Science.gov

Sample records for p2 purinergic receptores

  1. Purinergic signaling in inflammatory cells: P2 receptor expression, functional effects, and modulation of inflammatory responses.

    PubMed

    Jacob, Fenila; Pérez Novo, Claudina; Bachert, Claus; Van Crombruggen, Koen

    2013-09-01

    Extracellular ATP and related nucleotides promote a wide range of pathophysiological responses via activation of cell surface purinergic P2 receptors. Almost every cell type expresses P2 receptors and/or exhibit regulated release of ATP. In this review, we focus on the purinergic receptor distribution in inflammatory cells and their implication in diverse immune responses by providing an overview of the current knowledge in the literature related to purinergic signaling in neutrophils, macrophages, dendritic cells, lymphocytes, eosinophils, and mast cells. The pathophysiological role of purinergic signaling in these cells include among others calcium mobilization, actin polymerization, chemotaxis, release of mediators, cell maturation, cytotoxicity, and cell death. We finally discuss the therapeutic potential of P2 receptor subtype selective drugs in inflammatory conditions.

  2. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  3. Purinergic receptor P2X₇: a novel target for anti-inflammatory therapy.

    PubMed

    Mehta, Nisha; Kaur, Maninder; Singh, Manjinder; Chand, Sukhvir; Vyas, Bhawna; Silakari, Pragati; Bahia, Malkeet Singh; Silakari, Om

    2014-01-01

    Purinergic receptors, also known as purinoceptors, are ligand gated membrane ion channels involved in many cellular functions. Among all identified purinergic receptors, P2X₇ subform is unique since it induces the caspase activity, cytokine secretion, and apoptosis. The distribution of P2X₇ receptors, and the need of high concentration of ATP required to activate this receptor exhibited its ability to function as 'danger' sensor associated with tissue inflammation and damage. Further, the modulation of other signalling pathways associated with P2X₇ has also been proposed to play an important role in the control of macrophage functions and inflammatory responses, especially towards lipopolysaccharides. Experimentally, researchers have also observed the decreased severity of inflammatory responses in P2X₇ receptor expressing gene (P2RX₇) knockout (KO) phenotypes. Therefore, newly developed potent antagonists of P2X₇ receptor would serve as novel therapeutic agents to combat various inflammatory conditions. In this review article, we tried to explore various aspects of P2X₇ receptors including therapeutic potential, and recent discoveries and developments of P2X₇ receptor antagonists.

  4. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection.

    PubMed

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M; Piacentini, Mauro; Gougeon, Marie-Lise; Kroemer, Guido; Perfettini, Jean-Luc

    2011-08-29

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches.

  5. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection

    PubMed Central

    Séror, Claire; Melki, Marie-Thérèse; Subra, Frédéric; Raza, Syed Qasim; Bras, Marlène; Saïdi, Héla; Nardacci, Roberta; Voisin, Laurent; Paoletti, Audrey; Law, Frédéric; Martins, Isabelle; Amendola, Alessandra; Abdul-Sater, Ali A.; Ciccosanti, Fabiola; Delelis, Olivier; Niedergang, Florence; Thierry, Sylvain; Said-Sadier, Najwane; Lamaze, Christophe; Métivier, Didier; Estaquier, Jérome; Fimia, Gian Maria; Falasca, Laura; Casetti, Rita; Modjtahedi, Nazanine; Kanellopoulos, Jean; Mouscadet, Jean-François; Ojcius, David M.; Piacentini, Mauro; Gougeon, Marie-Lise

    2011-01-01

    Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors. Inhibition of any of the constituents of this cascade (pannexin-1, ATP, P2Y2, and Pyk2) impairs the replication of HIV-1 mutant viruses that are resistant to conventional antiretroviral agents. Altogether, our results reveal a novel signaling pathway involved in the early steps of HIV-1 infection that may be targeted with new therapeutic approaches. PMID:21859844

  6. Expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in equine laminitis.

    PubMed

    Zamboulis, Danae E; Senior, Mark; Clegg, Peter D; Milner, Peter I

    2013-11-01

    Tissue sensitisation and chronic pain have been described in chronic-active laminitis in the horse, making treatment of such cases difficult. Purinergic P2X receptors are linked to chronic pain and inflammation. The aim of this study was to examine the expression of purinergic P2X receptor subtypes 1, 2, 3 and 7 in the hoof, palmar digital vessels and nerve, dorsal root ganglia and spinal cord in horses with chronic-active laminitis (n=5) compared to non-laminitic horses (n=5). Immunohistochemical analysis was performed on tissue sections using antibodies against P2X receptor subtypes 1-3 and 7. In horses with laminitis, there was a reduction in the thickness of the tunica media layer of the palmar digital vein as a proportion of the whole vessel diameter (0.48±0.05) compared to the non-laminitic group (0.57±0.04; P=0.02). P2X receptor subtype 3 was expressed in the smooth muscle layer (tunica media) of the palmar digital artery of horses with laminitis, but was absent in horses without laminitis. There was strong expression of P2X receptor subtype 7 in the proliferating, partially keratinised, epidermal cells of the secondary epidermal lamellae in the hooves of horses with laminitis, but no immunopositivity in horses without laminitis.

  7. P2Y2 purinergic receptor activation is essential for efficient hepatocyte proliferation in response to partial hepatectomy

    PubMed Central

    Tackett, Bryan C.; Sun, Hongdan; Mei, Yu; Maynard, Janielle P.; Cheruvu, Sayuri; Mani, Arunmani; Hernandez-Garcia, Andres; Vigneswaran, Nadarajah; Karpen, Saul J.

    2014-01-01

    Extracellular nucleotides via activation of P2 purinergic receptors influence hepatocyte proliferation and liver regeneration in response to 70% partial hepatectomy (PH). Adult hepatocytes express multiple P2Y (G protein-coupled) and P2X (ligand-gated ion channels) purinergic receptor subtypes. However, the identity of key receptor subtype(s) important for efficient hepatocyte proliferation in regenerating livers remains unknown. To evaluate the impact of P2Y2 purinergic receptor-mediated signaling on hepatocyte proliferation in regenerating livers, wild-type (WT) and P2Y2 purinergic receptor knockout (P2Y2−/−) mice were subjected to 70% PH. Liver tissues were analyzed for activation of early events critical for hepatocyte priming and subsequent cell cycle progression. Our findings suggest that early activation of p42/44 ERK MAPK (5 min), early growth response-1 (Egr-1) and activator protein-1 (AP-1) DNA-binding activity (30 min), and subsequent hepatocyte proliferation (24–72 h) in response to 70% PH were impaired in P2Y2−/− mice. Interestingly, early induction of cytokines (TNF-α, IL-6) and cytokine-mediated signaling (NF-κB, STAT-3) were intact in P2Y2−/− remnant livers, uncovering the importance of cytokine-independent and nucleotide-dependent early priming events critical for subsequent hepatocyte proliferation in regenerating livers. Hepatocytes isolated from the WT and P2Y2−/− mice were treated with ATP or ATPγS for 5–120 min and 12–24 h. Extracellular ATP alone, via activation of P2Y2 purinergic receptors, was sufficient to induce ERK phosphorylation, Egr-1 protein expression, and key cyclins and cell cycle progression of hepatocytes in vitro. Collectively, these findings highlight the functional significance of P2Y2 purinergic receptor activation for efficient hepatocyte priming and proliferation in response to PH. PMID:25301185

  8. Human neutrophils do not express purinergic P2X7 receptors

    PubMed Central

    Martel-Gallegos, Guadalupe; Rosales-Saavedra, María T.; Reyes, Juan P.; Casas-Pruneda, Griselda; Toro-Castillo, Carmen; Pérez-Cornejo, Patricia

    2010-01-01

    It has been reported that in human neutrophils, external ATP activates plasma membrane purinergic P2X7 receptors (P2X7R) to elicit Ca2+ entry, production of reactive oxygen species (ROS), processing and release of pro-inflammatory cytokines, shedding of adhesion molecules and uptake of large molecules. However, the expression of P2X7R at the plasma membrane of neutrophils has also been questioned since these putative responses are not always reproduced. In this work, we used electrophysiological recordings to measure functional responses associated with the activation of membrane receptors, spectrofluorometric measurements of ROS production and ethidium bromide uptake to asses coupling of P2X7R activation to downstream effectors, immune-labelling of P2X7R using a fluorescein isothiocyanate-conjugated antibody to detect the receptors at the plasma membrane, RT-PCR to determine mRNA expression of P2X7R and Western blot to determine protein expression in neutrophils and HL-60 cells. None of these assays reported the presence of P2X7R in the plasma membrane of neutrophils and non-differentiated or differentiated HL-60 cells—a model cell for human neutrophils. We concluded that P2X7R are not present at plasma membrane of human neutrophils and that the putative physiological responses triggered by external ATP should be reconsidered. PMID:21103213

  9. Purinergic P2X receptors: structural models and analysis of ligand-target interaction.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria

    2015-01-07

    The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists.

  10. Purinergic P2Y12 Receptor Activation in Eosinophils and the Schistosomal Host Response.

    PubMed

    Muniz, Valdirene S; Baptista-Dos-Reis, Renata; Benjamim, Claudia F; Mata-Santos, Hilton A; Pyrrho, Alexandre S; Strauch, Marcelo A; Melo, Paulo A; Vicentino, Amanda R R; Silva-Paiva, Juliana; Bandeira-Melo, Christianne; Weller, Peter F; Figueiredo, Rodrigo T; Neves, Josiane S

    2015-01-01

    Identifying new target molecules through which eosinophils secrete their stored proteins may reveal new therapeutic approaches for the control of eosinophilic disorders such as host immune responses to parasites. We have recently reported the expression of the purinergic P2Y12 receptor (P2Y12R) in human eosinophils; however, its functional role in this cell type and its involvement in eosinophilic inflammation remain unknown. Here, we investigated functional roles of P2Y12R in isolated human eosinophils and in a murine model of eosinophilic inflammation induced by Schistosoma mansoni (S. mansoni) infection. We found that adenosine 5'-diphosphate (ADP) induced human eosinophils to secrete eosinophil peroxidase (EPO) in a P2Y12R dependent manner. However, ADP did not interfere with human eosinophil apoptosis or chemotaxis in vitro. In vivo, C57Bl/6 mice were infected with cercariae of the Belo Horizonte strain of S. mansoni. Analyses performed 55 days post infection revealed that P2Y12R blockade reduced the granulomatous hepatic area and the eosinophilic infiltrate, collagen deposition and IL-13/IL-4 production in the liver without affecting the parasite oviposition. As found for humans, murine eosinophils also express the P2Y12R. P2Y12R inhibition increased blood eosinophilia, whereas it decreased the bone marrow eosinophil count. Our results suggest that P2Y12R has an important role in eosinophil EPO secretion and in establishing the inflammatory response in the course of a S. mansoni infection.

  11. Purinergic P2X7 receptor regulates lung surfactant secretion in a paracrine manner

    PubMed Central

    Mishra, Amarjit; Chintagari, Narendranath Reddy; Guo, Yujie; Weng, Tingting; Su, Lijing; Liu, Lin

    2011-01-01

    Alveolar epithelium is composed of alveolar epithelial cells of type I (AEC I) and type II (AEC II). AEC II secrete lung surfactant by means of exocytosis. P2X7 receptor (P2X7R), a P2 purinergic receptor, has been implicated in the regulation of synaptic transmission and inflammation. Here, we report that P2X7R, which is expressed in AEC I but not AEC II, is a novel mediator for the paracrine regulation of surfactant secretion in AEC II. In primary co-cultures of AEC I and AEC II benzoyl ATP (BzATP; an agonist of P2X7R) increased surfactant secretion, which was blocked by the P2X7R antagonist Brilliant Blue G. This effect was observed in AEC II co-cultured with human embryonic kidney HEK-293 cells stably expressing rat P2X7R, but not when co-cultured with AEC I in which P2X7R was knocked down or in co-cultures of AEC I and AEC II isolated from P2X7R−/− mice. BzATP-mediated secretion involved P2Y2 receptor signaling because it was reduced by the addition of the ATP scavengers apyrase and adenosine deaminase and the P2Y2 receptor antagonist suramin. However, the stimulation with BzATP might also release other substances that potentially increase surfactant secretion as a greater stimulation of secretion was observed in AEC II incubated with BzATP when co-cultured with E10 or HEK-293-P2X7R cells than with ATP alone. P2X7R−/− mice failed to increase surfactant secretion in response to hyperventilation, pointing to the physiological relevance of P2X7R in maintaining surfactant homeostasis in the lung. These results suggest that the activation of P2X7R increases surfactant secretion by releasing ATP from AEC I and subsequently stimulating P2Y2 receptors in AEC II. PMID:21266468

  12. Role of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors.

    PubMed

    Khoja, Sheraz; Shah, Vivek; Garcia, Damaris; Asatryan, Liana; Jakowec, Michael W; Davies, Daryl L

    2016-10-01

    Purinergic P2X4 receptors (P2X4Rs) belong to the P2X superfamily of ion channels regulated by ATP. We recently demonstrated that P2X4R knockout (KO) mice exhibited deficits in sensorimotor gating, social interaction, and ethanol drinking behavior. Dopamine (DA) dysfunction may underlie these behavioral changes, but there is no direct evidence for P2X4Rs' role in DA neurotransmission. To test this hypothesis, we measured markers of DA function and dependent behaviors in P2X4R KO mice. P2X4R KO mice exhibited altered density of pre-synaptic markers including tyrosine hydroxylase, dopamine transporter; post-synaptic markers including dopamine receptors and phosphorylation of downstream targets including dopamine and cyclic-AMP regulated phosphoprotein of 32 kDa and cyclic-AMP-response element binding protein in different parts of the striatum. Ivermectin, an allosteric modulator of P2X4Rs, significantly affected dopamine and cyclic AMP regulated phosphoprotein of 32 kDa and extracellular regulated kinase1/2 phosphorylation in the striatum. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Using the 6-hydroxydopamine model of DA depletion, P2X4R KO mice exhibited an attenuated levodopa (L-DOPA)-induced motor behavior, whereas ivermectin enhanced this behavior. Collectively, these findings identified an important role for P2X4Rs in maintaining DA homeostasis and illustrate how this association is important for CNS functions including motor control and sensorimotor gating. We propose that P2X4 receptors (P2X4Rs) regulate dopamine (DA) homeostasis and associated behaviors. Pre-synaptic and post-synaptic DA markers were significantly altered in the dorsal and ventral striatum of P2X4R KO mice, implicating altered DA neurotransmission. Sensorimotor gating deficits in P2X4R KO mice were rescued by DA antagonists. Ivermectin (IVM), a positive modulator of P2X4Rs, enhanced levodopa (L-DOPA)-induced motor behavior. These studies highlight potential

  13. P2Y purinergic receptor regulation of CFTR chloride channels in mouse cardiac myocytes.

    PubMed

    Yamamoto-Mizuma, Shintaro; Wang, Ge-Xin; Hume, Joseph R

    2004-05-01

    The intracellular signalling pathways and molecular mechanisms responsible for P2-purinoceptor-mediated chloride (Cl(-)) currents (I(Cl,ATP)) were studied in mouse ventricular myocytes. In standard NaCl-containing extracellular solutions, extracellular ATP (100 microm) activated two different currents, I(Cl,ATP) with a linear I-V relationship in symmetrical Cl(-) solutions, and an inwardly rectifying cation conductance (cationic I(ATP)). Cationic I(ATP) was selectively inhibited by Gd(3+) and Zn(2+), or by replacement of extracellular NaCl by NMDG; I(Cl,ATP) was Cl(-) selective, and inhibited by replacement of extracellular Cl(-) by Asp(-); both currents were prevented by suramin or DIDS pretreatment. In GTPgammaS-loaded cells, I(Cl,ATP) was irreversibly activated by ATP, but cationic I(ATP) was still regulated reversibly. GDPbetaS prevented activation of the I(Cl,ATP,) even though pertussis toxin pretreatment did not modulate I(Cl,ATP). These results suggest that activation of I(Cl,ATP) occurs via a G-protein coupled P2Y purinergic receptor. The I(Cl,ATP) persistently activated by GTPgammaS, was inhibited by glibenclamide but not by DIDS, thus exhibiting known pharmacological properties of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels. In ventricular cells of cftr(-/-) mice, extracellular ATP activated cationic I(ATP), but failed to activate any detectable I(Cl,ATP). These results provide compelling evidence that activation of CFTR Cl(-) channels in mouse heart are coupled to G-protein coupled P2Y purinergic receptors.

  14. The purinergic P2Y14 receptor axis is a molecular determinant for organism survival under in utero radiation toxicity.

    PubMed

    Kook, S H; Cho, J S; Morrison, A; Wiener, E; Lee, S B; Scadden, D; Lee, B-C

    2013-07-04

    In utero exposure of the embryo and fetus to radiation has been implicated in malformations or fetal death, and often produces lifelong health consequences such as cancers and mental retardation. Here we demonstrate that deletion of a G-protein-coupled purinergic receptor, P2Y14, confers potent resistance to in utero radiation. Intriguingly, a putative P2Y14 receptor ligand, UDP-glucose, phenocopies the effect of P2Y14 deficiency. These data indicate that P2Y14 is a receptor governing in utero tolerance to genotoxic stress that may be pharmacologically targeted to mitigate radiation toxicity in pregnancy.

  15. Evidence for associations between the purinergic receptor P2X7 (P2RX7) and toxoplasmosis

    PubMed Central

    Jamieson, Sarra E.; Peixoto-Rangel, Alba L.; Hargrave, Aubrey C.; de Roubaix, Lee-Anne; Mui, Ernest J.; Boulter, Nicola R.; Miller, E. Nancy; Fuller, Stephen J.; Wiley, James S.; Castellucci, Léa; Boyer, Kenneth; Peixe, Ricardo Guerra; Kirisits, Michael J.; de Souza Elias, Liliani; Coyne, Jessica J.; Correa-Oliveira, Rodrigo; Sautter, Mari; Smith, Nicholas C.; Lees, Michael P.; Swisher, Charles N.; Heydemann, Peter; Noble, A. Gwendolyn; Patel, Dushyant; Bardo, Dianna; Burrowes, Delilah; McLone, David; Roizen, Nancy; Withers, Shawn; Bahia-Oliveira, Lílian M. G.; McLeod, Rima; Blackwell, Jenefer M.

    2010-01-01

    Congenital Toxoplasma gondii infection can result in intracranial calcification, hydrocephalus, and retinochoroiditis. Acquired infection is commonly associated with ocular disease. Pathology is characterized by strong pro-inflammatory responses. Ligation of ATP by purinergic receptor P2X7, encoded by P2RX7, stimulates pro-inflammatory cytokines and can lead directly to killing of intracellular pathogens. To determine whether P2X7 plays a role in susceptibility to congenital toxoplasmosis, we examined polymorphisms at P2RX7 in 149 child/parent trios from North America. We found association (FBAT Z scores ±2.429; P= 0.015) between the derived C(+)G(−) allele (f= 0.68; OR= 2.06; 95% CI: 1.14–3.75) at SNP rs1718119 (1068T>C; Thr-348-Ala), and a second synonymous variant rs1621388 in linkage disequilibrium with it, and clinical signs of disease per se. Analysis of clinical sub-groups showed no association with hydrocephalus, with effect sizes for associations with retinal disease and brain calcifications enhanced (OR=3.0 to 4.25; 0.004

  16. Activation of purinergic receptors (P2) in the renal medulla promotes endothelin-dependent natriuresis in male rats.

    PubMed

    Gohar, Eman Y; Speed, Joshua S; Kasztan, Malgorzata; Jin, Chunhua; Pollock, David M

    2016-08-01

    Renal endothelin-1 (ET-1) and purinergic signaling systems regulate Na(+) reabsorption in the renal medulla. A link between the renal ET-1 and purinergic systems was demonstrated in vitro, however, the in vivo interaction between these systems has not been defined. To test whether renal medullary activation of purinergic (P2) receptors promotes ET-dependent natriuresis, we determined the effect of increased medullary NaCl loading on Na(+) excretion and inner medullary ET-1 mRNA expression in anesthetized adult male Sprague-Dawley rats in the presence and absence of purinergic receptor antagonism. Isosmotic saline (NaCl; 284 mosmol/kgH2O) was infused into the medullary interstitium (500 μl/h) during a 30-min baseline urine collection period, followed by isosmotic or hyperosmotic saline (1,800 mosmol/kgH2O) for two further 30-min urine collection periods. Na(+) excretion was significantly increased during intramedullary infusion of hyperosmotic saline. Compared with isosmotic saline, hyperosmotic saline infused into the renal medulla caused significant increases in inner medullary ET-1 mRNA expression. Renal intramedullary infusion of the P2 receptor antagonist suramin inhibited the increase in Na(+) excretion and inner medullary ET-1 mRNA expression induced by NaCl loading in the renal medulla. Activation of medullary P2Y2/4 receptors by infusion of UTP increased urinary Na(+) excretion. Combined ETA and ETB receptor blockade abolished the natriuretic response to intramedullary infusion of UTP. These data demonstrate that activation of medullary P2 receptors promotes ET-dependent natriuresis in male rats, suggesting that the renal ET-1 and purinergic signaling systems interact to efficiently facilitate excretion of a NaCl load.

  17. Distribution of purinergic P2X receptors in the equine digit, cervical spinal cord and dorsal root ganglia.

    PubMed

    Zamboulis, D E; Senior, J M; Clegg, P D; Gallagher, J A; Carter, S D; Milner, P I

    2013-09-01

    Purinergic pathways are considered important in pain transmission, and P2X receptors are a key part of this system which has received little attention in the horse. The aim of this study was to identify and characterise the distribution of P2X receptor subtypes in the equine digit and associated vasculature and nervous tissue, including peripheral nerves, dorsal root ganglia and cervical spinal cord, using PCR, Western blot analysis and immunohistochemistry. mRNA signal for most of the tested P2X receptor subunits (P2X1-5, 7) was detected in all sampled equine tissues, whereas P2X6 receptor subunit was predominantly expressed in the dorsal root ganglia and spinal cord. Western blot analysis validated the specificity of P2X1-3, 7 antibodies, and these were used in immunohistochemistry studies. P2X1-3, 7 receptor subunits were found in smooth muscle cells in the palmar digital artery and vein with the exception of the P2X3 subunit that was present only in the vein. However, endothelial cells in the palmar digital artery and vein were positive only for P2X2 and P2X3 receptor subunits. Neurons and nerve fibres in the peripheral and central nervous system were positive for P2X1-3 receptor subunits, whereas glial cells were positive for P2X7 and P2X1 and 2 receptor subunits. This previously unreported distribution of P2X subtypes may suggest important tissue specific roles in physiological and pathological processes.

  18. Activation of P2X7 and P2Y11 purinergic receptors inhibits migration and normalizes tumor-derived endothelial cells via cAMP signaling

    PubMed Central

    Avanzato, D.; Genova, T.; Fiorio Pla, A.; Bernardini, M.; Bianco, S.; Bussolati, B.; Mancardi, D.; Giraudo, E.; Maione, F.; Cassoni, P.; Castellano, I.; Munaron, L.

    2016-01-01

    Purinergic signaling is involved in inflammation and cancer. Extracellular ATP accumulates in tumor interstitium, reaching hundreds micromolar concentrations, but its functional role on tumor vasculature and endothelium is unknown. Here we show that high ATP doses (>20 μM) strongly inhibit migration of endothelial cells from human breast carcinoma (BTEC), but not of normal human microvascular EC. Lower doses (1–10 mm result ineffective. The anti-migratory activity is associated with cytoskeleton remodeling and is significantly prevented by hypoxia. Pharmacological and molecular evidences suggest a major role for P2X7R and P2Y11R in ATP-mediated inhibition of TEC migration: selective activation of these purinergic receptors by BzATP mimics the anti-migratory effect of ATP, which is in turn impaired by their pharmacological or molecular silencing. Downstream pathway includes calcium-dependent Adenilyl Cyclase 10 (AC10) recruitment, cAMP release and EPAC-1 activation. Notably, high ATP enhances TEC-mediated attraction of human pericytes, leading to a decrease of endothelial permeability, a hallmark of vessel normalization. Finally, we provide the first evidence of in vivo P2X7R expression in blood vessels of murine and human breast carcinoma. In conclusion, we have identified a purinergic pathway selectively acting as an antiangiogenic and normalizing signal for human tumor-derived vascular endothelium. PMID:27586846

  19. Double P2X2/P2X3 Purinergic Receptor Knockout Mice Do Not Taste NaCl or the Artificial Sweetener SC45647

    PubMed Central

    Eddy, Meghan C.; Eschle, Benjamin K.; Barrows, Jennell; Hallock, Robert M.; Finger, Thomas E.

    2009-01-01

    The P2X ionotropic purinergic receptors, P2X2 and P2X3, are essential for transmission of taste information from taste buds to the gustatory nerves. Mice lacking both P2X2 and P2X3 purinergic receptors (P2X2/P2X3Dbl−/−) exhibit no taste-evoked activity in the chorda tympani and glossopharyngeal nerves when stimulated with taste stimuli from any of the 5 classical taste quality groups (salt, sweet, sour, bitter, and umami) nor do the mice show taste preferences for sweet or umami, or avoidance of bitter substances (Finger et al. 2005. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 310[5753]:1495–1499). Here, we compare the ability of P2X2/P2X3Dbl−/− mice and P2X2/P2X3Dbl+/+ wild-type (WT) mice to detect NaCl in brief-access tests and conditioned aversion paradigms. Brief-access testing with NaCl revealed that whereas WT mice decrease licking at 300 mM and above, the P2X2/P2X3Dbl−/− mice do not show any change in lick rates. In conditioned aversion tests, P2X2/P2X3Dbl−/− mice did not develop a learned aversion to NaCl or the artificial sweetener SC45647, both of which are easily avoided by conditioned WT mice. The inability of P2X2/P2X3Dbl−/− mice to show avoidance of these taste stimuli was not due to an inability to learn the task because both WT and P2X2/P2X3Dbl−/− mice learned to avoid a combination of SC45647 and amyl acetate (an odor cue). These data suggest that P2X2/P2X3Dbl−/− mice are unable to respond to NaCl or SC45647 as taste stimuli, mirroring the lack of gustatory nerve responses to these substances. PMID:19833661

  20. Ionotropic P2X ATP Receptor Channels Mediate Purinergic Signaling in Mouse Odontoblasts

    PubMed Central

    Shiozaki, Yuta; Sato, Masaki; Kimura, Maki; Sato, Toru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2017-01-01

    ATP modulates various functions in the dental pulp cells, such as intercellular communication and neurotransmission between odontoblasts and neurons, proliferation of dental pulp cells, and odontoblast differentiation. However, functional expression patterns and their biophysical properties of ionotropic ATP (P2X) receptors (P2X1–P2X7) in odontoblasts were still unclear. We examined these properties of P2X receptors in mouse odontoblasts by patch-clamp recordings. K+-ATP, nonselective P2X receptor agonist, induced inward currents in odontoblasts in a concentration-dependent manner. K+-ATP-induced currents were inhibited by P2X4 and P2X7 selective inhibitors (5-BDBD and KN62, respectively), while P2X1 and P2X3 inhibitors had no effects. P2X7 selective agonist (BzATP) induced inward currents dose-dependently. We could not observe P2X1, 2/3, 3 selective agonist (αβ-MeATP) induced currents. Amplitudes of K+-ATP-induced current were increased in solution without extracellular Ca2+, but decreased in Na+-free extracellular solution. In the absence of both of extracellular Na+ and Ca2+, K+-ATP-induced currents were completely abolished. K+-ATP-induced Na+ currents were inhibited by P2X7 inhibitor, while the Ca2+ currents were sensitive to P2X4 inhibitor. These results indicated that odontoblasts functionally expressed P2X4 and P2X7 receptors, which might play an important role in detecting extracellular ATP following local dental pulp injury. PMID:28163685

  1. Conductance of P2X4 purinergic receptor is determined by conformational equilibrium in the transmembrane region

    PubMed Central

    Minato, Yuichi; Suzuki, Shiho; Hara, Tomoaki; Kofuku, Yutaka; Kasuya, Go; Fujiwara, Yuichiro; Igarashi, Shunsuke; Suzuki, Ei-ichiro; Nureki, Osamu; Hattori, Motoyuki; Ueda, Takumi; Shimada, Ichio

    2016-01-01

    Ligand-gated ion channels are partially activated by their ligands, resulting in currents lower than the currents evoked by the physiological full agonists. In the case of P2X purinergic receptors, a cation-selective pore in the transmembrane region expands upon ATP binding to the extracellular ATP-binding site, and the currents evoked by α,β-methylene ATP are lower than the currents evoked by ATP. However, the mechanism underlying the partial activation of the P2X receptors is unknown although the crystal structures of zebrafish P2X4 receptor in the apo and ATP-bound states are available. Here, we observed the NMR signals from M339 and M351, which were introduced in the transmembrane region, and the endogenous alanine and methionine residues of the zebrafish P2X4 purinergic receptor in the apo, ATP-bound, and α,β-methylene ATP-bound states. Our NMR analyses revealed that, in the α,β-methylene ATP-bound state, M339, M351, and the residues that connect the ATP-binding site and the transmembrane region, M325 and A330, exist in conformational equilibrium between closed and open conformations, with slower exchange rates than the chemical shift difference (<100 s−1), suggesting that the small population of the open conformation causes the partial activation in this state. Our NMR analyses also revealed that the transmembrane region adopts the open conformation in the state bound to the inhibitor trinitrophenyl-ATP, and thus the antagonism is due to the closure of ion pathways, except for the pore in the transmembrane region: i.e., the lateral cation access in the extracellular region. PMID:27071117

  2. Modulation of bladder afferent signals in normal and spinal cord-injured rats by purinergic P2X3 and P2X2/3 receptors

    PubMed Central

    Munoz, Alvaro; Somogyi, George T.; Boone, Timothy B.; Ford, Anthony P.; Smith, Christopher P.

    2015-01-01

    OBJECTIVE • To evaluate the role of bladder sensory purinergic P2X3 and P2X2/3 receptors on modulating the activity of lumbosacral neurones and urinary bladder contractions in vivo in normal or spinal cord-injured (SCI) rats with neurogenic bladder overactivity. MATERIALS AND METHODS • SCI was induced in female rats by complete transection at T8 – T9 and experiments were performed 4 weeks later, when bladder overactivity developed. Non-transected rats were used as controls (normal rats). • Neural activity was recorded in the dorsal horn of the spinal cord and field potentials were acquired in response to intravesical pressure steps via a suprapubic catheter. Field potentials were recorded under control conditions, after stimulation of bladder mucosal purinergic receptors with intravesical ATP (1 mm), and after intravenous injection of the P2X3/P2X2/3 antagonist AF-353 (10 mg/kg and 20 mg/kg). • Cystometry was performed in urethaneanaesthetised rats intravesically infused with saline. AF-353 (10 mg/kg) was systemically applied after baseline recordings; the rats also received a second dose of AF-353 (20 mg/kg). Changes in the frequency of voiding (VC) and non-voiding (NVC) contractions were evaluated. RESULTS • SCI rats had significantly higher frequencies for field potentials and NVC than NL rats. Intravesical ATP increased field potential frequency in control but not SCI rats, while systemic AF-353 significantly reduced this parameter in both groups. • AF-353 also reduced the inter-contractile interval in control but not in SCI rats; however, the frequency of NVC in SCI rats was significantly reduced. CONCLUSION • The P2X3/P2X2/3 receptors on bladder afferent nerves positively regulate sensory activity and NVCs in overactive bladders. PMID:22540742

  3. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection

    PubMed Central

    Ermler, Megan E.; Schotsaert, Michael; Gonzalez, Ma G.; Gillespie, Virginia; Lim, Jean K.; García-Sastre, Adolfo

    2017-01-01

    ABSTRACT An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection. PMID:28351919

  4. Effect of the purinergic receptor P2X7 on Chlamydia infection in cervical epithelial cells and vaginally infected mice.

    PubMed

    Darville, Toni; Welter-Stahl, Lynn; Cruz, Cristiane; Sater, Ali Abdul; Andrews, Charles W; Ojcius, David M

    2007-09-15

    Ligation of the purinergic receptor, P2X7R, with its agonist ATP has been previously shown to inhibit intracellular infection by chlamydiae and mycobacteria in macrophages. The effect of P2X7R on chlamydial infection had never been investigated in the preferred target cells of chlamydiae, cervical epithelial cells, nor in vaginally infected mice. In this study, we show that treatment of epithelial cells with P2X7R agonists inhibits partially Chlamydia infection in epithelial cells. Chelation of ATP with magnesium or pretreatment with a P2X7R antagonist blocks the inhibitory effects of ATP. Similarly to previous results obtained with macrophages, ATP-mediated inhibition of infection in epithelial cells requires activation of host-cell phospholipase D. Vaginal infection was also more efficient in P2X7R-deficient mice, which also displayed a higher level of acute inflammation in the endocervix, oviduct, and mesosalpingeal tissues than in infected wild-type mice. However, secretion of IL-1beta, which requires P2X7R ligation during infection by other pathogens, was decreased mildly and only at short times of infection. Taken together, these results suggest that P2X7R affects Chlamydia infection by directly inhibiting infection in epithelial cells, rather than through the ability of P2X7R to modulate IL-1beta secretion.

  5. Residual Chemosensory Capabilities in Double P2X2/P2X3 Purinergic Receptor Null Mice: Intraoral or Postingestive Detection?

    PubMed Central

    Hallock, Robert M.; Tatangelo, Marco; Barrows, Jennell

    2009-01-01

    Mice lacking the purinergic receptors, P2X2 and P2X3 (P2X2/P2X3Dbl−/−), exhibit essentially no tastant-evoked activity in the chorda tympani and glossopharyngeal nerves and substantial loss of tastant-evoked behavior as measured in long-term intake experiments. To assess whether the residual chemically driven behaviors in these P2X2/P2X3Dbl−/− mice were attributable to postingestive detection or oropharyngeal detection of the compounds, we used brief access lickometer tests to assess the behavioral capabilities of the P2X2/P2X3Dbl−/− animals. The P2X2/P2X3Dbl−/− mice showed avoidance to high levels (10 mM quinine and 10–30 mM denatonium benzoate) of classical “bitter”-tasting stimuli in 24-h, 2-bottle preference tests but minimal avoidance of these substances in the lickometer tests, suggesting that the strong avoidance in the intake tests was largely mediated by post-oral chemosensors. Similarly, increases in consumption of 1 M sucrose by P2X2/P2X3Dbl−/− mice in long-term intake tests were not mirrored by increases in consumption of sucrose in lickometer tests, suggesting that sucrose detection in these mice is mediated by postingestive consequences. In contrast, in brief access tests, P2X2/P2X3Dbl−/− mice avoided citric acid and hydrochloric acid at the same concentrations as their wild-type counterparts, indicating that these weak acids activate oropharyngeal chemoreceptors. PMID:19833662

  6. P2Y1 Receptor Activation of the TRPV4 Ion Channel Enhances Purinergic Signaling in Satellite Glial Cells*

    PubMed Central

    Rajasekhar, Pradeep; Poole, Daniel P.; Liedtke, Wolfgang; Bunnett, Nigel W.; Veldhuis, Nicholas A.

    2015-01-01

    Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca2+ ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4−/− mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca2+]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia. PMID:26475857

  7. Purinergic P2Y receptors in airway epithelia: from ion transport to immune functions.

    PubMed

    Hao, Yuan; Ko, Wing-hung

    2014-02-25

    The regulated transport of salt and water is essential to the integrated function of many organ systems, including the respiratory, reproductive, and digestive tracts. Airway epithelial fluid secretion is a passive process that is driven by osmotic forces, which are generated by ion transport. The main determinant of a luminally-directed osmotic gradient is the mucosal transport of chloride ions (Cl(-)) into the lumen. As with many epithelial cells, a number of classic signal transduction cascades are involved in the regulation of ion transport. There are two well-known intracellular signaling systems: an increase in intracellular Ca(2+) concentration ([Ca(2+)]i) and an increase in the rate of synthesis of cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP). Therefore, Cl(-) secretion is primarily activated via the opening of apical Ca(2+)- or cAMP-dependent Cl(-) channels at the apical membrane. The opening of basolateral Ca(2+)- or cAMP-activated K(+) channels, which hyperpolarizes the cell to maintain the driving force for Cl(-) exit through apical Cl(-) channels that are constitutively open, is also important in regulating transepithelial ion transport. P2Y receptors are expressed in the apical and/or basolateral membranes of virtually all polarized epithelia to control the transport of fluid and electrolytes. Human airway epithelial cells express multiple nucleotide receptors. Extracellular nucleotides, such as UTP and ATP, are calcium-mobilizing secretagogues. They are released into the extracellular space from airway epithelial cells and act on the same cell in an autocrine fashion to stimulate transepithelial ion transport. In addition, recent data support the role of P2Y receptors in releasing inflammatory cytokines in the bronchial epithelium and other immune cells.

  8. Subfailure Overstretch Injury Leads to Reversible Functional Impairment and Purinergic P2X7 Receptor Activation in Intact Vascular Tissue

    PubMed Central

    Luo, Weifeng; Guth, Christy M.; Jolayemi, Olukemi; Duvall, Craig L.; Brophy, Colleen Marie; Cheung-Flynn, Joyce

    2016-01-01

    Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint, where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath, and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R) antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to the activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities. PMID:27747211

  9. Diadenosine Homodinucleotide Products of ADP-ribosyl Cyclases Behave as Modulators of the Purinergic Receptor P2X7*

    PubMed Central

    Bruzzone, Santina; Basile, Giovanna; Chothi, Madhu Parakkottil; Nobbio, Lucilla; Usai, Cesare; Jacchetti, Emanuela; Schenone, Angelo; Guse, Andreas H.; Di Virgilio, Francesco; De Flora, Antonio; Zocchi, Elena

    2010-01-01

    ADP-ribosyl cyclases from both vertebrates and invertebrates were previously shown to produce two isomers of P1,P2 diadenosine 5′,5′"-P1, P2-diphosphate, P18 and P24, from cyclic ADP-ribose (cADPR) and adenine. P18 and P24 are characterized by an unusual N-glycosidic linkage in one of the adenylic mononucleotides (Basile, G., Taglialatela-Scafati, O., Damonte, G., Armirotti, A., Bruzzone, S., Guida, L., Franco, L., Usai, C., Fattorusso, E., De Flora, A., and Zocchi, E. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 14509–14514). P24, but not P18, proved to increase the intracellular Ca2+ concentration ([Ca2+]i) in HeLa cells and to negatively affect mitochondrial function. Here we show that micromolar P24, but not P18, triggers a slow and sustained influx of extracellular Ca2+ through the opening of the purinergic receptor/channel P2X7. On the other hand, P18 inhibits the Ca2+ influx induced by 0.6 mm ATP in HEK293 cells stably transfected with P2X7, with an IC50 of ∼1 μm. Thus, P18 is devoid of intrinsic P2X7 stimulatory activity and behaves as an ATP antagonist. A P2X7-mediated increase of the basal [Ca2+]i has been demonstrated to negatively affect Schwann cell (SC) function in rats with the inherited, peripheral neuropathy Charcot-Marie-Tooth 1A (CMT1A) (Nobbio, L., Sturla, L., Fiorese, F., Usai, C., Basile, G., Moreschi, I., Benvenuto, F., Zocchi, E., De Flora, A., Schenone, A., and Bruzzone S. (2009) J. Biol. Chem. 284, 23146–23158). Preincubation of CMT1A SC with 200 nm P18 restored the basal [Ca2+]i to values similar to those recorded in wild-type SC. These results identify P18 as a new P2X7 antagonist, potentially useful in the treatment of CMT1A. PMID:20439466

  10. The effect of purinergic signaling via the P2Y11 receptor on vascular function in a rat model of acute inflammation.

    PubMed

    Dănilă, Maria D; Privistirescu, Andreea; Duicu, Oana M; Rațiu, Corina D; Angoulvant, Denis; Muntean, Danina M; Sturza, Adrian

    2017-02-17

    There is a growing body of evidence pointing to the role of purinergic signaling in the development and progression of various conditions that have inflammation as a common pathogenetic denominator. The aim of the present study was to assess the involvement of P2Y11 purinergic receptors in the regulation of vascular function in aortic segments obtained using an experimental model of acute inflammation, the lipopolysaccharide (LPS, 8 mg/kg, i.p)-treated rats. Twelve hours after LPS administration, thoracic aortas were isolated and used for studies of vascular reactivity in the organ bath and for the measurement of reactive oxygen species (ROS) generation, respectively. LPS treatment significantly increased contractility to phenylephrine and attenuated the endothelium-dependent relaxation of the vascular segments in response to acetylcholine; an increased production of hydrogen peroxide (H2O2) was also recorded. The P2Y11 activator, NF546, decreased the LPS-induced aortic H2O2 release and partially normalized the vasomotor function, namely reduced contractility and improved relaxation. The effect was abolished by co-treatment with the P2Y11 inhibitor, NF340, and also after endothelium denudation. Importantly, NF546 did not elicit an antioxidant effect by acting as a H2O2 scavenger, suggesting that the beneficial outcome of this treatment on the vasculature is the consequence of P2Y11 stimulation. In conclusion, purinergic P2Y11 receptors stimulation improves vascular function and mitigates oxidative stress in the setting of acute systemic inflammation, revealing salutary effects and therapeutic potential in pathologies associated with endothelial dysfunction.

  11. Purinergic glio-endothelial coupling during neuronal activity: role of P2Y1 receptors and eNOS in functional hyperemia in the mouse somatosensory cortex.

    PubMed

    Toth, Peter; Tarantini, Stefano; Davila, Antonio; Valcarcel-Ares, M Noa; Tucsek, Zsuzsanna; Varamini, Behzad; Ballabh, Praveen; Sonntag, William E; Baur, Joseph A; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of cognitive impairment associated with aging and pathological conditions associated with accelerated cerebromicrovascular aging (e.g., hypertension, obesity). Although previous studies demonstrate that endothelial dysfunction plays a critical role in neurovascular uncoupling in these conditions, the role of endothelial NO mediation in neurovascular coupling responses is not well understood. To establish the link between endothelial function and functional hyperemia, neurovascular coupling responses were studied in mutant mice overexpressing or deficient in endothelial NO synthase (eNOS), and the role of P2Y1 receptors in purinergic glioendothelial coupling was assessed. We found that genetic depletion of eNOS (eNOS(-/-)) and pharmacological inhibition of NO synthesis significantly decreased the CBF responses in the somatosensory cortex evoked by whisker stimulation and by administration of ATP. Overexpression of eNOS enhanced NO mediation of functional hyperemia. In control mice, the selective and potent P2Y1 receptor antagonist MRS2179 attenuated both whisker stimulation-induced and ATP-mediated CBF responses, whereas, in eNOS(-/-) mice, the inhibitory effects of MRS2179 were blunted. Collectively, our findings provide additional evidence for purinergic glio-endothelial coupling during neuronal activity, highlighting the role of ATP-mediated activation of eNOS via P2Y1 receptors in functional hyperemia.

  12. ATP Induced Brain-Derived Neurotrophic Factor Expression and Release from Osteoarthritis Synovial Fibroblasts Is Mediated by Purinergic Receptor P2X4

    PubMed Central

    Klein, Kerstin; Aeschlimann, André; Jordan, Suzana; Gay, Renate; Gay, Steffen; Sprott, Haiko

    2012-01-01

    Brain-derived neurotrophic factor (BDNF), a neuromodulator involved in nociceptive hypersensitivity in the central nervous system, is also expressed in synoviocytes of osteoarthritis (OA) and rheumatoid arthritis (RA) patients. We investigated the role of P2 purinoreceptors in the induction of BDNF expression in synovial fibroblasts (SF) of OA and RA patients. Cultured SF from patients with symptomatic knee OA and RA were stimulated with purinoreceptor agonists ATP, ADP, or UTP. The expression of BDNF mRNA was measured by quantitative TaqMan PCR. BDNF release into cell culture supernatants was monitored by ELISA. P2X4 expression in synovial tissue was detected by immunohistochemistry. Endogenous P2X4 expression was decreased by siRNA transfection before ATP stimulation. Kinase pathways were blocked before ATP stimulation. BDNF mRNA expression levels in OASF were increased 2 h and 5 h after ATP stimulation. Mean BDNF levels in cell culture supernatants of unstimulated OASF and RASF were 19 (±9) and 67 (±49) pg/ml, respectively. BDNF levels in SF supernatants were only elevated 5 h after ATP stimulation. BDNF mRNA expression in OASF was induced both by P2X receptor agonists ATP and ADP, but not by UTP, an agonist of P2Y purinergic receptors. The ATP-induced BDNF mRNA expression in OASF was decreased by siRNA-mediated reduction of endogenous P2X4 levels compared to scrambled controls. Inhibition of p38, but not p44/42 signalling reduced the ATP-mediated BDNF mRNA induction. Here we show a functional role of the purinergic receptor P2X4 and p38 kinase in the ATP-induced expression and release of the neurotrophin BDNF in SF. PMID:22715356

  13. Statins and ATP regulate nuclear pAkt via the P2X7 purinergic receptor in epithelial cells

    SciTech Connect

    Mistafa, Oras; Hoegberg, Johan; Stenius, Ulla

    2008-01-04

    Many studies have documented P2X7 receptor functions in cells of mesenchymal origin. P2X7 is also expressed in epithelial cells and its role in these cells remains largely unknown. Our data indicate that P2X7 regulate nuclear pAkt in epithelial cells. We show that low concentration of atorvastatin, a drug inhibiting HMG-CoA reductase and cholesterol metabolism, or the natural agonist extracellular ATP rapidly decreased the level of insulin-induced phosphorylated Akt in the nucleus. This effect was seen within minutes and was inhibited by P2X7 inhibitors. Experiments employing P2X7 siRNA and HEK293 cells heterologously expressing P2X7 and in vivo experiments further supported an involvement of P2X7. These data indicate that extracellular ATP and statins via the P2X7 receptor modulate insulin-induced Akt signaling in epithelial cells.

  14. Tanshinone II A sulfonate, but not tanshinone II A, acts as potent negative allosteric modulator of the human purinergic receptor P2X7.

    PubMed

    Kaiser, M; Sobottka, H; Fischer, W; Schaefer, M; Nörenberg, W

    2014-09-01

    Tanshinone II A sulfonate (TIIAS) was identified as a potent, selective blocker of purinergic receptor P2X7 in a compound library screen. In this study, a detailed characterization of the pharmacologic effects of TIIAS on P2X7 is provided. Because TIIAS is a derivative of tanshinone II A (TIIA) and both compounds have been used interchangeably, TIIA was included in some assays. Fluorometric and electrophysiologic assays were used to characterize effects of TIIAS and TIIA on recombinantly expressed human, rat, and mouse P2X7. Results were confirmed in human monocyte-derived macrophages expressing native P2X7. In all experiments, involvement of P2X7 was verified using established P2X7 antagonists. TIIAS, but not TIIA, reduces Ca(2+) influx via human P2X7 (hP2X7) with an IC50 of 4.3 µM. TIIAS was less potent at mouse P2X7 and poorly inhibited rat P2X7. Monitoring of YO-PRO-1 uptake confirmed these findings, indicating that formation of the hP2X7 pore is also suppressed by TIIAS. Electrophysiologic experiments revealed a noncompetitive mode of action. TIIAS time-dependently inhibits hP2X7 gating, possibly by binding to the intracellular domain of the receptor. Inhibition of native P2X7 in macrophages by TIIAS was confirmed by monitoring Ca(2+) influx, YO-PRO-1 uptake, and release of the proinflammatory cytokine interleukin-1β. Fluorometric experiments involving recombinantly expressed rat P2X2 and human P2X4 were conducted and verified the compound's selectivity. Our data suggest that hP2X7 is a molecular target of TIIAS, but not of TIIA, a compound with different pharmacologic properties.

  15. Regulation of Phospholipase D Activity and Phosphatidic Acid Production after Purinergic (P2Y6) Receptor Stimulation*

    PubMed Central

    Scott, Sarah A.; Xiang, Yun; Mathews, Thomas P.; Cho, Hyekyung P.; Myers, David S.; Armstrong, Michelle D.; Tallman, Keri A.; O'Reilly, Matthew C.; Lindsley, Craig W.; Brown, H. Alex

    2013-01-01

    Phosphatidic acid (PA) is a lipid second messenger located at the intersection of several lipid metabolism and cell signaling events including membrane trafficking, survival, and proliferation. Generation of signaling PA has long been primarily attributed to the activation of phospholipase D (PLD). PLD catalyzes the hydrolysis of phosphatidylcholine into PA. A variety of both receptor-tyrosine kinase and G-protein-coupled receptor stimulations have been shown to lead to PLD activation and PA generation. This study focuses on profiling the PA pool upon P2Y6 receptor signaling manipulation to determine the major PA producing enzymes. Here we show that PLD, although highly active, is not responsible for the majority of stable PA being produced upon UDP stimulation of the P2Y6 receptor and that PA levels are tightly regulated. By following PA flux in the cell we show that PLD is involved in an initial increase in PA upon receptor stimulation; however, when PLD is blocked, the cell compensates by increasing PA production from other sources. We further delineate the P2Y6 signaling pathway showing that phospholipase Cβ3 (PLCβ3), PLCδ1, DGKζ and PLD are all downstream of receptor activation. We also show that DGKζ is a novel negative regulator of PLD activity in this system that occurs through an inhibitory mechanism with PKCα. These results further define the downstream events resulting in PA production in the P2Y6 receptor signaling pathway. PMID:23723068

  16. Inhibition by islet-activating protein, pertussis toxin, of P2-purinergic receptor-mediated iodide efflux and phosphoinositide turnover in FRTL-5 cells

    SciTech Connect

    Okajima, F.; Sho, K.; Kondo, Y.

    1988-08-01

    Exposure of FRTL-5 thyroid cells to ATP (1 microM to 1 mM) resulted in the stimulation of I- efflux in association with the induction of inositol trisphosphate production and intracellular Ca2+ mobilization. Nonhydrolyzable ATP derivatives, ADP and GTP, were also as effective in magnitude as ATP, whereas neither AMP nor adenosine exerted significant effect on I- efflux, suggesting a P2-purinergic receptor-mediated activation of I- efflux. Treatment of the cells with the islet-activating protein (IAP) pertussis toxin, which ADP-ribosylated a 41,000 mol wt membrane protein, effectively suppressed the phosphoinositide response to ATP in addition to ATP-dependent I- efflux at agonist concentrations below 10 microM. In contrast, the I- efflux stimulated by TSH, A23187, or phorbol myristate acetate was insusceptible to IAP. The IAP substrate, probably GTP-binding protein, is hence proposed to mediate the activation of P2-purinergic receptor-linked phospholipase-C in FRTL-5 cells. However, the responses to ATP, its nonhydrolyzable derivatives, or ADP at the higher agonist concentrations, especially above 100 microM, were only partially inhibited by IAP, even though the IAP substrate was totally ADP ribosylated by the toxin. The responses to GTP in the whole concentration range tested were not influenced by IAP treatment. Thus, signals arising from the P2-receptor might be transduced to phospholipase-C by two different pathways, i.e. IAP-sensitive and insensitive ones, and result in the stimulation of I- efflux.

  17. Purinergic receptors in ocular inflammation.

    PubMed

    Guzman-Aranguez, Ana; Gasull, Xavier; Diebold, Yolanda; Pintor, Jesús

    2014-01-01

    Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly "tuned," can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P(1),P(4)-diadenosine tetraphosphate (Ap4A), and P(1),P(5)-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N(6)-(3-iodobenzyl)-5'-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.

  18. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells

    PubMed Central

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-01

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at −1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction. PMID:26631725

  19. P2 receptors and immunity

    PubMed Central

    Rayah, Amel; Kanellopoulos, Jean M.; Di Virgilio, Francesco

    2012-01-01

    Immune cells express receptors for extracellular nucleotides named P2 receptors. P2 receptors transduce signals delivered by nucleotides present in the extracellular environment. Accruing evidence shows that purinergic signalling has a profound effect on multiple immune cell responses such as T lymphocyte proliferation, chemotaxis, cytokine release, phagocytosis, Ag presentation and cytotoxicity. This makes P2 receptors an attractive target for the therapy of immuno-mediated disease and cancer. PMID:22909902

  20. F-actin links Epac-PKC signaling to purinergic P2X3 receptor sensitization in dorsal root ganglia following inflammation

    PubMed Central

    Gu, Yanping; Wang, Congying; Li, GuangWen

    2016-01-01

    Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. We further found that inflammation evokes an increase in exchange proteins directly activated by cAMP (Epacs) in dorsal root ganglions. This increase promotes the activation of PKC to produce a much enhanced PGE2 effect on ATP currents and to elicit Epac-dependent flinch nocifensive behavioral responses in complete Freund’s adjuvant rats. The link between Epac-PKC signaling and P2X3R sensitization remains unexplored. Here, we show that the activation of Epacs promotes the expression of phosphorylated PKC and leads to an increase in the cytoskeleton, F-actin, expression at the cell perimeter. Depolymerization of F-actin blocks PGE2-enhanced ATP currents and inhibits P2X3R-mediated nocifensive responses after inflammation. Thus, F-actin is dynamically involved in the Epac-PKC-dependent P2X3R sensitization. Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors. PMID:27385722

  1. EXPRESS: F-actin links Epac-PKC signaling to purinergic P2X3 receptors sensitization in dorsal root ganglia following inflammation.

    PubMed

    Gu, Yanping; Wang, Congying; Li, Guangwen; Huang, Li-Yen Mae

    2016-01-01

    Sensitization of purinergic P2X3 receptors (P2X3Rs) contributes to the production of exaggerated nociceptive responses following inflammatory injury. We showed previously that prostaglandin E2 (PGE2) potentiates P2X3R-mediated ATP currents in dorsal root ganglion neurons isolated from both control and complete Freund’s adjuvant-induced inflamed rats. PGE2 potentiation of ATP currents depends only on PKA signaling in control neurons, but it depends on both PKA and PKC signaling in inflamed neurons. We further found that inflammation evokes an increase in exchange proteins directly activated by cAMP (Epacs) in dorsal root ganglions. This increase promotes the activation of PKC to produce a much enhanced PGE2 effect on ATP currents and to elicit Epac-dependent flinch nocifensive behavioral responses in complete Freund’s adjuvant rats. The link between Epac-PKC signaling and P2X3R sensitization remains unexplored. Here, we show that the activation of Epacs promotes the expression of phosphorylated PKC and leads to an increase in the cytoskeleton, F-actin, expression at the cell perimeter. Depolymerization of F-actin blocks PGE2-enhanced ATP currents and inhibits P2X3R-mediated nocifensive responses after inflammation. Thus, F-actin is dynamically involved in the Epac-PKC-dependent P2X3R sensitization. Furthermore, Epacs induce a PKC-dependent increase in the membrane expression of P2X3Rs. This increase is abolished by F-actin depolymerization, suggesting that F-actin mediates Epac-PKC signaling of P2X3R membrane expression. Thus, after inflammation, an Epac-PKC dependent increase in F-actin in dorsal root ganglion neurons enhances the membrane expression of P2X3Rs to bring about sensitization of P2X3Rs and abnormal pain behaviors.

  2. Involvement of purinergic P2X4 receptors in alcohol intake of high-alcohol-drinking (HAD) rats

    PubMed Central

    Franklin, Kelle M.; Hauser, Sheketha R.; Lasek, Amy W.; Bell, Richard L.; McBride, William J.

    2015-01-01

    Background The P2X4 receptor is thought to be involved in regulating alcohol-consuming behaviors and ethanol (EtOH) has been reported to inhibit P2X4 receptors. Ivermectin is an anti-parasitic agent that acts as a positive allosteric modulator of the P2X4 receptor. The current study examined the effects of systemically- and centrally-administered ivermectin on alcohol drinking of replicate lines of high-alcohol-drinking (HAD-1/HAD-2) rats, and the effects of lentiviral-delivered short-hairpin RNAs (shRNAs) targeting P2rx4 on EtOH intake of female HAD2 rats. Method For the 1st experiment, adult male HAD-1 & HAD-2 rats were given 24-hr free-choice access to 15% EtOH vs. water. Dose-response effects of ivermectin (1.5 to 7.5 mg/kg i.p.) on EtOH intake were determined; the effects of ivermectin were then examined for 2% w/v sucrose intake over 5 consecutive days. In the 2nd experiment, female HAD-2 rats were trained to consume 15% EtOH under 2-hr limited access conditions, and dose-response effects of intracerebroventricular (ICV) administration of ivermectin (0.5 to 2.0 μg) were determined over 5 consecutive days. The 3rd experiment determined the effects of microinfusion of a lentivirus expressing P2rx4 shRNAs into the posterior ventral tegmental area (VTA) on 24-hr EtOH free-choice drinking of female HAD-2 rats. Results The highest i.p. dose of ivermectin reduced alcohol drinking (30-45%) in both rat lines, but did not alter sucrose intake. HAD-2 rats appeared to be more sensitive than HAD1 rats to the effects of ivermectin. ICV administration of ivermectin reduced 2-hr limited access intake (∼35%) of female HAD-2 rats; knockdown of P2rx4 expression in the posterior VTA reduced 24-hr free choice EtOH intake (∼20%). Conclusion Overall, the results of the current study support a role for P2X4 receptors within the mesolimbic system in mediating alcohol drinking behavior. PMID:26334550

  3. Minodronic acid induces morphological changes in osteoclasts at bone resorption sites and reaches a level required for antagonism of purinergic P2X2/3 receptors.

    PubMed

    Tanaka, Makoto; Hosoya, Akihiro; Mori, Hiroshi; Kayasuga, Ryoji; Nakamura, Hiroaki; Ozawa, Hidehiro

    2017-02-27

    Minodronic acid is an aminobisphosphonate that is an antagonist of purinergic P2X2/3 receptors involved in pain. The aim of this study was to investigate the action and distribution of minodronic acid and the potential for P2X2/3 receptor antagonism based on the estimated concentration of minodronic acid. Microlocalization of radiolabeled minodronic acid was examined in the femur of neonatal rats. The bone-binding characteristics of minodronic acid and morphological changes in osteoclasts were analyzed in vitro. The minodronic acid concentration around bone resorption lacunae was predicted based on bone binding and the shape of lacunae. In microautoradiography, radioactive silver grains were abundant in bone-attached osteoclasts and were detected in calcified and ossification zones and in the cytoplasm of osteoclasts but not in the hypertrophic cartilage zone. In an osteoclast culture with 1 µM minodronic acid, 65% of minodronic acid was bound to bone, and C-terminal cross-linking telopeptide release was inhibited by 96%. Cultured osteoclasts without minodronic acid treatment formed ruffled borders and bone resorption lacunae and had rich cytoplasm, whereas those treated with 1 µM minodronic acid were not multinucleated, stained densely with toluidine blue, and were detached from the bone surface. In the 1 µM culture, the estimated minodronic acid concentration in resorption lacunae was 880 µM, which is higher than the IC50 for minodronic acid antagonism of P2X2/3 receptors. Thus, inhibition of P2X2/3 receptors around osteoclasts may contribute to the analgesic effect of minodronic acid.

  4. Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida.

    PubMed

    Melo, A C; Moeller, P D; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-10-01

    Pfiesteria piscicida Steidinger & Burkholder is a toxic dinoflagellate that leads to fish and human toxicity. It produces a bioactive substance that leads to cytotoxicity of GH4C1 rat pituitary cells. Extracellular adenosine 5'-triphosphate (ATP) acting on P2X7 purinergic receptors induces the formation of a nonselective cation channel, causing elevation of the cytosolic free calcium followed by a characteristic permeabilization of the cell to progressively larger ions and subsequent cell lysis. We investigated whether GH4C1 rat pituitary cells express functional P2X7 receptors, and if so, are they activated by a bioactive substance isolated from toxic P. piscicida cultures. We tested the selective agonist 2'-3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and antagonists piridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid (PPADS) and oxidized-ATP (oxATP) using elevated cytosolic free calcium in Fura-2 loaded cells, and induced permeability of these cells to the fluorescent dye YO-PRO-1 as end points. We demonstrated that in GH4C1 cells, BzATP induces both the elevation of cytosolic free calcium and the permeabilization of the cell membrane. ATP-induced membrane permeabilization was inhibited by PPADS reversibly and by oxATP irreversibly. The putative Pfiesteria toxin (pPfTx) also elevated cytosolic free calcium in Fura-2 in GH4C1 cells and increased the permeability to YO-PRO-1 in a manner inhibited fully by oxATP. This study indicates that GH4C1 cells express a purinoceptor with characteristics consistent with the P2X7 subtype, and that pPfTx mimics the kinetics of cell permeabilization by ATP.

  5. Microfluorimetric analysis of a purinergic receptor (P2X7) in GH4C1 rat pituitary cells: effects of a bioactive substance produced by Pfiesteria piscicida.

    PubMed Central

    Melo, A C; Moeller, P D; Glasgow, H; Burkholder, J M; Ramsdell, J S

    2001-01-01

    Pfiesteria piscicida Steidinger & Burkholder is a toxic dinoflagellate that leads to fish and human toxicity. It produces a bioactive substance that leads to cytotoxicity of GH4C1 rat pituitary cells. Extracellular adenosine 5'-triphosphate (ATP) acting on P2X7 purinergic receptors induces the formation of a nonselective cation channel, causing elevation of the cytosolic free calcium followed by a characteristic permeabilization of the cell to progressively larger ions and subsequent cell lysis. We investigated whether GH4C1 rat pituitary cells express functional P2X7 receptors, and if so, are they activated by a bioactive substance isolated from toxic P. piscicida cultures. We tested the selective agonist 2'-3'-O-(benzoyl-4-benzoyl)-ATP (BzATP) and antagonists piridoxalphosphate-6-azophenyl-2'-4'-disulfonic acid (PPADS) and oxidized-ATP (oxATP) using elevated cytosolic free calcium in Fura-2 loaded cells, and induced permeability of these cells to the fluorescent dye YO-PRO-1 as end points. We demonstrated that in GH4C1 cells, BzATP induces both the elevation of cytosolic free calcium and the permeabilization of the cell membrane. ATP-induced membrane permeabilization was inhibited by PPADS reversibly and by oxATP irreversibly. The putative Pfiesteria toxin (pPfTx) also elevated cytosolic free calcium in Fura-2 in GH4C1 cells and increased the permeability to YO-PRO-1 in a manner inhibited fully by oxATP. This study indicates that GH4C1 cells express a purinoceptor with characteristics consistent with the P2X7 subtype, and that pPfTx mimics the kinetics of cell permeabilization by ATP. PMID:11677182

  6. P2Y Purinergic Regulation of the Glycine Neurotransmitter Transporters*

    PubMed Central

    Jiménez, Esperanza; Zafra, Francisco; Pérez-Sen, Raquel; Delicado, Esmerilda G.; Miras-Portugal, Maria Teresa; Aragón, Carmen; López-Corcuera, Beatriz

    2011-01-01

    The sodium- and chloride-coupled glycine neurotransmitter transporters (GLYTs) control the availability of glycine at glycine-mediated synapses. The mainly glial GLYT1 is the key regulator of the glycine levels in glycinergic and glutamatergic pathways, whereas the neuronal GLYT2 is involved in the recycling of synaptic glycine from the inhibitory synaptic cleft. In this study, we report that stimulation of P2Y purinergic receptors with 2-methylthioadenosine 5′-diphosphate in rat brainstem/spinal cord primary neuronal cultures and adult rat synaptosomes leads to the inhibition of GLYT2 and the stimulation of GLYT1 by a paracrine regulation. These effects are mainly mediated by the ADP-preferring subtypes P2Y1 and P2Y13 because the effects are partially reversed by the specific antagonists N6-methyl-2′-deoxyadenosine-3′,5′-bisphosphate and pyridoxal-5′-phosphate-6-azo(2-chloro-5-nitrophenyl)-2,4-disulfonate and are totally blocked by suramin. P2Y12 receptor is additionally involved in GLYT1 stimulation. Using pharmacological approaches and siRNA-mediated protein knockdown methodology, we elucidate the molecular mechanisms of GLYT regulation. Modulation takes place through a signaling cascade involving phospholipase C activation, inositol 1,4,5-trisphosphate production, intracellular Ca2+ mobilization, protein kinase C stimulation, nitric oxide formation, cyclic guanosine monophosphate production, and protein kinase G-I (PKG-I) activation. GLYT1 and GLYT2 are differentially sensitive to NO/cGMP/PKG-I both in brain-derived preparations and in heterologous systems expressing the recombinant transporters and P2Y1 receptor. Sensitivity to 2-methylthioadenosine 5′-diphosphate by GLYT1 and GLYT2 was abolished by small interfering RNA (siRNA)-mediated knockdown of nitric-oxide synthase. Our data may help define the role of GLYTs in nociception and pain sensitization. PMID:21245148

  7. Natural Products as a Source for New Anti-Inflammatory and Analgesic Compounds through the Inhibition of Purinergic P2X Receptors

    PubMed Central

    Soares-Bezerra, Rômulo José; Calheiros, Andrea Surrage; da Silva Ferreira, Natiele Carla; da Silva Frutuoso, Valber; Alves, Luiz Anastacio

    2013-01-01

    Natural products have reemerged in traditional medicine as a potential source of new molecules or phytomedicines to help with health disorders. It has been established that members of the P2X subfamily, ATP-gated ion channels, are crucial to the inflammatory process and pain signalization. As such, several preclinical studies have demonstrated that P2X2R, P2X3R, P2X4R and P2X7R are promising pharmacological targets to control inflammatory and pain disorders. Several studies have indicated that natural products could be a good source of the new specific molecules needed for the treatment of diseases linked to inflammation and pain disorders through the regulation of these receptors. Herein, we discuss and give an overview of the applicability of natural products as a source to obtain P2X receptors (P2XR) selective antagonists for use in clinical treatment, which require further investigation. PMID:24276172

  8. Purinergic receptors in the endocrine and exocrine pancreas

    PubMed Central

    2007-01-01

    The pancreas is a complex gland performing both endocrine and exocrine functions. In recent years there has been increasing evidence that both endocrine and exocrine cells possess purinergic receptors, which influence processes such as insulin secretion and epithelial ion transport. Most commonly, these processes have been viewed separately. In β cells, stimulation of P2Y1 receptors amplifies secretion of insulin in the presence of glucose. Nucleotides released from secretory granules could also contribute to autocrine/paracrine regulation in pancreatic islets. In addition to P2Y1 receptors, there is also evidence for other P2 and adenosine receptors in β cells (P2Y2, P2Y4, P2Y6, P2X subtypes and A1 receptors) and in glucagon-secreting α cells (P2X7, A2 receptors). In the exocrine pancreas, acini release ATP and ATP-hydrolysing and ATP-generating enzymes. P2 receptors are prominent in pancreatic ducts, and several studies indicate that P2Y2, P2Y4, P2Y11, P2X4 and P2X7 receptors could regulate secretion, primarily by affecting Cl− and K+ channels and intracellular Ca2+ signalling. In order to understand the physiology of the whole organ, it is necessary to consider the full complement of purinergic receptors on different cells as well as the structural and functional relation between various cells within the whole organ. In addition to the possible physiological function of purinergic receptors, this review analyses whether the receptors could be potential therapeutic targets for drug design aimed at treatment of pancreatic diseases. PMID:18368520

  9. Introduction to the Special Issue on Purinergic Receptors.

    PubMed

    Burnstock, Geoffrey

    2017-02-22

    In this Introduction to the series of papers that follow about purinergic receptors, there is a brief history of the discovery of purinergic signalling, the identity of purinoceptors and the current recognition of P1, P2X and P2Y subtypes. An account of key functions mediated by purinoceptors follows, including examples of both short-term and long-term (trophic) signalling and a table showing the selective agonists and antagonists for the purinoceptor subtypes. References to evolution and roles of purinoceptors in pathological conditions are also presented.

  10. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    PubMed

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  11. Strong P2X4 purinergic receptor-like immunoreactivity is selectively associated with degenerating neurons in transgenic rodent models of amyotrophic lateral sclerosis.

    PubMed

    Casanovas, Anna; Hernández, Sara; Tarabal, Olga; Rosselló, Jaume; Esquerda, Josep E

    2008-01-01

    The distribution of the P2X family of ATP receptors was analyzed in a rat model for amyotrophic lateral sclerosis (ALS) expressing mutated human superoxide dismutase (mSOD1(G93A)). We showed that strong P2X(4) immunoreactivity was selectively associated with degenerating motoneurons (MNs) in spinal cord ventral horn. Degenerating P2X(4)-positive MNs did not display apoptotic features such as chromatin condensation, positive TUNEL reaction, or active caspase 3 immunostaining. In contrast, these neurons showed other signs of abnormality, such as loss of the neuronal marker NeuN and recruitment of microglial cells with neuronophagic activity. Similar changes were observed in MNs from the cerebral cortex and brainstem in mSOD1(G93A) in both rat and mice. In addition, P2X(4) immunostaining demonstrated the existence of neuronal degeneration in the locus coeruleus, reticular formation, and Purkinje cells of the cerebellar cortex. It is suggested that abnormal trafficking and proteolytic processing of the P2X(4) receptor protein may underlie these changes.

  12. P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: autoantibody levels, heart functionality and cytokine expression

    PubMed Central

    Martinez, Camila Guerra; Zamith-Miranda, Daniel; da Silva, Marcia Gracindo; Ribeiro, Karla Consort; Brandão, Izaíra Trincani; Silva, Celio Lopes; Diaz, Bruno Lourenço; Bellio, Maria; Persechini, Pedro Muanis; Kurtenbach, Eleonora

    2015-01-01

    Autoantibodies against the M2 receptors (M2AChR) have been associated with Dilated Cardiomyopathy (DCM). In the heart, P2×7 receptors influence electrical conduction, coronary circulation and response to ischemia. They can also trigger pro-inflammatory responses and the development of neurological, cardiac and renal disorders. Here, P2×7−/− mice displayed an increased heart rate and ST segment depression, but similar exercise performance when compared to wild type (WT) animals. After immunization with plasmid containing M2AChR cDNA sequence, WT mice produced anti-M2AChR antibodies, while P2×7−/− mice showed an attenuated production. Despite this, WT and P2×7−/− showed left ventricle cavity enlargement and decreased exercise tolerance. Transfer of serum from M2AChR WT immunized mice to näive recipients led to an alteration in heart shape. P2×7−/− mice displayed a significant increase in the frequency of spleen regulatory T cells population, which is mainly composed by the FoxP3+CD25− subset. M2AChR WT immunized mice showed an increase in IL-1β, IFNγ and IL-17 levels in the heart, while P2×7−/− group produced lower amounts of IL-1β and IL-17 and higher amounts of IFNγ. These results pointed to previously unnoticed roles of P2×7 in cardiovascular and immune systems, and underscored the participation of IL-17 and IFNγ in the progress of autoimmune DCM. PMID:26592184

  13. Role of P2 purinergic receptors in synaptic transmission under normoxic and ischaemic conditions in the CA1 region of rat hippocampal slices

    PubMed Central

    Coppi, Elisabetta; Pugliese, Anna Maria; Stephan, Holger; Müller, Christa E.

    2007-01-01

    The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs) from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors: ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate] at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor

  14. Extracellular purines, purinergic receptors and tumor growth

    PubMed Central

    Di Virgilio, F; Adinolfi, E

    2017-01-01

    Virtually, all tumor cells as well as all immune cells express plasma membrane receptors for extracellular nucleosides (adenosine) and nucleotides (ATP, ADP, UTP, UDP and sugar UDP). The tumor microenvironment is characterized by an unusually high concentration of ATP and adenosine. Adenosine is a major determinant of the immunosuppressive tumor milieu. Sequential hydrolysis of extracellular ATP catalyzed by CD39 and CD73 is the main pathway for the generation of adenosine in the tumor interstitium. Extracellular ATP and adenosine mold both host and tumor responses. Depending on the specific receptor activated, extracellular purines mediate immunosuppression or immunostimulation on the host side, and growth stimulation or cytotoxicity on the tumor side. Recent progress in this field is providing the key to decode this complex scenario and to lay the basis to harness the potential benefits for therapy. Preclinical data show that targeting the adenosine-generating pathway (that is, CD73) or adenosinergic receptors (that is, A2A) relieves immunosuppresion and potently inhibits tumor growth. On the other hand, growth of experimental tumors is strongly inhibited by targeting the P2X7 ATP-selective receptor of cancer and immune cells. This review summarizes the recent data on the role played by extracellular purines (purinergic signaling) in host–tumor interaction and highlights novel therapeutic options stemming from recent advances in this field. PMID:27321181

  15. The role of purinergic receptors in stem cell differentiation

    PubMed Central

    Kaebisch, Constanze; Schipper, Dorothee; Babczyk, Patrick; Tobiasch, Edda

    2014-01-01

    A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future. PMID:26900431

  16. Signaling by purinergic receptors and channels in the pituitary gland

    PubMed Central

    Stojilkovic, Stanko S.; He, Mu-Lan; Koshimizu, Taka-aki; Balik, Ales; Zemkova, Hana

    2009-01-01

    Adenosine 5′-triphosphate is frequently released by cells and acts as an agonist for G protein-coupled P2Y receptors and ligand-gated P2X cationic channels in numerous tissues. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors. In the pituitary gland, adenosine 5′-triphosphate is released from the endings of magnocellular hypothalamic neurons and by anterior pituitary cells through pathway(s) that are still not well characterized. This gland also expresses several members of each family of purinergic receptors. P2X and adenosine receptors are co-expressed in the somata and nerve terminals of vasopressin-releasing neurons as well as in some secretory pituitary cells. P2X receptors stimulate electrical activity and modulate InsP3-dependent calcium release from intracellular stores, whereas adenosine receptors terminate electrical activity. Calcium-mobilizing P2Y receptors are predominantly expressed in non-secretory cells of the anterior and posterior pituitary. PMID:19467293

  17. P2X and P2Y receptor signaling in red blood cells.

    PubMed

    Sluyter, Ronald

    2015-01-01

    Purinergic signaling involves the activation of cell surface P1 and P2 receptors by extracellular nucleosides and nucleotides such as adenosine and adenosine triphosphate (ATP), respectively. P2 receptors comprise P2X and P2Y receptors, and have well-established roles in leukocyte and platelet biology. Emerging evidence indicates important roles for these receptors in red blood cells. P2 receptor activation stimulates a number of signaling pathways in progenitor red blood cells resulting in microparticle release, reactive oxygen species formation, and apoptosis. Likewise, activation of P2 receptors in mature red blood cells stimulates signaling pathways mediating volume regulation, eicosanoid release, phosphatidylserine exposure, hemolysis, impaired ATP release, and susceptibility or resistance to infection. This review summarizes the distribution of P2 receptors in red blood cells, and outlines the functions of P2 receptor signaling in these cells and its implications in red blood cell biology.

  18. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands

    PubMed Central

    Ciruela, Francisco; Fernández-Dueñas, Víctor; Jacobson, Kenneth A.

    2015-01-01

    The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. PMID:25890205

  19. Sperm gamma-aminobutyric acid type A receptor delta subunit (GABRD) and its interaction with purinergic P2X2 receptors in progesterone-induced acrosome reaction and male fertility.

    PubMed

    Xu, Wenming; Wang, Ke; Chen, Yan; Liang, Xiao Tong; Yu, Mei Kuen; Yue, Huanxun; Tierney, M Louise

    2017-02-13

    The mechanism underlying the non-genomic action of progesterone in sperm functions and related Ca2+ mobilisation remains elusive. Herein we report the expression of gamma-aminobutyric acid type A receptor delta subunit (GABRD) in human and rodent sperm and its involvement in mediating the progesterone-induced acrosome reaction. GABRD was localised in the sperm head/neck region. A δ(392-422)-specific inhibitory peptide against GABRD blocked the progesterone-induced acrosome reaction and the associated increase in intracellular Ca2+. Similarly, an inhibitory effect against both progesterone-induced Ca2+ influx and the acrosome reaction was observed with a P2X2 receptor antagonist. The lack of synergism between the GABRD and P2X2 inhibitors suggests that these two receptors are playing a role in the same pathway. Furthermore, a co-immunoprecipitation experiment demonstrated that GABRD could undergo protein-protein interactions with the Ca2+-conducting P2X2 receptor. This interaction between the receptors could be reduced following progesterone (10μM) inducement. Significantly reduced GABRD expression was observed in spermatozoa from infertile patients with reduced acrosome reaction capacity, suggesting that normal expression of GABRD is critical for the sperm acrosome reaction and thus male fertility. The results of the present study indicate that GABRD represents a novel progesterone receptor or modulator in spermatozoa that is responsible for the progesterone-induced Ca2+ influx required for the acrosome reaction through its interaction with the P2X2 receptor.

  20. Purinergic receptor stimulation increases membrane trafficking in brown adipocytes

    PubMed Central

    1996-01-01

    Stimulation of brown adipocytes by their sympathetic innervation plays a major role in body energy homeostasis by regulating the energy- wasting activity of the tissue. The norepinephrine released by sympathetic activity acts on adrenergic receptors to activate a variety of metabolic and membrane responses. Since sympathetic stimulation may also release vesicular ATP, we tested brown fat cells for ATP responses. We find that micromolar concentrations of extracellular ATP initiates profound changes in the membrane trafficking of brown adipocytes. ATP elicited substantial increases in total cell membrane capacitance, averaging approximately 30% over basal levels and occurring on a time scale of seconds to minutes. The membrane capacitance increase showed an agonist sensitivity of 2-methylthio-ATP > or = ATP > ADP > > adenosine, consistent with mediation by a P2r type purinergic receptor. Membrane capacitance increases were not seen when cytosolic calcium was increased by adrenergic stimulation, and capacitance responses to ATP were similar in the presence and absence of extracellular calcium. These results indicate that increases in cytosolic calcium alone do not mediate the membrane response to ATP. Photometric assessment of surface-accessible membrane using the dye FM1- 43 showed that ATP caused an approximate doubling of the amount of membrane actively trafficking with the cell surface. The discrepancy in the magnitudes of the capacitance and fluorescence changes suggests that ATP both activates exocytosis and alters other aspects of membrane handling. These findings suggest that secretion, mobilization of membrane transporters, and/or surface membrane expression of receptors may be regulated in brown adipocytes by P2r purinergic receptor activity. PMID:8923265

  1. Expression and function of purinergic receptors in platelets from apheresis-derived platelet concentrates

    PubMed Central

    Koessler, Juergen; Weber, Katja; Koessler, Angela; Yilmaz, Pinar; Boeck, Markus; Kobsar, Anna

    2016-01-01

    Background The storage of platelets affects platelet integrity and functionality, a process named platelet storage lesion (PSL). Reduced adenosine diphosphate (ADP)-induced platelet aggregation is a typical manifestation of PSL. However, the role of ADP receptors in this context has not been evaluated yet. The aim of this study was, therefore, to investigate surface expression and function of the purinergic receptors P2Y1, P2Y12 and P2X1 in stored platelet concentrates. Material and methods Platelets were obtained from venous whole blood and from apheresis-derived platelet concentrates stored for 0, 2 and 5 days. Purinergic receptor expression was measured by flow cytometry and western blot analysis. Receptor function was determined by calcium-induced fluorescence (P2Y1 and P2X1) or by flow cytometric measurement of the platelet reactivity index (P2Y12). Results The basal surface expression and total content of purinergic receptors remained unchanged throughout storage. After an initial reduction during apheresis, P2X1-mediated calcium flux was maintained, whereas the P2Y1-mediated increase of calcium flux gradually decreased during the course of storage. In contrast, the platelet reactivity index was comparable in freshly obtained and stored platelets. Discussion The function of the P2Y12 receptor is maintained during storage of apheresis-derived platelet concentrates. However, the impairment of P2X1 and especially of P2Y1 receptor function indicated by decreased receptor-mediated calcium flux is an important mechanism contributing to reduced ADP responsiveness of stored platelets. PMID:26674810

  2. Epac–protein kinase C alpha signaling in purinergic P2X3R-mediated hyperalgesia after inflammation

    PubMed Central

    Gu, Yanping; Li, Guangwen; Chen, Yong; Huang, Li-Yen Mae

    2016-01-01

    Abstract Sensitization of purinergic P2X3 receptors (P2X3Rs) is a major mechanism contributing to injury-induced exaggerated pain responses. We showed in a previous study that cyclic adenosine monophosphate (cAMP)–dependent guanine nucleotide exchange factor 1 (Epac1) in rat sensory dorsal root ganglia (DRGs) is upregulated after inflammatory injury, and it plays a critical role in P2X3R sensitization by activating protein kinase C epsilon (PKCε) inside the cells. protein kinase C epsilon has been established as the major PKC isoform mediating injury-induced hyperalgesic responses. On the other hand, the role of PKCα in receptor sensitization was seldom considered. Here, we studied the participation of PKCα in Epac signaling in P2X3R-mediated hyperalgesia. The expression of both Epac1 and Epac2 and the level of cAMP in DRGs are greatly enhanced after complete Freund adjuvant (CFA)–induced inflammation. The expression of phosphorylated PKCα is also upregulated. Complete Freund adjuvant (CFA)–induced P2X3R-mediated hyperalgesia is not only blocked by Epac antagonists but also by the classical PKC isoform inhibitors, Go6976, and PKCα-siRNA. These CFA effects are mimicked by the application of the Epac agonist, 8-(4-chlorophenylthio)-2 -O-methyl-cAMP (CPT), in control rats, further confirming the involvement of Epacs. Because the application of Go6976 prior to CPT still reduces CPT-induced hyperalgesia, PKCα is downstream of Epacs to mediate the enhancement of P2X3R responses in DRGs. The pattern of translocation of PKCα inside DRG neurons in response to CPT or CFA stimulation is distinct from that of PKCε. Thus, in contrast to prevalent view, PKCα also plays an essential role in producing complex inflammation-induced receptor-mediated hyperalgesia. PMID:26963850

  3. The P2X7/P2X4 interaction shapes the purinergic response in murine macrophages.

    PubMed

    Pérez-Flores, Gabriela; Lévesque, Sébastien A; Pacheco, Jonathan; Vaca, Luis; Lacroix, Steve; Pérez-Cornejo, Patricia; Arreola, Jorge

    2015-11-20

    The ATP-gated P2X4 and P2X7 receptors are cation channels, co-expressed in excitable and non-excitable cells and play important roles in pain, bone development, cytokine release and cell death. Although these receptors interact the interacting domains are unknown and the functional consequences of this interaction remain unclear. Here we show by co-immunoprecipitation that P2X4 interacts with the C-terminus of P2X7 and by fluorescence resonance energy transfer experiments that this receptor-receptor interaction is driven by ATP. Furthermore, disrupting the ATP-driven interaction by knocking-out P2X4R provoked an attenuation of P2X7-induced cell death, dye uptake and IL-1β release in macrophages. Thus, P2X7 interacts with P2X4 via its C-terminus and disrupting the P2X7/P2X4 interaction hinders physiological responses in immune cells.

  4. The neural-glial purinergic receptor ensemble in chronic pain states.

    PubMed

    Jarvis, Michael F

    2010-01-01

    Chronic pain is characterized by enhanced sensory neurotransmission that underlies increased sensitivity to noxious stimuli and the perception of non-noxious stimuli as painful. Evidence from neurophysiological and pharmacological studies demonstrates that ATP produces pain by directly enhancing neuronal excitability via the activation of specific ligand-gated ion channels, the P2X3 and P2X2/3 receptors. In addition, ATP activates CNS glial cells (e.g. microglia) in response to persistent nociceptive stimulation. This latter effect involves several distinct receptor-mediated signaling pathways linked to the P2X4, P2X7 and P2Y(12) receptors. This review summarizes new data that places these purinergic signaling events in a mechanistic context that illustrates the ability of ATP to initiate and maintain states of heightened sensory neuron excitability associated with persistent pain.

  5. H89 enhances the sensitivity of cancer cells to glyceryl trinitrate through a purinergic receptor-dependent pathway

    PubMed Central

    Cortier, Marion; Boina-Ali, Rahamata; Racoeur, Cindy; Paul, Catherine; Solary, Eric; Jeannin, Jean-François; Bettaieb, Ali

    2015-01-01

    High doses of the organic nitrate glyceryl trinitrate (GTN), a nitric oxide (NO) donor, are known to trigger apoptosis in human cancer cells. Here, we show that such a cytotoxic effect can be obtained with subtoxic concentrations of GTN when combined with H89, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide.2HCl. This synergistic effect requires the generation of reactive oxygen species (ROS) from H89 and NO from GTN treatment that causes cGMP production and PKG activation. Furthermore, the GTN/H89 synergy was attenuated by inhibition of P2-purinergic receptors with suramin and competition with ATP/UDP. By down-regulating genes with antisense oligonucleotides, P2-purinergic receptors P2X3, P2Y1, and P2Y6 were found to have a role in creating this cytotoxic effect. Thus, H89 likely acts as an ATP mimetic synergizing with GTN to trigger apoptosis in aggressive cancer cells. PMID:25762630

  6. Contribution of renal purinergic receptors to renal vasoconstriction in angiotensin II-induced hypertensive rats.

    PubMed

    Franco, Martha; Bautista, Rocio; Tapia, Edilia; Soto, Virgilia; Santamaría, José; Osorio, Horacio; Pacheco, Ursino; Sánchez-Lozada, L Gabriela; Kobori, Hiroyuki; Navar, L Gabriel

    2011-06-01

    To investigate the participation of purinergic P2 receptors in the regulation of renal function in ANG II-dependent hypertension, renal and glomerular hemodynamics were evaluated in chronic ANG II-infused (14 days) and Sham rats during acute blockade of P2 receptors with PPADS. In addition, P2X1 and P2Y1 protein and mRNA expression were compared in ANG II-infused and Sham rats. Chronic ANG II-infused rats exhibited increased afferent and efferent arteriolar resistances and reductions in glomerular blood flow, glomerular filtration rate (GFR), single-nephron GFR (SNGFR), and glomerular ultrafiltration coefficient. PPADS restored afferent and efferent resistances as well as glomerular blood flow and SNGFR, but did not ameliorate the elevated arterial blood pressure. In Sham rats, PPADS increased afferent and efferent arteriolar resistances and reduced GFR and SNGFR. Since purinergic blockade may influence nitric oxide (NO) release, we evaluated the role of NO in the response to PPADS. Acute blockade with N(ω)-nitro-l-arginine methyl ester (l-NAME) reversed the vasodilatory effects of PPADS and reduced urinary nitrate excretion (NO(2)(-)/NO(3)(-)) in ANG II-infused rats, indicating a NO-mediated vasodilation during PPADS treatment. In Sham rats, PPADS induced renal vasoconstriction which was not modified by l-NAME, suggesting blockade of a P2X receptor subtype linked to the NO pathway; the response was similar to that obtained with l-NAME alone. P2X1 receptor expression in the renal cortex was increased by chronic ANG II infusion, but there were no changes in P2Y1 receptor abundance. These findings indicate that there is an enhanced P2 receptor-mediated vasoconstriction of afferent and efferent arterioles in chronic ANG II-infused rats, which contributes to the increased renal vascular resistance observed in ANG II-dependent hypertension.

  7. P2Y Receptors Sensitize Mouse and Human Colonic Nociceptors

    PubMed Central

    Hockley, James R. F.; Tranter, Michael M.; McGuire, Cian; Boundouki, George; Cibert-Goton, Vincent; Thaha, Mohamed A.; Blackshaw, L. Ashley; Michael, Gregory J.; Baker, Mark D.; Knowles, Charles H.; Winchester, Wendy J.

    2016-01-01

    pain-sensing nerves located in the bowel wall and their sensitization to physiological stimuli, including bowel movements, underpins the development of such pain, and is associated with mediators released during disease. This work addresses the unstudied role of purine and pyrimidine nucleotides in modulating colonic nociceptors via P2Y receptors using a combination of electrophysiological recordings from human ex vivo samples and a detailed functional study in the mouse. This is the first report to identify colonic purinergic signaling as a function of P2Y receptor activation, in addition to established P2X receptor activity, and the results contribute to our understanding of the development of visceral pain during gastrointestinal disease. PMID:26911685

  8. P2 receptor-mediated signaling in mast cell biology.

    PubMed

    Bulanova, Elena; Bulfone-Paus, Silvia

    2010-03-01

    Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.

  9. Epigenetic alteration of the purinergic type 7 receptor in salivary epithelial cells

    PubMed Central

    Shin, Yong-Hwan; Kim, Minkyoung; Kim, Nahyun; Choi, Seul-Ki; Namkoong, Eun; Choi, Se-Young; Lee, Jong-Ho; Cha, Seunghee; Park, Kyungpyo

    2016-01-01

    Purinergic receptors, particularly type 7 (P2RX7), are involved in apoptotic cell death. However, the expression and function of P2RX7 are suppressed in HSG cells. In the present study, we explored whether P2RX7 function is regulated by epigenetic alteration of the receptors in two different cell lines, HSG cells derived from human submandibular ducts, and A253 cells, originated from human submandibular carcinoma. We discovered that HSG cells expressed all subtypes of purinergic receptors, excluding P2RX7, at the mRNA level. However, treatment of the cells with 5-Aza-CdR, a DNA demethylating agent, increased the mRNA expression levels of P2RX7 in a time-dependent manner. Furthermore, 5-Aza-CdR completely rescued the calcium response induced by P2RX7 agonist BzATP, a response that was absent in untreated HSG cells. In contrast, A253 cells showed a moderate methylation pattern in the P2RX7 CpG island. Most CG pairs from the first to the 21st were methylated in untreated HSG cells, but 5-Aza-CdR-treatment partially demethylated the methylated CG pairs. We obtained similar results when investigated human tissues; the CG pairs in the P2RX7 CpG islands showed hypermethylation and hypomethylation patterns in human normal and cancer tissues, respectively. Our results suggest that the expression level and function of P2RX7 are regulated by DNA methylation in epithelial cells. PMID:26399685

  10. ATP induces P2X7 receptor-independent cytokine and chemokine expression through P2X1 and P2X3 receptors in murine mast cells.

    PubMed

    Bulanova, Elena; Budagian, Vadim; Orinska, Zane; Koch-Nolte, Friedrich; Haag, Friedrich; Bulfone-Paus, Silvia

    2009-04-01

    Extracellular ATP mediates a diverse array of biological responses in many cell types and tissues, including immune cells. We have demonstrated that ATP induces purinergic receptor P2X(7) mediated membrane permeabilization, apoptosis, and cytokine expression in murine mast cells (MCs). Here, we report that MCs deficient in the expression of the P2X(7) receptor are resistant to the ATP-induced membrane permeabilization and apoptosis. However, ATP affects the tyrosine phosphorylation pattern of P2X(7)knockout cells, leading to the activation of ERK1/2. Furthermore, ATP induces expression of several cytokines and chemokines in these cells, including IL-4, IL-6, IFN-gamma, TNF-alpha, RANTES, and MIP-2, at the mRNA level. In addition, the release of IL-6 and IL-13 to cell-conditioned medium was confirmed by ELISA. The ligand selectivity and pharmacological profile indicate the involvement of two P2X family receptors, P2X(1) and P2X(3). Thus, depending on genetic background, particular tissue microenvironment, and ATP concentration, MCs can presumably engage different P2X receptor subtypes, which may result in functionally distinct biological responses to extracellular nucleotides. This finding highlights a novel level of complexity in the sophisticated biology of MCs and may facilitate the development of new therapeutic approaches to modulate MC activities.

  11. Purinergic signaling in schistosomal infection.

    PubMed

    Silva, Claudia Lucia Martins

    2016-10-01

    Human schistosomiasis is a chronic inflammatory disease caused by blood fluke worms belonging to the genus Schistosoma. Health metrics indicate that the disease is related to an elevated number of years lost-to-disability and years lost-to-life. Schistosomiasis is an intravascular disease that is related to a Th1 and Th2 immune response polarization, and the degree of polarization affects the outcome of the disease. The purinergic system is composed of adenosine and nucleotides acting as key messenger molecules. Moreover, nucleotide-transforming enzymes and cell-surface purinergic receptors are obligatory partners of this purinergic signaling. In mammalian cells, purinergic signaling modulates innate immune responses and inflammation among other functions; conversely purinergic signaling may also be modulated by inflammatory mediators. Moreover, schistosomes also express some enzymes of the purinergic system, and it is possible that worms modulate host purinergic signaling. Current data obtained in murine models of schistosomiasis support the notion that the host purinergic system is altered by the disease. The dysfunction of adenosine receptors, metabotropic P2Y and ionotropic P2X7 receptors, and NTPDases likely contributes to disease morbidity.

  12. Presence of Cleaved Synaptosomal-Associated Protein-25 and Decrease of Purinergic Receptors P2X3 in the Bladder Urothelium Influence Efficacy of Botulinum Toxin Treatment for Overactive Bladder Syndrome

    PubMed Central

    Chancellor, Michael B.; Kuo, Hann-Chorng

    2015-01-01

    Objectives To evaluate whether botulinum toxin A (BoNT-A) injection and Lipotoxin (liposomes with 200 U of BoNT-A) instillation target different proteins, including P2X3, synaptic vesicle glycoprotein 2A, and SNAP-25, in the bladder mucosa, leading to different treatment outcomes. Materials and Methods This was a retrospective study performed in a tertiary teaching hospital. We evaluated the clinical results of 27 OAB patients treated with intravesical BoNT-A injection (n = 16) or Lipotoxin instillation (n = 11). Seven controls were treated with saline. Patients were injected with 100 U of BoNT-A or Lipotoxinin a single intravesical instillation. The patients enrolled in this study all had bladder biopsies performed at baseline and one month after BoNT-A therapy. Treatment outcome was measured by the decreases in urgency and frequency episodes at 1 month. The functional protein expressions in the urothelium were measured at baseline and after 1 month. The Wilcoxon signed-rank test and ordinal logistic regression were used to compare the treatment outcomes. Results Both BoNT-A injection and Lipotoxin instillation treatments effectively decreased the frequency of urgency episodes in OAB patients. Lipotoxin instillation did not increase post-void residual volume. BoNT-A injection effectively cleaved SNAP-25 (p < 0.01). Liposome encapsulated BoNT-A decreased urothelial P2X3 expression in the five responders (p = 0.04), while SNAP-25 was not significantly cleaved. Conclusions The results of this study provide a possible mechanism for the therapeutic effects of BoNT-A for the treatment of OAB via different treatment forms. BoNT-A and Lipotoxin treatments effectively decreased the frequency of urgency episodes in patients with OAB. PMID:26241848

  13. Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury.

    PubMed

    Gómez-Villafuertes, Rosa; Rodríguez-Jiménez, Francisco Javier; Alastrue-Agudo, Ana; Stojkovic, Miodrag; Miras-Portugal, María Teresa; Moreno-Manzano, Victoria

    2015-01-01

    Spinal cord injury (SCI) is a major cause of paralysis with no current therapies. Following SCI, large amounts of ATP and other nucleotides are released by the traumatized tissue leading to the activation of purinergic receptors that, in coordination with growth factors, induce lesion remodeling and repair. We found that adult mammalian ependymal spinal cord-derived stem/progenitor cells (epSPCs) are capable of responding to ATP and other nucleotidic compounds, mainly through the activation of the ionotropic P2X4, P2X7, and the metabotropic P2Y1 and P2Y4 purinergic receptors. A comparative study between epSPCs from healthy rats versus epSPCis, obtained after SCI, shows a downregulation of P2Y1 receptor together with an upregulation of P2Y4 receptor in epSPCis. Moreover, spinal cord after severe traumatic contusion shows early and persistent increases in the expression of P2X4 and P2X7 receptors around the injury, which are completely reversed when epSPCis were ectopically transplanted. Since epSPCi transplantation significantly rescues neurological function after SCI in parallel to inhibition of the induced P2 ionotropic receptors, a potential avenue is open for therapeutic alternatives in SCI treatments based on purinergic receptors and the endogenous reparative modulation.

  14. Caspase-11 requires the pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock

    PubMed Central

    Yang, Dahai; He, Yuan; Muñoz-Planillo, Raul; Liu, Qin; Núñez, Gabriel

    2016-01-01

    SUMMARY The noncanonical inflammasome induced by intracellular lipopolysaccharide (LPS) leads to caspase-11-dependent pyroptosis which is critical for induction of endotoxic shock in mice. However, the signaling pathway downstream of caspase-11 is unknown. We found that cytosolic LPS stimulation induced caspase-11-dependent cleavage of the pannexin-1 channel and ATP release, which in turn activated the purinergic P2X7 receptor to mediate cytotoxicity. In the absence of P2X7 or pannexin-1, pyroptosis induced by LPS transfection or treatment with cholera toxin B and LPS was abrogated. Cleavage of pannexin-1 required the catalytic activity of caspase-11 and was essential for ATP release and P2X7-mediated pyroptosis. Priming the caspase-11 pathway in vivo with LPS or toll-like receptor-3 (TLR3) agonist resulted in high mortality in wild-type mice after secondary LPS challenge, but not in Casp11−/−, Panx1−/− or P2x7−/− mice. These results reveal a critical role for pannexin-1 and P2X7 downstream of caspase-11 for pyroptosis and susceptibility to sepsis induced by the noncanonical inflammasome. PMID:26572062

  15. Purinergic signaling in special senses.

    PubMed

    Housley, Gary D; Bringmann, Andreas; Reichenbach, Andreas

    2009-03-01

    We consider the impact of purinergic signaling on the physiology of the special senses of vision, smell, taste and hearing. Purines (particularly ATP and adenosine) act as neurotransmitters, gliotransmitters and paracrine factors in the sensory retina, nasal olfactory epithelium, taste buds and cochlea. The associated purinergic receptor signaling underpins the sensory transduction and information coding in these sense organs. The P2 and P1 receptors mediate fast transmission of sensory signals and have modulatory roles in the regulation of synaptic transmitter release, for example in the adaptation to sensory overstimulation. Purinergic signaling regulates bidirectional neuron-glia interactions and is involved in the control of blood supply, extracellular ion homeostasis and the turnover of sensory epithelia by modulating apoptosis and progenitor proliferation. Purinergic signaling is an important player in pathophysiological processes in sensory tissues, and has both detrimental (pro-apoptotic) and supportive (e.g. initiation of cytoprotective stress-signaling cascades) effects.

  16. Gene expression of muscarinic, tachykinin, and purinergic receptors in porcine bladder: comparison with cultured cells

    PubMed Central

    Bahadory, Forough; Moore, Kate H.; Liu, Lu; Burcher, Elizabeth

    2013-01-01

    Urothelial cells, myofibroblasts, and smooth muscle cells are important cell types contributing to bladder function. Multiple receptors including muscarinic (M3/M5), tachykinin (NK1/NK2), and purinergic (P2X1/P2Y6) receptors are involved in bladder motor and sensory actions. Using female pig bladder, our aim was to differentiate between various cell types in bladder by genetic markers. We compared the molecular expression pattern between the fresh tissue layers and their cultured cell counterparts. We also examined responses to agonists for these receptors in cultured cells. Urothelial, suburothelial (myofibroblasts), and smooth muscle cells isolated from pig bladder were cultured (10–14 days) and identified by marker antibodies. Gene (mRNA) expression level was demonstrated by real-time PCR. The receptor expression pattern was very similar between suburothelium and detrusor, and higher than urothelium. The gene expression of all receptors decreased in culture compared with the fresh tissue, although the reduction in cultured urothelial cells appeared less significant compared to suburothelial and detrusor cells. Cultured myofibroblasts and detrusor cells did not contract in response to the agonists acetylcholine, neurokinin A, and β,γ-MeATP, up to concentrations of 0.1 and 1 mM. The significant reduction of M3, NK2, and P2X1 receptors under culture conditions may be associated with the unresponsiveness of cultured suburothelial and detrusor cells to their respective agonists. These results suggest that under culture conditions, bladder cells lose the receptors that are involved in contraction, as this function is no longer required. The study provides further evidence that cultured cells do not necessarily mimic the actions exerted by intact tissues. PMID:24348420

  17. P2X Receptors as Drug Targets

    PubMed Central

    Jarvis, Michael F.

    2013-01-01

    The study of P2X receptors has long been handicapped by a poverty of small-molecule tools that serve as selective agonists and antagonists. There has been progress, particularly in the past 10 years, as cell-based high-throughput screening methods were applied, together with large chemical libraries. This has delivered some drug-like molecules in several chemical classes that selectively target P2X1, P2X3, or P2X7 receptors. Some of these are, or have been, in clinical trials for rheumatoid arthritis, pain, and cough. Current preclinical research programs are studying P2X receptor involvement in pain, inflammation, osteoporosis, multiple sclerosis, spinal cord injury, and bladder dysfunction. The determination of the atomic structure of P2X receptors in closed and open (ATP-bound) states by X-ray crystallography is now allowing new approaches by molecular modeling. This is supported by a large body of previous work using mutagenesis and functional expression, and is now being supplemented by molecular dynamic simulations and in silico ligand docking. These approaches should lead to P2X receptors soon taking their place alongside other ion channel proteins as therapeutically important drug targets. PMID:23253448

  18. Purinergic receptor signaling at the basolateral membrane of macula densa cells.

    PubMed

    Liu, Ruisheng; Bell, P Darwin; Peti-Peterdi, Janos; Kovacs, Gergly; Johansson, Alf; Persson, A Erik G

    2002-05-01

    Purinergic receptors are important in the regulation of renal hemodynamics; therefore, this study sought to determine if such receptors influence macula densa cell function. Isolated glomeruli containing macula densa cells, with and without the cortical thick ascending limb, were loaded with the Ca(2+) sensitive indicators, Fura Red (confocal microscopy) or fura 2 (conventional video image analysis). Studies were performed on an inverted microscope in a chamber with a flow-through perfusion system. Changes in cytosolic calcium concentration ([Ca(2+)](i)) from exposed macula densa plaques were assessed upon addition of adenosine, ATP, UTP, ADP, or 2-methylthio-ATP (2- MeS-ATP) for 2 min added to the bathing solution. There was no change in [Ca(2+)](i) with addition of adenosine (10(-7) to 10(-3) M). UTP and ATP (10(-4) M) caused [Ca(2+)](i) to increase by 268 +/- 40 nM (n = 21) and 295 +/- 53 nM (n = 21), respectively, whereas in response to 2MesATP and ADP, [Ca(2+)](i) increased by only 67 +/- 13 nM (n = 8) and 93 +/- 36 nM (n = 14), respectively. Dose response curve for ATP (10(-7) to 10(-3) M) added in bath showed an EC(50) of 15 microM. No effect on macula densa [Ca(2+)](i) was seen when ATP was added from the lumen. ATP caused similar increases in macula densa [Ca(2+)](i) in the presence or absence of bath Ca(2+) and addition of 5 mM ethyleneglycotetraacetic acid (EGTA). Suramin (an antagonist of P2X and P2Y receptors) completely inhibited ATP-induced [Ca(2+)](i) dynamics. Also, ATP-Ca(2+) responsiveness was prevented by the phospholipase C inhibitor, U-73122, but not by its inactive analog, U-73343. These results suggest that macula densa cells possess P2Y(2) purinergic receptors on basolateral but not apical membranes and that activation of these receptors results in the mobilization of Ca(2+).

  19. Osmotic regulation of NFAT5 expression in RPE cells: The involvement of purinergic receptor signaling

    PubMed Central

    Fischer, Sarah; Kuhrt, Heidrun; Wiedemann, Peter; Bringmann, Andreas; Kohen, Leon

    2017-01-01

    Purpose Systemic hypertension is a risk factor for age-related neovascular retinal diseases. The major condition that induces hypertension is the intake of dietary salt (NaCl) resulting in increased extracellular osmolarity. High extracellular NaCl was has been shown to induce angiogenic factor production in RPE cells, in part via the transcriptional activity of nuclear factor of activated T cell 5 (NFAT5). Here, we determined the signaling pathways that mediate the osmotic expression of the NFAT5 gene in RPE cells. Methods Cultured human RPE cells were stimulated with high (+100 mM) NaCl. Alterations in gene and protein expression were determined with real-time reverse transcriptase (RT)-PCR and western blot analysis, respectively. Results NaCl-induced NFAT5 gene expression was fully inhibited by calcium chelation and blockers of inositol triphosphate (IP3) receptors and phospholipases C and A2. Blockers of phospholipases C and A2 also prevented the NaCl-induced increase of the cellular NFAT5 protein level. Inhibitors of multiple intracellular signaling transduction pathways and kinases, including p38 mitogen-activated protein kinase (MAPK), extracellular signal–regulated kinases 1 and 2 (ERK1/2), c-Jun NH2-terminal kinase (JNK), phosphatidylinositol-3 kinase (PI3K), protein kinases A and C, Src tyrosine kinases, and calpains, as well as cyclooxygenase inhibitors, decreased the NaCl-induced expression of the NFAT5 gene. In addition, autocrine purinergic signaling mediated by a release of ATP and a nucleoside transporter-mediated release of adenosine, activation of P2X7, P2Y1, P2Y2, and adenosine A1 receptors, but not adenosine A2A receptors, is required for the full expression of the NFAT5 gene under hyperosmotic conditions. NaCl-induced NFAT5 gene expression is in part dependent on the activity of nuclear factor κB (NF-κB). The NaCl-induced expression of NFAT5 protein was prevented by inhibitors of phospholipases C and A2 and an inhibitor of NF-κB, but it

  20. Modulation of P2X3 and P2X2/3 Receptors by Monoclonal Antibodies.

    PubMed

    Shcherbatko, Anatoly; Foletti, Davide; Poulsen, Kris; Strop, Pavel; Zhu, Guoyun; Hasa-Moreno, Adela; Melton Witt, Jody; Loo, Carole; Krimm, Stellanie; Pios, Ariel; Yu, Jessica; Brown, Colleen; Lee, John K; Stroud, Robert; Rajpal, Arvind; Shelton, David

    2016-06-03

    Purinergic homomeric P2X3 and heteromeric P2X2/3 receptors are ligand-gated cation channels activated by ATP. Both receptors are predominantly expressed in nociceptive sensory neurons, and an increase in extracellular ATP concentration under pathological conditions, such as tissue damage or visceral distension, induces channel opening, membrane depolarization, and initiation of pain signaling. Hence, these receptors are considered important therapeutic targets for pain management, and development of selective antagonists is currently progressing. To advance the search for novel analgesics, we have generated a panel of monoclonal antibodies directed against human P2X3 (hP2X3). We have found that these antibodies produce distinct functional effects, depending on the homomeric or heteromeric composition of the target, its kinetic state, and the duration of antibody exposure. The most potent antibody, 12D4, showed an estimated IC50 of 16 nm on hP2X3 after short term exposure (up to 18 min), binding to the inactivated state of the channel to inhibit activity. By contrast, with the same short term application, 12D4 potentiated the slow inactivating current mediated by the heteromeric hP2X2/3 channel. Extending the duration of exposure to ∼20 h resulted in a profound inhibition of both homomeric hP2X3 and heteromeric hP2X2/3 receptors, an effect mediated by efficient antibody-induced internalization of the channel from the plasma membrane. The therapeutic potential of mAb12D4 was assessed in the formalin, complete Freund's adjuvant, and visceral pain models. The efficacy of 12D4 in the visceral hypersensitivity model indicates that antibodies against P2X3 may have therapeutic potential in visceral pain indications.

  1. Microglial P2Y12 Receptors Regulate Microglial Activation and Surveillance during Neuropathic Pain

    PubMed Central

    Gu, Nan; Eyo, Ukpong B.; Murugan, Madhuvika; Peng, Jiyun; Matta, Sanjana; Dong, Hailong; Wu, Long-Jun

    2016-01-01

    Microglial cells are critical in the pathogenesis of neuropathic pain and several microglial receptors have been proposed to mediate this process. Of these receptors, the P2Y12 receptor is a unique purinergic receptor that is exclusively expressed by microglia in the central nervous system (CNS). In this study, we set forth to investigate the role of P2Y12 receptors in microglial electrophysiological and morphological (static and dynamic) activation during spinal nerve transection (SNT)-induced neuropathic pain in mice. First, we found that a genetic deficiency of the P2Y12 receptor (P2Y12−/− mice) ameliorated pain hypersensitivities during the initiation phase of neuropathic pain. Next, we characterized both the electrophysiological and morphological properties of microglia in the superficial spinal cord dorsal horn following SNT injury. We show dramatic alterations including a peak at 3 days post injury in microglial electrophysiology while high resolution two-photon imaging revealed significant changes of both static and dynamic microglial morphological properties by 7 days post injury. Finally, in P2Y12−/− mice, these electrophysiological and morphological changes were ameliorated suggesting roles for P2Y12 receptors in SNT-induced microglial activation. Our results therefore indicate that P2Y12 receptors regulate microglial electrophysiological as well as static and dynamic microglial properties after peripheral nerve injury, suggesting that the microglial P2Y12 receptor could be a potential therapeutic target for the treatment of neuropathic pain. PMID:26576724

  2. Platelet-derived growth factor receptor-α-positive cells and not smooth muscle cells mediate purinergic hyperpolarization in murine colonic muscles.

    PubMed

    Kurahashi, Masaaki; Mutafova-Yambolieva, Violeta; Koh, Sang Don; Sanders, Kenton M

    2014-09-15

    Enteric inhibitory neurotransmission is an important feature of the neural regulation of gastrointestinal motility. Purinergic neurotransmission, via P2Y1 receptors, mediates one phase of inhibitory neural control. For decades, ATP has been assumed to be the purinergic neurotransmitter and smooth muscle cells (SMCs) have been considered the primary targets for inhibitory neurotransmission. Recent experiments have cast doubt on both of these assumptions and suggested that another cell type, platelet-derived growth factor receptor-α-positive (PDGFRα(+)) cells, is the target for purinergic neurotransmission. We compared responses of PDGFRα(+) cells and SMCs to several purine compounds to determine if these cells responded in a manner consistent with enteric inhibitory neurotransmission. ATP hyperpolarized PDGFRα(+) cells but depolarized SMCs. Only part of the ATP response in PDGFRα(+) cells was blocked by MRS 2500, a P2Y1 antagonist. ADP, MRS 2365, β-NAD, and adenosine 5-diphosphate-ribose, P2Y1 agonists, hyperpolarized PDGFRα(+) cells, and these responses were blocked by MRS 2500. Adenosine 5-diphosphate-ribose was more potent in eliciting hyperpolarization responses than β-NAD. P2Y1 agonists failed to elicit responses in SMCs. Small hyperpolarization responses were elicited in SMCs by a small-conductance Ca(2+)-activated K(+) channel agonist, cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine, consistent with the low expression and current density of small-conductance Ca(2+)-activated K(+) channels in these cells. Large-amplitude hyperpolarization responses, elicited in PDGFRα(+) cells, but not SMCs, by P2Y1 agonists are consistent with the generation of inhibitory junction potentials in intact muscles in response to purinergic neurotransmission. The responses of PDGFRα(+) cells and SMCs to purines suggest that SMCs are unlikely targets for purinergic neurotransmission in colonic muscles.

  3. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons.

    PubMed

    Pougnet, Johan-Till; Toulme, Estelle; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2014-07-16

    P2X receptors (P2XRs) are ATP-gated cation channels widely expressed in the brain where they mediate action of extracellular ATP released by neurons or glia. Although purinergic signaling has multiple effects on synaptic transmission and plasticity, P2XR function at brain synapses remains to be established. Here, we show that activation of postsynaptic P2XRs by exogenous ATP or noradrenaline-dependent glial release of endogenous ATP decreases the amplitude of miniature excitatory postsynaptic currents and AMPA-evoked currents in cultured hippocampal neurons. We also observed a P2X-mediated depression of field potentials recorded in CA1 region from brain slices. P2X2Rs trigger dynamin-dependent internalization of AMPA receptors (AMPARs), leading to reduced surface AMPARs in dendrites and at synapses. AMPAR alteration required calcium influx through opened ATP-gated channels and phosphatase or CamKII activities. These findings indicate that postsynaptic P2XRs play a critical role in regulating the surface expression of AMPARs and thereby regulate the synaptic strength.

  4. Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis.

    PubMed

    Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar; Dattaroy, Diptadip; Alhasson, Firas; Michelotti, Gregory; Nagarkatti, Mitzi; Nagarkatti, Prakash; Diehl, Anna Mae; Chatterjee, Saurabh

    2016-01-01

    Metabolic oxidative stress via CYP2E1 can act as a second hit in NASH progression. Our previous studies have shown that oxidative stress in NASH causes higher leptin levels and induces purinergic receptor X7 (P2X7r). We tested the hypothesis that higher circulating leptin due to CYP2E1-mediated oxidative stress induces P2X7r. P2X7r in turn activates stellate cells and causes increased proliferation via modulating Glut4, the glucose transporter, and increased intracellular glucose. Using a high fat diet-fed NAFLD model where bromodichloromethane (BDCM) was administered to induce CYP2E1-mediated oxidative stress, we show that P2X7r expression and protein levels were leptin and CYP2E1 dependent. P2X7r KO mice had significantly decreased stellate cell proliferation. Human NASH livers showed marked increase in P2X7r, and Glut4 in α-SMA positive cells. NASH livers had significant increase in Glut4 protein and phosphorylated AKT, needed for Glut4 translocation while leptin KO and P2X7r KO mice showed marked decrease in Glut4 levels primarily in stellate cells. Mechanistically stellate cells showed increase in phosphorylated AKT, Glut4 protein and localization in the membrane following administration of P2X7r agonist or leptin+P2X7r agonist, while use of P2X7r antagonist or AKT inhibitor attenuated the response suggesting that leptin-P2X7r axis in concert but not leptin alone is responsible for the Glut4 induction and translocation. Finally P2X7r-agonist and leptin caused an increase in intracellular glucose and consumption by increasing the activity of hexokinase. In conclusion, the study shows a novel role of leptin-induced P2X7r in modulating Glut4 induction and translocation in hepatic stellate cells, that are key to NASH progression.

  5. Allosteric modulation of ATP-gated P2X receptor channels

    PubMed Central

    Coddou, Claudio; Stojilkovic, Stanko S.; Huidobro-Toro, J. Pablo

    2013-01-01

    Seven mammalian purinergic receptor subunits, denoted P2X1 to P2X7, and several spliced forms of these subunits have been cloned. When heterologously expressed, these cDNAs encode ATP-gated non-selective cation channels organized as trimers. All activated receptors produce cell depolarization and promote Ca2+ influx through their pores and indirectly by activating voltage-gated calcium channels. However, the biophysical and pharmacological properties of these receptors differ considerably, and the majority of these subunits are also capable of forming heterotrimers with other members of the P2X receptor family, which confers further different properties. These channels have three ATP binding domains, presumably located between neighboring subunits, and occupancy of at least two binding sites is needed for their activation. In addition to the orthosteric binding sites for ATP, these receptors have additional allosteric sites that modulate the agonist action at receptors, including sites for trace metals, protons, neurosteroids, reactive oxygen species and phosphoinositides. The allosteric regulation of P2X receptors is frequently receptor-specific and could be a useful tool to identify P2X members in native tissues and their roles in signaling. The focus of this review is on common and receptor-specific allosteric modulation of P2X receptors and the molecular base accounting for allosteric binding sites. PMID:21639805

  6. P2X7 receptor activation regulates rapid unconventional export of transglutaminase-2

    PubMed Central

    Adamczyk, Magdalena; Griffiths, Rhiannon; Dewitt, Sharon; Knäuper, Vera; Aeschlimann, Daniel

    2015-01-01

    ABSTRACT Transglutaminases (denoted TG or TGM) are externalized from cells via an unknown unconventional secretory pathway. Here, we show for the first time that purinergic signaling regulates active secretion of TG2 (also known as TGM2), an enzyme with a pivotal role in stabilizing extracellular matrices and modulating cell–matrix interactions in tissue repair. Extracellular ATP promotes TG2 secretion by macrophages, and this can be blocked by a selective antagonist against the purinergic receptor P2X7 (P2X7R, also known as P2RX7). Introduction of functional P2X7R into HEK293 cells is sufficient to confer rapid, regulated TG2 export. By employing pharmacological agents, TG2 release could be separated from P2X7R-mediated microvesicle shedding. Neither Ca2+ signaling alone nor membrane depolarization triggered TG2 secretion, which occurred only upon receptor membrane pore formation and without pannexin channel involvement. A gain-of-function mutation in P2X7R associated with autoimmune disease caused enhanced TG2 externalization from cells, and this correlated with increased pore activity. These results provide a mechanistic explanation for a link between active TG2 secretion and inflammatory responses, and aberrant enhanced TG2 activity in certain autoimmune conditions. PMID:26542019

  7. Purinergic Receptors in Quiescence and Localization of Leukemic Stem Cells

    DTIC Science & Technology

    2013-05-01

    Thirty minutes after PTX injection, the mice were subjected to 6 Gy TBI, and then the bone marrow cells were transplanted into lethally irradiated...senescence. 6 Interestingly, when normal mouse thymocytes were exposed to various doses of irradiation, there was dose -dependent increase of cell...Figure 3. Dose -dependent increase of P2Y14 receptor upon radiation Thymocytes were prepared from 4-6 week-old wild type mice and exposed in

  8. Glycosides from edible sea cucumbers stimulate macrophages via purinergic receptors

    PubMed Central

    Aminin, Dmitry; Pislyagin, Evgeny; Astashev, Maxim; Es’kov, Andrey; Kozhemyako, Valery; Avilov, Sergei; Zelepuga, Elena; Yurchenko, Ekaterina; Kaluzhskiy, Leonid; Kozlovskaya, Emma; Ivanov, Alexis; Stonik, Valentin

    2016-01-01

    Since ancient times, edible sea cucumbers have been considered a jewel of the seabed and used in Asian folk medicine for stimulation of resistance against different diseases. However, the power of this sea food has not been established on a molecular level. A particular group of triterpene glycosides was found to be characteristic metabolites of the animals, responsible for this biological action. Using one of them, cucumarioside A2-2 (CA2-2) from the edible Cucumaria japonica species as an example as well as inhibitory analysis, patch-clamp on single macrophages, small interfering RNA technique, immunoblotting, SPR analysis, computer modeling and other methods, we demonstrate low doses of CA2-2 specifically to interact with P2X receptors (predominantly P2X4) on membranes of mature macrophages, enhancing the reversible ATP-dependent Ca2+ intake and recovering Ca2+ transport at inactivation of these receptors. As result, interaction of glycosides of this type with P2X receptors leads to activation of cellular immunity. PMID:28004778

  9. P2X receptors in the cardiovascular system and their potential as therapeutic targets in disease.

    PubMed

    Ralevic, Vera

    2015-01-01

    This review considers the expression and roles of P2X receptors in the cardiovascular system in health and disease and their potential as therapeutic targets. P2X receptors are ligand gated ion channels which are activated by the endogenous ligand ATP. They are formed from the assembly of three P2X subunit proteins from the complement of seven (P2X1-7), which can associate to form homomeric or heteromeric P2X receptors. The P2X1 receptor is widely expressed in the cardiovascular system, being located in the heart, in the smooth muscle of the majority of blood vessels and in platelets. P2X1 receptors expressed in blood vessels can be activated by ATP coreleased with noradrenaline as a sympathetic neurotransmitter, leading to smooth muscle depolarisation and contraction. There is evidence that the purinergic component of sympathetic neurotransmission is increased in hypertension, identifying P2X1 receptors as a possible therapeutic target in this disorder. P2X3 and P2X2/3 receptors are expressed on cardiac sympathetic neurones and may, through positive feedback of neuronal ATP at this prejunctional site, amplify sympathetic neurotransmission. Activation of P2X receptors expressed in the heart increases cardiac myocyte contractility, and an important role of the P2X4 receptor in this has been identified. Deletion of P2X4 receptors in the heart depresses contractile performance in models of heart failure, while overexpression of P2X4 receptors has been shown to be cardioprotective, thus P2X4 receptors may be therapeutic targets in the treatment of heart disease. P2X receptors have been identified on endothelial cells. Although immunoreactivity for all P2X1-7 receptor proteins has been shown on the endothelium, relatively little is known about their function, with the exception of the endothelial P2X4 receptor, which has been shown to mediate endothelium-dependent vasodilatation to ATP released during shear stress. The potential of P2X receptors as therapeutic targets

  10. Potential Involvement of P2 Receptors in the Pathological Processes of Hyperthyroidism: A Pilot Study.

    PubMed

    Hong, Wu; Li, Guodong; Nie, Yijun; Zou, Lifang; Zhang, Xi; Liu, Shuangmei; Li, Guilin; Xu, Hong; Zhang, Chun-Ping; Liang, Shangdong

    2016-05-01

    Symptoms of hyperthyroidism manifest mainly as changes in the nervous and metabolic systems. Whether P2X receptors (ionotropic ATP purinergic receptors, including P2X3 receptor and P2X7 receptor) are involved in the alterations of these disorders still remains unclear. Thus, this study aimed to assess the association of hyperthyroidism with the expression of P2X3 and P2X7 receptors and the concentrations of ATP in blood leukocytes and catecholamine. Twelve healthy subjects and twelve patients diagnosed with hyperthyroidism were recruited. Serum free triiodothyronine (FT3), free thyroxine (FT4) and thyroid stimulating hormone (TSH) levels had been detected by chemiluminescence method. Meanwhile, the catecholamine levels (including adrenaline, noradrenaline, and dopamine) in plasma, ATP level and P2X receptors (including P2X3 receptor and P2X7 receptor) in peripheral blood had been detected by high performance liquid chromatography, bioluminescence method, and reverse transcription polymerase chain reaction, respectively. Levels of epinephrine and norepinephrine were significantly higher in the hyperthyroidism group compared with the control group. The concentration of ATP in the hyperthyroidism group was significantly higher than its in the control group. The expression of P2X3 mRNA and P2X7 mRNA in hyperthyroidism group were significantly increased compared with those in control group. In a conclusion, there is a relationship between the elevated expression of P2X3 receptor and P2X7 receptor in peripheral blood leukocytes and high serum epinephrine and norepinephrine levels in hyperthyroidism patients.

  11. Extracellular nucleotides inhibit growth of human oesophageal cancer cells via P2Y2-receptors

    PubMed Central

    Maaser, K; Höpfner, M; Kap, H; Sutter, A P; Barthel, B; von Lampe, B; Zeitz, M; Scherübl, H

    2002-01-01

    Extracellular ATP is known to inhibit growth of various tumours by activating specific purinergic receptors (P2-receptors). Since the therapy of advanced oesophageal cancer is unsatisfying, new therapeutic approaches are mandatory. Here, we investigated the functional expression and potential antiproliferative effects of P2-purinergic receptors in human oesophageal cancer cells. Prolonged incubation of primary cell cultures of human oesophageal cancers as well as of the squamous oesophageal cancer cell line Kyse-140 with ATP or its stable analogue ATPγS dose-dependently inhibited cell proliferation. This was due to both an induction of apoptosis and cell cycle arrest. The expression of P2-receptors was examined by RT-PCR, immunocytochemistry, and [Ca2+]i-imaging. Application of various extracellular nucleotides dose-dependently increased [Ca2+]i. The rank order of potency was ATP=UTP>ATPγS>ADP=UDP. 2-methylthio-ATP and α,β-methylene-ATP had no effects on [Ca2+]i. Complete cross-desensitization between ATP and UTP was observed. Moreover, the phospholipase C inhibitor U73122 dose-dependently reduced the ATP triggered [Ca2+]i signal. The pharmacological features strongly suggest the functional expression of G-protein coupled P2Y2-receptors in oesophageal squamous cancer cells. P2Y2-receptors are involved in the antiproliferative actions of extracellular nucleotides. Thus, P2Y2-receptors are promising target proteins for innovative approaches in oesophageal cancer therapy. British Journal of Cancer (2002) 86, 636–644. DOI: 10.1038/sj/bjc/6600100 www.bjcancer.com © 2002 Cancer Research UK PMID:11870549

  12. Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury

    PubMed Central

    Nadal-Nicolás, Francisco M.; Galindo-Romero, Caridad; Valiente-Soriano, Francisco J.; Barberà-Cremades, María; deTorre-Minguela, Carlos; Salinas-Navarro, Manuel; Pelegrín, Pablo; Agudo-Barriuso, Marta

    2016-01-01

    Axonal injury is a common feature of central nervous system insults that culminates with the death of the affected neurons, and an irreversible loss of function. Inflammation is an important component of the neurodegenerative process, where the microglia plays an important role by releasing proinflammatory factors as well as clearing the death neurons by phagocytosis. Here we have identified the purinergic signaling through the P2X7 receptor as an important component for the neuronal death in a model of optic nerve axotomy. We have found that in P2X7 receptor deficient mice there is a delayed loss of retinal ganglion cells and a decrease of phagocytic microglia at early times points after axotomy. In contralateral to the axotomy retinas, P2X7 receptor controlled the numbers of phagocytic microglia, suggesting that extracellular ATP could act as a danger signal activating the P2X7 receptor in mediating the loss of neurons in contralateral retinas. Finally, we show that intravitreal administration of the selective P2X7 receptor antagonist A438079 also delays axotomy-induced retinal ganglion cell death in retinas from wild type mice. Thus, our work demonstrates that P2X7 receptor signaling is involved in neuronal cell death after axonal injury, being P2X7 receptor antagonism a potential therapeutic strategy. PMID:27929040

  13. Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Müller) cells by transactivation of glutamatergic and purinergic receptors.

    PubMed

    Vogler, Stefanie; Winters, Helge; Pannicke, Thomas; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2016-01-01

    Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Sigma (σ) receptor activation is known to have neuroprotective effects in the retina. Here, we show that the nonselective σ receptor agonist ditolylguanidine, and the selective σ1 receptor agonist PRE-084, inhibit the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices with a hypoosmotic solution containing barium ions. In contrast, PRE-084 did not inhibit the osmotic swelling of bipolar cell somata. The effects of σ receptor agonists on the Müller cell swelling were abrogated in the presence of blockers of metabotropic glutamate and purinergic P2Y1 receptors, respectively, suggesting that σ receptor activation triggers activation of a glutamatergic-purinergic signaling cascade which is known to prevent the osmotic Müller cell swelling. The swelling-inhibitory effect of 17β-estradiol was prevented by the σ1 receptor antagonist BD1047, suggesting that the effect is mediated by σ1 receptor activation. The data may suggest that the neuroprotective effect of σ receptor activation in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial cells.

  14. Functional properties of five Dictyostelium discoideum P2X receptors.

    PubMed

    Baines, Abigail; Parkinson, Katie; Sim, Joan A; Bragg, Laricia; Thompson, Christopher R L; North, R Alan

    2013-07-19

    The Dictyostelium discoideum genome encodes five proteins that share weak sequence similarity with vertebrate P2X receptors. Unlike vertebrate P2X receptors, these proteins are not expressed on the surface of cells, but populate the tubules and bladders of the contractile vacuole. In this study, we expressed humanized cDNAs of P2XA, P2XB, P2XC, P2XD, and P2XE in human embryonic kidney cells and altered the ionic and proton environment in an attempt to reflect the situation in amoeba. Recording of whole-cell membrane currents showed that four receptors operated as ATP-gated channels (P2XA, P2XB, P2XD, and P2XE). At P2XA receptors, ATP was the only effective agonist of 17 structurally related putative ligands that were tested. Extracellular sodium, compared with potassium, strongly inhibited ATP responses in P2XB, P2XD, and P2XE receptors. Increasing the proton concentration (pH 6.2) accelerated desensitization at P2XA receptors and decreased currents at P2XD receptors, but increased the currents at P2XB and P2XE receptors. Dictyostelium lacking P2XA receptors showed impaired regulatory volume decrease in hypotonic solution. This phenotype was readily rescued by overexpression of P2XA and P2XD receptors, partially rescued by P2XB and P2XE receptors, and not rescued by P2XC receptors. The failure of the nonfunctional receptor P2XC to restore the regulatory volume decrease highlights the importance of ATP activation of P2X receptors for a normal response to hypo-osmotic shock, and the weak rescue by P2XB and P2XE receptors indicates that there is limited functional redundancy among Dictyostelium P2X receptors.

  15. Important roles of P2Y receptors in the inflammation and cancer of digestive system

    PubMed Central

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-01-01

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future. PMID:26908460

  16. ATP activates P2x receptors and requires extracellular Ca(++) participation to modify outer hair cell nonlinear capacitance.

    PubMed

    Yu, Ning; Zhao, Hong-Bo

    2008-11-01

    Intracochlear ATP is an important mediator in regulating hearing function. ATP can activate ionotropic purinergic (P2x) and metabotropic purinergic (P2y) receptors to influence cell functions. In this paper, we report that ATP can activate P2x receptors directly to modify outer hair cell (OHC) electromotility, which is an active cochlear amplifier determining hearing sensitivity and frequency selectivity in mammals. We found that ATP, but not UTP, a P2y receptor agonist, reduced the OHC electromotility-associated nonlinear capacitance (NLC) and shifted its voltage dependence to the right (depolarizing) direction. Blockage of the activation of P2x receptors by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) could block the ATP effect. This modification also required extracellular Ca(++) participation. Removal of extracellular Ca(++) abolished the ATP effect. However, chelation of intracellular Ca(++) concentration by a fast calcium-chelating reagent 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA, 10 mM) did not affect the effect of ATP on NLC. The effect is also independent of K(+) ions. Substitution of Cs(+) for intracellular or extracellular K(+) did not affect the ATP effect. Our findings indicate that ATP activates P2x receptors instead of P2y receptors to modify OHC electromotility. Extracellular Ca(++) is required for this modification.

  17. P2X7 receptors trigger ATP exocytosis and modify secretory vesicle dynamics in neuroblastoma cells.

    PubMed

    Gutiérrez-Martín, Yolanda; Bustillo, Diego; Gómez-Villafuertes, Rosa; Sánchez-Nogueiro, Jesús; Torregrosa-Hetland, Cristina; Binz, Thomas; Gutiérrez, Luis Miguel; Miras-Portugal, María Teresa; Artalejo, Antonio R

    2011-04-01

    Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca(2+)/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca(2+)-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca(2+) concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca(2+) and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation.

  18. P2X7 Receptors Trigger ATP Exocytosis and Modify Secretory Vesicle Dynamics in Neuroblastoma Cells*

    PubMed Central

    Gutiérrez-Martín, Yolanda; Bustillo, Diego; Gómez-Villafuertes, Rosa; Sánchez-Nogueiro, Jesús; Torregrosa-Hetland, Cristina; Binz, Thomas; Gutiérrez, Luis Miguel; Miras-Portugal, María Teresa; Artalejo, Antonio R.

    2011-01-01

    Previously, we reported that purinergic ionotropic P2X7 receptors negatively regulate neurite formation in Neuro-2a (N2a) mouse neuroblastoma cells through a Ca2+/calmodulin-dependent kinase II-related mechanism. In the present study we used this cell line to investigate a parallel though faster P2X7 receptor-mediated signaling pathway, namely Ca2+-regulated exocytosis. Selective activation of P2X7 receptors evoked exocytosis as assayed by high resolution membrane capacitance measurements. Using dual-wavelength total internal reflection microscopy, we have observed both the increase in near-membrane Ca2+ concentration and the exocytosis of fluorescently labeled vesicles in response to P2X7 receptor stimulation. Moreover, activation of P2X7 receptors also affects vesicle motion in the vertical and horizontal directions, thus, involving this receptor type in the control of early steps (docking and priming) of the secretory pathway. Immunocytochemical and RT-PCR experiments evidenced that N2a cells express the three neuronal SNAREs as well as vesicular nucleotide and monoamine (VMAT-1 and VMAT-2) transporters. Biochemical measurements indicated that ionomycin induced a significant release of ATP from N2a cells. Finally, P2X7 receptor stimulation and ionomycin increased the incidence of small transient inward currents, reminiscent of postsynaptic quantal events observed at synapses. Small transient inward currents were dependent on extracellular Ca2+ and were abolished by Brilliant Blue G, suggesting they were mediated by P2X7 receptors. Altogether, these results suggest the existence of a positive feedback mechanism mediated by P2X7 receptor-stimulated exocytotic release of ATP that would act on P2X7 receptors on the same or neighbor cells to further stimulate its own release and negatively control N2a cell differentiation. PMID:21292765

  19. Ependymal cells along the lateral ventricle express functional P2X(7) receptors.

    PubMed

    Genzen, Jonathan R; Platel, Jean-Claude; Rubio, Maria E; Bordey, Angelique

    2009-09-01

    Ependymal cells line the cerebral ventricles and are located in an ideal position to detect central nervous system injury and inflammation. The signaling mechanisms of ependymal cells, however, are poorly understood. As extracellular adenosine 5'-triphosphate is elevated in the context of cellular damage, experiments were conducted to determine whether ependymal cells along the mouse subventricular zone (SVZ) express functional purinergic receptors. Using whole-cell patch clamp recording, widespread expression of P2X(7) receptors was detected on ependymal cells based on their antagonist sensitivity profile and absence of response in P2X(7) (-/-) mice. Immunocytochemistry confirmed the expression of P2X(7) receptors, and electron microscopy demonstrated that P2X(7) receptors are expressed on both cilia and microvilli. Ca(2+) imaging showed that P2X(7) receptors expressed on cilia are indeed functional. As ependymal cells are believed to function as partner cells in the SVZ neurogenic niche, P2X(7) receptors may play a role in neural progenitor response to injury and inflammation.

  20. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain.

    PubMed

    Hanani, Menachem

    2012-12-03

    Peripheral injury can cause abnormal activity in sensory neurons, which is a major factor in chronic pain. Recent work has shown that injury induces major changes not only in sensory neurons but also in the main type of glial cells in sensory ganglia-satellite glial cells (SGCs), and that interactions between sensory neurons and SGCs contribute to neuronal activity in pain models. The main functional changes observed in SGCs after injury are an increased gap junction-mediated coupling among these cells, and augmented sensitivity to ATP. There is evidence that the augmented gap junctions contribute to neuronal hyperexcitability in pain models, but the mechanism underlying this effect is not known. The changes in SGCs described above have been found following a wide range of injuries (both axotomy and inflammation) in somatic, orofacial and visceral regions, and therefore appear to be a general feature in chronic pain. We have found that in cultures of sensory ganglia calcium signals can spread from an SGC to neighboring cells by calcium waves, which are mediated by gap junctions and ATP acting on purinergic P2 receptors. A model is proposed to explain how augmented gap junctions and greater sensitivity to ATP can combine to produce enhanced calcium waves, which can lead to neuronal excitation. Thus this simple scheme can account for several major changes in sensory ganglia that are common to a great variety of pain models.

  1. A Dual Role for P2X7 Receptor during Porphyromonas gingivalis Infection

    PubMed Central

    Ramos-Junior, E.S.; Morandini, A.C.; Almeida-da-Silva, C.L.C.; Franco, E.J.; Potempa, J.; Nguyen, K.A.; Oliveira, A.C.; Zamboni, D.S.; Ojcius, D.M.; Scharfstein, J.

    2015-01-01

    Emerging evidence suggests a role for purinergic signaling in the activation of multiprotein intracellular complexes called inflammasomes, which control the release of potent inflammatory cytokines, such as interleukin (IL) -1β and -18. Porphyromonas gingivalis is intimately associated with periodontitis and is currently considered one of the pathogens that can subvert the immune system by limiting the activation of the NLRP3 inflammasome. We recently showed that P. gingivalis can dampen eATP-induced IL-1β secretion by means of its fimbriae in a purinergic P2X7 receptor–dependent manner. Here, we further explore the role of this purinergic receptor during eATP-induced IL-1β processing and secretion by P. gingivalis–infected macrophages. We found that NLRP3 was necessary for eATP-induced IL-1β secretion as well as for caspase 1 activation irrespective of P. gingivalis fimbriae. Additionally, although the secretion of IL-1β from P. gingivalis–infected macrophages was dependent on NLRP3, its adaptor protein ASC, or caspase 1, the cleavage of intracellular pro-IL-1β to the mature form was found to occur independently of NLRP3, its adaptor protein ASC, or caspase 1. Our in vitro findings revealed that P2X7 receptor has a dual role, being critical not only for eATP-induced IL-1β secretion but also for intracellular pro-IL-1β processing. These results were relevant in vivo since P2X7 receptor expression was upregulated in a P. gingivalis oral infection model, and reduced IFN-γ and IL-17 were detected in draining lymph node cells from P2rx7-/- mice. Furthermore, we demonstrated that P2X7 receptor and NLRP3 transcription were modulated in human chronic periodontitis. Overall, we conclude that the P2X7 receptor has a role in periodontal immunopathogenesis and suggest that targeting of the P2X7/NLRP3 pathway should be considered in future therapeutic interventions in periodontitis. PMID:26152185

  2. Current knowledge on the role of P2Y receptors in cardioprotection against ischemia-reperfusion.

    PubMed

    Djerada, Zoubir; Feliu, Catherine; Richard, Vincent; Millart, Hervé

    2017-04-01

    During ischemia, numerous effective endogenous extracellular mediators have been identified, particularly, nucleosides such as adenosine as well as purinergic and pyrimidinergic nucleotides. They may play important regulatory roles within the cardiovascular system and notably as cardio-protectants. Indeed, the distribution of the P2Y receptors in mammalian heart includes several cellular constituents relevant for the pathophysiology of myocardial ischemia. Beside the well-known cardioprotective effect of adenosine, the additional protective role of P2Y receptors has emerged. However, interpretation of experimental results may be sometimes perplexing. This is due to the variability of: the experimental models, the endpoints criteria, the chemical structure of agonist and antagonist ligands and their concentrations, the sequences of drug administration with respect to the model used (before and/or during and/or after ischemia). The net effect may be in the opposite direction after a transient or a prolonged stimulation. Nevertheless, the overall reading of published data highlights the beneficial role of the P2Y2/4 receptor stimulation, the useful and synergistic role of P2Y6/11 receptor activation and even of the P2Y11 receptor alone in cardioprotection. More, the P2Y11 receptor could be involved in counter-regulation of profibrotic processes. Paradoxically, transient P2X7 receptor stimulation could contribute to the net cardioprotective effect of ATP. Recently, experimental data have shown that blocking the P2Y12 receptor after ischemia confers cardioprotection independently of platelet antiaggregatory effect. This suggests for P2Y receptors an important role in primary prevention and as a therapeutic target in myocardial protection during ischemia and reperfusion.

  3. Lipopolysaccharide Inhibits the Channel Activity of the P2X7 Receptor

    PubMed Central

    Leiva-Salcedo, Elias; Coddou, Claudio; Rodríguez, Felipe E.; Penna, Antonello; Lopez, Ximena; Neira, Tanya; Fernández, Ricardo; Imarai, Mónica; Rios, Miguel; Escobar, Jorge; Montoya, Margarita; Huidobro-Toro, J. Pablo; Escobar, Alejandro; Acuña-Castillo, Claudio

    2011-01-01

    The purinergic P2X7 receptor (P2X7R) plays an important role during the immune response, participating in several events such as cytokine release, apoptosis, and necrosis. The bacterial endotoxin lipopolysaccharide (LPS) is one of the strongest stimuli of the immune response, and it has been shown that P2X7R activation can modulate LPS-induced responses. Moreover, a C-terminal binding site for LPS has been proposed. In order to evaluate if LPS can directly modulate the activity of the P2X7R, we tested several signaling pathways associated with P2X7R activation in HEK293 cells that do not express the TLR-4 receptor. We found that LPS alone was unable to induce any P2X7R-related activity, suggesting that the P2X7R is not directly activated by the endotoxin. On the other hand, preapplication of LPS inhibited ATP-induced currents, intracellular calcium increase, and ethidium bromide uptake and had no effect on ERK activation in HEK293 cells. In splenocytes-derived T-regulatory cells, in which ATP-induced apoptosis is driven by the P2X7R, LPS inhibited ATP-induced apoptosis. Altogether, these results demonstrate that LPS modulates the activity of the P2X7R and suggest that this effect could be of physiological relevance. PMID:21941410

  4. Uridine adenosine tetraphosphate is a novel neurogenic P2Y1 receptor activator in the gut

    PubMed Central

    Durnin, Leonie; Hwang, Sung Jin; Kurahashi, Masaaki; Drumm, Bernard T.; Ward, Sean M.; Sasse, Kent C.; Sanders, Kenton M.; Mutafova-Yambolieva, Violeta N.

    2014-01-01

    Enteric purinergic motor neurotransmission, acting through P2Y1 receptors (P2Y1R), mediates inhibitory neural control of the intestines. Recent studies have shown that NAD+ and ADP ribose better meet criteria for enteric inhibitory neurotransmitters in colon than ATP or ADP. Here we report that human and murine colon muscles also release uridine adenosine tetraphosphate (Up4A) spontaneously and upon stimulation of enteric neurons. Release of Up4A was reduced by tetrodotoxin, suggesting that at least a portion of Up4A is of neural origin. Up4A caused relaxation (human and murine colons) and hyperpolarization (murine colon) that was blocked by the P2Y1R antagonist, MRS 2500, and by apamin, an inhibitor of Ca2+-activated small-conductance K+ (SK) channels. Up4A responses were greatly reduced or absent in colons of P2ry1−/− mice. Up4A induced P2Y1R–SK-channel–mediated hyperpolarization in isolated PDGFRα+ cells, which are postjunctional targets for purinergic neurotransmission. Up4A caused MRS 2500-sensitive Ca2+ transients in human 1321N1 astrocytoma cells expressing human P2Y1R. Up4A was more potent than ATP, ADP, NAD+, or ADP ribose in colonic muscles. In murine distal colon Up4A elicited transient P2Y1R-mediated relaxation followed by a suramin-sensitive contraction. HPLC analysis of Up4A degradation suggests that exogenous Up4A first forms UMP and ATP in the human colon and UDP and ADP in the murine colon. Adenosine then is generated by extracellular catabolism of ATP and ADP. However, the relaxation and hyperpolarization responses to Up4A are not mediated by its metabolites. This study shows that Up4A is a potent native agonist for P2Y1R and SK-channel activation in human and mouse colon. PMID:25341729

  5. Melittin modulates keratinocyte function through P2 receptor-dependent ADAM activation.

    PubMed

    Sommer, Anselm; Fries, Anja; Cornelsen, Isabell; Speck, Nancy; Koch-Nolte, Friedrich; Gimpl, Gerald; Andrä, Jörg; Bhakdi, Sucharit; Reiss, Karina

    2012-07-06

    Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent.

  6. Sustained calcium entry through P2X nucleotide receptor channels in human airway epithelial cells.

    PubMed

    Zsembery, Akos; Boyce, Amanda T; Liang, Lihua; Peti-Peterdi, János; Bell, P Darwin; Schwiebert, Erik M

    2003-04-11

    Purinergic receptor stimulation has potential therapeutic effects for cystic fibrosis (CF). Thus, we explored roles for P2Y and P2X receptors in stably increasing [Ca(2+)](i) in human CF (IB3-1) and non-CF (16HBE14o(-)) airway epithelial cells. Cytosolic Ca(2+) was measured by fluorospectrometry using the fluorescent dye Fura-2/AM. Expression of P2X receptor (P2XR) subtypes was assessed by immunoblotting and biotinylation. In IB3-1 cells, ATP and other P2Y agonists caused only a transient increase in [Ca(2+)](i) derived from intracellular stores in a Na(+)-rich environment. In contrast, ATP induced an increase in [Ca(2+)](i) that had transient and sustained components in a Na(+)-free medium; the sustained plateau was potentiated by zinc or increasing extracellular pH. Benzoyl-benzoyl-ATP, a P2XR-selective agonist, increased [Ca(2+)](i) only in Na(+)-free medium, suggesting competition between Na(+) and Ca(2+) through P2XRs. Biochemical evidence showed that the P2X(4) receptor is the major subtype shared by these airway epithelial cells. A role for store-operated Ca(2+) channels, voltage-dependent Ca(2+) channels, or Na(+)/Ca(2+) exchanger in the ATP-induced sustained Ca(2+) signal was ruled out. In conclusion, these data show that epithelial P2X(4) receptors serve as ATP-gated calcium entry channels that induce a sustained increase in [Ca(2+)](i). In airway epithelia, a P2XR-mediated Ca(2+) signal may have therapeutic benefit for CF.

  7. Inflammatory early events associated to the role of P2X7 receptor in acute murine toxoplasmosis.

    PubMed

    Corrêa, Gladys; Almeida Lindenberg, Carolina de; Moreira-Souza, Aline Cristina de Abreu; Savio, Luiz Eduardo Baggio; Takiya, Christina Maeda; Marques-da-Silva, Camila; Vommaro, Rossiane Claudia; Coutinho-Silva, Robson

    2017-04-01

    Activation of the purinergic P2X7 receptor by extracellular ATP (eATP) potentiates proinflammatory responses during infections by intracellular pathogens. Extracellular ATP triggers an antimicrobial response in macrophages infected with Toxoplasma gondii in vitro, suggesting that purinergic signaling may stimulate host defense mechanisms against toxoplasmosis. Here, we provide in vivo evidence in support of this hypothesis, by showing that P2X7(-/-) mice are more susceptible than P2X7(+/+) mice to acute infection by the RH strain of T. gondii, and that this phenomenon is associated with a deficient proinflammatory response. Four days post-infection, peritoneal washes from infected P2X7(-/-) mice had no or little increase in the levels of the proinflammatory cytokines IL-12, IL-1β, IFN-γ, and TNF-α, whose levels increased markedly in samples from infected P2X7(+/+) mice. Infected P2X7(-/-) mice displayed an increase in organ weight and histological alterations in some of the 'shock organs' in toxoplasmosis - the liver, spleen and mesenteric lymph nodes. The liver of infected P2X7(-/-) mice had smaller granulomas, but increased parasite load/granuloma. Our results confirm that the P2X7 receptor is involved in containing T. gondii spread in vivo, by stimulating inflammation.

  8. Evaluation of P2X7 receptor expression in peripheral lymphocytes and immune profile from patients with indeterminate form of Chagas disease.

    PubMed

    Souza, Viviane do Carmo Gonçalves; Dos Santos, Joabel Tonellotto; Cabral, Fernanda Licker; Barbisan, Fernanda; Azevedo, Maria Isabel; Dias Carli, Luiz Felipe; de Avila Botton, Sonia; Dos Santos Jaques, Jeandre Augusto; Rosa Leal, Daniela Bitencourt

    2017-03-01

    Chagas disease (CD) is caused by Trypanosoma cruzi, an intracellular protozoan which is a potent stimulator of cell-mediated immunity. In the indeterminate form of CD (IFCD) a modulation between pro- and anti-inflammatory responses establishes a host-parasite adaptation. It was previously demonstrated that purinergic ecto-enzymes regulates extracellular ATP and adenosine levels, influencing immune and inflammatory processes during IFCD. In inflammatory sites ATP, as well as its degradation product, adenosine, function as signaling molecules and immunoregulators through the activation of purinergic receptors. In this work, it was analyzed the gene and protein expression of P2X7 purinergic receptor in peripheral lymphocytes and serum immunoregulatory cytokines from IFCD patients. Gene and protein expression of P2X7 receptor (P2X7R), and serum cytokines (IL-2, IL-10, IL-17 and IFN-γ) were unaltered. However, IFCD group showed significantly higher IL-4 and IL-6 levels while TNF-α was significantly decreased. These results indicate that imune profile of IFCD patients displays anti-inflammatory characteristics, consistent with the establishment of an immunomodulatory response. Further study about the molecular knowledge of P2X7R in IFCD is useful to clarify the participation of purinergic system in the regulatory mechanism which avoid the progression of CD.

  9. The P2X7 Receptor Supports Both Life and Death in Fibrogenic Pancreatic Stellate Cells

    PubMed Central

    Haanes, Kristian A.; Schwab, Albrecht; Novak, Ivana

    2012-01-01

    The pancreatic stellate cells (PSCs) have complex roles in pancreas, including tissue repair and fibrosis. PSCs surround ATP releasing exocrine cells, but little is known about purinergic receptors and their function in PSCs. Our aim was to resolve whether PSCs express the multifunctional P2X7 receptor and elucidate how it regulates PSC viability. The number of PSCs isolated from wild type (WT) mice was 50% higher than those from the Pfizer P2X7 receptor knock out (KO) mice. The P2X7 receptor protein and mRNA of all known isoforms were expressed in WT PSCs, while KO PSCs only expressed truncated versions of the receptor. In culture, the proliferation rate of the KO PSCs was significantly lower. Inclusion of apyrase reduced the proliferation rate in both WT and KO PSCs, indicating importance of endogenous ATP. Exogenous ATP had a two-sided effect. Proliferation of both WT and KO cells was stimulated with ATP in a concentration-dependent manner with a maximum effect at 100 µM. At high ATP concentration (5 mM), WT PSCs, but not the KO PSCs died. The intracellular Ca2+ signals and proliferation rate induced by micromolar ATP concentrations were inhibited by the allosteric P2X7 receptor inhibitor az10606120. The P2X7 receptor-pore inhibitor A438079 partially prevented cell death induced by millimolar ATP concentrations. This study shows that ATP and P2X7 receptors are important regulators of PSC proliferation and death, and therefore might be potential targets for treatments of pancreatic fibrosis and cancer. PMID:23284663

  10. P2 receptors activated by uracil nucleotides--an update.

    PubMed

    Brunschweiger, Andreas; Müller, Christa E

    2006-01-01

    Pyrimidine nucleotides, including UTP, UDP and UDP-glucose, are important signaling molecules which activate G protein-coupled membrane receptors (GPCRs) of the P2Y family. Four distinct pyrimidine nucleotide-sensitive P2Y receptor subtypes have been cloned, P2Y2, P2Y4, P2Y6 and P2Y14. P2Y2 and P2Y4 receptors are activated by UTP (the P2Y2, and the rat but not the human P2Y4 receptor are also activated by ATP), the P2Y6 receptor is activated by UDP, and the P2Y14 receptor by UDP-glucose. Furthermore, non-P2Y GPCRs, the cysteinylleukotriene receptors (CysLT1R and CysLT2R) have been described to be activated by UDP in addition to activation by cysteinylleukotrienes. While P2Y2, P2Y4, and P2Y6 receptor activation results in stimulation of phospholipase C, the P2Y14 receptor is coupled to inhibition of adenylate cyclase. Derivatives and analogs of the physiological nucleotides UTP, UDP and ATP have been synthesized and evaluated in order to obtain enzymatically stable, subtype-selective agonists. The P2Y2 receptor agonists diuridine tetraphosphate (diquafosol) and the uracil-cytosine dinucleotide denufosol are currently undergoing clinical trials for dry eye disease, retinal detachment disease, upper respiratory tract symptoms, and cystic fibrosis, respectively. The first antagonists for P2Y2 and P2Y6 receptors that appear to be selective versus other P2Y receptor subtypes have recently been described. Selective antagonists for P2Y4 and P2Y14 receptors are still lacking. Uracil nucleotide-sensitive P2Y receptor subtypes may constitute future targets for the treatment of certain cancer types, vascular diseases, inflammatory diseases, and immunomodulatory intervention. They have also been proposed to play a role in neurodegenerative diseases. This article is an updated version of "P2-Pyrimidinergic Receptors and Their Ligands" by C. E. Müller published in Curr. Pharm. Des. 2002, 8, 2353-2369.

  11. Human P2X7 receptor activation induces the rapid shedding of CXCL16.

    PubMed

    Pupovac, Aleta; Foster, Christopher M; Sluyter, Ronald

    2013-03-22

    Activation of the purinergic P2X7 receptor by extracellular ATP induces the shedding of cell-surface molecules including the low-affinity IgE receptor, CD23 from leukocytes. CD23 is a known substrate of a disintegrin and metalloprotease (ADAM)10. The aim of the current study was to determine if P2X7 activation induced the shedding of the chemokine CXCL16, an ADAM10 substrate. Using immunolabelling and flow cytometry we demonstrate that human RPMI 8226 multiple myeloma B cells, which have been previously shown to express P2X7, also express CXCL16. Flow cytometric and ELISA measurements of ATP-induced loss of cell-surface CXCL16 showed that ATP treatment of RPMI 8226 cells induced the rapid shedding of CXCL16. Treatment of RPMI 8226 cells with the specific P2X7 antagonists, AZ10606120 and KN-62 impaired ATP-induced CXCL16 shedding by ~86% and ~90% respectively. RT-PCR demonstrated that ADAM10 is expressed in these cells and treatment of cells with the ADAM10 inhibitor, GI254023X, impaired ATP-induced CXCL16 shedding by ~87%. GI254023X also impaired P2X7-induced CD23 shedding by ∼57%. This data indicates that human P2X7 activation induces the rapid shedding of CXCL16 and that this process involves ADAM10.

  12. Purinergic signalling in the pancreas in health and disease.

    PubMed

    Burnstock, G; Novak, I

    2012-05-01

    Pancreatic cells contain specialised stores for ATP. Purinergic receptors (P2 and P1) and ecto-nucleotidases are expressed in both endocrine and exocrine calls, as well as in stromal cells. The pancreas, especially the endocrine cells, were an early target for the actions of ATP. After the historical perspective of purinergic signalling in the pancreas, the focus of this review will be the physiological functions of purinergic signalling in the regulation of both endocrine and exocrine pancreas. Next, we will consider possible interaction between purinergic signalling and other regulatory systems and their relation to nutrient homeostasis and cell survival. The pancreas is an organ exhibiting several serious diseases - cystic fibrosis, pancreatitis, pancreatic cancer and diabetes - and some are associated with changes in life-style and are increasing in incidence. There is upcoming evidence for the role of purinergic signalling in the pathophysiology of the pancreas, and the new challenge is to understand how it is integrated with other pathological processes.

  13. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  14. Neuronal and glial purinergic receptors functions in neuron development and brain disease

    PubMed Central

    del Puerto, Ana; Wandosell, Francisco; Garrido, Juan José

    2013-01-01

    Brain development requires the interaction of complex signaling pathways, involving different cell types and molecules. For a long time, most attention has focused on neurons in a neuronocentric conceptualization of central nervous system development, these cells fulfilling an intrinsic program that establishes the brain’s morphology and function. By contrast, glia have mainly been studied as support cells, offering guidance or as the cells that react to brain injury. However, new evidence is appearing that demonstrates a more fundamental role of glial cells in the control of different aspects of neuronal development and function, events in which the influence of neurons is at best weak. Moreover, it is becoming clear that the function and organization of the nervous system depends heavily on reciprocal neuron–glia interactions. During development, neurons are often generated far from their final destination and while intrinsic mechanisms are responsible for neuronal migration and growth, they need support and regulatory influences from glial cells in order to migrate correctly. Similarly, the axons emitted by neurons often have to reach faraway targets and in this sense, glia help define the way that axons grow. Moreover, oligodendrocytes and Schwann cells ultimately envelop axons, contributing to the generation of nodes of Ranvier. Finally, recent publications show that astrocytes contribute to the modulation of synaptic transmission. In this sense, purinergic receptors are expressed widely by glial cells and neurons, and recent evidence points to multiple roles of purines and purinergic receptors in neuronal development and function, from neurogenesis to axon growth and functional axonal maturation, as well as in pathological conditions in the brain. This review will focus on the role of glial and neuronal secreted purines, and on the purinergic receptors, fundamentally in the control of neuronal development and function, as well as in diseases of the

  15. Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages.

    PubMed

    Gicquel, Thomas; Victoni, Tatiana; Fautrel, Alain; Robert, Sacha; Gleonnec, Florence; Guezingar, Marie; Couillin, Isabelle; Catros, Véronique; Boichot, Elisabeth; Lagente, Vincent

    2014-04-01

    Adenosine triphosphate (ATP) has been described as a danger signal activating the NOD-like receptor-family protein 3 (NLRP3)-inflammasome leading to the pro-inflammatory cytokine, interleukin (IL)-1β, release in the lung. The NLRP3-inflammasome pathway has been previously described to be involved in experimental collagen deposition and the development of pulmonary fibrosis. The aim of the present study was to investigate the role of the NLRP3 inflammasome pathway and P2X7 purinergic receptor in the activation of human macrophages in vitro by ATP. We showed that adenosine 5'-[γ-thio]triphosphate tetralithium salt (ATPγS) and 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP), two stable analogs of ATP, are able to potentiate the release of IL-1β from human monocyte-derived macrophages induced by low concentration of lipopolysaccharide (LPS). However, in the same conditions no increase in IL-1α and IL-6 was observed. Immunochemistry has shown that human macrophages natively express NLRP3 and purinergic P2X7 receptors (P2X7 R). NLRP3 and IL-1β mRNA expression were induced from LPS-primed macrophages, but also after 5-h treatment of BzATP as analysed by reverse transcription quantitative polymerase chain reaction. However, other inflammasome pathways (NLRP1, NLRP2, NLRC4, NLRP6 and AIM2) and P2X7 R were not induced by BzATP. We observed that P2X7 R antagonists, A-438079 and A-740003, were able to reduce the release of IL-1β, but not of IL-1α and IL-6 from macrophages stimulated by ATPγS or BzATP. The present results showed the involvement of the P2X7 R-NLRP3 inflammasome pathway in the secretion of IL-1β from ATP-stimulated human macrophages, and suggest that P2X7 R were not involved in IL-1α and IL-6 release. This study also points out that repression of the P2X7 R represents a novel potential therapeutic approach to control fibrosis in lung injury.

  16. Physical basis of apparent pore-dilation of ATP-activated P2X receptor channels

    PubMed Central

    Li, Mufeng; Toombes, Gilman E S; Silberberg, Shai D; Swartz, Kenton J

    2016-01-01

    The selectivity of ion channels is fundamental for their roles in electrical and chemical signaling, and ion homeostasis. Although most ion channels exhibit stable ion selectivity, the prevailing view for purinergic P2X receptor channels, transient receptor potential V1 (TRPV1) channels and acid sensing ion channels (ASICs) is that their ion conduction pores dilate upon prolonged activation. We investigated this mechanism in P2X receptors and found that the hallmark shift in equilibrium potential observed with prolonged channel activation does not result from pore dilation, but from time-dependent alterations in the concentration of intracellular ions. We derived a physical model to calculate ion concentration changes during patch-clamp recordings, which validates our experimental findings and provides a quantitative guideline for effectively controlling ion concentration. Our results have fundamental implications for understanding ion permeation and gating in P2X receptor channels, and more broadly for using patch-clamp techniques to study ion channels and neuronal excitability. PMID:26389841

  17. P2X7 Receptor Modulates Inflammatory and Functional Pulmonary Changes Induced by Silica

    PubMed Central

    Santana, Patrícia T.; Vieira, Flávia S.; da Graça, Carolyne Lalucha A. L.; Marques-da-Silva, Camila; Machado, Mariana N.; Caruso-Neves, Celso; Zin, Walter A.; Borojevic, Radovan; Coutinho-Silva, Robson

    2014-01-01

    Silicosis is an occupational lung disease, characterized by irreversible and progressive fibrosis. Silica exposure leads to intense lung inflammation, reactive oxygen production, and extracellular ATP (eATP) release by macrophages. The P2X7 purinergic receptor is thought to be an important immunomodulator that responds to eATP in sites of inflammation and tissue damage. The present study investigates the role of P2X7 receptor in a murine model of silicosis. To that end wild-type (C57BL/6) and P2X7 receptor knockout mice received intratracheal injection of saline or silica particles. After 14 days, changes in lung mechanics were determined by the end-inflation occlusion method. Bronchoalveolar lavage and flow cytometry analyzes were performed. Lungs were harvested for histological and immunochemistry analysis of fibers content, inflammatory infiltration, apoptosis, as well as cytokine and oxidative stress expression. Silica particle effects on lung alveolar macrophages and fibroblasts were also evaluated in cell line cultures. Phagocytosis assay was performed in peritoneal macrophages. Silica exposure increased lung mechanical parameters in wild-type but not in P2X7 knockout mice. Inflammatory cell infiltration and collagen deposition in lung parenchyma, apoptosis, TGF-β and NF-κB activation, as well as nitric oxide, reactive oxygen species (ROS) and IL-1β secretion were higher in wild-type than knockout silica-exposed mice. In vitro studies suggested that P2X7 receptor participates in silica particle phagocytosis, IL-1β secretion, as well as reactive oxygen species and nitric oxide production. In conclusion, our data showed a significant role for P2X7 receptor in silica-induced lung changes, modulating lung inflammatory, fibrotic, and functional changes. PMID:25310682

  18. P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation

    PubMed Central

    Buvinic, Sonja; Poblete, M Inés; Donoso, M Verónica; Delpiano, Ana María; Briones, René; Miranda, Ramiro; Huidobro-Toro, J Pablo

    2006-01-01

    The expression of purinergic P2Y receptors (P2YRs) along the cord, superficial chorionic vessels and cotyledons of the human placenta was analysed and functional assays were performed to determine their vasomotor activity. Immunoblots for the P2Y1R and P2Y2R revealed a 6- to 8-fold increase in receptor expression from the cord to the chorionic or cotyledon vessels. In the cord and chorionic vessels the receptor distribution was mainly in the smooth muscle, whereas in the cotyledon vessels these receptors were equally distributed between the endothelium and smooth muscle cells. An exception was the P2Y2R at the umbilical artery, which was distributed as in the cotyledon. mRNA coding for the P2Y1R and P2Y2R were detected by RT-PCR and the mRNA coding for the P2Y4R, P2Y6R and P2Y11R was also identified. Application of 2-MeSADP and uridine triphosphate (UTP), preferential P2Y1R and P2Y2R ligands, respectively, resulted in contraction of isolated rings from umbilical and chorionic vessels. The vasoconstriction was blocked in a concentration-dependent manner by 10–100 nm indomethacin or 10 nm GR32191, suggesting the involvement of thromboxane receptors. MRS 2179, a selective P2Y1R antagonist, reduced the 2-MeSADP- but not the UTP-evoked contractions. Perfusion of cotyledons with 2-MeSADP or UTP evoked concentration-dependent reductions in perfusion pressure mediated by the NO–cGMP pathway. Blockade of NO synthase abolished the vasodilatation and the rise in luminal NO elicited by either agonist. MRS 2179 antagonized the dilatation and rise in luminal NO evoked by 2-MeSADP but not by UTP. In summary, P2Y1R and P2Y2R are unevenly distributed along the human placental vascular tree; both receptors are coupled to different signalling pathways in the cord/chorionic vessels versus the cotyledon leading to opposing vasomotor responses. PMID:16543271

  19. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function

    PubMed Central

    Aprile-Garcia, Fernando; Metzger, Michael W.; Paez-Pereda, Marcelo; Stadler, Herbert; Acuña, Matías; Liberman, Ana C.; Senin, Sergio A.; Gerez, Juan; Hoijman, Esteban; Refojo, Damian; Mitkovski, Mišo; Panhuysen, Markus; Stühmer, Walter; Holsboer, Florian; Deussing, Jan M.; Arzt, Eduardo

    2016-01-01

    The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations. PMID:26986975

  20. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study.

    PubMed

    Kushnir, Raya; Cherkas, Pavel S; Hanani, Menachem

    2011-09-01

    Satellite glial cells (SGCs) in sensory ganglia are altered structurally and biochemically as a result of nerve injury. Whereas there is ample evidence that P2 purinergic receptors in central glial cells are altered after injury, there is very little information on similar changes in SGCs, although it is well established that SGCs are endowed with P2 receptors. Using calcium imaging, we characterized changes in P2 receptors in SGCs from mouse trigeminal ganglia in short-term cultures. Seven days after the induction of submandibular inflammation with complete Freund's adjuvant, there was a marked increase in the sensitivity of SGCs to ATP, with the threshold of activation decreasing from 5 μM to 10 nM. A similar observation was made in the intact trigeminal ganglion after infra-orbital nerve axotomy. Using pharmacological tools, we investigated the receptor mechanisms underlying these changes in cultured SGCs. We found that in control tissues response to ATP was mediated by P2Y (metabotropic) receptors, whereas after inflammation the response was mediated predominantly by P2X (ionotropic) receptors. As the contribution of P2X1,3,6 receptors was excluded, and the sensitivity to a P2X7 agonist did not change after inflammation, it appears that after inflammation the responses to ATP are largely due to P2X2 and/or 5 receptors, with a possible contribution of P2X4 receptors. We conclude that inflammation induced a large increase in the sensitivity of SGCs to ATP, which involved a switch from P2Y to P2X receptors. We propose that the over 100-fold augmented sensitivity of SGCs to ATP after injury may contribute to chronic pain states.

  1. Caveolin-1 regulates P2X7 receptor signaling in osteoblasts.

    PubMed

    Gangadharan, Vimal; Nohe, Anja; Caplan, Jeffrey; Czymmek, Kirk; Duncan, Randall L

    2015-01-01

    The synthesis of new bone in response to a novel applied mechanical load requires a complex series of cellular signaling events in osteoblasts and osteocytes. The activation of the purinergic receptor P2X(7)R is central to this mechanotransduction signaling cascade. Recently, P2X(7)R have been found to be associated with caveolae, a subset of lipid microdomains found in several cell types. Deletion of caveolin-1 (CAV1), the primary protein constituent of caveolae in osteoblasts, results in increased bone mass, leading us to hypothesize that the P2X(7)R is scaffolded to caveolae in osteoblasts. Thus, upon activation of the P2X(7)R, we postulate that caveolae are endocytosed, thereby modulating the downstream signal. Sucrose gradient fractionation of MC3T3-E1 preosteoblasts showed that CAV1 was translocated to the denser cytosolic fractions upon stimulation with ATP. Both ATP and the more specific P2X(7)R agonist 2'(3')-O-(4-benzoylbenzoyl)ATP (BzATP) induced endocytosis of CAV1, which was inhibited when MC3T3-E1 cells were pretreated with the specific P2X7R antagonist A-839977. The P2X7R cofractionated with CAV1, but, using superresolution structured illumination microscopy, we found only a subpopulation of P2X(7)R in these lipid microdomains on the membrane of MC3T3-E1 cells. Suppression of CAV1 enhanced the intracellular Ca(2+) response to BzATP, suggesting that caveolae regulate P2X(7)R signaling. This proposed mechanism is supported by increased mineralization in CAV1 knockdown MC3T3-E1 cells treated with BzATP. These data suggest that caveolae regulate P2X(7)R signaling upon activation by undergoing endocytosis and potentially carrying with it other signaling proteins, hence controlling the spatiotemporal signaling of P2X(7)R in osteoblasts.

  2. P2X3 Receptors and Sensory Transduction

    NASA Astrophysics Data System (ADS)

    Kennedy, Charles

    It has been known for many years that exogenously administered adenosine 5 -triphosphate (ATP) evokes acute pain, but the physiological and pathophysiological roles of endogenous ATP in nociceptive signalling are only now becoming clear. ATP produces its effects through P2X and P2Y receptors, and the P2X3 receptor is of notable importance. It shows a selective expression, at high levels in nociceptive sensory neurons, where it forms functional receptors on its own and in combination with the P2X2 receptor. Recent studies have used gene knockout methods, antisense oligonucleotides, small interfering RNA technologies, and a novel selective P2X3 antagonist, A-317491, to show that P2X3 receptors play a prominent role in both chronic inflammatory and neuropathic pain. Several other P2X subunits also appear to be expressed in sensory neurons and there is evidence for functional P2X1/5 or P2X2/6 heteromers in some of these. These data indicate that P2X receptors, particularly the P2X3 subtype, could be targetted in the search for new, effective analgesics.

  3. Purinergic Receptor Antagonists Inhibit Odorant-Induced Heat Shock Protein 25 Induction in Mouse Olfactory Epithelium

    PubMed Central

    Hegg, Colleen C.; Lucero, Mary T.

    2010-01-01

    Heat shock proteins (HSPs) accumulate in cells exposed to a variety of physiological and environmental factors, such as heat shock, oxidative stress, toxicants, and odorants. Ischemic, stressed, and injured cells release ATP in large amounts. Our hypothesis is that noxious stimulation (in this case, strong odorant) evokes the release of ATP in the olfactory epithelium (OE). Extracellular ATP, a signal of cellular stress, induces the expression of HSPs via purinergic receptors. In the present study, in vivo odorant exposure (heptanal or r-carvone) led to a selective induction of HSP25 in glia-like sustentacular cells in the Swiss Webster mouse OE, as previously shown in rats (Carr et al., 2001). Furthermore, in vitro and in vivo administration of purinergic receptor antagonists suramin and pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS) blocked the expression of HSP25 immunoreactivity in sustentacular cells. ATP released by acutely injured cells could act as an early signal of cell and tissue damage, causing HSP expression and initiating a stress signaling cascade to protect against further damage. Sustentacular cells have a high capacity to detoxify xenobiotics and thereby protect the olfactory epithelium from airborne pollutants. Thus, the robust, rapid induction of HSPs in sustentacular cells may help maintain the integrity of the OE during exposure to toxicants. PMID:16206165

  4. P2Y2 receptor deficiency aggravates chronic kidney disease progression

    PubMed Central

    Potthoff, Sebastian A.; Stegbauer, Johannes; Becker, Jan; Wagenhaeuser, P. Johannes; Duvnjak, Blanka; Rump, Lars C.; Vonend, Oliver

    2013-01-01

    Purinergic signaling is involved in a variety of physiological states. P2 receptors are mainly activated by adenosine triphosphate (ATP). Activation of specific P2Y receptor subtypes might influence progression of kidney disease. To investigate the in vivo effect of a particular P2 receptor subtype on chronic kidney disease progression, subtotal nephrectomy was performed on wild type (WT) and P2Y2 receptor knockout (KO) mice. During the observational period of 56 ± 2 days, survival of KO mice was inferior compared to WT mice after SNX. Subtotal nephrectomy reduced creatinine clearance in both groups of mice, but the decrease was significantly more pronounced in KO compared to WT mice (53.9 ± 7.7 vs. 84.3 ± 8.7μl/min at day 56). The KO mice also sustained a greater increase in systolic blood pressure after SNX compared to WT mice (177 ± 2 vs. 156 ± 7 mmHg) and a 2.5-fold increase in albuminuria compared to WT. In addition, WT kidneys showed a significant increase in remnant kidney mass 56 days after SNX, but significant attenuation of hypertrophy in KO mice was observed. In line with the observed hypertrophy in WT SNX mice, a significant dose-dependent increase in DNA synthesis, a marker of proliferation, was present in cultured WT glomerular epithelial cells upon ATP stimulation. Markers for tissue damage (TGF-β 1, PAI-1) and proinflammatory target genes (MCP1) were significantly upregulated in KO mice after SNX compared to WT SNX mice. In summary, deletion of the P2Y2 receptor leads to greater renal injury after SNX compared to WT mice. Higher systolic blood pressure and inability of compensatory hypertrophy in KO mice are likely causes for the accelerated progression of chronic kidney disease. PMID:24065922

  5. Melittin Modulates Keratinocyte Function through P2 Receptor-dependent ADAM Activation*

    PubMed Central

    Sommer, Anselm; Fries, Anja; Cornelsen, Isabell; Speck, Nancy; Koch-Nolte, Friedrich; Gimpl, Gerald; Andrä, Jörg; Bhakdi, Sucharit; Reiss, Karina

    2012-01-01

    Melittin, the major component of the bee venom, is an amphipathic, cationic peptide with a wide spectrum of biological properties that is being considered as an anti-inflammatory and anti-cancer agent. It modulates multiple cellular functions but the underlying mechanisms are not clearly understood. Here, we report that melittin activates disintegrin-like metalloproteases (ADAMs) and that downstream events likely contribute to the biological effects evoked by the peptide. Melittin stimulated the proteolysis of ADAM10 and ADAM17 substrates in human neutrophil granulocytes, endothelial cells and murine fibroblasts. In human HaCaT keratinocytes, melittin induced shedding of the adhesion molecule E-cadherin and release of TGF-α, which was accompanied by transactivation of the EGF receptor and ERK1/2 phosphorylation. This was followed by functional consequences such as increased keratinocyte proliferation and enhanced cell migration. Evidence is provided that ATP release and activation of purinergic P2 receptors are involved in melittin-induced ADAM activation. E-cadherin shedding and EGFR phosphorylation were dose-dependently reduced in the presence of ATPases or P2 receptor antagonists. The involvement of P2 receptors was underscored in experiments with HEK cells, which lack the P2X7 receptor and showed strikingly increased response to melittin stimulation after transfection with this receptor. Our study provides new insight into the mechanism of melittin function which should be of interest particularly in the context of its potential use as an anti-inflammatory or anti-cancer agent. PMID:22613720

  6. Role of P2Y12 Receptor in Thrombosis.

    PubMed

    Zhang, Yaqi; Zhang, Si; Ding, Zhongren

    2017-01-01

    P2Y12 receptor is a 342 amino acid Gi-coupled receptor predominantly expressed on platelets. P2Y12 receptor is physiologically activated by ADP and inhibits adenyl cyclase (AC) to decrease cyclic AMP (cAMP) level, resulting in platelet aggregation. It also activates PI3 kinase (PI3K) pathway leading to fibrinogen receptor activation, and may protect platelets from apoptosis. Abnormalities of P2Y12 receptor include congenital deficiencies or high activity in diseases like diabetes mellitus (DM) and chronic kidney disease (CKD), exposing such patients to a prothrombotic condition. A series of clinical antiplatelet drugs, such as clopidogrel and ticagrelor, are designed as indirect or direct antagonists of P2Y12 receptor to reduce incidence of thrombosis mainly for patients of acute coronary syndrome (ACS) who are at high risk of thrombotic events. Studies on novel dual-/multi-target antiplatelet agents consider P2Y12 receptor as a promising part in combined targets. However, the clinical practical phenomena, such as "clopidogrel resistance" due to gene variations of cytochrome P450 or P2Y12 receptor constitutive activation, call for better antiplatelet agents. Researches also showed inverse agonist of P2Y12 receptor could play a better role over neutral antagonists. Personalized antiplatelet therapy is the most ideal destination for antiplatelet therapy in ACS patients with or without other underlying diseases like DM or CKD, however, there is still a long way to go.

  7. P2 Receptors in Renal Autoregulation

    PubMed Central

    Guan, Zhengrong; Fellner, Robert C.; Van Beusecum, Justin; Inscho, Edward W.

    2014-01-01

    Accomplishing autoregulation of renal blood flow and glomerular filtration rate is an essential function of the renal microcirculation. While the existence of this phenomenon has been known for many years, the exact mechanisms that underlie this unique regulatory capability remain poorly understood. The work of many investigators has provided insights into many aspects of the autoregulatory mechanism, but many critical components remain elusive. This review is intended to update the reader on the role of P2 purinoceptors as a postulated mechanism responsible for renal autoregulatory resistance adjustments. It will summarize recent advances in normal function and it will touch on more recent ideas regarding autoregulatory insufficiency in hypertension and inflammation. Current thoughts on the nature of the mechanosensor responsible for myogenic behavior will be discussed as well as current thoughts on the mechanisms involved in ATP release to the extracellular fluid space. PMID:24066935

  8. Recent Patents on Novel P2X7 Receptor Antagonists and Their Potential for Reducing Central Nervous System Inflammation

    PubMed Central

    Friedle, Scott A.; Curet, Marjorie A.; Watters, Jyoti J.

    2009-01-01

    Inflammation arises in the CNS from a number of neurodegenerative and oncogenic disorders, as well as from ischemic and traumatic brain injuries. These pathologies give rise to increased levels of extracellular adenine nucleotides which, via activation of a variety of cell surface P2 purinergic receptors, influence the inflammatory activities of responding immune cells. One P2 receptor subtype in particular, the P2X7 receptor, potentiates the release of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) from macrophage-like cells. It is also thought to contribute to secondary brain injury by inducing neuronal cell death. Therefore, antagonism of this receptor could have significant therapeutic impact on all disorders, not just CNS, to which excessive inflammatory activities contribute. The use of currently available P2X7 receptor antagonists for the treatment of CNS inflammation has been limited to the generally non-selective antagonists PPADS, oxidized ATP, Brilliant Blue G, suramin, calmidizolium, and KN-62. However, the recent patents and development of novel P2X7 receptor antagonists, as discussed in this review, will provide new tools both for clinical and research purposes. Here we discuss compounds for which patents have been applied since 2006, from the following categories: benzamide inhibitors, bicycloheteroaryl compounds, acylhdranzine antagonists, biaromatic P2X7 antagonists, heterocyclic compounds and amide derivatives, and aromatic amine antagonists. PMID:19705995

  9. P2X7 Receptors in Neurological and Cardiovascular Disorders

    PubMed Central

    Skaper, Stephen D.; Debetto, Patrizia; Giusti, Pietro

    2009-01-01

    P2X receptors are ATP-gated cation channels that mediate fast excitatory transmission in diverse regions of the brain and spinal cord. Several P2X receptor subtypes, including P2X7, have the unusual property of changing their ion selectivity during prolonged exposure to ATP, which results in a channel pore permeable to molecules as large as 900 daltons. The P2X7 receptor was originally described in cells of hematopoietic origin, and mediates the influx of Ca2+ and Na+ and Ca2+ and Na+ ions as well as the release of proinflammatory cytokines. P2X7 receptors may affect neuronal cell death through their ability to regulate the processing and release of interleukin-1β, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7, a key mediator in neurodegeneration, chronic inflammation, and chronic pain. Activation of P2X7 receptors provides an inflammatory stimulus, and P2X7 receptor-deficient mice have substantially attenuated inflammatory responses, including models of neuropathic and chronic inflammatory pain. Moreover, P2X7 receptor activity, by regulating the release of proinflammatory cytokines, may be involved in the pathophysiology of depression. Apoptotic cell death occurs in a number of vascular diseases, including atherosclerosis, restenosis, and hypertension, and may be linked to the release of ATP from endothelial cells, P2X7 receptor activation, proinflammatory cytokine production, and endothelial cell apoptosis. In this context, the P2X7 receptor may be viewed as a gateway of communication between the nervous, immune, and cardiovascular systems. PMID:20029634

  10. P2X7 receptors stimulate AKT phosphorylation in astrocytes

    PubMed Central

    Jacques-Silva, Maria C; Rodnight, Richard; Lenz, Guido; Liao, Zhongji; Kong, Qiongman; Tran, Minh; Kang, Yuan; Gonzalez, Fernando A; Weisman, Gary A; Neary, Joseph T

    2004-01-01

    Emerging evidence indicates that nucleotide receptors are widely expressed in the nervous system. Here, we present evidence that P2Y and P2X receptors, particularly the P2X7 subtype, are coupled to the phosphoinositide 3-kinase (PI3K)/Akt pathway in astrocytes. P2Y and P2X receptor agonists ATP, uridine 5′-triphosphate (UTP) and 2′,3′-O-(4-benzoyl)-benzoyl ATP (BzATP) stimulated Akt phosphorylation in primary cultures of rat cortical astrocytes. BzATP induced Akt phosphorylation in a concentration- and time-dependent manner, similar to the effect of BzATP on Akt phosphorylation in 1321N1 astrocytoma cells stably transfected with the rat P2X7 receptor. Activation was maximal at 5 – 10 min and was sustained for 60 min; the EC50 for BzATP was approximately 50 μM. In rat cortical astrocytes, the positive effect of BzATP on Akt phosphorylation was independent of glutamate release. The effect of BzATP on Akt phosphorylation in rat cortical astrocytes was significantly reduced by the P2X7 receptor antagonist Brilliant Blue G and the P2X receptor antagonist iso-pyridoxal-5′-phosphate-6-azophenyl-2′,4′-disulfonic acid, but was unaffected by trinitrophenyl-ATP, oxidized ATP, suramin and reactive blue 2. Results with specific inhibitors of signal transduction pathways suggest that extracellular and intracellular calcium, PI3K and a Src family kinase are involved in the BzATP-induced Akt phosphorylation pathway. In conclusion, our data indicate that stimulation of astrocytic P2X7 receptors, as well as other P2 receptors, leads to Akt activation. Thus, signaling by nucleotide receptors in astrocytes may be important in several cellular downstream effects related to the Akt pathway, such as cell cycle and apoptosis regulation, protein synthesis, differentiation and glucose metabolism. PMID:15023862

  11. P2Y receptors in health and disease.

    PubMed

    Erlinge, David

    2011-01-01

    The purine- and pyrimidine-sensitive P2Y receptors belong to the large group of G-protein-coupled receptors that are the target of approximately one-third of the pharmaceutical drugs used in the clinic today. It is therefore not unexpected that the P2Y receptors could be useful targets for drug development. This chapter will discuss P2Y receptor-based therapies currently used, in development and possible future developments. The platelet inhibitors blocking the ADP-receptor P2Y(12) reduce myocardial infarction, stroke, and mortality in patients with cardiovascular disease. Clopidogrel (Plavix) was for many years the second most selling drug in the world. The improved P2Y(12) inhibitors prasugrel, ticagrelor, and elinogrel are now entering the clinic with even more pronounced protective effects. The UTP-activated P2Y(2) receptor stimulates ciliary movement and secretion from epithelial cells. Cystic fibrosis is a monogenetic disease where reduced chloride ion secretion results in a severe lung disease and early death. No specific treatment has been available, but the P2Y(2) agonist Denufosol has been shown to improve lung function and is expected to be introduced as treatment for cystic fibrosis soon. In preclinical studies, there are indications that P2Y receptors can be important for diabetes, osteoporosis, cardiovascular, and atherosclerotic disease. In conclusion, P2Y receptors are important for the health of humans for many diseases, and we can expect even more beneficial drugs targeting P2Y receptors in the future.

  12. Purinergic 2Y1 receptor stimulation decreases cerebral edema and reactive gliosis in a traumatic brain injury model.

    PubMed

    Talley Watts, Lora; Sprague, Shane; Zheng, Wei; Garling, R Justin; Jimenez, David; Digicaylioglu, Murat; Lechleiter, James

    2013-01-01

    Traumatic brain injury (TBI) is the leading cause of death and disability in children and young adults. Neuroprotective agents that may promote repair or counteract damage after injury do not currently exist. We recently reported that stimulation of the purinergic receptor subtype P2Y(1)R using 2-methylthioladenosine 5' diphosphate (2MeSADP) significantly reduced cytotoxic edema induced by photothrombosis. Here, we tested whether P2Y(1)R stimulation was neuroprotective after TBI. A controlled closed head injury model was established for mice using a pneumatic impact device. Brains were harvested at 1, 3, or 7 days post-injury and assayed for morphological changes by immunocytochemistry, Western blot analysis, and wet/dry weight. Cerebral edema and expression of both aquaporin type 4 and glial fibrillary acidic protein were increased at all time points examined. Immunocytochemical measurements in both cortical and hippocampal slices also revealed significant neuronal swelling and reactive gliosis. Treatment of mice with 2MeSADP (100 μM) or MRS2365 (100 μM) 30 min after trauma significantly reduced all post-injury symptoms of TBI including edema, neuronal swelling, reactive gliosis, and AQ4 expression. The neuroprotective effect was lost in IP(3)R2-/- mice treated with 2MeSADP. Immunocytochemical labeling of brain slices confirmed that P2Y(1)R expression was defined to cortical and hippocampal astrocytes, but not neurons. Taken together, the data show that stimulation of astrocytic P2Y(1)Rs significantly reduces brain injury after acute trauma and is mediated by the IP(3)-signaling pathway. We suggest that enhancing astrocyte mitochondrial metabolism offers a promising neuroprotective strategy for a broad range of brain injuries.

  13. P2X and P2Y nucleotide receptors as targets in cardiovascular disease.

    PubMed

    Kennedy, Charles; Chootip, Krongkarn; Mitchell, Callum; Syed, Nawazish-i-Husain; Tengah, Asrin

    2013-03-01

    Endogenous nucleotides have widespread actions in the cardiovascular system, but it is only recently that the P2X and P2Y receptor subtypes, at which they act, have been identified and subtype-selective agonists and antagonists developed. These advances have greatly increased our understanding of the physiological and pathophysiological functions of P2X and P2Y receptors, but investigation of the clinical usefulness of selective ligands is at an early stage. Nonetheless, the evidence considered in this review demonstrates clearly that various cardiovascular disorders, including vasospasm, hypertension, congestive heart failure and cardiac damage during ischemic episodes, may be viable targets. With further development of novel, selective agonists and antagonists, our understanding will continue to improve and further therapeutic applications are likely to be discovered.

  14. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation.

    PubMed

    Lordén, Gema; Sanjuán-García, Itziar; de Pablo, Nagore; Meana, Clara; Alvarez-Miguel, Inés; Pérez-García, M Teresa; Pelegrín, Pablo; Balsinde, Jesús; Balboa, María A

    2017-02-01

    Mutations in human LPIN2 produce a disease known as Majeed syndrome, the clinical manifestations of which are ameliorated by strategies that block IL-1β or its receptor. However the role of lipin-2 during IL-1β production remains elusive. We show here that lipin-2 controls excessive IL-1β formation in primary human and mouse macrophages by several mechanisms, including activation of the inflammasome NLRP3. Lipin-2 regulates MAPK activation, which mediates synthesis of pro-IL-1β during inflammasome priming. Lipin-2 also inhibits the activation and sensitization of the purinergic receptor P2X7 and K(+) efflux, apoptosis-associated speck-like protein with a CARD domain oligomerization, and caspase-1 processing, key events during inflammasome activation. Reduced levels of lipin-2 in macrophages lead to a decrease in cellular cholesterol levels. In fact, restoration of cholesterol concentrations in cells lacking lipin-2 decreases ion currents through the P2X7 receptor, and downstream events that drive IL-1β production. Furthermore, lipin-2-deficient mice exhibit increased sensitivity to high lipopolysaccharide doses. Collectively, our results unveil lipin-2 as a critical player in the negative regulation of NLRP3 inflammasome.

  15. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis.

    PubMed

    Das, Suvarthi; Seth, Ratanesh Kumar; Kumar, Ashutosh; Kadiiska, Maria B; Michelotti, Gregory; Diehl, Anna Mae; Chatterjee, Saurabh

    2013-12-01

    Recent studies indicate that metabolic oxidative stress, autophagy, and inflammation are hallmarks of nonalcoholic steatohepatitis (NASH) progression. However, the molecular mechanisms that link these important events in NASH remain unclear. In this study, we investigated the mechanistic role of purinergic receptor X7 (P2X7) in modulating autophagy and resultant inflammation in NASH in response to metabolic oxidative stress. The study uses two rodent models of NASH. In one of them, a CYP2E1 substrate bromodichloromethane is used to induce metabolic oxidative stress and NASH. Methyl choline-deficient diet feeding is used for the other NASH model. CYP2E1 and P2X7 receptor gene-deleted mice are used to establish their roles in regulating metabolic oxidative stress and autophagy. Autophagy gene expression, protein levels, confocal microscopy based-immunolocalization of lysosome-associated membrane protein (LAMP)2A and histopathological analysis were performed. CYP2E1-dependent metabolic oxidative stress induced increases in P2X7 receptor expression and chaperone-mediated autophagy markers LAMP2A and heat shock cognate 70 but caused depletion of light chain 3 isoform B (LC3B) protein levels. P2X7 receptor gene deletion significantly decreased LAMP2A and inflammatory indicators while significantly increasing LC3B protein levels compared with wild-type mice treated with bromodichloromethane. P2X7 receptor-deleted mice were also protected from NASH pathology as evidenced by decreased inflammation and fibrosis. Our studies establish that P2X7 receptor is a key regulator of autophagy induced by metabolic oxidative stress in NASH, thereby modulating hepatic inflammation. Furthermore, our findings presented here form a basis for P2X7 receptor as a potential therapeutic target in the treatment for NASH.

  16. Conjunctival expression of the P2Y2 receptor and the effects of 3% diquafosol ophthalmic solution in dogs.

    PubMed

    Terakado, Kunihiko; Yogo, Takuya; Kohara, Yukihiro; Soeta, Satoshi; Nezu, Yoshinori; Harada, Yasuji; Hara, Yasushi; Amasaki, Hajime; Tagawa, Masahiro

    2014-10-01

    Conjunctival epithelial and goblet cell P2Y2 nucleotide receptors regulate ion transport and secretory function. Diquafosol is a P2Y2 purinergic receptor agonist that stimulates secretion of aqueous tear components from conjunctival epithelial cells and secretion of mucin from conjunctival goblet cells. In humans suffering from keratoconjunctivitis sicca (dry eye), topical administration of diquafosol improves corneal epithelial integrity and stabilises the tear film. The aim of the present study was to investigate P2Y2 receptor expression and to determine the effect of topical administration of diquafosol on mucin and aqueous tear production in dogs. Canine conjunctival P2Y2 receptor expression was evaluated by Western blotting and immunohistochemical analysis. The effect of diquafosol on mucin secretion was evaluated by examining mucin-5 subtype AC (MUC5AC) concentration in tears. The effect of diquafosol on aqueous secretions was evaluated by performing the Schirmer tear test (STT) and phenol red thread test. Expression of the P2Y2 receptor was confirmed in canine bulbar and palpebral conjunctivae and receptors were identified at the conjunctival epithelial and goblet cell surface. Tear MUC5AC concentration significantly increased after administration of 3% diquafosol ophthalmic solution, although neither STT nor phenol red thread test values showed any significant change after diquafosol instillation. Topical ocular administration of 3% diquafosol might improve corneal epithelial disorders in dogs through stabilisation of the tear film, by virtue of an increase in MUC5AC secretion.

  17. ATP-P2X7 Receptor Modulates Axon Initial Segment Composition and Function in Physiological Conditions and Brain Injury.

    PubMed

    Del Puerto, Ana; Fronzaroli-Molinieres, Laure; Perez-Alvarez, María José; Giraud, Pierre; Carlier, Edmond; Wandosell, Francisco; Debanne, Dominique; Garrido, Juan José

    2015-08-01

    Axon properties, including action potential initiation and modulation, depend on both AIS integrity and the regulation of ion channel expression in the AIS. Alteration of the axon initial segment (AIS) has been implicated in neurodegenerative, psychiatric, and brain trauma diseases, thus identification of the physiological mechanisms that regulate the AIS is required to understand and circumvent AIS alterations in pathological conditions. Here, we show that the purinergic P2X7 receptor and its agonist, adenosine triphosphate (ATP), modulate both structural proteins and ion channel density at the AIS in cultured neurons and brain slices. In cultured hippocampal neurons, an increment of extracellular ATP concentration or P2X7-green fluorescent protein (GFP) expression reduced the density of ankyrin G and voltage-gated sodium channels at the AIS. This effect is mediated by P2X7-regulated calcium influx and calpain activation, and impaired by P2X7 inhibition with Brilliant Blue G (BBG), or P2X7 suppression. Electrophysiological studies in brain slices showed that P2X7-GFP transfection decreased both sodium current amplitude and intrinsic neuronal excitability, while P2X7 inhibition had the opposite effect. Finally, inhibition of P2X7 with BBG prevented AIS disruption after ischemia/reperfusion in rats. In conclusion, our study demonstrates an involvement of P2X7 receptors in the regulation of AIS mediated neuronal excitability in physiological and pathological conditions.

  18. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice.

    PubMed

    Yan, Yanli; Bai, Jianwen; Zhou, Xiaoxu; Tang, Jinhua; Jiang, Chunming; Tolbert, Evelyn; Bayliss, George; Gong, Rujun; Zhao, Ting C; Zhuang, Shougang

    2015-03-15

    Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.

  19. P2Y nucleotide receptors: Promise of therapeutic applications

    PubMed Central

    Jacobson, Kenneth A.; Boeynaems, Jean-Marie

    2010-01-01

    Extracellular nucleotides, such as ATP and UTP, have distinct signaling roles through a class of G protein-coupled receptors, termed P2Y. However, the receptor ligands are typically charged molecules of low bioavailability and stability in vivo. Recent progress in the development of selective agonists and antagonists for P2Y receptors and study of knockout mice have led to new drug concepts based on these receptors. The rapidly accelerating progress in this field has already resulted in drug candidates for cystic fibrosis, dry eye disease, and thrombosis. On the horizon are novel treatments of cardiovascular diseases, inflammatory diseases, and neurodegeneration. PMID:20594935

  20. Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells

    PubMed Central

    Lapel, Martin; Weston, Philip; Strassheim, Derek; Karoor, Vijaya; Burns, Nana; Lyubchenko, Taras; Paucek, Petr; Stenmark, Kurt R.

    2016-01-01

    Angiogenesis is an energy-demanding process; however, the role of cellular energy pathways and their regulation by extracellular stimuli, especially extracellular nucleotides, remain largely unexplored. Using metabolic inhibitors of glycolysis (2-deoxyglucose) and oxidative phosphorylation (OXPHOS) (oligomycin, rotenone, and FCCP), we demonstrate that glycolysis and OXPHOS are both essential for angiogenic responses of vasa vasorum endothelial cell (VVEC). Treatment with P2R agonists, ATP, and 2-methylthioadenosine diphosphate trisodium salt (MeSADP), but not P1 receptor agonist, adenosine, increased glycolytic activity in VVEC (measured by extracellular acidification rate and lactate production). Stimulation of glycolysis was accompanied by increased levels of phospho-phosphofructokinase B3, hexokinase (HK), and GLUT-1, but not lactate dehydrogenase. Moreover, extracellular ATP and MeSADP, and to a lesser extent adenosine, increased basal and maximal oxygen consumption rates in VVEC. These effects were potentiated when the cells were cultured in 20 mM galactose and 5 mM glucose compared with 25 mM glucose. Treatment with P2R agonists decreased phosphorylation of pyruvate dehydrogenase (PDH)-E1α and increased succinate dehydrogenase (SDH), cytochrome oxidase IV, and β-subunit of F1F0 ATP synthase expression. In addition, P2R stimulation transiently elevated mitochondrial Ca2+ concentration, implying involvement of mitochondria in VVEC angiogenic activation. We also demonstrated a critical role of phosphatidylinositol 3-kinase and Akt pathways in lactate production, PDH-E1α phosphorylation, and the expression of HK, SDH, and GLUT-1 in ATP-stimulated VVEC. Together, our findings suggest that purinergic and metabolic regulation of VVEC energy pathways is essential for VV angiogenesis and may contribute to pathologic vascular remodeling in pulmonary hypertension. PMID:27856430

  1. Decavanadate, a P2X receptor antagonist, and its use to study ligand interactions with P2X7 receptors.

    PubMed

    Michel, Anton D; Xing, Mengle; Thompson, Kyla M; Jones, Clare A; Humphrey, Patrick P A

    2006-03-18

    In this study we have studied decavanadate effects at P2X receptors. Decavanadate competitively blocked 2'- and 3'-O-(4benzoylbenzoyl) ATP (BzATP) stimulated ethidium accumulation in HEK293 cells expressing human recombinant P2X7 receptors (pK(B) 7.5). The effects of decavanadate were rapid (minutes) in both onset and offset and contrasted with the much slower kinetics of pyridoxal 5-phosphate (P5P), Coomassie brilliant blue (CBB) and 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN62). Decavanadate competitively blocked the slowly reversible, or irreversible, blockade of the P2X7 receptor produced by P5P and oxidised ATP suggesting competition for a common binding site. However, the interaction between decavanadate and KN62 was non-competitive. Decavanadate also blocked P2X2 and P2X4 receptors but with slightly lower potency. These data demonstrate that decavanadate is the first reversible and competitive antagonist of the P2X7 receptor and is a useful tool for studying the mechanism of interaction of ligands with the P2X7 receptor.

  2. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages

    NASA Astrophysics Data System (ADS)

    Ousingsawat, Jiraporn; Wanitchakool, Podchanart; Kmit, Arthur; Romao, Ana M.; Jantarajit, Walailak; Schreiber, Rainer; Kunzelmann, Karl

    2015-02-01

    Purinergic P2X7 receptors (P2X7R) are fundamental to innate immune response. In macrophages, transient stimulation of P2X7R activates several transport mechanisms and induces the scrambling of phospholipids with subsequent membrane blebbing and apoptosis. These processes support phagocytosis and subsequent killing of phagocytosed bacteria. Here we demonstrate that the stimulation of P2X7 receptors activates anoctamin 6 (ANO6, TMEM16F), a protein that functions as Ca2+ dependent phospholipid scramblase and Ca2+-activated Cl- channel. Inhibition or knockdown of ANO6 attenuates ATP-induced cell shrinkage, cell migration and phospholipid scrambling. In mouse macrophages, Ano6 produces large ion currents by stimulation of P2X7 receptors and contributes to ATP-induced membrane blebbing and apoptosis, which is largely reduced in macrophages from Ano6-/- mice. ANO6 supports bacterial phagocytosis and killing by mouse and human THP-1 macrophages. Our data demonstrate that anoctamin 6 is an essential component of the immune defense by macrophages.

  3. The P2Y13 receptor regulates phosphate metabolism and FGF-23 secretion with effects on skeletal development.

    PubMed

    Wang, Ning; Robaye, Bernard; Gossiel, Fatima; Boeynaems, Jean-Marie; Gartland, Alison

    2014-05-01

    Purinergic signaling mediates many cellular processes, including embryonic development and regulation of endocrine signaling. The ADP P2Y13 receptor is known to regulate bone and stem cells activities, although relatively little is known about its role in bone development. In this study we demonstrate, using contemporary techniques, that deletion of the P2Y13 receptor results in an age-dependent skeletal phenotype that is governed by changes in phosphate metabolism and hormone levels. Neonatal and postnatal (2 wk) P2Y13 receptor-knockout (KO) mice were indistinguishable from their wild-type (WT) littermate controls. A clear bone phenotype was observed in young (4-wk-old) KO mice compared WT controls, with 14% more trabecular bone, 35% more osteoblasts, 73% fewer osteoclasts, and a 17% thicker growth plate. Mature (>10 wk of age) KO mice showed the opposite bone phenotype, with 14% less trabecular bone, 22% fewer osteoblasts, and 10% thinner growth plate. This age-dependent phenotype correlated with serum fibroblast growth factor-23 (FGF-23) and phosphorus levels that were 65 and 16% higher, respectively, in young KO mice but remained unchanged in mature mice. These findings provide novel insights for the role of the P2Y13 receptor in skeletal development via coordination with hormonal regulators of phosphate homeostasis.

  4. Increased susceptibility to ATP via alteration of P2X receptor function in dystrophic mdx mouse muscle cells.

    PubMed

    Yeung, Davy; Zablocki, Krzysztof; Lien, Chun-Fu; Jiang, Taiwen; Arkle, Stephen; Brutkowski, Wojciech; Brown, James; Lochmuller, Hanns; Simon, Joseph; Barnard, Eric A; Górecki, Dariusz C

    2006-04-01

    Pathological cellular hallmarks of Duchenne muscular dystrophy (DMD) include, among others, abnormal calcium homeostasis. Changes in the expression of specific receptors for extracellular ATP in dystrophic muscle have been recently documented: here, we demonstrate that at the earliest, myoblast stage of developing dystrophic muscle a purinergic dystrophic phenotype arises. In myoblasts of a dystrophin-negative muscle cell line established from the mdx mouse model of DMD but not in normal myoblasts, exposure to extracellular ATP triggered a strong increase in cytoplasmic Ca2+ concentrations. Influx of extracellular Ca2+ was stimulated by ATP and BzATP and inhibited by zinc, Coomassie Brilliant Blue-G, and KN-62, demonstrating activation of P2X7 receptors. Significant expression of P2X4 and P2X7 proteins was immunodetected in dystrophic myoblasts. Therefore, full-length dystrophin appears, surprisingly, to play an important role in myoblasts in controlling responses to ATP. Our results suggest that altered function of P2X receptors may be an important contributor to pathogenic Ca2+ entry in dystrophic mouse muscle and may have implications for the pathogenesis of muscular dystrophies. Treatments aiming at inhibition of specific ATP receptors could be of a potential therapeutic benefit.

  5. Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats.

    PubMed

    Barragán-Iglesias, Paulino; Mendoza-Garcés, Luis; Pineda-Farias, Jorge Baruch; Solano-Olivares, Verónica; Rodríguez-Silverio, Juan; Flores-Murrieta, Francisco Javier; Granados-Soto, Vinicio; Rocha-González, Héctor Isaac

    2015-01-01

    Metabotropic P2Y receptors subfamily consists of eight functional mammalian receptors. Specifically, P2Y1, P2Y6 and P2Y11 receptors have been described in the sensory nervous system, but their participation, at peripheral level, in behavioral pain models is scarcely understood. This study assessed the role of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain. Ipsilateral, but not contralateral peripheral pre-treatment with the endogenous P2Y1 (ADP, 100-1000nmol/paw), P2Y6 (UDP, 180-300nmol/paw) and P2Y11 (ATP, 100-1000nmol/paw), or selective P2Y1 (MRS2365, 0.1-10nmol/paw), P2Y6 (PSB0474, 0.1-0.10pmol/paw) and P2Y11 (NF546, 0.3-3nmol/paw) receptor agonists increased 0.5% formalin-induced flinching behavior. Concordantly, peripheral pre-treatment with the selective P2Y1 (MRS2500, 0.01-10pmol/paw), P2Y6 (MRS2578, 3-30nmol/paw) and P2Y11 (NF340, 1-10nmol/paw) receptor antagonists significantly decreased 1% formalin-induced flinching behavior. Furthermore, the pronociceptive effect of ADP (100nmol/paw) or MRS2365 (10nmol/paw), UDP (300nmol/paw) or PSB0474 (10pmol/paw) and ATP (1000nmol/paw) or NF546 (3nmol/paw) was blocked by the selective P2Y1 (MRS2500, 0.01nmol/paw), P2Y6 (MRS2578, 3nmol/paw), and P2Y11 (NF340, 1nmol/paw) receptor antagonists, respectively. Western blot analysis confirmed the presence of P2Y1 (66kDa), P2Y6 (36kDa) and P2Y11 (75kDa) receptors in dorsal root ganglia (DRG) and sciatic nerve. Results suggest that peripheral activation of P2Y1, P2Y6 and P2Y11 receptors plays a pronociceptive role in formalin-induced pain.

  6. Functionalized Congeners of P2Y1 Receptor Antagonists:

    SciTech Connect

    de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun; Kilbey, II, S Michael; Costanzi, Stefano; Hechler, Béatrice; Gachet, Christian; Harden, T. Kendall; Jacobson, Kenneth A.

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to

  7. Attenuation of lithium-induced natriuresis and kaliuresis in P2Y₂ receptor knockout mice.

    PubMed

    Zhang, Yue; Li, Lijun; Kohan, Donald E; Ecelbarger, Carolyn M; Kishore, Bellamkonda K

    2013-08-01

    Whole body knockout (KO) of the P2Y₂ receptor (P2Y₂R) results in enhanced vasopressin V2 receptor activity and increased renal Na⁺ conservation. We hypothesized that P2Y₂R KO mice would be less sensitive to lithium-induced natriuresis and kaliuresis due to attenuated downregulation of one or more of the major renal Na⁺ or K⁺ transporter/channel proteins. KO and wild-type (WT) mice were fed a control or lithium-added diet (40 mmol/kg food) for 14 days. Lithium-induced natriuresis and kaliuresis were significantly (~25%) attenuated in KO mice. The subunits of the epithelial Na⁺ channel (ENaC) were variably affected by lithium and genotype, but, overall, medullary levels were decreased substantially by lithium (15-60%) in both genotypes. In contrast, cortical, β-, and γ-ENaC were increased by lithium (~50%), but only in WT mice. Moreover, an assessment of ENaC activity by benzamil sensitivity suggested that lithium increased ENaC activity in WT mice but in not KO mice. In contrast, medullary levels of Na⁺-K⁺-2Cl⁻ cotransporter 2 and cortical levels of the renal outer medullary K⁺ channel were not downregulated by lithium and were significantly (15-76%) higher in KO mice under both dietary conditions. In addition, under control conditions, tissue osmolality of the inner medulla as well as furosemide sensitivity were significantly higher in KO mice versus WT mice. Therefore, we suggest that increased expression of these proteins, particularly in the control state, reduces Na⁺ delivery to the distal nephron and provides a buffer to attenuate collecting duct-mediated natriuresis and kaliuresis. Additional studies are warranted to explore the potential therapeutic benefits of purinergic antagonism.

  8. Comparative analysis of P2Y4 and P2Y6 receptor architecture in native and transfected neuronal systems.

    PubMed

    D'Ambrosi, Nadia; Iafrate, Monia; Saba, Elena; Rosa, Patrizia; Volonté, Cinzia

    2007-06-01

    Although extensive studies provided molecular and pharmacological characterization of metabotropic P2Y receptors for extracellular nucleotides, little is still known about their quaternary structure. By the use of transfected cellular systems and SDS-PAGE, in our previous work we established the propensity of P2Y(4) receptor to form dimeric interactions. Here we focused on endogenously expressed P2Y(4) and P2Y(6) subtypes, comparing their oligomeric complexes under Blue Native (BN) gel electrophoresis. We provided evidence that P2Y(4) and P2Y(6) receptors form high order complexes in native neuronal phenotypes and that the oligomers can be disaggregated down to the dimeric P2Y(4) or to the dimeric and monomeric P2Y(6) receptor. Moreover, dimeric P2Y(4) and monomeric P2Y(6) proteins display selective microdomain partitioning in lipid rafts from specialized subcellular compartments such as synaptosomes. Ligand activation by UTP shifted the oligomerization of P2Y(6) but not of P2Y(4) receptor, as analysed by BN electrophoresis. Finally, whereas transfected P2Y(4) and P2Y(6) proteins homo-interact and posses the appropriate domains to associate with all P2Y(1,2,4,6,11) subtypes, in naive PC12 cells the endogenous P2Y(4) forms hetero-oligomers only with the P2Y(6) subunit. In conclusion, our results indicate that quaternary structure distinguishing P2Y(4) from P2Y(6) receptors might be crucial for specific ligand activation, membrane partitioning and consequent functional regulation.

  9. Imaging P2X4 receptor subcellular distribution, trafficking, and regulation using P2X4-pHluorin.

    PubMed

    Xu, Ji; Chai, Hua; Ehinger, Konstantin; Egan, Terrance M; Srinivasan, Rahul; Frick, Manfred; Khakh, Baljit S

    2014-07-01

    P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current-voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs

  10. Extracellular ATP and P2Y Receptor Activation Induce a Proinflammatory Host Response in the Human Urinary Tract▿

    PubMed Central

    Säve, Susanne; Persson, Katarina

    2010-01-01

    Extracellular ATP can be released by many cell types under conditions of cellular stress and signals through activation of purinergic receptors. Bladder uroepithelial cells grown in vitro have previously been shown to release ATP in response to stretch. In the present study, we investigated ATP release from uroepithelial cells infected with bacteria and the effect of ATP on the host cell proinflammatory interleukin 8 (IL-8) response. The human kidney epithelial cell line A498 and the human uroepithelial cell line UROtsa were grown in culture and stimulated by the uropathogenic Escherichia coli (UPEC) IA2 strain or the stable ATP analogue ATP-γ-S. ATP and IL-8 levels were measured in cell culture medium with a luciferin-luciferase assay and enzyme-linked immunosorbent assay (ELISA), respectively. The results showed that UPEC infection of uroepithelial cells for 1 h significantly increased (P < 0.01) the extracellular ATP levels. ATP-γ-S (10 and 100 μM) stimulated release of IL-8 from UROtsa and A498 cells after 6 and 24 h. Experiments with different purinoceptor agonists suggested that P2Y receptors, and not P2X receptors, were responsible for the ATP-γ-S-induced IL-8 release. The potency profile further suggested involvement of P2Y1, P2Y2, and/or P2Y11 receptors, and reverse transcription-PCR (RT-PCR) studies confirmed that the cells expressed these receptors. The amount of IL-8 released increased 12-fold in UPEC-infected cells, and apyrase, an enzyme that degrades ATP, reduced this increase by approximately 50%. The present study suggests that enhanced ATP release and P2Y receptor activation during urinary tract infection may represent a novel, non-TLR4-mediated mechanism for production of proinflammatory IL-8 in human urinary tract epithelial cells. PMID:20515921

  11. Activation of P2X7 receptors in the midbrain periaqueductal gray of rats facilitates morphine tolerance.

    PubMed

    Xiao, Zhi; Li, You-Yan; Sun, Meng-Jie

    2015-08-01

    Opiates such as morphine exhibit analgesic effect in various pain models, but repeated and chronic morphine administration may develop resistance to antinociception. The purinergic signaling system is involved in the mechanisms of pain modulation and morphine tolerance. This study aimed to determine whether the P2X7 receptor in the ventrolateral midbrain periaqueductal gray (vlPAG) is involved in morphine tolerance. Development of tolerance to the antinociceptive effect of morphine was induced in normal adult male Sprague-Dawley (SD) rats through subcutaneous injection of morphine (10mg/kg). The analgesic effect of morphine (5mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds (MWTs) in rats with an electronic von Frey anesthesiometer. The expression levels and distribution of the P2X7 receptor in the vlPAG was evaluated through Western blot analysis and immunohistochemistry. The acute effects of intra-vlPAG injection of the selective P2X7 receptor agonist Bz-ATP, the selective P2X7 receptor antagonist A-740003, or antisense oligodeoxynucleotide (AS ODN) targeting the P2X7 receptor on morphine-treated rats were also observed. Results demonstrated that repeated morphine administration decreased the mechanical pain thresholds. By contrast, the expression of the P2X7 receptor protein was up-regulated in the vlPAG in morphine tolerant rats. The percent changes in MWT were markedly but only transiently attenuated by intra-vlPAG injection of Bz-ATP (9nmol/0.3μL) but elevated by A-740003 at doses of 10 and 100nmol/0.3μL. AS ODN (15nmol/0.3μL) against the P2X7 receptor reduced the development of chronic morphine tolerance in rats. These results suggest that the development of antinociceptive tolerance to morphine is partially mediated by activating the vlPAG P2X7 receptors. The present data also suggest that the P2X7 receptors may be a therapeutic target for improving the analgesic effect of morphine in treatments of pain when morphine tolerance

  12. Cangrelor: a novel P2Y12 receptor antagonist.

    PubMed

    Norgard, Nicholas B

    2009-08-01

    Antiplatelet therapy is critical in the prevention of thrombotic complications of acute coronary syndrome and percutaneous coronary interventions. Current antiplatelet agents (aspirin, clopidogrel and glycoprotein IIb/IIIa antagonists) have demonstrated the capacity to reduce major adverse cardiac events. However, these agents have limitations that compromise their clinical utility. The platelet P2Y12 receptor plays a central role in platelet function and is a focus in the development of antiplatelet therapies. Cangrelor is a potent, competitive inhibitor of the P2Y12 receptor that is administered by intravenous infusion and rapidly achieves near complete inhibition of ADP-induced platelet aggregation. This investigational drug has been studied for use during coronary procedures and the management of patients experiencing acute coronary syndrome and is undergoing evaluation for use in the prevention of perioperative stent thrombosis.

  13. Assessment of mercury chloride-induced toxicity and the relevance of P2X7 receptor activation in zebrafish larvae.

    PubMed

    Cruz, Fernanda Fernandes; Leite, Carlos Eduardo; Pereira, Talita Carneiro Brandão; Bogo, Maurício Reis; Bonan, Carla Denise; Battastini, Ana Maria Oliveira; Campos, Maria Martha; Morrone, Fernanda Bueno

    2013-09-01

    Zebrafish (Danio rerio) has been adopted as a model for behavioral, immunological and toxicological studies. Mercury is a toxic heavy metal released into the environment. There is evidence indicating that heavy metals can modulate ionotropic receptors, including the purinergic receptor P2X7. Therefore, this study evaluated the in vivo effects of acute exposure to mercury chloride (HgCl2) in zebrafish larvae and to investigate the involvement of P2X7R in mercury-related toxicity. Larvae survival was evaluated for 24 h after exposure to HgCl2, ATP or A740003. The combination of ATP (1 mM) and HgCl2 (20 μg/L) decreased survival when compared to ATP 1 mM. The antagonist A740003 (300 and 500 nM) increased the survival time, and reversed the mortality caused by ATP and HgCl2 in association. Quantitative real time PCR showed a decrease of P2X7R expression in the larvae treated with HgCl2 (20 μg/L). Evaluating the oxidative stress our results showed decreased CAT (catalase) activity and increased MDA (malondialdehyde) levels. Of note, the combination of ATP with HgCl2 showed an additive effect. This study provides novel evidence on the possible mechanisms underlying the toxicity induced by mercury, indicating that it is able to modulate P2X7R in zebrafish larvae.

  14. Pharmacological insights into the role of P2X4 receptors in behavioral regulation: lessons from ivermectin

    PubMed Central

    Bortolato, Marco; Yardley, Megan; Khoja, Sheraz; Godar, Sean C; Asatryan, Liana; Finn, Deborah A.; Alkana, Ronald L.; Louie, Stan G.; Davies, Daryl L.

    2012-01-01

    Purinergic ionotropic P2X receptors are a family of cation-permeable channels that bind extracellular adenosine 5′-triphosphate (ATP). In particular, convergent lines of evidence have recently highlighted P2X4 receptors as a potentially critical target in the regulation of multiple nervous and behavioral functions, including pain, neuroendocrine regulation and hippocampal plasticity. Nevertheless, the role of the P2X4 receptor in behavioral organization remains poorly investigated. To study the effects of P2X4 activation, we tested the acute effects of its potent positive allosteric modulator ivermectin (IVM, 2.5–10 mg/kg, i.p.) on a broad set of paradigms capturing complementary aspects of perceptual, emotional and cognitive regulation in mice. In a novel open field, IVM did not induce significant changes in locomotor activity, but increased the time spent in the peripheral zone. In contrast, IVM produced anxiolytic-like effects in the elevated plus maze and marble burying tasks, as well as depression-like behaviors in the tail-suspension and forced swim tests. The agent induced no significant behavioral changes in the conditioned place preference test and in the novel object recognition task. Finally, the drug induced a dose-dependent decrease in sensorimotor gating, as assessed by prepulse inhibition (PPI) of the acoustic startle reflex. In P2X4 knockout mice, the effects of IVM in the open field and elevated plus maze were similar to those observed in wild type mice; conversely, the drug significantly increased startle amplitude and failed to reduce PPI. Taken together, these results suggest that P2X4 receptors may play a role in the regulation of sensorimotor gating. PMID:23174033

  15. Enhancement of acid-sensing ion channel activity by metabotropic P2Y UTP receptors in primary sensory neurons.

    PubMed

    Ren, Cuixia; Gan, Xiong; Wu, Jing; Qiu, Chun-Yu; Hu, Wang-Ping

    2016-03-01

    Peripheral purinergic signaling plays an important role in nociception. Increasing evidence suggests that metabotropic P2Y receptors are also involved, but little is known about the underlying mechanism. Herein, we report that selective P2Y receptor agonist uridine 5'-triphosphate (UTP) can exert an enhancing effect on the functional activity of acid-sensing ion channels (ASICs), key sensors for extracellular protons, in rat dorsal root ganglia (DRG) neurons. First, UTP dose-dependently increased the amplitude of ASIC currents. UTP also shifted the concentration-response curve for proton upwards, with a 56.6 ± 6.4% increase of the maximal current response to proton. Second, UTP potentiation of proton-gated currents can be mimicked by adenosine 5'-triphosphate (ATP), but not by P2Y1 receptor agonist ADP. Potentiation of UTP was blocked by P2Y receptor antagonist suramin and by inhibition of intracellular G protein, phospholipase C (PLC), protein kinase C (PKC), or protein interacting with C-kinase 1 (PICK1) signaling. Third, UTP altered acidosis-evoked membrane excitability of DRG neurons and caused a significant increase in the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, UTP dose-dependently exacerbated nociceptive responses to injection of acetic acid in rats. These results suggest that UTP enhanced ASIC-mediated currents and nociceptive responses, which reveal a novel peripheral mechanism underlying UTP-sensitive P2Y2 receptor involvement in hyperalgesia by sensitizing ASICs in primary sensory neurons.

  16. P2X7 Receptors as a Transducer in the Co-Occurrence of Neurological/Psychiatric and Cardiovascular Disorders: A Hypothesis

    PubMed Central

    Skaper, Stephen D.; Giusti, Pietro

    2009-01-01

    Background. Over-stimulation of the purinergic P2X7 receptor may bring about cellular dysfunction and injury in settings of neurodegeneration, chronic inflammation, as well as in psychiatric and cardiovascular diseases. Here we speculate how P2X7 receptor over-activation may lead to the co-occurrence of neurological and psychiatric disorders with cardiovascular disorders. Presentation. We hypothesize that proinflammatory cytokines, in particular interleukin-1β, are key players in the pathophysiology of neurological, psychiatric, and cardiovascular diseases. Critically, this premise is based on a role for the P2X7 receptor in triggering a rise in these cytokines. Given the broad distribution of P2X7 receptors in nervous, immune, and vascular tissue cells, this receptor is proposed as central in linking the nervous, immune, and cardiovascular systems. Testing. Investigate, retrospectively, whether a bidirectional link can be established between illnesses with a proinflammatory component (e.g., inflammatory and chronic neuropathic pain) and cardiovascular disease, for example, hypertension, and whether patients treated with anti-inflammatory drugs have a lower incidence of disease complications. Positive outcome would indicate a prospective study to evaluate therapeutic efficacy of P2X7 receptor antagonists. Implications. It should be stressed that sufficient direct evidence does not exist at present supporting our hypothesis. However, a positive outcome would encourage the further development of P2X7 receptor antagonists and their application to limit the co-occurrence of neurological, psychiatric, and cardiovascular disorders. PMID:20029625

  17. Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine.

    PubMed

    Gubert, Carolina; Fries, Gabriel Rodrigo; Pfaffenseller, Bianca; Ferrari, Pâmela; Coutinho-Silva, Robson; Morrone, Fernanda Bueno; Kapczinski, Flávio; Battastini, Ana Maria Oliveira

    2016-01-01

    The objective of this study was to explore the association between the P2X7 purinergic receptor (P2X7R) and neuroinflammation using a preclinical model of acute bipolar mania. We analyzed the modulatory effects of P2X7R agonist (3'-O-(4-benzoyl)benzoyl-adenosine 5'-triphosphate, BzATP) and antagonists (brilliant blue, BBG and 3-[[5-(2,3 dichlorophenyl)-1H-tetrazol-1-yl]methyl]pyridine hydrochloride, A438079) on assessments related to behavior (locomotor activity), neuroinflammation (interleukin-1 beta, IL-1β; tumor necrosis factor alpha, TNF-α; and interleukin- 6, IL-6), oxidative stress (thiobarbituric acid reactive substances, TBARS) and neuroplasticity (brain-derived neurotrophic factor, BDNF) markers in a pharmacological model of mania induced by acute and chronic treatment with D-amphetamine (AMPH) (2 mg/kg) in mice. An apparent lack of responsiveness to AMPH was observed in terms of the locomotor activity in animals with blocked P2X7R or with genetic deletion of P2X7R in knockout (P2X7R(-/-)) mice. Likewise, P2X7R participated in the AMPH-induced increase of the proinflammatory and excitotoxic environment, as demonstrated by the reversal of IL-1β, TNF-α, and TBARS levels caused by P2X7R blocking. Our results support the hypothesis that P2X7R plays a role in the neuroinflammation induced by AMPH in a preclinical model of mania, which could explain the altered behavior. The present data suggest that P2X7R may be a therapeutic target related to the neuroinflammation reported in bipolar disorder.

  18. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  19. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  20. The P2X7 Receptor-Interleukin-1 Liaison

    PubMed Central

    Giuliani, Anna Lisa; Sarti, Alba C.; Falzoni, Simonetta; Di Virgilio, Francesco

    2017-01-01

    Interleukin-1β (IL-1β) plays a central role in stimulation of innate immune system and inflammation and in several chronic inflammatory diseases. These include rare hereditary conditions, e.g., auto-inflammatory syndromes, as well as common pathologies, such as type II diabetes, gout and atherosclerosis. A better understanding of IL-1β synthesis and release is particularly relevant for the design of novel anti-inflammatory drugs. One of the molecules mainly involved in IL-1β maturation is the P2X7 receptor (P2X7R), an ATP-gated ion channel that chiefly acts through the recruitment of the NLRP3 inflammasome-caspase-1 complex. In this review, we will summarize evidence supporting the key role of the P2X7R in IL-1β production, with special emphasis on the mechanism of release, a process that is still a matter of controversy. Four different models have been proposed: (i) exocytosis via secretory lysosomes, (ii) microvesicles shedding from plasma membrane, (iii) release of exosomes, and (iv) passive efflux across a leaky plasma membrane during pyroptotic cell death. All these models involve the P2X7R. PMID:28360855

  1. Expression level of P2X7 receptor is a determinant of ATP-induced death of mouse cultured neurons.

    PubMed

    Ohishi, A; Keno, Y; Marumiya, A; Sudo, Y; Uda, Y; Matsuda, K; Morita, Y; Furuta, T; Nishida, K; Nagasawa, K

    2016-04-05

    Activation of P2X7 receptor (P2X7R), a purinergic receptor, expressed by neurons is well-known to induce their death, but whether or not their sensitivity to ATP depends on its expression levels remains unclear. Here, we examined the effect of the expression level of P2X7Rs on cell viability using pure neuron cultures, co-cultures with astrocytes derived from SJL- and ddY-strain mice, and mouse P2X7R-expressing HEK293T cell systems. Treatment of pure neuron cultures with 5mM ATP for 2h, followed by 3-h incubation in fresh medium, resulted in death of both types of neurons, and their death was prevented by administration of P2X7R-specific antagonists. In both SJL- and ddY-neurons, ATP-induced neuronal death was inhibited by a mitochondrial permeability transition pore inhibitor cyclosporine A, mitochondrial dysfunction being involved in their death. The ATP-induced neuronal death was greater for SJL-neurons than for ddY-ones, this being correlated with the expression level of P2X7R in them, and the same results were obtained for the HEK293T cell systems. Co-culture of neurons with astrocytes increased the ATP-induced neuronal death compared to the case of pure neuron cultures. Overall, we reveal that neuronal vulnerability to ATP depends on the expression level of P2X7R, and co-existence of astrocytes exacerbates ATP-induced neuronal death.

  2. Modulation of P2 receptors on pancreatic β-cells by agonists and antagonists: a molecular target for type 2 diabetes treatment.

    PubMed

    Pacheco, Paulo Anastácio Furtado; Ferreira, Leonardo Gomes Braga; Alves, Luiz Anastacio; Faria, Robson Xavier

    2013-05-01

    Morbidity and mortality from diabetes mellitus (DM) are serious worldwide concerns. By the year 2030, the estimated number of diabetic patients will reach a staggering 439 million worldwide. Diabetes mellitus type 2 (DM2), which involves disturbances in both insulin secretion and resistance, is the most common form of diabetes and affects approximately 5 to 7% of the world's population. When a patient with DM2 cannot regulate his or her blood glucose levels through diet, weight loss, or exercise, oral medications, such as hypoglycemic agents (i.e., sulphonylureas, biguanides, alpha glucosidase inhibitors and thiazolidinediones), are crucial. Here, we discuss some physiological aspects of P2 receptors on pancreatic β-cells, which express a variety of P2 receptor isoforms. These receptors enhance glucose-dependent insulin release. In addition, we speculate on the potential of purinergic compounds as novel or additional treatments for Type 2 Diabetes mellitus.

  3. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice

    PubMed Central

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-01-01

    Abstract Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca2+ transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities. Key points Acute inhibition of purinergic receptors with a selective P2X3 antagonist prevents transmission of information from taste buds to sensory nerves. The P2X3 antagonist has no effect on taste-evoked release of ATP, confirming the effect is postsynaptic. The

  4. Development of selective agonists and antagonists of P2Y receptors

    PubMed Central

    Ivanov, Andrei A.; de Castro, Sonia; Harden, T. Kendall; Ko, Hyojin

    2008-01-01

    Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets. PMID:18600475

  5. Nucleotides protect rat brain astrocytes against hydrogen peroxide toxicity and induce antioxidant defense via P2Y receptors.

    PubMed

    Förster, Daniel; Reiser, Georg

    2016-03-01

    role of purinergic signaling in astrocytic survival during oxidative stress by maintaining antioxidant defense, highlighting P2Y receptors as potential targets for cytoprotection.

  6. Purinergic signalling in endocrine organs.

    PubMed

    Burnstock, Geoffrey

    2014-03-01

    There is widespread involvement of purinergic signalling in endocrine biology. Pituitary cells express P1, P2X and P2Y receptor subtypes to mediate hormone release. Adenosine 5'-triphosphate (ATP) regulates insulin release in the pancreas and is involved in the secretion of thyroid hormones. ATP plays a major role in the synthesis, storage and release of catecholamines from the adrenal gland. In the ovary purinoceptors mediate gonadotrophin-induced progesterone secretion, while in the testes, both Sertoli and Leydig cells express purinoceptors that mediate secretion of oestradiol and testosterone, respectively. ATP released as a cotransmitter with noradrenaline is involved in activities of the pineal gland and in the neuroendocrine control of the thymus. In the hypothalamus, ATP and adenosine stimulate or modulate the release of luteinising hormone-releasing hormone, as well as arginine-vasopressin and oxytocin. Functionally active P2X and P2Y receptors have been identified on human placental syncytiotrophoblast cells and on neuroendocrine cells in the lung, skin, prostate and intestine. Adipocytes have been recognised recently to have endocrine function involving purinoceptors.

  7. P2X receptors in cochlear Deiters' cells.

    PubMed

    Chen, C; Bobbin, R P

    1998-05-01

    1. The ionotropic purinoceptors in isolated Deiters' cells of guinea-pig cochlea were characterized by use of the whole-cell variant of the patch-clamp technique. 2. Extracellular application of adenosine 5'-triphosphate (ATP) induced a dose-dependent inward current when the cells were voltage-clamped at -80 mV. The ATP-induced current showed desensitization and had a reversal potential around -4 mV. 3. Increasing intracellular free Ca2+ by decreasing the concentration of EGTA in the pipette solution reduced the amplitude of the ATP-gated current. 4. The order of agonist potency was: 2-methylthioATP (2-meSATP)>ATP>benzoylbenzoyl-ATP (BzATP)>alpha,beta-methyleneATP (alpha,beta,meATP>adenosine 5'-diphosphate (ADP)>uridine 5'-triphosphate (UTP)>adenosine 5'-monophosphate (AMP)=adenosine (Ad). 5. Pretreatment with forskolin (10 microM), 8-bromoadenosine-3',5'-cyclophosphate (8-Br-cyclic AMP, 1 mM), 3-isobutyl-1-methylxanthine (IBMX, 1 mM) or phorbol-12-myristate-13-acetate (PMA, 1 microM) reversibly reduced the ATP-induced peak current. 6. The results are consistent with molecular biological data which indicate that P2X2 purinoceptors are present in Deiters' cells. In addition, the reduction of the ATP-gated current by activators of protein kinase A and protein kinase C indicates that these P2X2 purinoceptors can be functionally modulated by receptor phosphorylation.

  8. Neuromodulation: purinergic signaling in respiratory control.

    PubMed

    Funk, Gregory D

    2013-01-01

    The main functions of the respiratory neural network are to produce a coordinated, efficient, rhythmic motor behavior and maintain homeostatic control over blood oxygen and CO2/pH levels. Purinergic (ATP) signaling features prominently in these homeostatic reflexes. The signaling actions of ATP are produced through its binding to a diversity of ionotropic P2X and metabotropic P2Y receptors. However, its net effect on neuronal and network excitability is determined by the interaction between the three limbs of a complex system comprising the signaling actions of ATP at P2Rs, the distribution of multiple ectonucleotidases that differentially metabolize ATP into ADP, AMP, and adenosine (ADO), and the signaling actions of ATP metabolites, especially ADP at P2YRs and ADO at P1Rs. Understanding the significance of purinergic signaling is further complicated by the fact that neurons, glia, and the vasculature differentially express P2 and P1Rs, and that both neurons and glia release ATP. This article reviews at cellular, synaptic, and network levels, current understanding and emerging concepts about the diverse roles played by this three-part signaling system in: mediating the chemosensitivity of respiratory networks to hypoxia and CO2/pH; modulating the activity of rhythm generating networks and inspiratory motoneurons, and; controlling blood flow through the cerebral vasculature.

  9. Purinergic signalling: from discovery to current developments

    PubMed Central

    Burnstock, Geoffrey

    2014-01-01

    New Findings What is the topic of this review? This is a personal historical review about the discovery and the main conceptual advances leading to our current understanding of purinergic signalling. The contributions of leading figures in the field are acknowledged. It includes the discovery of purinergic neuromuscular and synaptic transmission, cotransmission, the identification of P1 (adenosine), P2X nucleotide ion channel and P2Y nucleotide G protein-coupled receptors, the identity of ectonucleotidases and release of ATP from cells by mechanical stimulation and mechanosensory transduction. What advances does it highlight? It highlights the pathophysiology of purinergic signalling and recent therapeutic developments. This lecture is about the history of the purinergic signalling concept. It begins with reference to the paper by Paton & Vane published in 1963, which identified non-cholinergic relaxation in response to vagal nerve stimulation in several species, although they suggested that it might be due to sympathetic adrenergic nerves in the vagal nerve trunk. Using the sucrose gap technique for simultaneous mechanical and electrical recordings in smooth muscle (developed while in Feldberg’s department in the National Institute for Medical Research) of the guinea-pig taenia coli preparation (learned when working in Edith Bülbring’s smooth muscle laboratory in Oxford Pharmacology), we showed that the hyperpolarizations recorded in the presence of antagonists to the classical autonomic neurotransmitters, acetylcholine and noradrenaline, were inhibitory junction potentials in response to non-adrenergic, non-cholinergic neurotransmission, mediated by intrinsic enteric nerves controlled by vagal and sacral parasympathetic nerves. We then showed that ATP satisfied the criteria needed to identify a neurotransmitter released by these nerves. Subsequently, it was shown that ATP is a cotransmitter in all nerves in the peripheral and central nervous systems. The

  10. Purinergic Signaling in the Cardiovascular System.

    PubMed

    Burnstock, Geoffrey

    2017-01-06

    There is nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory-motor nerves, as well as in intracardiac neurons. Centers in the brain control heart activities and vagal cardiovascular reflexes involve purines. Adenine nucleotides and nucleosides act on purinoceptors on cardiomyocytes, AV and SA nodes, cardiac fibroblasts, and coronary blood vessels. Vascular tone is controlled by a dual mechanism. ATP, released from perivascular sympathetic nerves, causes vasoconstriction largely via P2X1 receptors. Endothelial cells release ATP in response to changes in blood flow (via shear stress) or hypoxia, to act on P2 receptors on endothelial cells to produce nitric oxide, endothelium-derived hyperpolarizing factor, or prostaglandins to cause vasodilation. ATP is also released from sensory-motor nerves during antidromic reflex activity, to produce relaxation of some blood vessels. Purinergic signaling is involved in the physiology of erythrocytes, platelets, and leukocytes. ATP is released from erythrocytes and platelets, and purinoceptors and ectonucleotidases are expressed by these cells. P1, P2Y1, P2Y12, and P2X1 receptors are expressed on platelets, which mediate platelet aggregation and shape change. Long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides promote migration and proliferation of vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis, vessel remodeling during restenosis after angioplasty and atherosclerosis. The involvement of purinergic signaling in cardiovascular pathophysiology and its therapeutic potential are discussed, including heart failure, infarction, arrhythmias, syncope, cardiomyopathy, angina, heart transplantation and coronary bypass grafts, coronary artery disease, diabetic cardiomyopathy, hypertension, ischemia, thrombosis, diabetes mellitus, and migraine.

  11. P2X receptors in cochlear Deiters' cells

    PubMed Central

    Chen, Chu; Bobbin, Richard P

    1998-01-01

    The ionotropic purinoceptors in isolated Deiters' cells of guinea-pig cochlea were characterized by use of the whole-cell variant of the patch-clamp technique.Extracellular application of adenosine 5′-triphosphate (ATP) induced a dose-dependent inward current when the cells were voltage-clamped at −80 mV. The ATP-induced current showed desensitization and had a reversal potential around −4 mV.Increasing intracellular free Ca2+ by decreasing the concentration of EGTA in the pipette solution reduced the amplitude of the ATP-gated current.The order of agonist potency was: 2-methylthioATP (2-meSATP)>ATP>benzoylbenzoyl-ATP (BzATP)>α,β-methyleneATP (α,β,meATP>adenosine 5′-diphosphate (ADP)>uridine 5′-triphosphate (UTP)>adenosine 5′-monophosphate (AMP)=adenosine (Ad).Pretreatment with forskolin (10 μM), 8-bromoadenosine-3′,5′-cyclophosphate (8-Br-cyclic AMP, 1 mM), 3-isobutyl-1-methylxanthine (IBMX, 1 mM) or phorbol-12-myristate-13-acetate (PMA, 1 μM) reversibly reduced the ATP-induced peak current.The results are consistent with molecular biological data which indicate that P2X2 purinoceptors are present in Deiters' cells. In addition, the reduction of the ATP-gated current by activators of protein kinase A and protein kinase C indicates that these P2X2 purinoceptors can be functionally modulated by receptor phosphorylation. PMID:9641551

  12. Potential for Developing Purinergic Drugs for Gastrointestinal Diseases

    PubMed Central

    Ochoa-Cortes, Fernando; Liñán-Rico, Andromeda; Jacobson, Kenneth A.; Christofi, Fievos L.

    2014-01-01

    Treatments for IBD, IBS, FD or motility disorders are not adequate, and purinergic drugs offer exciting new possibilities. GI symptoms that could be targeted for therapy include visceral pain, inflammatory pain, dysmotility, constipation and diarrhea. The focus of this review is on potential for developing purinergic drugs for clinical trials to treat GI symptoms. Purinergic receptors are divided into adenosine P1 (A1,A2A,A2B,A3), ionotropic ATP-gated P2X ion channel (P2X1–7) or metabotropic P2Y1,2,4,6,11–14 receptors. There is good experimental evidence for targeting A2A, A2B, A3, P2X7, P2X3 receptors or increasing endogenous adenosine levels to treat IBD, inflammatory pain, IBS/visceral pain, inflammatory-diarrhea and motility disorders. Purine genes are also potential biomarkers of disease. Advances in medicinal-chemistry have an accelerated pace toward clinical trials: Methotrexate and sulfasalazine, used to treat IBD, act by stimulating CD73-dependent adenosine production. ATP protects against NSAID-induced enteropathy and has pain-relieving properties in humans. A P2X7R antagonist AZD9056 is in clinical trials for CD. A3 AR drugs target inflammatory diseases (e.g. CF101; CF102). Dipyridamole, a nucleoside uptake-inhibitor, is in trials for endotoxemia. Drugs for pain in clinical-trials include P2X3/P2X2/3(AF-219) and P2X7(GSK1482160) antagonists and A1(GW493838) or A2A(BVT.115959) agonists. IberogastR is a phytopharmacon targeting purine-mechanisms with efficacy in IBS and FD. Purinergic drugs have excellent safety/efficacy profile for prospective clinical trials in IBD, IBS, FD and inflammatory-diarrhea. Genetic polymorphisms and caffeine consumption may affect susceptibility to treatment. Further studies in animals can clarify mechanisms and test new-generation drugs. Finally, there is still a huge gap in our knowledge of human pathophysiology of purinergic signaling. PMID:24859298

  13. Purinergic Signaling in Gut Inflammation: The Role of Connexins and Pannexins

    PubMed Central

    Diezmos, Erica F.; Bertrand, Paul P.; Liu, Lu

    2016-01-01

    Purinergic receptors play an important role in inflammation, and can be activated by ATP released via pannexin channels and/or connexin hemichannels. The purinergic P2X7 receptor (P2X7R) is of interest since it is involved in apoptosis when activated. Most studies focus on the influence of pannexin-1 (Panx1) and connexin 43 (Cx43) on ATP release and how it affects P2X7R function during inflammation. Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation within the gastrointestinal system. At present, the pathophysiology of this disease remains largely unknown but it may involve the interplay between P2X7R, Panx1, and Cx43. There are two main types of IBD, ulcerative colitis and Crohn's disease, that are classified by their location and frequency of inflammation. Current research suggests that alterations to normal functioning of innate and adaptive immunity may be a factor in disease progression. The involvement of purinergic receptors, connexins, and pannexins in IBD is a relatively novel notion in the context of gastrointestinal inflammation, and has been explored by various research groups. Thus, the present review focuses on the current research involving connexins, pannexins, and purinergic receptors within the gut and enteric nervous system, and will examine their involvement in inflammation and the pathophysiology of IBD. PMID:27445679

  14. The Selective Antagonism of P2X7 and P2Y1 Receptors Prevents Synaptic Failure and Affects Cell Proliferation Induced by Oxygen and Glucose Deprivation in Rat Dentate Gyrus

    PubMed Central

    Maraula, Giovanna; Lana, Daniele; Coppi, Elisabetta; Gentile, Francesca; Mello, Tommaso; Melani, Alessia; Galli, Andrea; Giovannini, Maria Grazia; Pedata, Felicita; Pugliese, Anna Maria

    2014-01-01

    Purinergic P2X and P2Y receptors are broadly expressed on both neurons and glial cells in the central nervous system (CNS), including dentate gyrus (DG). The aim of this research was to determine the synaptic and proliferative response of the DG to severe oxygen and glucose deprivation (OGD) in acute rat hippocampal slices and to investigate the contribution of P2X7 and P2Y1 receptor antagonism to recovery of synaptic activity after OGD. Extracellular field excitatory post-synaptic potentials (fEPSPs) in granule cells of the DG were recorded from rat hippocampal slices. Nine-min OGD elicited an irreversible loss of fEPSP and was invariably followed by the appearance of anoxic depolarization (AD). Application of MRS2179 (selective antagonist of P2Y1 receptor) and BBG (selective antagonist of P2X7 receptor), before and during OGD, prevented AD appearance and allowed a significant recovery of neurotransmission after 9-min OGD. The effects of 9-min OGD on proliferation and maturation of cells localized in the subgranular zone (SGZ) of slices prepared from rats treated with 5-Bromo-2′-deoxyuridine (BrdU) were investigated. Slices were further incubated with an immature neuron marker, doublecortin (DCX). The number of BrdU+ cells in the SGZ was significantly decreased 6 hours after OGD. This effect was antagonized by BBG, but not by MRS2179. Twenty-four hours after 9-min OGD, the number of BrdU+ cells returned to control values and a significant increase of DCX immunofluorescence was observed. This phenomenon was still evident when BBG, but not MRS2179, was applied during OGD. Furthermore, the P2Y1 antagonist reduced the number of BrdU+ cells at this time. The data demonstrate that P2X7 and P2Y1 activation contributes to early damage induced by OGD in the DG. At later stages after the insult, P2Y1 receptors might play an additional and different role in promoting cell proliferation and maturation in the DG. PMID:25526634

  15. Effect of P2X4 and P2X7 receptor antagonism on the pressure diuresis relationship in rats

    PubMed Central

    Menzies, Robert I.; Unwin, Robert J.; Dash, Ranjan K.; Beard, Daniel A.; Cowley Jr., Allen W.; Carlson, Brian E.; Mullins, John J.; Bailey, Matthew A.

    2013-01-01

    Reduced glomerular filtration, hypertension and renal microvascular injury are hallmarks of chronic kidney disease, which has a global prevalence of ~10%. We have shown previously that the Fischer (F344) rat has lower GFR than the Lewis rat, and is more susceptible to renal injury induced by hypertension. In the early stages this injury is limited to the pre-glomerular vasculature. We hypothesized that poor renal hemodynamic function and vulnerability to vascular injury are causally linked and genetically determined. In the present study, normotensive F344 rats had a blunted pressure diuresis relationship, compared with Lewis rats. A kidney microarray was then interrogated using the Endeavour enrichment tool to rank candidate genes for impaired blood pressure control. Two novel candidate genes, P2rx7 and P2rx4, were identified, having a 7− and 3− fold increased expression in F344 rats. Immunohistochemistry localized P2X4 and P2X7 receptor expression to the endothelium of the pre-glomerular vasculature. Expression of both receptors was also found in the renal tubule; however there was no difference in expression profile between strains. Brilliant Blue G (BBG), a relatively selective P2X7 antagonist suitable for use in vivo, was administered to both rat strains. In Lewis rats, BBG had no effect on blood pressure, but increased renal vascular resistance, consistent with inhibition of some basal vasodilatory tone. In F344 rats BBG caused a significant reduction in blood pressure and a decrease in renal vascular resistance, suggesting that P2X7 receptor activation may enhance vasoconstrictor tone in this rat strain. BBG also reduced the pressure diuresis threshold in F344 rats, but did not alter its slope. These preliminary findings suggest a physiological and potential pathophysiological role for P2X7 in controlling renal and/or systemic vascular function, which could in turn affect susceptibility to hypertension-related kidney damage. PMID:24187541

  16. P2Y6 Receptor Antagonist MRS2578 Inhibits Neutrophil Activation and Aggregated Neutrophil Extracellular Trap Formation Induced by Gout-Associated Monosodium Urate Crystals.

    PubMed

    Sil, Payel; Hayes, Craig P; Reaves, Barbara J; Breen, Patrick; Quinn, Shannon; Sokolove, Jeremy; Rada, Balázs

    2017-01-01

    Human neutrophils (polymorphonuclear leukocytes [PMNs]) generate inflammatory responses within the joints of gout patients upon encountering monosodium urate (MSU) crystals. Neutrophil extracellular traps (NETs) are found abundantly in the synovial fluid of gout patients. The detailed mechanism of MSU crystal-induced NET formation remains unknown. Our goal was to shed light on possible roles of purinergic signaling and neutrophil migration in mediating NET formation induced by MSU crystals. Interaction of human neutrophils with MSU crystals was evaluated by high-throughput live imaging using confocal microscopy. We quantitated NET levels in gout synovial fluid supernatants and detected enzymatically active neutrophil primary granule enzymes, myeloperoxidase, and human neutrophil elastase. Suramin and PPADS, general P2Y receptor blockers, and MRS2578, an inhibitor of the purinergic P2Y6 receptor, blocked NET formation triggered by MSU crystals. AR-C25118925XX (P2Y2 antagonist) did not inhibit MSU crystal-stimulated NET release. Live imaging of PMNs showed that MRS2578 represses neutrophil migration and blocked characteristic formation of MSU crystal-NET aggregates called aggregated NETs. Interestingly, the store-operated calcium entry channel inhibitor (SK&F96365) also reduced MSU crystal-induced NET release. Our results indicate that the P2Y6/store-operated calcium entry/IL-8 axis is involved in MSU crystal-induced aggregated NET formation, but MRS2578 could have additional effects affecting PMN migration. The work presented in the present study could lead to a better understanding of gouty joint inflammation and help improve the treatment and care of gout patients.

  17. The ATP-Gated P2X7 Receptor As a Target for the Treatment of Drug-Resistant Epilepsy

    PubMed Central

    Beamer, Edward; Fischer, Wolfgang; Engel, Tobias

    2017-01-01

    Despite the progress made in the development of new antiepileptic drugs (AEDs), the biggest challenges that epilepsy presents to drug development have remained unchanged for the last 80 years: finding a treatment with potential for modifying disease progression and reducing the percentage of patients resistant to all pharmacological interventions. The mechanism of action of the majority of AEDs is based on blocking Na+ and/or Ca2+ channels, promotion of GABA or inhibition of glutamate signaling. In order for further progress to be made, however, a fuller picture of epilepsy will need to be considered, including changes to blood–brain barrier permeability, synaptic plasticity, network reorganization, and gliosis. In particular, brain inflammation has attracted much attention over recent years. Emerging evidence demonstrates a causal role for brain inflammation in lowering seizure thresholds and driving epileptogenesis. Consistent with this, intervening in pro-inflammatory cascades has shown promise in animal models of epilepsy, with clinical trials of anti-inflammatory agents already underway. The ATP-gated purinergic P2X7 receptor (P2X7) has been proposed as a novel drug target for a host of neurological conditions, including epilepsy. Constitutive expression of P2X7 in the CNS is mainly on microglia, but neuronal and astroglial expression has also been suggested. Its function as a gatekeeper of inflammation is most clearly understood, however, it also plays a number of other important roles pertinent to icto- and epileptogenesis: depolarization of the cell membrane, release of macromolecules, induction of apoptosis and synaptic reorganization. Changes in P2X7 expression have been reported following prolonged seizures (status epilepticus) and during chronic epilepsy in both experimental models and patients. While much of the early work focused on the study of P2X7 during status epilepticus, there is now mounting data showing involvement of this receptor during

  18. P2Y2 receptor antagonists as anti-allodynic agents in acute and sub-chronic trigeminal sensitization: role of satellite glial cells.

    PubMed

    Magni, Giulia; Merli, Davide; Verderio, Claudia; Abbracchio, Maria P; Ceruti, Stefania

    2015-07-01

    Trigeminal (TG) pain often lacks a satisfactory pharmacological control. A better understanding of the molecular cross-talk between TG neurons and surrounding satellite glial cells (SGCs) could help identifying innovative targets for the development of more effective analgesics. We have previously demonstrated that neuronal pro-algogenic mediators upregulate G protein-coupled nucleotide P2Y receptors (P2YRs) expressed by TG SGCs in vitro. Here, we have identified the specific P2YR subtypes involved (i.e., the ADP-sensitive P2Y1 R and the UTP-responsive P2Y2 R subtypes), and demonstrated the contribution of neuron-derived prostaglandins to their upregulation. Next, we have translated these data to an in vivo model of TG pain (namely, rats injected with Complete Freund's adjuvant in the temporomandibular joint), by demonstrating activation of SGCs and upregulation of P2Y1 R and P2Y2 R in the ipsi-lateral TG. To unequivocally link P2YRs to the development of facial allodynia, we treated animals with various purinergic antagonists. The selective P2Y2 R antagonist AR-C118925 completely inhibited SGCs activation, exerted a potent anti-allodynic effect that lasted over time, and was still effective when administration was started 6-days post induction of allodynia, i.e. under subchronic pain conditions. Conversely, the selective P2Y1 R antagonist MRS2179 was completely ineffective. Moreover, similarly to the anti-inflammatory drug acetylsalicylic acid and the known anti-migraine agent sumatriptan, the P2X/P2Y nonselective antagonist PPADS was only partially effective, and completely lost its activity under sub-chronic conditions. Taken together, our results highlight glial P2Y2 Rs as potential "druggable" targets for the successful management of TG-related pain.

  19. Distribution of P2Y2 receptors in the guinea pig enteric nervous system and its coexistence with P2X2 and P2X3 receptors, neuropeptide Y, nitric oxide synthase and calretinin.

    PubMed

    Xiang, Zhenghua; Burnstock, Geoffrey

    2005-11-01

    The distribution of P2Y2 receptor-immunoreactive (ir) neurons and fibers and coexistence of P2Y2 with P2X2 and P2X3 receptors, neuropeptide Y (NPY), calretinin (CR), calbindin (CB) and nitric oxide synthase (NOS) was investigated with immunostaining methods. The results showed that P2Y2-ir neurons and fibers were distributed widely in myenteric and submucous plexuses of the guinea pig stomach corpus, jejunum, ileum and colon. The typical morphology of P2Y2-ir neurons was a long process with strong positive staining on the same side of the cell body. The P2Y2-ir neurons could be Dogiel type 1. About 40-60% P2X3-ir neurons were immunoreactive for P2Y2 in the myenteric plexus and all the P2X3-ir neurons expressed the P2Y2 receptor in the submucosal plexus; almost all the NPY-ir neurons and the majority of CR-ir neurons were also immunoreactive for P2Y2, especially in the myenteric plexus of the small intestine; no P2Y2-ir neurons were immunoreactive for P2X2 receptors, CB and NOS. It is shown for the first time that S type/Dogiel type 1 neurons with fast P2X and slow P2Y receptor-mediated depolarizations could be those neurons expressing both P2Y2-ir and P2X3-ir and that they are widely distributed in myenteric and submucosal plexuses of guinea pig gut.

  20. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases.

    PubMed

    Mildner, Alexander; Huang, Hao; Radke, Josefine; Stenzel, Werner; Priller, Josef

    2017-02-01

    Microglia are resident immune cells in the central nervous system (CNS), which are essential for immune defence and critically contribute to neuronal functions during homeostasis. Until now, little is known about microglia biology in humans in part due to the lack of microglia-specific markers. We therefore investigated the expression of the purinergic receptor P2Y12 in human brain tissue. Compared to classical markers used to identify microglia such as Iba1, CD68 or MHCII, we found that P2Y12 is expressed on parenchymal microglia but is absent from perivascular or meningeal macrophages. We further demonstrate that P2Y12 expression is stable throughout human brain development, including fetal phases, and quantification of P2 Y12+ microglia revealed that the density of human microglia is constant throughout lifetime. In contrast, CD68 expression increases during aging in cerebellar but not in cortical microglia, indicating regional heterogeneity. CNS pathologies such as Alzheimer's disease or multiple sclerosis-but not schizophrenia-result in decreased P2Y12 immunoreactivity in plaque- or lesion-associated myeloid cells, whereas Iba1 expression remains detectable. Our results suggest that P2Y12 is a useful marker for the identification of human microglia throughout the lifespan. Moreover, P2Y12 expression might help to discriminate activated microglia and infiltrating myeloid cells from quiescent microglia in the human CNS. GLIA 2017;65:375-387.

  1. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling.

  2. Molecular and functional characterization of human P2X(2) receptors.

    PubMed

    Lynch, K J; Touma, E; Niforatos, W; Kage, K L; Burgard, E C; van Biesen, T; Kowaluk, E A; Jarvis, M F

    1999-12-01

    P2X receptors are a family of ATP-gated ion channels. Four cDNAs with a high degree of homology to the rat P2X(2) receptor were isolated from human pituitary and pancreas RNA. Genomic sequence indicated that these cDNAs represent alternatively spliced messages. Northern analysis revealed high levels of human P2X(2) (hP2X(2)) message in the pancreas, and splice variants could be detected in a variety of tissues. Two cDNAs encoded functional ion channels when expressed in Xenopus oocytes, a receptor structurally homologous to the prototype rat P2X(2) receptor (called hP2X(2a)) and a variant containing a deletion within its cytoplasmic C terminus (called hP2X(2b)). Pharmacologically, these functional human P2X(2) receptors were virtually indistinguishable, with the P2X receptor agonists ATP, 2-methylthio-ATP, 2' and 3'-O-(4-benzoylbenzoyl)-ATP, and ATP5'-O-(3-thiotriphosphate) being approximately equipotent (EC(50) = 1 microM) in eliciting extracellular Ca(2+) influx. The P2 receptor agonists alpha,beta-methylene ATP, adenosine, adenosine 5'-O-(2-thiodiphosphate), and UTP were inactive at concentrations up to 100 microM. Both hP2X(2a) and hP2X(2b) receptors were sensitive to the P2 receptor antagonist pyridoxal-5-phosphate-6-azophenyl-2', 4'-disulfonic acid (IC(50) = 3 microM). In contrast to the analogous rat P2X(2) and P2X(2b) receptors, the desensitization rates of the hP2X(2a) and hP2X(2b) receptors were equivalent. Both functional forms of the human P2X(2) receptors formed heteromeric channels with the human P2X(3) receptor. These data demonstrate that the gene structure and mRNA heterogeneity of the P2X(2) receptor subtype are evolutionarily conserved between rat and human, but also suggest that alternative splicing serves a function other than regulating the desensitization rate of the human receptor.

  3. Characterization of (11)C-GSK1482160 for Targeting the P2X7 Receptor as a Biomarker for Neuroinflammation.

    PubMed

    Territo, Paul R; Meyer, Jill A; Peters, Jonathan S; Riley, Amanda A; McCarthy, Brian P; Gao, Mingzhang; Wang, Min; Green, Mark A; Zheng, Qi-Huang; Hutchins, Gary D

    2017-03-01

    The purinergic receptor subtype 7 (P2X7R) represents a novel molecular target for imaging neuroinflammation via PET. GSK1482160, a potent P2X7R antagonist, has high receptor affinity, high blood-brain barrier penetration, and the ability to be radiolabeled with (11)C. We report the initial physical and biologic characterization of this novel ligand. Methods:(11)C-GSK1482160 was synthesized according to published methods. Cell density studies were performed on human embryonic kidney cell lines expressing human P2X7R (HEK293-hP2X7R) and underwent Western blotting, an immunofluorescence assay, and radioimmunohistochemistry analysis using P2X7R polyclonal antibodies. Receptor density and binding potential were determined by saturation and association-disassociation kinetics, respectively. Peak immune response to lipopolysaccharide treatment in mice was determined in time course studies and analyzed via Iba1 and P2X7R Western blotting and Iba1 immunohistochemistry. Whole-animal biodistribution studies were performed on saline- or lipopolysaccharide-treated mice at 15, 30, and 60 min after radiotracer administration. Dynamic in vivo PET/CT was performed on the mice at 72 h after administration of saline, lipopolysaccharide, or lipopolysaccharide + blocking, and 2-compartment, 5-parameter tracer kinetic modeling of brain regions was performed. Results: P2X7R changed linearly with concentrations or cell numbers. For high-specific-activity (11)C-GSK1482160, receptor density and Kd were 1.15 ± 0.12 nM and 3.03 ± 0.10 pmol/mg, respectively, in HEK293-hP2X7R membranes. Association constant kon, dissociation constant koff, and binding potential (kon/koff) in HEK293-hP2X7R cells were 0.2312 ± 0.01542 min(-1)⋅nM(-1), 0.2547 ± 0.0155 min(-1), and 1.0277 ± 0.207, respectively. Whole-brain Iba1 expression in lipopolysaccharide-treated mice peaked by 72 h on immunohistochemistry, and Western blot analysis of P2X7R for saline- and lipopolysaccharide-treated brain sections

  4. Store-Operated Ca2+ Entry (SOCE) and Purinergic Receptor-Mediated Ca2+ Homeostasis in Murine bv2 Microglia Cells: Early Cellular Responses to ATP-Mediated Microglia Activation

    PubMed Central

    Gilbert, Daniel F.; Stebbing, Martin J.; Kuenzel, Katharina; Murphy, Robyn M.; Zacharewicz, Evelyn; Buttgereit, Andreas; Stokes, Leanne; Adams, David J.; Friedrich, Oliver

    2016-01-01

    Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells. Extracellular purines can elicit Ca2+-mediated microglia activation involving P2X/P2Y receptors with metabotropic (P2Y) and ionotropic (P2X) cell signaling in target cells. Such microglia activation results in increased phagocytic activity, activation of their inflammasome and release of cytokines to sustain neuroinflammatory (so-called M1/M2 polarization). ATP-induced activation of ionotropic P2X4 and P2X7 receptors differentially induces receptor-operated Ca2+ entry (ROCE). Although store-operated Ca2+ entry (SOCE) was identified to modulate ROCE in primary microglia, its existence and role in one of the most common murine microglia cell line, BV2, is unknown. To dissect SOCE from ROCE in BV2 cells, we applied high-resolution multiphoton Ca2+ imaging. After depleting internal Ca2+ stores, SOCE was clearly detectable. High ATP concentrations (1 mM) elicited sustained increases in intracellular [Ca2+]i whereas lower concentrations (≤100 μM) also induced Ca2+ oscillations. These differential responses were assigned to P2X7 and P2X4 activation, respectively. Pharmacologically inhibiting P2Y and P2X responses did not affect SOCE, and in fact, P2Y-responses were barely detectable in BV2 cells. STIM1S content was significantly upregulated by 1 mM ATP. As P2X-mediated Ca2+ oscillations were rare events in single cells, we implemented a high-content screening approach that allows to record Ca2+ signal patterns from a large number of individual cells at lower optical resolution. Using automated classifier analysis, several drugs (minocycline, U73122, U73343, wortmannin, LY294002, AZ10606120) were tested on their profile to act on Ca2+ oscillations (P2X4) and sustained [Ca2+]i increases. We demonstrate specific drug effects on purinergic Ca2+ pathways and provide new pharmacological insights into

  5. Purinergic signalling in the enteric nervous system (An overview of current perspectives).

    PubMed

    King, Brian F

    2015-09-01

    Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas.

  6. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions.

    PubMed

    Gómez-Villafuertes, Rosa; García-Huerta, Paula; Díaz-Hernández, Juan Ignacio; Miras-Portugal, M Teresa

    2015-12-21

    The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome.

  7. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions

    PubMed Central

    Gómez-Villafuertes, Rosa; García-Huerta, Paula; Díaz-Hernández, Juan Ignacio; Miras-Portugal, Mª Teresa

    2015-01-01

    The expression of purinergic P2X7 receptor (P2X7R) in neuroblastoma cells is associated to accelerated growth rate, angiogenesis, metastasis and poor prognosis. Noticeably, P2X7R allows the survival of neuroblastoma cells under restrictive conditions, including serum and glucose deprivation. Previously we identified specificity protein 1 (Sp1) as the main factor involved in the transcriptional regulation of P2rx7 gene, reporting that serum withdrawal triggers the expression of P2X7R in Neuro-2a (N2a) neuroblastoma cell line. Here we demonstrate that PI3K/Akt pathway is crucial for the upregulation of P2X7R expression in serum-deprived neuroblastoma cells, circumstance that facilitates cell proliferation in the absence of trophic support. The effect exerted by PI3K/Akt is independent of both mTOR and GSK3, but requires the activation of EGF receptor (EGFR). Nuclear levels of Sp1 are strongly reduced by inhibition of PI3K/Akt pathway, and blockade of Sp1-dependent transcription with mithramycin A prevents upregulation of P2rx7 gene expression following serum withdrawal. Furthermore, atypical PKCζ plays a key role in the regulation of P2X7R expression by preventing phosphorylation and, consequently, activation of Akt. Altogether, these data indicate that activation of EGFR enhanced the expression of P2X7R in neuroblastoma cells lacking trophic support, being PI3K/Akt/PKCζ signaling pathway and Sp1 mediating this pro-survival outcome. PMID:26687764

  8. Sensitization of P2X3 receptors by cystathionine β-synthetase mediates persistent pain hypersensitivity in a rat model of lumbar disc herniation.

    PubMed

    Wang, Qianliang; Zhu, Hongyan; Zou, Kang; Yuan, Bo; Zhou, You-Lang; Jiang, Xinghong; Yan, Jun; Xu, Guang-Yin

    2015-03-20

    Lumbar disc herniation (LDH) is a major cause of discogenic low back pain and sciatica, but the underlying mechanisms remain largely unknown. Hydrogen sulfide (H2S) is becoming recognized for its involvement in a wide variety of processes including inflammation and nociception. The present study was designed to investigate the roles of the H2S signaling pathway in the regulation of expression and function of purinergic receptors (P2XRs) in dorsal root ganglion (DRG) neurons from rats with LDH. LDH was induced by implantation of autologous nucleus pulposus (NP), harvested from rat tail, in lumbar 5 and 6 spinal nerve roots. Implantation of autologous NP induced persistent pain hypersensitivity, which was partially reversed by an intrathecal injection of A317491, a potent inhibitor of P2X3Rs and P2X2/3Rs. The NP induced persistent pain hypersensitivity was associated with the increased expression of P2X3Rs, but not P2X1Rs and P2X2Rs, receptors in L5-6 DRGs. NP implantation also produced a 2-fold increase in ATP-induced intracellular calcium signals in DRG neurons when compared to those of controls (P < 0.05). Interestingly, NP implantation significantly enhanced expression of the endogenous hydrogen sulfide producing enzyme, cystathionine-β-synthetase (CBS). Systematic administration of O-(Carboxymethyl) hydroxylamine hemihydrochloride (AOAA), an inhibitor of CBS, suppressed the upregulation of P2X3R expression and the potentiation of ATP-induced intracellular calcium signals in DRG neurons (P < 0.05). Intrathecal injection of AOAA markedly attenuated NP induced- persistent pain hypersensitivity. Our results suggest that sensitization of P2X3Rs, which is likely mediated by CBS-H2S signaling in primary sensory neurons, contributes to discogenic pain. Targeting CBS/H2S-P2X3R signaling may represent a potential treatment for neuropathic pain caused by LDH.

  9. Optical control of trimeric P2X receptors and acid-sensing ion channels.

    PubMed

    Browne, Liam E; Nunes, João P M; Sim, Joan A; Chudasama, Vijay; Bragg, Laricia; Caddick, Stephen; North, R Alan

    2014-01-07

    P2X receptors are trimeric membrane proteins that function as ion channels gated by extracellular ATP. We have engineered a P2X2 receptor that opens within milliseconds by irradiation at 440 nm, and rapidly closes at 360 nm. This requires bridging receptor subunits via covalent attachment of 4,4'-bis(maleimido)azobenzene to a cysteine residue (P329C) introduced into each second transmembrane domain. The cis-trans isomerization of the azobenzene pushes apart the outer ends of the transmembrane helices and opens the channel in a light-dependent manner. Light-activated channels exhibited similar unitary currents, rectification, calcium permeability, and dye uptake as P2X2 receptors activated by ATP. P2X3 receptors with an equivalent mutation (P320C) were also light sensitive after chemical modification. They showed typical rapid desensitization, and they could coassemble with native P2X2 subunits in pheochromocytoma cells to form light-activated heteromeric P2X2/3 receptors. A similar approach was used to open and close human acid-sensing ion channels (ASICs), which are also trimers but are unrelated in sequence to P2X receptors. The experiments indicate that the opening of the permeation pathway requires similar and substantial movements of the transmembrane helices in both P2X receptors and ASICs, and the method will allow precise optical control of P2X receptors or ASICs in intact tissues.

  10. P2Y Receptors in the Mammalian Nervous System: Pharmacology, Ligands and Therapeutic Potential

    PubMed Central

    Weisman, Gary A.; Woods, Lucas T.; Erb, Laurie; Seye, Cheikh I.

    2015-01-01

    P2Y receptors for extracellular nucleotides are coupled to activation of a variety of G proteins and stimulate diverse intracellular signaling pathways that regulate functions of cell types that comprise the central nervous system (CNS). There are 8 different subtypes of P2Y receptor expressed in cells of the CNS that are activated by a select group of nucleotide agonists. Here, the agonist selectivity of these 8 P2Y receptor subtypes is reviewed with an emphasis on synthetic agonists with high potency and resistance to degradation by extracellular nucleotidases that have potential applications as therapeutic agents. In addition, the recent identification of a wide variety of subtype-selective antagonists is discussed, since these compounds are critical for discerning cellular responses mediated by activation of individual P2Y receptor subtypes. The functional expression of P2Y receptor subtypes in cells that comprise the CNS is also reviewed and the role of each subtype in the regulation of physiological and pathophysiological responses is considered. Other topics include the role of P2Y receptors in the regulation of blood-brain barrier integrity and potential interactions between different P2Y receptor subtypes that likely impact tissue responses to extracellular nucleotides in the CNS. Overall, current research suggests that P2Y receptors in the CNS regulate repair mechanisms that are triggered by tissue damage, inflammation and disease and thus P2Y receptors represent promising targets for the treatment of neurodegenerative diseases. PMID:22963441

  11. Molecular Structure of P2Y Receptors: Mutagenesis, Modeling, and Chemical Probes

    PubMed Central

    Jayasekara, M.P. Suresh; Costanzi, Stefano

    2012-01-01

    There are eight subtypes of P2Y receptors (P2YRs) that are activated, and in some cases inhibited, by a range of extracellular nucleotides. These nucleotides are ubiquitous, but their extracellular concentration can rise dramatically in response to hypoxia, ischemia, or mechanical stress, injury, and release through channels and from vesicles. Two subclasses of P2YRs were defined based on clustering of sequences, second messengers, and receptor sequence analysis. The numbering system for P2YR subtypes is discontinuous; i.e., P2Y1–14Rs have been defined, but six of the intermediate-numbered cloned receptor sequences (e.g., P2y3, P2y5, P2y7–10) are not functional mammalian nucleotide receptors. Of these two clusters, the P2Y12–14 subtypes couple via Gαi to inhibit adenylate cyclase, while the remaining subtypes couple through Gαq to activate phospholipase C. Collectively, the P2YRs respond to both purine and pyrimidine nucleotides, in the form of 5′-mono- and dinucleotides and nucleoside-5′-diphosphosugars. In recent years, the medicinal chemistry of P2Y receptors has advanced significantly, to provide selective agonists and antagonists for many but not all of the subtypes. Ligand design has been aided by insights from structural probing using molecular modelling and mutagenesis. Currently, the molecular modelling of the receptors is effectively based on the X-ray structure of the CXCR4 receptor, which is the closest to the P2Y receptors among all the currently crystallized receptors in terms of sequence similarity. It is now a challenge to develop novel and selective P2YR ligands for disease treatment (although antagonists of the P2Y12R are already widely used as antithrombotics). PMID:23336097

  12. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction

    PubMed Central

    Guzman, Segundo J.; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states. PMID:27069691

  13. P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction.

    PubMed

    Guzman, Segundo J; Gerevich, Zoltan

    2016-01-01

    ATP released from neurons and astrocytes during neuronal activity or under pathophysiological circumstances is able to influence information flow in neuronal circuits by activation of ionotropic P2X and metabotropic P2Y receptors and subsequent modulation of cellular excitability, synaptic strength, and plasticity. In the present paper we review cellular and network effects of P2Y receptors in the brain. We show that P2Y receptors inhibit the release of neurotransmitters, modulate voltage- and ligand-gated ion channels, and differentially influence the induction of synaptic plasticity in the prefrontal cortex, hippocampus, and cerebellum. The findings discussed here may explain how P2Y1 receptor activation during brain injury, hypoxia, inflammation, schizophrenia, or Alzheimer's disease leads to an impairment of cognitive processes. Hence, it is suggested that the blockade of P2Y1 receptors may have therapeutic potential against cognitive disturbances in these states.

  14. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    PubMed

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  15. Purinergic inhibition of ENaC produces aldosterone escape.

    PubMed

    Stockand, James D; Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A; Vallon, Volker; Peti-Peterdi, Janos; Pochynyuk, Oleh

    2010-11-01

    The mechanisms underlying "aldosterone escape," which refers to the excretion of sodium (Na(+)) during high Na(+) intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na(+) channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na(+) intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y(2)(-/-) mice, which lack the purinergic receptor, had significantly less increased Na(+) excretion than wild-type mice in response to high-Na(+) intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y(2) receptor each modestly increased the resistance of ENaC to changes in Na(+) intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na(+) intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na(+) excretion in response to high-Na(+) intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape.

  16. Purinergic Inhibition of ENaC Produces Aldosterone Escape

    PubMed Central

    Mironova, Elena; Bugaj, Vladislav; Rieg, Timo; Insel, Paul A.; Vallon, Volker; Peti-Peterdi, Janos

    2010-01-01

    The mechanisms underlying “aldosterone escape,” which refers to the excretion of sodium (Na+) during high Na+ intake despite inappropriately increased levels of mineralocorticoids, are incompletely understood. Because local purinergic tone in the aldosterone-sensitive distal nephron downregulates epithelial Na+ channel (ENaC) activity, we tested whether this mechanism mediates aldosterone escape. Here, urinary ATP concentration increased with dietary Na+ intake in mice. Physiologic concentrations of ATP decreased ENaC activity in a dosage-dependent manner. P2Y2−/− mice, which lack the purinergic receptor, had significantly less increased Na+ excretion than wild-type mice in response to high-Na+ intake. Exogenous deoxycorticosterone acetate and deletion of the P2Y2 receptor each modestly increased the resistance of ENaC to changes in Na+ intake; together, they markedly increased resistance. Under the latter condition, ENaC could not respond to changes in Na+ intake. In contrast, as a result of aldosterone escape, wild-type mice had increased Na+ excretion in response to high-Na+ intake regardless of the presence of high deoxycorticosterone acetate. These data suggest that control of ENaC by purinergic signaling is necessary for aldosterone escape. PMID:20813869

  17. Nucleotides Acting at P2Y Receptors: Connecting Structure and Function.

    PubMed

    Jacobson, Kenneth A; Paoletta, Silvia; Katritch, Vsevolod; Wu, Beili; Gao, Zhan-Guo; Zhao, Qiang; Stevens, Raymond C; Kiselev, Evgeny

    2015-08-01

    Eight G protein-coupled P2Y receptor (P2YR) subtypes are important physiologic mediators. The human P2YRs are fully activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6 and P2Y14), and UDP glucose (P2Y14). Their structural elucidation is progressing rapidly. The X-ray structures of three ligand complexes of the Gi-coupled P2Y12R and two of the Gq-coupled P2Y1Rs were recently determined and will be especially useful in structure-based ligand design at two P2YR subfamilies. These high-resolution structures, which display unusual binding site features, complement mutagenesis studies for probing ligand recognition and activation. The structural requirements for nucleotide agonist recognition at P2YRs are relatively permissive with respect to the length of the phosphate moiety, but less so with respect to base recognition. Nucleotide-like antagonists and partial agonists are also known for P2Y1, P2Y2, P2Y4, and P2Y12Rs. Each P2YR subtype has the ability to be activated by structurally bifunctional agonists, such as dinucleotides, typically, dinucleoside triphosphates or tetraphosphates, and nucleoside polyphosphate sugars (e.g., UDP glucose) as well as the more conventional mononucleotide agonists. A range of dinucleoside polyphosphates, from triphosphates to higher homologs, occurs naturally. Earlier modeling predictions of the P2YRs were not very accurate, but recent findings have provided much detailed structural insight into this receptor family to aid in the rational design of new drugs.

  18. Nucleotides Acting at P2Y Receptors: Connecting Structure and Function

    PubMed Central

    Paoletta, Silvia; Katritch, Vsevolod; Wu, Beili; Gao, Zhan-Guo; Zhao, Qiang; Stevens, Raymond C.; Kiselev, Evgeny

    2015-01-01

    Eight G protein–coupled P2Y receptor (P2YR) subtypes are important physiologic mediators. The human P2YRs are fully activated by ATP (P2Y2 and P2Y11), ADP (P2Y1, P2Y12, and P2Y13), UTP (P2Y2 and P2Y4), UDP (P2Y6 and P2Y14), and UDP glucose (P2Y14). Their structural elucidation is progressing rapidly. The X-ray structures of three ligand complexes of the Gi-coupled P2Y12R and two of the Gq-coupled P2Y1Rs were recently determined and will be especially useful in structure-based ligand design at two P2YR subfamilies. These high-resolution structures, which display unusual binding site features, complement mutagenesis studies for probing ligand recognition and activation. The structural requirements for nucleotide agonist recognition at P2YRs are relatively permissive with respect to the length of the phosphate moiety, but less so with respect to base recognition. Nucleotide-like antagonists and partial agonists are also known for P2Y1, P2Y2, P2Y4, and P2Y12Rs. Each P2YR subtype has the ability to be activated by structurally bifunctional agonists, such as dinucleotides, typically, dinucleoside triphosphates or tetraphosphates, and nucleoside polyphosphate sugars (e.g., UDP glucose) as well as the more conventional mononucleotide agonists. A range of dinucleoside polyphosphates, from triphosphates to higher homologs, occurs naturally. Earlier modeling predictions of the P2YRs were not very accurate, but recent findings have provided much detailed structural insight into this receptor family to aid in the rational design of new drugs. PMID:25837834

  19. Purinergic component in the coronary vasodilatation to acetylcholine after ischemia-reperfusion in perfused rat hearts.

    PubMed

    García-Villalón, Ángel Luis; Granado, Miriam; Monge, Luis; Fernández, Nuria; Carreño-Tarragona, Gonzalo; Amor, Sara

    2014-01-01

    To determine the involvement of purinergic receptors in coronary endothelium-dependent relaxation, the response to acetylcholine (1 × 10(-8) to 3 × 10(-7)M) was recorded in isolated rat hearts perfused according to the Langendorff procedure before and after 30 min of ischemia and 15 min of reperfusion and after the inhibition of nitric oxide synthesis with L-NAME (10(-4)M), in the absence and presence of the antagonist of purinergic P2X receptors, PPADS (3 × 10(-6)M), and of the antagonist of purinergic P2Y receptors, Reactive Blue 2 (3 × 10(-7)M). In control conditions, the relaxation to acetylcholine was not altered by PPADS or Reactive Blue 2. The relaxation to acetylcholine was reduced after ischemia-reperfusion, and, in this condition, it was further reduced by treatment with PPADS or Reactive Blue 2. Likewise, the relaxation to acetylcholine was reduced by L-NAME, and reduced further by Reactive Blue 2 but not by PPADS. These results suggest that the relaxation to acetylcholine may be partly mediated by purinergic receptors after ischemia-reperfusion, due to the reduction of nitric oxide release in this condition.

  20. Molecular Characterization and Expression Analysis of ATP-Gated P2X7 Receptor Involved in Japanese Flounder (Paralichthys olivaceus) Innate Immune Response

    PubMed Central

    Li, Shuo; Li, Xuejing; Coddou, Claudio; Geng, Xuyun; Wei, Junli; Sun, Jinsheng

    2014-01-01

    ATP-gated P2X7 receptor (P2RX7) channel is a key component for purinergic signaling and plays important roles in the innate immune response in mammals. However, the expression, molecular properties and immune significances of P2RX7 in lower vertebrates are still very limited. Here we identified and characterized a novel bony fish P2RX7 homologue cDNA, termed poP2RX7, in Japanese flounder (Paralichthys olivaceus). PoP2RX7 protein shares about 60–88% sequence similarity and 45–78% sequence identity with known vertebrate P2RX7 proteins. Phylogenetic analysis placed poP2RX7 and other P2RX7 proteins within their own cluster apart from other P2RX members. While the functional poP2RX7 channel shares structural features in common with known P2RX7 homologs, electrophysiological studies revealed that BzATP, the more potent agonist for known mammalian and fish P2RX7s, shows similar potency to ATP in poP2RX7 activation. poP2RX7 mRNA constitutively expressed in all examined tissues from unstimulated healthy Japanese flounder with dominant expression in hepatopancreas and the lowest expression in head kidney, trunk kidney, spleen and gill. poP2RX7 mRNA expression, however, was significantly induced in Japanese flounder head kidney primary cells by Poly(I:C) and bacterial endotoxin LPS stimulations. In vivo experiments further revealed that poP2RX7 gene expression was substantially up-regulated by immune challenge with infectious bacteria Edwardsiella tarda and Vibrio anguillarum. Moreover, activation of poP2RX7 results in an increased gene expression of multifunctional cytokines IL-1β and IL-6 in the head kidney primary cells. Collectively, we identified and characterized a novel fish P2RX7 homolog which is engaged in Japanese flounder innate immune response probably through modulation of pro-inflammatory cytokines expression. PMID:24796752

  1. P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFalpha and potential role in myocardial cell death.

    PubMed

    Banfi, Cristina; Ferrario, Silvia; De Vincenti, Ombretta; Ceruti, Stefania; Fumagalli, Marta; Mazzola, Alessia; D' Ambrosi, Nadia; Volontè, Cinzia; Fratto, Pasquale; Vitali, Ettore; Burnstock, Geoffrey; Beltrami, Elena; Parolari, Alessandro; Polvani, GianLuca; Biglioli, Paolo; Tremoli, Elena; Abbracchio, Maria P

    2005-12-01

    ATP acts as a neurotransmitter via seven P2X receptor-channels for Na(+) and Ca(2+), and eight G-protein-coupled P2Y receptors. Despite evidence suggesting roles in human heart, the map of myocardial P2 receptors is incomplete, and their involvement in chronic heart failure (CHF) has never received adequate attention. In left myocardia from five to nine control and 5-12 CHF subjects undergoing heart transplantation, we analyzed the full repertoire of P2 receptors and of 10 "orphan" P2Y-like receptors. All known P2Y receptors (i.e. P2Y(1,2,4,6,11,12,13,14)) and two P2Y-like receptors (GPR91 and GPR17) were detected in all subjects. All known P2X(1-7) receptors were also detected; of these, only P2X(6) was upregulated in CHF, as confirmed by quantitative real time-PCR. The potential significance of this change was studied in primary cardiac fibroblasts freshly isolated from young pigs. Exposure of cardiac fibroblasts to ATP or its hydrolysis-resistant-analog benzoylATP induced apoptosis. TNFalpha (a cytokine implicated in CHF progression) exacerbated cell death. Similar effects were induced by ATP and TNFalpha in a murine cardiomyocytic cell line. In cardiac fibroblasts, TNFalpha inhibited the downregulation of P2X(6) mRNA associated to prolonged agonist exposure, suggesting that, by preventing ATP-induced P2X(6) desensitization, TNFalpha may abolish a defense mechanism meant at avoiding Ca(2+) overload and, ultimately, Ca(2+)-dependent cell death. This may provide a basis for P2X(6) upregulation in CHF. In conclusion, we provide the first characterization of P2 receptors in the human heart and suggest that the interaction between TNFalpha and the upregulated P2X(6) receptor may represent a novel pathogenic mechanism in CHF.

  2. Distribution of P2Y6 and P2Y12 receptor: their colocalization with calbindin, calretinin and nitric oxide synthase in the guinea pig enteric nervous system.

    PubMed

    Xiang, Zhenghua; Burnstock, Geoffrey

    2006-04-01

    The distribution of P2Y(6) and P2Y(12) receptor-immunoreactive (ir) neurons and fibers and their coexistence with calbindin, calretinin and nitric oxide synthase (NOS) has been investigated with single and double labeling immunostaining methods. The results showed that 30-36% of the ganglion cells in the myenteric plexus are strongly P2Y(6) receptor-ir neurons; they are distributed widely in the myenteric plexus of stomach, jejunum, ileum and colon, but not in the submucosal plexus, with a typical morphology of multipolar neurons with a long axon-like process. About 42-46% of ganglion cells in both the myenteric and submucosal plexuses show P2Y(12) receptor-ir. About 28-35% of P2Y(6) receptor-ir neurons were found to coexist with NOS and 41-47% of them coexist with calretinin, but there was no coexistence of P2Y(6) receptor-ir with calbindin. In contrast, all P2Y(12) receptor-ir neurons were immunopositive for calbindin, although occasionally P2Y(12) receptor-ir neurons without calbindin immunoreactivity were found, while none of the P2Y(12) receptor-ir neurons were found to coexist with calretinin or NOS in the gastrointestinal system of guinea pig. The P2Y(12) receptor-ir neurons coexpressing calbindin-ir in the small intestine are Dogiel type II/AH, intrinsic primary afferent neurons.

  3. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors.

    PubMed

    Kowalski, Maria; Hausmann, Ralf; Schmid, Julia; Dopychai, Anke; Stephan, Gabriele; Tang, Yong; Schmalzing, Günther; Illes, Peter; Rubini, Patrizia

    2015-12-01

    The aim of the present work was to clarify whether heterotrimeric P2X2/3 receptors have a fixed subunit stoichiometry consisting of one P2X2 and two P2X3 subunits as previously suggested, or a flexible stoichiometry containing also the inverse subunit composition. For this purpose we transfected HEK293 cells with P2X2 and P2X3 encoding cDNA at the ratios of 1:2 and 4:1, and analysed the biophysical and pharmacological properties of the generated receptors by means of the whole-cell patch-clamp technique. The concentration-response curves for the selective agonist α,β-meATP did not differ from each other under the two transfection ratios. However, co-expression of an inactive P2X2 mutant and the wild type P2X3 subunit and vice versa resulted in characteristic distortions of the α,β-meATP concentration-response relationships, depending on which subunit was expressed in excess, suggesting that HEK293 cells express mixtures of (P2X2)1/(P2X3)2 and (P2X2)2/(P2X3)1 receptors. Whereas the allosteric modulators H+ and Zn2+ failed to discriminate between the two possible heterotrimeric receptor variants, the α,β-meATP-induced responses were blocked more potently by the competitive antagonist A317491, when the P2X2 subunit was expressed in deficit of the P2X3 subunit. Furthermore, blue-native PAGE analysis of P2X2 and P2X3 subunits co-expressed in Xenopus laevis oocytes and HEK293 cells revealed that plasma membrane-bound P2X2/3 receptors appeared in two clearly distinct heterotrimeric complexes: a (P2X2-GFP)2/(P2X3)1 complex and a (P2X2-GFP)1/(P2X3)2 complex. These data strongly indicate that the stoichiometry of the heteromeric P2X2/3 receptor is not fixed, but determined in a permutational manner by the relative availability of P2X2 and P2X3 subunits.

  4. Expression of P2Y receptors in cell lines derived from the human lung.

    PubMed

    Communi, D; Paindavoine, P; Place, G A; Parmentier, M; Boeynaems, J M

    1999-05-01

    1. Northern blotting experiments have been performed with RNA extracted from several cell lines derived from the human lung in order to detect P2Y1, P2Y2, P2Y4 and P2Y6 mRNA. We have investigated the 1HAEo- and 16HBE14o- epithelial cell lines derived from the airway epithelium, the A549 cell line displaying properties of type II alveolar epithelial cells, the CALU-3 serous cells, the 6CFSMEo- submucosal cells and the HASMSC1 airway smooth muscle cells. We have also evaluated one pancreatic epithelial cell line called CFPAC-1. These experiments revealed that P2Y2 and P2Y6 mRNA are co-expressed in the IHAEo-, 16HBE14o- and A549 epithelial cell lines. The CFPAC-1 pancreatic cell line was strongly positive for the P2Y2 receptor. No signal was obtained for the P2Y1 and P2Y4 receptors. 2. We have then performed RT-PCR experiments with specific oligonucleotides of these last two P2Y receptors with the RNA used for the Northern blotting experiments. P2Y4 mRNA was detected in five cell lines: 1HAEo-, 16HBE14o-, 6CFSMEo-, HASMSC1 and CFPAC-1. P2Y1 mRNA was only detected in the CALU-3 cell line. 3. Inositol trisphosphates assays have identified a response typical of the P2Y2 receptor in the 1HAEo- and the 16HBE14o- airway epithelial cell lines which co-express P2Y2 and P2Y6 mRNA. By contrast, the 6CFSMEo- submucosal cells expressed a UTP-specific response which displayed pharmacological characteristics compatible with the human P2Y4 receptor: in particular, there was no response to UDP or ATP and the UTP effect was totally inhibited by pertussis toxin.

  5. Structural and functional evolution of the P2Y12-like receptor group

    PubMed Central

    Hermsdorf, Thomas; Engemaier, Eva; Engel, Kathrin; Liebscher, Ines; Thor, Doreen; Zierau, Klaas; Römpler, Holger; Schulz, Angela

    2007-01-01

    Metabotropic pyrimidine and purine nucleotide receptors (P2Y receptors) belong to the superfamily of G protein-coupled receptors (GPCR). They are distinguishable from adenosine receptors (P1) as they bind adenine and/or uracil nucleotide triphosphates or diphosphates depending on the subtype. Over the past decade, P2Y receptors have been cloned from a variety of tissues and species, and as many as eight functional subtypes have been characterized. Most recently, several members of the P2Y12-like receptor group, which includes the clopidogrel-sensitive ADP receptor P2Y12, have been deorphanized. The P2Y12-like receptor group comprises several structurally related GPCR which, however, display heterogeneous agonist specificity including nucleotides, their derivatives, and lipids. Besides the established function of P2Y12 in platelet activation, expression in macrophages, neuronal and glial cells as well as recent results from functional studies implicate that several members of this group may have specific functions in neurotransmission, inflammation, chemotaxis, and response to tissue injury. This review focuses specifically on the structure-function relation and shortly summarizes some aspects of the physiological relevance of P2Y12-like receptor members. PMID:18404440

  6. Identification of Human P2X1 Receptor-interacting Proteins Reveals a Role of the Cytoskeleton in Receptor Regulation*

    PubMed Central

    Lalo, Ulyana; Roberts, Jonathan A.; Evans, Richard J.

    2011-01-01

    P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation. PMID:21757694

  7. Role of P2 Receptors as Modulators of Rat Eosinophil Recruitment in Allergic Inflammation

    PubMed Central

    Alberto, Anael Viana Pinto; Faria, Robson Xavier; de Menezes, Joao Ricardo Lacerda; Surrage, Andrea; da Rocha, Natasha Cristina; Ferreira, Leonardo Gomes Braga; Frutuoso, Valber da Silva; Martins, Marco Aurélio; Alves, Luiz Anastácio

    2016-01-01

    ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin. PMID:26784445

  8. Role of P2 Receptors as Modulators of Rat Eosinophil Recruitment in Allergic Inflammation.

    PubMed

    Alberto, Anael Viana Pinto; Faria, Robson Xavier; de Menezes, Joao Ricardo Lacerda; Surrage, Andrea; da Rocha, Natasha Cristina; Ferreira, Leonardo Gomes Braga; Frutuoso, Valber da Silva; Martins, Marco Aurélio; Alves, Luiz Anastácio

    2016-01-01

    ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin.

  9. PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells

    PubMed Central

    Tsao, H-K; Chiu, P-H; Sun, S H

    2013-01-01

    Purinergic receptors have been shown to be involved in neuronal development, but the functions of specific subtypes of P2 receptors during neuronal development remain elusive. In this study we investigate the distribution of P2X7 receptors (P2X7Rs) in the embryonic rat brain using in situ hybridization. At E15.5, P2X7R mRNA was observed in the ventricular zone and subventricular zone, and colocalized with nestin, indicating that P2X7R might be expressed in neural progenitor cells (NPCs). P2X7R mRNA was also detected in the subgranular zone and dentate gyrus of the E18.5 and P4 brain. To investigate the roles of P2X7R and elucidate its mechanism, we established NPC cultures from the E15.5 rat brain. Stimulation of P2X7Rs induced Ca2+ influx, inhibited proliferation, altered cell cycle progression and enhanced the expression of neuronal markers, such as TUJ1 and MAP2. Similarly, knockdown of P2X7R by shRNA nearly abolished the agonist-stimulated increases in intracellular Ca2+ concentration and the expression of TUJ1 and NeuN. Furthermore, stimulation of P2X7R induced activation of ERK1/2, which was inhibited by the removal of extracellular Ca2+ and treatment with blockers for P2X7R and PKC activity. Stimulation of P2X7R also induced translocation of PKCα and PKCγ, but not of PKCβ, whereas knockdown of either PKCα or PKCγ inhibited ERK1/2 activation. Inhibition of PKC or p-ERK1/2 also caused a decrease in the number of TUJ1-positive cells and a concomitant increase in the number of GFAP-positive cells. Taken together, the activation of P2X7R in NPCs induced neuronal differentiation through a PKC-ERK1/2 signaling pathway. PMID:23907465

  10. Insights into the channel gating of P2X receptors from structures, dynamics and small molecules

    PubMed Central

    Wang, Jin; Yu, Ye

    2016-01-01

    P2X receptors, as ATP-gated non-selective trimeric ion channels, are permeable to Na+, K+ and Ca2+. Comparing with other ligand-gated ion channel families, P2X receptors are distinct in their unique gating properties and pathophysiological roles, and have attracted attention as promising drug targets for a variety of diseases, such as neuropathic pain, multiple sclerosis, rheumatoid arthritis and thrombus. Several small molecule inhibitors for distinct P2X subtypes have entered into clinical trials. However, many questions regarding the gating mechanism of P2X remain unsolved. The structural determinations of P2X receptors at the resting and ATP-bound open states revealed that P2X receptor gating is a cooperative allosteric process involving multiple domains, which marks the beginning of the post-structure era of P2X research at atomic level. Here, we review the current knowledge on the structure-function relationship of P2X receptors, depict the whole picture of allosteric changes during the channel gating, and summarize the active sites that may contribute to new strategies for developing novel allosteric drugs targeting P2X receptors. PMID:26725734

  11. Wnt3a mitigates acute lung injury by reducing P2X7 receptor-mediated alveolar epithelial type I cell death

    PubMed Central

    Guo, Y; Mishra, A; Weng, T; Chintagari, N R; Wang, Y; Zhao, C; Huang, C; Liu, L

    2014-01-01

    Acute lung injury (ALI) is characterized by pulmonary endothelial and epithelial cell damage, and loss of the alveolar–capillary barrier. We have previously shown that P2X7 receptor (P2X7R), a cell death receptor, is specifically expressed in alveolar epithelial type I cells (AEC I). In this study, we hypothesized that P2X7R-mediated purinergic signaling and its interaction with Wnt/β-catenin signaling contributes to AEC I death. We examined the effect of P2X7R agonist 2′-3′-O-(4-benzoylbenzoyl)-ATP (BzATP) and Wnt agonist Wnt3a on AEC I death in vitro and in vivo. We also assessed the therapeutic potential of Wnt3a in a clinically relevant ALI model of intratracheal lipopolysaccharide (LPS) exposure in ventilated mice. We found that the activation of P2X7R by BzATP caused the death of AEC I by suppressing Wnt/β-catenin signaling through stimulating glycogen synthase kinase-3β (GSK-3β) and proteasome. On the other hand, the activation of Wnt/β-catenin signaling by Wnt3a, GSK-3β inhibitor, or proteasome inhibitor blocked the P2X7R-mediated cell death. More importantly, Wnt3a attenuated the AEC I damage caused by intratracheal instillation of BzATP in rats or LPS in ventilated mice. Our results suggest that Wnt3a overrides the effect of P2X7R on the Wnt/β-catenin signaling to prevent the AEC I death and restrict the severity of ALI. PMID:24922070

  12. Comparative expression of p2x receptors and ecto-nucleoside triphosphate diphosphohydrolase 3 in hypocretin and sensory neurons in zebrafish.

    PubMed

    Appelbaum, Lior; Skariah, Gemini; Mourrain, Philippe; Mignot, Emmanuel

    2007-10-12

    The hypocretin/orexin (HCRT/ORX) excitatory neuropeptides are expressed in a small population of lateral hypothalamic cells in mammals and fish. In humans, loss of these cells causes the sleep disorder narcolepsy. Identification of genes expressed in HCRT-producing cells may be revealing as to the regulation of sleep and the pathophysiology of narcolepsy. In this study, in situ hybridization analyses were performed to characterize the expression pattern of receptors and enzyme, which regulate ATP-mediated transmission in hypocretin cells of zebrafish larvae. The zebrafish cDNA encoding the ecto-nucleoside triphosphate diphosphohydrolase 3 (ENTPD3/NTPDase3) was isolated. This transcript was found to be expressed in zebrafish HCRT cells as previously reported in mammals. It was also expressed in the cranial nerves (gV, gVII, gIV and gX) and in primary sensory neurons (i.e., Rohon-Beard neurons) in the spinal cord. The expression of known zebrafish p2rx purinergic receptor family members was next studied and found to overlap with the entpd3 expression pattern. Specifically, p2rx2, p2rx3.1, p2rx3.2 and p2rx8 were expressed in the trigeminal ganglia and subsets of Rohon-Beard neurons. In contrast to mammals, p2rx2 was not expressed in HCRT cells; rather, p2rx8 was expressed with entpd3 in this hypothalamic region. The conservation of expression of these genes in HCRT cells and sensory neurons across vertebrates suggests an important role for ATP mediated transmission in the regulation of sleep and the processing of sensory inputs.

  13. Cell density-dependent changes in intracellular Ca2+ mobilization via the P2Y2 receptor in rat bone marrow stromal cells.

    PubMed

    Ichikawa, Jun; Gemba, Hisae

    2009-05-01

    Bone marrow stromal cells (BMSCs) are an interesting subject of research because they have characteristics of mesenchymal stem cells. We investigated intracellular Ca(2+) signaling in rat BMSCs. Agonists for purinergic receptors increased intracellular Ca(2+) levels ([Ca(2+)](i)). The order of potency followed ATP = UTP > ADP = UDP. ATP-induced rise in [Ca(2+)](i) was suppressed by U73122 and suramin, but not by pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suggesting the functional expression of G protein-coupled P2Y(2) receptors. RT-PCR and immunohistochemical studies also showed the expression of P2Y(2) receptors. [Ca(2+)](i) response to UTP changed with cell density. The UTP-induced rise in [Ca(2+)](i) was greatest at high density. V(max) (maximum Ca(2+) response) and EC(50) (agonist concentration that evokes 50% of V(max)) suggest that the amount and property of P2Y(2) receptors were changed by cell density. Note that UTP induced Ca(2+) oscillation at only medium cell density. Pharmacological studies indicated that UTP-induced Ca(2+) oscillation required Ca(2+) influx by store-operated Ca(2+) entry. Carbenoxolone, a gap junction blocker, enhanced Ca(2+) oscillation. Immunohistochemical and quantitative real-time PCR studies revealed that proliferating cell nuclear antigen (PCNA)-positive cells declined but the mRNA expression level of the P2Y(2) receptor increased as cell density increased. Co-application of fetal calf serum with UTP induced Ca(2+) oscillation at high cell density. These results suggest that the different patterns observed for [Ca(2+)](i) mobilization with respect to cell density may be associated with cell cycle progression.

  14. Radiosensitizing Effect of P2X7 Receptor Antagonist on Melanoma in vitro and in vivo.

    PubMed

    Tanamachi, Keisuke; Nishino, Keisuke; Mori, Natsuki; Suzuki, Toshihiro; Tanuma, Sei-Ichi; Abe, Ryo; Tsukimoto, Mitsutoshi

    2017-03-24

    Melanoma is highly malignant, and generally exhibits radioresistance, responding poorly to radiation therapy. We previously reported that activation of P2X7, P2Y6, and P2Y12 receptors is involved in the DNA damage response after γ-irradiation of human lung adenocarcinoma A549 cells. However, it is not clear whether these receptors are also involved in the case of melanoma cells, although P2X7 receptor is highly expressed in various cancers, including melanoma. Here, we show that P2X7 receptor antagonist enhances radiation-induced cytotoxicity in B16 melanoma cells in vitro and in vivo. We confirmed that these cells express P2X7 receptor mRNA and exhibit P2X7 receptor-mediated activities, such as ATP-induced pore formation and cytotoxicity. We further examined the radiosensitizing effect of P2X7 receptor antagonist Brilliant Blue G (BBG) in vitro by colony formation assay of B16 cells. γ-Irradiation dose-dependently reduced cell survival, and pretreatment with BBG enhanced the radiation-induced cytotoxicity. BBG pretreatment also decreased the number of DNA repair foci in nuclei, supporting involvement of P2X7 receptor in the DNA damage response. Finally, we investigated the radiosensitizing effect of BBG on B16 melanoma cells inoculated into the hind footpad of C57BL/6 mice. Neither 1 Gy γ-irradiation alone nor BBG alone suppressed the increase of tumor volume, but the combination of irradiation and BBG significantly suppressed tumor growth. Our results suggest that P2X7 receptor antagonist BBG has a radiosensitizing effect in melanoma in vitro and in vivo. BBG, which is used as a food coloring agent, appears to be a promising candidate as a radiosensitizer.

  15. Silencing of P2Y2 receptors reduces intraocular pressure in New Zealand rabbits

    PubMed Central

    Martin-Gil, Alba; de Lara, María Jesús Perez; Crooke, Almudena; Santano, Concepción; Peral, Assumpta; Pintor, Jesus

    2012-01-01

    BACKGROUND AND PURPOSE P2 receptors are involved in the regulation of ocular physiological processes like intraocular pressure (IOP). In the present study, the involvement of P2Y2 receptors in the hypertensive effect of nucleotides was investigated by use of antagonists and of a siRNA designed for the P2Y2 receptor. EXPERIMENTAL APPROACH Agonists of the P2Y2 receptor a as well as P2 antagonists were applied to eyes of New Zealand rabbits, and the changes in IOP were followed for up to 6 h. Cloning of the P2Y2 receptor cDNA was done using a combination of degenerate reverse transcription PCR (RT-PCR) and rapid amplification of cDNA ends (RACE). siRNA was synthesized and tested by immunohistochemistry. KEY RESULTS Single doses of 2-thioUTP, UTP-γ-S and UTP increased IOP. This behaviour was concentration-dependent and partially antagonized by reactive blue 2. Silencing the P2Y2 receptor was observed in the ciliary body by immunohistochemistry labelling, where a reduction in the immunofluorescence was observed. This reduction in the expression of the P2Y2 receptor was concomitant with a reduction in IOP, which was measurable 24 h after treatment with the siRNA, maximal after 2 days, followed by a slow increase towards control values for the following 5 days. Application of the P2Y2 agonists after pretreatment of the animals with this siRNA did not produce any change in IOP. CONCLUSIONS AND IMPLICATIONS P2Y2 receptors increase IOP in New Zealand rabbits. The application of a siRNA for this receptor significantly reduced IOP, suggesting that this technology might be used for the treatment of glaucoma. PMID:21740413

  16. Intracellular NAADP increase induced by extracellular NAADP via the P2Y11-like receptor.

    PubMed

    Djerada, Zoubir; Millart, Hervé

    2013-06-28

    The aim of the study was to identify a signalling pathway allowing NAADP-induced intracellular NAADP increase and involving the P2Y11-like receptor. P2Y11-like and β-adrenergic receptors may play important regulatory roles within the cardiovascular system. Both receptors have been shown to be involved in triggering myocardial preconditioning. Using a Langendorff model we report a positive inotropic response induced by extracellular NAADP via P2Y11-like receptor stimulation. In cardiomyocyte cultures, P2Y11-like receptor stimulation by extracellular NAADP ([NAADP]e) increased intracellular cADP-ribose and NAADP concentration as evidenced by direct measurements. NF546, a new selective P2Y11 receptor agonist, increased intracellular cAMP, cADP-ribose and NAADP concentration confirming the involvement of the P2Y11-like receptor in this signalling pathway. NF157, a P2Y11 receptor antagonist, suppressed the increase in intracellular cADPr, NAADP and NAAD induced by either [NAADP]e or NF546. The response profile for intracellular cADP-ribose and NAADP concentration following P2Y11-like stimulation with NF546 was similar to reported data relating β-adrenergic stimulation with isoprenaline. This response represents the signature of the Gs/ADP-ribosyl cyclase activity. Moreover, this study provides a signalling pathway: intracellular NAADP increase induced by extracellular NAADP via metabotropic activity of P2Y11-like receptor. This pathway implying P2Y11-like could take part in the intracellular calcium rise reported for extracellular NAADP.

  17. P2X receptors as targets for the treatment of status epilepticus

    PubMed Central

    Henshall, David C.; Diaz-Hernandez, Miguel; Miras-Portugal, M. Teresa; Engel, Tobias

    2013-01-01

    Prolonged seizures are amongst the most common neurological emergencies. Status epilepticus is a state of continuous seizures that is life-threatening and prompt termination of status epilepticus is critical to protect the brain from permanent damage. Frontline treatment comprises parenteral administration of anticonvulsants such as lorazepam that facilitate γ-amino butyric acid (GABA) transmission. Because status epilepticus can become refractory to anticonvulsants in a significant proportion of patients, drugs which act on different neurotransmitter systems may represent potential adjunctive treatments. P2X receptors are a class of ligand-gated ion channel activated by ATP that contributes to neuro- and glio-transmission. P2X receptors are expressed by both neurons and glia in various brain regions, including the hippocampus. Electrophysiology, pharmacology and genetic studies suggest certain P2X receptors are activated during pathologic brain activity. Expression of several members of the family including P2X2, P2X4, and P2X7 receptors has been reported to be altered in the hippocampus following status epilepticus. Recent studies have shown that ligands of the P2X7 receptor can have potent effects on seizure severity during status epilepticus and mice lacking this receptor display altered seizures in response to chemoconvulsants. Antagonists of the P2X7 receptor also modulate neuronal death, microglial responses and neuroinflammatory signaling. Recent work also found altered neuronal injury and inflammation after status epilepticus in mice lacking the P2X4 receptor. In summary, members of the P2X receptor family may serve important roles in the pathophysiology of status epilepticus and represent novel targets for seizure control and neuroprotection. PMID:24324404

  18. Desensitization properties of P2X3 receptors shaping pain signaling

    PubMed Central

    Giniatullin, Rashid; Nistri, Andrea

    2013-01-01

    ATP-gated P2X3 receptors are mostly expressed by nociceptive sensory neurons and participate in transduction of pain signals. P2X3 receptors show a combination of fast desensitization onset and slow recovery. Moreover, even low nanomolar agonist concentrations unable to evoke a response, can induce desensitization via a phenomenon called “high affinity desensitization.” We have also observed that recovery from desensitization is agonist-specific and can range from seconds to minutes. The recovery process displays unusually high temperature dependence. Likewise, recycling of P2X3 receptors in peri-membrane regions shows unexpectedly large temperature sensitivity. By applying kinetic modeling, we have previously shown that desensitization characteristics of P2X3 receptor are best explained with a cyclic model of receptor operation involving three agonist molecules binding a single receptor and that desensitization is primarily developing from the open receptor state. Mutagenesis experiments suggested that desensitization depends on a certain conformation of the ATP binding pocket and on the structure of the transmembrane domains forming the ion pore. Further molecular determinants of desensitization have been identified by mutating the intracellular N- and C-termini of P2X3 receptor. Unlike other P2X receptors, the P2X3 subtype is facilitated by extracellular calcium that acts via specific sites in the ectodomain neighboring the ATP binding pocket. Thus, substitution of serine275 in this region (called “left flipper”) converts the natural facilitation induced by extracellular calcium to receptor inhibition. Given their strategic location in nociceptive neurons and unique desensitization properties, P2X3 receptors represent an attractive target for development of new analgesic drugs via promotion of desensitization aimed at suppressing chronic pain. PMID:24367291

  19. Transition strategies from cangrelor to oral platelet P2Y12 receptor antagonists.

    PubMed

    Schneider, David J

    2016-01-01

    Cangrelor is the first parenteral antagonist of the platelet P2Y12 receptor. This direct-acting antagonist of the platelet P2Y12 receptor should be considered an adjunct to a percutaneous coronary intervention in patients who have not been adequately pretreated with platelet P2Y12 receptor antagonists at the time of the procedure. The use of cangrelor requires transition to an oral platelet P2Y12 receptor antagonist. Transition strategies have been developed on the basis of pharmacologic characteristics of platelet P2Y12 receptor antagonists, results of pharmacodynamic studies, and results from clinical trials. Cangrelor blocks the binding to the platelet P2Y12 receptor of the active metabolite of the thienopyridines, clopidogrel and prasugrel. The active metabolite of thienopyridines is present in blood for a short interval after administration. For this reason, clopidogrel should be administered after cangrelor is stopped. Prasugrel can be administered at the end of the cangrelor infusion or up to 30 min before cangrelor is stopped. Ticagrelor is also a reversible direct-acting antagonist of the platelet P2Y12 receptor. Because there is no interaction between ticagrelor and cangrelor, ticagrelor can be administered before or during the infusion of cangrelor.

  20. A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain

    PubMed Central

    Matsumura, Yuta; Yamashita, Tomohiro; Sasaki, Atsushi; Nakata, Eriko; Kohno, Keita; Masuda, Takahiro; Tozaki-Saitoh, Hidetoshi; Imai, Toshiyasu; Kuraishi, Yasushi; Tsuda, Makoto; Inoue, Kazuhide

    2016-01-01

    Accumulating evidence indicates that purinergic P2X4 receptors (P2X4R: cation channels activated by extracellular ATP) expressed in spinal microglia are crucial for pathological chronic pain caused by nerve damage, suggesting a potential target for drug discovery. We identified NP-1815-PX (5-[3-(5-thioxo-4H-[1,2,4]oxadiazol-3-yl)phenyl]-1H-naphtho[1, 2-b][1,4]diazepine-2,4(3H,5H)-dione) as a novel antagonist selective for P2X4R with high potency and selectivity compared with other P2XR subtypes. In in vivo assay for acute and chronic pain, intrathecal administration of NP-1815-PX produced an anti-allodynic effect in mice with traumatic nerve damage without affecting acute nociceptive pain and motor function (although its oral administration did not produce the effect). Furthermore, in a mouse model of herpetic pain, P2X4R upregulation in the spinal cord exclusively occurred in microglia, and intrathecal NP-1815-PX suppressed induction of mechanical allodynia. This model also showed K+/Cl− cotransporter 2 (KCC2) downregulation, which is implicated in dorsal horn neuron hyperexcitability; this downregulation was restored by intrathecal treatment with NP-1815-PX or by interfering with brain-derived neurotrophic factor (BDNF) signaling, a P2X4R-activated microglial factor implicated in KCC2 downregulation. Taken together, the newly developed P2X4R antagonist NP-1815-PX produces anti-allodynic effects in chronic pain models without altering acute pain sensitivity, suggesting that microglial P2X4R could be an attractive target for treating chronic pain. PMID:27576299

  1. Purinergic signalling contributes to chemoreception in the retrotrapezoid nucleus but not the nucleus of the solitary tract or medullary raphe

    PubMed Central

    Sobrinho, Cleyton R; Wenker, Ian C; Poss, Erin M; Takakura, Ana C; Moreira, Thiago S; Mulkey, Daniel K

    2014-01-01

    Several brain regions are thought to function as important sites of chemoreception including the nucleus of the solitary tract (NTS), medullary raphe and retrotrapezoid nucleus (RTN). In the RTN, mechanisms of chemoreception involve direct H+-mediated activation of chemosensitive neurons and indirect modulation of chemosensitive neurons by purinergic signalling. Evidence suggests that RTN astrocytes are the source of CO2-evoked ATP release. However, it is not clear whether purinergic signalling also influences CO2/H+ responsiveness of other putative chemoreceptors. The goals of this study are to determine if CO2/H+-sensitive neurons in the NTS and medullary raphe respond to ATP, and whether purinergic signalling in these regions influences CO2 responsiveness in vitro and in vivo. In brain slices, cell-attached recordings of membrane potential show that CO2/H+-sensitive NTS neurons are activated by focal ATP application; however, purinergic P2-receptor blockade did not affect their CO2/H+ responsiveness. CO2/H+-sensitive raphe neurons were unaffected by ATP or P2-receptor blockade. In vivo, ATP injection into the NTS increased cardiorespiratory activity; however, injection of a P2-receptor blocker into this region had no effect on baseline breathing or CO2/H+ responsiveness. Injections of ATP or a P2-receptor blocker into the medullary raphe had no effect on cardiorespiratory activity or the chemoreflex. As a positive control we confirmed that ATP injection into the RTN increased breathing and blood pressure by a P2-receptor-dependent mechanism. These results suggest that purinergic signalling is a unique feature of RTN chemoreception. PMID:24445316

  2. Central Role of P2Y6 UDP Receptor in Arteriolar Myogenic Tone

    PubMed Central

    Kauffenstein, Gilles; Tamareille, Sophie; Prunier, Fabrice; Roy, Charlotte; Ayer, Audrey; Toutain, Bertrand; Billaud, Marie; Isakson, Brant E.; Grimaud, Linda; Loufrani, Laurent; Rousseau, Pascal; Abraham, Pierre; Procaccio, Vincent; Monyer, Hannah; de Wit, Cor; Boeynaems, Jean-Marie; Robaye, Bernard; Kwak, Brenda R.; Henrion, Daniel

    2017-01-01

    Objective Myogenic tone (MT) of resistance arteries ensures autoregulation of blood flow in organs and relies on the intrinsic property of smooth muscle to contract in response to stretch. Nucleotides released by mechanical strain on cells are responsible for pleiotropic vascular effects, including vasoconstriction. Here, we evaluated the contribution of extracellular nucleotides to MT. Approach and Results We measured MT and the associated pathway in mouse mesenteric resistance arteries using arteriography for small arteries and molecular biology. Of the P2 receptors in mouse mesenteric resistance arteries, mRNA expression of P2X1 and P2Y6 was dominant. P2Y6 fully sustained UDP/UTP-induced contraction (abrogated in P2ry6−/− arteries). Preventing nucleotide hydrolysis with the ectonucleotidase inhibitor ARL67156 enhanced pressure-induced MT by 20%, whereas P2Y6 receptor blockade blunted MT in mouse mesenteric resistance arteries and human subcutaneous arteries. Despite normal hemodynamic parameters, P2ry6−/− mice were protected against MT elevation in myocardial infarction–induced heart failure. Although both P2Y6 and P2Y2 receptors contributed to calcium mobilization, P2Y6 activation was mandatory for RhoA–GTP binding, myosin light chain, P42–P44, and c-Jun N-terminal kinase phosphorylation in arterial smooth muscle cells. In accordance with the opening of a nucleotide conduit in pressurized arteries, MT was altered by hemichannel pharmacological inhibitors and impaired in Cx43+/− and P2rx7−/− mesenteric resistance arteries. Conclusions Signaling through P2 nucleotide receptors contributes to MT. This mechanism encompasses the release of nucleotides coupled to specific autocrine/paracrine activation of the uracil nucleotide P2Y6 receptor and may contribute to impaired tissue perfusion in cardiovascular diseases. PMID:27255725

  3. The effect of P2X7 receptor activation on nuclear factor-κB phosphorylation induced by status epilepticus in the rat hippocampus.

    PubMed

    Kim, Ji-Eun; Kim, Duk-Soo; Jin Ryu, Hea; Il Kim, Won; Kim, Min-Ju; Won Kim, Dae; Young Choi, Soo; Kang, Tea-Cheon

    2013-06-01

    Nuclear factor-kappa B (NFκB) signal is essential for neuronal survival and its activation may protect neuron against various stimuli. Since purinergic signals activate NFκB through the P2X7 receptor, we investigated the distinct pattern of NF-κB phosphorylation in neurons by P2X7 receptor activation following status epilepticus (SE) in an effort to understand the role of P2X7 receptor in epileptogenic insult. In non-SE animals, 2'(3')-O-(4-benzoyl)benzoyl adenosine 5'-triphosphate (BzATP, a P2X7R agonist) treatment increased only p52-Ser869 NF-κB phosphorylation in neuron. Following SE, p52-Ser865, p52-Ser869, p65-Ser276, p65-Ser311, p65-Ser468, and p65-Ser529 NF-κB phosphorylation was significantly decreased in CA1 and CA3 neurons. However, BzATP treatment prevented reductions in p65-Ser276, p65-Ser311, p65-Ser529, and p52-Ser869 NF-κB phosphorylations in CA1 and/or CA3 neurons induced by SE. Furthermore, BzATP treatment reduced SE-induced p65-Ser311, p65-Ser468, p65-Ser536, and p52-Ser869 NF-κB phosphorylations in astrocytes. These findings indicate that P2X7 functions may be involved in the regulation of SE-induced reactive astrocytes and neuronal degeneration via NF-κB phosphorylations in response to pilocarpine-induced SE in the rat hippocampus.

  4. P2X and P2Y Receptors—Role in the Pathophysiology of the Nervous System

    PubMed Central

    Puchałowicz, Kamila; Tarnowski, Maciej; Baranowska-Bosiacka, Irena; Chlubek, Dariusz; Dziedziejko, Violetta

    2014-01-01

    Purinergic signalling plays a crucial role in proper functioning of the nervous system. Mechanisms depending on extracellular nucleotides and their P2 receptors also underlie a number of nervous system dysfunctions. This review aims to present the role of purinergic signalling, with particular focus devoted to role of P2 family receptors, in epilepsy, depression, neuropathic pain, nervous system neoplasms, such as glioma and neuroblastoma, neurodegenerative diseases like Parkinson’s disease, Alzheimer’s disease and multiple sclerosis. The above-mentioned conditions are associated with changes in expression of extracellular ectonucleotidases, P2X and P2Y receptors in neurons and glial cells, as well as releasing considerable amounts of nucleotides from activated or damaged nervous tissue cells into the extracellular space, which contributes to disturbance in purinergic signalling. The numerous studies indicate a potential possibility of using synthetic agonists/antagonists of P2 receptors in treatment of selected nervous system diseases. This is of particular significance, since numerous available agents reveal a low effectiveness and often produce side effects. PMID:25530618

  5. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3.

    PubMed

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; GangHuang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease.

  6. Synthesis and Potency of Novel Uracil Nucleotides and Derivatives as P2Y2 and P2Y6 Receptor Agonists

    PubMed Central

    Ko, Hyojin; Carter, Rhonda L.; Cosyn, Liesbet; Petrelli, Riccardo; de Castro, Sonia; Besada, Pedro; Zhou, Yixing; Cappellacci, Loredana; Franchetti, Palmarisa; Grifantini, Mario; Van Calenbergh, Serge; Harden, T. Kendall; Jacobson, Kenneth A.

    2008-01-01

    The phosphate, uracil, and ribose moieties of uracil nucleotides were varied structurally for evaluation of agonist activity at the human P2Y2, P2Y4, and P2Y6 receptors. The 2-thio modification, found previously to enhance P2Y2 receptor potency, could be combined with other favorable modifications to produce novel molecules that exhibit high potencies and receptor selectivities. Phosphonomethylene bridges introduced for stability in analogues of UDP, UTP and uracil dinucleotides markedly reduced potency. Truncation of dinucleotide agonists of the P2Y2 receptor, in the form of Up4-sugars, indicated that a terminal uracil ring is not essential for moderate potency at this receptor and that specific SAR patterns are observed at this distal end of the molecule. Key compounds reported in this study include: 9, α,β-methylene-UDP, a P2Y6 receptor agonist; 30, Up4-phenyl ester and 34, Up4-[1]glucose, selective P2Y2 receptor agonists; 43, the 2-thio analogue of INS37217 (P1-(uridine 5′)-P4- (2′-deoxycytidine 5′) tetraphosphate), a potent and selective P2Y2 receptor agonist. PMID:18514530

  7. Role of myosin Va in purinergic vesicular neurotransmission in the gut

    PubMed Central

    Chaudhury, Arun; He, Xue-Dao

    2012-01-01

    We examined the hypothesis that myosin Va, by transporting purinergic vesicles to the varicosity membrane for exocytosis, plays a key role in purinergic vesicular neurotransmission. Studies were performed in wild-type (WT) and myosin Va-deficient dilute, brown, nonagouti (DBA) mice. Intracellular microelectrode recordings were made in mouse antral muscle strips. Purinergic inhibitory junction potential (pIJP) was recorded under nonadrenergic noncholinergic conditions after masking the nitrergic junction potentials. DBA mice showed reduced pIJP but normal hyperpolarizing response to P2Y1 receptor agonist MRS-2365. To investigate the mechanism of reduced purinergic transmission in DBA mice, studies were performed in isolated varicosities obtained from homogenates of whole gut tissues by ultracentrifugation and sucrose cushion purification. Purinergic varicosities were identified in tissue sections and in isolated varicosities by immunostaining for the vesicular ATP transporter, the solute carrier protein SLC17A9. The varicosities were similar in WT and DBA mice. Myosin Va was markedly reduced in DBA varicosities compared with the WT varicosities. Proximity ligation assay showed that myosin Va was closely associated with SLC17A9. Vesicular exoendocytosis was examined by FM1–43 staining of varicosities, which showed that exoendocytosis after KCl stimulation was impaired in DBA varicosities compared with WT varicosities. These studies show that SLC17A9 identifies ATP-containing purinergic varicosities. Myosin Va associates with SLC17A9-stained vesicles and possibly transports them to varicosity membrane for exocytosis. In myosin Va-deficient mice, purinergic inhibitory neurotransmission is impaired. PMID:22207579

  8. Molecular determinants of P2Y2 nucleotide receptor function: implications for proliferative and inflammatory pathways in astrocytes.

    PubMed

    Weisman, Gary A; Wang, M; Kong, Q; Chorna, N E; Neary, J T; Sun, Grace Y; González, Fernando A; Seye, C I; Erb, L

    2005-01-01

    In the mammalian nervous system, P2 nucleotide receptors mediate neurotransmission, release of proinflammatory cytokines, and reactive astrogliosis. Extracellular nucleotides activate multiple P2 receptors in neurons and glial cells, including G protein-coupled P2Y receptors and P2X receptors, which are ligand-gated ion channels. In glial cells, the P2Y2 receptor subtype, distinguished by its ability to be equipotently activated by ATP and UTP, is coupled to pro-inflammatory signaling pathways. In situ hybridization studies with rodent brain slices indicate that P2Y2 receptors are expressed primarily in the hippocampus and cerebellum. Astrocytes express several P2 receptor subtypes, including P2Y2 receptors whose activation stimulates cell proliferation and migration. P2Y2 receptors, via an RGD (Arg-Gly-Asp) motif in their first extracellular loop, bind to alphavbeta3/beta5 integrins, whereupon P2Y2 receptor activation stimulates integrin signaling pathways that regulate cytoskeletal reorganization and cell motility. The C-terminus of the P2Y2 receptor contains two Src-homology-3 (SH3)-binding domains that upon receptor activation, promote association with Src and transactivation of growth factor receptors. Together, our results indicate that P2Y2 receptors complex with both integrins and growth factor receptors to activate multiple signaling pathways. Thus, P2Y2 receptors present novel targets to control reactive astrogliosis in neurodegenerative diseases.

  9. Neuroprotection Mediated by P2Y13 Nucleotide Receptors in Neurons

    PubMed Central

    Pérez-Sen, Raquel; Queipo, Mª José; Morente, Verónica; Ortega, Felipe; Delicado, Esmerilda G.; Miras-Portugal, Mª Teresa

    2015-01-01

    ADP-specific P2Y13 receptor constitutes one of the most recently identified nucleotide receptor and the understanding of their physiological role is currently under investigation. Cerebellar astrocytes and granule neurons provide excellent models to study P2Y13 expression and function since the first identification of ADP-evoked calcium responses not attributable to the related P2Y1 receptor was performed in these cell populations. In this regard, all responses induced by ADP analogues in astrocytes resulted to be Gi-coupled activities mediated by P2Y13 instead of P2Y1 receptors. Similarly, both glycogen synthase kinase-3 (GSK3) and ERK1/2 signaling triggered by 2MeSADP in cerebellar granule neurons were also dependent on Gi-coupled receptors, and mediated by PI3K activity. In granule neurons, P2Y13 receptor was specifically coupled to the main neuronal survival PI3K/Akt-cascade targeting GSK3 phosphorylation. GSK3 inhibition led to nuclear translocation of transcriptional targets, including β-catenin and Nrf2. The activation of the Nrf2/heme oxygenase-1 (HO-1) axis was responsible for the prosurvival effect against oxidative stress. In addition, P2Y13-mediated ERK1/2 signaling in granule neurons also triggered activation of transcription factors, such as CREB, which underlined the antiapoptotic action against glutamate-induced excitotoxicity. Finally, a novel signaling mechanism has been recently described for a P2Y13 receptor in granule neurons that involved the expression of a dual protein phosphatase, DUSP2. This activity contributed to regulate MAPK activation after genotoxic stress. In conclusion, P2Y13 receptors harbored in cerebellar astrocytes and granule neurons exhibit specific signaling properties that link them to specialized functions at the level of neuroprotection and trophic activity in both cerebellar cell populations. PMID:25750704

  10. Characterisation of P2X receptors expressed in rat pulmonary arteries.

    PubMed

    Syed, Nawazish-i-Husain; Tengah, Asrin; Paul, Andrew; Kennedy, Charles

    2010-12-15

    Previous studies indicated that a P2X receptor other than the P2X1 subtype might be present in rat large, but not small pulmonary arteries. The aim here was to characterise further these P2X receptors. Isometric tension was recorded from rat isolated small (i.d. 250-500 μm) and large pulmonary artery (i.d. 1-1.5 mm) rings mounted on a wire myograph. In both tissues the P2X receptor agonist α,β-meATP evoked rapidly-developing contractions that were inhibited by the P2X antagonists NF449, PPADS and suramin in a concentration-dependent manner and eventually abolished by each. The rank order of the potency in both tissues was NF449>PPADS=suramin. For each antagonist there was no significant difference between its potency in the small and large pulmonary arteries. Prolonged administration of a high concentration of α,β-meATP induced complete desensitisation in both tissues. RT-PCR followed by PCR with specific oligonucleotide primers, identified mRNA for all seven P2X subunits. Subtype-specific antibodies showed strong, punctate P2X1 receptor-like immunoreactivity in the majority of cells and faint, punctate staining with the anti-P2X2 and anti-P2X4 antibodies, whilst P2X5-like immunoreactivity was barely detectable and no P2X3, P2X6, and P2X7 receptor-like immunoreactivity was seen. No differences in P2X mRNA and protein expression were seen between small and large pulmonary arteries. In conclusion, the pharmacological properties and mRNA and protein expression profiles of P2X receptors in rat small and large pulmonary arteries are very similar. Thus P2X1 appears to be the predominant P2X subunit functionally expressed in smooth muscle cells of rat small and large pulmonary arteries.

  11. P2RX7: A receptor with a split personality in inflammation and cancer.

    PubMed

    Di Virgilio, Francesco

    2016-03-01

    P2X7 (also known as P2RX7) is a plasma membrane receptor for extracellular ATP that is expressed at a high level by immune and tumor cells. Previous data showed that increased P2rx7 expression by tumor cells accelerates tumor progression. We have now looked at the other side of the relationship by investigating the effect of a lack of host P2rx7 expression on tumor growth. Our novel observations highlight a surprising role of host P2rx7 in restraining tumor progression.

  12. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    PubMed Central

    de Torre-Minguela, Carlos; Barberà-Cremades, Maria; Gómez, Ana I.; Martín-Sánchez, Fátima; Pelegrín, Pablo

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released after P2X7R stimulation goes beyond caspase-1 secretome. The characterization of P2X7R-secretome reveals a new function of this receptor through a fine-tuning of protein release. We found that P2X7R stimulation in macrophages is able to release potent anti-inflammatory proteins, such as Annexin A1, independently of their polarization state suggesting for first time a potential role for P2X7R during resolution of the inflammation and not linked to the release of pro-inflammatory cytokines. These results are of prime importance for the development of therapeutics targeting P2X7R. PMID:26935289

  13. P2X1 receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo

    PubMed Central

    Osmond, David A.

    2010-01-01

    In vitro experiments demonstrate that P2X1 receptor activation is important for normal afferent arteriolar autoregulatory behavior, but direct in vivo evidence for this relationship occurring in the whole kidney is unavailable. Experiments were performed to test the hypothesis that P2X1 receptors are important for autoregulation of whole kidney blood flow. Renal blood flow (RBF) was measured in anesthetized male Sprague-Dawley rats before and during P2 receptor blockade with PPADS, P2X1 receptor blockade with IP5I, or A1 receptor blockade with DPCPX. Both P2X1 and A1 receptor stimulation with α,β-methylene ATP and CPA, respectively, caused dose-dependent decreases in RBF. Administration of either PPADS or IP5I significantly blocked P2X1 receptor stimulation. Likewise, administration of DPCPX significantly blocked A1 receptor activation to CPA. Autoregulatory behavior was assessed by measuring RBF responses to reductions in renal perfusion pressure. In vehicle-infused rats, as pressure was decreased from 120 to 100 mmHg, there was no decrease in RBF. However, in either PPADS- or IP5I-infused rats, each decrease in pressure resulted in a significant decrease in RBF, demonstrating loss of autoregulatory ability. In DPCPX-infused rats, reductions in pressure did not cause significant reductions in RBF over the pressure range of 100–120 mmHg, but the autoregulatory curve tended to be steeper than vehicle-infused rats over the range of 80–100 mmHg, suggesting that A1 receptors may influence RBF at lower pressures. These findings are consistent with in vitro data from afferent arterioles and support the hypothesis that P2X1 receptor activation is important for whole kidney autoregulation in vivo. PMID:20335318

  14. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats.

    PubMed

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-10-01

    Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight-bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell-induced injury to nerves that innervate the skin.

  15. Pulmonary infection with hypervirulent Mycobacteria reveals a crucial role for the P2X7 receptor in aggressive forms of tuberculosis.

    PubMed

    Amaral, Eduardo P; Ribeiro, Simone C M; Lanes, Verônica R; Almeida, Fabrício M; de Andrade, Marcelle R M; Bomfim, Caio Cesar Barbosa; Salles, Erika M; Bortoluci, Karina R; Coutinho-Silva, Robson; Hirata, Mario H; Alvarez, José M; Lasunskaia, Elena B; D'Império-Lima, Maria Regina

    2014-07-01

    The purinergic P2X7 receptor (P2X7R) is a sensor of extracellular ATP, a damage-associated molecule that is released from necrotic cells and that induces pro-inflammatory cytokine production and cell death. To investigate whether the innate immune response to damage signals could contribute to the development of pulmonary necrotic lesions in severe forms of tuberculosis, disease progression was examined in C57BL/6 and P2X7R-/- mice that were intratracheally infected with highly virulent mycobacterial strains (Mycobacterium tuberculosis strain 1471 of the Beijing genotype family and Mycobacterium bovis strain MP287/03). The low-dose infection of C57BL/6 mice with bacteria of these strains caused the rapid development of extensive granulomatous pneumonia with necrotic areas, intense bacillus dissemination and anticipated animal death. In contrast, in P2X7R-/- mice, the lung pathology presented with moderate infiltrates of mononuclear leukocytes without visible signs of necrosis; the disease attenuation was accompanied by a delay in mortality. In vitro, the hypervirulent mycobacteria grew rapidly inside macrophages and induced death by a P2X7R-dependent mechanism that facilitated the release of bacilli. Furthermore, these bacteria were resistant to the protective mechanisms elicited in macrophages following extracellular ATP stimulation. Based on this study, we propose that the rapid intracellular growth of hypervirulent mycobacteria results in massive macrophage damage. The ATP released by damaged cells engages P2X7R and accelerates the necrotic death of infected macrophages and the release of bacilli. This vicious cycle exacerbates pneumonia and lung necrosis by promoting widespread cell destruction and bacillus dissemination. These findings suggest the use of drugs that have been designed to inhibit the P2X7R as a new therapeutic approach to treat the aggressive forms of tuberculosis.

  16. Enhanced binding capability of nuclear factor-κB with demethylated P2X3 receptor gene contributes to cancer pain in rats

    PubMed Central

    Zhou, You-Lang; Jiang, Guo-Qin; Wei, Jinrong; Zhang, Hong-Hong; Chen, Wei; Zhu, Hongyan; Hu, Shufen; Jiang, Xinghong; Xu, Guang-Yin

    2015-01-01

    Abstract Nuclear factor-kappa B (NF-κB) signaling is implicated in both cancer development and inflammation processes. However, the roles and mechanisms of NF-κB signaling in the development of cancer-induced pain (CIP) remain unknown. This study was designed to investigate the roles of the p65 subunit of NF-κB in regulation of the purinergic receptor (P2X3R) plasticity in dorsal root ganglion (DRG) of CIP rats. We showed here that tumor cell injection produced mechanical and thermal hyperalgesia, and an enhanced body weight–bearing difference, which was correlated with an upregulation of p65 and P2X3R expression in lumber DRGs and a potentiation of ATP-evoked responses of tibia-innervating DRG neurons. Inhibition of NF-κB signaling using p65 inhibitor pyrrolidine dithiocarbamate, BAY-11-7082, or lentiviral-p65 short-hairpin RNA significantly attenuated CIP and reversed the activities of P2X3R. Interestingly, tumor cell injection led to a significant demethylation of CpG island in p2x3r gene promoter and enhanced ability of p65 to bind the promoter of p2x3r gene. Our findings suggest that upregulation of P2X3R expression was mediated by the enhanced binding capability of p65 with demethylated promoter of p2x3r gene, thus contributing to CIP. NF-κBp65 might be a potential target for treating CIP, a neuropathic pain generated by tumor cell–induced injury to nerves that innervate the skin. PMID:26049406

  17. Autocrine extracellular purinergic signaling in epithelial cells derived from polycystic kidneys.

    PubMed

    Schwiebert, Erik M; Wallace, Darren P; Braunstein, Gavin M; King, Sandi R; Peti-Peterdi, Janos; Hanaoka, Kazushige; Guggino, William B; Guay-Woodford, Lisa M; Bell, P Darwin; Sullivan, Lawrence P; Grantham, Jared J; Taylor, Amanda L

    2002-04-01

    ATP and its metabolites are potent autocrine agonists that act extracellularly within tissues to affect epithelial function. In polycystic kidneys, renal tubules become dilated and/or encapsulated as cysts, creating abnormal microenvironments for autocrine signaling. Previously, our laboratory has shown that high-nanomolar to micromolar quantities of ATP are released from cell monolayers in vitro and detectable in cyst fluids from microdissected human autosomal dominant polycystic kidney (ADPKD) cysts. Here, we show enhanced ATP release from autosomal recessive polycystic kidney (ARPKD) and ADPKD epithelial cell models. RT-PCR and immunoblotting for P2Y G protein-coupled receptors and P2X purinergic receptor channels show expression of mRNA and/or protein for multiple subtypes from both families. Assays of cytosolic Ca(2+) concentration and secretory Cl(-) transport show P2Y and P2X purinergic receptor-mediated stimulation of Cl(-) secretion via cytosolic Ca(2+)-dependent signaling. Therefore, we hypothesize that autocrine purinergic signaling may augment detrimentally cyst volume expansion in ADPKD or tubule dilation in ARPKD, accelerating disease progression.

  18. Validation of a P2Y12-receptor specific whole blood platelet aggregation assay.

    PubMed

    Amann, Michael; Ferenc, Miroslaw; Valina, Christian M; Bömicke, Timo; Stratz, Christian; Leggewie, Stefan; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald

    2016-11-01

    Testing of P2Y12-receptor antagonist effects can support clinical decision-making. However, most platelet function assays use only ADP as agonist which is not P2Y12-receptor specific. For this reason P2Y12-receptor specific assays have been developed by adding prostaglandin E1 (PGE1) to reduce ADP-induced platelet activation via the P2Y1-receptor. The present study sought to evaluate a P2Y12-receptor specific assay for determination of pharmacodynamic and clinical outcomes. This study enrolled 400 patients undergoing coronary stenting after loading with clopidogrel or prasugrel. ADP-induced platelet reactivity was assessed by whole blood aggregometry at multiple time points with a standard ADP assay (ADPtest) and a P2Y12-receptor specific assay (ADPtest HS, both run on Multiplate Analyzer, Roche Diagnostics). Patients were clinically followed for 1 month and all events adjudicated by an independent committee. In total, 2084 pairs of test results of ADPtest and ADPtest HS were available showing a strong correlation between results of both assays (r = 0.96, p < 0.001). These findings prevailed in multiple prespecified subgroups (e.g., age; body mass index; diabetes). Calculated cutoffs for ADPtest HS and the established cutoffs of ADPtest showed a substantial agreement for prediction of ischemic and hemorrhagic events with a Cohen's κ of 0.66 and 0.66, respectively. The P2Y12-receptor specific ADPtest HS assay appears similarly predictive for pharmacodynamic and clinical outcomes as compared to the established ADPtest assay indicating its applicability for clinical use. Further evaluation in large cohorts is needed to determine if P2Y12-receptor specific testing offers any advantage for prediction of clinical outcome.

  19. Nociceptive transmission and modulation via P2X receptors in central pain syndrome.

    PubMed

    Kuan, Yung-Hui; Shyu, Bai-Chuang

    2016-05-26

    Painful sensations are some of the most frequent complaints of patients who are admitted to local medical clinics. Persistent pain varies according to its causes, often resulting from local tissue damage or inflammation. Central somatosensory pathway lesions that are not adequately relieved can consequently cause central pain syndrome or central neuropathic pain. Research on the molecular mechanisms that underlie this pathogenesis is important for treating such pain. To date, evidence suggests the involvement of ion channels, including adenosine triphosphate (ATP)-gated cation channel P2X receptors, in central nervous system pain transmission and persistent modulation upon and following the occurrence of neuropathic pain. Several P2X receptor subtypes, including P2X2, P2X3, P2X4, and P2X7, have been shown to play diverse roles in the pathogenesis of central pain including the mediation of fast transmission in the peripheral nervous system and modulation of neuronal activity in the central nervous system. This review article highlights the role of the P2X family of ATP receptors in the pathogenesis of central neuropathic pain and pain transmission. We discuss basic research that may be translated to clinical application, suggesting that P2X receptors may be treatment targets for central pain syndrome.

  20. Purinergic receptor activation inhibits osmotic glial cell swelling in the diabetic rat retina.

    PubMed

    Wurm, Antje; Iandiev, Ianors; Hollborn, Margrit; Wiedemann, Peter; Reichenbach, Andreas; Zimmermann, Herbert; Bringmann, Andreas; Pannicke, Thomas

    2008-10-01

    The anti-inflammatory glucocorticoid, triamcinolone acetonide, is used clinically for the rapid resolution of diabetic macular edema. Osmotic swelling of glial cells may contribute to the development of retinal edema. Triamcinolone inhibits the swelling of retinal glial cells of diabetic rats. Here, we determined whether the effect of triamcinolone is mediated by a receptor-dependent mechanism. Hyperglycemia was induced in rats with streptozotocin injection. After 6-10 months, the swelling properties of glial cells in retinal slices upon hypotonic challenge were determined. Nucleotide-degrading ecto-enzymes were immunostained in retinal slices and glial cells. Hypotonic challenge did not change the size of glial cell bodies from control retinas but induced swelling of cells from diabetic animals. Triamcinolone inhibited glial cell swelling; this effect was prevented by a selective antagonist of adenosine A1 receptors, an inhibitor of nucleoside transporters, inhibitors of adenylyl cyclase and protein kinase A activation, and inhibitors of potassium and chloride channels. In diabetic (but not control) retinas, the effect of triamcinolone apparently involves extracellular nucleotide degradation. Glial cells from diabetic retinas displayed immunolabeling against nucleoside triphosphate diphosphohydrolase-1 (NTPDase1) which was not observed in control retinas. The mRNA expression for NTPDase1 was significantly increased in the retina of diabetic rats. It is suggested that triamcinolone induces the release and formation of endogenous adenosine that subsequently activates A1 receptors resulting in ion efflux through potassium and chloride channels and prevention of osmotic swelling. Whereas adenosine is liberated via facilitated transport in control retinas, an extracellular formation of adenosine contributes to the effect of triamcinolone in diabetic retinas.

  1. Primitive ATP-activated P2X receptors: discovery, function and pharmacology

    PubMed Central

    Fountain, Samuel J.

    2013-01-01

    Adenosine 5-triphosphate (ATP) is omnipresent in biology. It is therefore no surprise that organisms have evolved multifaceted roles for ATP, exploiting its abundance and restriction of passive diffusion across biological membranes. A striking role is the emergence of ATP as a bona fide transmitter molecule, whereby the movement of ATP across membranes serves as a chemical message through a direct ligand-receptor interaction. P2X receptors are ligand-gated ion channels that mediate fast responses to the transmitter ATP in mammalian cells including central and sensory neurons, vascular smooth muscle, endothelium, and leukocytes. Molecular cloning of P2X receptors and our understanding of structure-function relationships has provided sequence information with which to query an exponentially expanding wealth of genome sequence information including protist, early animal and human pathogen genomes. P2X receptors have now been cloned and characterized from a number of simple organisms. Such work has led to surprising new cellular roles for the P2X receptors family and an unusual phylogeny, with organisms such as Drosophila and C. elegans notably lacking P2X receptors despite retaining ionotropic receptors for other common transmitters that are present in mammals. This review will summarize current work on the evolutionary biology of P2X receptors and ATP as a signaling molecule, discuss what can be drawn from such studies when considering the action of ATP in higher animals and plants, and outline how simple organisms may be exploited experimentally to inform P2X receptor function in a wider context. PMID:24367292

  2. Evaluation of adenine as scaffold for the development of novel P2X3 receptor antagonists.

    PubMed

    Lambertucci, Catia; Sundukova, Mayya; Kachare, Dhuldeo D; Panmand, Deepak S; Dal Ben, Diego; Buccioni, Michela; Marucci, Gabriella; Marchenkova, Anna; Thomas, Ajiroghene; Nistri, Andrea; Cristalli, Gloria; Volpini, Rosaria

    2013-07-01

    Ligands that selectively block P2X3 receptors localized on nociceptive sensory fibres may be useful for the treatment of chronic pain conditions including neuropathic pain, migraine, and inflammatory pain. With the aim at exploring the suitability of adenine moiety as a scaffold for the development of antagonists of this receptor, a series of 9-benzyl-2-aminoadenine derivatives were designed and synthesized. These new compounds were functionally evaluated at rat or human P2X3 receptors expressed in human embryonic kidney (HEK) cells and on native P2X3 receptors from mouse trigeminal ganglion sensory neurons using patch clamp recording under voltage clamp configuration. The new molecules behaved as P2X3 antagonists, as they rapidly and reversibly inhibited (IC50 in the low micromolar range) the membrane currents induced via P2X3 receptor activation by the full agonist α,β-methyleneATP. Introduction of a small lipophilic methyl substituent at the 6-amino group enhanced the activity, in comparison to the corresponding unsubstituted derivative, resulting in the 9-(5-iodo-2-isopropyl-4-methoxybenzyl)-N(6)-methyl-9H-purine-2,6-diamine (24), which appears to be a good antagonist on recombinant and native P2X3 receptors with IC50 = 1.74 ± 0.21 μM.

  3. Discovery of Potent Antiallodynic Agents for Neuropathic Pain Targeting P2X3 Receptors.

    PubMed

    Jung, Young-Hwan; Kim, Yeo Ok; Lin, Hai; Cho, Joong-Heui; Park, Jin-Hee; Lee, So-Deok; Bae, Jinsu; Kang, Koon Mook; Kim, Yoon-Gyoon; Pae, Ae Nim; Ko, Hyojin; Park, Chul-Seung; Yoon, Myung Ha; Kim, Yong-Chul

    2017-04-06

    Antagonism of the P2X3 receptor is one of the potential therapeutic strategies for the management of neuropathic pain because P2X3 receptors are predominantly localized on small to medium diameter C- and Aδ-fiber primary afferent neurons, which are related to the pain-sensing system. In this study, 5-hydroxy pyridine derivatives were designed, synthesized, and evaluated for their in vitro biological activities by two-electrode voltage clamp assay at hP2X3 receptors. Among the novel hP2X3 receptor antagonists, intrathecal treatment of compound 29 showed parallel efficacy with pregabalin (calcium channel modulator) and higher efficacy than AF353 (P2X3 receptor antagonist) in the evaluation of its antiallodynic effects in spinal nerve ligation rats. However, because compound 29 was inactive by intraperitoneal administration in neuropathic pain animal models due to low cell permeability, the corresponding methyl ester analogue, 28, which could be converted to compound 29 in vivo, was investigated as a prodrug concept. Intravenous injection of compound 28 resulted in potent antiallodynic effects, with ED50 values of 2.62 and 2.93 mg/kg in spinal nerve ligation and chemotherapy-induced peripheral neuropathy rats, respectively, indicating that new drug development targeting the P2X3 receptor could be promising for neuropathic pain, a disease with high unmet medical needs.

  4. Mechanism of action of species-selective P2X7 receptor antagonists

    PubMed Central

    Michel, Anton D; Ng, Sin-Wei; Roman, Shilina; Clay, William C; Dean, David K; Walter, Daryl S

    2009-01-01

    Background and purpose: AZ11645373 and N-{2-methyl-5-[(1R, 5S)-9-oxa-3,7-diazabicyclo[3.3.1]non-3-ylcarbonyl]phenyl}-2-tricyclo[3.3.1.13,7]dec-1-ylacetamide hydrochloride (compound-22) are recently described P2X7 receptor antagonists. In this study we have further characterized these compounds to determine their mechanism of action and interaction with other species orthologues. Experimental approach: Antagonist effects at recombinant and chimeric P2X7 receptors were assessed by ethidium accumulation and radioligand-binding studies. Key results: AZ11645373 and compound-22 were confirmed as selective non-competitive antagonists of human or rat P2X7 receptors respectively. Both compounds were weak antagonists of the mouse and guinea-pig P2X7 receptors and, for each compound, their potency estimates at human and dog P2X7 receptors were similar. The potency of compound-22 was moderately temperature-dependent while that of AZ11645373 was not. The antagonist effects of both compounds were slowly reversible and were not prevented by decavanadate, suggesting that they were allosteric antagonists. Indeed, the compounds competed for binding sites labelled by an allosteric radio-labelled P2X7 receptor antagonist. The species selectivity of AZ11645373, but not compound-22, was influenced by the nature of the amino acid at position 95 of the P2X7 receptor. N2-(3,4-difluorophenyl)-N1-[2-methyl-5-(1-piperazinylmethyl)phenyl]glycinamide dihydrochloride, a positive allosteric modulator of the rat receptor, reduced the potency of compound-22 at the rat receptor but had little effect on the actions of AZ11645373. Conclusions: AZ11645373 and compound-22 are allosteric antagonists of human and rat P2X7 receptors respectively. The differential interaction of the two compounds with the receptor suggests there may be more than one allosteric regulatory site on the P2X7 receptor at which antagonists can bind and affect receptor function. PMID:19309360

  5. Lipopolysaccharide induces alveolar macrophage necrosis via CD14 and the P2x7 receptor leading to Interleukin-1α release

    PubMed Central

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D.; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A.; Crother, Timothy R.; Arditi, Moshe

    2015-01-01

    SUMMARY Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca2+ influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration. PMID:25862090

  6. Lipopolysaccharide Induces Alveolar Macrophage Necrosis via CD14 and the P2X7 Receptor Leading to Interleukin-1α Release.

    PubMed

    Dagvadorj, Jargalsaikhan; Shimada, Kenichi; Chen, Shuang; Jones, Heather D; Tumurkhuu, Gantsetseg; Zhang, Wenxuan; Wawrowsky, Kolja A; Crother, Timothy R; Arditi, Moshe

    2015-04-21

    Acute lung injury (ALI) remains a serious health issue with little improvement in our understanding of the pathophysiology and therapeutic approaches. We investigated the mechanism that lipopolysaccharide (LPS) induces early neutrophil recruitment to lungs and increases pulmonary vascular permeability during ALI. Intratracheal LPS induced release of pro-interleukin-1α (IL-1α) from necrotic alveolar macrophages (AM), which activated endothelial cells (EC) to induce vascular leakage via loss of vascular endothelial (VE)-cadherin. LPS triggered the AM purinergic receptor P2X7(R) to induce Ca(2+) influx and ATP depletion, which led to necrosis. P2X7R deficiency significantly reduced necrotic death of AM and release of pro-IL-1α into the lung. CD14 was required for LPS binding to P2X7R, as CD14 neutralization significantly diminished LPS induced necrotic death of AM and pro-IL-1α release. These results demonstrate a key role for pro-IL-1α from necrotic alveolar macrophages in LPS-mediated ALI, as a critical initiator of increased vascular permeability and early neutrophil infiltration.

  7. The involvement of P2Y12 receptors, NADPH oxidase, and lipid rafts in the action of extracellular ATP on synaptic transmission at the frog neuromuscular junction.

    PubMed

    Giniatullin, A; Petrov, A; Giniatullin, R

    2015-01-29

    Adenosine 5'-triphosphate (ATP) is the main co-transmitter accompanying the release of acetylcholine from motor nerve terminals. Previously, we revealed the direct inhibitory action of extracellular ATP on transmitter release via redox-dependent mechanism. However, the receptor mechanism of ATP action and ATP-induced sources of reactive oxygen sources (ROS) remained not fully understood. In the current study, using microelectrode recordings of synaptic currents from the frog neuromuscular junction, we analyzed the receptor subtype involved in synaptic action of ATP, receptor coupling to NADPH oxidase and potential location of ATP receptors within the lipid rafts. Using subtype-specific antagonists, we found that the P2Y13 blocker 2-[(2-chloro-5-nitrophenyl)azo]-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]-4-pyridinecarboxaldehyde did not prevent the depressant action of ATP. In contrast, the P2Y12 antagonist 2-methylthioadenosine 5'-monophosphate abolished the inhibitory action of ATP, suggesting the key role of P2Y12 receptors in ATP action. As the action of ATP is redox-dependent, we also tested potential involvement of the NADPH oxidase, known as a common inducer of ROS. The depressant action of extracellular ATP was significantly reduced by diphenyleneiodonium chloride and 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride, two structurally different inhibitors of NADPH oxidase, indicating that this enzyme indeed mediates the action of ATP. Since the location and activity of various receptors are often associated with lipid rafts, we next tested whether ATP-driven inhibition depends on lipid rafts. We found that the disruption of lipid rafts with methyl-beta-cyclodextrin reduced and largely delayed the action of ATP. Taken together, these data revealed key steps in the purinergic control of synaptic transmission via P2Y12 receptors associated with lipid rafts, and identified NADPH oxidase as the main source of ATP-induced inhibitory ROS at the neuromuscular

  8. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    SciTech Connect

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao; Zhai, Zhifang; Gang Huang; Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong; Hou, Weiping

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  9. The role of P2X7 receptors in a rodent PCP-induced schizophrenia model

    PubMed Central

    Koványi, Bence; Csölle, Cecilia; Calovi, Stefano; Hanuska, Adrienn; Kató, Erzsébet; Köles, László; Bhattacharya, Anindya; Haller, József; Sperlágh, Beáta

    2016-01-01

    P2X7 receptors (P2X7Rs) are ligand-gated ion channels sensitive to extracellular ATP. Here we examined for the first time the role of P2X7R in an animal model of schizophrenia. Using the PCP induced schizophrenia model we show that both genetic deletion and pharmacological inhibition of P2X7Rs alleviate schizophrenia-like behavioral alterations. In P2rx7+/+ mice, PCP induced hyperlocomotion, stereotype behavior, ataxia and social withdrawal. In P2X7 receptor deficient mice (P2rx7−/−), the social interactions were increased, whereas the PCP induced hyperlocomotion and stereotype behavior were alleviated. The selective P2X7 receptor antagonist JNJ-47965567 partly replicated the effect of gene deficiency on PCP-induced behavioral changes and counteracted PCP-induced social withdrawal. We also show that PCP treatment upregulates and increases the functional responsiveness of P2X7Rs in the prefrontal cortex of young adult animals. The amplitude of NMDA evoked currents recorded from layer V pyramidal neurons of cortical slices were slightly decreased by both genetic deletion of P2rx7 and by JNJ-47965567. PCP induced alterations in mRNA expression encoding schizophrenia-related genes, such as NR2A, NR2B, neuregulin 1, NR1 and GABA α1 subunit were absent in the PFC of young adult P2rx7−/− animals. Our findings point to P2X7R as a potential therapeutic target in schizophrenia. PMID:27824163

  10. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier integrity through a mechanism involving P2X7 receptors.

    PubMed

    Rubio-Araiz, Ana; Perez-Hernandez, Mercedes; Urrutia, Andrés; Porcu, Francesca; Borcel, Erika; Gutierrez-Lopez, Maria Dolores; O'Shea, Esther; Colado, Maria Isabel

    2014-08-01

    The recreational drug 3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') produces a neuro-inflammatory response in rats characterized by an increase in microglial activation and IL-1β levels. The integrity of the blood-brain barrier (BBB) is important in preserving the homeostasis of the brain and has been shown to be affected by neuro-inflammatory processes. We aimed to study the effect of a single dose of MDMA on the activity of metalloproteinases (MMPs), expression of extracellular matrix proteins, BBB leakage and the role of the ionotropic purinergic receptor P2X7 (P2X7R) in the changes induced by the drug. Adult male Dark Agouti rats were treated with MDMA (10 mg/kg, i.p.) and killed at several time-points in order to evaluate MMP-9 and MMP-3 activity in the hippocampus and laminin and collagen-IV expression and IgG extravasation in the dentate gyrus. Microglial activation, P2X7R expression and localization were also determined in the dentate gyrus. Separate groups were treated with MDMA and the P2X7R antagonists Brilliant Blue G (BBG; 50 mg/kg, i.p.) or A-438079 (30 mg/kg, i.p.). MDMA increased MMP-3 and MMP-9 activity, reduced laminin and collagen-IV expression and increased IgG immunoreactivity. In addition, MDMA increased microglial activation and P2X7R immunoreactivity in these cells. BBG suppressed the increase in MMP-9 and MMP-3 activity, prevented basal lamina degradation and IgG extravasation into the brain parenchyma. A-438079 also prevented the MDMA-induced reduction in laminin and collagen-IV immunoreactivity. These results indicate that MDMA alters BBB permeability through an early P2X7R-mediated event, which in turn leads to enhancement of MMP-9 and MMP-3 activity and degradation of extracellular matrix.

  11. P2X7 receptors induce degranulation in human mast cells.

    PubMed

    Wareham, Kathryn J; Seward, Elizabeth P

    2016-06-01

    Mast cells play important roles in host defence against pathogens, as well as being a key effector cell in diseases with an allergic basis such as asthma and an increasing list of other chronic inflammatory conditions. Mast cells initiate immune responses through the release of newly synthesised eicosanoids and the secretion of pre-formed mediators such as histamine which they store in specialised granules. Calcium plays a key role in regulating both the synthesis and secretion of mast-cell-derived mediators, with influx across the membrane, in particular, being necessary for degranulation. This raises the possibility that calcium influx through P2X receptors may lead to antigen-independent secretion of histamine and other granule-derived mediators from human mast cells. Here we show that activation of P2X7 receptors with both ATP and BzATP induces robust calcium rises in human mast cells and triggers their degranulation; both effects are blocked by the P2X7 antagonist AZ11645373, or the removal of calcium from the extracellular medium. Activation of P2X1 receptors with αβmeATP also induces calcium influx in human mast cells, which is significantly reduced by both PPADS and NF 449. P2X1 receptor activation, however, does not trigger degranulation. The results indicate that P2X7 receptors may play a significant role in contributing to the unwanted activation of mast cells in chronic inflammatory conditions where extracellular ATP levels are elevated.

  12. Potent and long-lasting inhibition of human P2X2 receptors by copper

    PubMed Central

    Punthambaker, Sukanya; Hume, Richard I.

    2013-01-01

    P2X receptors are ion channels gated by ATP. In rodents these channels are modulated by zinc and copper. Zinc is co-released with neurotransmitter at some synapses and can modulate neuronal activity, but the role of copper in the brain is unclear. Rat P2X2 receptors show potentiation by 2–100 µM zinc or copper in the presence of a submaximal concentration of ATP but are inhibited by zinc or copper at concentrations above 100 µM. In contrast, human P2X2 (hP2X2) receptors show no potentiation and are strongly inhibited by zinc over the range of 2–100 µM. The effect of copper on hP2X2 is of interest because there are human brain disorders in which copper concentration is altered. We found that hP2X2 receptors are potently inhibited by copper (IC50 = 40 nM). ATP responsiveness recovered extremely slowly after copper washout, with full recovery requiring over 1 h. ATP binding facilitated copper binding but not unbinding from this inhibitory site. A mutant receptor in which the first six extracellular cysteines were deleted, C(1–6)S, showed normal copper inhibition, however reducing agents dramatically accelerated recovery from copper inhibition in wild type hP2X2 and the C(1–6)S mutant, indicating that the final two disulfide bonds are required to maintain the high affinity copper binding site. Three histidine residues required for normal zinc inhibition were also required for normal copper inhibition. Humans with untreated Wilson’s disease have excess amounts of copper in the brain. The high copper sensitivity of hP2X2 receptors suggests that they are non-functional in these patients. PMID:24067922

  13. Potential involvement of P2Y2 receptor in diuresis of postobstructive uropathy in rats.

    PubMed

    Zhang, Yue; Kohan, Donald E; Nelson, Raoul D; Carlson, Noel G; Kishore, Bellamkonda K

    2010-03-01

    AVP resistance of the medullary collecting duct (mCD) in postobstructive uropathy (POU) has been attributed to increased production of PGE2. P2Y2 receptor activation causes production of PGE2 by the mCD. We hypothesize that increased P2Y2 receptor expression and/or activity may contribute to the diuresis of POU. Sprague-Dawley rats were subjected to bilateral ureteral obstruction for 24 h followed by release (BUO/R, n = 17) or sham operation (SHM/O, n = 15) and euthanized after 1 wk or 12 days. BUO/R rats developed significant polydipsia, polyuria, urinary concentration defect, and increased urinary PGE2 and decreased aquaporin-2 protein abundance in the inner medulla compared with SHM/O rats. After BUO/R, the relative mRNA expression of P2Y2 and P2Y6 receptors was increased by 2.7- and 4.9-fold, respectively, without significant changes in mRNA expression of P2Y1 or P2Y4 receptor. This was associated with a significant 3.5-fold higher protein abundance of the P2Y2 receptor in BUO/R than SHM/O rats. When freshly isolated mCD fractions were challenged with different types of nucleotides (ATPgammaS, ADP, UTP, or UDP), BUO/R and SHM/O rats responded to only ATPgammaS and UTP and released PGE2, consistent with involvement of the P2Y2, but not P2Y6, receptor. ATPgammaS- or UTP-stimulated increases in PGE2 were much higher in BUO/R (3.20- and 2.28-fold, respectively, vs. vehicle controls) than SHM/O (1.68- and 1.30-fold, respectively, vs. vehicle controls) rats. In addition, there were significant 2.4- and 2.1-fold increases in relative mRNA expression of prostanoid EP1 and EP3 receptors, respectively, in the inner medulla of BUO/R vs. SHM/O rats. Taken together, these data suggest that increased production of PGE2 by the mCD in POU may be due to increased expression and activity of the P2Y2 receptor. Increased mRNA expression of EP1 and EP3 receptors in POU may also help accentuate PGE2-induced signaling in the mCD.

  14. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina.

    PubMed

    Ho, T; Vessey, K A; Fletcher, E L

    2014-09-26

    Extracellular adenosine 5'-triphosphate (eATP) acts as a neurotransmitter within the retina and brain, activating a range of ionotropic P2X and metabotropic P2Y receptors. In this study, the specific localization of the P2X4 receptor (P2X4-R) subunit was evaluated in the retina using fluorescence immunohistochemistry and pre-embedding immuno-electron microscopy. Punctate P2X4-R labeling was largely localized to the inner and outer plexiform layers of mouse, rat and cat retinae. In the mouse outer retina, double-labeling of P2X4-R with the horizontal cell marker, calbindin, revealed P2X4-R immunoreactivity (P2X4-R-IR) on horizontal cell somata and processes. In the inner retina, P2X4-R expression was found closely associated with rod and cone bipolar cell terminals, and the punctate labeling was observed on calretinin-positive amacrine cells. Using immuno-electron microscopy, P2X4-Rs were observed on processes post-synaptic to photoreceptor and bipolar cell terminals, likely representing horizontal, amacrine and ganglion cells, respectively. Furthermore, P2X4-R expression was also observed on Müller cells, astrocytes and microglia. These data suggest a role for P2X4-Rs in the lateral inhibitory pathways of the retina, modulating neuronal function of photoreceptors and bipolar cells. The expression on macro- and microglial cells implicates a role for P2X4-Rs in glial signaling, tissue homeostasis and immunosurveillance within the mammalian retina.

  15. Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration.

    PubMed

    Glaser, Talita; Cappellari, Angélica Regina; Pillat, Micheli Mainardi; Iser, Isabele Cristiana; Wink, Márcia Rosângela; Battastini, Ana Maria Oliveira; Ulrich, Henning

    2012-09-01

    Replacement of lost or dysfunctional tissues by stem cells has recently raised many investigations on therapeutic applications. Purinergic signaling has been shown to regulate proliferation, differentiation, cell death, and successful engraftment of stem cells originated from diverse origins. Adenosine triphosphate release occurs in a controlled way by exocytosis, transporters, and lysosomes or in large amounts from damaged cells, which is then subsequently degraded into adenosine. Paracrine and autocrine mechanisms induced by immune responses present critical factors for the success of stem cell therapy. While P1 receptors generally exert beneficial effects including anti-inflammatory activity, P2 receptor-mediated actions depend on the subtype of stimulated receptors and localization of tissue repair. Pro-inflammatory actions and excitatory tissue damages mainly result from P2X7 receptor activation, while other purinergic receptor subtypes participate in proliferation and differentiation, thereby providing adequate niches for stem cell engraftment and novel mechanisms for cell therapy and endogenous tissue repair. Therapeutic applications based on regulation of purinergic signaling are foreseen for kidney and heart muscle regeneration, Clara-like cell replacement for pulmonary and bronchial epithelial cells as well as for induction of neurogenesis in case of neurodegenerative diseases.

  16. Immunohistochemical identification of cells expressing ATP-gated cation channels (P2X receptors) in the adult rat thyroid

    PubMed Central

    GLASS, RAINER; BURNSTOCK, GEOFFREY

    2001-01-01

    We carried out immunohistochemistry and western blotting of fresh frozen sections and crude extracts from adult rat thyroids. The histochemical and immunoblotting studies were performed with P2X receptor antibodies from 2 different sources. P2X-immunopositive cells were identified by fluorescence double labelling and confocal microscopy. Results of the western blotting experiments showed double bands of approximately 70 kDa and 140 kDa for all 7 P2X receptor subtypes with both sets of antibodies. Histochemical stains with antibodies from both sources also gave essentially identical results. P2X1, P2X2 and P2X6 receptors were detected exclusively in vascular smooth muscle; P2X5 and P2X7 receptors were also present on vascular smooth muscle. Endothelial cells stained for P2X3, P2X4 and P2X7 receptors. Thyroid follicular cells displayed immunoreactivity for P2X3, P2X4 and P2X5 receptors. No immunostaining for P2X receptors was observed on C-cells. Possible roles for the broad expression of P2X receptor subtypes in the rat thyroid are discussed. PMID:11430696

  17. Novel Protective Role of Endogenous Cardiac Myocyte P2X4 Receptors in Heart Failure

    PubMed Central

    Yang, Tiehong; Shen, Jian-bing; Yang, Ronghua; Redden, John; Dodge-Kafka, Kimberly; Grady, James; Jacobson, Kenneth A.; Liang, Bruce T.

    2014-01-01

    Background Heart failure (HF), despite continuing progress, remains a leading cause of mortality and morbidity. P2X4 receptors (P2X4R) have emerged as potentially important molecules in regulating cardiac function and as potential targets for HF therapy. Transgenic P2X4R overexpression can protect against HF, but this does not explain the role of native cardiac P2X4R. Our goal is to define the physiological role of endogenous cardiac myocyte P2X4R under basal conditions and during HF induced by myocardial infarction or pressure overload. Methods and Results Mice established with conditional cardiac-specific P2X4R knockout were subjected to left anterior descending coronary artery ligation–induced postinfarct or transverse aorta constriction–induced pressure overload HF. Knockout cardiac myocytes did not show P2X4R by immunoblotting or by any response to the P2X4R-specific allosteric enhancer ivermectin. Knockout hearts showed normal basal cardiac function but depressed contractile performance in postinfarct and pressure overload models of HF by in vivo echocardiography and ex vivo isolated working heart parameters. P2X4R coimmunoprecipitated and colocalized with nitric oxide synthase 3 (eNOS) in wild-type cardiac myocytes. Mice with cardiac-specific P2X4R overexpression had increased S-nitrosylation, cyclic GMP, NO formation, and were protected from postinfarct and pressure overload HF. Inhibitor of eNOS, L-N5-(1-iminoethyl)ornithine hydrochloride, blocked the salutary effect of cardiac P2X4R overexpression in postinfarct and pressure overload HF as did eNOS knockout. Conclusions This study establishes a new protective role for endogenous cardiac myocyte P2X4R in HF and is the first to demonstrate a physical interaction between the myocyte receptor and eNOS, a mediator of HF protection. PMID:24622244

  18. Use-dependent inhibition of P2X3 receptors by nanomolar agonist.

    PubMed

    Pratt, Emily B; Brink, Thaddeus S; Bergson, Pamela; Voigt, Mark M; Cook, Sean P

    2005-08-10

    P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

  19. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage

    PubMed Central

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-01-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise. PMID:25605289

  20. Blockade of P2X7 receptors or pannexin-1 channels similarly attenuates postischemic damage.

    PubMed

    Cisneros-Mejorado, Abraham; Gottlieb, Miroslav; Cavaliere, Fabio; Magnus, Tim; Koch-Nolte, Friederich; Scemes, Eliana; Pérez-Samartín, Alberto; Matute, Carlos

    2015-05-01

    The role of P2X7 receptors and pannexin-1 channels in ischemic damage remains controversial. Here, we analyzed their contribution to postanoxic depolarization after ischemia in cultured neurons and in brain slices. We observed that pharmacological blockade of P2X7 receptors or pannexin-1 channels delayed the onset of postanoxic currents and reduced their slope, and that simultaneous inhibition did not further enhance the effects of blocking either one. These results were confirmed in acute cortical slices from P2X7 and pannexin-1 knockout mice. Oxygen-glucose deprivation in cortical organotypic cultures caused neuronal death that was reduced with P2X7 and pannexin-1 blockers as well as in organotypic cultures derived from mice lacking P2X7 and pannexin 1. Subsequently, we used transient middle cerebral artery occlusion to monitor the neuroprotective effect of those drugs in vivo. We found that P2X7 and pannexin-1 antagonists, and their ablation in knockout mice, substantially attenuated the motor symptoms and reduced the infarct volume to ~50% of that in vehicle-treated or wild-type animals. These results show that P2X7 receptors and pannexin-1 channels are major mediators of postanoxic depolarization in neurons and of brain damage after ischemia, and that they operate in the same deleterious signaling cascade leading to neuronal and tissue demise.

  1. Adenine Nucleotides Control Proliferation In Vivo of Rat Retinal Progenitors by P2Y1 Receptor.

    PubMed

    de Almeida-Pereira, Luana; Magalhães, Camila Feitosa; Repossi, Marinna Garcia; Thorstenberg, Maria Luiza Prates; Sholl-Franco, Alfred; Coutinho-Silva, Robson; Ventura, Ana Lucia Marques; Fragel-Madeira, Lucianne

    2016-08-24

    Previous studies demonstrated that exogenous ATP is able to regulate proliferation of retinal progenitor cells (RPCs) in vitro possibly via P2Y1 receptor, a G protein-coupled receptor. Here, we evaluated the function of adenine nucleotides in vivo during retinal development of newborn rats. Intravitreal injection of apyrase, an enzyme that hydrolyzes nucleotides, reduced cell proliferation in retinas at postnatal day 2 (P2). This decrease was reversed when retinas were treated together with ATPγ-S or ADPβ-S, two hydrolysis-resistant analogs of ATP and ADP, respectively. During early postnatal days (P0 to P5), an increase in ectonucleotidase (E-NTPDase) activity was observed in the retina, suggesting a decrease in the availability of adenine nucleotides, coinciding with the end of proliferation. Interestingly, intravitreal injection of the E-NTPDase inhibitor ARL67156 increased proliferation by around 60 % at P5 rats. Furthermore, immunolabeling against P2Y1 receptor was observed overall in retina layers from P2 rats, including proliferating Ki-67-positive cells in the neuroblastic layer (NBL), suggesting that this receptor could be responsible for the action of adenine nucleotides upon proliferation of RPCs. Accordingly, intravitreal injection of MRS2179, a selective antagonist of P2Y1 receptors, reduced cell proliferation by approximately 20 % in P2 rats. Moreover, treatment with MRS 2179 caused an increase in p57(KIP2) and cyclin D1 expression, a reduction in cyclin E and Rb phosphorylated expression and in BrdU-positive cell number. These data suggest that the adenine nucleotides modulate the proliferation of rat RPCs via activation of P2Y1 receptors regulating transition from G1 to S phase of the cell cycle.

  2. Accelerated tumor progression in mice lacking the ATP receptor P2X7.

    PubMed

    Adinolfi, Elena; Capece, Marina; Franceschini, Alessia; Falzoni, Simonetta; Giuliani, Anna L; Rotondo, Alessandra; Sarti, Alba C; Bonora, Massimo; Syberg, Susanne; Corigliano, Domenica; Pinton, Paolo; Jorgensen, Niklas R; Abelli, Luigi; Emionite, Laura; Raffaghello, Lizzia; Pistoia, Vito; Di Virgilio, Francesco

    2015-02-15

    The ATP receptor P2X7 (P2X7R or P2RX7) has a key role in inflammation and immunity, but its possible roles in cancer are not firmly established. In the present study, we investigated the effect of host genetic deletion of P2X7R in the mouse on the growth of B16 melanoma or CT26 colon carcinoma cells. Tumor size and metastatic dissemination were assessed by in vivo calliper and luciferase luminescence emission measurements along with postmortem examination. In P2X7R-deficient mice, tumor growth and metastatic spreading were accelerated strongly, compared with wild-type (wt) mice. Intratumoral IL-1β and VEGF release were drastically reduced, and inflammatory cell infiltration was abrogated nearly completely. Similarly, tumor growth was also greatly accelerated in wt chimeric mice implanted with P2X7R-deficient bone marrow cells, defining hematopoietic cells as a sufficient site of P2X7R action. Finally, dendritic cells from P2X7R-deficient mice were unresponsive to stimulation with tumor cells, and chemotaxis of P2X7R-less cells was impaired. Overall, our results showed that host P2X7R expression was critical to support an antitumor immune response, and to restrict tumor growth and metastatic diffusion.

  3. A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling

    PubMed Central

    Tonello, F; Simonato, M; Aita, A; Pizzo, P; Fernández, J; Lomonte, B; Gutiérrez, J M; Montecucco, C

    2012-01-01

    Lys49-PLA2 myotoxins, an important component of various viperid snake venoms, are a class of PLA2-homolog proteins deprived of catalytic activity. Similar to enzymatically active PLA2 (Asp49) and to other classes of myotoxins, they cause severe myonecrosis. Moreover, these toxins are used as tools to study skeletal muscle repair and regeneration, a process that can be very limited after snakebites. In this work, the cytotoxic effect of different myotoxins, Bothrops asper Lys49 and Asp49-PLA2, Notechis scutatus notexin and Naja mossambica cardiotoxin, was evaluated on macrophages, cells that have a key role in muscle regeneration. Only the Lys49-myotoxin was found to trigger a rapid asynchronous death of mouse peritoneal macrophages and macrophagic cell lines through a process that involves ATP release, ATP-induced ATP release and that is inhibited by various purinergic receptor antagonists. ATP leakage is induced also at sublytical doses of the Lys49-myotoxin, it involves Ca2+ release from intracellular stores, and is reduced by inhibitors of VSOR and the maxi-anion channel. The toxin-induced cell death is different from that caused by high concentration of ATP and appears to be linked to localized purinergic signaling. Based on present findings, a mechanism of cell death is proposed that can be extended to other cytolytic proteins and peptides. PMID:22764102

  4. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    NASA Astrophysics Data System (ADS)

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-10-01

    P2X receptors are trimeric, non-selective cation channels activated by ATP that have important roles in the cardiovascular, neuronal and immune systems. Despite their central function in human physiology and although they are potential targets of therapeutic agents, there are no structures of human P2X receptors. The mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structures of the pore-forming transmembrane domains of these receptors remain unclear. Here we report X-ray crystal structures of the human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/closed-pore/desensitized and antagonist-bound/closed states. The open state structure harbours an intracellular motif we term the ‘cytoplasmic cap’, which stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. The competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements that underlie P2X receptor gating and provide a foundation for the development of new pharmacological agents.

  5. Agonist versus antagonist action of ATP at the P2Y4 receptor is determined by the second extracellular loop.

    PubMed

    Herold, Christopher L; Qi, Ai-Dong; Harden, T Kendall; Nicholas, Robert A

    2004-03-19

    UTP is a potent full agonist at both the human P2Y(4) (hP2Y(4)) and rat P2Y(4) (rP2Y(4)) receptor. In contrast, ATP is a potent full agonist at the rP2Y(4) receptor but is a similarly potent competitive antagonist at the hP2Y(4) receptor. To delineate the structural determinants of agonism versus antagonism in these species homologues, we expressed a series of human/rat P2Y(4) receptor chimeras in 1321N1 human astrocytoma cells and assessed the capacity of ATP and UTP to mobilize intracellular Ca(2+). Replacement of the NH(2) terminus of the hP2Y(4) receptor with the corresponding region of the rP2Y(4) receptor resulted in a receptor that was activated weakly by ATP, whereas replacement of the second extracellular loop (EL2) of the hP2Y(4) receptor with that of the rP2Y(4) receptor yielded a chimeric receptor that was activated fully by UTP and near fully by ATP, albeit with lower potencies than those observed at the rP2Y(4) receptor. These potencies were increased, and ATP was converted to a full agonist by replacing both the NH(2) terminus and EL2 in the hP2Y(4) receptor with the corresponding regions from the rP2Y(4) receptor. Mutational analysis of the five divergent amino acids in EL2 between the two receptors revealed that three amino acids, Asn-177, Ile-183, and Leu-190, contribute to the capacity of EL2 to impart ATP agonism. Taken together, these results suggest that the second extracellular loop and the NH(2) terminus form a functional motif that plays a key role in determining whether ATP functions as an agonist or antagonist at mammalian P2Y(4) receptors.

  6. P2Y2 receptor activation opens pannexin-1 channels in rat carotid body type II cells: potential role in amplifying the neurotransmitter ATP

    PubMed Central

    Zhang, Min; Piskuric, Nikol A; Vollmer, Cathy; Nurse, Colin A

    2012-01-01

    Signal processing in the carotid body (CB) is initiated at receptor glomus (or type I) cells which depolarize and release the excitatory neurotransmitter ATP during chemoexcitation by hypoxia and acid hypercapnia. Glomus cell clusters (GCs) occur in intimate association with glia-like type II cells which express purinergic P2Y2 receptors (P2Y2Rs) but their function is unclear. Here we immunolocalize the gap junction-like protein channel pannexin-1 (Panx-1) in type II cells and show Panx-1 mRNA expression in the rat CB. As expected, type II cell activation within or near isolated GCs by P2Y2R agonists, ATP and UTP (100 μm), induced a rise in intracellular [Ca2+]. Moreover in perforated-patch whole cell recordings from type II cells, these agonists caused a prolonged depolarization and a concentration-dependent, delayed opening of non-selective ion channels that was prevented by Panx-1 blockers, carbenoxolone (5 μm) and 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS; 10 μm). Because Panx-1 channels serve as conduits for ATP release, we hypothesized that paracrine, type II cell P2Y2R activation leads to ATP-induced ATP release. In proof-of-principle experiments we used co-cultured chemoafferent petrosal neurones (PNs), which express P2X2/3 purinoceptors, as sensitive biosensors of ATP released from type II cells. In several cases, UTP activation of type II cells within or near GCs led to depolarization or increased firing in nearby PNs, and the effect was reversibly abolished by the selective P2X2/3 receptor blocker, pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid (PPADS; 10 μm). We propose that CB type II cells may function as ATP amplifiers during chemotransduction via paracrine activation of P2Y2Rs and Panx-1 channels. PMID:22733659

  7. Purinergic System Dysfunction in Mood Disorders: A Key Target for Developing Improved Therapeutics

    PubMed Central

    Ortiz, Robin; Ulrich, Henning; Zarate, Carlos A; Machado-Vieira, Rodrigo

    2014-01-01

    Uric acid and purines (such as adenosine) regulate mood, sleep, activity, appetite, cognition, memory, convulsive threshold, social interaction, drive, and impulsivity. A link between purinergic dysfunction and mood disorders was first proposed a century ago. Interestingly, a recent nationwide population-based study showed elevated risk of gout in subjects with bipolar disorder (BD), and a recent meta-analysis and systematic review of placebo-controlled trials of adjuvant purinergic modulators confirmed their benefits in bipolar mania. Uric acid may modulate energy and activity levels, with higher levels associated with higher energy and BD spectrum. Several recent genetic studies suggest that the purinergic system particularly the modulation of P1 and P2 receptor subtypes—plays a role in mood disorders, lending credence to this model. Nucleotide concentrations can be measured using brain spectroscopy, and ligands for in vivo positron emission tomography (PET) imaging of adenosine (P1) receptors have been developed, thus allowing potential target engagement studies. This review discusses the key role of the purinergic system in the pathophysiology of mood disorders. Focusing on this promising therapeutic target may lead to the development of therapies with antidepressant, mood stabilization, and cognitive effects. PMID:25445063

  8. Role of P2X7 and P2Y2 receptors on α-secretase-dependent APP processing: Control of amyloid plaques formation “in vivo” by P2X7 receptor

    PubMed Central

    Miras-Portugal, M. Teresa; Diaz-Hernandez, Juan I.; Gomez-Villafuertes, Rosa; Diaz-Hernandez, Miguel; Artalejo, Antonio R.; Gualix, Javier

    2015-01-01

    Amyloid precursor protein (APP) is expressed in a large variety of neural and non-neural cells. The balance between non-pathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remains a crucial step to understand β-amyloid, Aβ42 peptide, formation and aggregation that are at the origin of the senile plaques in the brain, a characteristic hallmark of Alzheimer's disease (AD). In Neuro-2a, a neuroblastoma cell line that constitutively expresses APP, activation of the P2X7 receptor leads to reduction of α-secretase activity, the opposite effect being obtained by P2Y2 receptor activation. The in vivo approach was made possible by the use of J20 mice, a transgenic mouse model of familial Alzheimer's disease (FAD) expressing human APP mutant protein. This animal exhibits prominent amyloid plaques by six months of age. In vivo inhibition of the P2X7 receptor induced a significant decrease in the number and size of hippocampal amyloid plaques. This reduction is mediated by an increase in the proteolytic processing of APP through α-secretase activity, which correlates with an increase in the phosphorylated form of GSK-3, a less active form of this enzyme. The in vivo findings corroborate the therapeutic potential of P2X7 antagonists in the treatment of FAD. PMID:25848496

  9. P2X7 receptor knockout prevents streptozotocin-induced type 1 diabetes in mice.

    PubMed

    Vieira, Flávia Sarmento; Nanini, Hayandra Ferreira; Takiya, Christina Maeda; Coutinho-Silva, Robson

    2016-01-05

    Type 1 diabetes (T1D) is caused by autoimmune destruction of islet of Langerhans β-cells. P2X7 receptors (P2X7R) modulate proinflammatory immune responses by binding extracellular ATP, a classic 'danger signal'. Here, we evaluated whether the P2X7R has a role in T1D development. P2X7(-/-) mice are resistant to TD1 induction by streptozotocin (STZ) treatment, with no increase in blood glucose, decrease in insulin-positive cells, and pancreatic islet reduction, compared to WT (C57BL/6) mice. Also, the levels of proinflammatory mediators (IL-1β, IFN-γ and NO) did not increase after STZ treatment in P2X7(-/-) animals, with reduced infiltration of CD4(+), CD8(+), B220(+), CD11b(+) and CD11c(+) cells in the pancreatic lymph nodes. Treatment with a P2X7 antagonist mimicked the effect of P2X7 knockout, preventing STZ-induced diabetes. Our results show that the absence of the P2X7R provides resistance in the induction of diabetes in this model, and suggest that therapy targeting the P2X7R may be useful against clinical T1D.

  10. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  11. X-ray structures define human P2X3 receptor gating cycle and antagonist action

    PubMed Central

    Mansoor, Steven E.; Lü, Wei; Oosterheert, Wout; Shekhar, Mrinal; Tajkhorshid, Emad; Gouaux, Eric

    2016-01-01

    Summary P2X receptors are trimeric, non-selective cation channels activated by ATP that play important roles in cardiovascular, neuronal and immune systems. Despite their central function in human physiology and as potential targets of therapeutic agents, there are no structures of human P2X receptors. Mechanisms of receptor desensitization and ion permeation, principles of antagonism, and complete structure of the pore-forming transmembrane domains remain unclear. We report x-ray crystal structures of human P2X3 receptor in apo/resting, agonist-bound/open-pore, agonist-bound/desensitized and antagonist-bound closed states. The open state structure harbors an intracellular motif we term the “cytoplasmic cap”, that stabilizes the open state of the ion channel pore and creates lateral, phospholipid-lined cytoplasmic fenestrations for water and ion egress. Competitive antagonists TNP-ATP and A-317491 stabilize the apo/resting state and reveal the interactions responsible for competitive inhibition. These structures illuminate the conformational rearrangements underpinning P2X receptor gating and provide a foundation for development of new pharmacologic agents. PMID:27626375

  12. Ligand-gated purinergic receptors regulate HIV-1 Tat and morphine related neurotoxicity in primary mouse striatal neuron-glia co-cultures.

    PubMed

    Sorrell, Mary E; Hauser, Kurt F

    2014-03-01

    Emerging evidence suggests that opioid drugs, such as morphine and heroin, can exacerbate neuroAIDS. Microglia are the principal neuroimmune effectors thought to be responsible for neuron damage in HIV-infected individuals, and evidence suggests that opioid drugs acting via μ opioid receptors in microglia aggravate the neuropathophysiological effects of HIV. Key aspects of microglial function are regulated by the P2X family of ATP activated ligand-gated ion channels. In addition, opioid-dependent microglial activation has been reported to be mediated through P2X4 signaling, which prompted us to investigate whether the cation-permeable P2X receptors contribute to the neurotoxic effects of HIV and morphine. To address this question, neuron survival, as well as other endpoints including changes in dendritic length, extracellular ATP levels, and intracellular calcium levels, were assayed in primary neuron-glia co-cultures from mouse striatum. Treatment with TNP-ATP, a non-selective P2X antagonist, prevented the neurotoxic effects of exposure to morphine and/or HIV Tat, or ATP alone, suggesting P2X receptors mediate the neurotoxic effects of these insults in striatal neurons. Although P2X7, and perhaps P2X1, receptor activation decreases neuron survival, neither P2X1, P2X3, nor P2X7 selective receptor antagonists prevented Tat and/or morphine-induced neurotoxicity. These and other experiments indicate the P2X receptor family contributes to Tat- and morphine- related neuronal injury, and provide circumstantial evidence implicating P2X4 receptors in particular. Our findings reveal that members of the P2X receptor family, especially P2X4, may be novel therapeutic targets for restricting the synaptodendritic injury and neurodegeneration that accompanies neuroAIDS and opiate abuse.

  13. P2X7 receptors at adult neural progenitor cells of the mouse subventricular zone.

    PubMed

    Messemer, Nanette; Kunert, Christin; Grohmann, Marcus; Sobottka, Helga; Nieber, Karen; Zimmermann, Herbert; Franke, Heike; Nörenberg, Wolfgang; Straub, Isabelle; Schaefer, Michael; Riedel, Thomas; Illes, Peter; Rubini, Patrizia

    2013-10-01

    Neurogenesis requires the balance between the proliferation of newly formed progenitor cells and subsequent death of surplus cells. RT-PCR and immunocytochemistry demonstrated the presence of P2X7 receptor mRNA and immunoreactivity in cultured neural progenitor cells (NPCs) prepared from the adult mouse subventricular zone (SVZ). Whole-cell patch-clamp recordings showed a marked potentiation of the inward current responses both to ATP and the prototypic P2X7 receptor agonist dibenzoyl-ATP (Bz-ATP) at low Ca(2+) and zero Mg(2+) concentrations in the bath medium. The Bz-ATP-induced currents reversed their polarity near 0 mV; in NPCs prepared from P2X7(-/-) mice, Bz-ATP failed to elicit membrane currents. The general P2X/P2Y receptor antagonist PPADS and the P2X7 selective antagonists Brilliant Blue G and A-438079 strongly depressed the effect of Bz-ATP. Long-lasting application of Bz-ATP induced an initial current, which slowly increased to a steady-state response. In combination with the determination of YO-PRO uptake, these experiments suggest the dilation of a receptor-channel and/or the recruitment of a dye-uptake pathway. Ca(2+)-imaging by means of Fura-2 revealed that in a Mg(2+)-deficient bath medium Bz-ATP causes [Ca(2+)](i) transients fully depending on the presence of external Ca(2+). The MTT test indicated a concentration-dependent decrease in cell viability by Bz-ATP treatment. Correspondingly, Bz-ATP led to an increase in active caspase 3 immunoreactivity, indicating a P2X7-controlled apoptosis. In acute SVZ brain slices of transgenic Tg(nestin/EGFP) mice, patch-clamp recordings identified P2X7 receptors at NPCs with pharmacological properties identical to those of their cultured counterparts. We suggest that the apoptotic/necrotic P2X7 receptors at NPCs may be of particular relevance during pathological conditions which lead to increased ATP release and thus could counterbalance the ensuing excessive cell proliferation.

  14. Characterization of protoberberine analogs employed as novel human P2X{sub 7} receptor antagonists

    SciTech Connect

    Lee, Ga Eun; Lee, Won-Gil; Lee, Song-Yi; Lee, Cho-Rong; Park, Chul-Seung; Chang, Sunghoe; Park, Sung-Gyoo; Song, Mi-Ryoung; Kim, Yong-Chul

    2011-04-15

    The P2X{sub 7} receptor (P2X{sub 7}R), a member of the ATP-gated ion channel family, is regarded as a promising target for therapy of immune-related diseases including rheumatoid arthritis and chronic pain. A group of novel protoberberine analogs (compounds 3-5), discovered by screening of chemical libraries, was here investigated with respect to their function as P2X{sub 7}R antagonists. Compounds 3-5 non-competitively inhibited BzATP-induced ethidium ion influx into hP2X{sub 7}-expressing HEK293 cells, with IC{sub 50} values of 100-300 nM. This antagonistic action on the channel further confirmed that both BzATP-induced inward currents and Ca{sup 2+} influx were strongly inhibited by compounds 3-5 in patch-clamp and Ca{sup 2+} influx assays. The antagonists also effectively suppressed downstream signaling of P2X{sub 7} receptors including IL-1{beta} release and phosphorylation of ERK1/2 and p38 proteins in hP2X{sub 7}-expressing HEK293 cells or in differentiated human monocytes (THP-1 cells). Moreover, IL-2 secretion from CD3/CD28-stimulated Jurkat T cell was also dramatically inhibited by the antagonist. These results imply that novel protoberberine analogs may modulate P2X{sub 7} receptor-mediated immune responses by allosteric inhibition of the receptor. - Graphical abstract: Display Omitted

  15. Ion access pathway to the transmembrane pore in P2X receptor channels

    PubMed Central

    Robertson, Janice L.; Li, Mufeng; Silberberg, Shai D.

    2011-01-01

    P2X receptors are trimeric cation channels that open in response to the binding of adenosine triphosphate (ATP) to a large extracellular domain. The x-ray structure of the P2X4 receptor from zebrafish (zfP2X4) receptor reveals that the extracellular vestibule above the gate opens to the outside through lateral fenestrations, providing a potential pathway for ions to enter and exit the pore. The extracellular region also contains a void at the central axis, providing a second potential pathway. To investigate the energetics of each potential ion permeation pathway, we calculated the electrostatic free energy by solving the Poisson-Boltzmann equation along each of these pathways in the zfP2X4 crystal structure and a homology model of rat P2X2 (rP2X2). We found that the lateral fenestrations are energetically favorable for monovalent cations even in the closed-state structure, whereas the central pathway presents strong electrostatic barriers that would require structural rearrangements to allow for ion accessibility. To probe ion accessibility along these pathways in the rP2X2 receptor, we investigated the modification of introduced Cys residues by methanethiosulfonate (MTS) reagents and constrained structural changes by introducing disulfide bridges. Our results show that MTS reagents can permeate the lateral fenestrations, and that these become larger after ATP binding. Although relatively small MTS reagents can access residues in one of the vestibules within the central pathway, no reactive positions were identified in the upper region of this pathway, and disulfide bridges that constrain movements in that region do not prevent ion conduction. Collectively, these results suggest that ions access the pore using the lateral fenestrations, and that these breathe as the channel opens. The accessibility of ions to one of the chambers in the central pathway likely serves a regulatory function. PMID:21624948

  16. Uridine Triphosphate Thio Analogues Inhibit Platelet P2Y12 Receptor and Aggregation

    PubMed Central

    Gündüz, Dursun; Tanislav, Christian; Sedding, Daniel; Parahuleva, Mariana; Santoso, Sentot; Troidl, Christian; Hamm, Christian W.; Aslam, Muhammad

    2017-01-01

    Platelet P2Y12 is an important adenosine diphosphate (ADP) receptor that is involved in agonist-induced platelet aggregation and is a valuable target for the development of anti-platelet drugs. Here we characterise the effects of thio analogues of uridine triphosphate (UTP) on ADP-induced platelet aggregation. Using human platelet-rich plasma, we demonstrate that UTP inhibits P2Y12 but not P2Y1 receptors and antagonises 10 µM ADP-induced platelet aggregation in a concentration-dependent manner with an IC50 value of ~250 µM. An eight-fold higher platelet inhibitory activity was observed with a 2-thio analogue of UTP (2S-UTP), with an IC50 of 30 µM. The 4-thio analogue (4S-UTP) with an IC50 of 7.5 µM was 33-fold more effective. A three-fold decrease in inhibitory activity, however, was observed by introducing an isobutyl group at the 4S- position. A complete loss of inhibition was observed with thio-modification of the γ phosphate of the sugar moiety, which yields an enzymatically stable analogue. The interaction of UTP analogues with P2Y12 receptor was verified by P2Y12 receptor binding and cyclic AMP (cAMP) assays. These novel data demonstrate for the first time that 2- and 4-thio analogues of UTP are potent P2Y12 receptor antagonists that may be useful for therapeutic intervention. PMID:28146050

  17. P2X7 Receptor Inhibition Increases CNTF in the Subventricular Zone, But Not Neurogenesis or Neuroprotection After Stroke in Adult Mice

    PubMed Central

    Kang, Seong Su; Keasey, Matthew Phillip

    2013-01-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40–60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke. PMID:24312160

  18. P2X7 receptor inhibition increases CNTF in the subventricular zone, but not neurogenesis or neuroprotection after stroke in adult mice.

    PubMed

    Kang, Seong Su; Keasey, Matthew Phillip; Hagg, Theo

    2013-10-01

    Increasing endogenous ciliary neurotrophic factor (CNTF) expression with a pharmacological agent might be beneficial after stroke as CNTF both promotes neurogenesis and, separately, is neuroprotective. P2X7 purinergic receptor inhibition is neuroprotective in rats and increases CNTF release in rat CMT1A Schwann cells. We, first, investigated the role of P2X7 in regulating CNTF and neurogenesis in adult mouse subventricular zone (SVZ). CNTF expression was increased by daily intravenous injections of the P2X7 antagonist Brilliant Blue G (BBG) in naïve C57BL/6 or Balb/c mice over 3 days. Despite the ∼40-60 % increase or decrease in CNTF with BBG or the agonist BzATP, respectively, the number of proliferated BrdU+SVZ nuclei did not change. BBG failed to increase FGF2, which is involved in CNTF-regulated neurogenesis, but induced IL-6, LIF, and EGF, which are known to reduce SVZ proliferation. Injections of IL-6 next to the SVZ induced CNTF and FGF2, but not proliferation, suggesting that IL-6 counteracts their neurogenesis-inducing effects. Following ischemic injury of the striatum by middle cerebral artery occlusion (MCAO), a 3-day BBG treatment increased CNTF in the medial penumbra containing the SVZ. BBG also induced CNTF and LIF, which are known to be protective following stroke, in the whole striatum after MCAO, but not GDNF or BDNF. However, BBG treatment did not reduce the lesion area or apoptosis in the penumbra. Even so, this study shows that P2X7 can be targeted with systemic drug treatments to differentially regulate neurotrophic factors in the brain following stroke.

  19. Increase of intracellular Ca2+ by P2Y but not P2X receptors in cultured cortical multipolar neurons of the rat.

    PubMed

    Fischer, Wolfgang; Nörenberg, Wolfgang; Franke, Heike; Schaefer, Michael; Illes, Peter

    2009-10-10

    The expression and functionality of P2X/P2Y receptor subtypes in multipolar nonpyramidal neurons of mixed cortical cell cultures were investigated by means of immunocytochemistry and fura-2 microfluorimetry. The morphological studies revealed that most of the neurons are immunoreactive for GABA and express a range of P2X/P2Y receptors, predominantly of the P2X(2,4,6) and P2Y(1,2) subtypes. P2X(1) and P2X(7) receptor immunoreactivity (IR) was found on thin axon-like processes and presynaptic structures, respectively. Application of ATP caused a small concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) in most investigated neurons, whereas only about the half of these cells responded to 2',3'-O-(benzoyl-4-benzoyl)-ATP (BzATP), ADPbetaS, 2MeSADP, or 2MeSATP and even fewer cells to UTP. In contrast, alpha,beta-meATP, UDP, and UDP-glucose failed to produce any [Ca2+]i signaling. The response to ATP itself was inhibited by pyridoxal-5'-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), Reactive Blue 2, 2'-deoxy-N(6)-methyl adenosine 3',5'-diphosphate (MRS2179), and suramin (300 microM) as well as by a cyclopiazonic acid-induced depletion of intracellular Ca2+ stores. A Ca2+-free external medium tended to decrease the ATP-induced [Ca2+]i transients, although this action did not reach statistical significance. Various blockers of voltage-sensitive Ca2+ channels and the gap junction inhibitor carbenoxolone did not interfere with the effect of ATP, whereas a combination of the ionotropic glutamate receptor antagonists D(-)-2-amino-5-phosphonopentanoic acid (AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) decreased it. Cross-desensitization experiments between ADPbetaS or UTP and ATP suggested that ATP acts on the one hand via P2Y(1,2) receptors and on the other hand by additional signaling mechanisms. These mechanisms may involve the release of glutamate (which in consequence activates ionotropic glutamate receptors) and the entry of Ca2

  20. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells

    PubMed Central

    Giannuzzo, Andrea; Saccomano, Mara; Napp, Joanna; Ellegaard, Maria; Alves, Frauke

    2016-01-01

    The ATP‐gated receptor P2X7 (P2X7R) is involved in regulation of cell survival and has been of interest in cancer field. Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer and new markers and therapeutic targets are needed. PDAC is characterized by a complex tumour microenvironment, which includes cancer and pancreatic stellate cells (PSCs), and potentially high nucleotide/side turnover. Our aim was to determine P2X7R expression and function in human pancreatic cancer cells in vitro as well as to perform in vivo efficacy study applying P2X7R inhibitor in an orthotopic xenograft mouse model of PDAC. In the in vitro studies we show that human PDAC cells with luciferase gene (PancTu‐1 Luc cells) express high levels of P2X7R protein. Allosteric P2X7R antagonist AZ10606120 inhibited cell proliferation in basal conditions, indicating that P2X7R was tonically active. Extracellular ATP and BzATP, to which the P2X7R is more sensitive, further affected cell survival and confirmed complex functionality of P2X7R. PancTu‐1 Luc migration and invasion was reduced by AZ10606120, and it was stimulated by PSCs, but not by PSCs from P2X7‐/‐ animals. PancTu‐1 Luc cells were orthotopically transplanted into nude mice and tumour growth was followed noninvasively by bioluminescence imaging. AZ10606120‐treated mice showed reduced bioluminescence compared to saline‐treated mice. Immunohistochemical analysis confirmed P2X7R expression in cancer and PSC cells, and in metaplastic/neoplastic acinar and duct structures. PSCs number/activity and collagen deposition was reduced in AZ10606120‐treated tumours. PMID:27513892

  1. The effect of anions on the human P2X7 receptor.

    PubMed

    Kubick, Christoph; Schmalzing, Günther; Markwardt, Fritz

    2011-12-01

    P2X7 receptors (P2X7Rs) are nonselective cation channels that are opened by the binding of extracellular ATP and are involved in the modulation of epithelial secretion, inflammation and nociception. Here, we investigated the effect of extracellular anions on channel gating and permeation of human P2X7Rs (hP2X7Rs) expressed in Xenopus laevis oocytes. Two-microelectrode voltage-clamp recordings showed that ATP-induced hP2X7R-mediated currents increased when extracellular chloride was substituted by the organic anions glutamate or aspartate and decreased when chloride was replaced by the inorganic anions nitrate, sulfate or iodide. ATP concentration-response comparisons revealed that substitution of chloride by glutamate decreased agonist efficacy, while substitution by iodide increased agonist efficacy at high ATP concentrations. Meanwhile, the ATP potency remained unchanged. Activation of the hP2X7R at low ATP concentrations via the high-affinity ATP effector site was not affected by the replacement of chloride by glutamate or iodide. To analyze the anion effect on the hP2X7R at the single-molecule level, we performed single-channel current measurements using the patch-clamp technique in the outside-out configuration. Chloride substitution did not affect the single-channel conductance, but the probability that the P2X7R channel was open increased when chloride was replaced by glutamate and decreased when chloride was replaced by iodide. This effect was due to an influence of the anions on the mean closed times of the hP2X7R channel. We conclude that hP2X7R channels are not anion-permeable in physiological Na+-based media and that external anions allosterically affect ion channel opening in the fully ATP4-liganded P2X7R through an extracellular anion binding site.

  2. Expression, assembly and function of novel C-terminal truncated variants of the mouse P2X7 receptor: re-evaluation of P2X7 knockouts

    PubMed Central

    Masin, Marianela; Young, Christopher; Lim, KoiNi; Barnes, Sara J; Xu, Xing Jian; Marschall, Viola; Brutkowski, Wojciech; Mooney, Elizabeth R; Gorecki, Dariusz C; Murrell-Lagnado, Ruth

    2012-01-01

    BACKGROUND AND PURPOSE Splice variants of P2X7 receptor transcripts contribute to the diversity of receptor-mediated responses. Here, we investigated expression and function of C-terminal truncated (ΔC) variants of the mP2X7 receptor, which are predicted to escape inactivation in one strain of P2X7−/− mice (Pfizer KO). EXPERIMENTAL APPROACH Expression in wild-type (WT) and Pfizer KO tissue was investigated by reverse transcription (RT)-PCR and Western blot analysis. ΔC variants were also cloned and expressed in HEK293 cells to investigate their assembly, trafficking and function. KEY RESULTS RT-PCR indicates expression of a ΔC splice variant in brain, salivary gland (SG) and spleen from WT and Pfizer KO mice. An additional ΔC hybrid transcript, containing sequences of P2X7 upstream of exon 12, part of exon 13 followed in-frame by the sequence of the vector used to disrupt the P2X7 gene, was also identified in the KO mice. By blue native (BN) PAGE analysis and the use of cross linking reagents followed by SDS-PAGE, P2X7 trimers, dimers and monomers were detected in the spleen and SG of Pfizer KO mice. The molecular mass was reduced compared with P2X7 in WT mice tissue, consistent with a ΔC variant. When expressed in HEK293 cells the ΔC variants were inefficiently trafficked to the cell surface and agonist-evoked whole cell currents were small. Co-expressed with P2X7A, the ΔC splice variant acted in a dominant negative fashion to inhibit function. CONCLUSIONS AND IMPLICATIONS Pfizer KO mice are not null for P2X7 receptor expression but express ΔC variants with reduced function. PMID:21838754

  3. P2Y1 purinoreceptors are fundamental to inhibitory motor control of murine colonic excitability and transit.

    PubMed

    Hwang, Sung Jin; Blair, Peter J; Durnin, Leonie; Mutafova-Yambolieva, Violeta; Sanders, Kenton M; Ward, Sean M

    2012-04-15

    Activation of enteric inhibitory motor neurons causes inhibitory junctional potentials (IJPs) and muscle relaxation in mammalian gastrointestinal (GI) muscles, including humans. IJPs in many GI muscles are bi-phasic with a fast initial hyperpolarization (fIJP) due to release of a purine neurotransmitter and a slower hyperpolarization component (sIJP) due to release of nitric oxide. We sought to characterize the nature of the post-junctional receptor(s) involved in transducing purinergic neural inputs in the murine colon using mice with genetically deactivated P2ry1. Wild-type mice had characteristic biphasic IJPs and pharmacological dissection confirmed that the fIJP was purinergic and the sIJP was nitrergic. The fIJP was completely absent in P2ry1(−/−) mice and the P2Y1 receptor antagonist MRS2500 had no effect on electrical activity or responses to electrical field stimulation of intrinsic nerves in these mice. Contractile experiments confirmed that purinergic responses were abolished in P2ry1(−/−) mice. Picospritzing of neurotransmitter candidates (ATP and its primary metabolite, ADP) and β-NAD (and its primary metabolite, ADP-ribose, ADPR) caused transient hyperpolarization responses in wild-type colons, but responses to β-NAD and ADPR were completely abolished in P2ry1(−/−) mice. Hyperpolarization and relaxation responses to ATP and ADP were retained in colons of P2ry1(−/−) mice. Video imaging revealed that transit of fecal pellets was significantly delayed in colons from P2ry1(−/−) mice. These data demonstrate the importance of purinergic neurotransmission in regulating colonic motility and confirm pharmacological experiments suggesting that purinergic neurotransmission is mediated via P2Y1 receptors.

  4. Two different P2Y receptors linked to steroidogenesis in bovine adrenocortical cells.

    PubMed

    Nishi, H

    1999-10-01

    Both extracellular adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP) induced corticoid production (steroidogenesis) concentration-dependently in bovine adrenocortical cells (BA cells). Pertussis toxin (PTX, approx. 2 microg/ml) partially inhibited (approx. 55% inhibition) extracellular ATP (100 microM)-induced steroidogenesis in BA cells. However, PTX did not inhibit extracellular UTP (100 microM)-induced steroidogenesis. Both ATP- and UTP-induced steroidogeneses were significantly inhibited by suramin (50-200 microM). These effects were inhibited significantly by reactive blue-2 (more than 100 microM) and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid (more than 100 microM). Both nucleotides (1-100 microM) induced inositol phosphates accumulation and intracellular Ca2+ mobilization, but PTX did not inhibit them. The RT-PCR procedure identified only P2Y2-receptor mRNA in BA cells. These results suggest that extracellular ATP induces steroidogenesis via a unique P2 receptor linked to PTX-sensitive guanine nucleotide-binding protein (G-protein), while extracellular UTP induces steroidogenesis via P2 receptor linked to PTX-insensitive G-protein. Thus, it was concluded that at least two different P2Y-like receptors linking to steroidogenesis exist in BA cells.

  5. P2X4: an ATP-activated ionotropic receptor cloned from rat brain.

    PubMed Central

    Soto, F; Garcia-Guzman, M; Gomez-Hernandez, J M; Hollmann, M; Karschin, C; Stühmer, W

    1996-01-01

    Extracellular ATP exerts pronounced biological actions in virtually every organ or tissue that has been studied. In the central and peripheral nervous system, ATP acts as a fast excitatory transmitter in certain synaptic pathways [Evans, R.J., Derkach, V. & Surprenant, A. (1992) Nature (London) 357, 503-505; Edwards, F.A., Gigg, A.J. & Colquhoun, D. (1992) Nature (London) 359, 144-147]. Here, we report the cloning and characterization of complementary DNA from rat brain, encoding an additional member (P2X4) of the emerging multigenic family of ligand-gated ATP channels, the P2X receptors. Expression in Xenopus oocytes gives an ATP-activated cation-selective channel that is highly permeable to Ca2+ and whose sensitivity is modulated by extracellular Zn2+. Surprisingly, the current elicited by ATP is almost insensitive to the common P2X antagonist suramin. In situ hybridization reveals the expression of P2X4 mRNA in central nervous system neurons. Northern blot and reverse transcription-PCR (RT-PCR) analysis demonstrate a wide distribution of P2X4 transcripts in various tissues, including blood vessels and leukocytes. This suggests that the P2X4 receptor might mediate not only ATP-dependent synaptic transmission in the central nervous system but also a wide repertoire of biological responses in diverse tissues. Images Fig. 3 Fig. 4 PMID:8622997

  6. Comparison of three GPCR structural templates for modeling of the P2Y12 nucleotide receptor

    NASA Astrophysics Data System (ADS)

    Deflorian, Francesca; Jacobson, Kenneth A.

    2011-04-01

    The P2Y12 receptor (P2Y12R) is an ADP-activated G protein-coupled receptor (GPCR) that is an important target for antithrombotic drugs. Three homology models of P2Y12R were compared, based on different GPCR structural templates: bovine rhodopsin (bRHO), human A2A adenosine receptor (A2AAR), and human C-X-C chemokine receptor type 4 (CXCR4). By criteria of sequence analysis (25.6% identity in transmembrane region), deviation from helicity in the second transmembrane helix (TM2), docked poses of ligands highlighting the role of key residues, accessibility of a conserved disulfide bridge that is reactive toward irreversibly-binding antagonists, and the presence of a shared disulfide bridge between the third extracellular loop (EL3) and the N-terminus, the CXCR4-based model appeared to be the most consistent with known characteristics of P2Y12R. The docked poses of agonist 2MeSADP and charged anthraquinone antagonist PSB-0739 in the binding pocket of P2Y12R-CXC agree with previously published site-directed mutagenesis studies of Arg256 and Lys280. A sulfonate at position 2 of the anthraquinone core created a strong interaction with the Lys174(EL2) side chain. The docking poses of the irreversibly-binding, active metabolite (existing as two diastereoisomers in vivo) of the clinically utilized antagonist Clopidogrel were compared. The free thiol group of the 4S diastereoisomer, but not the 4R isomer, was found in close proximity ( 4.7 Å) to the sulfur atom of a disulfide bridge involving Cys175, suggesting greater activity in covalent binding. Therefore, ligand docking to the CXCR4-based model of the P2Y12R predicted poses of both reversibly and irreversibly-binding small molecules, consistent with observed pharmacology and mutagenesis studies.

  7. Critical role of P2X7 receptors in the neuroinflammation and cognitive dysfunction after surgery.

    PubMed

    Zheng, Bin; Lai, Renchun; Li, Jun; Zuo, Zhiyi

    2017-03-01

    Postoperative cognitive dysfunction worsens patient outcome after surgery. Neuroinflammation is a critical neuropathological process for it. We determined the role of P2X7 receptors, proteins that participate in inflammatory response, in the neuroinflammation induction after surgery, and whether the choice of volatile anesthetics affects its occurrence. Eight-week old C57BL/6J or P2X7 receptor knockout male mice were subjected to right carotid arterial exposure under anesthesia with 1.8% isoflurane, 2.5% sevoflurane or 10% desflurane. They were tested by Barnes maze and fear conditioning from 2weeks after the surgery. Hippocampus was harvested 6h, 24h and 7days after the surgery for immunohistochemical staining and Western blotting. Mice with surgery under anesthesia with isoflurane, sevoflurane or desflurane took longer than control mice to identify the target box 1 or 8days after the training sessions in Barnes maze. Mice anesthetized by isoflurane or sevoflurane, but not by desflurane, had less freezing behavior than control mice in fear conditioning test. Mice with surgery and anesthesia had increased ionized calcium binding adapter molecule 1 and interleukin 1β in the hippocampus but this increase was smaller in mice anesthetized with desflurane than mice anesthetized with isoflurane. Mice with surgery had increased P2X7 receptors and its downstream molecule caspase 1. Inhibition or knockout of P2X7 receptors attenuated surgery and anesthesia-induced neuroinflammation and cognitive impairment. We conclude that surgery under desflurane anesthesia may have reduced neuroinflammation and cognitive impairment compared with surgery under isoflurane anesthesia. P2X7 receptors may mediate the neuroinflammation and cognitive impairment after surgery.

  8. The role of P2X3 receptors in bilateral masseter muscle allodynia in rats

    PubMed Central

    Tariba Knežević, Petra; Vukman, Robert; Antonić, Robert; Kovač, Zoran; Uhač, Ivone; Simonić-Kocijan, Sunčana

    2016-01-01

    Aim To determine the relationship between bilateral allodynia induced by masseter muscle inflammation and P2X3 receptor expression changes in trigeminal ganglia (TRG) and the influence of intramasseteric P2X3 antagonist administration on bilateral masseter allodynia. Methods To induce bilateral allodynia, rats received a unilateral injection of complete Freund’s adjuvant (CFA) into the masseter muscle. Bilateral head withdrawal threshold (HWT) was measured 4 days later. Behavioral measurements were followed by bilateral masseter muscle and TRG dissection. Masseter tissue was evaluated histopathologically and TRG tissue was analyzed for P2X3 receptor mRNA expression by using quantitative real-time polymerase chain reaction (PCR) analysis. To assess the P2X3 receptor involvement in nocifensive behavior, two doses (6 and 60 μg/50 μL) of selective P2X3 antagonist A-317491 were administrated into the inflamed masseter muscle 4 days after the CFA injection. Bilateral HWT was measured at 15-, 30-, 60-, and 120-minute time points after A-317491 administration. Results HWT was bilaterally reduced after the CFA injection (P < 0.001). Intramasseteric inflammation was confirmed ipsilaterally to the CFA injection. Quantitative real-time PCR analysis demonstrated enhanced P2X3 expression in TRG ipsilaterally to CFA administration (P < 0.01). In comparison with controls, the dose of 6 μg of A-317491 significantly increased bilateral HWT at 15-, 30-, and 60-minute time points after the A-317491 administration (P < 0.001), whereas the dose of 60 μg of A-317491 was efficient at all time points ipsilaterally (P = 0.004) and at 15-, 30-, and 60-minute time points contralaterally (P < 0.001). Conclusion Unilateral masseter inflammation can induce bilateral allodynia in rats. The study provided evidence that P2X3 receptors can functionally influence masseter muscle allodynia and suggested that P2X3 receptors expressed in TRG neurons are involved in masseter

  9. Contribution of the P2Y12 receptor-mediated pathway to platelet hyperreactivity in hypercholesterolemia

    PubMed Central

    Nagy, Béla; Jin, Jianguo; Ashby, Barrie; Reilly, Michael P.; Kunapuli, Satya P.

    2011-01-01

    Summary Background In hypercholesterolemia, platelets demonstrate increased reactivity and promote the development of cardiovascular disease. Objective This study was carried out to investigate the contribution of the ADP receptor P2Y12-mediated pathway in platelet hyperreactivity due to hypercholesterolemia. Methods Low-density lipoprotein receptor deficient mice and C57Bl/6 wild type mice were fed on normal chow and high-fat (Western or Paigen) diets for 8 weeks to generate differently elevated cholesterol levels. P2Y12 receptor induced functional responses via Gi signaling were studied ex vivo when washed murine platelets were activated by 2MeSADP and PAR4 agonist AYPGKF in the presence and absence of indomethacin. Platelet aggregation, secretion, αIIbβ3 receptor activation and the phosphorylation of extracellular signal-regulated protein kinase (ERK) and Akt were analyzed. Results Plasma cholesterol levels ranged from 69±10 to 1011±185 mg/dl depending on diet in mice with different genotypes. Agonist-dependent aggregation, dense and α-granule secretion and JON/A binding were gradually and significantly (P < 0.05) augmented at low agonist concentration in correlation with the increasing plasma cholesterol levels even if elevated thromboxane generation was blocked. These functional responses were induced via increased level of Gi mediated ERK and Akt phosphorylation in hypercholesterolemic mice versus normocholesterolemic animals. In addition, blocking of the P2Y12 receptor by AR-C69931MX (Cangrelor) resulted in strongly reduced platelet aggregation in mice with elevated cholesterol levels compared to normocholesterolemic controls. Conclusions These data revealed that the P2Y12 receptor pathway was substantially involved in platelet hyperreactivity associated with mild and severe hypercholesterolemia. PMID:21261805

  10. The influence of variation in the P2Y12 receptor gene on in vitro platelet inhibition with the direct P2Y12 antagonist cangrelor.

    PubMed

    Bouman, H J; van Werkum, J W; Rudez, G; Leebeek, F W G; Kruit, A; Hackeng, C M; Ten Berg, J M; de Maat, M P M; Ruven, H J T

    2010-02-01

    Novel P2Y12 inhibitors are in development to overcome the occurrence of atherothrombotic events associated with poor responsiveness to the widely used P2Y12 inhibitor clopidogrel. Cangrelor is an intravenously administered P2Y12 inhibitor that does not need metabolic conversion to an active metabolite for its antiplatelet action, and as a consequence exhibits a more potent and consistent antiplatelet profile as compared to clopidogrel. It was the objective of this study to determine the contribution of variation in the P2Y12 receptor gene to platelet aggregation after in vitro partial P2Y12 receptor blockade with the direct antagonist cangrelor. Optical aggregometry was performed at baseline and after in vitro addition of 0.05 and 0.25 microM cangrelor to the platelet-rich plasma of 254 healthy subjects. Five haplotype-tagging (ht)-SNPs covering the entire P2Y12 receptor gene were genotyped (rs6798347C>t, rs6787801T>c, rs9859552C>a, rs6801273A>g and rs2046934T>c [T744C]) and haplotypes were inferred. The minor c allele of SNP rs6787801 was associated with a 5% lower 20 microM ADP-induced peak platelet aggregation (0.05 microM cangrelor, p<0.05). Aa homozygotes for SNP rs9859552 showed 20% and 17% less inhibition of platelet aggregation with cangrelor when compared to CC homozygotes (0.05 and 0.25 microM cangrelor respectively; p<0.05). Results of the haplotype analyses were consistent with those of the single SNPs. Polymorphisms of the P2Y12 receptor gene contribute significantly to the interindividual variability in platelet inhibition after partial in vitro blockade with the P2Y12 antagonist cangrelor.

  11. Structural insights into the nucleotide base specificity of P2X receptors

    PubMed Central

    Kasuya, Go; Fujiwara, Yuichiro; Tsukamoto, Hisao; Morinaga, Satoshi; Ryu, Satoshi; Touhara, Kazushige; Ishitani, Ryuichiro; Furutani, Yuji; Hattori, Motoyuki; Nureki, Osamu

    2017-01-01

    P2X receptors are trimeric ATP-gated cation channels involved in diverse physiological processes, ranging from muscle contraction to nociception. Despite the recent structure determination of the ATP-bound P2X receptors, the molecular mechanism of the nucleotide base specificity has remained elusive. Here, we present the crystal structure of zebrafish P2X4 in complex with a weak affinity agonist, CTP, together with structure-based electrophysiological and spectroscopic analyses. The CTP-bound structure revealed a hydrogen bond, between the cytosine base and the side chain of the basic residue in the agonist binding site, which mediates the weak but significant affinity for CTP. The cytosine base is further recognized by two main chain atoms, as in the ATP-bound structure, but their bond lengths seem to be extended in the CTP-bound structure, also possibly contributing to the weaker affinity for CTP over ATP. This work provides the structural insights for the nucleotide base specificity of P2X receptors. PMID:28332633

  12. An electrophysiological study of excitatory purinergic neuromuscular transmission in longitudinal smooth muscle of chicken anterior mesenteric artery

    PubMed Central

    Khalifa, Maisa; El-Mahmoudy, AbuBakr; Shiina, Takahiko; Shimizu, Yasutake; Nikami, Hideki; El-Sayed, Mossad; Kobayashi, Haruo; Takewaki, Tadashi

    2005-01-01

    The object of the present study was to clarify the neurotransmitters controlling membrane responses to electrical field stimulation (EFS) in the longitudinal smooth muscle cells of the chicken anterior mesenteric artery. EFS (5 pulses at 20 Hz) evoked a depolarization of amplitude 19.7±2.1 mV, total duration 29.6±3.1 s and latency 413.0±67.8 ms. This depolarization was tetrodotoxin (TTX)-sensitive and its amplitude was partially decreased by atropine (0.5 μM); however, its duration was shortened by further addition of prazosin (10 μM). Atropine/prazosin-resistant component was blocked by the nonspecific purinergic antagonist, suramin, in a dose-dependent manner, indicating that this component is mediated by the neurotransmitter adenosine 5′-triphosphate (ATP). Neither desensitization nor blocking of P2X receptor with its putative receptor agonist α,β-methylene ATP (α,β-MeATP, 1 μM) and its antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic (PPADS, up to 50 μM), had significant effect on the purinergic depolarization. In contrast, either desensitization or blocking of P2Y receptor with its putative agonist 2-methylthioATP (2-MeSATP, 1 μM) and its antagonist Cibacron blue F3GA (CBF3GA, 10 μM) abolished the purinergic depolarization, indicating that this response is mediated through P2Y but not P2X receptor. The purinergic depolarization was inhibited by pertussis toxin (PTX, 600 ng ml−1). Furthermore, it was significantly inhibited by a phospholipase C (PLC) inhibitor, U-73122 (10 μM), indicating that the receptors involved in mediating the purinergic depolarization are linked to a PTX-sensitive G-protein, which is involved in a PLC-mediated signaling pathway. Data of the present study suggest that the EFS-induced excitatory membrane response occurring in the longitudinal smooth muscle of the chicken anterior mesenteric artery is mainly purinergic in nature and is mediated via P2Y purinoceptors. PMID:15685211

  13. Post-translational allosteric activation of the P2X7 receptor through glycosaminoglycan chains of CD44 proteoglycans

    PubMed Central

    Moura, GEDD; Lucena, SV; Lima, MA; Nascimento, FD; Gesteira, TF; Nader, HB; Paredes-Gamero, EJ; Tersariol, ILS

    2015-01-01

    Here, we present evidence for the positive allosteric modulation of the P2X7 receptor through glycosaminoglycans (GAGs) in CHO (cell line derived from the ovary of the Chinese hamster) cells. The marked potentiation of P2X7 activity through GAGs in the presence of non-saturating agonists concentrations was evident with the endogenous expression of the receptor in CHO cells. The presence of GAGs on the surface of CHO cells greatly increased the sensitivity to adenosine 5′-triphosphate and changed the main P2X7 receptor kinetic parameters EC50, Hill coefficient and Emax. GAGs decreased the allosteric inhibition of P2X7 receptor through Mg2+. GAGs activated P2X7 receptor-mediated cytoplasmic Ca2+ influx and pore formation. Consequently, wild-type CHO-K1 cells were 2.5-fold more sensitive to cell death induced through P2X7 agonists than mutant CHO-745 cells defective in GAGs biosynthesis. In the present study, we provide the first evidence that the P2X7 receptor interacts with CD44 on the CHO-K1 cell surface. Thus, these data demonstrated that GAGs positively modulate the P2X7 receptor, and sCD44 is a part of a regulatory positive feedback loop linking P2X7 receptor activation for the intracellular response mediated through P2X7 receptor stimulation. PMID:27551441

  14. Pharmacological identification of P2X1, P2X4 and P2X7 nucleotide receptors in the smooth muscles of human umbilical cord and chorionic blood vessels.

    PubMed

    Valdecantos, P; Briones, R; Moya, P; Germain, A; Huidobro-Toro, J P

    2003-01-01

    To ascertain the role of extracellular adenosine 5'-triphosphate (ATP) receptors in human placenta circulation, we identified and pharmacologically characterized the P2X receptor population in its superficial vessels. Total RNA was extracted from segments of chorionic and umbilical arteries and veins of terminal placentae delivered by vaginal or Caesarian births. Polymerase chain reaction (PCR), followed by sequencing of the products, identified the presence of P2X 1, 4, 5, 6, and 7mRNAs in smooth muscle from chorionic and umbilical arteries and veins. Umbilical vessels proximal to the fetus expressed the same population of P2X subtypes, except for the P2X(5), but additionally expressed the P2X(2). Rings of chorionic vessels contracted upon addition of nucleotides and analogs with the following relative rank order of potencies in arteries and veins: alpha,beta-methyleneATP>beta,gamma-methyleneATP>PNP>ATP=diBzATP>2-MeSATP>ADP>AMP; in umbilical vessels alpha,beta-methyleneATP was at least 100-fold more potent than ATP. Nucleotide potency was less than that of PGF(2alpha) or endothelin-2, but had the same magnitude as serotonin. ATP-desensitized receptors evidenced cross desensitization to alpha,beta-methyleneATP, 2-MeSATP and diBzATP, effect not observed when desensitization was elicited by alpha,beta-methyleneATP, confirming the presence of various P2X receptor subtypes in the smooth muscles of these vessels. The vasocontractile efficacy of alpha,beta-methyleneATP was unaltered by endothelium removal, while that of ATP was significantly attenuated and those elicited by 2-MeSATP were blunted, indicating the presence of additional endothelial nucleotide receptors. These results suggest that P2X receptors participate in the humoral regulation of placental blood flow.

  15. Heat Shock Protein 90 Inhibitors Reduce Trafficking of ATP-gated P2X1 Receptors and Human Platelet Responsiveness*

    PubMed Central

    Lalo, Ulyana; Jones, Sarah; Roberts, Jonathan A.; Mahaut-Smith, Martyn P.; Evans, Richard J.

    2012-01-01

    We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70–85% by the selective HSP90 inhibitor geldanamycin (2 μm, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40–45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies. PMID:22851178

  16. Two P2X1 receptor transcripts able to form functional channels are present in most human monocytes.

    PubMed

    López-López, Cintya; Jaramillo-Polanco, Josue; Portales-Pérez, Diana P; Gómez-Coronado, Karen S; Rodríguez-Meléndez, Jessica G; Cortés-García, Juan D; Espinosa-Luna, Rosa; Montaño, Luis M; Barajas-López, Carlos

    2016-12-15

    To characterize the presence and general properties of P2X1 receptors in single human monocytes we used RT-PCR, flow cytometry, and the patch-clamp and the two-electrode voltage-clamp techniques. Most human monocytes expressed the canonical P2X1 (90%) and its splicing variant P2X1del (88%) mRNAs. P2X1 receptor immunoreactivity was also observed in 70% of these cells. Currents mediated by P2X1 (EC50=1.9±0.8µm) and P2X1del (EC50 >1000µm) channels, expressed in Xenopus leavis oocytes, have different ATP sensitivity and kinetics. Both currents mediated by P2X1 and P2X1del channels kept increasing during the continuous presence of high ATP concentrations. Currents mediated by the native P2X1 receptors in human monocytes showed an EC50=6.3±0.2µm. Currents have kinetics that resemble those observed for P2X1 and P2X1del receptors in oocytes. Our study is the first to demonstrate the expression of P2X1 transcript and its splicing variant P2X1del in most human monocytes. We also, for the first time, described functional homomeric P2X1del channels and demonstrated that currents mediated by P2X1 or P2X1del receptors, during heterologous expression, increased in amplitude when activated with high ATP concentrations in a similar fashion to those channels that increase their conductance under similar conditions, such as P2X7, P2X2, and P2X4 channels.

  17. Critical Evaluation of P2X7 Receptor Antagonists in Selected Seizure Models

    PubMed Central

    Fischer, Wolfgang; Franke, Heike; Krügel, Ute; Müller, Heiko; Dinkel, Klaus; Lord, Brian; Letavic, Michael A.; Henshall, David C.; Engel, Tobias

    2016-01-01

    The ATP-gated P2X7 receptor (P2X7R) is a non-selective cation channel which senses high extracellular ATP concentrations and has been suggested as a target for the treatment of neuroinflammation and neurodegenerative diseases. The use of P2X7R antagonists may therefore be a viable approach for treating CNS pathologies, including epileptic disorders. Recent studies showed anticonvulsant potential of P2X7R antagonists in certain animal models. To extend this work, we tested three CNS-permeable P2X7R blocker (Brilliant Blue G, AFC-5128, JNJ-47965567) and a natural compound derivative (tanshinone IIA sulfonate) in four well-characterized animal seizure models. In the maximal electroshock seizure threshold test and the pentylenetetrazol (PTZ) seizure threshold test in mice, none of the four compounds demonstrated anticonvulsant effects when given alone. Notably, in combination with carbamazepine, both AFC-5128 and JNJ-47965567 increased the threshold in the maximal electroshock seizure test. In the PTZ-kindling model in rats, useful for testing antiepileptogenic activities, Brilliant Blue G and tanshinone exhibited a moderate retarding effect, whereas the potent P2X7R blocker AFC-5128 and JNJ-47965567 showed a significant and long-lasting delay in kindling development. In fully kindled rats, the investigated compounds revealed modest effects to reduce the mean seizure stage. Furthermore, AFC-5128- and JNJ-47965567-treated animals displayed strongly reduced Iba 1 and GFAP immunoreactivity in the hippocampal CA3 region. In summary, our results show that P2X7R antagonists possess no remarkable anticonvulsant effects in the used acute screening tests, but can attenuate chemically-induced kindling. Further studies would be of interest to support the concept that P2X7R signalling plays a crucial role in the pathogenesis of epileptic disorders. PMID:27281030

  18. P2Y6 Receptor-Mediated Proinflammatory Signaling in Human Bronchial Epithelia

    PubMed Central

    Hao, Yuan; Liang, Jocelyn F.; Chow, Alison W.; Cheung, Wing-tai; Ko, Wing-hung

    2014-01-01

    P2Y receptors are expressed in virtually all epithelia and are responsible for the control of fluid and electrolyte transport. In asthmatic inflammation, the bronchial epithelia are damaged by eosinophil-derived, highly toxic cationic proteins, such as major basic protein (MBP). Consequently, extracellular nucleotides are released into the extracellular space from airway epithelial cells, and act in an autocrine or paracrine fashion to regulate immune functions. Our data show damage to the human bronchial epithelial cell line, 16HBE14o-, by poly-L-arginine-induced UDP release into the extracellular medium. Activation of P2Y6 receptor by its natural ligand, UDP, or its specific agonist, MRS 2693, led to the production of two proinflammatory cytokines, interleukin (IL)-6 and IL-8. This may have resulted from increased IL-6 and IL-8 mRNA expression, and activation of p38 and ERK1/2 MAPK, and NF-κB pathways. Our previous study demonstrated that UDP stimulated transepithelial Cl− secretion via both Ca2+- and cAMP-dependent pathways in 16HBE14o- epithelia. This was further confirmed in this study by simultaneous imaging of Ca2+ and cAMP levels in single cells using the Fura-2 fluorescence technique and a FRET-based approach, respectively. Moreover, the P2Y6 receptor-mediated production of IL-6 and IL-8 was found to be dependent on Ca2+, but not the cAMP/PKA pathway. Together, these studies show that nucleotides released during the airway inflammatory processes will activate P2Y6 receptors, which will lead to further release of inflammatory cytokines. The secretion of cytokines and the formation of such “cytokine networks” play an important role in sustaining the airway inflammatory disease. PMID:25243587

  19. Identification of a new dysfunctional platelet P2Y12 receptor variant associated with bleeding diathesis

    PubMed Central

    Lecchi, Anna; Razzari, Cristina; Paoletta, Silvia; Dupuis, Arnaud; Nakamura, Lea; Ohlmann, Philippe; Gachet, Christian; Jacobson, Kenneth A.; Zieger, Barbara

    2015-01-01

    Defects of the platelet P2Y12 receptor (P2Y12R) for adenosine diphosphate (ADP) are associated with increased bleeding risk. The study of molecular abnormalities associated with inherited qualitative defects of the P2Y12R protein is useful to unravel structure-function relationships of the receptor. We describe the case of 2 brothers, sons of first cousins, with lifelong history of abnormal bleeding, associated with dysfunctional P2Y12R and a previously undescribed missense mutation in the encoding gene. ADP (4-20 µM)–induced aggregation of patients’ platelets was markedly reduced and rapidly reversible. Other agonists induced borderline-normal aggregation. Inhibition of vasodilator-stimulated phosphoprotein phosphorylation and prostaglandin E1–induced increase in cyclic adenosine monophosphate (cAMP) by ADP was impaired, whereas inhibition of cAMP increase by epinephrine was normal. [3H]PSB-0413, a selective P2Y12R antagonist, bound to a normal number of binding sites; however, its affinity, and that of the agonists ADP and 2-methylthio-adenosine-5′-diphosphate, was reduced. Patients’ DNA showed a homozygous c.847T>A substitution that changed the codon for His-187 to Gln (p.His187Gln). Crystallographic data and molecular modeling studies indicated that His187 in transmembrane 5 is important for agonist and nucleotide antagonist binding and located in a region undergoing conformational changes. These studies delineate a region of P2Y12R required for normal function after ADP binding. PMID:25428217

  20. Personalized antiplatelet therapy with P2Y12 receptor inhibitors: benefits and pitfalls

    PubMed Central

    Winter, Max-Paul; Koziński, Marek; Kubica, Jacek; Aradi, Daniel

    2015-01-01

    Antiplatelet therapy with P2Y12 receptor inhibitors has become the cornerstone of medical treatment in patients with acute coronary syndrome, after percutaneous coronary intervention and in secondary prevention of atherothrombotic events. Clopidogrel used to be the most broadly prescribed P2Y12 receptor inhibitor with undisputable benefits especially in combination with aspirin, but a considerable number of clopidogrel-treated patients experience adverse thrombotic events in whom insufficient P2Y12-inhibition and a consequential high on-treatment platelet reactivity is a common finding. This clinically relevant limitation of clopidogrel has driven the increased use of new antiplatelet agents. Prasugrel (a third generation thienopyridine) and ticagrelor (a cyclopentyl-triazolo-pyrimidine) feature more potent and predictable P2Y12-inhibition compared to clopidogrel, which translates into improved ischemic outcomes. However, excessive platelet inhibition and consequential low on-treatment platelet reactivity comes at the price of increased risk of major bleeding. The majority of randomized clinical trials failed to demonstrate improved clinical outcomes with platelet function testing and tailored antiplatelet therapy, but results of all recent trials of potent antiplatelets and prolonged antiplatelet durations point towards a need for individualized antiplatelet approach in order to decrease thrombotic events without increasing bleeding. This review focuses on potential strategies for personalizing antiplatelet treatment. PMID:26677375

  1. Structural basis for subtype-specific inhibition of the P2X7 receptor

    SciTech Connect

    Karasawa, Akira; Kawate, Toshimitsu

    2016-12-09

    The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases.

  2. Structural basis for subtype-specific inhibition of the P2X7 receptor

    PubMed Central

    Karasawa, Akira; Kawate, Toshimitsu

    2016-01-01

    The P2X7 receptor is a non-selective cation channel activated by extracellular adenosine triphosphate (ATP). Chronic activation of P2X7 underlies many health problems such as pathologic pain, yet we lack effective antagonists due to poorly understood mechanisms of inhibition. Here we present crystal structures of a mammalian P2X7 receptor complexed with five structurally-unrelated antagonists. Unexpectedly, these drugs all bind to an allosteric site distinct from the ATP-binding pocket in a groove formed between two neighboring subunits. This novel drug-binding pocket accommodates a diversity of small molecules mainly through hydrophobic interactions. Functional assays propose that these compounds allosterically prevent narrowing of the drug-binding pocket and the turret-like architecture during channel opening, which is consistent with a site of action distal to the ATP-binding pocket. These novel mechanistic insights will facilitate the development of P2X7-specific drugs for treating human diseases. DOI: http://dx.doi.org/10.7554/eLife.22153.001 PMID:27935479

  3. Activation of P2Y1 and P2Y2 receptors induces chloride secretion via calcium-activated chloride channels in kidney inner medullary collecting duct cells

    PubMed Central

    Rajagopal, Madhumitha; Kathpalia, Paru P.; Thomas, Sheela V.

    2011-01-01

    Dysregulation of urinary sodium chloride (NaCl) excretion can result in extracellular fluid (ECF) volume expansion and hypertension. Recent studies demonstrated that urinary nucleotide excretion increases in mice ingesting a high-salt diet and that these increases in extracellular nucleotides can signal through P2Y2 receptors in the kidney collecting duct to inhibit epithelial Na+ channels (ENaC). However, under conditions of ECF volume expansion brought about by high-dietary salt intake, ENaC activity should already be suppressed. We hypothesized that alternative pathways exist by which extracellular nucleotides control renal NaCl excretion. We used an inner medullary collecting duct (mIMCD-K2) cell line in an Ussing chamber system as a model to study additional ion transport pathways that are regulated by extracellular nucleotides. When ENaC was inhibited, the addition of adenosine triphosphate (ATP) to the basal side of cell sheets activated both P2Y1 and P2Y2 receptors, inducing a transient increase in short-circuit current (Isc); addition of ATP to the apical side activated only P2Y2 receptors, inducing first a transient and then a sustained increase in Isc. The ATP-induced increases in Isc were blocked by pretreatment with a phospholipase C (PLC) inhibitor, a calcium (Ca2+) chelator, or Ca2+-activated Cl− channel (CACC) inhibitors, suggesting that ATP signals through both PLC and intracellular Ca2+ to activate CACC. We propose that P2Y1 and P2Y2 receptors operate in tandem in IMCD cells to provide an adaptive mechanism for enhancing urinary NaCl excretion in the setting of high-dietary NaCl intake. PMID:21653634

  4. The Cellular Prion Protein Prevents Copper-Induced Inhibition of P2X4 Receptors

    PubMed Central

    Lorca, Ramón A.; Varela-Nallar, Lorena; Inestrosa, Nibaldo C.; Huidobro-Toro, J. Pablo

    2011-01-01

    Although the physiological function of the cellular prion protein (PrPC) remains unknown, several evidences support the notion of its role in copper homeostasis. PrPC binds Cu2+ through a domain composed by four to five repeats of eight amino acids. Previously, we have shown that the perfusion of this domain prevents and reverses the inhibition by Cu2+ of the adenosine triphosphate (ATP)-evoked currents in the P2X4 receptor subtype, highlighting a modulatory role for PrPC in synaptic transmission through regulation of Cu2+ levels. Here, we study the effect of full-length PrPC in Cu2+ inhibition of P2X4 receptor when both are coexpressed. PrPC expression does not significantly change the ATP concentration-response curve in oocytes expressing P2X4 receptors. However, the presence of PrPC reduces the inhibition by Cu2+ of the ATP-elicited currents in these oocytes, confirming our previous observations with the Cu2+ binding domain. Thus, our observations suggest a role for PrPC in modulating synaptic activity through binding of extracellular Cu2+. PMID:22114745

  5. Synergistic inhibition of both P2Y1 and P2Y12 adenosine diphosphate receptors as novel approach to rapidly attenuate platelet-mediated thrombosis

    PubMed Central

    Gremmel, Thomas; Yanachkov, Ivan B.; Yanachkova, Milka I.; Wright, George E.; Wider, Joseph; Undyala, Vishnu V.R.; Michelson, Alan D.; Frelinger, Andrew L.; Przyklenk, Karin

    2015-01-01

    Objective Unlike currently approved adenosine diphosphate (ADP) receptor antagonists, the new diadenosine tetraphosphate derivative GLS-409 targets not only P2Y12 but also the second human platelet ADP receptor P2Y1, and may therefore be a promising antiplatelet drug candidate. The current study is the first to investigate the in vivo antithrombotic effects of GLS-409. Approach and Results We studied (1) the in vivo effects of GLS-409 on agonist-stimulated platelet aggregation in anesthetized rats, (2) the antithrombotic activity of GLS-409 and the associated effect on the bleeding time in a canine model of platelet-mediated coronary artery thrombosis, and (3) the inhibition of agonist-stimulated platelet aggregation by GLS-409 versus selective P2Y1 and P2Y12 inhibition in vitro in samples from healthy human subjects before and 2 hours after aspirin intake. In vivo treatment with GLS-409 significantly inhibited ADP- and collagen-stimulated platelet aggregation in rats. Further, GLS-409 attenuated cyclic flow variation, i.e., platelet-mediated thrombosis, in vivo in our canine model of unstable angina. The improvement in coronary patency was accompanied by a non-significant 30% increase in bleeding time. Of note, GLS-409 exerted its effects without affecting rat and canine hemodynamics. Finally, in vitro treatment with GLS-409 showed effects similar to that of cangrelor and the combination of cangrelor with the selective P2Y1 inhibitor MRS 2179 on agonist-stimulated platelet aggregation in human platelet-rich plasma and whole blood before and 2 hours after aspirin intake. Conclusions Synergistic inhibition of both P2Y1 and P2Y12 ADP receptors by GLS-409 immediately attenuates platelet-mediated thrombosis and effectively blocks agonist-stimulated platelet aggregation irrespective of concomitant aspirin therapy. PMID:26743169

  6. P2X4 receptors (P2X4Rs) represent a novel target for the development of drugs to prevent and/or treat alcohol use disorders

    PubMed Central

    Franklin, Kelle M.; Asatryan, Liana; Jakowec, Michael W.; Trudell, James R.; Bell, Richard L.; Davies, Daryl L.

    2014-01-01

    Alcohol use disorders (AUDs) have a staggering socioeconomic impact. Few therapeutic options are available, and they are largely inadequate. These shortcomings highlight the urgent need to develop effective medications to prevent and/or treat AUDs. A critical barrier is the lack of information regarding the molecular target(s) by which ethanol (EtOH) exerts its pharmacological activity. This review highlights findings implicating P2X4 receptors (P2X4Rs) as a target for the development of therapeutics to treat AUDs and discusses the use of ivermectin (IVM) as a potential clinical tool for treatment of AUDs. P2XRs are a family of ligand-gated ion channels (LGICs) activated by extracellular ATP. Of the P2XR subtypes, P2X4Rs are expressed the most abundantly in the CNS. Converging evidence suggests that P2X4Rs are involved in the development and progression of AUDs. First, in vitro studies report that pharmacologically relevant EtOH concentrations can negatively modulate ATP-activated currents. Second, P2X4Rs in the mesocorticolimbic dopamine system are thought to play a role in synaptic plasticity and are located ideally to modulate brain reward systems. Third, alcohol-preferring (P) rats have lower functional expression of the p2rx4 gene than alcohol-non-preferring (NP) rats suggesting an inverse relationship between alcohol intake and P2X4R expression. Similarly, whole brain p2rx4 expression has been shown to relate inversely to innate 24 h alcohol preference across 28 strains of rats. Fourth, mice lacking the p2rx4 gene drink more EtOH than wildtype controls. Fifth, IVM, a positive modulator of P2X4Rs, antagonizes EtOH-mediated inhibition of P2X4Rs in vitro and reduces EtOH intake and preference in vivo. These findings suggest that P2X4Rs contribute to EtOH intake. The present review summarizes recent findings focusing on the P2X4R as a molecular target of EtOH action, its role in EtOH drinking behavior and modulation of its activity by IVM as a potential therapy

  7. Purinergic and Cholinergic Drugs Mediate Hyperventilation in Zebrafish: Evidence from a Novel Chemical Screen

    PubMed Central

    Rahbar, Saman; Pan, Wen; Jonz, Michael G.

    2016-01-01

    A rapid test to identify drugs that affect autonomic responses to hypoxia holds therapeutic and ecologic value. The zebrafish (Danio rerio) is a convenient animal model for investigating peripheral O2 chemoreceptors and respiratory reflexes in vertebrates; however, the neurotransmitters and receptors involved in this process are not adequately defined. The goals of the present study were to demonstrate purinergic and cholinergic control of the hyperventilatory response to hypoxia in zebrafish, and to develop a procedure for screening of neurochemicals that affect respiration. Zebrafish larvae were screened in multi-well plates for sensitivity to the cholinergic receptor agonist, nicotine, and antagonist, atropine; and to the purinergic receptor antagonists, suramin and A-317491. Nicotine increased ventilation frequency (fV) maximally at 100 μM (EC50 = 24.5 μM). Hypoxia elevated fV from 93.8 to 145.3 breaths min-1. Atropine reduced the hypoxic response only at 100 μM. Suramin and A-317491 maximally reduced fV at 50 μM (EC50 = 30.4 and 10.8 μM) and abolished the hyperventilatory response to hypoxia. Purinergic P2X3 receptors were identified in neurons and O2-chemosensory neuroepithelial cells of the gills using immunohistochemistry and confocal microscopy. These studies suggest a role for purinergic and nicotinic receptors in O2 sensing in fish and implicate ATP and acetylcholine in excitatory neurotransmission, as in the mammalian carotid body. We demonstrate a rapid approach for screening neuroactive chemicals in zebrafish with implications for respiratory medicine and carotid body disease in humans; as well as for preservation of aquatic ecosystems. PMID:27100625

  8. P2Y1 Receptor Signaling Contributes to High Salt-Induced Priming of the NLRP3 Inflammasome in Retinal Pigment Epithelial Cells

    PubMed Central

    Prager, Philipp; Hollborn, Margrit; Steffen, Anja; Wiedemann, Peter; Kohen, Leon; Bringmann, Andreas

    2016-01-01

    Background Systemic hypertension is a risk factor of age-related macular degeneration (AMD), a chronic inflammatory disease. Acute hypertension is caused by increased extracellular osmolarity after intake of dietary salt (NaCl). We determined in cultured human retinal pigment epithelial (RPE) cells whether high extracellular NaCl alters the gene expression of inflammasome-associated proteins, and whether autocrine/paracrine purinergic (P2) receptor signaling contributes to the NaCl-induced NLRP3 gene expression. Methodology/Principal Findings Hyperosmolarity was induced by the addition of 100 mM NaCl or sucrose to the culture medium. Gene and protein expression levels were determined with real-time RT-PCR and Western blot analysis, respectively. IL-1β and IL-18 levels were evaluated with ELISA. Nuclear factor of activated T cell 5 (NFAT5) expression was knocked down with siRNA. High extracellular NaCl induced NLRP3 and pro-IL-1β gene expression, while the gene expression of further inflammasome-associated proteins (NLRP1, NLRP2, NLRP6, NLRP7, NLRP12, NLRC4, AIM2, ASC, procaspase-1, pro-IL-18) was not altered or below the detection threshold. The NaCl-induced NLRP3 gene expression was partially dependent on the activities of phospholipase C, IP3 receptors, protein kinase C, the serum and glucocorticoid-regulated kinase, p38 MAPK, ERK1/2, JNK, PI3K, and the transcription factors HIF-1 and NFAT5. Pannexin-dependent ATP release and P2Y1 receptor activation is required for the full induction of NLRP3 gene expression. High NaCl induced a transient increase of the NLRP3 protein level and a moderate NLRP3 inflammasome activation, as indicated by the transient increase of the cytosolic level of mature IL-1β. High NaCl also induced secretion of IL-18. Conclusion High extracellular NaCl induces priming of the NLRP3 inflammasome in RPE cells, in part via P2Y1 receptor signaling. The inflammasome priming effect of NaCl suggests that high intake of dietary salt may promote

  9. Purinergic and Calcium Signaling in Macrophage Function and Plasticity

    PubMed Central

    Desai, Bimal N.; Leitinger, Norbert

    2014-01-01

    In addition to a fundamental role in cellular bioenergetics, the purine nucleotide adenosine triphosphate (ATP) plays a crucial role in the extracellular space as a signaling molecule. ATP and its metabolites serve as ligands for a family of receptors that are collectively referred to as purinergic receptors. These receptors were first described and characterized in the nervous system but it soon became evident that they are expressed ubiquitously. In the immune system, purinergic signals regulate the migration and activation of immune cells and they may also orchestrate the resolution of inflammation (1, 2). The intracellular signal transduction initiated by purinergic receptors is strongly coupled to Ca2+-signaling, and co-ordination of these pathways plays a critical role in innate immunity. In this review, we provide an overview of purinergic and Ca2+-signaling in the context of macrophage phenotypic polarization and discuss the implications on macrophage function in physiological and pathological conditions. PMID:25505897

  10. 4-Alkyloxyimino Derivatives of Uridine-5′-triphosphate: Distal Modification of Potent Agonists as a Strategy for Molecular Probes of P2Y2, P2Y4, and P2Y6 Receptors

    PubMed Central

    2015-01-01

    Extended N4-(3-arylpropyl)oxy derivatives of uridine-5′-triphosphate were synthesized and potently stimulated phospholipase C stimulation in astrocytoma cells expressing G protein-coupled human (h) P2Y receptors (P2YRs) activated by UTP (P2Y2/4R) or UDP (P2Y6R). The potent P2Y4R-selective N4-(3-phenylpropyl)oxy agonist was phenyl ring-substituted or replaced with terminal heterocyclic or naphthyl rings with retention of P2YR potency. This broad tolerance for steric bulk in a distal region was not observed for dinucleoside tetraphosphate agonists with both nucleobases substituted. The potent N4-(3-(4-methoxyphenyl)-propyl)oxy analogue 19 (EC50: P2Y2R, 47 nM; P2Y4R, 23 nM) was functionalized for chain extension using click tethering of fluorophores as prosthetic groups. The BODIPY 630/650 conjugate 28 (MRS4162) exhibited EC50 values of 70, 66, and 23 nM at the hP2Y2/4/6Rs, respectively, and specifically labeled cells expressing the P2Y6R. Thus, an extended N4-(3-arylpropyl)oxy group accessed a structurally permissive region on three Gq-coupled P2YRs, and potency and selectivity were modulated by distal structural changes. This freedom of substitution was utilized to design of a pan-agonist fluorescent probe of a subset of uracil nucleotide-activated hP2YRs. PMID:24712832

  11. Intersubunit Physical Couplings Fostered By The Left Flipper Domain Facilitate Channel Opening Of P2X4 Receptors.

    PubMed

    Wang, Jin; Sun, Liang-Fei; Cui, Wen-Wen; Zhao, Wen-Shan; Ma, Xue-Fei; Li, Bin; Liu, Yan; Yang, Yang; Hu, You-Min; Huang, Li-Dong; Cheng, Xiao-Yang; Li, Lingyong; Lu, Xiang-Yang; Tian, Yun; Yu, Ye

    2017-03-16

    P2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of P2X receptors is a flexible loop structure and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors. However, the mechanism underlying the crucial role of the LF domain in the channel gating remains obscure. Here, we propose that the ATP-induced allosteric changes of the LF domain enable it to foster intersubunit physical couplings among the DF and two lower body domains, which is pivotal for the channel gating of P2X4 receptors. Metadynamics analysis indicated that these newly established intersubunit couplings correlate well with the ATP-bound open state of the receptors. Moreover, weakening or strengthening these physical interactions with engineered intersubunit metal bridges remarkably decreased or increased the open probability of the receptors, respectively. Further disulfide crosslinking and covalent modification confirmed that the intersubunit physical couplings among the DF and two lower body domains fostered by the LF domain at the open state act as an integrated structural element that is stringently required for the channel gating of P2X4 receptors. Our observations provide new mechanistic insights into P2X receptor activation and will stimulate development of new allosteric modulators of P2X receptors.

  12. Mechanism of ivermectin facilitation of human P2X4 receptor channels.

    PubMed

    Priel, Avi; Silberberg, Shai D

    2004-03-01

    Ivermectin (IVM), a widely used antiparasitic agent in human and veterinary medicine, was recently shown to augment macroscopic currents through rat P2X(4) receptor channels. In the present study, the effects of IVM on the human P2X(4) (hP2X(4)) receptor channel stably transfected in HEK293 cells were investigated by recording membrane currents using the patch clamp technique. In whole-cell recordings, IVM (< or =10 microM) applied from outside the cell (but not from inside) increased the maximum current activated by ATP, and slowed the rate of current deactivation. These two phenomena likely result from the binding of IVM to separate sites. A higher affinity site (EC(50) 0.25 microM) increased the maximal current activated by saturating concentrations of ATP without significantly changing the rate of current deactivation or the EC(50) and Hill slope of the ATP concentration-response relationship. A lower affinity site (EC(50) 2 microM) slowed the rate of current deactivation, and increased the apparent affinity for ATP. In cell-attached patch recordings, P2X(4) receptor channels exhibited complex kinetics, with multiple components in both the open and shut distributions. IVM (0.3 microM) increased the number of openings per burst, without significantly changing the mean open or mean shut time within a burst. At higher concentrations (1.5 microM) of IVM, two additional open time components of long duration were observed that gave rise to long-lasting bursts of channel activity. Together, the results suggest that the binding of IVM to the higher affinity site increases current amplitude by reducing channel desensitization, whereas the binding of IVM to the lower affinity site slows the deactivation of the current predominantly by stabilizing the open conformation of the channel.

  13. Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury.

    PubMed

    Kong, Fanjun; Liu, Shuangmei; Xu, Changshui; Liu, Jun; Li, Guodong; Li, Guilin; Gao, Yun; Lin, Hong; Tu, Guihua; Peng, Haiying; Qiu, Shuyi; Fan, Bo; Zhu, Qicheng; Yu, Shicheng; Zheng, Chaoran; Liang, Shangdong

    2013-09-01

    Myocardial ischemic injury activates cardiac sympathetic afferent fibers and elicits a sympathoexcitatory reflex by exciting sympathetic efferent action, with resultant augmentation of myocardial oxygen consumption, leading to a vicious cycle of exaggerating myocardial ischemia. P2X7 receptor participates in the neuronal functions and the neurological disorders. This study examined the role of P2X7 receptor of superior cervical ganglia (SCG) in sympathoexcitatory reflex. Our results showed that the expression of P2X7 receptor at both mRNA and protein in SCG was increased after myocardial ischemic injury. P2X7 receptor agonists at the same concentration activated much larger amplitudes of the currents in the SCG neurons of myocardial ischemic rats than those in control rats. P2X7 receptor antagonist (brilliant blue G, BBG) significantly inhibited P2X7 receptor agonist-activated currents in the SCG neurons. Excessive phosphorylation of MAPK ERK1/2 upon the activation of P2X7 receptor might be a mechanism mediating the signal transduction after myocardial ischemic injury. Therefore, the sensitized P2X7 receptor in SCG was involved in the nociceptive transmission of sympathoexcitatory reflex induced by myocardial ischemic injury.

  14. Implication of the Purinergic System in Alcohol Use Disorders

    PubMed Central

    Asatryan, Liana; Nam, Hyung Wook; Lee, Moonnoh R.; Thakkar, Mahesh M.; Dar, M. Saeed; Davies, Daryl L.; Choi, Doo-Sup

    2010-01-01

    In the central nervous system, adenosine and ATP play an important role in regulating neuronal activity as well as controlling other neurotransmitter systems such as GABA, glutamate, and dopamine. Ethanol increases extracellular adenosine levels that regulate the ataxic and hypnotic/sedative effects of ethanol. Interestingly, ethanol is known to increase adenosine levels by inhibiting an ethanol-sensitive adenosine transporter, ENT1 (equilibrative nucleoside transporter type 1). Ethanol is also known to inhibit ATP-specific P2X receptors, which might result in such similar effects as those caused by an increase in adenosine. Adenosine and ATP exert their functions through P1 (metabotropic) and P2 (P2X-ionotropic and P2Y-metabotropic) receptors, respectively. Purinergic signaling in cortex-striatum-VTA has been implicated in regulating cortical glutamate signaling as well as VTA dopaminergic signaling, which regulates the motivational effect of ethanol. Moreover, several nucleoside transporters and receptors have been identified in astrocytes, which regulate not only adenosine-ATP neurotransmission, but also homeostasis of major inhibitory-excitatory neurotransmission (i.e. GABA or glutamate) through neuron-glial interactions. This review will present novel findings on the implications of adenosine and ATP neurotransmission in alcohol use disorders. PMID:21223299

  15. Off-target effect of the Epac agonist 8-pCPT-2'-O-Me-cAMP on P2Y12 receptors in blood platelets.

    PubMed

    Herfindal, Lars; Nygaard, Gyrid; Kopperud, Reidun; Krakstad, Camilla; Døskeland, Stein Ove; Selheim, Frode

    2013-08-09

    The primary target of the cAMP analogue 8-pCPT-2'-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2'-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2'-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2'O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2'-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2'-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2'-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2'-O-Me-cAMP did not affect platelet activation at similar concentrations.

  16. Effect of P2X7 Receptor Knockout on AQP-5 Expression of Type I Alveolar Epithelial Cells

    PubMed Central

    Ebeling, Georg; Bläsche, Robert; Hofmann, Falk; Augstein, Antje; Kasper, Michael; Barth, Kathrin

    2014-01-01

    P2X7 receptors, ATP-gated cation channels, are specifically expressed in alveolar epithelial cells. The pathophysiological function of this lung cell type, except a recently reported putative involvement in surfactant secretion, is unknown. In addition, P2X7 receptor-deficient mice show reduced inflammation and lung fibrosis after exposure with bleomycin. To elucidate the role of the P2X7 receptor in alveolar epithelial type I cells we characterized the pulmonary phenotype of P2X7 receptor knockout mice by using immunohistochemistry, western blot analysis and real-time RT PCR. No pathomorphological signs of fibrosis were found. Results revealed, however, a remarkable loss of aquaporin-5 protein and mRNA in young knockout animals. Additional in vitro experiments with bleomycin treated precision cut lung slices showed a greater sensitivity of the P2X7 receptor knockout mice in terms of aquaporin-5 reduction as wild type animals. Finally, P2X7 receptor function was examined by using the alveolar epithelial cell lines E10 and MLE-12 for stimulation experiments with bleomycin. The in vitro activation of P2X7 receptor was connected with an increase of aquaporin-5, whereas the inhibition of the receptor with oxidized ATP resulted in down regulation of aquaporin-5. The early loss of aquaporin-5 which can be found in different pulmonary fibrosis models does not implicate a specific pathogenetic role during fibrogenesis. PMID:24941004

  17. Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice.

    PubMed

    Vandenbeuch, Aurelie; Larson, Eric D; Anderson, Catherine B; Smith, Steven A; Ford, Anthony P; Finger, Thomas E; Kinnamon, Sue C

    2015-03-01

    Taste buds release ATP to activate ionotropic purinoceptors composed of P2X2 and P2X3 subunits, present on the taste nerves. Mice with genetic deletion of P2X2 and P2X3 receptors (double knockout mice) lack responses to all taste stimuli presumably due to the absence of ATP-gated receptors on the afferent nerves. Recent experiments on the double knockout mice showed, however, that their taste buds fail to release ATP, suggesting the possibility of pleiotropic deficits in these global knockouts. To test further the role of postsynaptic P2X receptors in afferent signalling, we used AF-353, a selective antagonist of P2X3-containing receptors to inhibit the receptors acutely during taste nerve recording and behaviour. The specificity of AF-353 for P2X3-containing receptors was tested by recording Ca(2+) transients to exogenously applied ATP in fura-2 loaded isolated geniculate ganglion neurons from wild-type and P2X3 knockout mice. ATP responses were completely inhibited by 10 μm or 100 μm AF-353, but neither concentration blocked responses in P2X3 single knockout mice wherein the ganglion cells express only P2X2-containing receptors. Furthermore, AF-353 had no effect on taste-evoked ATP release from taste buds. In wild-type mice, i.p. injection of AF-353 or simple application of the drug directly to the tongue, inhibited taste nerve responses to all taste qualities in a dose-dependent fashion. A brief access behavioural assay confirmed the electrophysiological results and showed that preference for a synthetic sweetener, SC-45647, was abolished following i.p. injection of AF-353. These data indicate that activation of P2X3-containing receptors is required for transmission of all taste qualities.

  18. On the role of P2X(7) receptors in dopamine nerve cell degeneration in a rat model of Parkinson's disease: studies with the P2X(7) receptor antagonist A-438079.

    PubMed

    Marcellino, Daniel; Suárez-Boomgaard, Diana; Sánchez-Reina, María Dolores; Aguirre, José A; Yoshitake, Takashi; Yoshitake, Shimako; Hagman, Beth; Kehr, Jan; Agnati, Luigi F; Fuxe, Kjell; Rivera, Alicia

    2010-06-01

    The role of the ATP-gated receptor, P2X(7), has been evaluated in the unilateral 6-OHDA rat model of Parkinson's disease using the P2X(7) competitive antagonist A-438079. Nigral P2X(7) immunoreactivity was mainly located in microglia but also in astroglia. A-438079 partially but significantly prevented the 6-OHDA-induced depletion of striatal DA stores. However, this was not associated with a reduction of DA cell loss. Blockade of P2X(7) receptors may represent a novel protective strategy for striatal DA terminals in Parkinson's disease and warrants further future investigation.

  19. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells.

    PubMed

    Figliuolo, Vanessa R; Savio, Luiz Eduardo Baggio; Safya, Hanaa; Nanini, Hayandra; Bernardazzi, Cláudio; Abalo, Alessandra; de Souza, Heitor S P; Kanellopoulos, Jean; Bobé, Pierre; Coutinho, Cláudia M L M; Coutinho-Silva, Robson

    2017-03-07

    P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RB(low). Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.

  20. P2Y12-ADP receptor antagonists: Days of future and past

    PubMed Central

    Laine, Marc; Paganelli, Franck; Bonello, Laurent

    2016-01-01

    Antiplatelet therapy is the cornerstone of the therapeutic arsenal in coronary artery disease. Thanks to a better understanding in physiology, pharmacology and pharmacogenomics huge progress were made in the field of platelet reactivity inhibition thus allowing the expansion of percutaneous coronary intervention. Stent implantation requires the combination of two antiplatelet agents acting in a synergistic way. Asprin inhibit the cyclo-oxygenase pathway of platelet activation while clopidogrel is a P2Y12 adenosine diphosphate (ADP)-receptor antagonist. This dual antiplatelet therapy has dramatically improved the prognosis of stented patients. However, due to pharmacological limitations of clopidogrel (interindividual variability in its biological efficacy, slow onset of action, mild platelet reactivity inhibition) ischemic recurrences remained high following stent implantation especially in acute coronary syndrome patients. Thus, more potent P2Y12-ADP receptor inhibitors were developped including prasugrel, ticagrelor and more recently cangrelor to overcome these pitfalls. These new agents reduced the rate of thrombotic events in acute coronary syndrome patients at the cost of an increased bleeding risk. The abundance in antiplatelet agents allow us to tailor our strategy based on the thrombotic/bleeding profile of each patient. Recently, the ACCOAST trial cast a doubt on the benefit of pre treatment in non-ST segment elevation acute coronary syndrome. The aim of the present review is to summarize the results of the main studies dealing with antiplatelet therapy in stented/acute coronary syndromes patients. PMID:27231519

  1. Succinate reverses in-vitro platelet inhibition by acetylsalicylic acid and P2Y receptor antagonists.

    PubMed

    Spath, Brigitte; Hansen, Arne; Bokemeyer, Carsten; Langer, Florian

    2012-01-01

    High on-treatment platelet reactivity has been associated with adverse cardiovascular events in patients receiving anti-platelet agents, but the molecular mechanisms underlying this phenomenon remain incompletely understood. Succinate, a citric acid cycle intermediate, is released into the circulation under conditions of mitochondrial dysfunction due to hypoxic organ damage, including sepsis, stroke, and myocardial infarction. Because the G protein-coupled receptor (GPCR) for succinate, SUCNR1 (GPR91), is present on human platelets, we hypothesized that succinate-mediated platelet stimulation may counteract the pharmacological effects of cyclooxygenase-1 and ADP receptor antagonists. To test this hypothesis in a controlled in-vitro study, washed platelets from healthy donors were treated with acetylsalicylic acid (ASA) or small-molecule P2Y(1) or P2Y(12) inhibitors and subsequently analyzed by light transmittance aggregometry using arachidonic acid (AA), ADP and succinate as platelet agonists. Aggregation in response to succinate alone was highly variable with only 29% of donors showing a (mostly delayed) platelet response. In contrast, succinate reproducibly and concentration-dependently (10-1000 µM) enhanced platelet aggregation in response to low concentrations of exogenous ADP. Furthermore, while succinate alone had no effect in the presence of platelet inhibitors, responsiveness of platelets to ADP after pretreatment with P2Y(1) or P2Y(12) antagonists was fully restored, when platelets were co-stimulated with 100 µM succinate. Similarly, succinate completely (at 1000 µM) or partially (at 100 µM) reversed the inhibitory effect of ASA on AA-induced platelet aggregation. In contrast, succinate failed to restore platelet responsiveness in the presence of both ASA and the P2Y(12) antagonist, suggesting that concomitant signaling via different GPCRs was required. Essentially identical results were obtained, when flow cytometric analysis of surface CD62P

  2. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus

    PubMed Central

    Xu, Ji; Bernstein, Alexander M.; Wong, Angela; Lu, Xiao-Hong; Khoja, Sheraz; Yang, X. William; Davies, Daryl L.; Micevych, Paul; Sofroniew, Michael V.

    2016-01-01

    P2X4 receptors are ATP-gated cation channels that are widely expressed in the nervous system. To identify P2X4 receptor-expressing cells, we generated BAC transgenic mice expressing tdTomato under the control of the P2X4 receptor gene (P2rx4). We found sparse populations of tdTomato-positive neurons in most brain areas with patterns that matched P2X4 mRNA distribution. tdTomato expression within microglia was low but was increased by an experimental manipulation that triggered microglial activation. We found surprisingly high tdTomato expression in the hypothalamic arcuate nucleus (Arc) (i.e., within parts of the neural circuitry controlling feeding). Immunohistochemistry and genetic crosses of P2rx4 tdTomato mice with cell-specific GFP reporter lines showed that the tdTomato-expressing cells were mainly AgRP-NPY neurons and tanycytes. There was no electrophysiological evidence for functional expression of P2X4 receptors on AgRP-NPY neuron somata, but instead, we found clear evidence for functional presynaptic P2X4 receptor-mediated responses in terminals of AgRP-NPY neurons onto two of their postsynaptic targets (Arc POMC and paraventricular nucleus neurons), where ATP dramatically facilitated GABA release. The presynaptic responses onto POMC neurons, and the expression of tdTomato in AgRP-NPY neurons and tanycytes, were significantly decreased by food deprivation in male mice in a manner that was partially reversed by the satiety-related peptide leptin. Overall, we provide well-characterized tdTomato reporter mice to study P2X4-expressing cells in the brain, new insights on feeding-related regulation of presynaptic P2X4 receptor responses, and the rationale to explore extracellular ATP signaling in the control of feeding behaviors. SIGNIFICANCE STATEMENT Cells expressing ATP-gated P2X4 receptors have proven problematic to identify and study in brain slice preparations because P2X4 expression is sparse. To address this limitation, we generated and characterized

  3. Blockade of P2X4 Receptors Inhibits Neuropathic Pain-Related Behavior by Preventing MMP-9 Activation and, Consequently, Pronociceptive Interleukin Release in a Rat Model

    PubMed Central

    Jurga, Agnieszka M.; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2017-01-01

    Neuropathic pain is still an extremely important problem in today’s medicine because opioids, which are commonly used to reduce pain, have limited efficacy in this type of pathology. Therefore, complementary therapy is needed. Our experiments were performed in rats to evaluate the contribution of the purinergic system, especially P2X4 receptor (P2X4R), in the modulation of glia activation and, consequently, the levels of nociceptive interleukins after chronic constriction injury (CCI) of the right sciatic nerve, a rat model of neuropathic pain. Moreover, we studied how intrathecal (ith.) injection of a P2X4R antagonist Tricarbonyldichlororuthenium (II) dimer (CORM-2) modulates nociceptive transmission and opioid effectiveness in the CCI model. Our results demonstrate that repeated ith. administration of CORM-2 once daily (20 μg/5 μl, 16 and 1 h before CCI and then daily) for eight consecutive days significantly reduced pain-related behavior and activation of both spinal microglia and/or astroglia induced by CCI. Moreover, even a single administration of CORM-2 on day 7 after CCI attenuated mechanical and thermal hypersensitivity as efficiently as morphine and buprenorphine. In addition, using Western blot, we have shown that repeated ith. administration of CORM-2 lowers the CCI-elevated level of MMP-9 and pronociceptive interleukins (IL-1β, IL-18, IL-6) in the dorsal L4-L6 spinal cord and/or DRG. Furthermore, in parallel, CORM-2 upregulates spinal IL-1Ra; however, it does not influence other antinociceptive factors, IL-10 and IL-18BP. Additionally, based on our biochemical results, we hypothesize that p38MAPK, ERK1/2 and PI3K/Akt but not the NLRP3/Caspase-1 pathway are partly involved in the CORM-2 analgesic effects in rat neuropathic pain. Our data provide new evidence that P2X4R may indeed play a significant role in neuropathic pain development by modulating neuroimmune interactions in the spinal cord and DRG, suggesting that its blockade may have potential

  4. Chronic treatment with red wine modulates the purinergic neurotransmission and decreases blood pressure in hypertensive SHR and diabetic-STZ rats.

    PubMed

    Musial, Diego C; Bomfim, Guilherme H S; Miranda-Ferreira, Regiane; Caricati-Neto, Afonso; Jurkiewicz, Aron; Jurkiewicz, Neide H

    2015-01-01

    It is known that red wine has cardioprotective properties. However, its influence is unknown about purinergic system. Therefore, we study the influence of the treatment with red wine or ethanol in purinergic neurotransmission. We used Wistar Kyoto rats (WKY), diabetic streptozotocin-induced WKY and spontaneously hypertensive rats (SHR), treated with red wine (12.5%) or ethanol (12.5%). The cardiovascular function stimulated with purinergic agonists and systolic blood pressure (SBP) was assessed. In atria of diabetics and SHRs, the P1 receptor response was decreased, unlike the P2 receptor response was increased. Likewise, in aorta the affinity to adenosine (ADO) was decreased from SHRs and diabetics. Furthermore, the P2X function was increased just SHRs. All these alterations were improved after treatment with red wine, resulting in reduction of SBP from diabetics and SHRs, but not when treated with ethanol. This study has important implications, because it is shown that consumption of red wine can improve cardiovascular system by purinergic neurotransmission.

  5. Functional polymorphisms in the P2X7 receptor gene are associated with stress fracture injury.

    PubMed

    Varley, Ian; Greeves, Julie P; Sale, Craig; Friedman, Eitan; Moran, Daniel S; Yanovich, Ran; Wilson, Peter J; Gartland, Alison; Hughes, David C; Stellingwerff, Trent; Ranson, Craig; Fraser, William D; Gallagher, James A

    2016-03-01

    Military recruits and elite athletes are susceptible to stress fracture injuries. Genetic predisposition has been postulated to have a role in their development. The P2X7 receptor (P2X7R) gene, a key regulator of bone remodelling, is a genetic candidate that may contribute to stress fracture predisposition. The aim of this study is to evaluate the putative contribution of P2X7R to stress fracture injury in two separate cohorts, military personnel and elite athletes. In 210 Israeli Defense Forces (IDF) military conscripts, stress fracture injury was diagnosed (n = 43) based on symptoms and a positive bone scan. In a separate cohort of 518 elite athletes, self-reported medical imaging scan-certified stress fracture injuries were recorded (n = 125). Non-stress fracture controls were identified from these cohorts who had a normal bone scan or no history or symptoms of stress fracture injury. Study participants were genotyped for functional SNPs within the P2X7R gene using proprietary fluorescence-based competitive allele-specific PCR assay. Pearson's chi-squared (χ (2)) tests, corrected for multiple comparisons, were used to assess associations in genotype frequencies. The variant allele of P2X7R SNP rs3751143 (Glu496Ala-loss of function) was associated with stress fracture injury, whilst the variant allele of rs1718119 (Ala348Thr-gain of function) was associated with a reduced occurrence of stress fracture injury in military conscripts (P < 0.05). The association of the variant allele of rs3751143 with stress fractures was replicated in elite athletes (P < 0.05), whereas the variant allele of rs1718119 was also associated with reduced multiple stress fracture cases in elite athletes (P < 0.05). The association between independent P2X7R polymorphisms with stress fracture prevalence supports the role of a genetic predisposition in the development of stress fracture injury.

  6. Cangrelor inhibits the binding of the active metabolites of clopidogrel and prasugrel to P2Y12 receptors in vitro.

    PubMed

    Judge, Heather M; Buckland, Robert J; Jakubowski, Joseph A; Storey, Robert F

    2016-01-01

    Cangrelor is a rapid-acting, direct-binding, and reversible P2Y12 antagonist which has been studied for use during percutaneous coronary intervention (PCI) in patients with or without pretreatment with an oral P2Y12 antagonist. As cangrelor is administered intravenously, it is necessary to switch to an oral P2Y12 antagonist following PCI, such as the thienopyridines clopidogrel, and prasugrel or the non-pyridine ticagrelor. Previous studies have suggested a negative pharmacodynamic interaction between cangrelor and thienopyridines. This in vitro study evaluated the receptor-level interaction between cangrelor and the active metabolite (AM) of clopidogrel or prasugrel by assessing functional P2Y12 receptor number using a (33)P-2MeSADP binding assay. All P2Y12 antagonists studied resulted in strong P2Y12 receptor blockade (cangrelor: 93.6%; clopidogrel AM: 93.0%; prasugrel AM: 97.9%). Adding a thienopyridine AM in the presence of cangrelor strongly reduces P2Y12 receptor blockade by the AM (clopidogrel AM: 7%, prasugrel AM: 3.2%). The thienopyridine AMs had limited ability to compete with cangrelor for binding to P2Y12 (% P2Y12 receptor blockade after co-incubation with cangrelor 1000 nmol/L: 11.7% for clopidogrel AM 3 µmol/L; 34.1% for prasugrel AM 3 µmol/L). In conclusion, in vitro cangrelor strongly inhibits the binding of clopidogrel and prasugrel AMs to the P2Y12 receptor, consistent with the previous observation of a negative pharmacodynamic interaction. Care may need to be taken to not overlap exposure to thienopyridine AMs and cangrelor in order to reduce the risk of thrombotic complications following PCI.

  7. Purinergic modulation of norepinephrine release and uptake in rat brain cortex: contribution of glial cells.

    PubMed

    Pinho, Diana; Quintas, Clara; Sardo, Filipa; Cardoso, Teresa Magalhães; Queiroz, Glória

    2013-12-01

    The pathogenesis of psychiatric and neurodegenerative diseases is often associated with a deregulation of noradrenergic transmission. Considering the potential involvement of purinergic signaling in the modulation of noradrenergic transmission in the brain cortex, this study aimed to identify the P2Y receptor subtypes involved in the modulation of neuronal release and neuronal/glial uptake of norepinephrine. Electrical stimulation (100 pulses at 5 Hz) of rat cortical slices induced norepinephrine release that was inhibited by ATP and ADP (0.01-1 mM), adenosine 5'-O-(2-thiodiphosphate) (ADPβS, 0.03-0.3 mM), and UDP (0.1-1 mM). The effect of ADPβS was mediated by P2Y1 receptors and possibly by A1/P2Y1 heterodimers since it was attenuated by the A1 receptor antagonist DPCPX and by the P2Y1 receptor antagonist MRS 2500 but was resistant to the effect of adenosine deaminase (ADA). UDP inhibited norepinephrine release through activation of P2Y6 receptors, an effect that was abolished by the P2Y6 receptor antagonist MRS 2578 and by DPCPX, indicating that it depends on the formation and/or release of adenosine and activation of A1 receptors. Supporting this hypothesis, the inhibitory effect of UDP was also prevented by inhibition of ectonucleotidases, by ADA and was attenuated by the inhibitor of nucleoside transporter 6-[(4-nitrobenzyl)thio]-9-β-d-ribofuranosylpurine (NBTI). Additionally, the inhibitory effect of UDP was attenuated when norepinephrine uptake 1 or 2 was inhibited. In astroglial cultures, ADPβS and UDP increased norepinephrine uptake mainly by activation of P2Y1 and P2Y6 receptors, respectively. The results indicate that neuronal and glial P2Y1 and P2Y6 receptors may represent new targets of intervention to regulate noradrenergic transmission in CNS diseases.

  8. Purinergic Signaling Regulates the Transforming Growth Factor-β3-Induced Chondrogenic Response of Mesenchymal Stem Cells to Hydrostatic Pressure.

    PubMed

    Steward, Andrew J; Kelly, Daniel J; Wagner, Diane R

    2016-06-01

    Although hydrostatic pressure (HP) is known to regulate chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs), improved insight into the mechanotransduction of HP may form the basis for novel tissue engineering strategies. Previously, we demonstrated that matrix stiffness and calcium ion (Ca(++)) mobility regulate the mechanotransduction of HP; however, the mechanisms, by which these Ca(++) signaling pathways are initiated, are currently unknown. The purinergic pathway, in which adenosine triphosphate (ATP) is released and activates P-receptors to initiate Ca(++) signaling, plays a key role in the mechanotransduction of compression, but has yet to be investigated with regard to HP. Therefore, the objective of this study was to investigate the interplay between purinergic signaling, matrix stiffness, and the chondrogenic response of MSCs to HP. Porcine bone marrow-derived MSCs were seeded into soft or stiff agarose hydrogels and subjected to HP (10 MPa at 1 Hz for 4 h/d for 21 days) or kept in free swelling conditions. Stiff constructs were incubated with pharmacological inhibitors of extracellular ATP, P2 receptors, or hemichannels, or without any inhibitors as a control. As with other loading modalities, HP significantly increased ATP release in the control group; however, inhibition of hemichannels completely abrogated this response. The increase in sulfated glycosaminoglycan (sGAG) synthesis and vimentin reorganization observed in the control group in response to HP was suppressed in the presence of all three inhibitors, suggesting that purinergic signaling is involved in the mechanoresponse of MSCs to HP. Interestingly, ATP was released from both soft and stiff hydrogels in response to HP, but HP only enhanced chondrogenesis in the stiff hydrogels, indicating that matrix stiffness may act downstream of purinergic signaling to regulate the mechanoresponse of MSCs to HP. Addition of exogenous ATP did not replicate the effects of HP on

  9. Mg2+ ions reduce microglial and THP-1 cell neurotoxicity by inhibiting Ca2+ entry through purinergic channels.

    PubMed

    Lee, Moonhee; Jantaratnotai, Nattinee; McGeer, Edith; McLarnon, James G; McGeer, Patrick L

    2011-01-19

    Mg(2+) is a known antagonist of some Ca(2+) ion channels. It may therefore be able to counteract the toxic consequences of excessive Ca(2+) entry into immune-type cells. Here we examined the effects of Mg(2+) on inflammation induced by Ca(2+) influx into microglia and THP-1 cells following activation of purinergic receptors. Using tissue culture, an inflammatory response was induced by treatment with either the P2X7 purinergic receptor agonist 2',3'-[benzoyl-4-benzoyl]-ATP (BzATP) or the P2Y2,4 receptor agonist uridine 5'-triphosphate (UTP). Both microglia and THP-1 cells expressed the mRNAs for these receptors. Treatment produced a rapid rise in intracellular Ca(2+) which was significantly reduced by Mg(2+) or the calcium chelator BAPTA-AM. Purinergic receptor stimulation activated the intracellular inflammatory pathway P38 MAP kinase and NFκB. This caused release of TNFα, IL-6, nitrite ions and other materials that are neurotoxic to SH-SY5Y cells. These effects were all ameliorated by Mg(2+). They were also partly ameliorated by the P2X7R antagonists, oxATP and KN-62, the P2YR antagonist MRS2179, and the store operated Ca(2+) channel blocker, SK96365. These results indicate that elevated Mg(2+) is a broad spectrum inhibitor of Ca(2+) entry into microglia or THP-1 cells. Mg(2+) administration may be a strategy for reducing the damaging consequences Ca(2+) induced neuroinflammation in degenerative neurological disorders such as Alzheimer disease and Parkinson disease.

  10. Secondary Structure and Gating Rearrangements of Transmembrane Segments in Rat P2X4 Receptor Channels

    PubMed Central

    Silberberg, Shai D.; Chang, Tsg-Hui; Swartz, Kenton J.

    2005-01-01

    P2X receptors are cation selective channels that are activated by extracellular nucleotides. These channels are likely formed by three identical or related subunits, each having two transmembrane segments (TM1 and TM2). To identify regions that undergo rearrangement during gating and to probe their secondary structure, we performed tryptophan scanning mutagenesis on the two putative TMs of the rat P2X4 receptor channel. Mutant channels were expressed in Xenopus oocytes, concentration–response relationships constructed for ATP, and the EC50 estimated by fitting the Hill equation to the data. Of the 22 mutations in TM1 and 24 in TM2, all but one in TM1 and seven in TM2 result in functional channels. Interestingly, the majority of the functional mutants display an increased sensitivity to ATP, and in general these perturbations are more pronounced for TM2 when compared with TM1. For TM1 and for the outer half of TM2, the perturbations are consistent with these regions adopting α-helical secondary structures. In addition, the greatest perturbations in the gating equilibrium occur for mutations near the outer ends of both TM1 and TM2. Surface biotinylation experiments reveal that all the nonfunctional mutants traffic to the surface membrane at levels comparable to the WT channel, suggesting that these mutations likely disrupt ion conduction or gating. Taken together, these results suggest that the outer parts of TM1 and TM2 are helical and that they move during activation. The observation that the majority of nonconducting mutations are clustered toward the inner end of TM2 suggests a critical functional role for this region. PMID:15795310

  11. Cyclic adenosine monophosphate-dependent vascular responses to purinergic agonists adenosine triphosphate and uridine triphosphate in the anesthetized mouse.

    PubMed

    Shah, Mrugeshkumar K; Kadowitz, Philip J

    2002-01-01

    The mechanism by which purinergic agonist adenosine triphosphate (ATP) and uridine triphosphate (UTP) decrease systemic arterial pressure in the anesthetized mouse was investigated. Intravenous injections of adenosine triphosphate (ATP) and uridine triphosphate (UTP) produced dose-dependent decreases in systemic blood pressure in the mouse. The order of potency was ATP > UTP. Vasodilator responses to ATP and UTP were altered by the cyclic adenosine monophosphate (cAMP) phosphodiesterase inhibitor rolipram. The vascular responses to ATP and UTP were not altered by a nitric oxide synthase inhibitor, a cyclooxygenase inhibitor, a cGMP phosphodiesterase inhibitor, or a particular P2 receptor antagonist. These data suggest that ATP and UTP cause a decrease in systemic arterial pressure in the mouse via a cAMP-dependent pathway via a novel P2 receptor linked to adenylate cyclase and that nitric oxide release, prostaglandin synthesis, cGMP, and P2X1, P2Y1, and P2Y4 receptors play little or no role in the vascular effects of these purinergic agonists in the mouse.

  12. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice

    PubMed Central

    Wyatt, Letisha R.; Finn, Deborah A.; Khoja, Sheraz; Yardley, Megan M; Asatryan, Liana; Alkana, Ronald L.; Davies, Daryl L.

    2014-01-01

    P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular ATP. The P2X4 subtype is abundantly expressed in the CNS and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol’s effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-hr and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50% less in the P2X4R KO mice. Western blot analysis identified significant changes in -γ aminobutyric acidA receptor (GABAAR) α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems. PMID:24671605

  13. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice.

    PubMed

    Wyatt, Letisha R; Finn, Deborah A; Khoja, Sheraz; Yardley, Megan M; Asatryan, Liana; Alkana, Ronald L; Davies, Daryl L

    2014-06-01

    P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular adenosine 5'-triphosphate. The P2X4 subtype is abundantly expressed in the central nervous system and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol's effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-h and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50 % less in the P2X4R KO mice. Western blot analysis identified significant changes in γ-aminobutyric acidA receptor α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems.

  14. The Specificity Protein Factor Sp1 Mediates Transcriptional Regulation of P2X7 Receptors in the Nervous System*

    PubMed Central

    García-Huerta, Paula; Díaz-Hernandez, Miguel; Delicado, Esmerilda G.; Pimentel-Santillana, María; Miras-Portugal, Mª Teresa; Gómez-Villafuertes, Rosa

    2012-01-01

    P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites. PMID:23139414

  15. Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y1 receptors.

    PubMed

    Shinozaki, Youichi; Koizumi, Schuichi; Ishida, Seiichi; Sawada, Jun-Ichi; Ohno, Yasuo; Inoue, Kazuhide

    2005-01-15

    Oxidative stress is the main cause of neuronal damage in traumatic brain injury, hypoxia/reperfusion injury, and neurodegenerative disorders. Although extracellular nucleosides, especially adenosine, are well known to protect against neuronal damage in such pathological conditions, the effects of these nucleosides or nucleotides on glial cell damage remain largely unknown. We report that ATP but not adenosine protects against the cell death of cultured astrocytes induced by hydrogen peroxide (H2O2). ATP ameliorated the H2O2-induced decrease in cell viability of astrocytes in an incubation time- and concentration-dependent fashion. Protection by ATP was inhibited by P2 receptor antagonists and was mimicked by P2Y1 receptor agonists but not by adenosine. The expressions of P2Y1 mRNAs and functional P2Y1 receptors in astrocytes were confirmed. Thus, ATP, acting on P2Y1 receptors in astrocytes, showed a protective action against H2O2. The astrocytic protection by the P2Y1 receptor agonist 2-methylthio-ADP was inhibited by an intracellular Ca2+ chelator and a blocker of phospholipase C, indicating the involvement of intracellular signals mediated by Gq/11-coupled P2Y1 receptors. The ATP-induced protection was inhibited by cycloheximide, a protein synthesis inhibitor, and it took more than 12 h for the onset of the protective action. In the DNA microarray analysis, ATP induced a dramatic upregulation of various oxidoreductase genes. Taken together, ATP acts on P2Y1 receptors coupled to Gq/11, resulting in the upregulation of oxidoreductase genes, leading to the protection of astrocytes against H2O2.

  16. Boranophosphate Isoster Controls P2Y-Receptor Subtype Selectivity and Metabolic Stability of Dinucleoside Polyphosphate Analogues

    PubMed Central

    Yelovitch, Shir; Camden, Jean; Weisman, Gary A.; Fischer, Bilha

    2015-01-01

    Dinucleoside polyphosphates, NpnN′, exert their physiological effects via P2 receptors (P2Rs). NpnN′ are attractive drug candidates as they offer better stability and specificity compared to nucleotides, the most common P2R ligands. To further improve the agonist properties of NpnN′, we synthesized novel isosters of dinucleoside polyphosphates where N and N′ are A or U and where the Pα or Pβ phosphate groups are replaced by boranophosphate, denoted as Npn(α-B)N′ or Npn(β-B)N′ (n = 3, 4), respectively. The potency of Npn(α/β-B)N′ analogues was evaluated at tP2Y1, hP2Y2, hP2Y4, and rP2Y6 receptors. The most potent P2Y1R and P2Y6R agonists were the Up4(β-B)A (A isomer, EC50 of 0.5 μM vs 0.004 μM for 2-SMe-ADP) and Up3(α-B)U (B isomer, EC50 of 0.3 μM vs 0.2 μM for UDP), respectively. The receptor subtype selectivity is controlled by the position of the borano moiety on the NpnN′ polyphosphate chain and the type of the nucleobase. In addition, Npn(α/β-B)N′ proved ~22-fold more resistant to hydrolysis by e-NPP1, as compared to the corresponding NpnN′ analogues. In summary, Up4(β-B)A and Up3(α-B)U are potent, stable, and highly selective P2Y1 and P2Y6 receptor agonists, respectively. PMID:22107038

  17. Purinergic signaling in early inflammatory events of the foreign body response: modulating extracellular ATP as an enabling technology for engineered implants and tissues.

    PubMed

    Rhett, J Matthew; Fann, Stephen A; Yost, Michael J

    2014-10-01

    Purinergic signaling is a ubiquitous and vital aspect of mammalian biology in which purines--mainly adenosine triphosphate (ATP)--are released from cells through loss of membrane integrity (cell death), exocytosis, or transport/diffusion across membrane channels, and exert paracrine or autocrine signaling effects through three subclasses of well-characterized receptors: the P1 adenosine receptors, the P2X ionotropic nucleotide receptors, and the P2Y metabotropic receptors. ATP and its metabolites are released by damaged and stressed cells in injured tissues. The early events of wound healing, hemostasis, and inflammation are highly regulated by these signals through activation of purinergic receptors on platelets and neutrophils. Recent data have demonstrated that ATP signaling is of particular importance to targeting leukocytes to sites of injury. This is particularly relevant to the subject of implanted medical devices, engineered tissues, and grafts as all these technologies elicit a wound healing response with varying degrees of encapsulation, rejection, extrusion, or destruction of the tissue or device. Here, we review the biology of purinergic signaling and focus on ATP release and response mechanisms that pertain to the early inflammatory phase of wound healing. Finally, therapeutic options are explored, including a new class of peptidomimetic drugs based on the ATP-conductive channel connexin43.

  18. Effect of artemisinin on neuropathic pain mediated by P2X4 receptor in dorsal root ganglia.

    PubMed

    Ying, Mofeng; Liu, Hui; Zhang, Tengling; Jiang, Chenxu; Gong, Yingxin; Wu, Bing; Zou, Lifang; Yi, Zhihua; Rao, Shenqiang; Li, Guilin; Zhang, Chunping; Jia, Tianyu; Zhao, Shanhong; Yuan, Huilong; Shi, Liran; Li, Lin; Liang, Shangdong; Liu, Shuangmei

    2017-02-09

    Neuropathic pain is a type of chronic pain caused by nervous system damage and dysfunction. The pathogenesis of chronic pain is complicated, and there are no effective therapies for neuropathic pain. Studies show that the P2X4 receptor expressed in the satellite glial cells (SGCs) of dorsal root ganglia (DRG) is related to neuropathic pain. Artemisinin is a monomeric component extracted from traditional Chinese medicine and has a variety of important pharmacological effects and potential applications. This study observed the effect of artemisinin on neuropathic pain and delineated its possible mechanism. The chronic constriction injury (CCI) rat model was used in this study. The results demonstrated that artemisinin relieved pain behaviors in the CCI rats, inhibited the expression of P2X4 receptor in the DRG, and decreased the ATP-activated currents in HEK293 cells transfected with P2X4 plasmid. Dual-labeling immunofluorescence showed that the coexpression of P2X4 receptor and glial fibrillary acidic protein (GFAP) in the DRG of CCI rats was increased compared to control rats. After CCI rats were treated with artemisinin, the coexpression of P2X4 receptor and GFAP in the DRG was significantly decreased compared to the CCI group. This finding suggested that artemisinin could inhibit the nociceptive transmission mediated by P2X4 receptor in the DRG SGCs and thus relieve pain behaviors in the CCI rats.

  19. Study of baicalin on sympathoexcitation induced by myocardial ischemia via P2X3 receptor in superior cervical ganglia.

    PubMed

    Zhang, Jun; Liu, Shuangmei; Xu, Baohua; Li, Guodong; Li, Guilin; Huang, An; Wu, Bing; Peng, Lichao; Song, Miaomiao; Xie, Qiuyu; Lin, Weijian; Xie, Wei; Wen, Shiyao; Zhang, Zhedong; Xu, Xiaoling; Liang, Shangdong

    2015-05-01

    After the myocardial ischemia, injured myocardial tissues released large quantity of ATP, which activated P2X3 receptor in superior cervical ganglia and made the SCG postganglionic neurons excited. Excitatory of sympathetic postganglionic efferent neurons increased the blood pressure and heart rates, which aggravated the myocardial ischemic injury. Baicalin has anti-inflammatory and anti-oxidant properties. Our study showed that baicalin reduced the incremental concentration of serum CK-MB, cTn-T, epinephrine and ATP, decreased the up-regulated expression levels of P2X3 mRNA and protein in SCG after MI, and then inhibited the sympathetic excitatory activity triggered by MI injury. These results indicated that baicalin acted on P2X3 receptor was involved in the transmission of sympathetic excitation after the myocardial ischemic injury. Baicalin might decrease sympathetic activity via inhibiting P2X3 receptor in rat SCG to protect the myocardium.

  20. Shockwaves induce osteogenic differentiation of human mesenchymal stem cells through ATP release and activation of P2X7 receptors.

    PubMed

    Sun, Dahui; Junger, Wolfgang G; Yuan, Changji; Zhang, Wenyan; Bao, Yi; Qin, Daming; Wang, Chengxue; Tan, Lei; Qi, Baochang; Zhu, Dong; Zhang, Xizheng; Yu, Tiecheng

    2013-06-01

    Shockwave treatment promotes bone healing of nonunion fractures. In this study, we investigated whether this effect could be due to adenosine 5'-triphosphate (ATP) release-induced differentiation of human mesenchymal stem cells (hMSCs) into osteoprogenitor cells. Cultured bone marrow-derived hMSCs were subjected to shockwave treatment and ATP release was assessed. Osteogenic differentiation and mineralization of hMSCs were evaluated by examining alkaline phosphatase activity, osteocalcin production, and calcium nodule formation. Expression of P2X7 receptors and c-fos and c-jun mRNA was determined with real-time reverse transcription polymerase chain reaction and Western blotting. P2X7-siRNA, apyrase, P2 receptor antagonists, and p38 MAPK inhibitors were used to evaluate the roles of ATP release, P2X7 receptors, and p38 MAPK signaling in shockwave-induced osteogenic hMSCs differentiation. Shockwave treatment released significant amounts (≈ 7 μM) of ATP from hMSCs. Shockwaves and exogenous ATP induced c-fos and c-jun mRNA transcription, p38 MAPK activation, and hMSC differentiation. Removal of ATP with apyrase, targeting of P2X7 receptors with P2X7-siRNA or selective antagonists, or blockade of p38 MAPK with SB203580 prevented osteogenic differentiation of hMSCs. Our findings indicate that shockwaves release cellular ATP that activates P2X7 receptors and downstream signaling events that caused osteogenic differentiation of hMSCs. We conclude that shockwave therapy promotes bone healing through P2X7 receptor signaling, which contributes to hMSC differentiation.

  1. Macrophage P2X7 Receptor Function Is Reduced during Schistosomiasis: Putative Role of TGF-β1

    PubMed Central

    Oliveira, Suellen D'arc Santos; Nanini, Hayandra Ferreira; Savio, Luiz Eduardo Baggio; Waghabi, Mariana Caldas; Silva, Claudia Lucia Martins

    2014-01-01

    Schistosomiasis is a chronic inflammatory disease whose macrophages are involved in immunopathology modulation. Although P2X7 receptor signaling plays an important role in inflammatory responses mediated by macrophages, no reports have examined the role of P2X7 receptors in macrophage function during schistosomiasis. Thus, we evaluated P2X7 receptor function in peritoneal macrophages during schistosomiasis using an ATP-induced permeabilization assay and measurements of the intracellular Ca2+ concentration. ATP treatment induced significantly less permeabilization in macrophages from S. mansoni-infected mice than in control cells from uninfected animals. Furthermore, P2X7-mediated increases in intracellular Ca2+ levels were also reduced in macrophages from infected mice. TGF-β1 levels were increased in the peritoneal cavity of infected animals, and pretreatment of control macrophages with TGF-β1 reduced ATP-induced permeabilization, mimicking the effect of S. mansoni infection. Western blot and qRT-PCR data showed no difference in P2X7 protein and mRNA between uninfected, infected, and TGF-β1-treated groups. However, immunofluorescence analysis revealed reduced cell surface localization of P2X7 receptors in macrophages from infected and TGF-β1-treated mice compared to controls. Therefore, our data suggest that schistosomiasis reduces peritoneal macrophage P2X7 receptor signaling. This effect is likely due to the fact that infected mice have increased levels of TGF-β1, which reduces P2X7 receptor cell surface expression. PMID:25276050

  2. R270C polymorphism leads to loss of function of the canine P2X7 receptor.

    PubMed

    Spildrejorde, Mari; Bartlett, Rachael; Stokes, Leanne; Jalilian, Iman; Peranec, Michelle; Sluyter, Vanessa; Curtis, Belinda L; Skarratt, Kristen K; Skora, Amanda; Bakhsh, Tahani; Seavers, Aine; McArthur, Jason D; Dowton, Mark; Sluyter, Ronald

    2014-07-15

    The relative function of the P2X7 receptor, an ATP-gated ion channel, varies between humans due to polymorphisms in the P2RX7 gene. This study aimed to assess the functional impact of P2X7 variation in a random sample of the canine population. Blood and genomic DNA were obtained from 69 dogs selected as representatives of a cross section of different breeds. P2X7 function was determined by flow cytometric measurements of dye uptake and patch-clamp measurements of inward currents. P2X7 expression was determined by immunoblotting and immunocytochemistry. Sequencing was used to identify P2RX7 gene polymorphisms. P2X7 was cloned from an English springer spaniel, and point mutations were introduced into this receptor by site-directed mutagenesis. The relative function of P2X7 on monocytes varied between individual dogs. The canine P2RX7 gene encoded four missense polymorphisms: F103L and P452S, found in heterozygous and homozygous dosage, and R270C and R365Q, found only in heterozygous dosage. Moreover, R270C and R365Q were associated with the cocker spaniel and Labrador retriever, respectively. F103L, R270C, and R365Q but not P452S corresponded to decreased P2X7 function in monocytes but did not explain the majority of differences in P2X7 function between dogs, indicating that other factors contribute to this variability. Heterologous expression of site-directed mutants of P2X7 in human embryonic kidney-293 cells indicated that the R270C mutant was nonfunctional, the F103L and R365Q mutants had partly reduced function, and the P452S mutant functioned normally. Taken together, these data highlight that a R270C polymorphism has major functional impact on canine P2X7.

  3. Modulation of Mouse Embryonic Stem Cell Proliferation and Neural Differentiation by the P2X7 Receptor

    PubMed Central

    Glaser, Talita; de Oliveira, Sophia La Banca; Cheffer, Arquimedes; Beco, Renata; Martins, Patrícia; Fornazari, Maynara; Lameu, Claudiana; Junior, Helio Miranda Costa; Coutinho-Silva, Robson; Ulrich, Henning

    2014-01-01

    Background Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo. Principal Findings P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis. Conclusions In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed. PMID:24798220

  4. Synthesis, characterization, and in vitro evaluation of the selective P2Y2 receptor antagonist AR-C118925.

    PubMed

    Rafehi, Muhammad; Burbiel, Joachim C; Attah, Isaac Y; Abdelrahman, Aliaa; Müller, Christa E

    2017-03-01

    The Gq protein-coupled, ATP- and UTP-activated P2Y2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.

  5. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  6. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.

    PubMed

    Gonzales, Eric B; Kawate, Toshimitsu; Gouaux, Eric

    2009-07-30

    Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 A resolution, the location and composition of the approximately 8 A 'thick' desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X(4) receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.

  7. P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness.

    PubMed

    Jelassi, B; Chantôme, A; Alcaraz-Pérez, F; Baroja-Mazo, A; Cayuela, M L; Pelegrin, P; Surprenant, A; Roger, S

    2011-05-05

    ATP-gated P2X(7) receptors (P2X(7)R) are unusual plasma membrane ion channels that have been extensively studied in immune cells. More recently, P2X(7)R have been described as potential cancer cell biomarkers. However, mechanistic links between P2X(7)R and cancer cell processes are unknown. Here, we show, in the highly aggressive human breast cancer cell line MDA-MB-435s, that P2X(7) receptor is highly expressed and fully functional. Its activation is responsible for the extension of neurite-like cellular prolongations, of the increase in cell migration by 35% and in cell invasion through extracellular matrix by 150%. The change in cancer cell morphology and the increased migration appeared to be due to the activation of Ca(2+)-activated SK3 potassium channels. The enhanced invasion through the extracellular matrix was related to the increase of mature forms of cysteine cathepsins in the extracellular medium, which was independent of SK3 channel activity and not associated with cell death. Pharmacological targeting of P2X(7)R in vivo was crucial for cell invasiveness in a zebrafish model of metastases. Our results demonstrate a novel mechanistic link between P2X(7)R functionality in cancer cells and invasiveness, a key parameter in tumour growth and in the development of metastases. They also suggest a potential therapeutic role for the newly developed P2X(7)R antagonists.

  8. P2X7 receptor-induced death of motor neurons by a peroxynitrite/FAS-dependent pathway

    PubMed Central

    Gandelman, Mandi; Levy, Mark; Cassina, Patricia; Barbeito, Luis; Beckman, Joseph S

    2013-01-01

    The P2X7 receptor/channel responds to extracellular ATP and is associated with neuronal death and neuroinflammation in spinal cord injury and amyotrophic lateral sclerosis (ALS). Whether activation of P2X7 directly causes motor neuron death is unknown. We found that cultured motor neurons isolated from embryonic rat spinal cord express P2X7 and underwent caspase-dependent apoptosis when exposed to exceptionally low concentrations of the P2X7 agonist 3′-O-(4-benzoyl)-ATP (BzATP). The P2X7 inhibitors BBG, oATP and KN-62 prevented BzATP-induced motor neuron death. The endogenous P2X7 agonist ATP induced motor neuron death at low concentrations (1-100 μM). High concentrations of ATP (1 mM) paradoxically became protective due to degradation in the culture media to produce adenosine and activate adenosine receptors. P2X7-induced motor neuron death was dependent on neuronal nitric oxide synthase-mediated production of peroxynitrite, p38 activation and autocrine FAS signaling. Taken together, our results indicate that motor neurons are highly sensitive to P2X7 activation, which triggers apoptosis by activation of the well-established peroxynitrite/FAS death pathway in motor neurons. PMID:23646980

  9. Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information

    NASA Astrophysics Data System (ADS)

    Paoletta, Silvia; Sabbadin, Davide; von Kügelgen, Ivar; Hinz, Sonja; Katritch, Vsevolod; Hoffmann, Kristina; Abdelrahman, Aliaa; Straßburger, Jens; Baqi, Younis; Zhao, Qiang; Stevens, Raymond C.; Moro, Stefano; Müller, Christa E.; Jacobson, Kenneth A.

    2015-08-01

    The G protein-coupled P2Y12 receptor (P2Y12R) is an important antithrombotic target and of great interest for pharmaceutical discovery. Its recently solved, highly divergent crystallographic structures in complex either with nucleotides (full or partial agonist) or with a nonnucleotide antagonist raise the question of which structure is more useful to understand ligand recognition. Therefore, we performed extensive molecular modeling studies based on these structures and mutagenesis, to predict the binding modes of major classes of P2Y12R ligands previously reported. Various nucleotide derivatives docked readily to the agonist-bound P2Y12R, but uncharged nucleotide-like antagonist ticagrelor required a hybrid receptor resembling the agonist-bound P2Y12R except for the top portion of TM6. Supervised molecular dynamics (SuMD) of ticagrelor binding indicated interactions with the extracellular regions of P2Y12R, defining possible meta-binding sites. Ureas, sulfonylureas, sulfonamides, anthraquinones and glutamic acid piperazines docked readily to the antagonist-bound P2Y12R. Docking dinucleotides at both agonist- and antagonist-bound structures suggested interactions with two P2Y12R pockets. Thus, our structure-based approach consistently rationalized the main structure-activity relationships within each ligand class, giving useful information for designing improved ligands.

  10. Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels.

    PubMed

    Boué-Grabot, Eric; Toulmé, Estelle; Emerit, Michel B; Garret, Maurice

    2004-12-10

    ATP and gamma-aminobutyric acid (GABA) are two fast neurotransmitters co-released at central synapses, where they co-activate excitatory P2X and inhibitory GABAA (GABA type A) receptors. We report here that co-activation of P2X2 and various GABAA receptors, co-expressed in Xenopus oocytes, leads to a functional cross-inhibition dependent on GABAA subunit composition. Sequential applications of GABA and ATP revealed that alphabeta- or alphabetagamma-containing GABAA receptors inhibited P2X2 channels, whereas P2X2 channels failed to inhibit gamma-containing GABAA receptors. This functional cross-talk is independent of membrane potential, changes in current direction, and calcium. Non-additive responses observed between cation-selective GABAA and P2X2 receptors further indicate the chloride independence of this process. Overexpression of minigenes encoding either the C-terminal fragment of P2X2 or the intracellular loop of the beta3 subunit disrupted the functional cross-inhibition. We previously demonstrated functional and physical cross-talk between rho1 and P2X2 receptors, which induced a retargeting of rho1 channels to surface clusters when co-expressed in hippocampal neurons (Boue-Grabot, E., Emerit, M. B., Toulme, E., Seguela, P., and Garret, M. (2004) J. Biol. Chem. 279, 6967-6975). Co-expression of P2X2 and chimeric rho1 receptors with the C-terminal sequences of alpha2, beta3, or gamma2 subunits indicated that only rho1-beta3 and P2X2 channels exhibit both functional cross-inhibition in Xenopus oocytes and co-clustering/retargeting in hippocampal neurons. Therefore, the C-terminal domain of P2X2 and the intracellular loop of beta GABAA subunits are required for the functional interaction between ATP- and GABA-gated channels. This gamma subunit-dependent cross-talk may contribute to the regulation of synaptic activity.

  11. Validation of Alexa-647-ATP as a powerful tool to study P2X receptor ligand binding and desensitization.

    PubMed

    Bhargava, Yogesh; Nicke, Annette; Rettinger, Jürgen

    2013-08-23

    Ion channel opening and desensitization is a fundamental process in neurotransmission. The ATP-gated P2X1 receptor (P2X1R) shows rapid and long-lasting desensitization upon agonist binding. This makes the electrophysiological investigation of its desensitization process, agonist unbinding, and recovery from desensitization a challenging task. Here, we show that the fluorescent agonist Alexa-647-ATP is a potent agonist at the P2X1R and a versatile tool to directly visualize agonist binding and unbinding. We demonstrate that the long-lasting desensitization of the P2X1R is due to both slow unbinding of agonist from the desensitized receptor and agonist mediated receptor internalization. Furthermore, the unbinding of the agonist Alexa-647-ATP from the desensitized receptor is accelerated in the continuous presence of competitive ligand. Modeling of our data indicates that three agonist molecules are required to drive the receptor into desensitization. Direct visualization of ligand unbinding from the desensitized receptor demonstrates the cooperativity of this process.

  12. Effects of protein deprivation and re-feeding on P2X2 receptors in enteric neurons

    PubMed Central

    Misawa, Rúbia; Girotti, Priscila Azevedo; Mizuno, Márcia Sanae; Liberti, Edson Aparecido; Furness, John Barton; Castelucci, Patricia

    2010-01-01

    AIM: To investigate the effects of malnutrition and re-feeding on the P2X2 receptor, nitric oxide synthase (NOS), calretinin, calbindin and choline acetyltransferase (ChAT) in neurons of the rat ileum. METHODS: We analyzed the co-localization, numbers and sizes of P2X2-expressing neurons in relation to NOS-immunoreactive (IR), calbindin-IR, ChAT-IR, and calretinin-IR neurons of the myenteric and submucosal plexus. The experimental groups consisted of: (1) rats maintained on normal feed throughout pregnancy until 42 d post-parturition (N); (2) rats deprived of protein throughout pregnancy and 42 d post-parturition (D); and (3) rats undernourished for 21 d post-parturition and then given a protein diet from days 22 to 42 (DR). The myenteric and submucosal plexuses were evaluated by double labeling by immunohistochemical methods for P2X2 receptor, NOS, ChAT, calbindin and calretinin. RESULTS: We found similar P2X2 receptor immunoreactivity in the cytoplasm and surface membranes of myenteric and submucosal neurons from the N, D and DR groups. Double labeling of the myenteric plexus demonstrated that approximately 100% of NOS-IR, calbindin-IR, calretinin-IR and ChAT-IR neurons in all groups also expressed the P2X2 receptor. In the submucosal plexus, the calretinin-IR, ChAT-IR and calbindin-IR neurons were nearly all immunoreactive for the P2X2 receptor. In the myenteric plexus, there was a 19% increase in numbers per cm2 for P2X2 receptor-IR neurons, 64% for NOS-IR, 84% for calretinin-IR and 26% for ChAT-IR neurons in the D group. The spatial density of calbindin-IR neurons, however, did not differ among the three groups. The submucosal neuronal density increased for calbindin-IR, calretinin-IR and ChAT-IR neurons. The average size of neurons in the myenteric plexus neurons in the D group was less than that in the controls and, in the re-fed rats; there was a 34% reduction in size only for the calretinin-IR neurons. CONCLUSION: This work demonstrates that expression of

  13. Inhaled P2Y2 receptor agonists as a treatment for patients with Cystic Fibrosis lung disease.

    PubMed

    Kellerman, Don; Evans, Richard; Mathews, Dave; Shaffer, Christy

    2002-12-05

    P2Y(2) receptor agonists are a new class of compounds that are being evaluated as a treatment for the pulmonary manifestations of Cystic Fibrosis (CF). Results of preclinical research suggest that these compounds inhibit sodium absorption, restore chloride conductance and rehydrate the CF airway surface. In addition, P2Y(2) receptor agonists have been shown to enhance ciliary beat frequency and increase mucociliary clearance in animals and subjects with impaired mucociliary clearance. The normalization of airway surface liquid and enhancement of lung clearance is expected to provide a clinical benefit to CF patients. A number of P2Y(2) agonist compounds have been evaluated in healthy subjects and patients with CF. Most recently, INS37217, a metabolically stable and potent P2Y(2) agonist has been developed and studies have shown it to be well-tolerated when given via inhalation. This compound is currently being evaluated in children and adults with CF lung disease.

  14. An intracellular motif of P2X(3) receptors is required for functional cross-talk with GABA(A) receptors in nociceptive DRG neurons.

    PubMed

    Toulmé, Estelle; Blais, Dominique; Léger, Claire; Landry, Marc; Garret, Maurice; Séguéla, Philippe; Boué-Grabot, Eric

    2007-08-01

    Functional cross-talk between structurally unrelated P2X ATP receptors and members of the 'cys-loop' receptor-channel superfamily represents a recently-discovered mechanism for rapid modulation of information processing. The extent and the mechanism of the inhibitory cross-talks between these two classes of ionotropic receptors remain poorly understood, however. Both ionic and molecular coupling were proposed to explain cross-inhibition between P2X subtypes and GABA(A) receptors, suggesting a P2X subunit-dependent mechanism. We show here that cross-inhibition between neuronal P2X(3) or P2X(2+3) and GABA(A) receptors does not depend on chloride and calcium ions. We identified an intracellular QST(386-388) motif in P2X(3) subunits which is required for the functional coupling with GABA(A) receptors. Moreover the cross-inhibition between native P2X(3) and GABA receptors in cultured rat dorsal root ganglia (DRG) neurons is abolished by infusion of a peptide containing the QST motif as well as by viral expression of the main intracellular loop of GABA(A)beta3 subunits. We provide evidence that P2X(3) and GABA(A) receptors are colocalized in the soma and central processes of nociceptive DRG neurons, suggesting that specific intracellular P2X(3)-GABA(A) subunit interactions underlie a pre-synaptic cross-talk that might contribute to the regulation of sensory synaptic transmission in the spinal cord.

  15. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model.

    PubMed

    Kuan, Yung-Hui; Shih, Hsi-Chien; Tang, Sung-Chun; Jeng, Jiann-Shing; Shyu, Bai-Chuang

    2015-06-01

    Stroke is a leading cause of death and disability in industrialized countries. Approximately 8-14% of stroke survivors suffer from central post-stroke pain (CPSP) when hemorrhagic stroke occurs in lateral thalamic regions, which severely affects their quality of life. Because the mechanisms of CPSP are not well understood, effective treatments have not been developed. In the present study, we tested the hypothesis that persistent CPSP is caused by P(2)X(7)receptor activation after brain tissue damage and subsequent elevations in inflammatory cytokines. A thalamic hemorrhagic rat model was used, characterized by thermal and mechanical allodynia that develops in the subacute to chronic phases upon CPSP onset. We found a significant increase in P(2)X(7) expression in reactive microglia/macrophages in thalamic peri-lesion tissues at 5 weeks post-hemorrhage. Thalamic P(2)X(7) receptors were directly involved in pain transmission and hypersensitivity. The systemic targeting of P(2)X(7) receptors during the acute stage of hemorrhage rescued abnormal pain behaviors and neuronal activity in the thalamocingulate pathway by reducing reactive microglia/macrophage aggregation and associated inflammatory cytokines. After CPSP onset, the targeting of interleukin-1β reversed abnormal pain sensitivity. The aberrant spontaneous thalamocortical oscillations in rats with CPSP were modulated by blocking P(2)X(7) receptors. Taken together, our results suggest that targeting P(2)X(7) may be bi-effective in the treatment of CPSP, as both a pain blocker and immunosuppressant that inhibits inflammatory damage to brain tissue. P(2)X(7)receptors may serve as a potential target to prevent the occurrence of CPSP and may be beneficial for the recovery of patients from stroke.

  16. Characterization of a Novel Function-Blocking Antibody Targeted Against The Platelet P2Y1 Receptor

    PubMed Central

    Karim, Zubair A.; Vemana, Hari Priya; Alshbool, Fatima Z.; Lin, Olivia A.; Alshehri, Abdullah M.; Javaherizadeh, Payam; Paez Espinosa, Enma V.; Khasawneh, Fadi T.

    2015-01-01

    Objective Platelet hyperactivity is associated with vascular disease and contributes to the genesis of thrombotic disorders. ADP plays an important role in platelet activation, and activates platelets through two G-Protein Coupled Receptors, the Gq-coupled P2Y1 receptor (P2Y1R), and the Gi-coupled P2Y12 receptor (P2Y12R). While the involvement of the P2Y1R in thrombogenesis is well established, there are no antagonists that are currently available for clinical use. Approach and Results Our goal is to determine whether a novel antibody targeting the ligand binding domain, i.e., second extracellular loop (EL2) of the P2Y1R [abbreviated as EL2Ab] could inhibit platelet function and protect against thrombogenesis. Our results revealed that the EL2Ab does indeed inhibit ADP-induced platelet aggregation, in a dose-dependent manner. Furthermore, EL2Ab was found to inhibit integrin GPIIb-IIIa activation, dense and alpha granule secretion and phosphatidylserine exposure. These inhibitory effects translated into protection against thrombus formation, as evident by a prolonged time for occlusion in a FeCl3 induced thrombosis model, but this was accompanied by a prolonged tail bleeding time. We also observed a dose dependent displacement of the radiolabelled P2Y1R antagonist [3H]MRS25000 from its ligand binding site by EL2Ab. Conclusions Collectively, our findings demonstrate that EL2Ab binds to and exhibits P2Y1R-dependent function-blocking activity in the c