters, C. M.; Rutherford, M. J.; Zolensky, M. E.; Sasaki, S.; Ueda, Y.; Miyamoto, M.

    2004-01-01

    The P-type asteroids, together with the D asteroids, had been believed to be one of the most primitive asteroid classes having surface materials rich in carbon and/or organics. Upon a fall of a new type of meteorite, Tagish Lake in 2000, we came to have a possible sample of the D (and/or T) asteroids. In both spectrally and distance from the sun, the P asteroids are located in between the C/G/B/F asteroids and the D asteroids. Because it is believed that the former group are similar to (thermally metamorphosed) CI/CM chondrites and the latter the Tagish Lake meteorite, the surface material of the P asteroids may be understood in combination of those two meteorite groups. Taking that direction, this paper presents possibly the first quantitative characterization of the P asteroids in terms of carbonaceous chondrites and their experimental derivatives.

  3. Rolling-element fatigue life of silicon nitride balls. [as compared to that of steel, ceramic, and cermet materials

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    The five-ball fatigue tester was used to evaluate silicon nitride as a rolling-element bearing material. Results indicate that hot-pressed silicon nitride running against steel may be expected to yield fatigue lives comparable to or greater than those of bearing quality steel running against steel at stress levels typical rolling-element bearing application. The fatigue life of hot-pressed silicon nitride is considerably greater than that of any ceramic or cermet tested. Computer analysis indicates that there is no improvement in the lives of 120-mm-bore angular--contact ball bearings of the same geometry operating at DN values from 2 to 4 million where hot-pressed silicon nitride balls are used in place of steel balls.

  4. Oil-Infused Superhydrophobic Silicone Material for Low Ice Adhesion with Long-Term Infusion Stability.

    PubMed

    Yeong, Yong Han; Wang, Chenyu; Wynne, Kenneth J; Gupta, Mool C

    2016-11-23

    A new approach for anti-icing materials was created to combat the effects of ice accretion and adhesion. The concept combines the strengths of individual characteristics for low ice adhesion based on elasticity, superhydrophobicity, and slippery liquid infused porous surfaces (SLIPS) for an optimal combination of high water repellency and ice-phobicity. This was achieved by replicating microtextures from a laser-irradiated aluminum substrate to an oil-infused polydimethylsiloxane (PDMS) elastomer, the result of which is a flexible, superhydrophobic, and lubricated material. This design provides multiple strategies of icing protection through high water repellency to retard ice accretion and with elasticity and oil infusion for low ice adhesion in a single material. Studies showed that an infusion of silicone oils with viscosity at 100 cSt and below 8 wt % in PDMS solution is sufficient to reduce the ice shear strength to an average of 38 kPa while maintaining contact angles and roll-off angles of above 150° and below 10°, respectively. This ice-adhesion value is a ∼95% reduction from a bare aluminum surface and ∼30% reduction from a microtextured, superhydrophobic PDMS material without oil infusion. In addition, three-month aging studies showed that the wetting and ice-adhesion performance of this material did not significantly degrade.

  5. Influence of different seed materials on multi-crystalline silicon ingot properties

    NASA Astrophysics Data System (ADS)

    Reimann, C.; Trempa, M.; Lehmann, T.; Rosshirt, K.; Stenzenberger, J.; Friedrich, J.; Hesse, K.; Dornberger, E.

    2016-01-01

    Different silicon feedstock materials, Single Crystalline Crushed (SCS), Fluidized-Bed-Reactor (FBR) and Siemens (SIE) feedstock, were used as seeding layer for growing cylindrical shaped, high performance multi-crystalline ingots with a weight of 1.2 kg. Within the investigations a systematic variation of the particle size of the seeding material in the range of <1 mm up to 15 mm was performed. Grain size, grain orientation, and grain boundary type were evaluated at different ingot heights. These results show clearly, that the microstructure size, respectively the particle size for the crushed single crystalline material, determines the resulting grain structure in the ingot near the seeding position. If the microstructure size is equal to the particle size, as it is the case for the SCS material, the particle size has a significant influence on grain size, grain orientation, and grain boundary distribution. With increasing average particle size of the SCS seed material the grain size increases, the grain orientation distribution becomes less uniform, and the random grain boundary length fraction decreases. If the microstructure size is smaller than the particle size, as it is the case for FBR and SIE feedstock materials, the particle size has no influence on the initial grain structure of the ingot. For FBR and SIE seeding material, small grains, with a homogeneous orientation distribution and a high random grain boundary length fraction are obtained. Therefore, all FBR and all SIE seeding materials, as well as the SCS with particle size <1 mm, show lowest fractions of defected areas at about the same level which were determined by etch pit analysis.

  6. A new partial SOI power device structure with P-type buried layer

    NASA Astrophysics Data System (ADS)

    Duan, Baoxing; Zhang, Bo; Li, Zhaoji

    2005-12-01

    A new BPSOI (buried layer partial SOI) structure is developed, in which the P-type buried layer is implanted into the P - substrate by silicon window underneath the source of the conventional PSOI. The mechanism of breakdown is that the additional electric field produced by P-type buried layer charges modulates surface electric field, which decreases drastically the electric field peaks near the drain and source junctions. Moreover, the on-resistance of BPSOI is decreased as a result of increasing drift region doping due to neutralism of P-type buried layer. The results indicate that the breakdown voltage of BPSOI is increased by 52-58% and the on-resistance is decreased by 45-48% in comparison to conventional PSOI in virtue of 2-D numerical simulations using MEDICI.

  7. Fracture properties of polycrystalline silicon - a material for micro-electro-mechanical systems

    SciTech Connect

    Johnson, G.C.; Jones, P.T.

    1995-12-31

    A great deal of research has been performed during the past few years to apply the microfabrication technology used for making integrated circuits to the manufacture of microscopic pressure sensors, accelerometers, and other micro-electro-mechanical systems (MEMS). One result of this work has been the choice of polycrystalline silicon (polysilicon) as a primary structural material employed in MEMS devices, particularly when the polysilicon has been doped with such elements as phosphorus for improved electrical and mechanical properties. As MEMS devices become more relied upon for real world applications, it will be necessary to establish design rules to ensure adequate product lifetimes. However, very little work has been done to deter- mine the failure mechanisms of polysilicon. The work presented here offers an experimental evaluation of the ultimate strength and fracture toughness of polysilicon with regard to the effects of exposure to hydrofluoric acid, a commonly used etchant in MEMS fabrication. A series of micromechanical structures have been designed to measure the strain at fracture and fracture toughness of a thin film. These test structures are patterned onto a thin film of polysilicon covering a silicon wafer using standard microfabrication techniques. Since the structures have dimensions on the order of microns, hundreds of multiple test structures are patterned on a single wafer providing a large amount of statistical data. Results using these structures indicate that prolonged exposure to HF can result in a decrease in the fracture strength of polysilicon.

  8. Ethylene oxide-block-butylene oxide copolymer uptake by silicone hydrogel contact lens materials

    NASA Astrophysics Data System (ADS)

    Huo, Yuchen; Ketelson, Howard; Perry, Scott S.

    2013-05-01

    Four major types of silicone hydrogel contact lens material have been investigated following treatments in aqueous solutions containing poly(ethylene oxide) and poly(butylenes oxide) block copolymer (EO-BO). The extent of lens surface modification by EO-BO and the degree of bulk uptake were studied using X-ray photoelectron spectroscopy (XPS) and ultra-performance liquid chromatography (UPLC), respectively. The experimental results suggest that different interaction models exist for the lenses, highlighting the influence of both surface and bulk composition, which greatly differs between the lenses examined. Specifically, lenses with hydrophilic surface treatments, i.e., PureVision® (balafilcon A) and O2OPTIX (lotrafilcon B), demonstrated strong evidence of preferential surface adsorption within the near-surface region. In comparison, surface adsorption on ACUVUE® Oasys® (senofilcon A) and Biofinity® (comfilcon A) was limited. As for bulk absorption, the amount of EO-BO uptake was the greatest for balafilcon A and comfilcon A, and least for lotrafilcon B. These findings confirm the presence of molecular concentration gradients within the silicone hydrogel lenses following exposure to EO-BO solutions, with the nature of such concentration gradients found to be lens-specific. Together, the results suggest opportunities for compositional modifications of lenses for improved performance via solution treatments containing surface-active agents.

  9. Photoluminescence properties of silica-based mesoporous materials similar to those of nanoscale silicon

    NASA Astrophysics Data System (ADS)

    Glinka, Yu. D.; Zyubin, A. S.; Mebel, A. M.; Lin, S. H.; Hwang, L. P.; Chen, Y. T.

    Photoluminescence (PL) from composites of 7- and 15-nm sized silica nanoparticles (SNs) and mesoporous silicas (MSs) induced by 266- (4.66-) and 532-nm (2.33-eV) laser light has been studied at room temperature. The multiband PL from MSs in the range of 1.0-2.1 eV is evidenced to originate from isolated bulk and surface non-bridging oxygens (NBOs) and from NBOs combined with variously placed 1-nm sized pore wall oxygen vacancies (OVs). The nature and diversity of NBO light-emitters are confirmed by ab initio calculations. The PL from SNs exhibits only a short wavelength part of the bands (1.5-2.1 eV) originated from isolated bulk and surface NBOs. This fact indicates that the highly OV-bearing structures occur only in extremely thin ( 1 nm) silica layers. The similarity of spectroscopic properties of silica-based nanoscale materials to those of surface-oxidized silicon nanocrystals and porous silicon, containing silica-passivating layers of the same width, is discussed.

  10. Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole.

    PubMed

    Kinnari, Päivi; Mäkilä, Ermei; Heikkilä, Teemu; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2011-07-29

    Mesoporous materials have an ability to enhance dissolution properties of poorly soluble drugs. In this study, different mesoporous silicon (thermally oxidized and thermally carbonized) and non-ordered mesoporous silica (Syloid AL-1 and 244) microparticles were compared as drug carriers for a hydrophobic drug, itraconazole (ITZ). Different surface chemistries pore volumes, surface areas, and particle sizes were selected to evaluate the structural effect of the particles on the drug loading degree and on the dissolution behavior of the drug at pH 1.2. The results showed that the loaded ITZ was apparently in amorphous form, and that the loading process did not change the chemical structure/morphology of the particles' surface. Incorporation of ITZ in both microparticles enhanced the solubility and dissolution rate of the drug, compared to the pure crystalline drug. Importantly, the physicochemical properties of the particles and the loading procedure were shown to have an effect on the drug loading efficiency and drug release kinetics. After storage under stressed conditions (3 months at 40 °C and 70% RH), the loaded silica gel particles showed practically similar dissolution profiles as before the storage. This was not the case with the loaded mesoporous silicon particles due to the almost complete chemical degradation of ITZ after storage.

  11. Thermal transport in silicon nitride membranes and far infrared studies of novel materials

    NASA Astrophysics Data System (ADS)

    Holmes, Warren Albert

    The central theme of this thesis is the design and use of bolometers for detection of far infrared and submillimeter wavelength radiation. A new material, micrometer thick membranes of silicon nitride, is used in modern bolometer designs. An understanding of thermal transport in silicon nitride is critical to evaluate and optimize detector performance. We have measured the thermal conductance, G, of {≈}1μm thick low-stress silicon nitride membranes over the temperature range, 0.06 4K,\\ G is independent of surface morphology indicating that the thermal transport is determined by bulk scattering. For T < 4K, scattering from membrane surfaces becomes significant. We find that G is reduced by a factor as large as 5 for membranes which have sub-micron sized Ag particles glued to the surface or are micromachined into narrow strips as are required in many applications when compared with that of clean, solid membranes with the same ratio of cross section to length. We have used optimized bolometers for the study of two novel materials, single walled carbon nanotubes (SWNT) and single crystals of high temperature superconductors. We have measured the transmittance of several samples of bundles of SWNT over the frequency range 10 < nu < 300cmsp{-1} at temperatures 1.2 < T < 300K. The broadband shape of the transmittance has a temperature dependence similar to the DC transport measurements. We find a temperature dependent feature near nu≈ 30cmsp{-1} that is consistent with the prediction of a small energy gap Esb{g}≈ 4meV and also with a soft librational mode in SWNT bundles. We have directly measured the absorptivity of high quality single crystals of YBasb2Cusb3Osb{6.5} and Tlsb2Basb2Casb2Cusb3Osb{10-delta} over the frequency range 50 < nu < 800cmsp{-1} at a temperature of 1.2K. Direct absorptivity measurements are powerful for studying materials in the superconducting state since in conventional superconductors the loss at frequencies below the energy gap is zero

  12. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    NASA Astrophysics Data System (ADS)

    Koyanagi, Takaaki; Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; Hinoki, Tatsuya; Snead, Lance L.

    2016-09-01

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. The materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber-reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ∼1 GPa for the fibers and ∼300 MPa for the other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ∼1 × 10-7 [dpa-1 MPa-1] at 430-750 °C for the range of 1-30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures-such as grain boundary, crystal orientation, and secondary phases-increase with increasing irradiation temperature.

  13. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    DOE PAGES

    Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; ...

    2016-06-04

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. Here, the materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber–reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ~1 GPa for the fibers and ~300 MPa for themore » other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ~1 × 10–7 [dpa–1 MPa–1] at 430–750 °C for the range of 1–30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures—such as grain boundary, crystal orientation, and secondary phases—increase with increasing irradiation temperature.« less

  14. Effects of Non-equilibrium Solidification on the Material Properties of Brick Silicon for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.

    1984-01-01

    Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.

  15. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    SciTech Connect

    Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; Hinoki, Tatsuya; Snead, Lance Lewis; Koyanagi, Takaaki

    2016-06-04

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. Here, the materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber–reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ~1 GPa for the fibers and ~300 MPa for the other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ~1 × 10–7 [dpa–1 MPa–1] at 430–750 °C for the range of 1–30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures—such as grain boundary, crystal orientation, and secondary phases—increase with increasing irradiation temperature.

  16. Investigations of nanocomposite magnetic materials based on the oxides of iron, nickel, cobalt and silicon dioxide

    NASA Astrophysics Data System (ADS)

    Gracheva, Irina E.; Olchowik, Grazyna; Gareev, Kamil G.; Moshnikov, Vyatcheslav A.; Kuznetsov, Vladimir V.; Olchowik, Jan M.

    2013-05-01

    This paper is concerned with the study of magnetic nanocomposites containing silicon, iron, nickel, and cobalt oxides. These materials were produced in the form of thin films based on Fe-Si-O, Ni-Co-Si-O and Fe-Ni-Co-Si-O systems and powders based on Fe-Si-O, Ni-Si-O, Co-Si-O and Fe-Ni-Co-Si-O systems using sol-gel technology, through centrifugation, and deposition of ammonia solution. The morphology and magnetic properties of materials in the form of thin films were studied by using the atomic force microscopy. The phase composition, specific surface area and magnetic properties of materials in the form of powders were studied by using the X-ray phase analysis, thermal desorption, vibrational magnetometry and immittance measurements. The dependencies of the main parameters were derived for the magnetic materials from their structure and manufacturing conditions. Ways to optimise the technological processes were proposed, aimed at reducing the size of the magnetic particles in an amorphous lattice.

  17. Neutron-irradiation creep of silicon carbide materials beyond the initial transient

    SciTech Connect

    Katoh, Yutai; Ozawa, Kazumi; Shimoda, Kazuya; Hinoki, Tatsuya; Snead, Lance Lewis; Koyanagi, Takaaki

    2016-06-04

    Irradiation creep beyond the transient regime was investigated for various silicon carbide (SiC) materials. Here, the materials examined included polycrystalline or monocrystalline high-purity SiC, nanopowder sintered SiC, highly crystalline and near-stoichiometric SiC fibers (including Hi-Nicalon Type S, Tyranno SA3, isotopically-controlled Sylramic and Sylramic-iBN fibers), and a Tyranno SA3 fiber–reinforced SiC matrix composite fabricated through a nano-infiltration transient eutectic phase process. Neutron irradiation experiments for bend stress relaxation tests were conducted at irradiation temperatures ranging from 430 to 1180 °C up to 30 dpa with initial bend stresses of up to ~1 GPa for the fibers and ~300 MPa for the other materials. Initial bend stress in the specimens continued to decrease from 1 to 30 dpa. Analysis revealed that (1) the stress exponent of irradiation creep above 1 dpa is approximately unity, (2) the stress normalized creep rate is ~1 × 10–7 [dpa–1 MPa–1] at 430–750 °C for the range of 1–30 dpa for most polycrystalline SiC materials, and (3) the effects on irradiation creep of initial microstructures—such as grain boundary, crystal orientation, and secondary phases—increase with increasing irradiation temperature.

  18. Progress on the carbothermic production of solar-grade silicon using high-purity starting materials

    SciTech Connect

    Schultz, F.W.; Aulich, H.A.; Fenzi, H.J.; Hecht, M.D.

    1984-05-01

    Solar-grade silicon was produced by carbothermic reduction (CR) in a 70 kW arc-furnace. Silicon suitable for solar cells with an efficiency > 10% was obtained form silicon dioxide of different origin and purified carbon. The importance of a low P- and B-concentration (<10/sup 17/a/cm/sup 3/) in the silicon produced was established. Cells made from CR-Si were successfully processed into modules using conventional technology.

  19. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    SciTech Connect

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.

  20. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE PAGES

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; ...

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  1. Graphene encapsulated and SiC reinforced silicon nanowires as an anode material for lithium ion batteries.

    PubMed

    Yang, Yang; Ren, Jian-Guo; Wang, Xin; Chui, Ying-San; Wu, Qi-Hui; Chen, Xianfeng; Zhang, Wenjun

    2013-09-21

    Anode materials play a key role in the performance, in particular the capacity and lifetime, of lithium ion batteries (LIBs). Silicon has been demonstrated to be a promising anode material due to its high specific capacity, but pulverization during cycling and formation of an unstable solid-electrolyte interphase limit its cycle life. Herein, we show that anodes consisting of an active silicon nanowire (Si NW), which is surrounded by a uniform graphene shell and comprises silicon carbide nanocrystals, are capable of serving over 500 cycles in half cells at a high lithium storage capacity of 1650 mA h g(-1). In the anodes, the graphene shell provides a highly-conductive path and prevents direct exposure of Si NWs to electrolytes while the SiC nanocrystals may act as a rigid backbone to retain the integrity of the Si NW in its great deformation process caused by repetitive charging-discharging reactions, resulting in a stable cyclability.

  2. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials.

    PubMed

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D; Hennessy, John J; Carver, Alexander G; Jones, Todd J; Goodsall, Timothy M; Hamden, Erika T; Suvarna, Puneet; Bulmer, J; Shahedipour-Sandvik, F; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L Douglas

    2016-06-21

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

  3. Single Photon Counting UV Solar-Blind Detectors Using Silicon and III-Nitride Materials

    PubMed Central

    Nikzad, Shouleh; Hoenk, Michael; Jewell, April D.; Hennessy, John J.; Carver, Alexander G.; Jones, Todd J.; Goodsall, Timothy M.; Hamden, Erika T.; Suvarna, Puneet; Bulmer, J.; Shahedipour-Sandvik, F.; Charbon, Edoardo; Padmanabhan, Preethi; Hancock, Bruce; Bell, L. Douglas

    2016-01-01

    Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100–300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness. PMID:27338399

  4. The recovery of latent fingermarks and DNA using a silicone-based casting material.

    PubMed

    Shalhoub, Rita; Quinones, Ignacio; Ames, Carole; Multaney, Bryan; Curtis, Stuart; Seeboruth, Haj; Moore, Stephen; Daniel, Barbara

    2008-07-04

    There are many techniques available for the recovery of fingermarks at scenes of crime including the possibility of taking casts of the marks. Casts can be advantageous in cases where other destructive recovery techniques might not be suitable, such as when recovering finger marks deposited on valued or immobile items. In this research, Isomark (a silicone-based casting material) was used to recover casts of finger marks placed on a variety of substrates. Casts were enhanced using cyanoacrylate fuming. Good quality marks were successfully recovered from a range of smooth, non-porous surfaces. Recovery from semi-porous surfaces was shown to be inefficient. DNA was subsequently extracted from the casts using QIAamp Mini extraction kits, amplified and profiled. Full DNA profiles were obtained 34% of samples extracted.

  5. Evaluation of effect of tray space on the accuracy of condensation silicone, addition silicone and polyether impression materials: an in vitro study.

    PubMed

    Kumar, Varun; Aeran, Himanshu

    2012-09-01

    Optimal thickness of impression materials in the custom tray in order to get the most accurate impression. To investigate the effect of different tray spacer thickness on the accuracy and the dimensional stability of impressions made from monophasic condensation silicone, addition silicone and polyether impression materials. Three different types of elastomeric monophasic impression materials were used for making the impression of a master die with tray having tray spacer thickness of 2, 4 and 6 mm. Each type of impression was poured in die stone after 1 h. Each cast was analyzed by a travelling microscope and compared with the master die. The data was tabulated and subjected to statistical evaluation. The results of the study indicated that the impressions made from 2 to 4 mm spaced trays produced more accurate stone casts when compared to 6 mm spaced tray. No statistical significant differences were observed between the accuracy and dimensional stability of the three materials tested. Minimum changes were observed when the cast was poured after 1 h and the tray space was 2 mm for all the materials tested. It is therefore advisable not to exceed tray space of 2 mm.

  6. Porous silicon organic vapor sensor

    NASA Astrophysics Data System (ADS)

    Salgado, G. García; Becerril, T. Díaz; Santiesteban, H. Juárez; Andrés, E. Rosendo

    2006-10-01

    In this paper, a porous silicon (PS) layer was investigated as a sensing material to detect organic vapors. The PS was obtained by electrochemical anodization of p-type crystalline silicon (c-Si) in an ethanoic HF solution in order to produce a mesoporous material. The change in the electrical resistance value of the PS layer was used as parameter to sense the presence of the organic vapors (methanol, ethanol, isopropanol, xilene, acetone or water in this work). Gravimetry and infrared spectroscopy (FTIR) were used to characterize the PS layers. As a result, we obtain that the thickness and sensing area of the PS layer produce a great difference in the sensor response. It was also observed that the sensor device had best response for methanol or acetone vapors.

  7. Silicon Carbide Photoconductive Switches

    DTIC Science & Technology

    1994-09-01

    The optoelectronic properties of p-type 6-H silicon carbide (6H-SiC) have been investigated in an experiment that used lateral and vertical...and the bandgap was determined to be approximately 3.1 eV. 6H-SiC, Photoconductive, Photovoltaic, Absorption coefficient, Switch, Silicon carbide

  8. The temperature-dependent coefficient of thermal expansion of p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials

    SciTech Connect

    Schmidt, Robert; Case, Eldon D; Ni, Jennifer E.; Sakamoto, Jeffrey; Trejo, Rosa M; Lara-Curzio, Edgar; Payzant, E Andrew; Kirkham, Melanie J; Meisner, Roberta Ann

    2012-01-01

    During waste heat recovery applications, thermoelectric (TE) materials experience thermal gradients and thermal transients, which produce stresses that scale with the TE material's coefficient of thermal expansion (CTE). Thus, the temperature-dependent CTE is an important parameter for the design of mechanically robust TE generators. For three skutterudite thermoelectric compositions, n-type Co{sub 0.95}Pd{sub 0.05}Te{sub 0.05}Sb{sub 3} (with and without 0.1 at. % cerium doping) and p-type Ce{sub 0.9}Fe{sub 3.5}Co{sub 0.5}Sb{sub 12}, the CTE was measured using two methods, i.e. X-ray diffraction on powder and bulk specimens and dilatometry on bulk specimens. Each bulk specimen was hot pressed using powders milled from cast ingots. Between 300 K and 600 K, the mean CTE values were 9.8-10.3 x 10{sup -6} K{sup -1} for the non-cerium-doped n-type, 11.6 x 10{sup -6} K{sup -1} for the 0.1 at. % cerium-doped n-type and from 12.7 to 13.3 x 10{sup -6} K{sup -1} for the p-type. In the literature, similar CTE values are reported for other Sb-based skutterudites. For temperatures >600 K, an unrecovered dilatational strain (perhaps due to bloating) was observed, which may impact applications. Also, the submicron particle sizes generated by wet milling were pyrophoric; thus, during both processing and characterization, exposure of the powders to oxygen should be limited.

  9. The temperature dependence of thermal expansion for p-type Ce0.9Fe3.5Co0.5Sb12 and n-type Co0.95Pd0.05Te0.05Sb3 skutterudite thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert D.; Case, Eldon D.; Ni, Jennifer E.; Sakamoto, Jeffrey S.; Trejo, Rosa M.; Lara-Curzio, Edgar; Payzant, E. Andrew; Kirkham, Melanie J.; Peascoe-Meisner, Roberta A.

    2012-04-01

    During waste heat recovery applications, thermoelectric (TE) materials experience thermal gradients and thermal transients, which produce stresses that scale with the TE material's coefficient of thermal expansion (CTE). Thus, the temperature-dependent CTE is an important parameter for the design of mechanically robust TE generators. For three skutterudite thermoelectric compositions, n-type Co0.95Pd0.05Te0.05Sb3 (with and without 0.1 at. % cerium doping) and p-type Ce0.9Fe3.5Co0.5Sb12, the CTE was measured using two methods, i.e. X-ray diffraction on powder and bulk specimens and dilatometry on bulk specimens. Each bulk specimen was hot pressed using powders milled from cast ingots. Between 300 K and 600 K, the mean CTE values were 9.8-10.3 × 10-6 K-1 for the non-cerium-doped n-type, 11.6 × 10-6 K-1 for the 0.1 at. % cerium-doped n-type and from 12.7 to 13.3 × 10-6 K-1 for the p-type. In the literature, similar CTE values are reported for other Sb-based skutterudites. For temperatures >600 K, an unrecovered dilatational strain (perhaps due to bloating) was observed, which may impact applications. Also, the submicron particle sizes generated by wet milling were pyrophoric; thus, during both processing and characterization, exposure of the powders to oxygen should be limited.

  10. Improvement in thermoelectric power factor of mechanically alloyed p-type SiGe by incorporation of TiB{sub 2}

    SciTech Connect

    Ahmad, Sajid; Dubey, K.; Bhattacharya, Shovit; Basu, Ranita; Bhatt, Ranu; Bohra, A. K.; Singh, Ajay; Aswal, D. K.; Gupta, S. K.

    2016-05-23

    Nearly 60% of the world’s useful energy is wasted as heat and recovering a fraction of this waste heat by converting it as useful electrical power is an important area of research{sup [1]}. Thermoelectric power generators (TEG) are solid state devices which converts heat into electricity. TEG consists of n and p-type thermoelements connected electrically in series and thermally in parallel{sup [2]}. Silicon germanium (SiGe) alloy is one of the conventional high temperature thermoelectric materials and is being used in radio-isotopes based thermoelectric power generators for deep space exploration programs.Temperature (T) dependence of thermoelectric (TE) properties of p-type SiGe and p-type SiGe-x wt.%TiB{sub 2} (x=6,8,10%) nanocomposite materials has been studied with in the temperature range of 300 K to 1100 K. It is observed that there is an improvement in the power factor (α{sup 2}/ρ) of SiGe alloy on addition of TiB{sub 2} upto 8 wt.% that is mainly due to increase in the Seebeck coefficient (α) and electrical conductivity (σ) of the alloy.

  11. First principles calculations of thermodynamical properties of cage-like silicon clathrate materials

    NASA Astrophysics Data System (ADS)

    Jack, Deslippe; Dong, Jianjun

    2003-03-01

    Si, Ge, and Sn based clathrate materials are potential high ZT thermoelectric materials due to their electron-crystal-phon-glass properties. Recently, the synthesis of guest-free type-II Si clathrate (Si136) was reported. The pristine (guest-free) Si and Ge clathrate can be viewed as "negative-pressure" phases, which might exist metastably at ambient conditions. In this talk, we will report our recent calculations of the thermodynamic properties of silicon type-I and -II Clathrate phases, as well as the ground state Si diamond phase. Statistical quasi-harmonic theory is used in conjunction with first-principles static bonding energy and dynamic phonon spectrum calculations to obtain free energies of the lattices. At zero temperature, the transition pressures of diamond-to-clathrate-I and diamond-to-clathrates-II transitions are predicted to be -46.9 kbar and -38.9 kbar respectively, while the Clapeyron slopes (dP/dT) of the two transitions at 300K are 8.64 bar/K and 7.38 bar/K respectively. Thermal properties of the Si materials, such as (linear) thermal expansion coefficients, Gruneisen parameters, heat capacities, and thermal bulk moduli etc. are also calculated. We find good agreement with experiment in the Si diamond phase. The results of the Si clathrates are discussed in comparison to those of the Si diamond, as well as available data of metal-encapsulated Si-based clathrate compounds (such as Na8Si46).

  12. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  13. Determination of the Wetting Angle of Germanium and Germanium-Silicon Melts on Different Substrate Materials

    NASA Technical Reports Server (NTRS)

    Kaiser, Natalie; Croell, Arne; Szofran, F. R.; Cobb. S. D.; Dold, P.; Benz, K. W.

    1999-01-01

    During Bridgman growth of semiconductors detachment of the crystal and the melt meniscus has occasionally been observed, mainly under microgravity (microg) conditions. An important factor for detached growth is the wetting angle of the melt with the crucible material. High contact angles are more likely to result in detachment of the growing crystal from the ampoule wall. In order to achieve detached growth of germanium (Ge) and germanium-silicon (GeSi) crystals under 1g and microg conditions, sessile drop measurements were performed to determine the most suitable ampoule material as well as temperature dependence of the surface tension for GeSi. Sapphire, fused quartz, glassy carbon, graphite, SiC, pyrolytic Boron Nitride (pBN), AIN, and diamond were used as substrates. Furthermore, different cleaning procedures and surface treatments (etching, sandblasting, etc.) of the same substrate material and their effect on the wetting behavior were studied during these experiments. pBN and AIN substrates exhibited the highest contact angles with values around 170 deg.

  14. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Liu, Dai-Huo; Wang, Ying-Ying; Hou, Bao-Hua; Zhang, Jing-Ping; Wang, Rong-Shun; Wu, Xing-Long

    2016-03-01

    Dual-carbon enhanced Si-based composite (Si/C/G) has been prepared via employing the widely distributed, low-cost and environmentally friendly Diatomite mineral as silicon raw material. The preparation processes are very simple, non-toxic and easy to scale up. Electrochemical tests as anode material for lithium ion batteries (LIBs) demonstrate that this Si/C/G composite exhibits much improved Li-storage properties in terms of superior high-rate capabilities and excellent cycle stability compared to the pristine Si material as well as both single-carbon modified composites. Specifically for the Si/C/G composite, it can still deliver a high specific capacity of about 470 mAh g-1 at an ultrahigh current density of 5 A g-1, and exhibit a high capacity of 938 mAh g-1 at 0.1 A g-1 with excellent capacity retention in the following 300 cycles. The significantly enhanced Li-storage properties should be attributed to the co-existence of both highly conductive graphite and amorphous carbon in the Si/C/G composite. While the former can enhance the electrical conductivity of the obtained composite, the latter acts as the adhesives to connect the porous Si particulates and conductive graphite flakes to form robust and stable conductive network.

  15. Visualization of a hyaluronan network on the surface of silicone-hydrogel materials.

    PubMed

    Wygladacz, Katarzyna A; Hook, Daniel J

    2016-01-01

    Biotrue multipurpose solution (MPS) is a bioinspired disinfecting and conditioning solution that includes hyaluronic acid (HA) as a natural wetting agent. Previous studies demonstrated that HA sorbed from Biotrue MPS on both conventional and silicone hydrogel (SiHy) contact lens materials; an in vitro simulated-wear test validated the presence of HA on the lens surfaces for as long as 20 hours. In this study, the morphology and distribution of HA sorbed from both Biotrue and pure HA solution on SiHy contact lens surfaces was examined. Atomic force microscopy imaging was used to illustrate the topography of fresh SiHy contact lens materials before and after incubation with 0.1% (w/v) HA solution. The distribution, as well as fine details of the HA network, were resolved by first staining HA with Gram's safranin, then imaging with confocal laser-scanning microscopy and differential interference-contrast microscopy. In this approach, SiHy materials take up the dye (safranin) nonspecifically, such that the resultant safranin-HA complex appears dim against the fluorescent lens background. Balafilcon A was chosen as the representative of glassy SiHy lenses that require postpolymerization plasma treatment to increase wettability. Senofilcon A and samfilcon A were chosen as representatives of SiHy materials fabricated with an internal wetting agent. A confluent and dim HA-safranin network was observed adhered to balafilcon A, senofilcon A, and samfilcon A lens surfaces incubated with either 0.1% (w/v) HA solution or Biotrue MPS. Therefore, the conditioning function provided by Biotrue MPS may be in part explained by the presence of the HA humectant layer that readily sorbs on the various types of SiHy contact lens materials.

  16. Visualization of a hyaluronan network on the surface of silicone-hydrogel materials

    PubMed Central

    Wygladacz, Katarzyna A; Hook, Daniel J

    2016-01-01

    Biotrue multipurpose solution (MPS) is a bioinspired disinfecting and conditioning solution that includes hyaluronic acid (HA) as a natural wetting agent. Previous studies demonstrated that HA sorbed from Biotrue MPS on both conventional and silicone hydrogel (SiHy) contact lens materials; an in vitro simulated-wear test validated the presence of HA on the lens surfaces for as long as 20 hours. In this study, the morphology and distribution of HA sorbed from both Biotrue and pure HA solution on SiHy contact lens surfaces was examined. Atomic force microscopy imaging was used to illustrate the topography of fresh SiHy contact lens materials before and after incubation with 0.1% (w/v) HA solution. The distribution, as well as fine details of the HA network, were resolved by first staining HA with Gram’s safranin, then imaging with confocal laser-scanning microscopy and differential interference-contrast microscopy. In this approach, SiHy materials take up the dye (safranin) nonspecifically, such that the resultant safranin–HA complex appears dim against the fluorescent lens background. Balafilcon A was chosen as the representative of glassy SiHy lenses that require postpolymerization plasma treatment to increase wettability. Senofilcon A and samfilcon A were chosen as representatives of SiHy materials fabricated with an internal wetting agent. A confluent and dim HA–safranin network was observed adhered to balafilcon A, senofilcon A, and samfilcon A lens surfaces incubated with either 0.1% (w/v) HA solution or Biotrue MPS. Therefore, the conditioning function provided by Biotrue MPS may be in part explained by the presence of the HA humectant layer that readily sorbs on the various types of SiHy contact lens materials. PMID:27555749

  17. Low cost solar array project. Cell and module formation research area. Process research of non-CZ silicon material

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Liquid diffusion masks and liquid dopants to replace the more expensive CVD SiO2 mask and gaseous diffusion processes were investigated. Silicon pellets were prepared in the silicon shot tower; and solar cells were fabricated using web grown where the pellets were used as a replenishment material. Verification runs were made using the boron dopant and liquid diffusion mask materials. The average of cells produced in these runs was 13%. The relationship of sheet resistivity, temperature, gas flows, and gas composition for the diffusion of the P-8 liquid phosphorus solution was investigated. Solar cells processed from web grown from Si shot material were evaluated, and results qualified the use of the material produced in the shot tower for web furnace feed stock.

  18. Fabrication and characterization of p-type SiNW/n-type ZnO heterostructure for optoelectronics application

    NASA Astrophysics Data System (ADS)

    Hazra, Purnima; Chakrabarti, P.; Jit, S.

    2015-02-01

    Semiconductor hybrid structure, known as core-shell heterostructures was fabricated and optical properties were analyzed to make it applicable in future optoelectronic and photonic devices. Large-area, high density, vertically oriented silicon nanowire arrays, synthesized by means of metal-assisted chemical etching of p-type silicon (100) substrate was used as the core and zinc oxide (ZnO) layer, deposited on the SiNW arrays by atomic layer deposition (ALD) was used as shell. The XRD peaks of the heterostructure confirmed the subsequent growth of ZnO film on the template of SiNW arrays having similar crystalline quality. The photoluminescence (PL) spectra showed a very sharp peak at 378 nm, corresponding to the band gap of ZnO material and another broad emission band almost throughout the entire visible range with a peak around 550 nm. The structure also showed a very good antireflection property. The results present that the SiNW/ZnO heterostructure can have potential application in future nanoscale electronic and photonic devices.

  19. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    DOEpatents

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  20. Convergence of valence bands for high thermoelectric performance for p-type InN

    NASA Astrophysics Data System (ADS)

    Li, Hai-Zhu; Li, Ruo-Ping; Liu, Jun-Hui; Huang, Ming-Ju

    2015-12-01

    Band engineering to converge the bands to achieve high valley degeneracy is one of effective approaches for designing ideal thermoelectric materials. Convergence of many valleys in the valence band may lead to a high Seebeck coefficient, and induce promising thermoelectric performance of p-type InN. In the current work, we have systematically investigated the electronic structure and thermoelectric performance of wurtzite InN by using the density functional theory combined with semiclassical Boltzmann transport theory. Form the results, it can be found that intrinsic InN has a large Seebeck coefficient (254 μV/K) and the largest value of ZeT is 0.77. The transport properties of p-type InN are better than that of n-type one at the optimum carrier concentration, which mainly due to the large Seebeck coefficient for p-type InN, although the electrical conductivity of n-type InN is larger than that of p-type one. We found that the larger Seebeck coefficient for p-type InN may originate from the large valley degeneracy in the valence band. Moreover, the low minimum lattice thermal conductivity for InN is one key factor to become a good thermoelectric material. Therefore, p-type InN could be a potential material for further applications in the thermoelectric area.

  1. Removal of Silicone Oil From Intraocular Lens Using Novel Surgical Materials

    PubMed Central

    Paschalis, Eleftherios I.; Eliott, Dean; Vavvas, Demetrios G.

    2014-01-01

    Purpose To design, fabricate, and evaluate novel materials to remove silicone oil (SiO) droplets from intraocular lenses (IOL) during vitreoretinal surgery. Methods Three different designs were fabricated using soft lithography of polydimethylsiloxane (PDMS), three-dimensional (3D) inverse PDMS fabrication using water dissolvable particles, and atomic layer deposition (ALD) of alumina (Al2O3) on surgical cellulose fibers. Laboratory tests included static and dynamic contact angle (CA) measurements with water and SiO, nondestructive x-ray microcomputer tomography (micro-CT), and microscopy. SiO removal was performed in vitro and ex vivo using implantable IOLs and explanted porcine eyes. Results All designs exhibited enhanced hydrophobicity and oleophilicity. Static CA measurements with water ranged from 131° to 160° and with SiO CA approximately 0° in 120 seconds following exposure. Nondestructive x-ray analysis of the 3D PDMS showed presence of interconnected polydispersed porosity of 100 to 300 μm in diameter. SiO removal from IOLs was achieved in vitro and ex vivo using standard 20-G vitrectomy instrumentation. Conclusion Removal of SiO from IOLs can be achieved using materials with lower surface energy than that of the IOLs. This can be achieved using appropriate surface chemistry and surface topography. Three designs, with enhanced hydrophobic properties, were fabricated and tested in vitro and ex vivo. All materials remove SiO within an aqueous environment. Preliminary ex vivo results were very promising, opening new possibilities for SiO removal in vitreoretinal surgeries. Translational Relevance This is the first report of an instrument that can lead to successful removal of SiO from the surface of IOL. In addition to the use of this instrument/material in medicine it can also be used in the industry, for example, retrieval of oil spills from bodies of water. PMID:25237593

  2. Protein deposition on a lathe-cut silicone hydrogel contact lens material.

    PubMed

    Subbaraman, Lakshman N; Woods, Jill; Teichroeb, Jonathan H; Jones, Lyndon

    2009-03-01

    To determine the quantity of total protein, total lysozyme, and the conformational state of lysozyme deposited on a novel, lathe-cut silicone hydrogel (SiHy) contact lens material (sifilcon A) after 3 months of wear. Twenty-four subjects completed a prospective, bilateral, daily-wear, 9-month clinical evaluation in which the subjects were fitted with a novel, custom-made, lathe-cut SiHy lens material. The lenses were worn for three consecutive 3-month periods, with lenses being replaced after each period of wear. After 3 months of wear, the lenses from the left eye were collected and assessed for protein analysis. The total protein deposited on the lenses was determined by a modified Bradford assay, total lysozyme using Western blotting and the lysozyme activity was determined using a modified micrococcal assay. The total protein recovered from the custom-made lenses was 5.3 +/- 2.3 microg/lens and the total lysozyme was 2.4 +/- 1.2 microg/lens. The denatured lysozyme found on the lenses was 1.9 +/- 1.0 microg/lens and the percentage of lysozyme denatured was 80 +/- 10%. Even after 3 months of wear, the quantity of protein and the conformational state of lysozyme deposited on these novel lens materials was very similar to that found on similar surface-coated SiHy lenses after 2 to 4 weeks of wear. These results indicate that extended use of the sifilcon A material is not deleterious in terms of the quantity and quality of protein deposited on the lens.

  3. Sintered silicon carbide: a new ceramic vessel material for microwave chemistry in single-mode reactors.

    PubMed

    Gutmann, Bernhard; Obermayer, David; Reichart, Benedikt; Prekodravac, Bojana; Irfan, Muhammad; Kremsner, Jennifer M; Kappe, C Oliver

    2010-10-25

    Silicon carbide (SiC) is a strongly microwave absorbing chemically inert ceramic material that can be utilized at extremely high temperatures due to its high melting point and very low thermal expansion coefficient. Microwave irradiation induces a flow of electrons in the semiconducting ceramic that heats the material very efficiently through resistance heating mechanisms. The use of SiC carbide reaction vessels in combination with a single-mode microwave reactor provides an almost complete shielding of the contents inside from the electromagnetic field. Therefore, such experiments do not involve electromagnetic field effects on the chemistry, since the semiconducting ceramic vial effectively prevents microwave irradiation from penetrating the reaction mixture. The involvement of electromagnetic field effects (specific/nonthermal microwave effects) on 21 selected chemical transformations was evaluated by comparing the results obtained in microwave-transparent Pyrex vials with experiments performed in SiC vials at the same reaction temperature. For most of the 21 reactions, the outcome in terms of conversion/purity/product yields using the two different vial types was virtually identical, indicating that the electromagnetic field had no direct influence on the reaction pathway. Due to the high chemical resistance of SiC, reactions involving corrosive reagents can be performed without degradation of the vessel material. Examples include high-temperature fluorine-chlorine exchange reactions using triethylamine trihydrofluoride, and the hydrolysis of nitriles with aqueous potassium hydroxide. The unique combination of high microwave absorptivity, thermal conductivity, and effusivity on the one hand, and excellent temperature, pressure and corrosion resistance on the other hand, makes this material ideal for the fabrication of reaction vessels for use in microwave reactors.

  4. Moisture-cured silicone-urethanes-candidate materials for tissue engineering: a biocompatibility study in vitro.

    PubMed

    Mrówka, P; Kozakiewicz, J; Jurkowska, A; Sienkiewicz, E; Przybylski, J; Lewandowski, Z; Przybylski, J; Lewandowska-Szumieł, M

    2010-07-01

    This study was performed to verify the response of human bone-derived cells (HBDCs) to moisture-cured silicone-urethanes (mcSUUs) in vitro, as the first step toward using them as scaffolds for bone tissue engineering. Good surgical handling, tissue cavity filling, stable mechanical properties, and potentially improved oxygen supply to cells after implantation justify the investigation of these nondegradable elastomers. A set of various mcSUUs were obtained by moisture-curing NCO-terminated prepolymers, synthesized from oligomeric siloxane diols of two different oligosiloxane chain lengths, and two different diisocyanates (MDI and IPDI), using two different NCO/OH molar ratios. Dibutyltindilaurate (DBTL) or N-dimethylethanolamine (N-met) served as catalysts. After 7 days of culture, cell number, viability, and alkaline phosphatase (ALP) activity were determined, and after 21 days, cell viability and collagen production were determined. Material characteristics significantly influenced the cell response. The mcSUUs prepared with DBTL (widely used in the syntheses of biomaterials) were cytotoxic. The MDI-based mcSUUs were significantly more favored by HBDCs than the IPDI-based ones in all performed tests. MDI-based material with low 2/1 NCO/OH and short chain length was the best support for cells, comparable with tissue-culture polystyrene (with ALP activity even higher). HBDCs cultured on porous scaffolds from this mcSUU produced a tissue-like structure in culture. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.

  5. Investigation on the long-term radiation hardness of low resistivity starting silicon materials for RT silicon detectors in high energy physics

    SciTech Connect

    Li, Z.

    1994-02-01

    Relatively low resistivity (200 to 1000 {Omega}-cm) starting silicon materials have been studied in the search of room temperature neutron radiation-hard silicon detectors. It has been found that, moderate resistivity (300-700 {Omega}-cm) silicon detectors, after being irradiated to 5.0 {times} 10{sup 13} to 2.0 {times} 10{sup 14} n/cm{sup 2}, are extremely stable in terms of the detector full depletion voltage (V{sub d}) or the net effective concentration of ionized space charges (N{sub eff} ---- there is little ``reverse annealing`` of N{sub eff} at RT and elevated temperatures as compared with large reverse annealing observed for high resistivity silicon detectors. Detectors with starting resistivity of 300-700 {Omega}-cm have been found to be stable, during the equivalent of one year RT anneal that would reach the saturation of the first stage of reverse anneal, within then N{sub eff} window of {vert_bar}N{sub eff}{vert_bar}{le} 2.5 {times} 10{sup 12} cm{sup {minus}3} (V{sub d} = 180 V for d = 300 {mu}m) in a working range of 5.0 {times} 10{sup 13} to 1.5 {times} 10{sup 14} n/cm{sup 2}, or a net neutron radiation tolerance of 1.0 {times} 10{sup 14} n/cm{sup 2}. The observed effects are in very good agreement with an early proposed model, which predicted among others, that there might be an off set between the reverse annealing effect and the partial annealing of the P-V centers that leads to the partial recovery of the shallow impurity donors.

  6. Phosphorous and aluminum gettering in Silicon-Film{trademark} Product II material

    SciTech Connect

    Cotter, J.E.; Barnett, A.M.; Hall, R.B.

    1995-08-01

    Gettering processes are being developed for the Silicon-Film{trademark} Product II solar cell structure. These processes have been developed specifically for films of silicon grown on dissimilar substrates with barrier layers. Gettering with both phosphorous- and aluminum-based processing sequences has resulted in enhancement of minority carrier diffusion length. Long diffusion lengths have allowed the characterization of light trapping in thin films of silicon grown on barrier-coated substrates.

  7. Study program to develop and evaluate die and container materials for the growth of silicon ribbons. [for development of low cost solar cells

    NASA Technical Reports Server (NTRS)

    Addington, L. A.; Ownby, P. D.; Yu, B. B.; Barsoum, M. W.; Romero, H. V.; Zealer, B. G.

    1979-01-01

    The development and evaluation of proprietary coatings of pure silicon carbide, silicon nitride, and aluminum nitride on less pure hot pressed substrates of the respective ceramic materials, is described. Silicon sessile drop experiments were performed on coated test specimens under controlled oxygen partial pressure. Prior to testing, X-ray diffraction and SEM characterization was performed. The reaction interfaces were characterized after testing with optical and scanning electron microscopy and Auger electron spectroscopy. Increasing the oxygen partial pressure was found to increase the molten silicon contact angle, apparently because adsorbed oxygen lowers the solid-vapor interfacial free energy. It was also found that adsorbed oxygen increased the degree of attack of molten silicon upon the chemical vapor deposited coatings. Cost projections show that reasonably priced, coated, molten silicon resistant refractory material shapes are obtainable.

  8. Fast characterization of functionalized silica materials by silicon-29 surface-enhanced NMR spectroscopy using dynamic nuclear polarization.

    PubMed

    Lelli, Moreno; Gajan, David; Lesage, Anne; Caporini, Marc A; Vitzthum, Veronika; Miéville, Pascal; Héroguel, Florent; Rascón, Fernando; Roussey, Arthur; Thieuleux, Chloé; Boualleg, Malika; Veyre, Laurent; Bodenhausen, Geoffrey; Copéret, Christophe; Emsley, Lyndon

    2011-02-23

    We demonstrate fast characterization of the distribution of surface bonding modes and interactions in a series of functionalized materials via surface-enhanced nuclear magnetic resonance spectroscopy using dynamic nuclear polarization (DNP). Surface-enhanced silicon-29 DNP NMR spectra were obtained by using incipient wetness impregnation of the sample with a solution containing a polarizing radical (TOTAPOL). We identify and compare the bonding topology of functional groups in materials obtained via a sol-gel process and in materials prepared by post-grafting reactions. Furthermore, the remarkable gain in time provided by surface-enhanced silicon-29 DNP NMR spectroscopy (typically on the order of a factor 400) allows the facile acquisition of two-dimensional correlation spectra.

  9. Contact printing of horizontally-aligned p-type Zn₃P₂ nanowire arrays for rigid and flexible photodetectors.

    PubMed

    Yu, Gang; Liang, Bo; Huang, Hongtao; Chen, Gui; Liu, Zhe; Chen, Di; Shen, Guozhen

    2013-03-08

    Zn(3)P(2) is an important p-type semiconductor with the ability to detect almost all visible and ultraviolet light. By using the simple and efficient contact printing process, we reported the assembly of horizontally-aligned p-type Zn(3)P(2) nanowire arrays to be used as building blocks for high performance photodetectors. Horizontally-aligned Zn(3)P(2) nanowire arrays were first printed on silicon substrate to make thin-film transistors, exhibiting typical p-type transistor behavior with a high on/off ratio of 10(3). Besides, the Zn(3)P(2) nanowire array based devices showed a substantial response to illuminated lights with a wide range of wavelengths and densities. Flexible photodetectors were also fabricated by contact printing of horizontally-aligned Zn(3)P(2) nanowire arrays on flexible PET substrate, showing a comparable performance to the device on rigid silicon substrate.

  10. Silicon isotopic variation in enstatite meteorites: Clues to their origin and Earth-forming material

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Moynier, Frédéric

    2013-01-01

    Of the primitive meteorite groups, the enstatite chondrites are among the most chemically dissimilar to terrestrial, which should preclude them as major components of the proto-Earth. However, for many isotope systems (most notably oxygen), enstatite chondrites show very little variation away from terrestrial, hinting at a common origin. One isotope system which appears to differ from this trend is silicon, but no satisfactory explanation has been proposed as to why these meteorites should be significantly lighter than both the silicate Earth and other primitive meteorite groups. This study presents a comprehensive investigation into the Si isotope composition of enstatite chondrites and their differentiated counterparts, the aubrites, and confirms that these meteorites are, with respect to Si isotopes, the lightest macroscale solar system objects so far analysed. Crucially, the results show that EH chondrites are significantly lighter (δ30Si=-0.77±0.08‰) than EL chondrites (δ30Si=-0.59±0.09‰) and aubrites (δ30Si=-0.60±0.11‰). Silicon isotope analyses of the metal-free components of EH and EL reveal that these are identical, within error, to each other and with carbonaceous/ordinary chondrite bulk measurements (viz., δ30Si ˜-0.47), which is taken as evidence that Si isotope variation in the nebular gas is not the cause of the light Si isotope enrichment in enstatite chondrites. From this, one can infer that silicates condensing from the solar nebula over a wide range of compositions and, presumably, heliocentric distances have very similar Si isotope compositions. A statistically significant negative correlation between bulk δ30Si and Si content in enstatite chondrite kamacite indicates that the presence of isotopically light Si in the metal phase (as the result of formation under reducing conditions) is the principal cause of the bulk enrichment in lighter Si isotopes. Based on the Si isotope offset between enstatite meteorites and the silicate

  11. Elastoplasty: A Silicon Polymer as a New Filling Material for Kyphoplasty in Comparison to PMMA.

    PubMed

    Bornemann, Rahel; Rommelspacher, Yorck; Jansen, Tom R; Sander, Kirsten; Wirtz, Dieter C; Pflugmacher, Robert

    2016-07-01

    the VK group. The study is only a matched pair analysis of 15 patients for each procedure and the amount of injected filling material was not recorded. The study results demonstrate that the clinical outcome of VAS and ODI of using the silicon polymer VK100 is comparable or slightly better than using PMMA. VK 100 shows a trend to minor additional fractures during the follow-up. However, height restoration is not satisfactory in comparison to PMMA, although vertebral height stayed more or less constant in the VK group. To address the augmentation success further, it would be necessary to study a larger patient group over a longer study period and to assess additional parameters such as bone density and injected amount of filling material.

  12. Study of the effects of impurities on the properties of silicon materials and performance of silicon solar cell

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1981-01-01

    The effect of silicon film thickness on the energy conversion efficiency of a back surface field solar cell is investigated. A computer-aided design study on the dependence of efficiency peaks on the concentrations of the recombination and dopant impurities is presented. The illuminated current voltage characteristics of over 100 cell designs were obtained using the transmission line circuit model to numerically solve the Shockley Equations. Using an AM1 efficiency of 17% as a target value, it is shown that the efficiency versus thickness dependence has a broad maximum which varies less than 1% over more than three-to-one range of cell thickness from 30 to 100 microns. Optical reflecting back surface will give only a slight improvement of AM1 efficiency, about 0.7%, in this thickness range. The sensitive dependence of efficiency on patchiness across the back surface field, low high junction in thin cells is noted.

  13. Evaluation of effectiveness of microwave irradiation for disinfection of silicone elastomeric impression material.

    PubMed

    Bhasin, Abhilasha; Vinod, V; Bhasin, Vinny; Mathew, Xavier; Sajjan, Suresh; Ahmed, Syed Tauqheer

    2013-06-01

    Use of domestic microwave oven has been suggested as a method of disinfecting a number of dental materials used in dental practice. This study was done to analyse the effect of microwave irradiation on vinyl polysiloxane putty impression material (3M ESPE, Express™ STD) contaminated with test organisms (Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans. 180 square shaped specimens of addition silicon putty material were prepared and divided into 3 groups for three test organisms. The 3 groups were subdivided into 4 subgroups (n = 15) for different exposure parameters (control group 5, 6 and 7 min exposure at 650 W. The specimens were contaminated using standard inoculums of test organism and then were irradiated using domestic microwaves. Broth cultures of the control and test group specimens were plated on selective media culture plates. Colonies formed were counted. Data analyses included Kruskal-Walli's ANOVA and Mann-Whitney's tests. Nil values shows complete elimination of C. albicans and P. aeruginosa after 5, 6 and 7 min exposure. Staphylococcus aureus showed colonies with the mean value of 7.6 × 10(3) ± 2.3 × 10(3), 4.6 × 10(3) ± 2.6 × 10(3) after 5 and 6 min respectively and nil values after 7 min exposure. 5 min exposure caused complete elimination of C. albicans and P. aeruginosa strains, while 7 min exposure eliminated S. aureus completely.

  14. Growth of p-type GaAs/AlGaAs(111) quantum well infrared photodetector using solid source molecular-beam epitaxy

    SciTech Connect

    Li, H.; Mei, T.; Karunasiri, G.; Fan, W.J.; Zhang, D.H.; Yoon, S.F.; Yuan, K.H.

    2005-09-01

    A p-type GaAs/AlGaAs multi-quantum-well infrared photodetector (QWIP) was fabricated on a GaAs (111)A substrate by molecular-beam epitaxy using silicon as dopant. The same structure was also grown on a GaAs (100) wafer simultaneously to compare the material and structural properties. It was found that Si acts as a p-type dopant in the GaAs (111)A sample while it is n-type in the GaAs (100) counterpart. The growth rate was found to be appreciably enhanced for GaAs (111)A compared with that of GaAs (100) orientation, while the Al composition in the barriers was found to be 20% smaller for a (111) orientation which results in a smaller barrier height. A peak responsivity of 1 mA/W with a relatively wide wavelength response ({delta}{lambda}/{lambda}{sub p}{approx}53%) was observed for the GaAs (111)A QWIP, mainly due to the location of the excited state far above the barrier. The photoresponse also showed a relatively strong normal incident absorption probably originating from the mixing of the conduction and valence Bloch states. The optimization of the quantum well parameters should further enhance the responsivity of this p-type QWIP with Si as dopant species.

  15. Elevated temperature annealing behaviors of bulk resistivity and space charge density (Neff) of neutron irradiated silicon detectors and materials

    NASA Astrophysics Data System (ADS)

    Z., Li

    1996-02-01

    The bulk resistivity of neutron irradiated detector grade silicon material has been measured under the condition of no or low electrical filed (electrical neutral bulk or ENB condition) after elevated temperature (T = 110°C) anneals (ETA). The ENB resistivity (ρ) for as-irradiated silicon material increases with neutron fluence at low fluences (Φn > 1013 n/cm2). The saturation of the ENB resistivity near the intrinsic value can be explained by the near perfect compensation of all neutron induced deep donors and acceptors in the ENB. After ETA, it has been observed that ρ increases with annealing time for silicon materials irradiated below the saturation and decreases with annealing time for those irradiated after saturation. For those irradiated near the saturation point, ρ increases with annealing time initially and decreases thereafter. This ETA behavior of ρ may be explained by the increase of net acceptor-like deep levels in silicon during the anneal, qualitatively consistent with the observed reverse annealing effect of the space charge density (Neff) in silicon detectors which is an increase of negative space charge density (acceptors) after long term room temperature (RTA) anneal and/or ETA. However, the amount of the increase of net hole concentration (p) of about 5 × 1011 cm-3, corresponding to 20 hours of ETA at 110°C for a fluence of 1.5 × 1014 n/cm2, is still much less than the corresponding increase of Neff of about 1.5 × 1013 cm-3. This suggests that while the ETA restores some of the free carrier concentration (namely holes), there is still a large degree of compensation. The space charge density is still dominated by the deep levels and Neff ≠ p.

  16. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation

    SciTech Connect

    Dong, Xiao; Zhu, Zhen; Shao, Hezhu; Rong, Ximing; Zhuang, Jun; Li, Ning; Liang, Cong; Sun, Haibin; Zhao, Li; Feng, Guojin

    2014-03-03

    A supersaturation of nitrogen atoms is found in the surface layer of microstructured silicon after femtosecond (fs) laser irradiation in NF{sub 3}. The average nitrogen concentration in the uppermost 50 nm is about 0.5 ± 0.2 at. %, several orders of magnitude higher than the solid solubility of nitrogen atoms in silicon. The nitrogen-hyperdoped silicon shows high crystallinity in the doped layer, which is due to the repairing effect of nitrogen on defects in silicon lattices. Nitrogen atoms and vacancies can be combined into thermal stable complexes after fs laser irradiation, which makes the nitrogen-hyperdoped silicon exhibit good thermal stability of optical properties.

  17. Low-cost solar array project task 1: Silicon material. Gaseous melt replenishment system

    NASA Technical Reports Server (NTRS)

    Jewett, D. N.; Bates, H. E.; Hill, D. M.

    1980-01-01

    The operation of a silicon production technique was demonstrated. The essentials of the method comprise chemical vapor deposition of silicon, by hydrogen reduction of chlorosilanes, on the inside of a quartz reaction vessel having large internal surface area. The system was designed to allow successive deposition-melting cycles, with silicon removal being accomplished by discharging the molten silicon. The liquid product would be suitable for transfer to a crystal growth process, casting into solid form, or production of shots. A scaled-down prototype reactor demonstrated single pass conversion efficiency of 20 percent and deposition rates and energy consumption better than conventional Siemens reactors, via deposition rates of 365 microns/hr. and electrical consumption of 35 Kwhr/kg of silicon produced.

  18. Monodisperse Porous Silicon Spheres as Anode Materials for Lithium Ion Batteries

    PubMed Central

    Wang, Wei; Favors, Zachary; Ionescu, Robert; Ye, Rachel; Bay, Hamed Hosseini; Ozkan, Mihrimah; Ozkan, Cengiz S.

    2015-01-01

    Highly monodisperse porous silicon nanospheres (MPSSs) are synthesized via a simple and scalable hydrolysis process with subsequent surface-protected magnesiothermic reduction. The spherical nature of the MPSSs allows for a homogenous stress-strain distribution within the structure during lithiation and delithiation, which dramatically improves the electrochemical stability. To fully extract the real performance of the MPSSs, carbon nanotubes (CNTs) were added to enhance the electronic conductivity within the composite electrode structure, which has been verified to be an effective way to improve the rate and cycling performance of anodes based on nano-Si. The Li-ion battery (LIB) anodes based on MPSSs demonstrate a high reversible capacity of 3105 mAh g−1. In particular, reversible Li storage capacities above 1500 mAh g−1 were maintained after 500 cycles at a high rate of C/2. We believe this innovative approach for synthesizing porous Si-based LIB anode materials by using surface-protected magnesiothermic reduction can be readily applied to other types of SiOx nano/microstructures. PMID:25740298

  19. Passivation of nanocrystalline silicon photovoltaic materials employing a negative substrate bias.

    PubMed

    Wen, Chao; Xu, Hao; Liu, Hong; Li, Zhengping; Shen, Wenzhong

    2013-11-15

    Hydrogenated nanocrystalline silicon (nc-Si:H) shows great promise in the application of third-generation thin film photovoltaic cells. However, the mixed-phase structure of nc-Si:H leads to many defects existing in this important solar energy material. Here we present a new way to passivate nc-Si:H films by tuning the negative substrate bias in plasma-enhanced chemical vapor deposition. Microstructures of the nc-Si:H films prepared under a negative bias from 0 to -300 V have been characterized using Raman, x-ray diffraction, transmission electron microscope, and optical transmission techniques. A novel passivation effect on nc-Si:H films has been identified by the volume fraction of voids in nc-Si:H, together with the electrical properties obtained by electron spin resonance and effective minority lifetime measurements. The mechanism of the passivation effect has been demonstrated by infrared spectroscopy, which illustrates that the high-energy H atoms and ions accelerated by an appropriate bias of -180 V can form more hydrides along the grain boundaries and effectively prevent oxygen incursions forming further Si-O/Si interface dangling bonds in the nc-Si:H films. The detrimental influence of a bias over -180 V on the film quality due to the strong ion bombardment of species with excessively high energy has also been observed directly from the surface morphology by atomic force microscopy.

  20. Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution.

    PubMed

    Wen, Chao; Xu, Hao; He, Wei; Li, Zhengping; Shen, Wenzhong

    2014-01-01

    As a great promising material for third-generation thin-film photovoltaic cells, hydrogenated nanocrystalline silicon (nc-Si:H) thin films have a complex mixed-phase structure, which determines its defectful nature and easy residing of oxygen impurities. We have performed a detailed investigation on the microstructure properties and oxygen impurities in the nc-Si:H thin films prepared under different hydrogen dilution ratio treatment by the plasma-enhanced chemical vapor deposition (PECVD) process. X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and optical transmission spectroscopy have been utilized to fully characterize the microstructure properties of the nc-Si:H films. The oxygen and hydrogen contents have been obtained from infrared absorption spectroscopy. And the configuration state of oxygen impurities on the surface of the films has been confirmed by X-ray photoelectron spectroscopy, indicating that the films were well oxidized in the form of SiO2. The correlation between the hydrogen content and the volume fraction of grain boundaries derived from the Raman measurements shows that the majority of the incorporated hydrogen is localized inside the grain boundaries. Furthermore, with the detailed information on the bonding configurations acquired from the infrared absorption spectroscopy, a full explanation has been provided for the mechanism of the varying microstructure evolution and oxygen impurities based on the two models of ion bombardment effect and hydrogen-induced annealing effect.

  1. Fabrication of Silicon Nitride Dental Core Ceramics with Borosilicate Veneering material

    NASA Astrophysics Data System (ADS)

    Wananuruksawong, R.; Jinawath, S.; Padipatvuthikul, P.; Wasanapiarnpong, T.

    2011-10-01

    Silicon nitride (Si3N4) ceramic is a great candidate for clinical applications due to its high fracture toughness, strength, hardness and bio-inertness. This study has focused on the Si3N4 ceramic as a dental core material. The white Si3N4 was prepared by pressureless sintering at relative low sintering temperature of 1650 °C in nitrogen atmosphere. The coefficient of thermal expansion (CTE) of Si3N4 ceramic is lower than that of Zirconia and Alumina ceramic which are popular in this field. The borosilicate glass veneering was employed due to its compatibility in thermal expansion. The sintered Si3N4 specimens represented the synthetic dental core were paintbrush coated by a veneer paste composed of borosilicate glass powder (<150 micrometer, Pyrex) with 5 wt% of zirconia powder (3 wt% Y2O3 - partial stabilized zirconia) and 30 wt% of polyvinyl alcohol (5 wt% solution). After coating the veneer on the Si3N4 specimens, the firing was performed in electric tube furnace between 1000-1200°C. The veneered specimens fired at 1100°C for 15 mins show good bonding, smooth and glossy without defect and crazing. The veneer has thermal expansion coefficient as 3.98×10-6 °C-1, rather white and semi opaque, due to zirconia addition, the Vickers hardness as 4.0 GPa which is closely to the human teeth.

  2. Nickel/silicon core/shell nanosheet arrays as electrode materials for lithium ion batteries

    SciTech Connect

    Huang, X.H. Zhang, P.; Wu, J.B.; Lin, Y.; Guo, R.Q.

    2016-08-15

    Highlights: • Ni nanosheet arrays is the core and Si layer is the shell. • Ni nanosheet arrays act as a three-dimensional current collector to support Si. • Ni nanosheet arrays can improve the conductivity and stability of the electrode. • Ni/Si nanosheet arrays exhibit excellent cyclic and rate performance. - Abstract: Ni/Si core/shell nanosheet arrays are proposed to enhance the electrochemical lithium-storage properties of silicon. The arrays are characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The arrays are micro-sized in height, which are constructed by interconnected Ni nanosheet as the core and Si coating layer as the shell. The electrochemical properties as anode materials of lithium ion batteries are investigated by cyclic voltammetry (CV) and galvanostatic charge-discharge tests. The arrays can achieve high reversible capacity, good cycle stability and high rate capability. It is believed that the enhanced electrochemical performance is attributed to the electrode structure, because the interconnected Ni nanosheet can act as a three-dimensional current collector, and it has the ability of improving the electrode conductivity, enlarging the electrochemical reaction interface, and suppressing the electrode pulverization.

  3. Tuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution

    PubMed Central

    2014-01-01

    As a great promising material for third-generation thin-film photovoltaic cells, hydrogenated nanocrystalline silicon (nc-Si:H) thin films have a complex mixed-phase structure, which determines its defectful nature and easy residing of oxygen impurities. We have performed a detailed investigation on the microstructure properties and oxygen impurities in the nc-Si:H thin films prepared under different hydrogen dilution ratio treatment by the plasma-enhanced chemical vapor deposition (PECVD) process. X-ray diffraction, transmission electron microscopy, Raman spectroscopy, and optical transmission spectroscopy have been utilized to fully characterize the microstructure properties of the nc-Si:H films. The oxygen and hydrogen contents have been obtained from infrared absorption spectroscopy. And the configuration state of oxygen impurities on the surface of the films has been confirmed by X-ray photoelectron spectroscopy, indicating that the films were well oxidized in the form of SiO2. The correlation between the hydrogen content and the volume fraction of grain boundaries derived from the Raman measurements shows that the majority of the incorporated hydrogen is localized inside the grain boundaries. Furthermore, with the detailed information on the bonding configurations acquired from the infrared absorption spectroscopy, a full explanation has been provided for the mechanism of the varying microstructure evolution and oxygen impurities based on the two models of ion bombardment effect and hydrogen-induced annealing effect. PMID:24994958

  4. Solid Silicone Elastomer Material(DC745U)-Historical Overview and New Experimental Results

    SciTech Connect

    Ortiz-Acosta, Denisse

    2012-08-08

    DC745U is a silicone elastomer used in several weapon systems. DC745U is manufactured by Dow Corning and its formulation is proprietary. Risk changes without notification to the customer. {sup 1}H and {sup 29}Si{l_brace}{sup 1}H{r_brace} NMR have previously determined that DC745U contains {approx} 98.5% dimethyl siloxane, {approx}1.5% methyl-phenyl siloxane, and a small amount (<1%) of vinyl siloxane repeat units that are converted to crosslinking sites. The polymer is filled with {approx} 38 wt.% of a mixture of fumed silica and quartz. Some conclusions are: (1) DMA shows that crystallization does have an effect on the mechanical properties of DC745U; (2) DMA shows that the crystallization is time and temperature dependent; (3) Mechanical tests show that DC745U undergo a crystalline transition at temperatures below -50 C; (4) Rate and temperature does not have an effect above crystalline transition; (5) Crystalline transition occurs faster at colder temperatures; (6) The material remains responsive and recovers after warming it to temperature above -40 C; (7) We were able to review all previous historical data on DC745U; (8) Identified specific gaps in materials understanding; (9) Developed design of experiments and testing methods to address gaps associated with post-curing and low temperature mechanical behavior; (10) Resolved questions of post-cure and alleviated concerns associated with low temperature mechanical behavior with soak time and temperature; and (11) This work is relevant to mission-critical programs and for supporting programmatic work for weapon research.

  5. An integrated driving circuit implemented with p-type LTPS TFTs for AMOLED

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Qing; Wu, Chun-Ya; Hao, Da-Shou; Yao, Ying; Meng, Zhi-Guo; Xiong, Shao-Zhen

    2009-03-01

    Based on the technology of low temperature poly silicon thin film transistors (poly-Si-TFTs), a novel p-type TFT AMOLED panel with self-scanned driving circuit is introduced in this paper. A shift register formed with novel p-type TFTs is proposed to realize the gate driver. A flip-latch cooperated with the shift register is designed to conduct the data writing. In order to verify the validity of the proposed design, the circuits are simulated with SILVACO TCAD tools, using the MODEL in which the parameters of LTPS TFTs were extracted from the LTPS TFTs made in our lab. The simulation results indicate that the circuit can fulfill the driving function.

  6. Using the material point method to model chemical/mechanical coupling in the deformation of a silicon anode

    NASA Astrophysics Data System (ADS)

    Gritton, Chris; Guilkey, James; Hooper, Justin; Bedrov, Dmitry; Kirby, Robert M.; Berzins, Martin

    2017-06-01

    The lithiation and delithiation of a silicon battery anode is modeled using the material point method (MPM). The main challenges in modeling this process using the MPM is to simulate stress dependent diffusion coupled with concentration dependent stress within a material that undergoes large deformations. MPM is chosen as the numerical method of choice because of its ability to handle large deformations. A method for modeling diffusion within MPM is described. A stress dependent model for diffusivity and three different constitutive models that fully couple the equations for stress with the equations for diffusion are considered. Verifications tests for the accuracy of the numerical implementations of the models and validation tests with experimental results show the accuracy of the approach. The application of the fully coupled stress diffusion model implemented in MPM is applied to modeling the lithiation and delithiation of silicon nanopillars.

  7. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells

    PubMed Central

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-01-01

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics. PMID:24755642

  8. Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and silicon rubber materials.

    PubMed

    Braun, Ulrike; Lorenz, Edelgard; Weimann, Christiane; Sturm, Heinz; Karimov, Ilham; Ettl, Johannes; Meier, Reinhard; Wohlgemuth, Walter A; Berger, Hermann; Wildgruber, Moritz

    2016-12-01

    Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU) and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, whereas the samples after removal were compared according to the implanted time in patient. The macroscopic, mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was analysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure, especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture.

  9. Selective ultrathin carbon sheath on porous silicon nanowires: materials for extremely high energy density planar micro-supercapacitors.

    PubMed

    Alper, John P; Wang, Shuang; Rossi, Francesca; Salviati, Giancarlo; Yiu, Nicholas; Carraro, Carlo; Maboudian, Roya

    2014-01-01

    Microsupercapacitors are attractive energy storage devices for integration with autonomous microsensor networks due to their high-power capabilities and robust cycle lifetimes. Here, we demonstrate porous silicon nanowires synthesized via a lithography compatible low-temperature wet etch and encapsulated in an ultrathin graphitic carbon sheath, as electrochemical double layer capacitor electrodes. Specific capacitance values reaching 325 mF cm(-2) are achieved, representing the highest specific ECDL capacitance for planar microsupercapacitor electrode materials to date.

  10. Influence of Containment on the Growth of Silicon-Germanium: A Materials Science Flight Project

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2012-01-01

    This investigation involves the comparison of results achieved from three types of crystal growth of germanium and germanium-silicon alloys: (1) Float zone growth (2) Bridgman growth (3) Detached Bridgman growth crystal The fundamental goal of the proposed research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon (GeSi) crystals (silicon concentration in the solid up to 5 at%) for three different growth configurations in order to quantitatively assess the improvements of crystal quality possible by detached growth.

  11. New Flexible Silicone-Based EEG Dry Sensor Material Compositions Exhibiting Improvements in Lifespan, Conductivity, and Reliability

    PubMed Central

    Yu, Yi-Hsin; Chen, Shih-Hsun; Chang, Che-Lun; Lin, Chin-Teng; Hairston, W. David; Mrozek, Randy A.

    2016-01-01

    This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors’ construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications. PMID:27809260

  12. Development of high-energy silicon-based anode materials for lithium-ion storage

    NASA Astrophysics Data System (ADS)

    Yi, Ran

    The emerging markets of electric vehicles (EV) and hybrid electric vehicles (HEV) generate a tremendous demand for low-cost lithium-ion batteries (LIBs) with high energy and power densities, and long cycling life. The development of such LIBs requires development of low cost, high-energy-density cathode and anode materials. Conventional anode materials in commercial LIBs are primarily synthetic graphite-based materials with a capacity of ˜370 mAh/g. Improvements in anode performance, particularly in anode capacity, are essential to achieving high energy densities in LIBs for EV and HEV applications. This dissertation focuses on development of micro-sized silicon-carbon (Si-C) composites as anode materials for high energy and power densities LIBs. First, a new, low-cost, large-scale approach was developed to prepare a micro-sized Si-C composite with excellent performance as an anode material for LIBs. The composite shows a reversible capacity of 1459 mAh/g after 200 cycles at 1 A/g (97.8% capacity retention) and excellent high rate performance of 700 mAh/g at 12.8 A/g, and also has a high tap density of 0.78 g/cm3. The structure of the composite, micro-sized as a whole, features the interconnected nanoscale size of the Si building blocks and the uniform carbon filling, which enables the maximum utilization of silicon even when the micro-sized particles break into small pieces upon cycling. To understand the effects of key parameters in designing the micro-sized Si-C composites on their electrochemical performance and explore how to optimize them, the influence of Si nanoscale building block size and carbon coating on the electrochemical performance of the micro-sized Si-C composites were investigated. It has been found that the critical Si building block size is 15 nm, which enables a high capacity without compromising the cycling stability, and that carbon coating at higher temperature improves the 1st cycle coulombic efficiency (CE) and the rate capability

  13. Challenges in p-type Doping of CdTe

    NASA Astrophysics Data System (ADS)

    McCoy, Jedidiah; Swain, Santosh; Lynn, Kelvin

    We have made progress in defect identification of arsenic and phosphorous doped CdTe to understand the self-compensation mechanism which will help improve minority bulk carrier lifetime and net acceptor density. Combining previous measurements of un-doped CdTe, we performed a systematic comparison of defects between different types of crystals and confirmed the defects impacting the doping efficiency. CdTe bulk crystals have been grown via vertical Bridgman based melt growth technique with varying arsenic and phosphorous dopant schemes to attain p-type material. Furnace temperature profiles were varied to influence dopant solubility. Large carrier densities have been reproducibly obtained from these boules indicating successful incorporation of dopants into the lattice. However, these values are orders of magnitude lower than theoretical solubility values. Infrared Microscopy has revealed a plethora of geometrically abnormal second phase defects and X-ray Fluorescence has been used to identify the elemental composition of these defects. We believe that dopants become incorporated into these second phase defects as Cd compounds which act to inhibit dopant solubility in the lattice.

  14. Spin-Pump-Induced Spin Transport in p-Type Si at Room Temperature

    NASA Astrophysics Data System (ADS)

    Shikoh, Eiji; Ando, Kazuya; Kubo, Kazuki; Saitoh, Eiji; Shinjo, Teruya; Shiraishi, Masashi

    2013-03-01

    A spin battery concept is applied for the dynamical generation of pure spin current and spin transport in p-type silicon (p-Si). Ferromagnetic resonance and effective s-d coupling in Ni80Fe20 results in spin accumulation at the Ni80Fe20/p-Si interface, inducing spin injection and the generation of spin current in the p-Si. The pure spin current is converted to a charge current by the inverse spin Hall effect of Pd evaporated onto the p-Si. This approach demonstrates the generation and transport of pure spin current in p-Si at room temperature.

  15. Fabrication and morphology of porous p-type SiC

    NASA Astrophysics Data System (ADS)

    Shishkin, Y.; Ke, Y.; Devaty, R. P.; Choyke, W. J.

    2005-02-01

    Porous silicon carbide fabricated from p-type 4H and 6H SiC wafers by electrochemical etching in hydrofluoric electrolyte is studied. An investigation of the dependence on wafer polarity reveals that pore formation is favored on the C face while complete dissolution occurs on the Si face. When the etching is done on the C face, the pore wall thickness decreases with increasing current density. The morphology of the front surface of the sample depends on the prior treatment of the workpiece surface. The porosity is estimated based on the analysis of scanning electron microscope images, charge-transfer calculations, and gravimetric analysis.

  16. Spin-pump-induced spin transport in p-type Si at room temperature.

    PubMed

    Shikoh, Eiji; Ando, Kazuya; Kubo, Kazuki; Saitoh, Eiji; Shinjo, Teruya; Shiraishi, Masashi

    2013-03-22

    A spin battery concept is applied for the dynamical generation of pure spin current and spin transport in p-type silicon (p-Si). Ferromagnetic resonance and effective s-d coupling in Ni(80)Fe(20) results in spin accumulation at the Ni(80)Fe(20)/p-Si interface, inducing spin injection and the generation of spin current in the p-Si. The pure spin current is converted to a charge current by the inverse spin Hall effect of Pd evaporated onto the p-Si. This approach demonstrates the generation and transport of pure spin current in p-Si at room temperature.

  17. Si-C linked oligo(ethylene glycol) layers in silicon-based photonic crystals: optimization for implantable optical materials.

    PubMed

    Kilian, Kristopher A; Böcking, Till; Gaus, Katharina; Gal, Michael; Gooding, J Justin

    2007-07-01

    Porous silicon has shown potential for various applications in biology and medicine, which require that the material (1) remain stable for the length of the intended application and (2) resist non-specific adsorption of proteins. Here we explore the efficacy of short oligo(ethylene glycol) moieties incorporated into organic layers via two separate strategies in achieving these aims. In the first strategy the porous silicon structure was modified in a single step via hydrosilylation of alpha-oligo(ethylene glycol)-omega-alkenes containing three or six ethylene glycol units. The second strategy employs two steps: (1) hydrosilylation of succinimidyl-10-undecenoate and (2) coupling of an amino hexa(ethylene glycol) species. The porous silicon photonic crystals modified by the two-step strategy displayed greater stability relative to the single step procedure when exposed to conditions of physiological temperature and pH. Both strategies produced layers that resist non-specific adsorption of proteins as determined with fluorescently labelled bovine serum albumin. The antifouling behaviour and greater stability to physiological conditions provided by this chemistry enhances the suitability of porous silicon for biomaterials applications.

  18. Carbon, oxygen and their interaction with intrinsic point defects in solar silicon ribbon material: A speculative approach

    NASA Technical Reports Server (NTRS)

    Goesele, U.; Ast, D. G.

    1983-01-01

    Some background information on intrinsic point defects is provided and on carbon and oxygen in silicon in so far as it may be relevant for the efficiency of solar cells fabricated from EFG ribbon material. The co-precipitation of carbon and oxygen and especially of carbon and silicon self interstitials are discussed. A simple model for the electrical activity of carbon-self-interstitial agglomerates is presented. The self-interstitial content of these agglomerates is assumed to determine their electrical activity and that both compressive stresses (high self-interstitial content) and tensile stresses (low self-interstitial content) give rise to electrical activity of the agglomerates. The self-interstitial content of these carbon-related agglomerates may be reduced by an appropriate high temperature treatment and enhanced by a supersaturation of self-interstitials generated during formation of the p-n junction of solar cells. Oxygen present in supersaturation in carbon-rich silicon may be induced to form SiO, precipitates by self-interstitials generated during phosphorus diffusion. It is proposed that the SiO2-Si interface of the precipates gives rise to a continuum of donor stables and that these interface states are responsible for at least part of the light inhancement effects observed in oxygen containing EFG silicon after phosphorus diffusion.

  19. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    DOEpatents

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  20. Low cost solar array project. Task 1: Silicon material, gaseous melt replenishment system

    NASA Technical Reports Server (NTRS)

    Jewett, D. N.; Bates, H. E.; Hill, D. M.

    1979-01-01

    A system to combine silicon formation, by hydrogen reduction of trichlorosilane, with the capability to replenish a crystal growth system is described. A variety of process parameters to allow sizing and specification of gas handling system components was estimated.